1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/sched/mm.h> 106 #include <linux/timer.h> 107 #include <linux/string.h> 108 #include <linux/sockios.h> 109 #include <linux/net.h> 110 #include <linux/mm.h> 111 #include <linux/slab.h> 112 #include <linux/interrupt.h> 113 #include <linux/poll.h> 114 #include <linux/tcp.h> 115 #include <linux/init.h> 116 #include <linux/highmem.h> 117 #include <linux/user_namespace.h> 118 #include <linux/static_key.h> 119 #include <linux/memcontrol.h> 120 #include <linux/prefetch.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 145 static DEFINE_MUTEX(proto_list_mutex); 146 static LIST_HEAD(proto_list); 147 148 static void sock_inuse_add(struct net *net, int val); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family and separate keys for internal and 201 * userspace sockets. 202 */ 203 static struct lock_class_key af_family_keys[AF_MAX]; 204 static struct lock_class_key af_family_kern_keys[AF_MAX]; 205 static struct lock_class_key af_family_slock_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 207 208 /* 209 * Make lock validator output more readable. (we pre-construct these 210 * strings build-time, so that runtime initialization of socket 211 * locks is fast): 212 */ 213 214 #define _sock_locks(x) \ 215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 224 x "27" , x "28" , x "AF_CAN" , \ 225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" 230 231 static const char *const af_family_key_strings[AF_MAX+1] = { 232 _sock_locks("sk_lock-") 233 }; 234 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 235 _sock_locks("slock-") 236 }; 237 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 238 _sock_locks("clock-") 239 }; 240 241 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 242 _sock_locks("k-sk_lock-") 243 }; 244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-slock-") 246 }; 247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 248 _sock_locks("k-clock-") 249 }; 250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , 252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", 253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , 254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , 255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , 256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , 257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , 258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , 259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , 260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" , 261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , 262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , 263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , 264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , 265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" 266 }; 267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , 269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", 270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , 271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , 272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , 273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , 274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , 275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , 276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , 277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" , 278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , 279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , 280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , 281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , 282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" 283 }; 284 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , 286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", 287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , 288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , 289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , 290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , 291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , 292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , 293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , 294 "elock-27" , "elock-28" , "elock-AF_CAN" , 295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , 296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , 297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , 298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , 299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" 300 }; 301 302 /* 303 * sk_callback_lock and sk queues locking rules are per-address-family, 304 * so split the lock classes by using a per-AF key: 305 */ 306 static struct lock_class_key af_callback_keys[AF_MAX]; 307 static struct lock_class_key af_rlock_keys[AF_MAX]; 308 static struct lock_class_key af_wlock_keys[AF_MAX]; 309 static struct lock_class_key af_elock_keys[AF_MAX]; 310 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 311 312 /* Run time adjustable parameters. */ 313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 314 EXPORT_SYMBOL(sysctl_wmem_max); 315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 316 EXPORT_SYMBOL(sysctl_rmem_max); 317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 319 320 /* Maximal space eaten by iovec or ancillary data plus some space */ 321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 322 EXPORT_SYMBOL(sysctl_optmem_max); 323 324 int sysctl_tstamp_allow_data __read_mostly = 1; 325 326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 327 EXPORT_SYMBOL_GPL(memalloc_socks); 328 329 /** 330 * sk_set_memalloc - sets %SOCK_MEMALLOC 331 * @sk: socket to set it on 332 * 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 334 * It's the responsibility of the admin to adjust min_free_kbytes 335 * to meet the requirements 336 */ 337 void sk_set_memalloc(struct sock *sk) 338 { 339 sock_set_flag(sk, SOCK_MEMALLOC); 340 sk->sk_allocation |= __GFP_MEMALLOC; 341 static_key_slow_inc(&memalloc_socks); 342 } 343 EXPORT_SYMBOL_GPL(sk_set_memalloc); 344 345 void sk_clear_memalloc(struct sock *sk) 346 { 347 sock_reset_flag(sk, SOCK_MEMALLOC); 348 sk->sk_allocation &= ~__GFP_MEMALLOC; 349 static_key_slow_dec(&memalloc_socks); 350 351 /* 352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 353 * progress of swapping. SOCK_MEMALLOC may be cleared while 354 * it has rmem allocations due to the last swapfile being deactivated 355 * but there is a risk that the socket is unusable due to exceeding 356 * the rmem limits. Reclaim the reserves and obey rmem limits again. 357 */ 358 sk_mem_reclaim(sk); 359 } 360 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 361 362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 363 { 364 int ret; 365 unsigned int noreclaim_flag; 366 367 /* these should have been dropped before queueing */ 368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 369 370 noreclaim_flag = memalloc_noreclaim_save(); 371 ret = sk->sk_backlog_rcv(sk, skb); 372 memalloc_noreclaim_restore(noreclaim_flag); 373 374 return ret; 375 } 376 EXPORT_SYMBOL(__sk_backlog_rcv); 377 378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 379 { 380 struct timeval tv; 381 382 if (optlen < sizeof(tv)) 383 return -EINVAL; 384 if (copy_from_user(&tv, optval, sizeof(tv))) 385 return -EFAULT; 386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 387 return -EDOM; 388 389 if (tv.tv_sec < 0) { 390 static int warned __read_mostly; 391 392 *timeo_p = 0; 393 if (warned < 10 && net_ratelimit()) { 394 warned++; 395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 396 __func__, current->comm, task_pid_nr(current)); 397 } 398 return 0; 399 } 400 *timeo_p = MAX_SCHEDULE_TIMEOUT; 401 if (tv.tv_sec == 0 && tv.tv_usec == 0) 402 return 0; 403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); 405 return 0; 406 } 407 408 static void sock_warn_obsolete_bsdism(const char *name) 409 { 410 static int warned; 411 static char warncomm[TASK_COMM_LEN]; 412 if (strcmp(warncomm, current->comm) && warned < 5) { 413 strcpy(warncomm, current->comm); 414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 415 warncomm, name); 416 warned++; 417 } 418 } 419 420 static bool sock_needs_netstamp(const struct sock *sk) 421 { 422 switch (sk->sk_family) { 423 case AF_UNSPEC: 424 case AF_UNIX: 425 return false; 426 default: 427 return true; 428 } 429 } 430 431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 432 { 433 if (sk->sk_flags & flags) { 434 sk->sk_flags &= ~flags; 435 if (sock_needs_netstamp(sk) && 436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 437 net_disable_timestamp(); 438 } 439 } 440 441 442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 443 { 444 unsigned long flags; 445 struct sk_buff_head *list = &sk->sk_receive_queue; 446 447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 448 atomic_inc(&sk->sk_drops); 449 trace_sock_rcvqueue_full(sk, skb); 450 return -ENOMEM; 451 } 452 453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 454 atomic_inc(&sk->sk_drops); 455 return -ENOBUFS; 456 } 457 458 skb->dev = NULL; 459 skb_set_owner_r(skb, sk); 460 461 /* we escape from rcu protected region, make sure we dont leak 462 * a norefcounted dst 463 */ 464 skb_dst_force(skb); 465 466 spin_lock_irqsave(&list->lock, flags); 467 sock_skb_set_dropcount(sk, skb); 468 __skb_queue_tail(list, skb); 469 spin_unlock_irqrestore(&list->lock, flags); 470 471 if (!sock_flag(sk, SOCK_DEAD)) 472 sk->sk_data_ready(sk); 473 return 0; 474 } 475 EXPORT_SYMBOL(__sock_queue_rcv_skb); 476 477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 478 { 479 int err; 480 481 err = sk_filter(sk, skb); 482 if (err) 483 return err; 484 485 return __sock_queue_rcv_skb(sk, skb); 486 } 487 EXPORT_SYMBOL(sock_queue_rcv_skb); 488 489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 490 const int nested, unsigned int trim_cap, bool refcounted) 491 { 492 int rc = NET_RX_SUCCESS; 493 494 if (sk_filter_trim_cap(sk, skb, trim_cap)) 495 goto discard_and_relse; 496 497 skb->dev = NULL; 498 499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 500 atomic_inc(&sk->sk_drops); 501 goto discard_and_relse; 502 } 503 if (nested) 504 bh_lock_sock_nested(sk); 505 else 506 bh_lock_sock(sk); 507 if (!sock_owned_by_user(sk)) { 508 /* 509 * trylock + unlock semantics: 510 */ 511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 512 513 rc = sk_backlog_rcv(sk, skb); 514 515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 517 bh_unlock_sock(sk); 518 atomic_inc(&sk->sk_drops); 519 goto discard_and_relse; 520 } 521 522 bh_unlock_sock(sk); 523 out: 524 if (refcounted) 525 sock_put(sk); 526 return rc; 527 discard_and_relse: 528 kfree_skb(skb); 529 goto out; 530 } 531 EXPORT_SYMBOL(__sk_receive_skb); 532 533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 534 { 535 struct dst_entry *dst = __sk_dst_get(sk); 536 537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 538 sk_tx_queue_clear(sk); 539 sk->sk_dst_pending_confirm = 0; 540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 541 dst_release(dst); 542 return NULL; 543 } 544 545 return dst; 546 } 547 EXPORT_SYMBOL(__sk_dst_check); 548 549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 550 { 551 struct dst_entry *dst = sk_dst_get(sk); 552 553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 554 sk_dst_reset(sk); 555 dst_release(dst); 556 return NULL; 557 } 558 559 return dst; 560 } 561 EXPORT_SYMBOL(sk_dst_check); 562 563 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 564 int optlen) 565 { 566 int ret = -ENOPROTOOPT; 567 #ifdef CONFIG_NETDEVICES 568 struct net *net = sock_net(sk); 569 char devname[IFNAMSIZ]; 570 int index; 571 572 /* Sorry... */ 573 ret = -EPERM; 574 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 575 goto out; 576 577 ret = -EINVAL; 578 if (optlen < 0) 579 goto out; 580 581 /* Bind this socket to a particular device like "eth0", 582 * as specified in the passed interface name. If the 583 * name is "" or the option length is zero the socket 584 * is not bound. 585 */ 586 if (optlen > IFNAMSIZ - 1) 587 optlen = IFNAMSIZ - 1; 588 memset(devname, 0, sizeof(devname)); 589 590 ret = -EFAULT; 591 if (copy_from_user(devname, optval, optlen)) 592 goto out; 593 594 index = 0; 595 if (devname[0] != '\0') { 596 struct net_device *dev; 597 598 rcu_read_lock(); 599 dev = dev_get_by_name_rcu(net, devname); 600 if (dev) 601 index = dev->ifindex; 602 rcu_read_unlock(); 603 ret = -ENODEV; 604 if (!dev) 605 goto out; 606 } 607 608 lock_sock(sk); 609 sk->sk_bound_dev_if = index; 610 sk_dst_reset(sk); 611 release_sock(sk); 612 613 ret = 0; 614 615 out: 616 #endif 617 618 return ret; 619 } 620 621 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 622 int __user *optlen, int len) 623 { 624 int ret = -ENOPROTOOPT; 625 #ifdef CONFIG_NETDEVICES 626 struct net *net = sock_net(sk); 627 char devname[IFNAMSIZ]; 628 629 if (sk->sk_bound_dev_if == 0) { 630 len = 0; 631 goto zero; 632 } 633 634 ret = -EINVAL; 635 if (len < IFNAMSIZ) 636 goto out; 637 638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 639 if (ret) 640 goto out; 641 642 len = strlen(devname) + 1; 643 644 ret = -EFAULT; 645 if (copy_to_user(optval, devname, len)) 646 goto out; 647 648 zero: 649 ret = -EFAULT; 650 if (put_user(len, optlen)) 651 goto out; 652 653 ret = 0; 654 655 out: 656 #endif 657 658 return ret; 659 } 660 661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 662 { 663 if (valbool) 664 sock_set_flag(sk, bit); 665 else 666 sock_reset_flag(sk, bit); 667 } 668 669 bool sk_mc_loop(struct sock *sk) 670 { 671 if (dev_recursion_level()) 672 return false; 673 if (!sk) 674 return true; 675 switch (sk->sk_family) { 676 case AF_INET: 677 return inet_sk(sk)->mc_loop; 678 #if IS_ENABLED(CONFIG_IPV6) 679 case AF_INET6: 680 return inet6_sk(sk)->mc_loop; 681 #endif 682 } 683 WARN_ON(1); 684 return true; 685 } 686 EXPORT_SYMBOL(sk_mc_loop); 687 688 /* 689 * This is meant for all protocols to use and covers goings on 690 * at the socket level. Everything here is generic. 691 */ 692 693 int sock_setsockopt(struct socket *sock, int level, int optname, 694 char __user *optval, unsigned int optlen) 695 { 696 struct sock *sk = sock->sk; 697 int val; 698 int valbool; 699 struct linger ling; 700 int ret = 0; 701 702 /* 703 * Options without arguments 704 */ 705 706 if (optname == SO_BINDTODEVICE) 707 return sock_setbindtodevice(sk, optval, optlen); 708 709 if (optlen < sizeof(int)) 710 return -EINVAL; 711 712 if (get_user(val, (int __user *)optval)) 713 return -EFAULT; 714 715 valbool = val ? 1 : 0; 716 717 lock_sock(sk); 718 719 switch (optname) { 720 case SO_DEBUG: 721 if (val && !capable(CAP_NET_ADMIN)) 722 ret = -EACCES; 723 else 724 sock_valbool_flag(sk, SOCK_DBG, valbool); 725 break; 726 case SO_REUSEADDR: 727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 728 break; 729 case SO_REUSEPORT: 730 sk->sk_reuseport = valbool; 731 break; 732 case SO_TYPE: 733 case SO_PROTOCOL: 734 case SO_DOMAIN: 735 case SO_ERROR: 736 ret = -ENOPROTOOPT; 737 break; 738 case SO_DONTROUTE: 739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 740 break; 741 case SO_BROADCAST: 742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 743 break; 744 case SO_SNDBUF: 745 /* Don't error on this BSD doesn't and if you think 746 * about it this is right. Otherwise apps have to 747 * play 'guess the biggest size' games. RCVBUF/SNDBUF 748 * are treated in BSD as hints 749 */ 750 val = min_t(u32, val, sysctl_wmem_max); 751 set_sndbuf: 752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 754 /* Wake up sending tasks if we upped the value. */ 755 sk->sk_write_space(sk); 756 break; 757 758 case SO_SNDBUFFORCE: 759 if (!capable(CAP_NET_ADMIN)) { 760 ret = -EPERM; 761 break; 762 } 763 goto set_sndbuf; 764 765 case SO_RCVBUF: 766 /* Don't error on this BSD doesn't and if you think 767 * about it this is right. Otherwise apps have to 768 * play 'guess the biggest size' games. RCVBUF/SNDBUF 769 * are treated in BSD as hints 770 */ 771 val = min_t(u32, val, sysctl_rmem_max); 772 set_rcvbuf: 773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 774 /* 775 * We double it on the way in to account for 776 * "struct sk_buff" etc. overhead. Applications 777 * assume that the SO_RCVBUF setting they make will 778 * allow that much actual data to be received on that 779 * socket. 780 * 781 * Applications are unaware that "struct sk_buff" and 782 * other overheads allocate from the receive buffer 783 * during socket buffer allocation. 784 * 785 * And after considering the possible alternatives, 786 * returning the value we actually used in getsockopt 787 * is the most desirable behavior. 788 */ 789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 790 break; 791 792 case SO_RCVBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 goto set_rcvbuf; 798 799 case SO_KEEPALIVE: 800 if (sk->sk_prot->keepalive) 801 sk->sk_prot->keepalive(sk, valbool); 802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 803 break; 804 805 case SO_OOBINLINE: 806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 807 break; 808 809 case SO_NO_CHECK: 810 sk->sk_no_check_tx = valbool; 811 break; 812 813 case SO_PRIORITY: 814 if ((val >= 0 && val <= 6) || 815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 816 sk->sk_priority = val; 817 else 818 ret = -EPERM; 819 break; 820 821 case SO_LINGER: 822 if (optlen < sizeof(ling)) { 823 ret = -EINVAL; /* 1003.1g */ 824 break; 825 } 826 if (copy_from_user(&ling, optval, sizeof(ling))) { 827 ret = -EFAULT; 828 break; 829 } 830 if (!ling.l_onoff) 831 sock_reset_flag(sk, SOCK_LINGER); 832 else { 833 #if (BITS_PER_LONG == 32) 834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 836 else 837 #endif 838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 839 sock_set_flag(sk, SOCK_LINGER); 840 } 841 break; 842 843 case SO_BSDCOMPAT: 844 sock_warn_obsolete_bsdism("setsockopt"); 845 break; 846 847 case SO_PASSCRED: 848 if (valbool) 849 set_bit(SOCK_PASSCRED, &sock->flags); 850 else 851 clear_bit(SOCK_PASSCRED, &sock->flags); 852 break; 853 854 case SO_TIMESTAMP: 855 case SO_TIMESTAMPNS: 856 if (valbool) { 857 if (optname == SO_TIMESTAMP) 858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 859 else 860 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 861 sock_set_flag(sk, SOCK_RCVTSTAMP); 862 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 863 } else { 864 sock_reset_flag(sk, SOCK_RCVTSTAMP); 865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 866 } 867 break; 868 869 case SO_TIMESTAMPING: 870 if (val & ~SOF_TIMESTAMPING_MASK) { 871 ret = -EINVAL; 872 break; 873 } 874 875 if (val & SOF_TIMESTAMPING_OPT_ID && 876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 877 if (sk->sk_protocol == IPPROTO_TCP && 878 sk->sk_type == SOCK_STREAM) { 879 if ((1 << sk->sk_state) & 880 (TCPF_CLOSE | TCPF_LISTEN)) { 881 ret = -EINVAL; 882 break; 883 } 884 sk->sk_tskey = tcp_sk(sk)->snd_una; 885 } else { 886 sk->sk_tskey = 0; 887 } 888 } 889 890 if (val & SOF_TIMESTAMPING_OPT_STATS && 891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 892 ret = -EINVAL; 893 break; 894 } 895 896 sk->sk_tsflags = val; 897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 898 sock_enable_timestamp(sk, 899 SOCK_TIMESTAMPING_RX_SOFTWARE); 900 else 901 sock_disable_timestamp(sk, 902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 903 break; 904 905 case SO_RCVLOWAT: 906 if (val < 0) 907 val = INT_MAX; 908 sk->sk_rcvlowat = val ? : 1; 909 break; 910 911 case SO_RCVTIMEO: 912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 913 break; 914 915 case SO_SNDTIMEO: 916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 917 break; 918 919 case SO_ATTACH_FILTER: 920 ret = -EINVAL; 921 if (optlen == sizeof(struct sock_fprog)) { 922 struct sock_fprog fprog; 923 924 ret = -EFAULT; 925 if (copy_from_user(&fprog, optval, sizeof(fprog))) 926 break; 927 928 ret = sk_attach_filter(&fprog, sk); 929 } 930 break; 931 932 case SO_ATTACH_BPF: 933 ret = -EINVAL; 934 if (optlen == sizeof(u32)) { 935 u32 ufd; 936 937 ret = -EFAULT; 938 if (copy_from_user(&ufd, optval, sizeof(ufd))) 939 break; 940 941 ret = sk_attach_bpf(ufd, sk); 942 } 943 break; 944 945 case SO_ATTACH_REUSEPORT_CBPF: 946 ret = -EINVAL; 947 if (optlen == sizeof(struct sock_fprog)) { 948 struct sock_fprog fprog; 949 950 ret = -EFAULT; 951 if (copy_from_user(&fprog, optval, sizeof(fprog))) 952 break; 953 954 ret = sk_reuseport_attach_filter(&fprog, sk); 955 } 956 break; 957 958 case SO_ATTACH_REUSEPORT_EBPF: 959 ret = -EINVAL; 960 if (optlen == sizeof(u32)) { 961 u32 ufd; 962 963 ret = -EFAULT; 964 if (copy_from_user(&ufd, optval, sizeof(ufd))) 965 break; 966 967 ret = sk_reuseport_attach_bpf(ufd, sk); 968 } 969 break; 970 971 case SO_DETACH_FILTER: 972 ret = sk_detach_filter(sk); 973 break; 974 975 case SO_LOCK_FILTER: 976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 977 ret = -EPERM; 978 else 979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 980 break; 981 982 case SO_PASSSEC: 983 if (valbool) 984 set_bit(SOCK_PASSSEC, &sock->flags); 985 else 986 clear_bit(SOCK_PASSSEC, &sock->flags); 987 break; 988 case SO_MARK: 989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 990 ret = -EPERM; 991 else 992 sk->sk_mark = val; 993 break; 994 995 case SO_RXQ_OVFL: 996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 997 break; 998 999 case SO_WIFI_STATUS: 1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1001 break; 1002 1003 case SO_PEEK_OFF: 1004 if (sock->ops->set_peek_off) 1005 ret = sock->ops->set_peek_off(sk, val); 1006 else 1007 ret = -EOPNOTSUPP; 1008 break; 1009 1010 case SO_NOFCS: 1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1012 break; 1013 1014 case SO_SELECT_ERR_QUEUE: 1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1016 break; 1017 1018 #ifdef CONFIG_NET_RX_BUSY_POLL 1019 case SO_BUSY_POLL: 1020 /* allow unprivileged users to decrease the value */ 1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1022 ret = -EPERM; 1023 else { 1024 if (val < 0) 1025 ret = -EINVAL; 1026 else 1027 sk->sk_ll_usec = val; 1028 } 1029 break; 1030 #endif 1031 1032 case SO_MAX_PACING_RATE: 1033 if (val != ~0U) 1034 cmpxchg(&sk->sk_pacing_status, 1035 SK_PACING_NONE, 1036 SK_PACING_NEEDED); 1037 sk->sk_max_pacing_rate = val; 1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1039 sk->sk_max_pacing_rate); 1040 break; 1041 1042 case SO_INCOMING_CPU: 1043 sk->sk_incoming_cpu = val; 1044 break; 1045 1046 case SO_CNX_ADVICE: 1047 if (val == 1) 1048 dst_negative_advice(sk); 1049 break; 1050 1051 case SO_ZEROCOPY: 1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1053 if (sk->sk_protocol != IPPROTO_TCP) 1054 ret = -ENOTSUPP; 1055 } else if (sk->sk_family != PF_RDS) { 1056 ret = -ENOTSUPP; 1057 } 1058 if (!ret) { 1059 if (val < 0 || val > 1) 1060 ret = -EINVAL; 1061 else 1062 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1063 } 1064 break; 1065 1066 default: 1067 ret = -ENOPROTOOPT; 1068 break; 1069 } 1070 release_sock(sk); 1071 return ret; 1072 } 1073 EXPORT_SYMBOL(sock_setsockopt); 1074 1075 1076 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1077 struct ucred *ucred) 1078 { 1079 ucred->pid = pid_vnr(pid); 1080 ucred->uid = ucred->gid = -1; 1081 if (cred) { 1082 struct user_namespace *current_ns = current_user_ns(); 1083 1084 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1085 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1086 } 1087 } 1088 1089 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1090 { 1091 struct user_namespace *user_ns = current_user_ns(); 1092 int i; 1093 1094 for (i = 0; i < src->ngroups; i++) 1095 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1096 return -EFAULT; 1097 1098 return 0; 1099 } 1100 1101 int sock_getsockopt(struct socket *sock, int level, int optname, 1102 char __user *optval, int __user *optlen) 1103 { 1104 struct sock *sk = sock->sk; 1105 1106 union { 1107 int val; 1108 u64 val64; 1109 struct linger ling; 1110 struct timeval tm; 1111 } v; 1112 1113 int lv = sizeof(int); 1114 int len; 1115 1116 if (get_user(len, optlen)) 1117 return -EFAULT; 1118 if (len < 0) 1119 return -EINVAL; 1120 1121 memset(&v, 0, sizeof(v)); 1122 1123 switch (optname) { 1124 case SO_DEBUG: 1125 v.val = sock_flag(sk, SOCK_DBG); 1126 break; 1127 1128 case SO_DONTROUTE: 1129 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1130 break; 1131 1132 case SO_BROADCAST: 1133 v.val = sock_flag(sk, SOCK_BROADCAST); 1134 break; 1135 1136 case SO_SNDBUF: 1137 v.val = sk->sk_sndbuf; 1138 break; 1139 1140 case SO_RCVBUF: 1141 v.val = sk->sk_rcvbuf; 1142 break; 1143 1144 case SO_REUSEADDR: 1145 v.val = sk->sk_reuse; 1146 break; 1147 1148 case SO_REUSEPORT: 1149 v.val = sk->sk_reuseport; 1150 break; 1151 1152 case SO_KEEPALIVE: 1153 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1154 break; 1155 1156 case SO_TYPE: 1157 v.val = sk->sk_type; 1158 break; 1159 1160 case SO_PROTOCOL: 1161 v.val = sk->sk_protocol; 1162 break; 1163 1164 case SO_DOMAIN: 1165 v.val = sk->sk_family; 1166 break; 1167 1168 case SO_ERROR: 1169 v.val = -sock_error(sk); 1170 if (v.val == 0) 1171 v.val = xchg(&sk->sk_err_soft, 0); 1172 break; 1173 1174 case SO_OOBINLINE: 1175 v.val = sock_flag(sk, SOCK_URGINLINE); 1176 break; 1177 1178 case SO_NO_CHECK: 1179 v.val = sk->sk_no_check_tx; 1180 break; 1181 1182 case SO_PRIORITY: 1183 v.val = sk->sk_priority; 1184 break; 1185 1186 case SO_LINGER: 1187 lv = sizeof(v.ling); 1188 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1189 v.ling.l_linger = sk->sk_lingertime / HZ; 1190 break; 1191 1192 case SO_BSDCOMPAT: 1193 sock_warn_obsolete_bsdism("getsockopt"); 1194 break; 1195 1196 case SO_TIMESTAMP: 1197 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1198 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1199 break; 1200 1201 case SO_TIMESTAMPNS: 1202 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1203 break; 1204 1205 case SO_TIMESTAMPING: 1206 v.val = sk->sk_tsflags; 1207 break; 1208 1209 case SO_RCVTIMEO: 1210 lv = sizeof(struct timeval); 1211 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1212 v.tm.tv_sec = 0; 1213 v.tm.tv_usec = 0; 1214 } else { 1215 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1216 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; 1217 } 1218 break; 1219 1220 case SO_SNDTIMEO: 1221 lv = sizeof(struct timeval); 1222 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1223 v.tm.tv_sec = 0; 1224 v.tm.tv_usec = 0; 1225 } else { 1226 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1227 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; 1228 } 1229 break; 1230 1231 case SO_RCVLOWAT: 1232 v.val = sk->sk_rcvlowat; 1233 break; 1234 1235 case SO_SNDLOWAT: 1236 v.val = 1; 1237 break; 1238 1239 case SO_PASSCRED: 1240 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1241 break; 1242 1243 case SO_PEERCRED: 1244 { 1245 struct ucred peercred; 1246 if (len > sizeof(peercred)) 1247 len = sizeof(peercred); 1248 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1249 if (copy_to_user(optval, &peercred, len)) 1250 return -EFAULT; 1251 goto lenout; 1252 } 1253 1254 case SO_PEERGROUPS: 1255 { 1256 int ret, n; 1257 1258 if (!sk->sk_peer_cred) 1259 return -ENODATA; 1260 1261 n = sk->sk_peer_cred->group_info->ngroups; 1262 if (len < n * sizeof(gid_t)) { 1263 len = n * sizeof(gid_t); 1264 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1265 } 1266 len = n * sizeof(gid_t); 1267 1268 ret = groups_to_user((gid_t __user *)optval, 1269 sk->sk_peer_cred->group_info); 1270 if (ret) 1271 return ret; 1272 goto lenout; 1273 } 1274 1275 case SO_PEERNAME: 1276 { 1277 char address[128]; 1278 1279 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1280 if (lv < 0) 1281 return -ENOTCONN; 1282 if (lv < len) 1283 return -EINVAL; 1284 if (copy_to_user(optval, address, len)) 1285 return -EFAULT; 1286 goto lenout; 1287 } 1288 1289 /* Dubious BSD thing... Probably nobody even uses it, but 1290 * the UNIX standard wants it for whatever reason... -DaveM 1291 */ 1292 case SO_ACCEPTCONN: 1293 v.val = sk->sk_state == TCP_LISTEN; 1294 break; 1295 1296 case SO_PASSSEC: 1297 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1298 break; 1299 1300 case SO_PEERSEC: 1301 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1302 1303 case SO_MARK: 1304 v.val = sk->sk_mark; 1305 break; 1306 1307 case SO_RXQ_OVFL: 1308 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1309 break; 1310 1311 case SO_WIFI_STATUS: 1312 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1313 break; 1314 1315 case SO_PEEK_OFF: 1316 if (!sock->ops->set_peek_off) 1317 return -EOPNOTSUPP; 1318 1319 v.val = sk->sk_peek_off; 1320 break; 1321 case SO_NOFCS: 1322 v.val = sock_flag(sk, SOCK_NOFCS); 1323 break; 1324 1325 case SO_BINDTODEVICE: 1326 return sock_getbindtodevice(sk, optval, optlen, len); 1327 1328 case SO_GET_FILTER: 1329 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1330 if (len < 0) 1331 return len; 1332 1333 goto lenout; 1334 1335 case SO_LOCK_FILTER: 1336 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1337 break; 1338 1339 case SO_BPF_EXTENSIONS: 1340 v.val = bpf_tell_extensions(); 1341 break; 1342 1343 case SO_SELECT_ERR_QUEUE: 1344 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1345 break; 1346 1347 #ifdef CONFIG_NET_RX_BUSY_POLL 1348 case SO_BUSY_POLL: 1349 v.val = sk->sk_ll_usec; 1350 break; 1351 #endif 1352 1353 case SO_MAX_PACING_RATE: 1354 v.val = sk->sk_max_pacing_rate; 1355 break; 1356 1357 case SO_INCOMING_CPU: 1358 v.val = sk->sk_incoming_cpu; 1359 break; 1360 1361 case SO_MEMINFO: 1362 { 1363 u32 meminfo[SK_MEMINFO_VARS]; 1364 1365 if (get_user(len, optlen)) 1366 return -EFAULT; 1367 1368 sk_get_meminfo(sk, meminfo); 1369 1370 len = min_t(unsigned int, len, sizeof(meminfo)); 1371 if (copy_to_user(optval, &meminfo, len)) 1372 return -EFAULT; 1373 1374 goto lenout; 1375 } 1376 1377 #ifdef CONFIG_NET_RX_BUSY_POLL 1378 case SO_INCOMING_NAPI_ID: 1379 v.val = READ_ONCE(sk->sk_napi_id); 1380 1381 /* aggregate non-NAPI IDs down to 0 */ 1382 if (v.val < MIN_NAPI_ID) 1383 v.val = 0; 1384 1385 break; 1386 #endif 1387 1388 case SO_COOKIE: 1389 lv = sizeof(u64); 1390 if (len < lv) 1391 return -EINVAL; 1392 v.val64 = sock_gen_cookie(sk); 1393 break; 1394 1395 case SO_ZEROCOPY: 1396 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1397 break; 1398 1399 default: 1400 /* We implement the SO_SNDLOWAT etc to not be settable 1401 * (1003.1g 7). 1402 */ 1403 return -ENOPROTOOPT; 1404 } 1405 1406 if (len > lv) 1407 len = lv; 1408 if (copy_to_user(optval, &v, len)) 1409 return -EFAULT; 1410 lenout: 1411 if (put_user(len, optlen)) 1412 return -EFAULT; 1413 return 0; 1414 } 1415 1416 /* 1417 * Initialize an sk_lock. 1418 * 1419 * (We also register the sk_lock with the lock validator.) 1420 */ 1421 static inline void sock_lock_init(struct sock *sk) 1422 { 1423 if (sk->sk_kern_sock) 1424 sock_lock_init_class_and_name( 1425 sk, 1426 af_family_kern_slock_key_strings[sk->sk_family], 1427 af_family_kern_slock_keys + sk->sk_family, 1428 af_family_kern_key_strings[sk->sk_family], 1429 af_family_kern_keys + sk->sk_family); 1430 else 1431 sock_lock_init_class_and_name( 1432 sk, 1433 af_family_slock_key_strings[sk->sk_family], 1434 af_family_slock_keys + sk->sk_family, 1435 af_family_key_strings[sk->sk_family], 1436 af_family_keys + sk->sk_family); 1437 } 1438 1439 /* 1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1441 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1443 */ 1444 static void sock_copy(struct sock *nsk, const struct sock *osk) 1445 { 1446 #ifdef CONFIG_SECURITY_NETWORK 1447 void *sptr = nsk->sk_security; 1448 #endif 1449 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1450 1451 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1452 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1453 1454 #ifdef CONFIG_SECURITY_NETWORK 1455 nsk->sk_security = sptr; 1456 security_sk_clone(osk, nsk); 1457 #endif 1458 } 1459 1460 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1461 int family) 1462 { 1463 struct sock *sk; 1464 struct kmem_cache *slab; 1465 1466 slab = prot->slab; 1467 if (slab != NULL) { 1468 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1469 if (!sk) 1470 return sk; 1471 if (priority & __GFP_ZERO) 1472 sk_prot_clear_nulls(sk, prot->obj_size); 1473 } else 1474 sk = kmalloc(prot->obj_size, priority); 1475 1476 if (sk != NULL) { 1477 if (security_sk_alloc(sk, family, priority)) 1478 goto out_free; 1479 1480 if (!try_module_get(prot->owner)) 1481 goto out_free_sec; 1482 sk_tx_queue_clear(sk); 1483 } 1484 1485 return sk; 1486 1487 out_free_sec: 1488 security_sk_free(sk); 1489 out_free: 1490 if (slab != NULL) 1491 kmem_cache_free(slab, sk); 1492 else 1493 kfree(sk); 1494 return NULL; 1495 } 1496 1497 static void sk_prot_free(struct proto *prot, struct sock *sk) 1498 { 1499 struct kmem_cache *slab; 1500 struct module *owner; 1501 1502 owner = prot->owner; 1503 slab = prot->slab; 1504 1505 cgroup_sk_free(&sk->sk_cgrp_data); 1506 mem_cgroup_sk_free(sk); 1507 security_sk_free(sk); 1508 if (slab != NULL) 1509 kmem_cache_free(slab, sk); 1510 else 1511 kfree(sk); 1512 module_put(owner); 1513 } 1514 1515 /** 1516 * sk_alloc - All socket objects are allocated here 1517 * @net: the applicable net namespace 1518 * @family: protocol family 1519 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1520 * @prot: struct proto associated with this new sock instance 1521 * @kern: is this to be a kernel socket? 1522 */ 1523 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1524 struct proto *prot, int kern) 1525 { 1526 struct sock *sk; 1527 1528 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1529 if (sk) { 1530 sk->sk_family = family; 1531 /* 1532 * See comment in struct sock definition to understand 1533 * why we need sk_prot_creator -acme 1534 */ 1535 sk->sk_prot = sk->sk_prot_creator = prot; 1536 sk->sk_kern_sock = kern; 1537 sock_lock_init(sk); 1538 sk->sk_net_refcnt = kern ? 0 : 1; 1539 if (likely(sk->sk_net_refcnt)) { 1540 get_net(net); 1541 sock_inuse_add(net, 1); 1542 } 1543 1544 sock_net_set(sk, net); 1545 refcount_set(&sk->sk_wmem_alloc, 1); 1546 1547 mem_cgroup_sk_alloc(sk); 1548 cgroup_sk_alloc(&sk->sk_cgrp_data); 1549 sock_update_classid(&sk->sk_cgrp_data); 1550 sock_update_netprioidx(&sk->sk_cgrp_data); 1551 } 1552 1553 return sk; 1554 } 1555 EXPORT_SYMBOL(sk_alloc); 1556 1557 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1558 * grace period. This is the case for UDP sockets and TCP listeners. 1559 */ 1560 static void __sk_destruct(struct rcu_head *head) 1561 { 1562 struct sock *sk = container_of(head, struct sock, sk_rcu); 1563 struct sk_filter *filter; 1564 1565 if (sk->sk_destruct) 1566 sk->sk_destruct(sk); 1567 1568 filter = rcu_dereference_check(sk->sk_filter, 1569 refcount_read(&sk->sk_wmem_alloc) == 0); 1570 if (filter) { 1571 sk_filter_uncharge(sk, filter); 1572 RCU_INIT_POINTER(sk->sk_filter, NULL); 1573 } 1574 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1575 reuseport_detach_sock(sk); 1576 1577 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1578 1579 if (atomic_read(&sk->sk_omem_alloc)) 1580 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1581 __func__, atomic_read(&sk->sk_omem_alloc)); 1582 1583 if (sk->sk_frag.page) { 1584 put_page(sk->sk_frag.page); 1585 sk->sk_frag.page = NULL; 1586 } 1587 1588 if (sk->sk_peer_cred) 1589 put_cred(sk->sk_peer_cred); 1590 put_pid(sk->sk_peer_pid); 1591 if (likely(sk->sk_net_refcnt)) 1592 put_net(sock_net(sk)); 1593 sk_prot_free(sk->sk_prot_creator, sk); 1594 } 1595 1596 void sk_destruct(struct sock *sk) 1597 { 1598 if (sock_flag(sk, SOCK_RCU_FREE)) 1599 call_rcu(&sk->sk_rcu, __sk_destruct); 1600 else 1601 __sk_destruct(&sk->sk_rcu); 1602 } 1603 1604 static void __sk_free(struct sock *sk) 1605 { 1606 if (likely(sk->sk_net_refcnt)) 1607 sock_inuse_add(sock_net(sk), -1); 1608 1609 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1610 sock_diag_broadcast_destroy(sk); 1611 else 1612 sk_destruct(sk); 1613 } 1614 1615 void sk_free(struct sock *sk) 1616 { 1617 /* 1618 * We subtract one from sk_wmem_alloc and can know if 1619 * some packets are still in some tx queue. 1620 * If not null, sock_wfree() will call __sk_free(sk) later 1621 */ 1622 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1623 __sk_free(sk); 1624 } 1625 EXPORT_SYMBOL(sk_free); 1626 1627 static void sk_init_common(struct sock *sk) 1628 { 1629 skb_queue_head_init(&sk->sk_receive_queue); 1630 skb_queue_head_init(&sk->sk_write_queue); 1631 skb_queue_head_init(&sk->sk_error_queue); 1632 1633 rwlock_init(&sk->sk_callback_lock); 1634 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1635 af_rlock_keys + sk->sk_family, 1636 af_family_rlock_key_strings[sk->sk_family]); 1637 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1638 af_wlock_keys + sk->sk_family, 1639 af_family_wlock_key_strings[sk->sk_family]); 1640 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1641 af_elock_keys + sk->sk_family, 1642 af_family_elock_key_strings[sk->sk_family]); 1643 lockdep_set_class_and_name(&sk->sk_callback_lock, 1644 af_callback_keys + sk->sk_family, 1645 af_family_clock_key_strings[sk->sk_family]); 1646 } 1647 1648 /** 1649 * sk_clone_lock - clone a socket, and lock its clone 1650 * @sk: the socket to clone 1651 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1652 * 1653 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1654 */ 1655 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1656 { 1657 struct sock *newsk; 1658 bool is_charged = true; 1659 1660 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1661 if (newsk != NULL) { 1662 struct sk_filter *filter; 1663 1664 sock_copy(newsk, sk); 1665 1666 newsk->sk_prot_creator = sk->sk_prot; 1667 1668 /* SANITY */ 1669 if (likely(newsk->sk_net_refcnt)) 1670 get_net(sock_net(newsk)); 1671 sk_node_init(&newsk->sk_node); 1672 sock_lock_init(newsk); 1673 bh_lock_sock(newsk); 1674 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1675 newsk->sk_backlog.len = 0; 1676 1677 atomic_set(&newsk->sk_rmem_alloc, 0); 1678 /* 1679 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1680 */ 1681 refcount_set(&newsk->sk_wmem_alloc, 1); 1682 atomic_set(&newsk->sk_omem_alloc, 0); 1683 sk_init_common(newsk); 1684 1685 newsk->sk_dst_cache = NULL; 1686 newsk->sk_dst_pending_confirm = 0; 1687 newsk->sk_wmem_queued = 0; 1688 newsk->sk_forward_alloc = 0; 1689 atomic_set(&newsk->sk_drops, 0); 1690 newsk->sk_send_head = NULL; 1691 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1692 atomic_set(&newsk->sk_zckey, 0); 1693 1694 sock_reset_flag(newsk, SOCK_DONE); 1695 mem_cgroup_sk_alloc(newsk); 1696 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1697 1698 rcu_read_lock(); 1699 filter = rcu_dereference(sk->sk_filter); 1700 if (filter != NULL) 1701 /* though it's an empty new sock, the charging may fail 1702 * if sysctl_optmem_max was changed between creation of 1703 * original socket and cloning 1704 */ 1705 is_charged = sk_filter_charge(newsk, filter); 1706 RCU_INIT_POINTER(newsk->sk_filter, filter); 1707 rcu_read_unlock(); 1708 1709 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1710 /* We need to make sure that we don't uncharge the new 1711 * socket if we couldn't charge it in the first place 1712 * as otherwise we uncharge the parent's filter. 1713 */ 1714 if (!is_charged) 1715 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1716 sk_free_unlock_clone(newsk); 1717 newsk = NULL; 1718 goto out; 1719 } 1720 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1721 1722 newsk->sk_err = 0; 1723 newsk->sk_err_soft = 0; 1724 newsk->sk_priority = 0; 1725 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1726 atomic64_set(&newsk->sk_cookie, 0); 1727 if (likely(newsk->sk_net_refcnt)) 1728 sock_inuse_add(sock_net(newsk), 1); 1729 1730 /* 1731 * Before updating sk_refcnt, we must commit prior changes to memory 1732 * (Documentation/RCU/rculist_nulls.txt for details) 1733 */ 1734 smp_wmb(); 1735 refcount_set(&newsk->sk_refcnt, 2); 1736 1737 /* 1738 * Increment the counter in the same struct proto as the master 1739 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1740 * is the same as sk->sk_prot->socks, as this field was copied 1741 * with memcpy). 1742 * 1743 * This _changes_ the previous behaviour, where 1744 * tcp_create_openreq_child always was incrementing the 1745 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1746 * to be taken into account in all callers. -acme 1747 */ 1748 sk_refcnt_debug_inc(newsk); 1749 sk_set_socket(newsk, NULL); 1750 newsk->sk_wq = NULL; 1751 1752 if (newsk->sk_prot->sockets_allocated) 1753 sk_sockets_allocated_inc(newsk); 1754 1755 if (sock_needs_netstamp(sk) && 1756 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1757 net_enable_timestamp(); 1758 } 1759 out: 1760 return newsk; 1761 } 1762 EXPORT_SYMBOL_GPL(sk_clone_lock); 1763 1764 void sk_free_unlock_clone(struct sock *sk) 1765 { 1766 /* It is still raw copy of parent, so invalidate 1767 * destructor and make plain sk_free() */ 1768 sk->sk_destruct = NULL; 1769 bh_unlock_sock(sk); 1770 sk_free(sk); 1771 } 1772 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1773 1774 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1775 { 1776 u32 max_segs = 1; 1777 1778 sk_dst_set(sk, dst); 1779 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1780 if (sk->sk_route_caps & NETIF_F_GSO) 1781 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1782 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1783 if (sk_can_gso(sk)) { 1784 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1785 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1786 } else { 1787 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1788 sk->sk_gso_max_size = dst->dev->gso_max_size; 1789 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1790 } 1791 } 1792 sk->sk_gso_max_segs = max_segs; 1793 } 1794 EXPORT_SYMBOL_GPL(sk_setup_caps); 1795 1796 /* 1797 * Simple resource managers for sockets. 1798 */ 1799 1800 1801 /* 1802 * Write buffer destructor automatically called from kfree_skb. 1803 */ 1804 void sock_wfree(struct sk_buff *skb) 1805 { 1806 struct sock *sk = skb->sk; 1807 unsigned int len = skb->truesize; 1808 1809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1810 /* 1811 * Keep a reference on sk_wmem_alloc, this will be released 1812 * after sk_write_space() call 1813 */ 1814 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1815 sk->sk_write_space(sk); 1816 len = 1; 1817 } 1818 /* 1819 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1820 * could not do because of in-flight packets 1821 */ 1822 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1823 __sk_free(sk); 1824 } 1825 EXPORT_SYMBOL(sock_wfree); 1826 1827 /* This variant of sock_wfree() is used by TCP, 1828 * since it sets SOCK_USE_WRITE_QUEUE. 1829 */ 1830 void __sock_wfree(struct sk_buff *skb) 1831 { 1832 struct sock *sk = skb->sk; 1833 1834 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1835 __sk_free(sk); 1836 } 1837 1838 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1839 { 1840 skb_orphan(skb); 1841 skb->sk = sk; 1842 #ifdef CONFIG_INET 1843 if (unlikely(!sk_fullsock(sk))) { 1844 skb->destructor = sock_edemux; 1845 sock_hold(sk); 1846 return; 1847 } 1848 #endif 1849 skb->destructor = sock_wfree; 1850 skb_set_hash_from_sk(skb, sk); 1851 /* 1852 * We used to take a refcount on sk, but following operation 1853 * is enough to guarantee sk_free() wont free this sock until 1854 * all in-flight packets are completed 1855 */ 1856 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1857 } 1858 EXPORT_SYMBOL(skb_set_owner_w); 1859 1860 /* This helper is used by netem, as it can hold packets in its 1861 * delay queue. We want to allow the owner socket to send more 1862 * packets, as if they were already TX completed by a typical driver. 1863 * But we also want to keep skb->sk set because some packet schedulers 1864 * rely on it (sch_fq for example). 1865 */ 1866 void skb_orphan_partial(struct sk_buff *skb) 1867 { 1868 if (skb_is_tcp_pure_ack(skb)) 1869 return; 1870 1871 if (skb->destructor == sock_wfree 1872 #ifdef CONFIG_INET 1873 || skb->destructor == tcp_wfree 1874 #endif 1875 ) { 1876 struct sock *sk = skb->sk; 1877 1878 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1879 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 1880 skb->destructor = sock_efree; 1881 } 1882 } else { 1883 skb_orphan(skb); 1884 } 1885 } 1886 EXPORT_SYMBOL(skb_orphan_partial); 1887 1888 /* 1889 * Read buffer destructor automatically called from kfree_skb. 1890 */ 1891 void sock_rfree(struct sk_buff *skb) 1892 { 1893 struct sock *sk = skb->sk; 1894 unsigned int len = skb->truesize; 1895 1896 atomic_sub(len, &sk->sk_rmem_alloc); 1897 sk_mem_uncharge(sk, len); 1898 } 1899 EXPORT_SYMBOL(sock_rfree); 1900 1901 /* 1902 * Buffer destructor for skbs that are not used directly in read or write 1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1904 */ 1905 void sock_efree(struct sk_buff *skb) 1906 { 1907 sock_put(skb->sk); 1908 } 1909 EXPORT_SYMBOL(sock_efree); 1910 1911 kuid_t sock_i_uid(struct sock *sk) 1912 { 1913 kuid_t uid; 1914 1915 read_lock_bh(&sk->sk_callback_lock); 1916 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1917 read_unlock_bh(&sk->sk_callback_lock); 1918 return uid; 1919 } 1920 EXPORT_SYMBOL(sock_i_uid); 1921 1922 unsigned long sock_i_ino(struct sock *sk) 1923 { 1924 unsigned long ino; 1925 1926 read_lock_bh(&sk->sk_callback_lock); 1927 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1928 read_unlock_bh(&sk->sk_callback_lock); 1929 return ino; 1930 } 1931 EXPORT_SYMBOL(sock_i_ino); 1932 1933 /* 1934 * Allocate a skb from the socket's send buffer. 1935 */ 1936 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1937 gfp_t priority) 1938 { 1939 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1940 struct sk_buff *skb = alloc_skb(size, priority); 1941 if (skb) { 1942 skb_set_owner_w(skb, sk); 1943 return skb; 1944 } 1945 } 1946 return NULL; 1947 } 1948 EXPORT_SYMBOL(sock_wmalloc); 1949 1950 static void sock_ofree(struct sk_buff *skb) 1951 { 1952 struct sock *sk = skb->sk; 1953 1954 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 1955 } 1956 1957 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1958 gfp_t priority) 1959 { 1960 struct sk_buff *skb; 1961 1962 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 1963 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 1964 sysctl_optmem_max) 1965 return NULL; 1966 1967 skb = alloc_skb(size, priority); 1968 if (!skb) 1969 return NULL; 1970 1971 atomic_add(skb->truesize, &sk->sk_omem_alloc); 1972 skb->sk = sk; 1973 skb->destructor = sock_ofree; 1974 return skb; 1975 } 1976 1977 /* 1978 * Allocate a memory block from the socket's option memory buffer. 1979 */ 1980 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1981 { 1982 if ((unsigned int)size <= sysctl_optmem_max && 1983 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1984 void *mem; 1985 /* First do the add, to avoid the race if kmalloc 1986 * might sleep. 1987 */ 1988 atomic_add(size, &sk->sk_omem_alloc); 1989 mem = kmalloc(size, priority); 1990 if (mem) 1991 return mem; 1992 atomic_sub(size, &sk->sk_omem_alloc); 1993 } 1994 return NULL; 1995 } 1996 EXPORT_SYMBOL(sock_kmalloc); 1997 1998 /* Free an option memory block. Note, we actually want the inline 1999 * here as this allows gcc to detect the nullify and fold away the 2000 * condition entirely. 2001 */ 2002 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2003 const bool nullify) 2004 { 2005 if (WARN_ON_ONCE(!mem)) 2006 return; 2007 if (nullify) 2008 kzfree(mem); 2009 else 2010 kfree(mem); 2011 atomic_sub(size, &sk->sk_omem_alloc); 2012 } 2013 2014 void sock_kfree_s(struct sock *sk, void *mem, int size) 2015 { 2016 __sock_kfree_s(sk, mem, size, false); 2017 } 2018 EXPORT_SYMBOL(sock_kfree_s); 2019 2020 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2021 { 2022 __sock_kfree_s(sk, mem, size, true); 2023 } 2024 EXPORT_SYMBOL(sock_kzfree_s); 2025 2026 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2027 I think, these locks should be removed for datagram sockets. 2028 */ 2029 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2030 { 2031 DEFINE_WAIT(wait); 2032 2033 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2034 for (;;) { 2035 if (!timeo) 2036 break; 2037 if (signal_pending(current)) 2038 break; 2039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2040 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2041 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2042 break; 2043 if (sk->sk_shutdown & SEND_SHUTDOWN) 2044 break; 2045 if (sk->sk_err) 2046 break; 2047 timeo = schedule_timeout(timeo); 2048 } 2049 finish_wait(sk_sleep(sk), &wait); 2050 return timeo; 2051 } 2052 2053 2054 /* 2055 * Generic send/receive buffer handlers 2056 */ 2057 2058 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2059 unsigned long data_len, int noblock, 2060 int *errcode, int max_page_order) 2061 { 2062 struct sk_buff *skb; 2063 long timeo; 2064 int err; 2065 2066 timeo = sock_sndtimeo(sk, noblock); 2067 for (;;) { 2068 err = sock_error(sk); 2069 if (err != 0) 2070 goto failure; 2071 2072 err = -EPIPE; 2073 if (sk->sk_shutdown & SEND_SHUTDOWN) 2074 goto failure; 2075 2076 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2077 break; 2078 2079 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2081 err = -EAGAIN; 2082 if (!timeo) 2083 goto failure; 2084 if (signal_pending(current)) 2085 goto interrupted; 2086 timeo = sock_wait_for_wmem(sk, timeo); 2087 } 2088 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2089 errcode, sk->sk_allocation); 2090 if (skb) 2091 skb_set_owner_w(skb, sk); 2092 return skb; 2093 2094 interrupted: 2095 err = sock_intr_errno(timeo); 2096 failure: 2097 *errcode = err; 2098 return NULL; 2099 } 2100 EXPORT_SYMBOL(sock_alloc_send_pskb); 2101 2102 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2103 int noblock, int *errcode) 2104 { 2105 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2106 } 2107 EXPORT_SYMBOL(sock_alloc_send_skb); 2108 2109 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2110 struct sockcm_cookie *sockc) 2111 { 2112 u32 tsflags; 2113 2114 switch (cmsg->cmsg_type) { 2115 case SO_MARK: 2116 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2117 return -EPERM; 2118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2119 return -EINVAL; 2120 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2121 break; 2122 case SO_TIMESTAMPING: 2123 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2124 return -EINVAL; 2125 2126 tsflags = *(u32 *)CMSG_DATA(cmsg); 2127 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2128 return -EINVAL; 2129 2130 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2131 sockc->tsflags |= tsflags; 2132 break; 2133 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2134 case SCM_RIGHTS: 2135 case SCM_CREDENTIALS: 2136 break; 2137 default: 2138 return -EINVAL; 2139 } 2140 return 0; 2141 } 2142 EXPORT_SYMBOL(__sock_cmsg_send); 2143 2144 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2145 struct sockcm_cookie *sockc) 2146 { 2147 struct cmsghdr *cmsg; 2148 int ret; 2149 2150 for_each_cmsghdr(cmsg, msg) { 2151 if (!CMSG_OK(msg, cmsg)) 2152 return -EINVAL; 2153 if (cmsg->cmsg_level != SOL_SOCKET) 2154 continue; 2155 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2156 if (ret) 2157 return ret; 2158 } 2159 return 0; 2160 } 2161 EXPORT_SYMBOL(sock_cmsg_send); 2162 2163 static void sk_enter_memory_pressure(struct sock *sk) 2164 { 2165 if (!sk->sk_prot->enter_memory_pressure) 2166 return; 2167 2168 sk->sk_prot->enter_memory_pressure(sk); 2169 } 2170 2171 static void sk_leave_memory_pressure(struct sock *sk) 2172 { 2173 if (sk->sk_prot->leave_memory_pressure) { 2174 sk->sk_prot->leave_memory_pressure(sk); 2175 } else { 2176 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2177 2178 if (memory_pressure && *memory_pressure) 2179 *memory_pressure = 0; 2180 } 2181 } 2182 2183 /* On 32bit arches, an skb frag is limited to 2^15 */ 2184 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2185 2186 /** 2187 * skb_page_frag_refill - check that a page_frag contains enough room 2188 * @sz: minimum size of the fragment we want to get 2189 * @pfrag: pointer to page_frag 2190 * @gfp: priority for memory allocation 2191 * 2192 * Note: While this allocator tries to use high order pages, there is 2193 * no guarantee that allocations succeed. Therefore, @sz MUST be 2194 * less or equal than PAGE_SIZE. 2195 */ 2196 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2197 { 2198 if (pfrag->page) { 2199 if (page_ref_count(pfrag->page) == 1) { 2200 pfrag->offset = 0; 2201 return true; 2202 } 2203 if (pfrag->offset + sz <= pfrag->size) 2204 return true; 2205 put_page(pfrag->page); 2206 } 2207 2208 pfrag->offset = 0; 2209 if (SKB_FRAG_PAGE_ORDER) { 2210 /* Avoid direct reclaim but allow kswapd to wake */ 2211 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2212 __GFP_COMP | __GFP_NOWARN | 2213 __GFP_NORETRY, 2214 SKB_FRAG_PAGE_ORDER); 2215 if (likely(pfrag->page)) { 2216 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2217 return true; 2218 } 2219 } 2220 pfrag->page = alloc_page(gfp); 2221 if (likely(pfrag->page)) { 2222 pfrag->size = PAGE_SIZE; 2223 return true; 2224 } 2225 return false; 2226 } 2227 EXPORT_SYMBOL(skb_page_frag_refill); 2228 2229 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2230 { 2231 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2232 return true; 2233 2234 sk_enter_memory_pressure(sk); 2235 sk_stream_moderate_sndbuf(sk); 2236 return false; 2237 } 2238 EXPORT_SYMBOL(sk_page_frag_refill); 2239 2240 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg, 2241 int sg_start, int *sg_curr_index, unsigned int *sg_curr_size, 2242 int first_coalesce) 2243 { 2244 int sg_curr = *sg_curr_index, use = 0, rc = 0; 2245 unsigned int size = *sg_curr_size; 2246 struct page_frag *pfrag; 2247 struct scatterlist *sge; 2248 2249 len -= size; 2250 pfrag = sk_page_frag(sk); 2251 2252 while (len > 0) { 2253 unsigned int orig_offset; 2254 2255 if (!sk_page_frag_refill(sk, pfrag)) { 2256 rc = -ENOMEM; 2257 goto out; 2258 } 2259 2260 use = min_t(int, len, pfrag->size - pfrag->offset); 2261 2262 if (!sk_wmem_schedule(sk, use)) { 2263 rc = -ENOMEM; 2264 goto out; 2265 } 2266 2267 sk_mem_charge(sk, use); 2268 size += use; 2269 orig_offset = pfrag->offset; 2270 pfrag->offset += use; 2271 2272 sge = sg + sg_curr - 1; 2273 if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page && 2274 sg->offset + sg->length == orig_offset) { 2275 sg->length += use; 2276 } else { 2277 sge = sg + sg_curr; 2278 sg_unmark_end(sge); 2279 sg_set_page(sge, pfrag->page, use, orig_offset); 2280 get_page(pfrag->page); 2281 sg_curr++; 2282 2283 if (sg_curr == MAX_SKB_FRAGS) 2284 sg_curr = 0; 2285 2286 if (sg_curr == sg_start) { 2287 rc = -ENOSPC; 2288 break; 2289 } 2290 } 2291 2292 len -= use; 2293 } 2294 out: 2295 *sg_curr_size = size; 2296 *sg_curr_index = sg_curr; 2297 return rc; 2298 } 2299 EXPORT_SYMBOL(sk_alloc_sg); 2300 2301 static void __lock_sock(struct sock *sk) 2302 __releases(&sk->sk_lock.slock) 2303 __acquires(&sk->sk_lock.slock) 2304 { 2305 DEFINE_WAIT(wait); 2306 2307 for (;;) { 2308 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2309 TASK_UNINTERRUPTIBLE); 2310 spin_unlock_bh(&sk->sk_lock.slock); 2311 schedule(); 2312 spin_lock_bh(&sk->sk_lock.slock); 2313 if (!sock_owned_by_user(sk)) 2314 break; 2315 } 2316 finish_wait(&sk->sk_lock.wq, &wait); 2317 } 2318 2319 static void __release_sock(struct sock *sk) 2320 __releases(&sk->sk_lock.slock) 2321 __acquires(&sk->sk_lock.slock) 2322 { 2323 struct sk_buff *skb, *next; 2324 2325 while ((skb = sk->sk_backlog.head) != NULL) { 2326 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2327 2328 spin_unlock_bh(&sk->sk_lock.slock); 2329 2330 do { 2331 next = skb->next; 2332 prefetch(next); 2333 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2334 skb->next = NULL; 2335 sk_backlog_rcv(sk, skb); 2336 2337 cond_resched(); 2338 2339 skb = next; 2340 } while (skb != NULL); 2341 2342 spin_lock_bh(&sk->sk_lock.slock); 2343 } 2344 2345 /* 2346 * Doing the zeroing here guarantee we can not loop forever 2347 * while a wild producer attempts to flood us. 2348 */ 2349 sk->sk_backlog.len = 0; 2350 } 2351 2352 void __sk_flush_backlog(struct sock *sk) 2353 { 2354 spin_lock_bh(&sk->sk_lock.slock); 2355 __release_sock(sk); 2356 spin_unlock_bh(&sk->sk_lock.slock); 2357 } 2358 2359 /** 2360 * sk_wait_data - wait for data to arrive at sk_receive_queue 2361 * @sk: sock to wait on 2362 * @timeo: for how long 2363 * @skb: last skb seen on sk_receive_queue 2364 * 2365 * Now socket state including sk->sk_err is changed only under lock, 2366 * hence we may omit checks after joining wait queue. 2367 * We check receive queue before schedule() only as optimization; 2368 * it is very likely that release_sock() added new data. 2369 */ 2370 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2371 { 2372 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2373 int rc; 2374 2375 add_wait_queue(sk_sleep(sk), &wait); 2376 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2377 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2378 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2379 remove_wait_queue(sk_sleep(sk), &wait); 2380 return rc; 2381 } 2382 EXPORT_SYMBOL(sk_wait_data); 2383 2384 /** 2385 * __sk_mem_raise_allocated - increase memory_allocated 2386 * @sk: socket 2387 * @size: memory size to allocate 2388 * @amt: pages to allocate 2389 * @kind: allocation type 2390 * 2391 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2392 */ 2393 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2394 { 2395 struct proto *prot = sk->sk_prot; 2396 long allocated = sk_memory_allocated_add(sk, amt); 2397 2398 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2399 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2400 goto suppress_allocation; 2401 2402 /* Under limit. */ 2403 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2404 sk_leave_memory_pressure(sk); 2405 return 1; 2406 } 2407 2408 /* Under pressure. */ 2409 if (allocated > sk_prot_mem_limits(sk, 1)) 2410 sk_enter_memory_pressure(sk); 2411 2412 /* Over hard limit. */ 2413 if (allocated > sk_prot_mem_limits(sk, 2)) 2414 goto suppress_allocation; 2415 2416 /* guarantee minimum buffer size under pressure */ 2417 if (kind == SK_MEM_RECV) { 2418 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2419 return 1; 2420 2421 } else { /* SK_MEM_SEND */ 2422 int wmem0 = sk_get_wmem0(sk, prot); 2423 2424 if (sk->sk_type == SOCK_STREAM) { 2425 if (sk->sk_wmem_queued < wmem0) 2426 return 1; 2427 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2428 return 1; 2429 } 2430 } 2431 2432 if (sk_has_memory_pressure(sk)) { 2433 int alloc; 2434 2435 if (!sk_under_memory_pressure(sk)) 2436 return 1; 2437 alloc = sk_sockets_allocated_read_positive(sk); 2438 if (sk_prot_mem_limits(sk, 2) > alloc * 2439 sk_mem_pages(sk->sk_wmem_queued + 2440 atomic_read(&sk->sk_rmem_alloc) + 2441 sk->sk_forward_alloc)) 2442 return 1; 2443 } 2444 2445 suppress_allocation: 2446 2447 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2448 sk_stream_moderate_sndbuf(sk); 2449 2450 /* Fail only if socket is _under_ its sndbuf. 2451 * In this case we cannot block, so that we have to fail. 2452 */ 2453 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2454 return 1; 2455 } 2456 2457 trace_sock_exceed_buf_limit(sk, prot, allocated); 2458 2459 sk_memory_allocated_sub(sk, amt); 2460 2461 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2462 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2463 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2467 2468 /** 2469 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2470 * @sk: socket 2471 * @size: memory size to allocate 2472 * @kind: allocation type 2473 * 2474 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2475 * rmem allocation. This function assumes that protocols which have 2476 * memory_pressure use sk_wmem_queued as write buffer accounting. 2477 */ 2478 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2479 { 2480 int ret, amt = sk_mem_pages(size); 2481 2482 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2483 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2484 if (!ret) 2485 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2486 return ret; 2487 } 2488 EXPORT_SYMBOL(__sk_mem_schedule); 2489 2490 /** 2491 * __sk_mem_reduce_allocated - reclaim memory_allocated 2492 * @sk: socket 2493 * @amount: number of quanta 2494 * 2495 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2496 */ 2497 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2498 { 2499 sk_memory_allocated_sub(sk, amount); 2500 2501 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2502 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2503 2504 if (sk_under_memory_pressure(sk) && 2505 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2506 sk_leave_memory_pressure(sk); 2507 } 2508 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2509 2510 /** 2511 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2512 * @sk: socket 2513 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2514 */ 2515 void __sk_mem_reclaim(struct sock *sk, int amount) 2516 { 2517 amount >>= SK_MEM_QUANTUM_SHIFT; 2518 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2519 __sk_mem_reduce_allocated(sk, amount); 2520 } 2521 EXPORT_SYMBOL(__sk_mem_reclaim); 2522 2523 int sk_set_peek_off(struct sock *sk, int val) 2524 { 2525 sk->sk_peek_off = val; 2526 return 0; 2527 } 2528 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2529 2530 /* 2531 * Set of default routines for initialising struct proto_ops when 2532 * the protocol does not support a particular function. In certain 2533 * cases where it makes no sense for a protocol to have a "do nothing" 2534 * function, some default processing is provided. 2535 */ 2536 2537 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2538 { 2539 return -EOPNOTSUPP; 2540 } 2541 EXPORT_SYMBOL(sock_no_bind); 2542 2543 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2544 int len, int flags) 2545 { 2546 return -EOPNOTSUPP; 2547 } 2548 EXPORT_SYMBOL(sock_no_connect); 2549 2550 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2551 { 2552 return -EOPNOTSUPP; 2553 } 2554 EXPORT_SYMBOL(sock_no_socketpair); 2555 2556 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2557 bool kern) 2558 { 2559 return -EOPNOTSUPP; 2560 } 2561 EXPORT_SYMBOL(sock_no_accept); 2562 2563 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2564 int peer) 2565 { 2566 return -EOPNOTSUPP; 2567 } 2568 EXPORT_SYMBOL(sock_no_getname); 2569 2570 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2571 { 2572 return 0; 2573 } 2574 EXPORT_SYMBOL(sock_no_poll); 2575 2576 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2577 { 2578 return -EOPNOTSUPP; 2579 } 2580 EXPORT_SYMBOL(sock_no_ioctl); 2581 2582 int sock_no_listen(struct socket *sock, int backlog) 2583 { 2584 return -EOPNOTSUPP; 2585 } 2586 EXPORT_SYMBOL(sock_no_listen); 2587 2588 int sock_no_shutdown(struct socket *sock, int how) 2589 { 2590 return -EOPNOTSUPP; 2591 } 2592 EXPORT_SYMBOL(sock_no_shutdown); 2593 2594 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2595 char __user *optval, unsigned int optlen) 2596 { 2597 return -EOPNOTSUPP; 2598 } 2599 EXPORT_SYMBOL(sock_no_setsockopt); 2600 2601 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2602 char __user *optval, int __user *optlen) 2603 { 2604 return -EOPNOTSUPP; 2605 } 2606 EXPORT_SYMBOL(sock_no_getsockopt); 2607 2608 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2609 { 2610 return -EOPNOTSUPP; 2611 } 2612 EXPORT_SYMBOL(sock_no_sendmsg); 2613 2614 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2615 { 2616 return -EOPNOTSUPP; 2617 } 2618 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2619 2620 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2621 int flags) 2622 { 2623 return -EOPNOTSUPP; 2624 } 2625 EXPORT_SYMBOL(sock_no_recvmsg); 2626 2627 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2628 { 2629 /* Mirror missing mmap method error code */ 2630 return -ENODEV; 2631 } 2632 EXPORT_SYMBOL(sock_no_mmap); 2633 2634 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2635 { 2636 ssize_t res; 2637 struct msghdr msg = {.msg_flags = flags}; 2638 struct kvec iov; 2639 char *kaddr = kmap(page); 2640 iov.iov_base = kaddr + offset; 2641 iov.iov_len = size; 2642 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2643 kunmap(page); 2644 return res; 2645 } 2646 EXPORT_SYMBOL(sock_no_sendpage); 2647 2648 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2649 int offset, size_t size, int flags) 2650 { 2651 ssize_t res; 2652 struct msghdr msg = {.msg_flags = flags}; 2653 struct kvec iov; 2654 char *kaddr = kmap(page); 2655 2656 iov.iov_base = kaddr + offset; 2657 iov.iov_len = size; 2658 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2659 kunmap(page); 2660 return res; 2661 } 2662 EXPORT_SYMBOL(sock_no_sendpage_locked); 2663 2664 /* 2665 * Default Socket Callbacks 2666 */ 2667 2668 static void sock_def_wakeup(struct sock *sk) 2669 { 2670 struct socket_wq *wq; 2671 2672 rcu_read_lock(); 2673 wq = rcu_dereference(sk->sk_wq); 2674 if (skwq_has_sleeper(wq)) 2675 wake_up_interruptible_all(&wq->wait); 2676 rcu_read_unlock(); 2677 } 2678 2679 static void sock_def_error_report(struct sock *sk) 2680 { 2681 struct socket_wq *wq; 2682 2683 rcu_read_lock(); 2684 wq = rcu_dereference(sk->sk_wq); 2685 if (skwq_has_sleeper(wq)) 2686 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2687 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2688 rcu_read_unlock(); 2689 } 2690 2691 static void sock_def_readable(struct sock *sk) 2692 { 2693 struct socket_wq *wq; 2694 2695 rcu_read_lock(); 2696 wq = rcu_dereference(sk->sk_wq); 2697 if (skwq_has_sleeper(wq)) 2698 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2699 EPOLLRDNORM | EPOLLRDBAND); 2700 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2701 rcu_read_unlock(); 2702 } 2703 2704 static void sock_def_write_space(struct sock *sk) 2705 { 2706 struct socket_wq *wq; 2707 2708 rcu_read_lock(); 2709 2710 /* Do not wake up a writer until he can make "significant" 2711 * progress. --DaveM 2712 */ 2713 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2714 wq = rcu_dereference(sk->sk_wq); 2715 if (skwq_has_sleeper(wq)) 2716 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2717 EPOLLWRNORM | EPOLLWRBAND); 2718 2719 /* Should agree with poll, otherwise some programs break */ 2720 if (sock_writeable(sk)) 2721 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2722 } 2723 2724 rcu_read_unlock(); 2725 } 2726 2727 static void sock_def_destruct(struct sock *sk) 2728 { 2729 } 2730 2731 void sk_send_sigurg(struct sock *sk) 2732 { 2733 if (sk->sk_socket && sk->sk_socket->file) 2734 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2735 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2736 } 2737 EXPORT_SYMBOL(sk_send_sigurg); 2738 2739 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2740 unsigned long expires) 2741 { 2742 if (!mod_timer(timer, expires)) 2743 sock_hold(sk); 2744 } 2745 EXPORT_SYMBOL(sk_reset_timer); 2746 2747 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2748 { 2749 if (del_timer(timer)) 2750 __sock_put(sk); 2751 } 2752 EXPORT_SYMBOL(sk_stop_timer); 2753 2754 void sock_init_data(struct socket *sock, struct sock *sk) 2755 { 2756 sk_init_common(sk); 2757 sk->sk_send_head = NULL; 2758 2759 timer_setup(&sk->sk_timer, NULL, 0); 2760 2761 sk->sk_allocation = GFP_KERNEL; 2762 sk->sk_rcvbuf = sysctl_rmem_default; 2763 sk->sk_sndbuf = sysctl_wmem_default; 2764 sk->sk_state = TCP_CLOSE; 2765 sk_set_socket(sk, sock); 2766 2767 sock_set_flag(sk, SOCK_ZAPPED); 2768 2769 if (sock) { 2770 sk->sk_type = sock->type; 2771 sk->sk_wq = sock->wq; 2772 sock->sk = sk; 2773 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2774 } else { 2775 sk->sk_wq = NULL; 2776 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2777 } 2778 2779 rwlock_init(&sk->sk_callback_lock); 2780 if (sk->sk_kern_sock) 2781 lockdep_set_class_and_name( 2782 &sk->sk_callback_lock, 2783 af_kern_callback_keys + sk->sk_family, 2784 af_family_kern_clock_key_strings[sk->sk_family]); 2785 else 2786 lockdep_set_class_and_name( 2787 &sk->sk_callback_lock, 2788 af_callback_keys + sk->sk_family, 2789 af_family_clock_key_strings[sk->sk_family]); 2790 2791 sk->sk_state_change = sock_def_wakeup; 2792 sk->sk_data_ready = sock_def_readable; 2793 sk->sk_write_space = sock_def_write_space; 2794 sk->sk_error_report = sock_def_error_report; 2795 sk->sk_destruct = sock_def_destruct; 2796 2797 sk->sk_frag.page = NULL; 2798 sk->sk_frag.offset = 0; 2799 sk->sk_peek_off = -1; 2800 2801 sk->sk_peer_pid = NULL; 2802 sk->sk_peer_cred = NULL; 2803 sk->sk_write_pending = 0; 2804 sk->sk_rcvlowat = 1; 2805 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2807 2808 sk->sk_stamp = SK_DEFAULT_STAMP; 2809 atomic_set(&sk->sk_zckey, 0); 2810 2811 #ifdef CONFIG_NET_RX_BUSY_POLL 2812 sk->sk_napi_id = 0; 2813 sk->sk_ll_usec = sysctl_net_busy_read; 2814 #endif 2815 2816 sk->sk_max_pacing_rate = ~0U; 2817 sk->sk_pacing_rate = ~0U; 2818 sk->sk_pacing_shift = 10; 2819 sk->sk_incoming_cpu = -1; 2820 /* 2821 * Before updating sk_refcnt, we must commit prior changes to memory 2822 * (Documentation/RCU/rculist_nulls.txt for details) 2823 */ 2824 smp_wmb(); 2825 refcount_set(&sk->sk_refcnt, 1); 2826 atomic_set(&sk->sk_drops, 0); 2827 } 2828 EXPORT_SYMBOL(sock_init_data); 2829 2830 void lock_sock_nested(struct sock *sk, int subclass) 2831 { 2832 might_sleep(); 2833 spin_lock_bh(&sk->sk_lock.slock); 2834 if (sk->sk_lock.owned) 2835 __lock_sock(sk); 2836 sk->sk_lock.owned = 1; 2837 spin_unlock(&sk->sk_lock.slock); 2838 /* 2839 * The sk_lock has mutex_lock() semantics here: 2840 */ 2841 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2842 local_bh_enable(); 2843 } 2844 EXPORT_SYMBOL(lock_sock_nested); 2845 2846 void release_sock(struct sock *sk) 2847 { 2848 spin_lock_bh(&sk->sk_lock.slock); 2849 if (sk->sk_backlog.tail) 2850 __release_sock(sk); 2851 2852 /* Warning : release_cb() might need to release sk ownership, 2853 * ie call sock_release_ownership(sk) before us. 2854 */ 2855 if (sk->sk_prot->release_cb) 2856 sk->sk_prot->release_cb(sk); 2857 2858 sock_release_ownership(sk); 2859 if (waitqueue_active(&sk->sk_lock.wq)) 2860 wake_up(&sk->sk_lock.wq); 2861 spin_unlock_bh(&sk->sk_lock.slock); 2862 } 2863 EXPORT_SYMBOL(release_sock); 2864 2865 /** 2866 * lock_sock_fast - fast version of lock_sock 2867 * @sk: socket 2868 * 2869 * This version should be used for very small section, where process wont block 2870 * return false if fast path is taken: 2871 * 2872 * sk_lock.slock locked, owned = 0, BH disabled 2873 * 2874 * return true if slow path is taken: 2875 * 2876 * sk_lock.slock unlocked, owned = 1, BH enabled 2877 */ 2878 bool lock_sock_fast(struct sock *sk) 2879 { 2880 might_sleep(); 2881 spin_lock_bh(&sk->sk_lock.slock); 2882 2883 if (!sk->sk_lock.owned) 2884 /* 2885 * Note : We must disable BH 2886 */ 2887 return false; 2888 2889 __lock_sock(sk); 2890 sk->sk_lock.owned = 1; 2891 spin_unlock(&sk->sk_lock.slock); 2892 /* 2893 * The sk_lock has mutex_lock() semantics here: 2894 */ 2895 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2896 local_bh_enable(); 2897 return true; 2898 } 2899 EXPORT_SYMBOL(lock_sock_fast); 2900 2901 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2902 { 2903 struct timeval tv; 2904 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2905 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2906 tv = ktime_to_timeval(sk->sk_stamp); 2907 if (tv.tv_sec == -1) 2908 return -ENOENT; 2909 if (tv.tv_sec == 0) { 2910 sk->sk_stamp = ktime_get_real(); 2911 tv = ktime_to_timeval(sk->sk_stamp); 2912 } 2913 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2914 } 2915 EXPORT_SYMBOL(sock_get_timestamp); 2916 2917 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2918 { 2919 struct timespec ts; 2920 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2921 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2922 ts = ktime_to_timespec(sk->sk_stamp); 2923 if (ts.tv_sec == -1) 2924 return -ENOENT; 2925 if (ts.tv_sec == 0) { 2926 sk->sk_stamp = ktime_get_real(); 2927 ts = ktime_to_timespec(sk->sk_stamp); 2928 } 2929 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2930 } 2931 EXPORT_SYMBOL(sock_get_timestampns); 2932 2933 void sock_enable_timestamp(struct sock *sk, int flag) 2934 { 2935 if (!sock_flag(sk, flag)) { 2936 unsigned long previous_flags = sk->sk_flags; 2937 2938 sock_set_flag(sk, flag); 2939 /* 2940 * we just set one of the two flags which require net 2941 * time stamping, but time stamping might have been on 2942 * already because of the other one 2943 */ 2944 if (sock_needs_netstamp(sk) && 2945 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2946 net_enable_timestamp(); 2947 } 2948 } 2949 2950 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2951 int level, int type) 2952 { 2953 struct sock_exterr_skb *serr; 2954 struct sk_buff *skb; 2955 int copied, err; 2956 2957 err = -EAGAIN; 2958 skb = sock_dequeue_err_skb(sk); 2959 if (skb == NULL) 2960 goto out; 2961 2962 copied = skb->len; 2963 if (copied > len) { 2964 msg->msg_flags |= MSG_TRUNC; 2965 copied = len; 2966 } 2967 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2968 if (err) 2969 goto out_free_skb; 2970 2971 sock_recv_timestamp(msg, sk, skb); 2972 2973 serr = SKB_EXT_ERR(skb); 2974 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2975 2976 msg->msg_flags |= MSG_ERRQUEUE; 2977 err = copied; 2978 2979 out_free_skb: 2980 kfree_skb(skb); 2981 out: 2982 return err; 2983 } 2984 EXPORT_SYMBOL(sock_recv_errqueue); 2985 2986 /* 2987 * Get a socket option on an socket. 2988 * 2989 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2990 * asynchronous errors should be reported by getsockopt. We assume 2991 * this means if you specify SO_ERROR (otherwise whats the point of it). 2992 */ 2993 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2994 char __user *optval, int __user *optlen) 2995 { 2996 struct sock *sk = sock->sk; 2997 2998 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2999 } 3000 EXPORT_SYMBOL(sock_common_getsockopt); 3001 3002 #ifdef CONFIG_COMPAT 3003 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3004 char __user *optval, int __user *optlen) 3005 { 3006 struct sock *sk = sock->sk; 3007 3008 if (sk->sk_prot->compat_getsockopt != NULL) 3009 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3010 optval, optlen); 3011 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3012 } 3013 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3014 #endif 3015 3016 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3017 int flags) 3018 { 3019 struct sock *sk = sock->sk; 3020 int addr_len = 0; 3021 int err; 3022 3023 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3024 flags & ~MSG_DONTWAIT, &addr_len); 3025 if (err >= 0) 3026 msg->msg_namelen = addr_len; 3027 return err; 3028 } 3029 EXPORT_SYMBOL(sock_common_recvmsg); 3030 3031 /* 3032 * Set socket options on an inet socket. 3033 */ 3034 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3035 char __user *optval, unsigned int optlen) 3036 { 3037 struct sock *sk = sock->sk; 3038 3039 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3040 } 3041 EXPORT_SYMBOL(sock_common_setsockopt); 3042 3043 #ifdef CONFIG_COMPAT 3044 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3045 char __user *optval, unsigned int optlen) 3046 { 3047 struct sock *sk = sock->sk; 3048 3049 if (sk->sk_prot->compat_setsockopt != NULL) 3050 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3051 optval, optlen); 3052 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3053 } 3054 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3055 #endif 3056 3057 void sk_common_release(struct sock *sk) 3058 { 3059 if (sk->sk_prot->destroy) 3060 sk->sk_prot->destroy(sk); 3061 3062 /* 3063 * Observation: when sock_common_release is called, processes have 3064 * no access to socket. But net still has. 3065 * Step one, detach it from networking: 3066 * 3067 * A. Remove from hash tables. 3068 */ 3069 3070 sk->sk_prot->unhash(sk); 3071 3072 /* 3073 * In this point socket cannot receive new packets, but it is possible 3074 * that some packets are in flight because some CPU runs receiver and 3075 * did hash table lookup before we unhashed socket. They will achieve 3076 * receive queue and will be purged by socket destructor. 3077 * 3078 * Also we still have packets pending on receive queue and probably, 3079 * our own packets waiting in device queues. sock_destroy will drain 3080 * receive queue, but transmitted packets will delay socket destruction 3081 * until the last reference will be released. 3082 */ 3083 3084 sock_orphan(sk); 3085 3086 xfrm_sk_free_policy(sk); 3087 3088 sk_refcnt_debug_release(sk); 3089 3090 sock_put(sk); 3091 } 3092 EXPORT_SYMBOL(sk_common_release); 3093 3094 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3095 { 3096 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3097 3098 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3099 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3100 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3101 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3102 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3103 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3104 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3105 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3106 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3107 } 3108 3109 #ifdef CONFIG_PROC_FS 3110 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3111 struct prot_inuse { 3112 int val[PROTO_INUSE_NR]; 3113 }; 3114 3115 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3116 3117 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3118 { 3119 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3120 } 3121 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3122 3123 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3124 { 3125 int cpu, idx = prot->inuse_idx; 3126 int res = 0; 3127 3128 for_each_possible_cpu(cpu) 3129 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3130 3131 return res >= 0 ? res : 0; 3132 } 3133 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3134 3135 static void sock_inuse_add(struct net *net, int val) 3136 { 3137 this_cpu_add(*net->core.sock_inuse, val); 3138 } 3139 3140 int sock_inuse_get(struct net *net) 3141 { 3142 int cpu, res = 0; 3143 3144 for_each_possible_cpu(cpu) 3145 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3146 3147 return res; 3148 } 3149 3150 EXPORT_SYMBOL_GPL(sock_inuse_get); 3151 3152 static int __net_init sock_inuse_init_net(struct net *net) 3153 { 3154 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3155 if (net->core.prot_inuse == NULL) 3156 return -ENOMEM; 3157 3158 net->core.sock_inuse = alloc_percpu(int); 3159 if (net->core.sock_inuse == NULL) 3160 goto out; 3161 3162 return 0; 3163 3164 out: 3165 free_percpu(net->core.prot_inuse); 3166 return -ENOMEM; 3167 } 3168 3169 static void __net_exit sock_inuse_exit_net(struct net *net) 3170 { 3171 free_percpu(net->core.prot_inuse); 3172 free_percpu(net->core.sock_inuse); 3173 } 3174 3175 static struct pernet_operations net_inuse_ops = { 3176 .init = sock_inuse_init_net, 3177 .exit = sock_inuse_exit_net, 3178 }; 3179 3180 static __init int net_inuse_init(void) 3181 { 3182 if (register_pernet_subsys(&net_inuse_ops)) 3183 panic("Cannot initialize net inuse counters"); 3184 3185 return 0; 3186 } 3187 3188 core_initcall(net_inuse_init); 3189 3190 static void assign_proto_idx(struct proto *prot) 3191 { 3192 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3193 3194 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3195 pr_err("PROTO_INUSE_NR exhausted\n"); 3196 return; 3197 } 3198 3199 set_bit(prot->inuse_idx, proto_inuse_idx); 3200 } 3201 3202 static void release_proto_idx(struct proto *prot) 3203 { 3204 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3205 clear_bit(prot->inuse_idx, proto_inuse_idx); 3206 } 3207 #else 3208 static inline void assign_proto_idx(struct proto *prot) 3209 { 3210 } 3211 3212 static inline void release_proto_idx(struct proto *prot) 3213 { 3214 } 3215 3216 static void sock_inuse_add(struct net *net, int val) 3217 { 3218 } 3219 #endif 3220 3221 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3222 { 3223 if (!rsk_prot) 3224 return; 3225 kfree(rsk_prot->slab_name); 3226 rsk_prot->slab_name = NULL; 3227 kmem_cache_destroy(rsk_prot->slab); 3228 rsk_prot->slab = NULL; 3229 } 3230 3231 static int req_prot_init(const struct proto *prot) 3232 { 3233 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3234 3235 if (!rsk_prot) 3236 return 0; 3237 3238 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3239 prot->name); 3240 if (!rsk_prot->slab_name) 3241 return -ENOMEM; 3242 3243 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3244 rsk_prot->obj_size, 0, 3245 prot->slab_flags, NULL); 3246 3247 if (!rsk_prot->slab) { 3248 pr_crit("%s: Can't create request sock SLAB cache!\n", 3249 prot->name); 3250 return -ENOMEM; 3251 } 3252 return 0; 3253 } 3254 3255 int proto_register(struct proto *prot, int alloc_slab) 3256 { 3257 if (alloc_slab) { 3258 prot->slab = kmem_cache_create_usercopy(prot->name, 3259 prot->obj_size, 0, 3260 SLAB_HWCACHE_ALIGN | prot->slab_flags, 3261 prot->useroffset, prot->usersize, 3262 NULL); 3263 3264 if (prot->slab == NULL) { 3265 pr_crit("%s: Can't create sock SLAB cache!\n", 3266 prot->name); 3267 goto out; 3268 } 3269 3270 if (req_prot_init(prot)) 3271 goto out_free_request_sock_slab; 3272 3273 if (prot->twsk_prot != NULL) { 3274 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3275 3276 if (prot->twsk_prot->twsk_slab_name == NULL) 3277 goto out_free_request_sock_slab; 3278 3279 prot->twsk_prot->twsk_slab = 3280 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3281 prot->twsk_prot->twsk_obj_size, 3282 0, 3283 prot->slab_flags, 3284 NULL); 3285 if (prot->twsk_prot->twsk_slab == NULL) 3286 goto out_free_timewait_sock_slab_name; 3287 } 3288 } 3289 3290 mutex_lock(&proto_list_mutex); 3291 list_add(&prot->node, &proto_list); 3292 assign_proto_idx(prot); 3293 mutex_unlock(&proto_list_mutex); 3294 return 0; 3295 3296 out_free_timewait_sock_slab_name: 3297 kfree(prot->twsk_prot->twsk_slab_name); 3298 out_free_request_sock_slab: 3299 req_prot_cleanup(prot->rsk_prot); 3300 3301 kmem_cache_destroy(prot->slab); 3302 prot->slab = NULL; 3303 out: 3304 return -ENOBUFS; 3305 } 3306 EXPORT_SYMBOL(proto_register); 3307 3308 void proto_unregister(struct proto *prot) 3309 { 3310 mutex_lock(&proto_list_mutex); 3311 release_proto_idx(prot); 3312 list_del(&prot->node); 3313 mutex_unlock(&proto_list_mutex); 3314 3315 kmem_cache_destroy(prot->slab); 3316 prot->slab = NULL; 3317 3318 req_prot_cleanup(prot->rsk_prot); 3319 3320 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3321 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3322 kfree(prot->twsk_prot->twsk_slab_name); 3323 prot->twsk_prot->twsk_slab = NULL; 3324 } 3325 } 3326 EXPORT_SYMBOL(proto_unregister); 3327 3328 int sock_load_diag_module(int family, int protocol) 3329 { 3330 if (!protocol) { 3331 if (!sock_is_registered(family)) 3332 return -ENOENT; 3333 3334 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3335 NETLINK_SOCK_DIAG, family); 3336 } 3337 3338 #ifdef CONFIG_INET 3339 if (family == AF_INET && 3340 !rcu_access_pointer(inet_protos[protocol])) 3341 return -ENOENT; 3342 #endif 3343 3344 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3345 NETLINK_SOCK_DIAG, family, protocol); 3346 } 3347 EXPORT_SYMBOL(sock_load_diag_module); 3348 3349 #ifdef CONFIG_PROC_FS 3350 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3351 __acquires(proto_list_mutex) 3352 { 3353 mutex_lock(&proto_list_mutex); 3354 return seq_list_start_head(&proto_list, *pos); 3355 } 3356 3357 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3358 { 3359 return seq_list_next(v, &proto_list, pos); 3360 } 3361 3362 static void proto_seq_stop(struct seq_file *seq, void *v) 3363 __releases(proto_list_mutex) 3364 { 3365 mutex_unlock(&proto_list_mutex); 3366 } 3367 3368 static char proto_method_implemented(const void *method) 3369 { 3370 return method == NULL ? 'n' : 'y'; 3371 } 3372 static long sock_prot_memory_allocated(struct proto *proto) 3373 { 3374 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3375 } 3376 3377 static char *sock_prot_memory_pressure(struct proto *proto) 3378 { 3379 return proto->memory_pressure != NULL ? 3380 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3381 } 3382 3383 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3384 { 3385 3386 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3387 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3388 proto->name, 3389 proto->obj_size, 3390 sock_prot_inuse_get(seq_file_net(seq), proto), 3391 sock_prot_memory_allocated(proto), 3392 sock_prot_memory_pressure(proto), 3393 proto->max_header, 3394 proto->slab == NULL ? "no" : "yes", 3395 module_name(proto->owner), 3396 proto_method_implemented(proto->close), 3397 proto_method_implemented(proto->connect), 3398 proto_method_implemented(proto->disconnect), 3399 proto_method_implemented(proto->accept), 3400 proto_method_implemented(proto->ioctl), 3401 proto_method_implemented(proto->init), 3402 proto_method_implemented(proto->destroy), 3403 proto_method_implemented(proto->shutdown), 3404 proto_method_implemented(proto->setsockopt), 3405 proto_method_implemented(proto->getsockopt), 3406 proto_method_implemented(proto->sendmsg), 3407 proto_method_implemented(proto->recvmsg), 3408 proto_method_implemented(proto->sendpage), 3409 proto_method_implemented(proto->bind), 3410 proto_method_implemented(proto->backlog_rcv), 3411 proto_method_implemented(proto->hash), 3412 proto_method_implemented(proto->unhash), 3413 proto_method_implemented(proto->get_port), 3414 proto_method_implemented(proto->enter_memory_pressure)); 3415 } 3416 3417 static int proto_seq_show(struct seq_file *seq, void *v) 3418 { 3419 if (v == &proto_list) 3420 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3421 "protocol", 3422 "size", 3423 "sockets", 3424 "memory", 3425 "press", 3426 "maxhdr", 3427 "slab", 3428 "module", 3429 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3430 else 3431 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3432 return 0; 3433 } 3434 3435 static const struct seq_operations proto_seq_ops = { 3436 .start = proto_seq_start, 3437 .next = proto_seq_next, 3438 .stop = proto_seq_stop, 3439 .show = proto_seq_show, 3440 }; 3441 3442 static int proto_seq_open(struct inode *inode, struct file *file) 3443 { 3444 return seq_open_net(inode, file, &proto_seq_ops, 3445 sizeof(struct seq_net_private)); 3446 } 3447 3448 static const struct file_operations proto_seq_fops = { 3449 .open = proto_seq_open, 3450 .read = seq_read, 3451 .llseek = seq_lseek, 3452 .release = seq_release_net, 3453 }; 3454 3455 static __net_init int proto_init_net(struct net *net) 3456 { 3457 if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops)) 3458 return -ENOMEM; 3459 3460 return 0; 3461 } 3462 3463 static __net_exit void proto_exit_net(struct net *net) 3464 { 3465 remove_proc_entry("protocols", net->proc_net); 3466 } 3467 3468 3469 static __net_initdata struct pernet_operations proto_net_ops = { 3470 .init = proto_init_net, 3471 .exit = proto_exit_net, 3472 }; 3473 3474 static int __init proto_init(void) 3475 { 3476 return register_pernet_subsys(&proto_net_ops); 3477 } 3478 3479 subsys_initcall(proto_init); 3480 3481 #endif /* PROC_FS */ 3482 3483 #ifdef CONFIG_NET_RX_BUSY_POLL 3484 bool sk_busy_loop_end(void *p, unsigned long start_time) 3485 { 3486 struct sock *sk = p; 3487 3488 return !skb_queue_empty(&sk->sk_receive_queue) || 3489 sk_busy_loop_timeout(sk, start_time); 3490 } 3491 EXPORT_SYMBOL(sk_busy_loop_end); 3492 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3493