1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #include <linux/capability.h> 93 #include <linux/errno.h> 94 #include <linux/types.h> 95 #include <linux/socket.h> 96 #include <linux/in.h> 97 #include <linux/kernel.h> 98 #include <linux/module.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/sched.h> 102 #include <linux/timer.h> 103 #include <linux/string.h> 104 #include <linux/sockios.h> 105 #include <linux/net.h> 106 #include <linux/mm.h> 107 #include <linux/slab.h> 108 #include <linux/interrupt.h> 109 #include <linux/poll.h> 110 #include <linux/tcp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 114 #include <asm/uaccess.h> 115 #include <asm/system.h> 116 117 #include <linux/netdevice.h> 118 #include <net/protocol.h> 119 #include <linux/skbuff.h> 120 #include <net/net_namespace.h> 121 #include <net/request_sock.h> 122 #include <net/sock.h> 123 #include <linux/net_tstamp.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 127 #include <linux/filter.h> 128 129 #ifdef CONFIG_INET 130 #include <net/tcp.h> 131 #endif 132 133 /* 134 * Each address family might have different locking rules, so we have 135 * one slock key per address family: 136 */ 137 static struct lock_class_key af_family_keys[AF_MAX]; 138 static struct lock_class_key af_family_slock_keys[AF_MAX]; 139 140 /* 141 * Make lock validator output more readable. (we pre-construct these 142 * strings build-time, so that runtime initialization of socket 143 * locks is fast): 144 */ 145 static const char *const af_family_key_strings[AF_MAX+1] = { 146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 158 "sk_lock-AF_IEEE802154", 159 "sk_lock-AF_MAX" 160 }; 161 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 171 "slock-27" , "slock-28" , "slock-AF_CAN" , 172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 174 "slock-AF_IEEE802154", 175 "slock-AF_MAX" 176 }; 177 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 187 "clock-27" , "clock-28" , "clock-AF_CAN" , 188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 190 "clock-AF_IEEE802154", 191 "clock-AF_MAX" 192 }; 193 194 /* 195 * sk_callback_lock locking rules are per-address-family, 196 * so split the lock classes by using a per-AF key: 197 */ 198 static struct lock_class_key af_callback_keys[AF_MAX]; 199 200 /* Take into consideration the size of the struct sk_buff overhead in the 201 * determination of these values, since that is non-constant across 202 * platforms. This makes socket queueing behavior and performance 203 * not depend upon such differences. 204 */ 205 #define _SK_MEM_PACKETS 256 206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 209 210 /* Run time adjustable parameters. */ 211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 215 216 /* Maximal space eaten by iovec or ancilliary data plus some space */ 217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 218 EXPORT_SYMBOL(sysctl_optmem_max); 219 220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 221 { 222 struct timeval tv; 223 224 if (optlen < sizeof(tv)) 225 return -EINVAL; 226 if (copy_from_user(&tv, optval, sizeof(tv))) 227 return -EFAULT; 228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 229 return -EDOM; 230 231 if (tv.tv_sec < 0) { 232 static int warned __read_mostly; 233 234 *timeo_p = 0; 235 if (warned < 10 && net_ratelimit()) { 236 warned++; 237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " 238 "tries to set negative timeout\n", 239 current->comm, task_pid_nr(current)); 240 } 241 return 0; 242 } 243 *timeo_p = MAX_SCHEDULE_TIMEOUT; 244 if (tv.tv_sec == 0 && tv.tv_usec == 0) 245 return 0; 246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 248 return 0; 249 } 250 251 static void sock_warn_obsolete_bsdism(const char *name) 252 { 253 static int warned; 254 static char warncomm[TASK_COMM_LEN]; 255 if (strcmp(warncomm, current->comm) && warned < 5) { 256 strcpy(warncomm, current->comm); 257 printk(KERN_WARNING "process `%s' is using obsolete " 258 "%s SO_BSDCOMPAT\n", warncomm, name); 259 warned++; 260 } 261 } 262 263 static void sock_disable_timestamp(struct sock *sk, int flag) 264 { 265 if (sock_flag(sk, flag)) { 266 sock_reset_flag(sk, flag); 267 if (!sock_flag(sk, SOCK_TIMESTAMP) && 268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) { 269 net_disable_timestamp(); 270 } 271 } 272 } 273 274 275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 276 { 277 int err; 278 int skb_len; 279 unsigned long flags; 280 struct sk_buff_head *list = &sk->sk_receive_queue; 281 282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces 283 number of warnings when compiling with -W --ANK 284 */ 285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 286 (unsigned)sk->sk_rcvbuf) { 287 atomic_inc(&sk->sk_drops); 288 return -ENOMEM; 289 } 290 291 err = sk_filter(sk, skb); 292 if (err) 293 return err; 294 295 if (!sk_rmem_schedule(sk, skb->truesize)) { 296 atomic_inc(&sk->sk_drops); 297 return -ENOBUFS; 298 } 299 300 skb->dev = NULL; 301 skb_set_owner_r(skb, sk); 302 303 /* Cache the SKB length before we tack it onto the receive 304 * queue. Once it is added it no longer belongs to us and 305 * may be freed by other threads of control pulling packets 306 * from the queue. 307 */ 308 skb_len = skb->len; 309 310 spin_lock_irqsave(&list->lock, flags); 311 skb->dropcount = atomic_read(&sk->sk_drops); 312 __skb_queue_tail(list, skb); 313 spin_unlock_irqrestore(&list->lock, flags); 314 315 if (!sock_flag(sk, SOCK_DEAD)) 316 sk->sk_data_ready(sk, skb_len); 317 return 0; 318 } 319 EXPORT_SYMBOL(sock_queue_rcv_skb); 320 321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 322 { 323 int rc = NET_RX_SUCCESS; 324 325 if (sk_filter(sk, skb)) 326 goto discard_and_relse; 327 328 skb->dev = NULL; 329 330 if (nested) 331 bh_lock_sock_nested(sk); 332 else 333 bh_lock_sock(sk); 334 if (!sock_owned_by_user(sk)) { 335 /* 336 * trylock + unlock semantics: 337 */ 338 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 339 340 rc = sk_backlog_rcv(sk, skb); 341 342 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 343 } else 344 sk_add_backlog(sk, skb); 345 bh_unlock_sock(sk); 346 out: 347 sock_put(sk); 348 return rc; 349 discard_and_relse: 350 kfree_skb(skb); 351 goto out; 352 } 353 EXPORT_SYMBOL(sk_receive_skb); 354 355 void sk_reset_txq(struct sock *sk) 356 { 357 sk_tx_queue_clear(sk); 358 } 359 EXPORT_SYMBOL(sk_reset_txq); 360 361 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 362 { 363 struct dst_entry *dst = sk->sk_dst_cache; 364 365 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 366 sk_tx_queue_clear(sk); 367 sk->sk_dst_cache = NULL; 368 dst_release(dst); 369 return NULL; 370 } 371 372 return dst; 373 } 374 EXPORT_SYMBOL(__sk_dst_check); 375 376 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 377 { 378 struct dst_entry *dst = sk_dst_get(sk); 379 380 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 381 sk_dst_reset(sk); 382 dst_release(dst); 383 return NULL; 384 } 385 386 return dst; 387 } 388 EXPORT_SYMBOL(sk_dst_check); 389 390 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) 391 { 392 int ret = -ENOPROTOOPT; 393 #ifdef CONFIG_NETDEVICES 394 struct net *net = sock_net(sk); 395 char devname[IFNAMSIZ]; 396 int index; 397 398 /* Sorry... */ 399 ret = -EPERM; 400 if (!capable(CAP_NET_RAW)) 401 goto out; 402 403 ret = -EINVAL; 404 if (optlen < 0) 405 goto out; 406 407 /* Bind this socket to a particular device like "eth0", 408 * as specified in the passed interface name. If the 409 * name is "" or the option length is zero the socket 410 * is not bound. 411 */ 412 if (optlen > IFNAMSIZ - 1) 413 optlen = IFNAMSIZ - 1; 414 memset(devname, 0, sizeof(devname)); 415 416 ret = -EFAULT; 417 if (copy_from_user(devname, optval, optlen)) 418 goto out; 419 420 index = 0; 421 if (devname[0] != '\0') { 422 struct net_device *dev; 423 424 rcu_read_lock(); 425 dev = dev_get_by_name_rcu(net, devname); 426 if (dev) 427 index = dev->ifindex; 428 rcu_read_unlock(); 429 ret = -ENODEV; 430 if (!dev) 431 goto out; 432 } 433 434 lock_sock(sk); 435 sk->sk_bound_dev_if = index; 436 sk_dst_reset(sk); 437 release_sock(sk); 438 439 ret = 0; 440 441 out: 442 #endif 443 444 return ret; 445 } 446 447 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 448 { 449 if (valbool) 450 sock_set_flag(sk, bit); 451 else 452 sock_reset_flag(sk, bit); 453 } 454 455 /* 456 * This is meant for all protocols to use and covers goings on 457 * at the socket level. Everything here is generic. 458 */ 459 460 int sock_setsockopt(struct socket *sock, int level, int optname, 461 char __user *optval, unsigned int optlen) 462 { 463 struct sock *sk = sock->sk; 464 int val; 465 int valbool; 466 struct linger ling; 467 int ret = 0; 468 469 /* 470 * Options without arguments 471 */ 472 473 if (optname == SO_BINDTODEVICE) 474 return sock_bindtodevice(sk, optval, optlen); 475 476 if (optlen < sizeof(int)) 477 return -EINVAL; 478 479 if (get_user(val, (int __user *)optval)) 480 return -EFAULT; 481 482 valbool = val ? 1 : 0; 483 484 lock_sock(sk); 485 486 switch (optname) { 487 case SO_DEBUG: 488 if (val && !capable(CAP_NET_ADMIN)) 489 ret = -EACCES; 490 else 491 sock_valbool_flag(sk, SOCK_DBG, valbool); 492 break; 493 case SO_REUSEADDR: 494 sk->sk_reuse = valbool; 495 break; 496 case SO_TYPE: 497 case SO_PROTOCOL: 498 case SO_DOMAIN: 499 case SO_ERROR: 500 ret = -ENOPROTOOPT; 501 break; 502 case SO_DONTROUTE: 503 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 504 break; 505 case SO_BROADCAST: 506 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 507 break; 508 case SO_SNDBUF: 509 /* Don't error on this BSD doesn't and if you think 510 about it this is right. Otherwise apps have to 511 play 'guess the biggest size' games. RCVBUF/SNDBUF 512 are treated in BSD as hints */ 513 514 if (val > sysctl_wmem_max) 515 val = sysctl_wmem_max; 516 set_sndbuf: 517 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 518 if ((val * 2) < SOCK_MIN_SNDBUF) 519 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 520 else 521 sk->sk_sndbuf = val * 2; 522 523 /* 524 * Wake up sending tasks if we 525 * upped the value. 526 */ 527 sk->sk_write_space(sk); 528 break; 529 530 case SO_SNDBUFFORCE: 531 if (!capable(CAP_NET_ADMIN)) { 532 ret = -EPERM; 533 break; 534 } 535 goto set_sndbuf; 536 537 case SO_RCVBUF: 538 /* Don't error on this BSD doesn't and if you think 539 about it this is right. Otherwise apps have to 540 play 'guess the biggest size' games. RCVBUF/SNDBUF 541 are treated in BSD as hints */ 542 543 if (val > sysctl_rmem_max) 544 val = sysctl_rmem_max; 545 set_rcvbuf: 546 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 547 /* 548 * We double it on the way in to account for 549 * "struct sk_buff" etc. overhead. Applications 550 * assume that the SO_RCVBUF setting they make will 551 * allow that much actual data to be received on that 552 * socket. 553 * 554 * Applications are unaware that "struct sk_buff" and 555 * other overheads allocate from the receive buffer 556 * during socket buffer allocation. 557 * 558 * And after considering the possible alternatives, 559 * returning the value we actually used in getsockopt 560 * is the most desirable behavior. 561 */ 562 if ((val * 2) < SOCK_MIN_RCVBUF) 563 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 564 else 565 sk->sk_rcvbuf = val * 2; 566 break; 567 568 case SO_RCVBUFFORCE: 569 if (!capable(CAP_NET_ADMIN)) { 570 ret = -EPERM; 571 break; 572 } 573 goto set_rcvbuf; 574 575 case SO_KEEPALIVE: 576 #ifdef CONFIG_INET 577 if (sk->sk_protocol == IPPROTO_TCP) 578 tcp_set_keepalive(sk, valbool); 579 #endif 580 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 581 break; 582 583 case SO_OOBINLINE: 584 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 585 break; 586 587 case SO_NO_CHECK: 588 sk->sk_no_check = valbool; 589 break; 590 591 case SO_PRIORITY: 592 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 593 sk->sk_priority = val; 594 else 595 ret = -EPERM; 596 break; 597 598 case SO_LINGER: 599 if (optlen < sizeof(ling)) { 600 ret = -EINVAL; /* 1003.1g */ 601 break; 602 } 603 if (copy_from_user(&ling, optval, sizeof(ling))) { 604 ret = -EFAULT; 605 break; 606 } 607 if (!ling.l_onoff) 608 sock_reset_flag(sk, SOCK_LINGER); 609 else { 610 #if (BITS_PER_LONG == 32) 611 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 612 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 613 else 614 #endif 615 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 616 sock_set_flag(sk, SOCK_LINGER); 617 } 618 break; 619 620 case SO_BSDCOMPAT: 621 sock_warn_obsolete_bsdism("setsockopt"); 622 break; 623 624 case SO_PASSCRED: 625 if (valbool) 626 set_bit(SOCK_PASSCRED, &sock->flags); 627 else 628 clear_bit(SOCK_PASSCRED, &sock->flags); 629 break; 630 631 case SO_TIMESTAMP: 632 case SO_TIMESTAMPNS: 633 if (valbool) { 634 if (optname == SO_TIMESTAMP) 635 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 636 else 637 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 638 sock_set_flag(sk, SOCK_RCVTSTAMP); 639 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 640 } else { 641 sock_reset_flag(sk, SOCK_RCVTSTAMP); 642 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 643 } 644 break; 645 646 case SO_TIMESTAMPING: 647 if (val & ~SOF_TIMESTAMPING_MASK) { 648 ret = -EINVAL; 649 break; 650 } 651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, 652 val & SOF_TIMESTAMPING_TX_HARDWARE); 653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, 654 val & SOF_TIMESTAMPING_TX_SOFTWARE); 655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, 656 val & SOF_TIMESTAMPING_RX_HARDWARE); 657 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 658 sock_enable_timestamp(sk, 659 SOCK_TIMESTAMPING_RX_SOFTWARE); 660 else 661 sock_disable_timestamp(sk, 662 SOCK_TIMESTAMPING_RX_SOFTWARE); 663 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, 664 val & SOF_TIMESTAMPING_SOFTWARE); 665 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, 666 val & SOF_TIMESTAMPING_SYS_HARDWARE); 667 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, 668 val & SOF_TIMESTAMPING_RAW_HARDWARE); 669 break; 670 671 case SO_RCVLOWAT: 672 if (val < 0) 673 val = INT_MAX; 674 sk->sk_rcvlowat = val ? : 1; 675 break; 676 677 case SO_RCVTIMEO: 678 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 679 break; 680 681 case SO_SNDTIMEO: 682 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 683 break; 684 685 case SO_ATTACH_FILTER: 686 ret = -EINVAL; 687 if (optlen == sizeof(struct sock_fprog)) { 688 struct sock_fprog fprog; 689 690 ret = -EFAULT; 691 if (copy_from_user(&fprog, optval, sizeof(fprog))) 692 break; 693 694 ret = sk_attach_filter(&fprog, sk); 695 } 696 break; 697 698 case SO_DETACH_FILTER: 699 ret = sk_detach_filter(sk); 700 break; 701 702 case SO_PASSSEC: 703 if (valbool) 704 set_bit(SOCK_PASSSEC, &sock->flags); 705 else 706 clear_bit(SOCK_PASSSEC, &sock->flags); 707 break; 708 case SO_MARK: 709 if (!capable(CAP_NET_ADMIN)) 710 ret = -EPERM; 711 else 712 sk->sk_mark = val; 713 break; 714 715 /* We implement the SO_SNDLOWAT etc to 716 not be settable (1003.1g 5.3) */ 717 case SO_RXQ_OVFL: 718 if (valbool) 719 sock_set_flag(sk, SOCK_RXQ_OVFL); 720 else 721 sock_reset_flag(sk, SOCK_RXQ_OVFL); 722 break; 723 default: 724 ret = -ENOPROTOOPT; 725 break; 726 } 727 release_sock(sk); 728 return ret; 729 } 730 EXPORT_SYMBOL(sock_setsockopt); 731 732 733 int sock_getsockopt(struct socket *sock, int level, int optname, 734 char __user *optval, int __user *optlen) 735 { 736 struct sock *sk = sock->sk; 737 738 union { 739 int val; 740 struct linger ling; 741 struct timeval tm; 742 } v; 743 744 unsigned int lv = sizeof(int); 745 int len; 746 747 if (get_user(len, optlen)) 748 return -EFAULT; 749 if (len < 0) 750 return -EINVAL; 751 752 memset(&v, 0, sizeof(v)); 753 754 switch (optname) { 755 case SO_DEBUG: 756 v.val = sock_flag(sk, SOCK_DBG); 757 break; 758 759 case SO_DONTROUTE: 760 v.val = sock_flag(sk, SOCK_LOCALROUTE); 761 break; 762 763 case SO_BROADCAST: 764 v.val = !!sock_flag(sk, SOCK_BROADCAST); 765 break; 766 767 case SO_SNDBUF: 768 v.val = sk->sk_sndbuf; 769 break; 770 771 case SO_RCVBUF: 772 v.val = sk->sk_rcvbuf; 773 break; 774 775 case SO_REUSEADDR: 776 v.val = sk->sk_reuse; 777 break; 778 779 case SO_KEEPALIVE: 780 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 781 break; 782 783 case SO_TYPE: 784 v.val = sk->sk_type; 785 break; 786 787 case SO_PROTOCOL: 788 v.val = sk->sk_protocol; 789 break; 790 791 case SO_DOMAIN: 792 v.val = sk->sk_family; 793 break; 794 795 case SO_ERROR: 796 v.val = -sock_error(sk); 797 if (v.val == 0) 798 v.val = xchg(&sk->sk_err_soft, 0); 799 break; 800 801 case SO_OOBINLINE: 802 v.val = !!sock_flag(sk, SOCK_URGINLINE); 803 break; 804 805 case SO_NO_CHECK: 806 v.val = sk->sk_no_check; 807 break; 808 809 case SO_PRIORITY: 810 v.val = sk->sk_priority; 811 break; 812 813 case SO_LINGER: 814 lv = sizeof(v.ling); 815 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 816 v.ling.l_linger = sk->sk_lingertime / HZ; 817 break; 818 819 case SO_BSDCOMPAT: 820 sock_warn_obsolete_bsdism("getsockopt"); 821 break; 822 823 case SO_TIMESTAMP: 824 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 825 !sock_flag(sk, SOCK_RCVTSTAMPNS); 826 break; 827 828 case SO_TIMESTAMPNS: 829 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 830 break; 831 832 case SO_TIMESTAMPING: 833 v.val = 0; 834 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 835 v.val |= SOF_TIMESTAMPING_TX_HARDWARE; 836 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 837 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE; 838 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE)) 839 v.val |= SOF_TIMESTAMPING_RX_HARDWARE; 840 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 841 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE; 842 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) 843 v.val |= SOF_TIMESTAMPING_SOFTWARE; 844 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)) 845 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE; 846 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) 847 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE; 848 break; 849 850 case SO_RCVTIMEO: 851 lv = sizeof(struct timeval); 852 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 853 v.tm.tv_sec = 0; 854 v.tm.tv_usec = 0; 855 } else { 856 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 857 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 858 } 859 break; 860 861 case SO_SNDTIMEO: 862 lv = sizeof(struct timeval); 863 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 864 v.tm.tv_sec = 0; 865 v.tm.tv_usec = 0; 866 } else { 867 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 868 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 869 } 870 break; 871 872 case SO_RCVLOWAT: 873 v.val = sk->sk_rcvlowat; 874 break; 875 876 case SO_SNDLOWAT: 877 v.val = 1; 878 break; 879 880 case SO_PASSCRED: 881 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 882 break; 883 884 case SO_PEERCRED: 885 if (len > sizeof(sk->sk_peercred)) 886 len = sizeof(sk->sk_peercred); 887 if (copy_to_user(optval, &sk->sk_peercred, len)) 888 return -EFAULT; 889 goto lenout; 890 891 case SO_PEERNAME: 892 { 893 char address[128]; 894 895 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 896 return -ENOTCONN; 897 if (lv < len) 898 return -EINVAL; 899 if (copy_to_user(optval, address, len)) 900 return -EFAULT; 901 goto lenout; 902 } 903 904 /* Dubious BSD thing... Probably nobody even uses it, but 905 * the UNIX standard wants it for whatever reason... -DaveM 906 */ 907 case SO_ACCEPTCONN: 908 v.val = sk->sk_state == TCP_LISTEN; 909 break; 910 911 case SO_PASSSEC: 912 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; 913 break; 914 915 case SO_PEERSEC: 916 return security_socket_getpeersec_stream(sock, optval, optlen, len); 917 918 case SO_MARK: 919 v.val = sk->sk_mark; 920 break; 921 922 case SO_RXQ_OVFL: 923 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL); 924 break; 925 926 default: 927 return -ENOPROTOOPT; 928 } 929 930 if (len > lv) 931 len = lv; 932 if (copy_to_user(optval, &v, len)) 933 return -EFAULT; 934 lenout: 935 if (put_user(len, optlen)) 936 return -EFAULT; 937 return 0; 938 } 939 940 /* 941 * Initialize an sk_lock. 942 * 943 * (We also register the sk_lock with the lock validator.) 944 */ 945 static inline void sock_lock_init(struct sock *sk) 946 { 947 sock_lock_init_class_and_name(sk, 948 af_family_slock_key_strings[sk->sk_family], 949 af_family_slock_keys + sk->sk_family, 950 af_family_key_strings[sk->sk_family], 951 af_family_keys + sk->sk_family); 952 } 953 954 /* 955 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 956 * even temporarly, because of RCU lookups. sk_node should also be left as is. 957 */ 958 static void sock_copy(struct sock *nsk, const struct sock *osk) 959 { 960 #ifdef CONFIG_SECURITY_NETWORK 961 void *sptr = nsk->sk_security; 962 #endif 963 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) != 964 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) + 965 sizeof(osk->sk_tx_queue_mapping)); 966 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start, 967 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start)); 968 #ifdef CONFIG_SECURITY_NETWORK 969 nsk->sk_security = sptr; 970 security_sk_clone(osk, nsk); 971 #endif 972 } 973 974 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 975 int family) 976 { 977 struct sock *sk; 978 struct kmem_cache *slab; 979 980 slab = prot->slab; 981 if (slab != NULL) { 982 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 983 if (!sk) 984 return sk; 985 if (priority & __GFP_ZERO) { 986 /* 987 * caches using SLAB_DESTROY_BY_RCU should let 988 * sk_node.next un-modified. Special care is taken 989 * when initializing object to zero. 990 */ 991 if (offsetof(struct sock, sk_node.next) != 0) 992 memset(sk, 0, offsetof(struct sock, sk_node.next)); 993 memset(&sk->sk_node.pprev, 0, 994 prot->obj_size - offsetof(struct sock, 995 sk_node.pprev)); 996 } 997 } 998 else 999 sk = kmalloc(prot->obj_size, priority); 1000 1001 if (sk != NULL) { 1002 kmemcheck_annotate_bitfield(sk, flags); 1003 1004 if (security_sk_alloc(sk, family, priority)) 1005 goto out_free; 1006 1007 if (!try_module_get(prot->owner)) 1008 goto out_free_sec; 1009 sk_tx_queue_clear(sk); 1010 } 1011 1012 return sk; 1013 1014 out_free_sec: 1015 security_sk_free(sk); 1016 out_free: 1017 if (slab != NULL) 1018 kmem_cache_free(slab, sk); 1019 else 1020 kfree(sk); 1021 return NULL; 1022 } 1023 1024 static void sk_prot_free(struct proto *prot, struct sock *sk) 1025 { 1026 struct kmem_cache *slab; 1027 struct module *owner; 1028 1029 owner = prot->owner; 1030 slab = prot->slab; 1031 1032 security_sk_free(sk); 1033 if (slab != NULL) 1034 kmem_cache_free(slab, sk); 1035 else 1036 kfree(sk); 1037 module_put(owner); 1038 } 1039 1040 /** 1041 * sk_alloc - All socket objects are allocated here 1042 * @net: the applicable net namespace 1043 * @family: protocol family 1044 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1045 * @prot: struct proto associated with this new sock instance 1046 */ 1047 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1048 struct proto *prot) 1049 { 1050 struct sock *sk; 1051 1052 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1053 if (sk) { 1054 sk->sk_family = family; 1055 /* 1056 * See comment in struct sock definition to understand 1057 * why we need sk_prot_creator -acme 1058 */ 1059 sk->sk_prot = sk->sk_prot_creator = prot; 1060 sock_lock_init(sk); 1061 sock_net_set(sk, get_net(net)); 1062 atomic_set(&sk->sk_wmem_alloc, 1); 1063 } 1064 1065 return sk; 1066 } 1067 EXPORT_SYMBOL(sk_alloc); 1068 1069 static void __sk_free(struct sock *sk) 1070 { 1071 struct sk_filter *filter; 1072 1073 if (sk->sk_destruct) 1074 sk->sk_destruct(sk); 1075 1076 filter = rcu_dereference(sk->sk_filter); 1077 if (filter) { 1078 sk_filter_uncharge(sk, filter); 1079 rcu_assign_pointer(sk->sk_filter, NULL); 1080 } 1081 1082 sock_disable_timestamp(sk, SOCK_TIMESTAMP); 1083 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); 1084 1085 if (atomic_read(&sk->sk_omem_alloc)) 1086 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 1087 __func__, atomic_read(&sk->sk_omem_alloc)); 1088 1089 put_net(sock_net(sk)); 1090 sk_prot_free(sk->sk_prot_creator, sk); 1091 } 1092 1093 void sk_free(struct sock *sk) 1094 { 1095 /* 1096 * We substract one from sk_wmem_alloc and can know if 1097 * some packets are still in some tx queue. 1098 * If not null, sock_wfree() will call __sk_free(sk) later 1099 */ 1100 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1101 __sk_free(sk); 1102 } 1103 EXPORT_SYMBOL(sk_free); 1104 1105 /* 1106 * Last sock_put should drop referrence to sk->sk_net. It has already 1107 * been dropped in sk_change_net. Taking referrence to stopping namespace 1108 * is not an option. 1109 * Take referrence to a socket to remove it from hash _alive_ and after that 1110 * destroy it in the context of init_net. 1111 */ 1112 void sk_release_kernel(struct sock *sk) 1113 { 1114 if (sk == NULL || sk->sk_socket == NULL) 1115 return; 1116 1117 sock_hold(sk); 1118 sock_release(sk->sk_socket); 1119 release_net(sock_net(sk)); 1120 sock_net_set(sk, get_net(&init_net)); 1121 sock_put(sk); 1122 } 1123 EXPORT_SYMBOL(sk_release_kernel); 1124 1125 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 1126 { 1127 struct sock *newsk; 1128 1129 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1130 if (newsk != NULL) { 1131 struct sk_filter *filter; 1132 1133 sock_copy(newsk, sk); 1134 1135 /* SANITY */ 1136 get_net(sock_net(newsk)); 1137 sk_node_init(&newsk->sk_node); 1138 sock_lock_init(newsk); 1139 bh_lock_sock(newsk); 1140 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1141 1142 atomic_set(&newsk->sk_rmem_alloc, 0); 1143 /* 1144 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1145 */ 1146 atomic_set(&newsk->sk_wmem_alloc, 1); 1147 atomic_set(&newsk->sk_omem_alloc, 0); 1148 skb_queue_head_init(&newsk->sk_receive_queue); 1149 skb_queue_head_init(&newsk->sk_write_queue); 1150 #ifdef CONFIG_NET_DMA 1151 skb_queue_head_init(&newsk->sk_async_wait_queue); 1152 #endif 1153 1154 rwlock_init(&newsk->sk_dst_lock); 1155 rwlock_init(&newsk->sk_callback_lock); 1156 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1157 af_callback_keys + newsk->sk_family, 1158 af_family_clock_key_strings[newsk->sk_family]); 1159 1160 newsk->sk_dst_cache = NULL; 1161 newsk->sk_wmem_queued = 0; 1162 newsk->sk_forward_alloc = 0; 1163 newsk->sk_send_head = NULL; 1164 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1165 1166 sock_reset_flag(newsk, SOCK_DONE); 1167 skb_queue_head_init(&newsk->sk_error_queue); 1168 1169 filter = newsk->sk_filter; 1170 if (filter != NULL) 1171 sk_filter_charge(newsk, filter); 1172 1173 if (unlikely(xfrm_sk_clone_policy(newsk))) { 1174 /* It is still raw copy of parent, so invalidate 1175 * destructor and make plain sk_free() */ 1176 newsk->sk_destruct = NULL; 1177 sk_free(newsk); 1178 newsk = NULL; 1179 goto out; 1180 } 1181 1182 newsk->sk_err = 0; 1183 newsk->sk_priority = 0; 1184 /* 1185 * Before updating sk_refcnt, we must commit prior changes to memory 1186 * (Documentation/RCU/rculist_nulls.txt for details) 1187 */ 1188 smp_wmb(); 1189 atomic_set(&newsk->sk_refcnt, 2); 1190 1191 /* 1192 * Increment the counter in the same struct proto as the master 1193 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1194 * is the same as sk->sk_prot->socks, as this field was copied 1195 * with memcpy). 1196 * 1197 * This _changes_ the previous behaviour, where 1198 * tcp_create_openreq_child always was incrementing the 1199 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1200 * to be taken into account in all callers. -acme 1201 */ 1202 sk_refcnt_debug_inc(newsk); 1203 sk_set_socket(newsk, NULL); 1204 newsk->sk_sleep = NULL; 1205 1206 if (newsk->sk_prot->sockets_allocated) 1207 percpu_counter_inc(newsk->sk_prot->sockets_allocated); 1208 } 1209 out: 1210 return newsk; 1211 } 1212 EXPORT_SYMBOL_GPL(sk_clone); 1213 1214 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1215 { 1216 __sk_dst_set(sk, dst); 1217 sk->sk_route_caps = dst->dev->features; 1218 if (sk->sk_route_caps & NETIF_F_GSO) 1219 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1220 if (sk_can_gso(sk)) { 1221 if (dst->header_len) { 1222 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1223 } else { 1224 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1225 sk->sk_gso_max_size = dst->dev->gso_max_size; 1226 } 1227 } 1228 } 1229 EXPORT_SYMBOL_GPL(sk_setup_caps); 1230 1231 void __init sk_init(void) 1232 { 1233 if (totalram_pages <= 4096) { 1234 sysctl_wmem_max = 32767; 1235 sysctl_rmem_max = 32767; 1236 sysctl_wmem_default = 32767; 1237 sysctl_rmem_default = 32767; 1238 } else if (totalram_pages >= 131072) { 1239 sysctl_wmem_max = 131071; 1240 sysctl_rmem_max = 131071; 1241 } 1242 } 1243 1244 /* 1245 * Simple resource managers for sockets. 1246 */ 1247 1248 1249 /* 1250 * Write buffer destructor automatically called from kfree_skb. 1251 */ 1252 void sock_wfree(struct sk_buff *skb) 1253 { 1254 struct sock *sk = skb->sk; 1255 unsigned int len = skb->truesize; 1256 1257 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1258 /* 1259 * Keep a reference on sk_wmem_alloc, this will be released 1260 * after sk_write_space() call 1261 */ 1262 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1263 sk->sk_write_space(sk); 1264 len = 1; 1265 } 1266 /* 1267 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1268 * could not do because of in-flight packets 1269 */ 1270 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1271 __sk_free(sk); 1272 } 1273 EXPORT_SYMBOL(sock_wfree); 1274 1275 /* 1276 * Read buffer destructor automatically called from kfree_skb. 1277 */ 1278 void sock_rfree(struct sk_buff *skb) 1279 { 1280 struct sock *sk = skb->sk; 1281 1282 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1283 sk_mem_uncharge(skb->sk, skb->truesize); 1284 } 1285 EXPORT_SYMBOL(sock_rfree); 1286 1287 1288 int sock_i_uid(struct sock *sk) 1289 { 1290 int uid; 1291 1292 read_lock(&sk->sk_callback_lock); 1293 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 1294 read_unlock(&sk->sk_callback_lock); 1295 return uid; 1296 } 1297 EXPORT_SYMBOL(sock_i_uid); 1298 1299 unsigned long sock_i_ino(struct sock *sk) 1300 { 1301 unsigned long ino; 1302 1303 read_lock(&sk->sk_callback_lock); 1304 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1305 read_unlock(&sk->sk_callback_lock); 1306 return ino; 1307 } 1308 EXPORT_SYMBOL(sock_i_ino); 1309 1310 /* 1311 * Allocate a skb from the socket's send buffer. 1312 */ 1313 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1314 gfp_t priority) 1315 { 1316 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1317 struct sk_buff *skb = alloc_skb(size, priority); 1318 if (skb) { 1319 skb_set_owner_w(skb, sk); 1320 return skb; 1321 } 1322 } 1323 return NULL; 1324 } 1325 EXPORT_SYMBOL(sock_wmalloc); 1326 1327 /* 1328 * Allocate a skb from the socket's receive buffer. 1329 */ 1330 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1331 gfp_t priority) 1332 { 1333 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1334 struct sk_buff *skb = alloc_skb(size, priority); 1335 if (skb) { 1336 skb_set_owner_r(skb, sk); 1337 return skb; 1338 } 1339 } 1340 return NULL; 1341 } 1342 1343 /* 1344 * Allocate a memory block from the socket's option memory buffer. 1345 */ 1346 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1347 { 1348 if ((unsigned)size <= sysctl_optmem_max && 1349 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1350 void *mem; 1351 /* First do the add, to avoid the race if kmalloc 1352 * might sleep. 1353 */ 1354 atomic_add(size, &sk->sk_omem_alloc); 1355 mem = kmalloc(size, priority); 1356 if (mem) 1357 return mem; 1358 atomic_sub(size, &sk->sk_omem_alloc); 1359 } 1360 return NULL; 1361 } 1362 EXPORT_SYMBOL(sock_kmalloc); 1363 1364 /* 1365 * Free an option memory block. 1366 */ 1367 void sock_kfree_s(struct sock *sk, void *mem, int size) 1368 { 1369 kfree(mem); 1370 atomic_sub(size, &sk->sk_omem_alloc); 1371 } 1372 EXPORT_SYMBOL(sock_kfree_s); 1373 1374 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1375 I think, these locks should be removed for datagram sockets. 1376 */ 1377 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1378 { 1379 DEFINE_WAIT(wait); 1380 1381 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1382 for (;;) { 1383 if (!timeo) 1384 break; 1385 if (signal_pending(current)) 1386 break; 1387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1388 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1389 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1390 break; 1391 if (sk->sk_shutdown & SEND_SHUTDOWN) 1392 break; 1393 if (sk->sk_err) 1394 break; 1395 timeo = schedule_timeout(timeo); 1396 } 1397 finish_wait(sk->sk_sleep, &wait); 1398 return timeo; 1399 } 1400 1401 1402 /* 1403 * Generic send/receive buffer handlers 1404 */ 1405 1406 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1407 unsigned long data_len, int noblock, 1408 int *errcode) 1409 { 1410 struct sk_buff *skb; 1411 gfp_t gfp_mask; 1412 long timeo; 1413 int err; 1414 1415 gfp_mask = sk->sk_allocation; 1416 if (gfp_mask & __GFP_WAIT) 1417 gfp_mask |= __GFP_REPEAT; 1418 1419 timeo = sock_sndtimeo(sk, noblock); 1420 while (1) { 1421 err = sock_error(sk); 1422 if (err != 0) 1423 goto failure; 1424 1425 err = -EPIPE; 1426 if (sk->sk_shutdown & SEND_SHUTDOWN) 1427 goto failure; 1428 1429 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1430 skb = alloc_skb(header_len, gfp_mask); 1431 if (skb) { 1432 int npages; 1433 int i; 1434 1435 /* No pages, we're done... */ 1436 if (!data_len) 1437 break; 1438 1439 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1440 skb->truesize += data_len; 1441 skb_shinfo(skb)->nr_frags = npages; 1442 for (i = 0; i < npages; i++) { 1443 struct page *page; 1444 skb_frag_t *frag; 1445 1446 page = alloc_pages(sk->sk_allocation, 0); 1447 if (!page) { 1448 err = -ENOBUFS; 1449 skb_shinfo(skb)->nr_frags = i; 1450 kfree_skb(skb); 1451 goto failure; 1452 } 1453 1454 frag = &skb_shinfo(skb)->frags[i]; 1455 frag->page = page; 1456 frag->page_offset = 0; 1457 frag->size = (data_len >= PAGE_SIZE ? 1458 PAGE_SIZE : 1459 data_len); 1460 data_len -= PAGE_SIZE; 1461 } 1462 1463 /* Full success... */ 1464 break; 1465 } 1466 err = -ENOBUFS; 1467 goto failure; 1468 } 1469 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1470 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1471 err = -EAGAIN; 1472 if (!timeo) 1473 goto failure; 1474 if (signal_pending(current)) 1475 goto interrupted; 1476 timeo = sock_wait_for_wmem(sk, timeo); 1477 } 1478 1479 skb_set_owner_w(skb, sk); 1480 return skb; 1481 1482 interrupted: 1483 err = sock_intr_errno(timeo); 1484 failure: 1485 *errcode = err; 1486 return NULL; 1487 } 1488 EXPORT_SYMBOL(sock_alloc_send_pskb); 1489 1490 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1491 int noblock, int *errcode) 1492 { 1493 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1494 } 1495 EXPORT_SYMBOL(sock_alloc_send_skb); 1496 1497 static void __lock_sock(struct sock *sk) 1498 { 1499 DEFINE_WAIT(wait); 1500 1501 for (;;) { 1502 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1503 TASK_UNINTERRUPTIBLE); 1504 spin_unlock_bh(&sk->sk_lock.slock); 1505 schedule(); 1506 spin_lock_bh(&sk->sk_lock.slock); 1507 if (!sock_owned_by_user(sk)) 1508 break; 1509 } 1510 finish_wait(&sk->sk_lock.wq, &wait); 1511 } 1512 1513 static void __release_sock(struct sock *sk) 1514 { 1515 struct sk_buff *skb = sk->sk_backlog.head; 1516 1517 do { 1518 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1519 bh_unlock_sock(sk); 1520 1521 do { 1522 struct sk_buff *next = skb->next; 1523 1524 skb->next = NULL; 1525 sk_backlog_rcv(sk, skb); 1526 1527 /* 1528 * We are in process context here with softirqs 1529 * disabled, use cond_resched_softirq() to preempt. 1530 * This is safe to do because we've taken the backlog 1531 * queue private: 1532 */ 1533 cond_resched_softirq(); 1534 1535 skb = next; 1536 } while (skb != NULL); 1537 1538 bh_lock_sock(sk); 1539 } while ((skb = sk->sk_backlog.head) != NULL); 1540 } 1541 1542 /** 1543 * sk_wait_data - wait for data to arrive at sk_receive_queue 1544 * @sk: sock to wait on 1545 * @timeo: for how long 1546 * 1547 * Now socket state including sk->sk_err is changed only under lock, 1548 * hence we may omit checks after joining wait queue. 1549 * We check receive queue before schedule() only as optimization; 1550 * it is very likely that release_sock() added new data. 1551 */ 1552 int sk_wait_data(struct sock *sk, long *timeo) 1553 { 1554 int rc; 1555 DEFINE_WAIT(wait); 1556 1557 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1558 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1559 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1560 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1561 finish_wait(sk->sk_sleep, &wait); 1562 return rc; 1563 } 1564 EXPORT_SYMBOL(sk_wait_data); 1565 1566 /** 1567 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1568 * @sk: socket 1569 * @size: memory size to allocate 1570 * @kind: allocation type 1571 * 1572 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1573 * rmem allocation. This function assumes that protocols which have 1574 * memory_pressure use sk_wmem_queued as write buffer accounting. 1575 */ 1576 int __sk_mem_schedule(struct sock *sk, int size, int kind) 1577 { 1578 struct proto *prot = sk->sk_prot; 1579 int amt = sk_mem_pages(size); 1580 int allocated; 1581 1582 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 1583 allocated = atomic_add_return(amt, prot->memory_allocated); 1584 1585 /* Under limit. */ 1586 if (allocated <= prot->sysctl_mem[0]) { 1587 if (prot->memory_pressure && *prot->memory_pressure) 1588 *prot->memory_pressure = 0; 1589 return 1; 1590 } 1591 1592 /* Under pressure. */ 1593 if (allocated > prot->sysctl_mem[1]) 1594 if (prot->enter_memory_pressure) 1595 prot->enter_memory_pressure(sk); 1596 1597 /* Over hard limit. */ 1598 if (allocated > prot->sysctl_mem[2]) 1599 goto suppress_allocation; 1600 1601 /* guarantee minimum buffer size under pressure */ 1602 if (kind == SK_MEM_RECV) { 1603 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 1604 return 1; 1605 } else { /* SK_MEM_SEND */ 1606 if (sk->sk_type == SOCK_STREAM) { 1607 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 1608 return 1; 1609 } else if (atomic_read(&sk->sk_wmem_alloc) < 1610 prot->sysctl_wmem[0]) 1611 return 1; 1612 } 1613 1614 if (prot->memory_pressure) { 1615 int alloc; 1616 1617 if (!*prot->memory_pressure) 1618 return 1; 1619 alloc = percpu_counter_read_positive(prot->sockets_allocated); 1620 if (prot->sysctl_mem[2] > alloc * 1621 sk_mem_pages(sk->sk_wmem_queued + 1622 atomic_read(&sk->sk_rmem_alloc) + 1623 sk->sk_forward_alloc)) 1624 return 1; 1625 } 1626 1627 suppress_allocation: 1628 1629 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 1630 sk_stream_moderate_sndbuf(sk); 1631 1632 /* Fail only if socket is _under_ its sndbuf. 1633 * In this case we cannot block, so that we have to fail. 1634 */ 1635 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 1636 return 1; 1637 } 1638 1639 /* Alas. Undo changes. */ 1640 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 1641 atomic_sub(amt, prot->memory_allocated); 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(__sk_mem_schedule); 1645 1646 /** 1647 * __sk_reclaim - reclaim memory_allocated 1648 * @sk: socket 1649 */ 1650 void __sk_mem_reclaim(struct sock *sk) 1651 { 1652 struct proto *prot = sk->sk_prot; 1653 1654 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 1655 prot->memory_allocated); 1656 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 1657 1658 if (prot->memory_pressure && *prot->memory_pressure && 1659 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) 1660 *prot->memory_pressure = 0; 1661 } 1662 EXPORT_SYMBOL(__sk_mem_reclaim); 1663 1664 1665 /* 1666 * Set of default routines for initialising struct proto_ops when 1667 * the protocol does not support a particular function. In certain 1668 * cases where it makes no sense for a protocol to have a "do nothing" 1669 * function, some default processing is provided. 1670 */ 1671 1672 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1673 { 1674 return -EOPNOTSUPP; 1675 } 1676 EXPORT_SYMBOL(sock_no_bind); 1677 1678 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1679 int len, int flags) 1680 { 1681 return -EOPNOTSUPP; 1682 } 1683 EXPORT_SYMBOL(sock_no_connect); 1684 1685 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1686 { 1687 return -EOPNOTSUPP; 1688 } 1689 EXPORT_SYMBOL(sock_no_socketpair); 1690 1691 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1692 { 1693 return -EOPNOTSUPP; 1694 } 1695 EXPORT_SYMBOL(sock_no_accept); 1696 1697 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1698 int *len, int peer) 1699 { 1700 return -EOPNOTSUPP; 1701 } 1702 EXPORT_SYMBOL(sock_no_getname); 1703 1704 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 1705 { 1706 return 0; 1707 } 1708 EXPORT_SYMBOL(sock_no_poll); 1709 1710 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1711 { 1712 return -EOPNOTSUPP; 1713 } 1714 EXPORT_SYMBOL(sock_no_ioctl); 1715 1716 int sock_no_listen(struct socket *sock, int backlog) 1717 { 1718 return -EOPNOTSUPP; 1719 } 1720 EXPORT_SYMBOL(sock_no_listen); 1721 1722 int sock_no_shutdown(struct socket *sock, int how) 1723 { 1724 return -EOPNOTSUPP; 1725 } 1726 EXPORT_SYMBOL(sock_no_shutdown); 1727 1728 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1729 char __user *optval, unsigned int optlen) 1730 { 1731 return -EOPNOTSUPP; 1732 } 1733 EXPORT_SYMBOL(sock_no_setsockopt); 1734 1735 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1736 char __user *optval, int __user *optlen) 1737 { 1738 return -EOPNOTSUPP; 1739 } 1740 EXPORT_SYMBOL(sock_no_getsockopt); 1741 1742 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1743 size_t len) 1744 { 1745 return -EOPNOTSUPP; 1746 } 1747 EXPORT_SYMBOL(sock_no_sendmsg); 1748 1749 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1750 size_t len, int flags) 1751 { 1752 return -EOPNOTSUPP; 1753 } 1754 EXPORT_SYMBOL(sock_no_recvmsg); 1755 1756 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1757 { 1758 /* Mirror missing mmap method error code */ 1759 return -ENODEV; 1760 } 1761 EXPORT_SYMBOL(sock_no_mmap); 1762 1763 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1764 { 1765 ssize_t res; 1766 struct msghdr msg = {.msg_flags = flags}; 1767 struct kvec iov; 1768 char *kaddr = kmap(page); 1769 iov.iov_base = kaddr + offset; 1770 iov.iov_len = size; 1771 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1772 kunmap(page); 1773 return res; 1774 } 1775 EXPORT_SYMBOL(sock_no_sendpage); 1776 1777 /* 1778 * Default Socket Callbacks 1779 */ 1780 1781 static void sock_def_wakeup(struct sock *sk) 1782 { 1783 read_lock(&sk->sk_callback_lock); 1784 if (sk_has_sleeper(sk)) 1785 wake_up_interruptible_all(sk->sk_sleep); 1786 read_unlock(&sk->sk_callback_lock); 1787 } 1788 1789 static void sock_def_error_report(struct sock *sk) 1790 { 1791 read_lock(&sk->sk_callback_lock); 1792 if (sk_has_sleeper(sk)) 1793 wake_up_interruptible_poll(sk->sk_sleep, POLLERR); 1794 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 1795 read_unlock(&sk->sk_callback_lock); 1796 } 1797 1798 static void sock_def_readable(struct sock *sk, int len) 1799 { 1800 read_lock(&sk->sk_callback_lock); 1801 if (sk_has_sleeper(sk)) 1802 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN | 1803 POLLRDNORM | POLLRDBAND); 1804 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 1805 read_unlock(&sk->sk_callback_lock); 1806 } 1807 1808 static void sock_def_write_space(struct sock *sk) 1809 { 1810 read_lock(&sk->sk_callback_lock); 1811 1812 /* Do not wake up a writer until he can make "significant" 1813 * progress. --DaveM 1814 */ 1815 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1816 if (sk_has_sleeper(sk)) 1817 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT | 1818 POLLWRNORM | POLLWRBAND); 1819 1820 /* Should agree with poll, otherwise some programs break */ 1821 if (sock_writeable(sk)) 1822 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 1823 } 1824 1825 read_unlock(&sk->sk_callback_lock); 1826 } 1827 1828 static void sock_def_destruct(struct sock *sk) 1829 { 1830 kfree(sk->sk_protinfo); 1831 } 1832 1833 void sk_send_sigurg(struct sock *sk) 1834 { 1835 if (sk->sk_socket && sk->sk_socket->file) 1836 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1837 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 1838 } 1839 EXPORT_SYMBOL(sk_send_sigurg); 1840 1841 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1842 unsigned long expires) 1843 { 1844 if (!mod_timer(timer, expires)) 1845 sock_hold(sk); 1846 } 1847 EXPORT_SYMBOL(sk_reset_timer); 1848 1849 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1850 { 1851 if (timer_pending(timer) && del_timer(timer)) 1852 __sock_put(sk); 1853 } 1854 EXPORT_SYMBOL(sk_stop_timer); 1855 1856 void sock_init_data(struct socket *sock, struct sock *sk) 1857 { 1858 skb_queue_head_init(&sk->sk_receive_queue); 1859 skb_queue_head_init(&sk->sk_write_queue); 1860 skb_queue_head_init(&sk->sk_error_queue); 1861 #ifdef CONFIG_NET_DMA 1862 skb_queue_head_init(&sk->sk_async_wait_queue); 1863 #endif 1864 1865 sk->sk_send_head = NULL; 1866 1867 init_timer(&sk->sk_timer); 1868 1869 sk->sk_allocation = GFP_KERNEL; 1870 sk->sk_rcvbuf = sysctl_rmem_default; 1871 sk->sk_sndbuf = sysctl_wmem_default; 1872 sk->sk_state = TCP_CLOSE; 1873 sk_set_socket(sk, sock); 1874 1875 sock_set_flag(sk, SOCK_ZAPPED); 1876 1877 if (sock) { 1878 sk->sk_type = sock->type; 1879 sk->sk_sleep = &sock->wait; 1880 sock->sk = sk; 1881 } else 1882 sk->sk_sleep = NULL; 1883 1884 rwlock_init(&sk->sk_dst_lock); 1885 rwlock_init(&sk->sk_callback_lock); 1886 lockdep_set_class_and_name(&sk->sk_callback_lock, 1887 af_callback_keys + sk->sk_family, 1888 af_family_clock_key_strings[sk->sk_family]); 1889 1890 sk->sk_state_change = sock_def_wakeup; 1891 sk->sk_data_ready = sock_def_readable; 1892 sk->sk_write_space = sock_def_write_space; 1893 sk->sk_error_report = sock_def_error_report; 1894 sk->sk_destruct = sock_def_destruct; 1895 1896 sk->sk_sndmsg_page = NULL; 1897 sk->sk_sndmsg_off = 0; 1898 1899 sk->sk_peercred.pid = 0; 1900 sk->sk_peercred.uid = -1; 1901 sk->sk_peercred.gid = -1; 1902 sk->sk_write_pending = 0; 1903 sk->sk_rcvlowat = 1; 1904 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1905 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1906 1907 sk->sk_stamp = ktime_set(-1L, 0); 1908 1909 /* 1910 * Before updating sk_refcnt, we must commit prior changes to memory 1911 * (Documentation/RCU/rculist_nulls.txt for details) 1912 */ 1913 smp_wmb(); 1914 atomic_set(&sk->sk_refcnt, 1); 1915 atomic_set(&sk->sk_drops, 0); 1916 } 1917 EXPORT_SYMBOL(sock_init_data); 1918 1919 void lock_sock_nested(struct sock *sk, int subclass) 1920 { 1921 might_sleep(); 1922 spin_lock_bh(&sk->sk_lock.slock); 1923 if (sk->sk_lock.owned) 1924 __lock_sock(sk); 1925 sk->sk_lock.owned = 1; 1926 spin_unlock(&sk->sk_lock.slock); 1927 /* 1928 * The sk_lock has mutex_lock() semantics here: 1929 */ 1930 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 1931 local_bh_enable(); 1932 } 1933 EXPORT_SYMBOL(lock_sock_nested); 1934 1935 void release_sock(struct sock *sk) 1936 { 1937 /* 1938 * The sk_lock has mutex_unlock() semantics: 1939 */ 1940 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1941 1942 spin_lock_bh(&sk->sk_lock.slock); 1943 if (sk->sk_backlog.tail) 1944 __release_sock(sk); 1945 sk->sk_lock.owned = 0; 1946 if (waitqueue_active(&sk->sk_lock.wq)) 1947 wake_up(&sk->sk_lock.wq); 1948 spin_unlock_bh(&sk->sk_lock.slock); 1949 } 1950 EXPORT_SYMBOL(release_sock); 1951 1952 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1953 { 1954 struct timeval tv; 1955 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1956 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1957 tv = ktime_to_timeval(sk->sk_stamp); 1958 if (tv.tv_sec == -1) 1959 return -ENOENT; 1960 if (tv.tv_sec == 0) { 1961 sk->sk_stamp = ktime_get_real(); 1962 tv = ktime_to_timeval(sk->sk_stamp); 1963 } 1964 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 1965 } 1966 EXPORT_SYMBOL(sock_get_timestamp); 1967 1968 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 1969 { 1970 struct timespec ts; 1971 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1972 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1973 ts = ktime_to_timespec(sk->sk_stamp); 1974 if (ts.tv_sec == -1) 1975 return -ENOENT; 1976 if (ts.tv_sec == 0) { 1977 sk->sk_stamp = ktime_get_real(); 1978 ts = ktime_to_timespec(sk->sk_stamp); 1979 } 1980 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 1981 } 1982 EXPORT_SYMBOL(sock_get_timestampns); 1983 1984 void sock_enable_timestamp(struct sock *sk, int flag) 1985 { 1986 if (!sock_flag(sk, flag)) { 1987 sock_set_flag(sk, flag); 1988 /* 1989 * we just set one of the two flags which require net 1990 * time stamping, but time stamping might have been on 1991 * already because of the other one 1992 */ 1993 if (!sock_flag(sk, 1994 flag == SOCK_TIMESTAMP ? 1995 SOCK_TIMESTAMPING_RX_SOFTWARE : 1996 SOCK_TIMESTAMP)) 1997 net_enable_timestamp(); 1998 } 1999 } 2000 2001 /* 2002 * Get a socket option on an socket. 2003 * 2004 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2005 * asynchronous errors should be reported by getsockopt. We assume 2006 * this means if you specify SO_ERROR (otherwise whats the point of it). 2007 */ 2008 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2009 char __user *optval, int __user *optlen) 2010 { 2011 struct sock *sk = sock->sk; 2012 2013 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2014 } 2015 EXPORT_SYMBOL(sock_common_getsockopt); 2016 2017 #ifdef CONFIG_COMPAT 2018 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2019 char __user *optval, int __user *optlen) 2020 { 2021 struct sock *sk = sock->sk; 2022 2023 if (sk->sk_prot->compat_getsockopt != NULL) 2024 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2025 optval, optlen); 2026 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2027 } 2028 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2029 #endif 2030 2031 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 2032 struct msghdr *msg, size_t size, int flags) 2033 { 2034 struct sock *sk = sock->sk; 2035 int addr_len = 0; 2036 int err; 2037 2038 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 2039 flags & ~MSG_DONTWAIT, &addr_len); 2040 if (err >= 0) 2041 msg->msg_namelen = addr_len; 2042 return err; 2043 } 2044 EXPORT_SYMBOL(sock_common_recvmsg); 2045 2046 /* 2047 * Set socket options on an inet socket. 2048 */ 2049 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2050 char __user *optval, unsigned int optlen) 2051 { 2052 struct sock *sk = sock->sk; 2053 2054 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2055 } 2056 EXPORT_SYMBOL(sock_common_setsockopt); 2057 2058 #ifdef CONFIG_COMPAT 2059 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2060 char __user *optval, unsigned int optlen) 2061 { 2062 struct sock *sk = sock->sk; 2063 2064 if (sk->sk_prot->compat_setsockopt != NULL) 2065 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2066 optval, optlen); 2067 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2068 } 2069 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2070 #endif 2071 2072 void sk_common_release(struct sock *sk) 2073 { 2074 if (sk->sk_prot->destroy) 2075 sk->sk_prot->destroy(sk); 2076 2077 /* 2078 * Observation: when sock_common_release is called, processes have 2079 * no access to socket. But net still has. 2080 * Step one, detach it from networking: 2081 * 2082 * A. Remove from hash tables. 2083 */ 2084 2085 sk->sk_prot->unhash(sk); 2086 2087 /* 2088 * In this point socket cannot receive new packets, but it is possible 2089 * that some packets are in flight because some CPU runs receiver and 2090 * did hash table lookup before we unhashed socket. They will achieve 2091 * receive queue and will be purged by socket destructor. 2092 * 2093 * Also we still have packets pending on receive queue and probably, 2094 * our own packets waiting in device queues. sock_destroy will drain 2095 * receive queue, but transmitted packets will delay socket destruction 2096 * until the last reference will be released. 2097 */ 2098 2099 sock_orphan(sk); 2100 2101 xfrm_sk_free_policy(sk); 2102 2103 sk_refcnt_debug_release(sk); 2104 sock_put(sk); 2105 } 2106 EXPORT_SYMBOL(sk_common_release); 2107 2108 static DEFINE_RWLOCK(proto_list_lock); 2109 static LIST_HEAD(proto_list); 2110 2111 #ifdef CONFIG_PROC_FS 2112 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2113 struct prot_inuse { 2114 int val[PROTO_INUSE_NR]; 2115 }; 2116 2117 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2118 2119 #ifdef CONFIG_NET_NS 2120 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2121 { 2122 int cpu = smp_processor_id(); 2123 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; 2124 } 2125 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2126 2127 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2128 { 2129 int cpu, idx = prot->inuse_idx; 2130 int res = 0; 2131 2132 for_each_possible_cpu(cpu) 2133 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2134 2135 return res >= 0 ? res : 0; 2136 } 2137 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2138 2139 static int sock_inuse_init_net(struct net *net) 2140 { 2141 net->core.inuse = alloc_percpu(struct prot_inuse); 2142 return net->core.inuse ? 0 : -ENOMEM; 2143 } 2144 2145 static void sock_inuse_exit_net(struct net *net) 2146 { 2147 free_percpu(net->core.inuse); 2148 } 2149 2150 static struct pernet_operations net_inuse_ops = { 2151 .init = sock_inuse_init_net, 2152 .exit = sock_inuse_exit_net, 2153 }; 2154 2155 static __init int net_inuse_init(void) 2156 { 2157 if (register_pernet_subsys(&net_inuse_ops)) 2158 panic("Cannot initialize net inuse counters"); 2159 2160 return 0; 2161 } 2162 2163 core_initcall(net_inuse_init); 2164 #else 2165 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2166 2167 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2168 { 2169 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; 2170 } 2171 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2172 2173 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2174 { 2175 int cpu, idx = prot->inuse_idx; 2176 int res = 0; 2177 2178 for_each_possible_cpu(cpu) 2179 res += per_cpu(prot_inuse, cpu).val[idx]; 2180 2181 return res >= 0 ? res : 0; 2182 } 2183 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2184 #endif 2185 2186 static void assign_proto_idx(struct proto *prot) 2187 { 2188 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2189 2190 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2191 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); 2192 return; 2193 } 2194 2195 set_bit(prot->inuse_idx, proto_inuse_idx); 2196 } 2197 2198 static void release_proto_idx(struct proto *prot) 2199 { 2200 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2201 clear_bit(prot->inuse_idx, proto_inuse_idx); 2202 } 2203 #else 2204 static inline void assign_proto_idx(struct proto *prot) 2205 { 2206 } 2207 2208 static inline void release_proto_idx(struct proto *prot) 2209 { 2210 } 2211 #endif 2212 2213 int proto_register(struct proto *prot, int alloc_slab) 2214 { 2215 if (alloc_slab) { 2216 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2217 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2218 NULL); 2219 2220 if (prot->slab == NULL) { 2221 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 2222 prot->name); 2223 goto out; 2224 } 2225 2226 if (prot->rsk_prot != NULL) { 2227 static const char mask[] = "request_sock_%s"; 2228 2229 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2230 if (prot->rsk_prot->slab_name == NULL) 2231 goto out_free_sock_slab; 2232 2233 sprintf(prot->rsk_prot->slab_name, mask, prot->name); 2234 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name, 2235 prot->rsk_prot->obj_size, 0, 2236 SLAB_HWCACHE_ALIGN, NULL); 2237 2238 if (prot->rsk_prot->slab == NULL) { 2239 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 2240 prot->name); 2241 goto out_free_request_sock_slab_name; 2242 } 2243 } 2244 2245 if (prot->twsk_prot != NULL) { 2246 static const char mask[] = "tw_sock_%s"; 2247 2248 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2249 2250 if (prot->twsk_prot->twsk_slab_name == NULL) 2251 goto out_free_request_sock_slab; 2252 2253 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name); 2254 prot->twsk_prot->twsk_slab = 2255 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2256 prot->twsk_prot->twsk_obj_size, 2257 0, 2258 SLAB_HWCACHE_ALIGN | 2259 prot->slab_flags, 2260 NULL); 2261 if (prot->twsk_prot->twsk_slab == NULL) 2262 goto out_free_timewait_sock_slab_name; 2263 } 2264 } 2265 2266 write_lock(&proto_list_lock); 2267 list_add(&prot->node, &proto_list); 2268 assign_proto_idx(prot); 2269 write_unlock(&proto_list_lock); 2270 return 0; 2271 2272 out_free_timewait_sock_slab_name: 2273 kfree(prot->twsk_prot->twsk_slab_name); 2274 out_free_request_sock_slab: 2275 if (prot->rsk_prot && prot->rsk_prot->slab) { 2276 kmem_cache_destroy(prot->rsk_prot->slab); 2277 prot->rsk_prot->slab = NULL; 2278 } 2279 out_free_request_sock_slab_name: 2280 kfree(prot->rsk_prot->slab_name); 2281 out_free_sock_slab: 2282 kmem_cache_destroy(prot->slab); 2283 prot->slab = NULL; 2284 out: 2285 return -ENOBUFS; 2286 } 2287 EXPORT_SYMBOL(proto_register); 2288 2289 void proto_unregister(struct proto *prot) 2290 { 2291 write_lock(&proto_list_lock); 2292 release_proto_idx(prot); 2293 list_del(&prot->node); 2294 write_unlock(&proto_list_lock); 2295 2296 if (prot->slab != NULL) { 2297 kmem_cache_destroy(prot->slab); 2298 prot->slab = NULL; 2299 } 2300 2301 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 2302 kmem_cache_destroy(prot->rsk_prot->slab); 2303 kfree(prot->rsk_prot->slab_name); 2304 prot->rsk_prot->slab = NULL; 2305 } 2306 2307 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2308 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2309 kfree(prot->twsk_prot->twsk_slab_name); 2310 prot->twsk_prot->twsk_slab = NULL; 2311 } 2312 } 2313 EXPORT_SYMBOL(proto_unregister); 2314 2315 #ifdef CONFIG_PROC_FS 2316 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2317 __acquires(proto_list_lock) 2318 { 2319 read_lock(&proto_list_lock); 2320 return seq_list_start_head(&proto_list, *pos); 2321 } 2322 2323 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2324 { 2325 return seq_list_next(v, &proto_list, pos); 2326 } 2327 2328 static void proto_seq_stop(struct seq_file *seq, void *v) 2329 __releases(proto_list_lock) 2330 { 2331 read_unlock(&proto_list_lock); 2332 } 2333 2334 static char proto_method_implemented(const void *method) 2335 { 2336 return method == NULL ? 'n' : 'y'; 2337 } 2338 2339 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2340 { 2341 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 2342 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2343 proto->name, 2344 proto->obj_size, 2345 sock_prot_inuse_get(seq_file_net(seq), proto), 2346 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 2347 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 2348 proto->max_header, 2349 proto->slab == NULL ? "no" : "yes", 2350 module_name(proto->owner), 2351 proto_method_implemented(proto->close), 2352 proto_method_implemented(proto->connect), 2353 proto_method_implemented(proto->disconnect), 2354 proto_method_implemented(proto->accept), 2355 proto_method_implemented(proto->ioctl), 2356 proto_method_implemented(proto->init), 2357 proto_method_implemented(proto->destroy), 2358 proto_method_implemented(proto->shutdown), 2359 proto_method_implemented(proto->setsockopt), 2360 proto_method_implemented(proto->getsockopt), 2361 proto_method_implemented(proto->sendmsg), 2362 proto_method_implemented(proto->recvmsg), 2363 proto_method_implemented(proto->sendpage), 2364 proto_method_implemented(proto->bind), 2365 proto_method_implemented(proto->backlog_rcv), 2366 proto_method_implemented(proto->hash), 2367 proto_method_implemented(proto->unhash), 2368 proto_method_implemented(proto->get_port), 2369 proto_method_implemented(proto->enter_memory_pressure)); 2370 } 2371 2372 static int proto_seq_show(struct seq_file *seq, void *v) 2373 { 2374 if (v == &proto_list) 2375 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2376 "protocol", 2377 "size", 2378 "sockets", 2379 "memory", 2380 "press", 2381 "maxhdr", 2382 "slab", 2383 "module", 2384 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2385 else 2386 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2387 return 0; 2388 } 2389 2390 static const struct seq_operations proto_seq_ops = { 2391 .start = proto_seq_start, 2392 .next = proto_seq_next, 2393 .stop = proto_seq_stop, 2394 .show = proto_seq_show, 2395 }; 2396 2397 static int proto_seq_open(struct inode *inode, struct file *file) 2398 { 2399 return seq_open_net(inode, file, &proto_seq_ops, 2400 sizeof(struct seq_net_private)); 2401 } 2402 2403 static const struct file_operations proto_seq_fops = { 2404 .owner = THIS_MODULE, 2405 .open = proto_seq_open, 2406 .read = seq_read, 2407 .llseek = seq_lseek, 2408 .release = seq_release_net, 2409 }; 2410 2411 static __net_init int proto_init_net(struct net *net) 2412 { 2413 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops)) 2414 return -ENOMEM; 2415 2416 return 0; 2417 } 2418 2419 static __net_exit void proto_exit_net(struct net *net) 2420 { 2421 proc_net_remove(net, "protocols"); 2422 } 2423 2424 2425 static __net_initdata struct pernet_operations proto_net_ops = { 2426 .init = proto_init_net, 2427 .exit = proto_exit_net, 2428 }; 2429 2430 static int __init proto_init(void) 2431 { 2432 return register_pernet_subsys(&proto_net_ops); 2433 } 2434 2435 subsys_initcall(proto_init); 2436 2437 #endif /* PROC_FS */ 2438