xref: /openbmc/linux/net/core/sock.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 		     const int nested, unsigned int trim_cap)
457 {
458 	int rc = NET_RX_SUCCESS;
459 
460 	if (sk_filter_trim_cap(sk, skb, trim_cap))
461 		goto discard_and_relse;
462 
463 	skb->dev = NULL;
464 
465 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 		atomic_inc(&sk->sk_drops);
467 		goto discard_and_relse;
468 	}
469 	if (nested)
470 		bh_lock_sock_nested(sk);
471 	else
472 		bh_lock_sock(sk);
473 	if (!sock_owned_by_user(sk)) {
474 		/*
475 		 * trylock + unlock semantics:
476 		 */
477 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479 		rc = sk_backlog_rcv(sk, skb);
480 
481 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 		bh_unlock_sock(sk);
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 
488 	bh_unlock_sock(sk);
489 out:
490 	sock_put(sk);
491 	return rc;
492 discard_and_relse:
493 	kfree_skb(skb);
494 	goto out;
495 }
496 EXPORT_SYMBOL(__sk_receive_skb);
497 
498 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
499 {
500 	struct dst_entry *dst = __sk_dst_get(sk);
501 
502 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
503 		sk_tx_queue_clear(sk);
504 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
505 		dst_release(dst);
506 		return NULL;
507 	}
508 
509 	return dst;
510 }
511 EXPORT_SYMBOL(__sk_dst_check);
512 
513 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
514 {
515 	struct dst_entry *dst = sk_dst_get(sk);
516 
517 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
518 		sk_dst_reset(sk);
519 		dst_release(dst);
520 		return NULL;
521 	}
522 
523 	return dst;
524 }
525 EXPORT_SYMBOL(sk_dst_check);
526 
527 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
528 				int optlen)
529 {
530 	int ret = -ENOPROTOOPT;
531 #ifdef CONFIG_NETDEVICES
532 	struct net *net = sock_net(sk);
533 	char devname[IFNAMSIZ];
534 	int index;
535 
536 	/* Sorry... */
537 	ret = -EPERM;
538 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
539 		goto out;
540 
541 	ret = -EINVAL;
542 	if (optlen < 0)
543 		goto out;
544 
545 	/* Bind this socket to a particular device like "eth0",
546 	 * as specified in the passed interface name. If the
547 	 * name is "" or the option length is zero the socket
548 	 * is not bound.
549 	 */
550 	if (optlen > IFNAMSIZ - 1)
551 		optlen = IFNAMSIZ - 1;
552 	memset(devname, 0, sizeof(devname));
553 
554 	ret = -EFAULT;
555 	if (copy_from_user(devname, optval, optlen))
556 		goto out;
557 
558 	index = 0;
559 	if (devname[0] != '\0') {
560 		struct net_device *dev;
561 
562 		rcu_read_lock();
563 		dev = dev_get_by_name_rcu(net, devname);
564 		if (dev)
565 			index = dev->ifindex;
566 		rcu_read_unlock();
567 		ret = -ENODEV;
568 		if (!dev)
569 			goto out;
570 	}
571 
572 	lock_sock(sk);
573 	sk->sk_bound_dev_if = index;
574 	sk_dst_reset(sk);
575 	release_sock(sk);
576 
577 	ret = 0;
578 
579 out:
580 #endif
581 
582 	return ret;
583 }
584 
585 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
586 				int __user *optlen, int len)
587 {
588 	int ret = -ENOPROTOOPT;
589 #ifdef CONFIG_NETDEVICES
590 	struct net *net = sock_net(sk);
591 	char devname[IFNAMSIZ];
592 
593 	if (sk->sk_bound_dev_if == 0) {
594 		len = 0;
595 		goto zero;
596 	}
597 
598 	ret = -EINVAL;
599 	if (len < IFNAMSIZ)
600 		goto out;
601 
602 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
603 	if (ret)
604 		goto out;
605 
606 	len = strlen(devname) + 1;
607 
608 	ret = -EFAULT;
609 	if (copy_to_user(optval, devname, len))
610 		goto out;
611 
612 zero:
613 	ret = -EFAULT;
614 	if (put_user(len, optlen))
615 		goto out;
616 
617 	ret = 0;
618 
619 out:
620 #endif
621 
622 	return ret;
623 }
624 
625 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
626 {
627 	if (valbool)
628 		sock_set_flag(sk, bit);
629 	else
630 		sock_reset_flag(sk, bit);
631 }
632 
633 bool sk_mc_loop(struct sock *sk)
634 {
635 	if (dev_recursion_level())
636 		return false;
637 	if (!sk)
638 		return true;
639 	switch (sk->sk_family) {
640 	case AF_INET:
641 		return inet_sk(sk)->mc_loop;
642 #if IS_ENABLED(CONFIG_IPV6)
643 	case AF_INET6:
644 		return inet6_sk(sk)->mc_loop;
645 #endif
646 	}
647 	WARN_ON(1);
648 	return true;
649 }
650 EXPORT_SYMBOL(sk_mc_loop);
651 
652 /*
653  *	This is meant for all protocols to use and covers goings on
654  *	at the socket level. Everything here is generic.
655  */
656 
657 int sock_setsockopt(struct socket *sock, int level, int optname,
658 		    char __user *optval, unsigned int optlen)
659 {
660 	struct sock *sk = sock->sk;
661 	int val;
662 	int valbool;
663 	struct linger ling;
664 	int ret = 0;
665 
666 	/*
667 	 *	Options without arguments
668 	 */
669 
670 	if (optname == SO_BINDTODEVICE)
671 		return sock_setbindtodevice(sk, optval, optlen);
672 
673 	if (optlen < sizeof(int))
674 		return -EINVAL;
675 
676 	if (get_user(val, (int __user *)optval))
677 		return -EFAULT;
678 
679 	valbool = val ? 1 : 0;
680 
681 	lock_sock(sk);
682 
683 	switch (optname) {
684 	case SO_DEBUG:
685 		if (val && !capable(CAP_NET_ADMIN))
686 			ret = -EACCES;
687 		else
688 			sock_valbool_flag(sk, SOCK_DBG, valbool);
689 		break;
690 	case SO_REUSEADDR:
691 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
692 		break;
693 	case SO_REUSEPORT:
694 		sk->sk_reuseport = valbool;
695 		break;
696 	case SO_TYPE:
697 	case SO_PROTOCOL:
698 	case SO_DOMAIN:
699 	case SO_ERROR:
700 		ret = -ENOPROTOOPT;
701 		break;
702 	case SO_DONTROUTE:
703 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
704 		break;
705 	case SO_BROADCAST:
706 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
707 		break;
708 	case SO_SNDBUF:
709 		/* Don't error on this BSD doesn't and if you think
710 		 * about it this is right. Otherwise apps have to
711 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
712 		 * are treated in BSD as hints
713 		 */
714 		val = min_t(u32, val, sysctl_wmem_max);
715 set_sndbuf:
716 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
717 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
718 		/* Wake up sending tasks if we upped the value. */
719 		sk->sk_write_space(sk);
720 		break;
721 
722 	case SO_SNDBUFFORCE:
723 		if (!capable(CAP_NET_ADMIN)) {
724 			ret = -EPERM;
725 			break;
726 		}
727 		goto set_sndbuf;
728 
729 	case SO_RCVBUF:
730 		/* Don't error on this BSD doesn't and if you think
731 		 * about it this is right. Otherwise apps have to
732 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
733 		 * are treated in BSD as hints
734 		 */
735 		val = min_t(u32, val, sysctl_rmem_max);
736 set_rcvbuf:
737 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
738 		/*
739 		 * We double it on the way in to account for
740 		 * "struct sk_buff" etc. overhead.   Applications
741 		 * assume that the SO_RCVBUF setting they make will
742 		 * allow that much actual data to be received on that
743 		 * socket.
744 		 *
745 		 * Applications are unaware that "struct sk_buff" and
746 		 * other overheads allocate from the receive buffer
747 		 * during socket buffer allocation.
748 		 *
749 		 * And after considering the possible alternatives,
750 		 * returning the value we actually used in getsockopt
751 		 * is the most desirable behavior.
752 		 */
753 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
754 		break;
755 
756 	case SO_RCVBUFFORCE:
757 		if (!capable(CAP_NET_ADMIN)) {
758 			ret = -EPERM;
759 			break;
760 		}
761 		goto set_rcvbuf;
762 
763 	case SO_KEEPALIVE:
764 #ifdef CONFIG_INET
765 		if (sk->sk_protocol == IPPROTO_TCP &&
766 		    sk->sk_type == SOCK_STREAM)
767 			tcp_set_keepalive(sk, valbool);
768 #endif
769 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
770 		break;
771 
772 	case SO_OOBINLINE:
773 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
774 		break;
775 
776 	case SO_NO_CHECK:
777 		sk->sk_no_check_tx = valbool;
778 		break;
779 
780 	case SO_PRIORITY:
781 		if ((val >= 0 && val <= 6) ||
782 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
783 			sk->sk_priority = val;
784 		else
785 			ret = -EPERM;
786 		break;
787 
788 	case SO_LINGER:
789 		if (optlen < sizeof(ling)) {
790 			ret = -EINVAL;	/* 1003.1g */
791 			break;
792 		}
793 		if (copy_from_user(&ling, optval, sizeof(ling))) {
794 			ret = -EFAULT;
795 			break;
796 		}
797 		if (!ling.l_onoff)
798 			sock_reset_flag(sk, SOCK_LINGER);
799 		else {
800 #if (BITS_PER_LONG == 32)
801 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
802 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
803 			else
804 #endif
805 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
806 			sock_set_flag(sk, SOCK_LINGER);
807 		}
808 		break;
809 
810 	case SO_BSDCOMPAT:
811 		sock_warn_obsolete_bsdism("setsockopt");
812 		break;
813 
814 	case SO_PASSCRED:
815 		if (valbool)
816 			set_bit(SOCK_PASSCRED, &sock->flags);
817 		else
818 			clear_bit(SOCK_PASSCRED, &sock->flags);
819 		break;
820 
821 	case SO_TIMESTAMP:
822 	case SO_TIMESTAMPNS:
823 		if (valbool)  {
824 			if (optname == SO_TIMESTAMP)
825 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
826 			else
827 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
828 			sock_set_flag(sk, SOCK_RCVTSTAMP);
829 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 		} else {
831 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
832 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833 		}
834 		break;
835 
836 	case SO_TIMESTAMPING:
837 		if (val & ~SOF_TIMESTAMPING_MASK) {
838 			ret = -EINVAL;
839 			break;
840 		}
841 
842 		if (val & SOF_TIMESTAMPING_OPT_ID &&
843 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
844 			if (sk->sk_protocol == IPPROTO_TCP &&
845 			    sk->sk_type == SOCK_STREAM) {
846 				if ((1 << sk->sk_state) &
847 				    (TCPF_CLOSE | TCPF_LISTEN)) {
848 					ret = -EINVAL;
849 					break;
850 				}
851 				sk->sk_tskey = tcp_sk(sk)->snd_una;
852 			} else {
853 				sk->sk_tskey = 0;
854 			}
855 		}
856 		sk->sk_tsflags = val;
857 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858 			sock_enable_timestamp(sk,
859 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
860 		else
861 			sock_disable_timestamp(sk,
862 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863 		break;
864 
865 	case SO_RCVLOWAT:
866 		if (val < 0)
867 			val = INT_MAX;
868 		sk->sk_rcvlowat = val ? : 1;
869 		break;
870 
871 	case SO_RCVTIMEO:
872 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
873 		break;
874 
875 	case SO_SNDTIMEO:
876 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
877 		break;
878 
879 	case SO_ATTACH_FILTER:
880 		ret = -EINVAL;
881 		if (optlen == sizeof(struct sock_fprog)) {
882 			struct sock_fprog fprog;
883 
884 			ret = -EFAULT;
885 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
886 				break;
887 
888 			ret = sk_attach_filter(&fprog, sk);
889 		}
890 		break;
891 
892 	case SO_ATTACH_BPF:
893 		ret = -EINVAL;
894 		if (optlen == sizeof(u32)) {
895 			u32 ufd;
896 
897 			ret = -EFAULT;
898 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
899 				break;
900 
901 			ret = sk_attach_bpf(ufd, sk);
902 		}
903 		break;
904 
905 	case SO_ATTACH_REUSEPORT_CBPF:
906 		ret = -EINVAL;
907 		if (optlen == sizeof(struct sock_fprog)) {
908 			struct sock_fprog fprog;
909 
910 			ret = -EFAULT;
911 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
912 				break;
913 
914 			ret = sk_reuseport_attach_filter(&fprog, sk);
915 		}
916 		break;
917 
918 	case SO_ATTACH_REUSEPORT_EBPF:
919 		ret = -EINVAL;
920 		if (optlen == sizeof(u32)) {
921 			u32 ufd;
922 
923 			ret = -EFAULT;
924 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
925 				break;
926 
927 			ret = sk_reuseport_attach_bpf(ufd, sk);
928 		}
929 		break;
930 
931 	case SO_DETACH_FILTER:
932 		ret = sk_detach_filter(sk);
933 		break;
934 
935 	case SO_LOCK_FILTER:
936 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
937 			ret = -EPERM;
938 		else
939 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
940 		break;
941 
942 	case SO_PASSSEC:
943 		if (valbool)
944 			set_bit(SOCK_PASSSEC, &sock->flags);
945 		else
946 			clear_bit(SOCK_PASSSEC, &sock->flags);
947 		break;
948 	case SO_MARK:
949 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
950 			ret = -EPERM;
951 		else
952 			sk->sk_mark = val;
953 		break;
954 
955 	case SO_RXQ_OVFL:
956 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
957 		break;
958 
959 	case SO_WIFI_STATUS:
960 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
961 		break;
962 
963 	case SO_PEEK_OFF:
964 		if (sock->ops->set_peek_off)
965 			ret = sock->ops->set_peek_off(sk, val);
966 		else
967 			ret = -EOPNOTSUPP;
968 		break;
969 
970 	case SO_NOFCS:
971 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
972 		break;
973 
974 	case SO_SELECT_ERR_QUEUE:
975 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
976 		break;
977 
978 #ifdef CONFIG_NET_RX_BUSY_POLL
979 	case SO_BUSY_POLL:
980 		/* allow unprivileged users to decrease the value */
981 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
982 			ret = -EPERM;
983 		else {
984 			if (val < 0)
985 				ret = -EINVAL;
986 			else
987 				sk->sk_ll_usec = val;
988 		}
989 		break;
990 #endif
991 
992 	case SO_MAX_PACING_RATE:
993 		sk->sk_max_pacing_rate = val;
994 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
995 					 sk->sk_max_pacing_rate);
996 		break;
997 
998 	case SO_INCOMING_CPU:
999 		sk->sk_incoming_cpu = val;
1000 		break;
1001 
1002 	case SO_CNX_ADVICE:
1003 		if (val == 1)
1004 			dst_negative_advice(sk);
1005 		break;
1006 	default:
1007 		ret = -ENOPROTOOPT;
1008 		break;
1009 	}
1010 	release_sock(sk);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(sock_setsockopt);
1014 
1015 
1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1017 			  struct ucred *ucred)
1018 {
1019 	ucred->pid = pid_vnr(pid);
1020 	ucred->uid = ucred->gid = -1;
1021 	if (cred) {
1022 		struct user_namespace *current_ns = current_user_ns();
1023 
1024 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1025 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1026 	}
1027 }
1028 
1029 int sock_getsockopt(struct socket *sock, int level, int optname,
1030 		    char __user *optval, int __user *optlen)
1031 {
1032 	struct sock *sk = sock->sk;
1033 
1034 	union {
1035 		int val;
1036 		struct linger ling;
1037 		struct timeval tm;
1038 	} v;
1039 
1040 	int lv = sizeof(int);
1041 	int len;
1042 
1043 	if (get_user(len, optlen))
1044 		return -EFAULT;
1045 	if (len < 0)
1046 		return -EINVAL;
1047 
1048 	memset(&v, 0, sizeof(v));
1049 
1050 	switch (optname) {
1051 	case SO_DEBUG:
1052 		v.val = sock_flag(sk, SOCK_DBG);
1053 		break;
1054 
1055 	case SO_DONTROUTE:
1056 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1057 		break;
1058 
1059 	case SO_BROADCAST:
1060 		v.val = sock_flag(sk, SOCK_BROADCAST);
1061 		break;
1062 
1063 	case SO_SNDBUF:
1064 		v.val = sk->sk_sndbuf;
1065 		break;
1066 
1067 	case SO_RCVBUF:
1068 		v.val = sk->sk_rcvbuf;
1069 		break;
1070 
1071 	case SO_REUSEADDR:
1072 		v.val = sk->sk_reuse;
1073 		break;
1074 
1075 	case SO_REUSEPORT:
1076 		v.val = sk->sk_reuseport;
1077 		break;
1078 
1079 	case SO_KEEPALIVE:
1080 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1081 		break;
1082 
1083 	case SO_TYPE:
1084 		v.val = sk->sk_type;
1085 		break;
1086 
1087 	case SO_PROTOCOL:
1088 		v.val = sk->sk_protocol;
1089 		break;
1090 
1091 	case SO_DOMAIN:
1092 		v.val = sk->sk_family;
1093 		break;
1094 
1095 	case SO_ERROR:
1096 		v.val = -sock_error(sk);
1097 		if (v.val == 0)
1098 			v.val = xchg(&sk->sk_err_soft, 0);
1099 		break;
1100 
1101 	case SO_OOBINLINE:
1102 		v.val = sock_flag(sk, SOCK_URGINLINE);
1103 		break;
1104 
1105 	case SO_NO_CHECK:
1106 		v.val = sk->sk_no_check_tx;
1107 		break;
1108 
1109 	case SO_PRIORITY:
1110 		v.val = sk->sk_priority;
1111 		break;
1112 
1113 	case SO_LINGER:
1114 		lv		= sizeof(v.ling);
1115 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1116 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1117 		break;
1118 
1119 	case SO_BSDCOMPAT:
1120 		sock_warn_obsolete_bsdism("getsockopt");
1121 		break;
1122 
1123 	case SO_TIMESTAMP:
1124 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1125 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1126 		break;
1127 
1128 	case SO_TIMESTAMPNS:
1129 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1130 		break;
1131 
1132 	case SO_TIMESTAMPING:
1133 		v.val = sk->sk_tsflags;
1134 		break;
1135 
1136 	case SO_RCVTIMEO:
1137 		lv = sizeof(struct timeval);
1138 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1139 			v.tm.tv_sec = 0;
1140 			v.tm.tv_usec = 0;
1141 		} else {
1142 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1143 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1144 		}
1145 		break;
1146 
1147 	case SO_SNDTIMEO:
1148 		lv = sizeof(struct timeval);
1149 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1150 			v.tm.tv_sec = 0;
1151 			v.tm.tv_usec = 0;
1152 		} else {
1153 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1154 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1155 		}
1156 		break;
1157 
1158 	case SO_RCVLOWAT:
1159 		v.val = sk->sk_rcvlowat;
1160 		break;
1161 
1162 	case SO_SNDLOWAT:
1163 		v.val = 1;
1164 		break;
1165 
1166 	case SO_PASSCRED:
1167 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1168 		break;
1169 
1170 	case SO_PEERCRED:
1171 	{
1172 		struct ucred peercred;
1173 		if (len > sizeof(peercred))
1174 			len = sizeof(peercred);
1175 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1176 		if (copy_to_user(optval, &peercred, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	case SO_PEERNAME:
1182 	{
1183 		char address[128];
1184 
1185 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1186 			return -ENOTCONN;
1187 		if (lv < len)
1188 			return -EINVAL;
1189 		if (copy_to_user(optval, address, len))
1190 			return -EFAULT;
1191 		goto lenout;
1192 	}
1193 
1194 	/* Dubious BSD thing... Probably nobody even uses it, but
1195 	 * the UNIX standard wants it for whatever reason... -DaveM
1196 	 */
1197 	case SO_ACCEPTCONN:
1198 		v.val = sk->sk_state == TCP_LISTEN;
1199 		break;
1200 
1201 	case SO_PASSSEC:
1202 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1203 		break;
1204 
1205 	case SO_PEERSEC:
1206 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1207 
1208 	case SO_MARK:
1209 		v.val = sk->sk_mark;
1210 		break;
1211 
1212 	case SO_RXQ_OVFL:
1213 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1214 		break;
1215 
1216 	case SO_WIFI_STATUS:
1217 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1218 		break;
1219 
1220 	case SO_PEEK_OFF:
1221 		if (!sock->ops->set_peek_off)
1222 			return -EOPNOTSUPP;
1223 
1224 		v.val = sk->sk_peek_off;
1225 		break;
1226 	case SO_NOFCS:
1227 		v.val = sock_flag(sk, SOCK_NOFCS);
1228 		break;
1229 
1230 	case SO_BINDTODEVICE:
1231 		return sock_getbindtodevice(sk, optval, optlen, len);
1232 
1233 	case SO_GET_FILTER:
1234 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1235 		if (len < 0)
1236 			return len;
1237 
1238 		goto lenout;
1239 
1240 	case SO_LOCK_FILTER:
1241 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1242 		break;
1243 
1244 	case SO_BPF_EXTENSIONS:
1245 		v.val = bpf_tell_extensions();
1246 		break;
1247 
1248 	case SO_SELECT_ERR_QUEUE:
1249 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1250 		break;
1251 
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1253 	case SO_BUSY_POLL:
1254 		v.val = sk->sk_ll_usec;
1255 		break;
1256 #endif
1257 
1258 	case SO_MAX_PACING_RATE:
1259 		v.val = sk->sk_max_pacing_rate;
1260 		break;
1261 
1262 	case SO_INCOMING_CPU:
1263 		v.val = sk->sk_incoming_cpu;
1264 		break;
1265 
1266 	default:
1267 		/* We implement the SO_SNDLOWAT etc to not be settable
1268 		 * (1003.1g 7).
1269 		 */
1270 		return -ENOPROTOOPT;
1271 	}
1272 
1273 	if (len > lv)
1274 		len = lv;
1275 	if (copy_to_user(optval, &v, len))
1276 		return -EFAULT;
1277 lenout:
1278 	if (put_user(len, optlen))
1279 		return -EFAULT;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Initialize an sk_lock.
1285  *
1286  * (We also register the sk_lock with the lock validator.)
1287  */
1288 static inline void sock_lock_init(struct sock *sk)
1289 {
1290 	sock_lock_init_class_and_name(sk,
1291 			af_family_slock_key_strings[sk->sk_family],
1292 			af_family_slock_keys + sk->sk_family,
1293 			af_family_key_strings[sk->sk_family],
1294 			af_family_keys + sk->sk_family);
1295 }
1296 
1297 /*
1298  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301  */
1302 static void sock_copy(struct sock *nsk, const struct sock *osk)
1303 {
1304 #ifdef CONFIG_SECURITY_NETWORK
1305 	void *sptr = nsk->sk_security;
1306 #endif
1307 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1308 
1309 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1310 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1311 
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 	nsk->sk_security = sptr;
1314 	security_sk_clone(osk, nsk);
1315 #endif
1316 }
1317 
1318 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1319 		int family)
1320 {
1321 	struct sock *sk;
1322 	struct kmem_cache *slab;
1323 
1324 	slab = prot->slab;
1325 	if (slab != NULL) {
1326 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1327 		if (!sk)
1328 			return sk;
1329 		if (priority & __GFP_ZERO)
1330 			sk_prot_clear_nulls(sk, prot->obj_size);
1331 	} else
1332 		sk = kmalloc(prot->obj_size, priority);
1333 
1334 	if (sk != NULL) {
1335 		kmemcheck_annotate_bitfield(sk, flags);
1336 
1337 		if (security_sk_alloc(sk, family, priority))
1338 			goto out_free;
1339 
1340 		if (!try_module_get(prot->owner))
1341 			goto out_free_sec;
1342 		sk_tx_queue_clear(sk);
1343 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1344 	}
1345 
1346 	return sk;
1347 
1348 out_free_sec:
1349 	security_sk_free(sk);
1350 out_free:
1351 	if (slab != NULL)
1352 		kmem_cache_free(slab, sk);
1353 	else
1354 		kfree(sk);
1355 	return NULL;
1356 }
1357 
1358 static void sk_prot_free(struct proto *prot, struct sock *sk)
1359 {
1360 	struct kmem_cache *slab;
1361 	struct module *owner;
1362 
1363 	owner = prot->owner;
1364 	slab = prot->slab;
1365 
1366 	cgroup_sk_free(&sk->sk_cgrp_data);
1367 	security_sk_free(sk);
1368 	if (slab != NULL)
1369 		kmem_cache_free(slab, sk);
1370 	else
1371 		kfree(sk);
1372 	module_put(owner);
1373 }
1374 
1375 /**
1376  *	sk_alloc - All socket objects are allocated here
1377  *	@net: the applicable net namespace
1378  *	@family: protocol family
1379  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1380  *	@prot: struct proto associated with this new sock instance
1381  *	@kern: is this to be a kernel socket?
1382  */
1383 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1384 		      struct proto *prot, int kern)
1385 {
1386 	struct sock *sk;
1387 
1388 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1389 	if (sk) {
1390 		sk->sk_family = family;
1391 		/*
1392 		 * See comment in struct sock definition to understand
1393 		 * why we need sk_prot_creator -acme
1394 		 */
1395 		sk->sk_prot = sk->sk_prot_creator = prot;
1396 		sock_lock_init(sk);
1397 		sk->sk_net_refcnt = kern ? 0 : 1;
1398 		if (likely(sk->sk_net_refcnt))
1399 			get_net(net);
1400 		sock_net_set(sk, net);
1401 		atomic_set(&sk->sk_wmem_alloc, 1);
1402 
1403 		sock_update_classid(&sk->sk_cgrp_data);
1404 		sock_update_netprioidx(&sk->sk_cgrp_data);
1405 	}
1406 
1407 	return sk;
1408 }
1409 EXPORT_SYMBOL(sk_alloc);
1410 
1411 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1412  * grace period. This is the case for UDP sockets and TCP listeners.
1413  */
1414 static void __sk_destruct(struct rcu_head *head)
1415 {
1416 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1417 	struct sk_filter *filter;
1418 
1419 	if (sk->sk_destruct)
1420 		sk->sk_destruct(sk);
1421 
1422 	filter = rcu_dereference_check(sk->sk_filter,
1423 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1424 	if (filter) {
1425 		sk_filter_uncharge(sk, filter);
1426 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1427 	}
1428 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1429 		reuseport_detach_sock(sk);
1430 
1431 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1432 
1433 	if (atomic_read(&sk->sk_omem_alloc))
1434 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1435 			 __func__, atomic_read(&sk->sk_omem_alloc));
1436 
1437 	if (sk->sk_peer_cred)
1438 		put_cred(sk->sk_peer_cred);
1439 	put_pid(sk->sk_peer_pid);
1440 	if (likely(sk->sk_net_refcnt))
1441 		put_net(sock_net(sk));
1442 	sk_prot_free(sk->sk_prot_creator, sk);
1443 }
1444 
1445 void sk_destruct(struct sock *sk)
1446 {
1447 	if (sock_flag(sk, SOCK_RCU_FREE))
1448 		call_rcu(&sk->sk_rcu, __sk_destruct);
1449 	else
1450 		__sk_destruct(&sk->sk_rcu);
1451 }
1452 
1453 static void __sk_free(struct sock *sk)
1454 {
1455 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1456 		sock_diag_broadcast_destroy(sk);
1457 	else
1458 		sk_destruct(sk);
1459 }
1460 
1461 void sk_free(struct sock *sk)
1462 {
1463 	/*
1464 	 * We subtract one from sk_wmem_alloc and can know if
1465 	 * some packets are still in some tx queue.
1466 	 * If not null, sock_wfree() will call __sk_free(sk) later
1467 	 */
1468 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1469 		__sk_free(sk);
1470 }
1471 EXPORT_SYMBOL(sk_free);
1472 
1473 /**
1474  *	sk_clone_lock - clone a socket, and lock its clone
1475  *	@sk: the socket to clone
1476  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1477  *
1478  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1479  */
1480 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1481 {
1482 	struct sock *newsk;
1483 	bool is_charged = true;
1484 
1485 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1486 	if (newsk != NULL) {
1487 		struct sk_filter *filter;
1488 
1489 		sock_copy(newsk, sk);
1490 
1491 		/* SANITY */
1492 		if (likely(newsk->sk_net_refcnt))
1493 			get_net(sock_net(newsk));
1494 		sk_node_init(&newsk->sk_node);
1495 		sock_lock_init(newsk);
1496 		bh_lock_sock(newsk);
1497 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1498 		newsk->sk_backlog.len = 0;
1499 
1500 		atomic_set(&newsk->sk_rmem_alloc, 0);
1501 		/*
1502 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1503 		 */
1504 		atomic_set(&newsk->sk_wmem_alloc, 1);
1505 		atomic_set(&newsk->sk_omem_alloc, 0);
1506 		skb_queue_head_init(&newsk->sk_receive_queue);
1507 		skb_queue_head_init(&newsk->sk_write_queue);
1508 
1509 		rwlock_init(&newsk->sk_callback_lock);
1510 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1511 				af_callback_keys + newsk->sk_family,
1512 				af_family_clock_key_strings[newsk->sk_family]);
1513 
1514 		newsk->sk_dst_cache	= NULL;
1515 		newsk->sk_wmem_queued	= 0;
1516 		newsk->sk_forward_alloc = 0;
1517 		atomic_set(&newsk->sk_drops, 0);
1518 		newsk->sk_send_head	= NULL;
1519 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1520 
1521 		sock_reset_flag(newsk, SOCK_DONE);
1522 		skb_queue_head_init(&newsk->sk_error_queue);
1523 
1524 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1525 		if (filter != NULL)
1526 			/* though it's an empty new sock, the charging may fail
1527 			 * if sysctl_optmem_max was changed between creation of
1528 			 * original socket and cloning
1529 			 */
1530 			is_charged = sk_filter_charge(newsk, filter);
1531 
1532 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1533 			/* It is still raw copy of parent, so invalidate
1534 			 * destructor and make plain sk_free() */
1535 			newsk->sk_destruct = NULL;
1536 			bh_unlock_sock(newsk);
1537 			sk_free(newsk);
1538 			newsk = NULL;
1539 			goto out;
1540 		}
1541 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1542 
1543 		newsk->sk_err	   = 0;
1544 		newsk->sk_priority = 0;
1545 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1546 		atomic64_set(&newsk->sk_cookie, 0);
1547 		/*
1548 		 * Before updating sk_refcnt, we must commit prior changes to memory
1549 		 * (Documentation/RCU/rculist_nulls.txt for details)
1550 		 */
1551 		smp_wmb();
1552 		atomic_set(&newsk->sk_refcnt, 2);
1553 
1554 		/*
1555 		 * Increment the counter in the same struct proto as the master
1556 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1557 		 * is the same as sk->sk_prot->socks, as this field was copied
1558 		 * with memcpy).
1559 		 *
1560 		 * This _changes_ the previous behaviour, where
1561 		 * tcp_create_openreq_child always was incrementing the
1562 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1563 		 * to be taken into account in all callers. -acme
1564 		 */
1565 		sk_refcnt_debug_inc(newsk);
1566 		sk_set_socket(newsk, NULL);
1567 		newsk->sk_wq = NULL;
1568 
1569 		if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1570 			sock_update_memcg(newsk);
1571 
1572 		if (newsk->sk_prot->sockets_allocated)
1573 			sk_sockets_allocated_inc(newsk);
1574 
1575 		if (sock_needs_netstamp(sk) &&
1576 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1577 			net_enable_timestamp();
1578 	}
1579 out:
1580 	return newsk;
1581 }
1582 EXPORT_SYMBOL_GPL(sk_clone_lock);
1583 
1584 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1585 {
1586 	u32 max_segs = 1;
1587 
1588 	sk_dst_set(sk, dst);
1589 	sk->sk_route_caps = dst->dev->features;
1590 	if (sk->sk_route_caps & NETIF_F_GSO)
1591 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1592 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1593 	if (sk_can_gso(sk)) {
1594 		if (dst->header_len) {
1595 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1596 		} else {
1597 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1598 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1599 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1600 		}
1601 	}
1602 	sk->sk_gso_max_segs = max_segs;
1603 }
1604 EXPORT_SYMBOL_GPL(sk_setup_caps);
1605 
1606 /*
1607  *	Simple resource managers for sockets.
1608  */
1609 
1610 
1611 /*
1612  * Write buffer destructor automatically called from kfree_skb.
1613  */
1614 void sock_wfree(struct sk_buff *skb)
1615 {
1616 	struct sock *sk = skb->sk;
1617 	unsigned int len = skb->truesize;
1618 
1619 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1620 		/*
1621 		 * Keep a reference on sk_wmem_alloc, this will be released
1622 		 * after sk_write_space() call
1623 		 */
1624 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1625 		sk->sk_write_space(sk);
1626 		len = 1;
1627 	}
1628 	/*
1629 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1630 	 * could not do because of in-flight packets
1631 	 */
1632 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1633 		__sk_free(sk);
1634 }
1635 EXPORT_SYMBOL(sock_wfree);
1636 
1637 /* This variant of sock_wfree() is used by TCP,
1638  * since it sets SOCK_USE_WRITE_QUEUE.
1639  */
1640 void __sock_wfree(struct sk_buff *skb)
1641 {
1642 	struct sock *sk = skb->sk;
1643 
1644 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1645 		__sk_free(sk);
1646 }
1647 
1648 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1649 {
1650 	skb_orphan(skb);
1651 	skb->sk = sk;
1652 #ifdef CONFIG_INET
1653 	if (unlikely(!sk_fullsock(sk))) {
1654 		skb->destructor = sock_edemux;
1655 		sock_hold(sk);
1656 		return;
1657 	}
1658 #endif
1659 	skb->destructor = sock_wfree;
1660 	skb_set_hash_from_sk(skb, sk);
1661 	/*
1662 	 * We used to take a refcount on sk, but following operation
1663 	 * is enough to guarantee sk_free() wont free this sock until
1664 	 * all in-flight packets are completed
1665 	 */
1666 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1667 }
1668 EXPORT_SYMBOL(skb_set_owner_w);
1669 
1670 /* This helper is used by netem, as it can hold packets in its
1671  * delay queue. We want to allow the owner socket to send more
1672  * packets, as if they were already TX completed by a typical driver.
1673  * But we also want to keep skb->sk set because some packet schedulers
1674  * rely on it (sch_fq for example). So we set skb->truesize to a small
1675  * amount (1) and decrease sk_wmem_alloc accordingly.
1676  */
1677 void skb_orphan_partial(struct sk_buff *skb)
1678 {
1679 	/* If this skb is a TCP pure ACK or already went here,
1680 	 * we have nothing to do. 2 is already a very small truesize.
1681 	 */
1682 	if (skb->truesize <= 2)
1683 		return;
1684 
1685 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1686 	 * so we do not completely orphan skb, but transfert all
1687 	 * accounted bytes but one, to avoid unexpected reorders.
1688 	 */
1689 	if (skb->destructor == sock_wfree
1690 #ifdef CONFIG_INET
1691 	    || skb->destructor == tcp_wfree
1692 #endif
1693 		) {
1694 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1695 		skb->truesize = 1;
1696 	} else {
1697 		skb_orphan(skb);
1698 	}
1699 }
1700 EXPORT_SYMBOL(skb_orphan_partial);
1701 
1702 /*
1703  * Read buffer destructor automatically called from kfree_skb.
1704  */
1705 void sock_rfree(struct sk_buff *skb)
1706 {
1707 	struct sock *sk = skb->sk;
1708 	unsigned int len = skb->truesize;
1709 
1710 	atomic_sub(len, &sk->sk_rmem_alloc);
1711 	sk_mem_uncharge(sk, len);
1712 }
1713 EXPORT_SYMBOL(sock_rfree);
1714 
1715 /*
1716  * Buffer destructor for skbs that are not used directly in read or write
1717  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1718  */
1719 void sock_efree(struct sk_buff *skb)
1720 {
1721 	sock_put(skb->sk);
1722 }
1723 EXPORT_SYMBOL(sock_efree);
1724 
1725 kuid_t sock_i_uid(struct sock *sk)
1726 {
1727 	kuid_t uid;
1728 
1729 	read_lock_bh(&sk->sk_callback_lock);
1730 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1731 	read_unlock_bh(&sk->sk_callback_lock);
1732 	return uid;
1733 }
1734 EXPORT_SYMBOL(sock_i_uid);
1735 
1736 unsigned long sock_i_ino(struct sock *sk)
1737 {
1738 	unsigned long ino;
1739 
1740 	read_lock_bh(&sk->sk_callback_lock);
1741 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1742 	read_unlock_bh(&sk->sk_callback_lock);
1743 	return ino;
1744 }
1745 EXPORT_SYMBOL(sock_i_ino);
1746 
1747 /*
1748  * Allocate a skb from the socket's send buffer.
1749  */
1750 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1751 			     gfp_t priority)
1752 {
1753 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1754 		struct sk_buff *skb = alloc_skb(size, priority);
1755 		if (skb) {
1756 			skb_set_owner_w(skb, sk);
1757 			return skb;
1758 		}
1759 	}
1760 	return NULL;
1761 }
1762 EXPORT_SYMBOL(sock_wmalloc);
1763 
1764 /*
1765  * Allocate a memory block from the socket's option memory buffer.
1766  */
1767 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1768 {
1769 	if ((unsigned int)size <= sysctl_optmem_max &&
1770 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1771 		void *mem;
1772 		/* First do the add, to avoid the race if kmalloc
1773 		 * might sleep.
1774 		 */
1775 		atomic_add(size, &sk->sk_omem_alloc);
1776 		mem = kmalloc(size, priority);
1777 		if (mem)
1778 			return mem;
1779 		atomic_sub(size, &sk->sk_omem_alloc);
1780 	}
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL(sock_kmalloc);
1784 
1785 /* Free an option memory block. Note, we actually want the inline
1786  * here as this allows gcc to detect the nullify and fold away the
1787  * condition entirely.
1788  */
1789 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1790 				  const bool nullify)
1791 {
1792 	if (WARN_ON_ONCE(!mem))
1793 		return;
1794 	if (nullify)
1795 		kzfree(mem);
1796 	else
1797 		kfree(mem);
1798 	atomic_sub(size, &sk->sk_omem_alloc);
1799 }
1800 
1801 void sock_kfree_s(struct sock *sk, void *mem, int size)
1802 {
1803 	__sock_kfree_s(sk, mem, size, false);
1804 }
1805 EXPORT_SYMBOL(sock_kfree_s);
1806 
1807 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1808 {
1809 	__sock_kfree_s(sk, mem, size, true);
1810 }
1811 EXPORT_SYMBOL(sock_kzfree_s);
1812 
1813 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1814    I think, these locks should be removed for datagram sockets.
1815  */
1816 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1817 {
1818 	DEFINE_WAIT(wait);
1819 
1820 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1821 	for (;;) {
1822 		if (!timeo)
1823 			break;
1824 		if (signal_pending(current))
1825 			break;
1826 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1827 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1828 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1829 			break;
1830 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1831 			break;
1832 		if (sk->sk_err)
1833 			break;
1834 		timeo = schedule_timeout(timeo);
1835 	}
1836 	finish_wait(sk_sleep(sk), &wait);
1837 	return timeo;
1838 }
1839 
1840 
1841 /*
1842  *	Generic send/receive buffer handlers
1843  */
1844 
1845 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1846 				     unsigned long data_len, int noblock,
1847 				     int *errcode, int max_page_order)
1848 {
1849 	struct sk_buff *skb;
1850 	long timeo;
1851 	int err;
1852 
1853 	timeo = sock_sndtimeo(sk, noblock);
1854 	for (;;) {
1855 		err = sock_error(sk);
1856 		if (err != 0)
1857 			goto failure;
1858 
1859 		err = -EPIPE;
1860 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1861 			goto failure;
1862 
1863 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1864 			break;
1865 
1866 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1867 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1868 		err = -EAGAIN;
1869 		if (!timeo)
1870 			goto failure;
1871 		if (signal_pending(current))
1872 			goto interrupted;
1873 		timeo = sock_wait_for_wmem(sk, timeo);
1874 	}
1875 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1876 				   errcode, sk->sk_allocation);
1877 	if (skb)
1878 		skb_set_owner_w(skb, sk);
1879 	return skb;
1880 
1881 interrupted:
1882 	err = sock_intr_errno(timeo);
1883 failure:
1884 	*errcode = err;
1885 	return NULL;
1886 }
1887 EXPORT_SYMBOL(sock_alloc_send_pskb);
1888 
1889 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1890 				    int noblock, int *errcode)
1891 {
1892 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1893 }
1894 EXPORT_SYMBOL(sock_alloc_send_skb);
1895 
1896 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1897 		     struct sockcm_cookie *sockc)
1898 {
1899 	u32 tsflags;
1900 
1901 	switch (cmsg->cmsg_type) {
1902 	case SO_MARK:
1903 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1904 			return -EPERM;
1905 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1906 			return -EINVAL;
1907 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1908 		break;
1909 	case SO_TIMESTAMPING:
1910 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1911 			return -EINVAL;
1912 
1913 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1914 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1915 			return -EINVAL;
1916 
1917 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1918 		sockc->tsflags |= tsflags;
1919 		break;
1920 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1921 	case SCM_RIGHTS:
1922 	case SCM_CREDENTIALS:
1923 		break;
1924 	default:
1925 		return -EINVAL;
1926 	}
1927 	return 0;
1928 }
1929 EXPORT_SYMBOL(__sock_cmsg_send);
1930 
1931 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1932 		   struct sockcm_cookie *sockc)
1933 {
1934 	struct cmsghdr *cmsg;
1935 	int ret;
1936 
1937 	for_each_cmsghdr(cmsg, msg) {
1938 		if (!CMSG_OK(msg, cmsg))
1939 			return -EINVAL;
1940 		if (cmsg->cmsg_level != SOL_SOCKET)
1941 			continue;
1942 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1943 		if (ret)
1944 			return ret;
1945 	}
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL(sock_cmsg_send);
1949 
1950 /* On 32bit arches, an skb frag is limited to 2^15 */
1951 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1952 
1953 /**
1954  * skb_page_frag_refill - check that a page_frag contains enough room
1955  * @sz: minimum size of the fragment we want to get
1956  * @pfrag: pointer to page_frag
1957  * @gfp: priority for memory allocation
1958  *
1959  * Note: While this allocator tries to use high order pages, there is
1960  * no guarantee that allocations succeed. Therefore, @sz MUST be
1961  * less or equal than PAGE_SIZE.
1962  */
1963 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1964 {
1965 	if (pfrag->page) {
1966 		if (page_ref_count(pfrag->page) == 1) {
1967 			pfrag->offset = 0;
1968 			return true;
1969 		}
1970 		if (pfrag->offset + sz <= pfrag->size)
1971 			return true;
1972 		put_page(pfrag->page);
1973 	}
1974 
1975 	pfrag->offset = 0;
1976 	if (SKB_FRAG_PAGE_ORDER) {
1977 		/* Avoid direct reclaim but allow kswapd to wake */
1978 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1979 					  __GFP_COMP | __GFP_NOWARN |
1980 					  __GFP_NORETRY,
1981 					  SKB_FRAG_PAGE_ORDER);
1982 		if (likely(pfrag->page)) {
1983 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1984 			return true;
1985 		}
1986 	}
1987 	pfrag->page = alloc_page(gfp);
1988 	if (likely(pfrag->page)) {
1989 		pfrag->size = PAGE_SIZE;
1990 		return true;
1991 	}
1992 	return false;
1993 }
1994 EXPORT_SYMBOL(skb_page_frag_refill);
1995 
1996 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1997 {
1998 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1999 		return true;
2000 
2001 	sk_enter_memory_pressure(sk);
2002 	sk_stream_moderate_sndbuf(sk);
2003 	return false;
2004 }
2005 EXPORT_SYMBOL(sk_page_frag_refill);
2006 
2007 static void __lock_sock(struct sock *sk)
2008 	__releases(&sk->sk_lock.slock)
2009 	__acquires(&sk->sk_lock.slock)
2010 {
2011 	DEFINE_WAIT(wait);
2012 
2013 	for (;;) {
2014 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2015 					TASK_UNINTERRUPTIBLE);
2016 		spin_unlock_bh(&sk->sk_lock.slock);
2017 		schedule();
2018 		spin_lock_bh(&sk->sk_lock.slock);
2019 		if (!sock_owned_by_user(sk))
2020 			break;
2021 	}
2022 	finish_wait(&sk->sk_lock.wq, &wait);
2023 }
2024 
2025 static void __release_sock(struct sock *sk)
2026 	__releases(&sk->sk_lock.slock)
2027 	__acquires(&sk->sk_lock.slock)
2028 {
2029 	struct sk_buff *skb, *next;
2030 
2031 	while ((skb = sk->sk_backlog.head) != NULL) {
2032 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2033 
2034 		spin_unlock_bh(&sk->sk_lock.slock);
2035 
2036 		do {
2037 			next = skb->next;
2038 			prefetch(next);
2039 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2040 			skb->next = NULL;
2041 			sk_backlog_rcv(sk, skb);
2042 
2043 			cond_resched();
2044 
2045 			skb = next;
2046 		} while (skb != NULL);
2047 
2048 		spin_lock_bh(&sk->sk_lock.slock);
2049 	}
2050 
2051 	/*
2052 	 * Doing the zeroing here guarantee we can not loop forever
2053 	 * while a wild producer attempts to flood us.
2054 	 */
2055 	sk->sk_backlog.len = 0;
2056 }
2057 
2058 void __sk_flush_backlog(struct sock *sk)
2059 {
2060 	spin_lock_bh(&sk->sk_lock.slock);
2061 	__release_sock(sk);
2062 	spin_unlock_bh(&sk->sk_lock.slock);
2063 }
2064 
2065 /**
2066  * sk_wait_data - wait for data to arrive at sk_receive_queue
2067  * @sk:    sock to wait on
2068  * @timeo: for how long
2069  * @skb:   last skb seen on sk_receive_queue
2070  *
2071  * Now socket state including sk->sk_err is changed only under lock,
2072  * hence we may omit checks after joining wait queue.
2073  * We check receive queue before schedule() only as optimization;
2074  * it is very likely that release_sock() added new data.
2075  */
2076 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2077 {
2078 	int rc;
2079 	DEFINE_WAIT(wait);
2080 
2081 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2082 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2083 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2084 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2085 	finish_wait(sk_sleep(sk), &wait);
2086 	return rc;
2087 }
2088 EXPORT_SYMBOL(sk_wait_data);
2089 
2090 /**
2091  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2092  *	@sk: socket
2093  *	@size: memory size to allocate
2094  *	@kind: allocation type
2095  *
2096  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2097  *	rmem allocation. This function assumes that protocols which have
2098  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2099  */
2100 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2101 {
2102 	struct proto *prot = sk->sk_prot;
2103 	int amt = sk_mem_pages(size);
2104 	long allocated;
2105 
2106 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2107 
2108 	allocated = sk_memory_allocated_add(sk, amt);
2109 
2110 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2111 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2112 		goto suppress_allocation;
2113 
2114 	/* Under limit. */
2115 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2116 		sk_leave_memory_pressure(sk);
2117 		return 1;
2118 	}
2119 
2120 	/* Under pressure. */
2121 	if (allocated > sk_prot_mem_limits(sk, 1))
2122 		sk_enter_memory_pressure(sk);
2123 
2124 	/* Over hard limit. */
2125 	if (allocated > sk_prot_mem_limits(sk, 2))
2126 		goto suppress_allocation;
2127 
2128 	/* guarantee minimum buffer size under pressure */
2129 	if (kind == SK_MEM_RECV) {
2130 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2131 			return 1;
2132 
2133 	} else { /* SK_MEM_SEND */
2134 		if (sk->sk_type == SOCK_STREAM) {
2135 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2136 				return 1;
2137 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2138 			   prot->sysctl_wmem[0])
2139 				return 1;
2140 	}
2141 
2142 	if (sk_has_memory_pressure(sk)) {
2143 		int alloc;
2144 
2145 		if (!sk_under_memory_pressure(sk))
2146 			return 1;
2147 		alloc = sk_sockets_allocated_read_positive(sk);
2148 		if (sk_prot_mem_limits(sk, 2) > alloc *
2149 		    sk_mem_pages(sk->sk_wmem_queued +
2150 				 atomic_read(&sk->sk_rmem_alloc) +
2151 				 sk->sk_forward_alloc))
2152 			return 1;
2153 	}
2154 
2155 suppress_allocation:
2156 
2157 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2158 		sk_stream_moderate_sndbuf(sk);
2159 
2160 		/* Fail only if socket is _under_ its sndbuf.
2161 		 * In this case we cannot block, so that we have to fail.
2162 		 */
2163 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2164 			return 1;
2165 	}
2166 
2167 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2168 
2169 	/* Alas. Undo changes. */
2170 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2171 
2172 	sk_memory_allocated_sub(sk, amt);
2173 
2174 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2175 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2176 
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL(__sk_mem_schedule);
2180 
2181 /**
2182  *	__sk_mem_reclaim - reclaim memory_allocated
2183  *	@sk: socket
2184  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2185  */
2186 void __sk_mem_reclaim(struct sock *sk, int amount)
2187 {
2188 	amount >>= SK_MEM_QUANTUM_SHIFT;
2189 	sk_memory_allocated_sub(sk, amount);
2190 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2191 
2192 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2193 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2194 
2195 	if (sk_under_memory_pressure(sk) &&
2196 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2197 		sk_leave_memory_pressure(sk);
2198 }
2199 EXPORT_SYMBOL(__sk_mem_reclaim);
2200 
2201 int sk_set_peek_off(struct sock *sk, int val)
2202 {
2203 	if (val < 0)
2204 		return -EINVAL;
2205 
2206 	sk->sk_peek_off = val;
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2210 
2211 /*
2212  * Set of default routines for initialising struct proto_ops when
2213  * the protocol does not support a particular function. In certain
2214  * cases where it makes no sense for a protocol to have a "do nothing"
2215  * function, some default processing is provided.
2216  */
2217 
2218 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2219 {
2220 	return -EOPNOTSUPP;
2221 }
2222 EXPORT_SYMBOL(sock_no_bind);
2223 
2224 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2225 		    int len, int flags)
2226 {
2227 	return -EOPNOTSUPP;
2228 }
2229 EXPORT_SYMBOL(sock_no_connect);
2230 
2231 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2232 {
2233 	return -EOPNOTSUPP;
2234 }
2235 EXPORT_SYMBOL(sock_no_socketpair);
2236 
2237 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2238 {
2239 	return -EOPNOTSUPP;
2240 }
2241 EXPORT_SYMBOL(sock_no_accept);
2242 
2243 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2244 		    int *len, int peer)
2245 {
2246 	return -EOPNOTSUPP;
2247 }
2248 EXPORT_SYMBOL(sock_no_getname);
2249 
2250 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2251 {
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(sock_no_poll);
2255 
2256 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2257 {
2258 	return -EOPNOTSUPP;
2259 }
2260 EXPORT_SYMBOL(sock_no_ioctl);
2261 
2262 int sock_no_listen(struct socket *sock, int backlog)
2263 {
2264 	return -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(sock_no_listen);
2267 
2268 int sock_no_shutdown(struct socket *sock, int how)
2269 {
2270 	return -EOPNOTSUPP;
2271 }
2272 EXPORT_SYMBOL(sock_no_shutdown);
2273 
2274 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2275 		    char __user *optval, unsigned int optlen)
2276 {
2277 	return -EOPNOTSUPP;
2278 }
2279 EXPORT_SYMBOL(sock_no_setsockopt);
2280 
2281 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2282 		    char __user *optval, int __user *optlen)
2283 {
2284 	return -EOPNOTSUPP;
2285 }
2286 EXPORT_SYMBOL(sock_no_getsockopt);
2287 
2288 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2289 {
2290 	return -EOPNOTSUPP;
2291 }
2292 EXPORT_SYMBOL(sock_no_sendmsg);
2293 
2294 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2295 		    int flags)
2296 {
2297 	return -EOPNOTSUPP;
2298 }
2299 EXPORT_SYMBOL(sock_no_recvmsg);
2300 
2301 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2302 {
2303 	/* Mirror missing mmap method error code */
2304 	return -ENODEV;
2305 }
2306 EXPORT_SYMBOL(sock_no_mmap);
2307 
2308 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2309 {
2310 	ssize_t res;
2311 	struct msghdr msg = {.msg_flags = flags};
2312 	struct kvec iov;
2313 	char *kaddr = kmap(page);
2314 	iov.iov_base = kaddr + offset;
2315 	iov.iov_len = size;
2316 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2317 	kunmap(page);
2318 	return res;
2319 }
2320 EXPORT_SYMBOL(sock_no_sendpage);
2321 
2322 /*
2323  *	Default Socket Callbacks
2324  */
2325 
2326 static void sock_def_wakeup(struct sock *sk)
2327 {
2328 	struct socket_wq *wq;
2329 
2330 	rcu_read_lock();
2331 	wq = rcu_dereference(sk->sk_wq);
2332 	if (skwq_has_sleeper(wq))
2333 		wake_up_interruptible_all(&wq->wait);
2334 	rcu_read_unlock();
2335 }
2336 
2337 static void sock_def_error_report(struct sock *sk)
2338 {
2339 	struct socket_wq *wq;
2340 
2341 	rcu_read_lock();
2342 	wq = rcu_dereference(sk->sk_wq);
2343 	if (skwq_has_sleeper(wq))
2344 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2345 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2346 	rcu_read_unlock();
2347 }
2348 
2349 static void sock_def_readable(struct sock *sk)
2350 {
2351 	struct socket_wq *wq;
2352 
2353 	rcu_read_lock();
2354 	wq = rcu_dereference(sk->sk_wq);
2355 	if (skwq_has_sleeper(wq))
2356 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2357 						POLLRDNORM | POLLRDBAND);
2358 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2359 	rcu_read_unlock();
2360 }
2361 
2362 static void sock_def_write_space(struct sock *sk)
2363 {
2364 	struct socket_wq *wq;
2365 
2366 	rcu_read_lock();
2367 
2368 	/* Do not wake up a writer until he can make "significant"
2369 	 * progress.  --DaveM
2370 	 */
2371 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2372 		wq = rcu_dereference(sk->sk_wq);
2373 		if (skwq_has_sleeper(wq))
2374 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2375 						POLLWRNORM | POLLWRBAND);
2376 
2377 		/* Should agree with poll, otherwise some programs break */
2378 		if (sock_writeable(sk))
2379 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2380 	}
2381 
2382 	rcu_read_unlock();
2383 }
2384 
2385 static void sock_def_destruct(struct sock *sk)
2386 {
2387 }
2388 
2389 void sk_send_sigurg(struct sock *sk)
2390 {
2391 	if (sk->sk_socket && sk->sk_socket->file)
2392 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2393 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2394 }
2395 EXPORT_SYMBOL(sk_send_sigurg);
2396 
2397 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2398 		    unsigned long expires)
2399 {
2400 	if (!mod_timer(timer, expires))
2401 		sock_hold(sk);
2402 }
2403 EXPORT_SYMBOL(sk_reset_timer);
2404 
2405 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2406 {
2407 	if (del_timer(timer))
2408 		__sock_put(sk);
2409 }
2410 EXPORT_SYMBOL(sk_stop_timer);
2411 
2412 void sock_init_data(struct socket *sock, struct sock *sk)
2413 {
2414 	skb_queue_head_init(&sk->sk_receive_queue);
2415 	skb_queue_head_init(&sk->sk_write_queue);
2416 	skb_queue_head_init(&sk->sk_error_queue);
2417 
2418 	sk->sk_send_head	=	NULL;
2419 
2420 	init_timer(&sk->sk_timer);
2421 
2422 	sk->sk_allocation	=	GFP_KERNEL;
2423 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2424 	sk->sk_sndbuf		=	sysctl_wmem_default;
2425 	sk->sk_state		=	TCP_CLOSE;
2426 	sk_set_socket(sk, sock);
2427 
2428 	sock_set_flag(sk, SOCK_ZAPPED);
2429 
2430 	if (sock) {
2431 		sk->sk_type	=	sock->type;
2432 		sk->sk_wq	=	sock->wq;
2433 		sock->sk	=	sk;
2434 	} else
2435 		sk->sk_wq	=	NULL;
2436 
2437 	rwlock_init(&sk->sk_callback_lock);
2438 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2439 			af_callback_keys + sk->sk_family,
2440 			af_family_clock_key_strings[sk->sk_family]);
2441 
2442 	sk->sk_state_change	=	sock_def_wakeup;
2443 	sk->sk_data_ready	=	sock_def_readable;
2444 	sk->sk_write_space	=	sock_def_write_space;
2445 	sk->sk_error_report	=	sock_def_error_report;
2446 	sk->sk_destruct		=	sock_def_destruct;
2447 
2448 	sk->sk_frag.page	=	NULL;
2449 	sk->sk_frag.offset	=	0;
2450 	sk->sk_peek_off		=	-1;
2451 
2452 	sk->sk_peer_pid 	=	NULL;
2453 	sk->sk_peer_cred	=	NULL;
2454 	sk->sk_write_pending	=	0;
2455 	sk->sk_rcvlowat		=	1;
2456 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2457 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2458 
2459 	sk->sk_stamp = ktime_set(-1L, 0);
2460 
2461 #ifdef CONFIG_NET_RX_BUSY_POLL
2462 	sk->sk_napi_id		=	0;
2463 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2464 #endif
2465 
2466 	sk->sk_max_pacing_rate = ~0U;
2467 	sk->sk_pacing_rate = ~0U;
2468 	sk->sk_incoming_cpu = -1;
2469 	/*
2470 	 * Before updating sk_refcnt, we must commit prior changes to memory
2471 	 * (Documentation/RCU/rculist_nulls.txt for details)
2472 	 */
2473 	smp_wmb();
2474 	atomic_set(&sk->sk_refcnt, 1);
2475 	atomic_set(&sk->sk_drops, 0);
2476 }
2477 EXPORT_SYMBOL(sock_init_data);
2478 
2479 void lock_sock_nested(struct sock *sk, int subclass)
2480 {
2481 	might_sleep();
2482 	spin_lock_bh(&sk->sk_lock.slock);
2483 	if (sk->sk_lock.owned)
2484 		__lock_sock(sk);
2485 	sk->sk_lock.owned = 1;
2486 	spin_unlock(&sk->sk_lock.slock);
2487 	/*
2488 	 * The sk_lock has mutex_lock() semantics here:
2489 	 */
2490 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2491 	local_bh_enable();
2492 }
2493 EXPORT_SYMBOL(lock_sock_nested);
2494 
2495 void release_sock(struct sock *sk)
2496 {
2497 	spin_lock_bh(&sk->sk_lock.slock);
2498 	if (sk->sk_backlog.tail)
2499 		__release_sock(sk);
2500 
2501 	/* Warning : release_cb() might need to release sk ownership,
2502 	 * ie call sock_release_ownership(sk) before us.
2503 	 */
2504 	if (sk->sk_prot->release_cb)
2505 		sk->sk_prot->release_cb(sk);
2506 
2507 	sock_release_ownership(sk);
2508 	if (waitqueue_active(&sk->sk_lock.wq))
2509 		wake_up(&sk->sk_lock.wq);
2510 	spin_unlock_bh(&sk->sk_lock.slock);
2511 }
2512 EXPORT_SYMBOL(release_sock);
2513 
2514 /**
2515  * lock_sock_fast - fast version of lock_sock
2516  * @sk: socket
2517  *
2518  * This version should be used for very small section, where process wont block
2519  * return false if fast path is taken
2520  *   sk_lock.slock locked, owned = 0, BH disabled
2521  * return true if slow path is taken
2522  *   sk_lock.slock unlocked, owned = 1, BH enabled
2523  */
2524 bool lock_sock_fast(struct sock *sk)
2525 {
2526 	might_sleep();
2527 	spin_lock_bh(&sk->sk_lock.slock);
2528 
2529 	if (!sk->sk_lock.owned)
2530 		/*
2531 		 * Note : We must disable BH
2532 		 */
2533 		return false;
2534 
2535 	__lock_sock(sk);
2536 	sk->sk_lock.owned = 1;
2537 	spin_unlock(&sk->sk_lock.slock);
2538 	/*
2539 	 * The sk_lock has mutex_lock() semantics here:
2540 	 */
2541 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2542 	local_bh_enable();
2543 	return true;
2544 }
2545 EXPORT_SYMBOL(lock_sock_fast);
2546 
2547 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2548 {
2549 	struct timeval tv;
2550 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2551 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2552 	tv = ktime_to_timeval(sk->sk_stamp);
2553 	if (tv.tv_sec == -1)
2554 		return -ENOENT;
2555 	if (tv.tv_sec == 0) {
2556 		sk->sk_stamp = ktime_get_real();
2557 		tv = ktime_to_timeval(sk->sk_stamp);
2558 	}
2559 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2560 }
2561 EXPORT_SYMBOL(sock_get_timestamp);
2562 
2563 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2564 {
2565 	struct timespec ts;
2566 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2567 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2568 	ts = ktime_to_timespec(sk->sk_stamp);
2569 	if (ts.tv_sec == -1)
2570 		return -ENOENT;
2571 	if (ts.tv_sec == 0) {
2572 		sk->sk_stamp = ktime_get_real();
2573 		ts = ktime_to_timespec(sk->sk_stamp);
2574 	}
2575 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2576 }
2577 EXPORT_SYMBOL(sock_get_timestampns);
2578 
2579 void sock_enable_timestamp(struct sock *sk, int flag)
2580 {
2581 	if (!sock_flag(sk, flag)) {
2582 		unsigned long previous_flags = sk->sk_flags;
2583 
2584 		sock_set_flag(sk, flag);
2585 		/*
2586 		 * we just set one of the two flags which require net
2587 		 * time stamping, but time stamping might have been on
2588 		 * already because of the other one
2589 		 */
2590 		if (sock_needs_netstamp(sk) &&
2591 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2592 			net_enable_timestamp();
2593 	}
2594 }
2595 
2596 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2597 		       int level, int type)
2598 {
2599 	struct sock_exterr_skb *serr;
2600 	struct sk_buff *skb;
2601 	int copied, err;
2602 
2603 	err = -EAGAIN;
2604 	skb = sock_dequeue_err_skb(sk);
2605 	if (skb == NULL)
2606 		goto out;
2607 
2608 	copied = skb->len;
2609 	if (copied > len) {
2610 		msg->msg_flags |= MSG_TRUNC;
2611 		copied = len;
2612 	}
2613 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2614 	if (err)
2615 		goto out_free_skb;
2616 
2617 	sock_recv_timestamp(msg, sk, skb);
2618 
2619 	serr = SKB_EXT_ERR(skb);
2620 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2621 
2622 	msg->msg_flags |= MSG_ERRQUEUE;
2623 	err = copied;
2624 
2625 out_free_skb:
2626 	kfree_skb(skb);
2627 out:
2628 	return err;
2629 }
2630 EXPORT_SYMBOL(sock_recv_errqueue);
2631 
2632 /*
2633  *	Get a socket option on an socket.
2634  *
2635  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2636  *	asynchronous errors should be reported by getsockopt. We assume
2637  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2638  */
2639 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2640 			   char __user *optval, int __user *optlen)
2641 {
2642 	struct sock *sk = sock->sk;
2643 
2644 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2645 }
2646 EXPORT_SYMBOL(sock_common_getsockopt);
2647 
2648 #ifdef CONFIG_COMPAT
2649 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2650 				  char __user *optval, int __user *optlen)
2651 {
2652 	struct sock *sk = sock->sk;
2653 
2654 	if (sk->sk_prot->compat_getsockopt != NULL)
2655 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2656 						      optval, optlen);
2657 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2658 }
2659 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2660 #endif
2661 
2662 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2663 			int flags)
2664 {
2665 	struct sock *sk = sock->sk;
2666 	int addr_len = 0;
2667 	int err;
2668 
2669 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2670 				   flags & ~MSG_DONTWAIT, &addr_len);
2671 	if (err >= 0)
2672 		msg->msg_namelen = addr_len;
2673 	return err;
2674 }
2675 EXPORT_SYMBOL(sock_common_recvmsg);
2676 
2677 /*
2678  *	Set socket options on an inet socket.
2679  */
2680 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2681 			   char __user *optval, unsigned int optlen)
2682 {
2683 	struct sock *sk = sock->sk;
2684 
2685 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2686 }
2687 EXPORT_SYMBOL(sock_common_setsockopt);
2688 
2689 #ifdef CONFIG_COMPAT
2690 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2691 				  char __user *optval, unsigned int optlen)
2692 {
2693 	struct sock *sk = sock->sk;
2694 
2695 	if (sk->sk_prot->compat_setsockopt != NULL)
2696 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2697 						      optval, optlen);
2698 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2699 }
2700 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2701 #endif
2702 
2703 void sk_common_release(struct sock *sk)
2704 {
2705 	if (sk->sk_prot->destroy)
2706 		sk->sk_prot->destroy(sk);
2707 
2708 	/*
2709 	 * Observation: when sock_common_release is called, processes have
2710 	 * no access to socket. But net still has.
2711 	 * Step one, detach it from networking:
2712 	 *
2713 	 * A. Remove from hash tables.
2714 	 */
2715 
2716 	sk->sk_prot->unhash(sk);
2717 
2718 	/*
2719 	 * In this point socket cannot receive new packets, but it is possible
2720 	 * that some packets are in flight because some CPU runs receiver and
2721 	 * did hash table lookup before we unhashed socket. They will achieve
2722 	 * receive queue and will be purged by socket destructor.
2723 	 *
2724 	 * Also we still have packets pending on receive queue and probably,
2725 	 * our own packets waiting in device queues. sock_destroy will drain
2726 	 * receive queue, but transmitted packets will delay socket destruction
2727 	 * until the last reference will be released.
2728 	 */
2729 
2730 	sock_orphan(sk);
2731 
2732 	xfrm_sk_free_policy(sk);
2733 
2734 	sk_refcnt_debug_release(sk);
2735 
2736 	if (sk->sk_frag.page) {
2737 		put_page(sk->sk_frag.page);
2738 		sk->sk_frag.page = NULL;
2739 	}
2740 
2741 	sock_put(sk);
2742 }
2743 EXPORT_SYMBOL(sk_common_release);
2744 
2745 #ifdef CONFIG_PROC_FS
2746 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2747 struct prot_inuse {
2748 	int val[PROTO_INUSE_NR];
2749 };
2750 
2751 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2752 
2753 #ifdef CONFIG_NET_NS
2754 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2755 {
2756 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2757 }
2758 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2759 
2760 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2761 {
2762 	int cpu, idx = prot->inuse_idx;
2763 	int res = 0;
2764 
2765 	for_each_possible_cpu(cpu)
2766 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2767 
2768 	return res >= 0 ? res : 0;
2769 }
2770 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2771 
2772 static int __net_init sock_inuse_init_net(struct net *net)
2773 {
2774 	net->core.inuse = alloc_percpu(struct prot_inuse);
2775 	return net->core.inuse ? 0 : -ENOMEM;
2776 }
2777 
2778 static void __net_exit sock_inuse_exit_net(struct net *net)
2779 {
2780 	free_percpu(net->core.inuse);
2781 }
2782 
2783 static struct pernet_operations net_inuse_ops = {
2784 	.init = sock_inuse_init_net,
2785 	.exit = sock_inuse_exit_net,
2786 };
2787 
2788 static __init int net_inuse_init(void)
2789 {
2790 	if (register_pernet_subsys(&net_inuse_ops))
2791 		panic("Cannot initialize net inuse counters");
2792 
2793 	return 0;
2794 }
2795 
2796 core_initcall(net_inuse_init);
2797 #else
2798 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2799 
2800 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2801 {
2802 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2803 }
2804 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2805 
2806 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2807 {
2808 	int cpu, idx = prot->inuse_idx;
2809 	int res = 0;
2810 
2811 	for_each_possible_cpu(cpu)
2812 		res += per_cpu(prot_inuse, cpu).val[idx];
2813 
2814 	return res >= 0 ? res : 0;
2815 }
2816 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2817 #endif
2818 
2819 static void assign_proto_idx(struct proto *prot)
2820 {
2821 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2822 
2823 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2824 		pr_err("PROTO_INUSE_NR exhausted\n");
2825 		return;
2826 	}
2827 
2828 	set_bit(prot->inuse_idx, proto_inuse_idx);
2829 }
2830 
2831 static void release_proto_idx(struct proto *prot)
2832 {
2833 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2834 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2835 }
2836 #else
2837 static inline void assign_proto_idx(struct proto *prot)
2838 {
2839 }
2840 
2841 static inline void release_proto_idx(struct proto *prot)
2842 {
2843 }
2844 #endif
2845 
2846 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2847 {
2848 	if (!rsk_prot)
2849 		return;
2850 	kfree(rsk_prot->slab_name);
2851 	rsk_prot->slab_name = NULL;
2852 	kmem_cache_destroy(rsk_prot->slab);
2853 	rsk_prot->slab = NULL;
2854 }
2855 
2856 static int req_prot_init(const struct proto *prot)
2857 {
2858 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2859 
2860 	if (!rsk_prot)
2861 		return 0;
2862 
2863 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2864 					prot->name);
2865 	if (!rsk_prot->slab_name)
2866 		return -ENOMEM;
2867 
2868 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2869 					   rsk_prot->obj_size, 0,
2870 					   prot->slab_flags, NULL);
2871 
2872 	if (!rsk_prot->slab) {
2873 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2874 			prot->name);
2875 		return -ENOMEM;
2876 	}
2877 	return 0;
2878 }
2879 
2880 int proto_register(struct proto *prot, int alloc_slab)
2881 {
2882 	if (alloc_slab) {
2883 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2884 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2885 					NULL);
2886 
2887 		if (prot->slab == NULL) {
2888 			pr_crit("%s: Can't create sock SLAB cache!\n",
2889 				prot->name);
2890 			goto out;
2891 		}
2892 
2893 		if (req_prot_init(prot))
2894 			goto out_free_request_sock_slab;
2895 
2896 		if (prot->twsk_prot != NULL) {
2897 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2898 
2899 			if (prot->twsk_prot->twsk_slab_name == NULL)
2900 				goto out_free_request_sock_slab;
2901 
2902 			prot->twsk_prot->twsk_slab =
2903 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2904 						  prot->twsk_prot->twsk_obj_size,
2905 						  0,
2906 						  prot->slab_flags,
2907 						  NULL);
2908 			if (prot->twsk_prot->twsk_slab == NULL)
2909 				goto out_free_timewait_sock_slab_name;
2910 		}
2911 	}
2912 
2913 	mutex_lock(&proto_list_mutex);
2914 	list_add(&prot->node, &proto_list);
2915 	assign_proto_idx(prot);
2916 	mutex_unlock(&proto_list_mutex);
2917 	return 0;
2918 
2919 out_free_timewait_sock_slab_name:
2920 	kfree(prot->twsk_prot->twsk_slab_name);
2921 out_free_request_sock_slab:
2922 	req_prot_cleanup(prot->rsk_prot);
2923 
2924 	kmem_cache_destroy(prot->slab);
2925 	prot->slab = NULL;
2926 out:
2927 	return -ENOBUFS;
2928 }
2929 EXPORT_SYMBOL(proto_register);
2930 
2931 void proto_unregister(struct proto *prot)
2932 {
2933 	mutex_lock(&proto_list_mutex);
2934 	release_proto_idx(prot);
2935 	list_del(&prot->node);
2936 	mutex_unlock(&proto_list_mutex);
2937 
2938 	kmem_cache_destroy(prot->slab);
2939 	prot->slab = NULL;
2940 
2941 	req_prot_cleanup(prot->rsk_prot);
2942 
2943 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2944 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2945 		kfree(prot->twsk_prot->twsk_slab_name);
2946 		prot->twsk_prot->twsk_slab = NULL;
2947 	}
2948 }
2949 EXPORT_SYMBOL(proto_unregister);
2950 
2951 #ifdef CONFIG_PROC_FS
2952 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2953 	__acquires(proto_list_mutex)
2954 {
2955 	mutex_lock(&proto_list_mutex);
2956 	return seq_list_start_head(&proto_list, *pos);
2957 }
2958 
2959 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2960 {
2961 	return seq_list_next(v, &proto_list, pos);
2962 }
2963 
2964 static void proto_seq_stop(struct seq_file *seq, void *v)
2965 	__releases(proto_list_mutex)
2966 {
2967 	mutex_unlock(&proto_list_mutex);
2968 }
2969 
2970 static char proto_method_implemented(const void *method)
2971 {
2972 	return method == NULL ? 'n' : 'y';
2973 }
2974 static long sock_prot_memory_allocated(struct proto *proto)
2975 {
2976 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2977 }
2978 
2979 static char *sock_prot_memory_pressure(struct proto *proto)
2980 {
2981 	return proto->memory_pressure != NULL ?
2982 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2983 }
2984 
2985 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2986 {
2987 
2988 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2989 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2990 		   proto->name,
2991 		   proto->obj_size,
2992 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2993 		   sock_prot_memory_allocated(proto),
2994 		   sock_prot_memory_pressure(proto),
2995 		   proto->max_header,
2996 		   proto->slab == NULL ? "no" : "yes",
2997 		   module_name(proto->owner),
2998 		   proto_method_implemented(proto->close),
2999 		   proto_method_implemented(proto->connect),
3000 		   proto_method_implemented(proto->disconnect),
3001 		   proto_method_implemented(proto->accept),
3002 		   proto_method_implemented(proto->ioctl),
3003 		   proto_method_implemented(proto->init),
3004 		   proto_method_implemented(proto->destroy),
3005 		   proto_method_implemented(proto->shutdown),
3006 		   proto_method_implemented(proto->setsockopt),
3007 		   proto_method_implemented(proto->getsockopt),
3008 		   proto_method_implemented(proto->sendmsg),
3009 		   proto_method_implemented(proto->recvmsg),
3010 		   proto_method_implemented(proto->sendpage),
3011 		   proto_method_implemented(proto->bind),
3012 		   proto_method_implemented(proto->backlog_rcv),
3013 		   proto_method_implemented(proto->hash),
3014 		   proto_method_implemented(proto->unhash),
3015 		   proto_method_implemented(proto->get_port),
3016 		   proto_method_implemented(proto->enter_memory_pressure));
3017 }
3018 
3019 static int proto_seq_show(struct seq_file *seq, void *v)
3020 {
3021 	if (v == &proto_list)
3022 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3023 			   "protocol",
3024 			   "size",
3025 			   "sockets",
3026 			   "memory",
3027 			   "press",
3028 			   "maxhdr",
3029 			   "slab",
3030 			   "module",
3031 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3032 	else
3033 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3034 	return 0;
3035 }
3036 
3037 static const struct seq_operations proto_seq_ops = {
3038 	.start  = proto_seq_start,
3039 	.next   = proto_seq_next,
3040 	.stop   = proto_seq_stop,
3041 	.show   = proto_seq_show,
3042 };
3043 
3044 static int proto_seq_open(struct inode *inode, struct file *file)
3045 {
3046 	return seq_open_net(inode, file, &proto_seq_ops,
3047 			    sizeof(struct seq_net_private));
3048 }
3049 
3050 static const struct file_operations proto_seq_fops = {
3051 	.owner		= THIS_MODULE,
3052 	.open		= proto_seq_open,
3053 	.read		= seq_read,
3054 	.llseek		= seq_lseek,
3055 	.release	= seq_release_net,
3056 };
3057 
3058 static __net_init int proto_init_net(struct net *net)
3059 {
3060 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3061 		return -ENOMEM;
3062 
3063 	return 0;
3064 }
3065 
3066 static __net_exit void proto_exit_net(struct net *net)
3067 {
3068 	remove_proc_entry("protocols", net->proc_net);
3069 }
3070 
3071 
3072 static __net_initdata struct pernet_operations proto_net_ops = {
3073 	.init = proto_init_net,
3074 	.exit = proto_exit_net,
3075 };
3076 
3077 static int __init proto_init(void)
3078 {
3079 	return register_pernet_subsys(&proto_net_ops);
3080 }
3081 
3082 subsys_initcall(proto_init);
3083 
3084 #endif /* PROC_FS */
3085