1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/sched/mm.h> 106 #include <linux/timer.h> 107 #include <linux/string.h> 108 #include <linux/sockios.h> 109 #include <linux/net.h> 110 #include <linux/mm.h> 111 #include <linux/slab.h> 112 #include <linux/interrupt.h> 113 #include <linux/poll.h> 114 #include <linux/tcp.h> 115 #include <linux/init.h> 116 #include <linux/highmem.h> 117 #include <linux/user_namespace.h> 118 #include <linux/static_key.h> 119 #include <linux/memcontrol.h> 120 #include <linux/prefetch.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 145 static DEFINE_MUTEX(proto_list_mutex); 146 static LIST_HEAD(proto_list); 147 148 static void sock_inuse_add(struct net *net, int val); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family and separate keys for internal and 201 * userspace sockets. 202 */ 203 static struct lock_class_key af_family_keys[AF_MAX]; 204 static struct lock_class_key af_family_kern_keys[AF_MAX]; 205 static struct lock_class_key af_family_slock_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 207 208 /* 209 * Make lock validator output more readable. (we pre-construct these 210 * strings build-time, so that runtime initialization of socket 211 * locks is fast): 212 */ 213 214 #define _sock_locks(x) \ 215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 224 x "27" , x "28" , x "AF_CAN" , \ 225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" 230 231 static const char *const af_family_key_strings[AF_MAX+1] = { 232 _sock_locks("sk_lock-") 233 }; 234 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 235 _sock_locks("slock-") 236 }; 237 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 238 _sock_locks("clock-") 239 }; 240 241 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 242 _sock_locks("k-sk_lock-") 243 }; 244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-slock-") 246 }; 247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 248 _sock_locks("k-clock-") 249 }; 250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , 252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", 253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , 254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , 255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , 256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , 257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , 258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , 259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , 260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" , 261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , 262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , 263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , 264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , 265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" 266 }; 267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , 269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", 270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , 271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , 272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , 273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , 274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , 275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , 276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , 277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" , 278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , 279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , 280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , 281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , 282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" 283 }; 284 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , 286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", 287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , 288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , 289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , 290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , 291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , 292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , 293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , 294 "elock-27" , "elock-28" , "elock-AF_CAN" , 295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , 296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , 297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , 298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , 299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" 300 }; 301 302 /* 303 * sk_callback_lock and sk queues locking rules are per-address-family, 304 * so split the lock classes by using a per-AF key: 305 */ 306 static struct lock_class_key af_callback_keys[AF_MAX]; 307 static struct lock_class_key af_rlock_keys[AF_MAX]; 308 static struct lock_class_key af_wlock_keys[AF_MAX]; 309 static struct lock_class_key af_elock_keys[AF_MAX]; 310 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 311 312 /* Run time adjustable parameters. */ 313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 314 EXPORT_SYMBOL(sysctl_wmem_max); 315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 316 EXPORT_SYMBOL(sysctl_rmem_max); 317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 319 320 /* Maximal space eaten by iovec or ancillary data plus some space */ 321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 322 EXPORT_SYMBOL(sysctl_optmem_max); 323 324 int sysctl_tstamp_allow_data __read_mostly = 1; 325 326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 327 EXPORT_SYMBOL_GPL(memalloc_socks); 328 329 /** 330 * sk_set_memalloc - sets %SOCK_MEMALLOC 331 * @sk: socket to set it on 332 * 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 334 * It's the responsibility of the admin to adjust min_free_kbytes 335 * to meet the requirements 336 */ 337 void sk_set_memalloc(struct sock *sk) 338 { 339 sock_set_flag(sk, SOCK_MEMALLOC); 340 sk->sk_allocation |= __GFP_MEMALLOC; 341 static_key_slow_inc(&memalloc_socks); 342 } 343 EXPORT_SYMBOL_GPL(sk_set_memalloc); 344 345 void sk_clear_memalloc(struct sock *sk) 346 { 347 sock_reset_flag(sk, SOCK_MEMALLOC); 348 sk->sk_allocation &= ~__GFP_MEMALLOC; 349 static_key_slow_dec(&memalloc_socks); 350 351 /* 352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 353 * progress of swapping. SOCK_MEMALLOC may be cleared while 354 * it has rmem allocations due to the last swapfile being deactivated 355 * but there is a risk that the socket is unusable due to exceeding 356 * the rmem limits. Reclaim the reserves and obey rmem limits again. 357 */ 358 sk_mem_reclaim(sk); 359 } 360 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 361 362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 363 { 364 int ret; 365 unsigned int noreclaim_flag; 366 367 /* these should have been dropped before queueing */ 368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 369 370 noreclaim_flag = memalloc_noreclaim_save(); 371 ret = sk->sk_backlog_rcv(sk, skb); 372 memalloc_noreclaim_restore(noreclaim_flag); 373 374 return ret; 375 } 376 EXPORT_SYMBOL(__sk_backlog_rcv); 377 378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 379 { 380 struct timeval tv; 381 382 if (optlen < sizeof(tv)) 383 return -EINVAL; 384 if (copy_from_user(&tv, optval, sizeof(tv))) 385 return -EFAULT; 386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 387 return -EDOM; 388 389 if (tv.tv_sec < 0) { 390 static int warned __read_mostly; 391 392 *timeo_p = 0; 393 if (warned < 10 && net_ratelimit()) { 394 warned++; 395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 396 __func__, current->comm, task_pid_nr(current)); 397 } 398 return 0; 399 } 400 *timeo_p = MAX_SCHEDULE_TIMEOUT; 401 if (tv.tv_sec == 0 && tv.tv_usec == 0) 402 return 0; 403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); 405 return 0; 406 } 407 408 static void sock_warn_obsolete_bsdism(const char *name) 409 { 410 static int warned; 411 static char warncomm[TASK_COMM_LEN]; 412 if (strcmp(warncomm, current->comm) && warned < 5) { 413 strcpy(warncomm, current->comm); 414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 415 warncomm, name); 416 warned++; 417 } 418 } 419 420 static bool sock_needs_netstamp(const struct sock *sk) 421 { 422 switch (sk->sk_family) { 423 case AF_UNSPEC: 424 case AF_UNIX: 425 return false; 426 default: 427 return true; 428 } 429 } 430 431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 432 { 433 if (sk->sk_flags & flags) { 434 sk->sk_flags &= ~flags; 435 if (sock_needs_netstamp(sk) && 436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 437 net_disable_timestamp(); 438 } 439 } 440 441 442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 443 { 444 unsigned long flags; 445 struct sk_buff_head *list = &sk->sk_receive_queue; 446 447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 448 atomic_inc(&sk->sk_drops); 449 trace_sock_rcvqueue_full(sk, skb); 450 return -ENOMEM; 451 } 452 453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 454 atomic_inc(&sk->sk_drops); 455 return -ENOBUFS; 456 } 457 458 skb->dev = NULL; 459 skb_set_owner_r(skb, sk); 460 461 /* we escape from rcu protected region, make sure we dont leak 462 * a norefcounted dst 463 */ 464 skb_dst_force(skb); 465 466 spin_lock_irqsave(&list->lock, flags); 467 sock_skb_set_dropcount(sk, skb); 468 __skb_queue_tail(list, skb); 469 spin_unlock_irqrestore(&list->lock, flags); 470 471 if (!sock_flag(sk, SOCK_DEAD)) 472 sk->sk_data_ready(sk); 473 return 0; 474 } 475 EXPORT_SYMBOL(__sock_queue_rcv_skb); 476 477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 478 { 479 int err; 480 481 err = sk_filter(sk, skb); 482 if (err) 483 return err; 484 485 return __sock_queue_rcv_skb(sk, skb); 486 } 487 EXPORT_SYMBOL(sock_queue_rcv_skb); 488 489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 490 const int nested, unsigned int trim_cap, bool refcounted) 491 { 492 int rc = NET_RX_SUCCESS; 493 494 if (sk_filter_trim_cap(sk, skb, trim_cap)) 495 goto discard_and_relse; 496 497 skb->dev = NULL; 498 499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 500 atomic_inc(&sk->sk_drops); 501 goto discard_and_relse; 502 } 503 if (nested) 504 bh_lock_sock_nested(sk); 505 else 506 bh_lock_sock(sk); 507 if (!sock_owned_by_user(sk)) { 508 /* 509 * trylock + unlock semantics: 510 */ 511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 512 513 rc = sk_backlog_rcv(sk, skb); 514 515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 517 bh_unlock_sock(sk); 518 atomic_inc(&sk->sk_drops); 519 goto discard_and_relse; 520 } 521 522 bh_unlock_sock(sk); 523 out: 524 if (refcounted) 525 sock_put(sk); 526 return rc; 527 discard_and_relse: 528 kfree_skb(skb); 529 goto out; 530 } 531 EXPORT_SYMBOL(__sk_receive_skb); 532 533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 534 { 535 struct dst_entry *dst = __sk_dst_get(sk); 536 537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 538 sk_tx_queue_clear(sk); 539 sk->sk_dst_pending_confirm = 0; 540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 541 dst_release(dst); 542 return NULL; 543 } 544 545 return dst; 546 } 547 EXPORT_SYMBOL(__sk_dst_check); 548 549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 550 { 551 struct dst_entry *dst = sk_dst_get(sk); 552 553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 554 sk_dst_reset(sk); 555 dst_release(dst); 556 return NULL; 557 } 558 559 return dst; 560 } 561 EXPORT_SYMBOL(sk_dst_check); 562 563 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 564 int optlen) 565 { 566 int ret = -ENOPROTOOPT; 567 #ifdef CONFIG_NETDEVICES 568 struct net *net = sock_net(sk); 569 char devname[IFNAMSIZ]; 570 int index; 571 572 /* Sorry... */ 573 ret = -EPERM; 574 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 575 goto out; 576 577 ret = -EINVAL; 578 if (optlen < 0) 579 goto out; 580 581 /* Bind this socket to a particular device like "eth0", 582 * as specified in the passed interface name. If the 583 * name is "" or the option length is zero the socket 584 * is not bound. 585 */ 586 if (optlen > IFNAMSIZ - 1) 587 optlen = IFNAMSIZ - 1; 588 memset(devname, 0, sizeof(devname)); 589 590 ret = -EFAULT; 591 if (copy_from_user(devname, optval, optlen)) 592 goto out; 593 594 index = 0; 595 if (devname[0] != '\0') { 596 struct net_device *dev; 597 598 rcu_read_lock(); 599 dev = dev_get_by_name_rcu(net, devname); 600 if (dev) 601 index = dev->ifindex; 602 rcu_read_unlock(); 603 ret = -ENODEV; 604 if (!dev) 605 goto out; 606 } 607 608 lock_sock(sk); 609 sk->sk_bound_dev_if = index; 610 sk_dst_reset(sk); 611 release_sock(sk); 612 613 ret = 0; 614 615 out: 616 #endif 617 618 return ret; 619 } 620 621 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 622 int __user *optlen, int len) 623 { 624 int ret = -ENOPROTOOPT; 625 #ifdef CONFIG_NETDEVICES 626 struct net *net = sock_net(sk); 627 char devname[IFNAMSIZ]; 628 629 if (sk->sk_bound_dev_if == 0) { 630 len = 0; 631 goto zero; 632 } 633 634 ret = -EINVAL; 635 if (len < IFNAMSIZ) 636 goto out; 637 638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 639 if (ret) 640 goto out; 641 642 len = strlen(devname) + 1; 643 644 ret = -EFAULT; 645 if (copy_to_user(optval, devname, len)) 646 goto out; 647 648 zero: 649 ret = -EFAULT; 650 if (put_user(len, optlen)) 651 goto out; 652 653 ret = 0; 654 655 out: 656 #endif 657 658 return ret; 659 } 660 661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 662 { 663 if (valbool) 664 sock_set_flag(sk, bit); 665 else 666 sock_reset_flag(sk, bit); 667 } 668 669 bool sk_mc_loop(struct sock *sk) 670 { 671 if (dev_recursion_level()) 672 return false; 673 if (!sk) 674 return true; 675 switch (sk->sk_family) { 676 case AF_INET: 677 return inet_sk(sk)->mc_loop; 678 #if IS_ENABLED(CONFIG_IPV6) 679 case AF_INET6: 680 return inet6_sk(sk)->mc_loop; 681 #endif 682 } 683 WARN_ON(1); 684 return true; 685 } 686 EXPORT_SYMBOL(sk_mc_loop); 687 688 /* 689 * This is meant for all protocols to use and covers goings on 690 * at the socket level. Everything here is generic. 691 */ 692 693 int sock_setsockopt(struct socket *sock, int level, int optname, 694 char __user *optval, unsigned int optlen) 695 { 696 struct sock *sk = sock->sk; 697 int val; 698 int valbool; 699 struct linger ling; 700 int ret = 0; 701 702 /* 703 * Options without arguments 704 */ 705 706 if (optname == SO_BINDTODEVICE) 707 return sock_setbindtodevice(sk, optval, optlen); 708 709 if (optlen < sizeof(int)) 710 return -EINVAL; 711 712 if (get_user(val, (int __user *)optval)) 713 return -EFAULT; 714 715 valbool = val ? 1 : 0; 716 717 lock_sock(sk); 718 719 switch (optname) { 720 case SO_DEBUG: 721 if (val && !capable(CAP_NET_ADMIN)) 722 ret = -EACCES; 723 else 724 sock_valbool_flag(sk, SOCK_DBG, valbool); 725 break; 726 case SO_REUSEADDR: 727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 728 break; 729 case SO_REUSEPORT: 730 sk->sk_reuseport = valbool; 731 break; 732 case SO_TYPE: 733 case SO_PROTOCOL: 734 case SO_DOMAIN: 735 case SO_ERROR: 736 ret = -ENOPROTOOPT; 737 break; 738 case SO_DONTROUTE: 739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 740 break; 741 case SO_BROADCAST: 742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 743 break; 744 case SO_SNDBUF: 745 /* Don't error on this BSD doesn't and if you think 746 * about it this is right. Otherwise apps have to 747 * play 'guess the biggest size' games. RCVBUF/SNDBUF 748 * are treated in BSD as hints 749 */ 750 val = min_t(u32, val, sysctl_wmem_max); 751 set_sndbuf: 752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 754 /* Wake up sending tasks if we upped the value. */ 755 sk->sk_write_space(sk); 756 break; 757 758 case SO_SNDBUFFORCE: 759 if (!capable(CAP_NET_ADMIN)) { 760 ret = -EPERM; 761 break; 762 } 763 goto set_sndbuf; 764 765 case SO_RCVBUF: 766 /* Don't error on this BSD doesn't and if you think 767 * about it this is right. Otherwise apps have to 768 * play 'guess the biggest size' games. RCVBUF/SNDBUF 769 * are treated in BSD as hints 770 */ 771 val = min_t(u32, val, sysctl_rmem_max); 772 set_rcvbuf: 773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 774 /* 775 * We double it on the way in to account for 776 * "struct sk_buff" etc. overhead. Applications 777 * assume that the SO_RCVBUF setting they make will 778 * allow that much actual data to be received on that 779 * socket. 780 * 781 * Applications are unaware that "struct sk_buff" and 782 * other overheads allocate from the receive buffer 783 * during socket buffer allocation. 784 * 785 * And after considering the possible alternatives, 786 * returning the value we actually used in getsockopt 787 * is the most desirable behavior. 788 */ 789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 790 break; 791 792 case SO_RCVBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 goto set_rcvbuf; 798 799 case SO_KEEPALIVE: 800 if (sk->sk_prot->keepalive) 801 sk->sk_prot->keepalive(sk, valbool); 802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 803 break; 804 805 case SO_OOBINLINE: 806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 807 break; 808 809 case SO_NO_CHECK: 810 sk->sk_no_check_tx = valbool; 811 break; 812 813 case SO_PRIORITY: 814 if ((val >= 0 && val <= 6) || 815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 816 sk->sk_priority = val; 817 else 818 ret = -EPERM; 819 break; 820 821 case SO_LINGER: 822 if (optlen < sizeof(ling)) { 823 ret = -EINVAL; /* 1003.1g */ 824 break; 825 } 826 if (copy_from_user(&ling, optval, sizeof(ling))) { 827 ret = -EFAULT; 828 break; 829 } 830 if (!ling.l_onoff) 831 sock_reset_flag(sk, SOCK_LINGER); 832 else { 833 #if (BITS_PER_LONG == 32) 834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 836 else 837 #endif 838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 839 sock_set_flag(sk, SOCK_LINGER); 840 } 841 break; 842 843 case SO_BSDCOMPAT: 844 sock_warn_obsolete_bsdism("setsockopt"); 845 break; 846 847 case SO_PASSCRED: 848 if (valbool) 849 set_bit(SOCK_PASSCRED, &sock->flags); 850 else 851 clear_bit(SOCK_PASSCRED, &sock->flags); 852 break; 853 854 case SO_TIMESTAMP: 855 case SO_TIMESTAMPNS: 856 if (valbool) { 857 if (optname == SO_TIMESTAMP) 858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 859 else 860 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 861 sock_set_flag(sk, SOCK_RCVTSTAMP); 862 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 863 } else { 864 sock_reset_flag(sk, SOCK_RCVTSTAMP); 865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 866 } 867 break; 868 869 case SO_TIMESTAMPING: 870 if (val & ~SOF_TIMESTAMPING_MASK) { 871 ret = -EINVAL; 872 break; 873 } 874 875 if (val & SOF_TIMESTAMPING_OPT_ID && 876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 877 if (sk->sk_protocol == IPPROTO_TCP && 878 sk->sk_type == SOCK_STREAM) { 879 if ((1 << sk->sk_state) & 880 (TCPF_CLOSE | TCPF_LISTEN)) { 881 ret = -EINVAL; 882 break; 883 } 884 sk->sk_tskey = tcp_sk(sk)->snd_una; 885 } else { 886 sk->sk_tskey = 0; 887 } 888 } 889 890 if (val & SOF_TIMESTAMPING_OPT_STATS && 891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 892 ret = -EINVAL; 893 break; 894 } 895 896 sk->sk_tsflags = val; 897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 898 sock_enable_timestamp(sk, 899 SOCK_TIMESTAMPING_RX_SOFTWARE); 900 else 901 sock_disable_timestamp(sk, 902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 903 break; 904 905 case SO_RCVLOWAT: 906 if (val < 0) 907 val = INT_MAX; 908 sk->sk_rcvlowat = val ? : 1; 909 break; 910 911 case SO_RCVTIMEO: 912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 913 break; 914 915 case SO_SNDTIMEO: 916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 917 break; 918 919 case SO_ATTACH_FILTER: 920 ret = -EINVAL; 921 if (optlen == sizeof(struct sock_fprog)) { 922 struct sock_fprog fprog; 923 924 ret = -EFAULT; 925 if (copy_from_user(&fprog, optval, sizeof(fprog))) 926 break; 927 928 ret = sk_attach_filter(&fprog, sk); 929 } 930 break; 931 932 case SO_ATTACH_BPF: 933 ret = -EINVAL; 934 if (optlen == sizeof(u32)) { 935 u32 ufd; 936 937 ret = -EFAULT; 938 if (copy_from_user(&ufd, optval, sizeof(ufd))) 939 break; 940 941 ret = sk_attach_bpf(ufd, sk); 942 } 943 break; 944 945 case SO_ATTACH_REUSEPORT_CBPF: 946 ret = -EINVAL; 947 if (optlen == sizeof(struct sock_fprog)) { 948 struct sock_fprog fprog; 949 950 ret = -EFAULT; 951 if (copy_from_user(&fprog, optval, sizeof(fprog))) 952 break; 953 954 ret = sk_reuseport_attach_filter(&fprog, sk); 955 } 956 break; 957 958 case SO_ATTACH_REUSEPORT_EBPF: 959 ret = -EINVAL; 960 if (optlen == sizeof(u32)) { 961 u32 ufd; 962 963 ret = -EFAULT; 964 if (copy_from_user(&ufd, optval, sizeof(ufd))) 965 break; 966 967 ret = sk_reuseport_attach_bpf(ufd, sk); 968 } 969 break; 970 971 case SO_DETACH_FILTER: 972 ret = sk_detach_filter(sk); 973 break; 974 975 case SO_LOCK_FILTER: 976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 977 ret = -EPERM; 978 else 979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 980 break; 981 982 case SO_PASSSEC: 983 if (valbool) 984 set_bit(SOCK_PASSSEC, &sock->flags); 985 else 986 clear_bit(SOCK_PASSSEC, &sock->flags); 987 break; 988 case SO_MARK: 989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 990 ret = -EPERM; 991 else 992 sk->sk_mark = val; 993 break; 994 995 case SO_RXQ_OVFL: 996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 997 break; 998 999 case SO_WIFI_STATUS: 1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1001 break; 1002 1003 case SO_PEEK_OFF: 1004 if (sock->ops->set_peek_off) 1005 ret = sock->ops->set_peek_off(sk, val); 1006 else 1007 ret = -EOPNOTSUPP; 1008 break; 1009 1010 case SO_NOFCS: 1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1012 break; 1013 1014 case SO_SELECT_ERR_QUEUE: 1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1016 break; 1017 1018 #ifdef CONFIG_NET_RX_BUSY_POLL 1019 case SO_BUSY_POLL: 1020 /* allow unprivileged users to decrease the value */ 1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1022 ret = -EPERM; 1023 else { 1024 if (val < 0) 1025 ret = -EINVAL; 1026 else 1027 sk->sk_ll_usec = val; 1028 } 1029 break; 1030 #endif 1031 1032 case SO_MAX_PACING_RATE: 1033 if (val != ~0U) 1034 cmpxchg(&sk->sk_pacing_status, 1035 SK_PACING_NONE, 1036 SK_PACING_NEEDED); 1037 sk->sk_max_pacing_rate = val; 1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1039 sk->sk_max_pacing_rate); 1040 break; 1041 1042 case SO_INCOMING_CPU: 1043 sk->sk_incoming_cpu = val; 1044 break; 1045 1046 case SO_CNX_ADVICE: 1047 if (val == 1) 1048 dst_negative_advice(sk); 1049 break; 1050 1051 case SO_ZEROCOPY: 1052 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6) 1053 ret = -ENOTSUPP; 1054 else if (sk->sk_protocol != IPPROTO_TCP) 1055 ret = -ENOTSUPP; 1056 else if (sk->sk_state != TCP_CLOSE) 1057 ret = -EBUSY; 1058 else if (val < 0 || val > 1) 1059 ret = -EINVAL; 1060 else 1061 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1062 break; 1063 1064 default: 1065 ret = -ENOPROTOOPT; 1066 break; 1067 } 1068 release_sock(sk); 1069 return ret; 1070 } 1071 EXPORT_SYMBOL(sock_setsockopt); 1072 1073 1074 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1075 struct ucred *ucred) 1076 { 1077 ucred->pid = pid_vnr(pid); 1078 ucred->uid = ucred->gid = -1; 1079 if (cred) { 1080 struct user_namespace *current_ns = current_user_ns(); 1081 1082 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1083 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1084 } 1085 } 1086 1087 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1088 { 1089 struct user_namespace *user_ns = current_user_ns(); 1090 int i; 1091 1092 for (i = 0; i < src->ngroups; i++) 1093 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1094 return -EFAULT; 1095 1096 return 0; 1097 } 1098 1099 int sock_getsockopt(struct socket *sock, int level, int optname, 1100 char __user *optval, int __user *optlen) 1101 { 1102 struct sock *sk = sock->sk; 1103 1104 union { 1105 int val; 1106 u64 val64; 1107 struct linger ling; 1108 struct timeval tm; 1109 } v; 1110 1111 int lv = sizeof(int); 1112 int len; 1113 1114 if (get_user(len, optlen)) 1115 return -EFAULT; 1116 if (len < 0) 1117 return -EINVAL; 1118 1119 memset(&v, 0, sizeof(v)); 1120 1121 switch (optname) { 1122 case SO_DEBUG: 1123 v.val = sock_flag(sk, SOCK_DBG); 1124 break; 1125 1126 case SO_DONTROUTE: 1127 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1128 break; 1129 1130 case SO_BROADCAST: 1131 v.val = sock_flag(sk, SOCK_BROADCAST); 1132 break; 1133 1134 case SO_SNDBUF: 1135 v.val = sk->sk_sndbuf; 1136 break; 1137 1138 case SO_RCVBUF: 1139 v.val = sk->sk_rcvbuf; 1140 break; 1141 1142 case SO_REUSEADDR: 1143 v.val = sk->sk_reuse; 1144 break; 1145 1146 case SO_REUSEPORT: 1147 v.val = sk->sk_reuseport; 1148 break; 1149 1150 case SO_KEEPALIVE: 1151 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1152 break; 1153 1154 case SO_TYPE: 1155 v.val = sk->sk_type; 1156 break; 1157 1158 case SO_PROTOCOL: 1159 v.val = sk->sk_protocol; 1160 break; 1161 1162 case SO_DOMAIN: 1163 v.val = sk->sk_family; 1164 break; 1165 1166 case SO_ERROR: 1167 v.val = -sock_error(sk); 1168 if (v.val == 0) 1169 v.val = xchg(&sk->sk_err_soft, 0); 1170 break; 1171 1172 case SO_OOBINLINE: 1173 v.val = sock_flag(sk, SOCK_URGINLINE); 1174 break; 1175 1176 case SO_NO_CHECK: 1177 v.val = sk->sk_no_check_tx; 1178 break; 1179 1180 case SO_PRIORITY: 1181 v.val = sk->sk_priority; 1182 break; 1183 1184 case SO_LINGER: 1185 lv = sizeof(v.ling); 1186 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1187 v.ling.l_linger = sk->sk_lingertime / HZ; 1188 break; 1189 1190 case SO_BSDCOMPAT: 1191 sock_warn_obsolete_bsdism("getsockopt"); 1192 break; 1193 1194 case SO_TIMESTAMP: 1195 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1196 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1197 break; 1198 1199 case SO_TIMESTAMPNS: 1200 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1201 break; 1202 1203 case SO_TIMESTAMPING: 1204 v.val = sk->sk_tsflags; 1205 break; 1206 1207 case SO_RCVTIMEO: 1208 lv = sizeof(struct timeval); 1209 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1210 v.tm.tv_sec = 0; 1211 v.tm.tv_usec = 0; 1212 } else { 1213 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1214 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; 1215 } 1216 break; 1217 1218 case SO_SNDTIMEO: 1219 lv = sizeof(struct timeval); 1220 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1221 v.tm.tv_sec = 0; 1222 v.tm.tv_usec = 0; 1223 } else { 1224 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1225 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; 1226 } 1227 break; 1228 1229 case SO_RCVLOWAT: 1230 v.val = sk->sk_rcvlowat; 1231 break; 1232 1233 case SO_SNDLOWAT: 1234 v.val = 1; 1235 break; 1236 1237 case SO_PASSCRED: 1238 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1239 break; 1240 1241 case SO_PEERCRED: 1242 { 1243 struct ucred peercred; 1244 if (len > sizeof(peercred)) 1245 len = sizeof(peercred); 1246 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1247 if (copy_to_user(optval, &peercred, len)) 1248 return -EFAULT; 1249 goto lenout; 1250 } 1251 1252 case SO_PEERGROUPS: 1253 { 1254 int ret, n; 1255 1256 if (!sk->sk_peer_cred) 1257 return -ENODATA; 1258 1259 n = sk->sk_peer_cred->group_info->ngroups; 1260 if (len < n * sizeof(gid_t)) { 1261 len = n * sizeof(gid_t); 1262 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1263 } 1264 len = n * sizeof(gid_t); 1265 1266 ret = groups_to_user((gid_t __user *)optval, 1267 sk->sk_peer_cred->group_info); 1268 if (ret) 1269 return ret; 1270 goto lenout; 1271 } 1272 1273 case SO_PEERNAME: 1274 { 1275 char address[128]; 1276 1277 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1278 return -ENOTCONN; 1279 if (lv < len) 1280 return -EINVAL; 1281 if (copy_to_user(optval, address, len)) 1282 return -EFAULT; 1283 goto lenout; 1284 } 1285 1286 /* Dubious BSD thing... Probably nobody even uses it, but 1287 * the UNIX standard wants it for whatever reason... -DaveM 1288 */ 1289 case SO_ACCEPTCONN: 1290 v.val = sk->sk_state == TCP_LISTEN; 1291 break; 1292 1293 case SO_PASSSEC: 1294 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1295 break; 1296 1297 case SO_PEERSEC: 1298 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1299 1300 case SO_MARK: 1301 v.val = sk->sk_mark; 1302 break; 1303 1304 case SO_RXQ_OVFL: 1305 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1306 break; 1307 1308 case SO_WIFI_STATUS: 1309 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1310 break; 1311 1312 case SO_PEEK_OFF: 1313 if (!sock->ops->set_peek_off) 1314 return -EOPNOTSUPP; 1315 1316 v.val = sk->sk_peek_off; 1317 break; 1318 case SO_NOFCS: 1319 v.val = sock_flag(sk, SOCK_NOFCS); 1320 break; 1321 1322 case SO_BINDTODEVICE: 1323 return sock_getbindtodevice(sk, optval, optlen, len); 1324 1325 case SO_GET_FILTER: 1326 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1327 if (len < 0) 1328 return len; 1329 1330 goto lenout; 1331 1332 case SO_LOCK_FILTER: 1333 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1334 break; 1335 1336 case SO_BPF_EXTENSIONS: 1337 v.val = bpf_tell_extensions(); 1338 break; 1339 1340 case SO_SELECT_ERR_QUEUE: 1341 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1342 break; 1343 1344 #ifdef CONFIG_NET_RX_BUSY_POLL 1345 case SO_BUSY_POLL: 1346 v.val = sk->sk_ll_usec; 1347 break; 1348 #endif 1349 1350 case SO_MAX_PACING_RATE: 1351 v.val = sk->sk_max_pacing_rate; 1352 break; 1353 1354 case SO_INCOMING_CPU: 1355 v.val = sk->sk_incoming_cpu; 1356 break; 1357 1358 case SO_MEMINFO: 1359 { 1360 u32 meminfo[SK_MEMINFO_VARS]; 1361 1362 if (get_user(len, optlen)) 1363 return -EFAULT; 1364 1365 sk_get_meminfo(sk, meminfo); 1366 1367 len = min_t(unsigned int, len, sizeof(meminfo)); 1368 if (copy_to_user(optval, &meminfo, len)) 1369 return -EFAULT; 1370 1371 goto lenout; 1372 } 1373 1374 #ifdef CONFIG_NET_RX_BUSY_POLL 1375 case SO_INCOMING_NAPI_ID: 1376 v.val = READ_ONCE(sk->sk_napi_id); 1377 1378 /* aggregate non-NAPI IDs down to 0 */ 1379 if (v.val < MIN_NAPI_ID) 1380 v.val = 0; 1381 1382 break; 1383 #endif 1384 1385 case SO_COOKIE: 1386 lv = sizeof(u64); 1387 if (len < lv) 1388 return -EINVAL; 1389 v.val64 = sock_gen_cookie(sk); 1390 break; 1391 1392 case SO_ZEROCOPY: 1393 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1394 break; 1395 1396 default: 1397 /* We implement the SO_SNDLOWAT etc to not be settable 1398 * (1003.1g 7). 1399 */ 1400 return -ENOPROTOOPT; 1401 } 1402 1403 if (len > lv) 1404 len = lv; 1405 if (copy_to_user(optval, &v, len)) 1406 return -EFAULT; 1407 lenout: 1408 if (put_user(len, optlen)) 1409 return -EFAULT; 1410 return 0; 1411 } 1412 1413 /* 1414 * Initialize an sk_lock. 1415 * 1416 * (We also register the sk_lock with the lock validator.) 1417 */ 1418 static inline void sock_lock_init(struct sock *sk) 1419 { 1420 if (sk->sk_kern_sock) 1421 sock_lock_init_class_and_name( 1422 sk, 1423 af_family_kern_slock_key_strings[sk->sk_family], 1424 af_family_kern_slock_keys + sk->sk_family, 1425 af_family_kern_key_strings[sk->sk_family], 1426 af_family_kern_keys + sk->sk_family); 1427 else 1428 sock_lock_init_class_and_name( 1429 sk, 1430 af_family_slock_key_strings[sk->sk_family], 1431 af_family_slock_keys + sk->sk_family, 1432 af_family_key_strings[sk->sk_family], 1433 af_family_keys + sk->sk_family); 1434 } 1435 1436 /* 1437 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1438 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1439 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1440 */ 1441 static void sock_copy(struct sock *nsk, const struct sock *osk) 1442 { 1443 #ifdef CONFIG_SECURITY_NETWORK 1444 void *sptr = nsk->sk_security; 1445 #endif 1446 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1447 1448 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1449 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1450 1451 #ifdef CONFIG_SECURITY_NETWORK 1452 nsk->sk_security = sptr; 1453 security_sk_clone(osk, nsk); 1454 #endif 1455 } 1456 1457 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1458 int family) 1459 { 1460 struct sock *sk; 1461 struct kmem_cache *slab; 1462 1463 slab = prot->slab; 1464 if (slab != NULL) { 1465 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1466 if (!sk) 1467 return sk; 1468 if (priority & __GFP_ZERO) 1469 sk_prot_clear_nulls(sk, prot->obj_size); 1470 } else 1471 sk = kmalloc(prot->obj_size, priority); 1472 1473 if (sk != NULL) { 1474 if (security_sk_alloc(sk, family, priority)) 1475 goto out_free; 1476 1477 if (!try_module_get(prot->owner)) 1478 goto out_free_sec; 1479 sk_tx_queue_clear(sk); 1480 } 1481 1482 return sk; 1483 1484 out_free_sec: 1485 security_sk_free(sk); 1486 out_free: 1487 if (slab != NULL) 1488 kmem_cache_free(slab, sk); 1489 else 1490 kfree(sk); 1491 return NULL; 1492 } 1493 1494 static void sk_prot_free(struct proto *prot, struct sock *sk) 1495 { 1496 struct kmem_cache *slab; 1497 struct module *owner; 1498 1499 owner = prot->owner; 1500 slab = prot->slab; 1501 1502 cgroup_sk_free(&sk->sk_cgrp_data); 1503 mem_cgroup_sk_free(sk); 1504 security_sk_free(sk); 1505 if (slab != NULL) 1506 kmem_cache_free(slab, sk); 1507 else 1508 kfree(sk); 1509 module_put(owner); 1510 } 1511 1512 /** 1513 * sk_alloc - All socket objects are allocated here 1514 * @net: the applicable net namespace 1515 * @family: protocol family 1516 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1517 * @prot: struct proto associated with this new sock instance 1518 * @kern: is this to be a kernel socket? 1519 */ 1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1521 struct proto *prot, int kern) 1522 { 1523 struct sock *sk; 1524 1525 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1526 if (sk) { 1527 sk->sk_family = family; 1528 /* 1529 * See comment in struct sock definition to understand 1530 * why we need sk_prot_creator -acme 1531 */ 1532 sk->sk_prot = sk->sk_prot_creator = prot; 1533 sk->sk_kern_sock = kern; 1534 sock_lock_init(sk); 1535 sk->sk_net_refcnt = kern ? 0 : 1; 1536 if (likely(sk->sk_net_refcnt)) { 1537 get_net(net); 1538 sock_inuse_add(net, 1); 1539 } 1540 1541 sock_net_set(sk, net); 1542 refcount_set(&sk->sk_wmem_alloc, 1); 1543 1544 mem_cgroup_sk_alloc(sk); 1545 cgroup_sk_alloc(&sk->sk_cgrp_data); 1546 sock_update_classid(&sk->sk_cgrp_data); 1547 sock_update_netprioidx(&sk->sk_cgrp_data); 1548 } 1549 1550 return sk; 1551 } 1552 EXPORT_SYMBOL(sk_alloc); 1553 1554 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1555 * grace period. This is the case for UDP sockets and TCP listeners. 1556 */ 1557 static void __sk_destruct(struct rcu_head *head) 1558 { 1559 struct sock *sk = container_of(head, struct sock, sk_rcu); 1560 struct sk_filter *filter; 1561 1562 if (sk->sk_destruct) 1563 sk->sk_destruct(sk); 1564 1565 filter = rcu_dereference_check(sk->sk_filter, 1566 refcount_read(&sk->sk_wmem_alloc) == 0); 1567 if (filter) { 1568 sk_filter_uncharge(sk, filter); 1569 RCU_INIT_POINTER(sk->sk_filter, NULL); 1570 } 1571 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1572 reuseport_detach_sock(sk); 1573 1574 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1575 1576 if (atomic_read(&sk->sk_omem_alloc)) 1577 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1578 __func__, atomic_read(&sk->sk_omem_alloc)); 1579 1580 if (sk->sk_frag.page) { 1581 put_page(sk->sk_frag.page); 1582 sk->sk_frag.page = NULL; 1583 } 1584 1585 if (sk->sk_peer_cred) 1586 put_cred(sk->sk_peer_cred); 1587 put_pid(sk->sk_peer_pid); 1588 if (likely(sk->sk_net_refcnt)) 1589 put_net(sock_net(sk)); 1590 sk_prot_free(sk->sk_prot_creator, sk); 1591 } 1592 1593 void sk_destruct(struct sock *sk) 1594 { 1595 if (sock_flag(sk, SOCK_RCU_FREE)) 1596 call_rcu(&sk->sk_rcu, __sk_destruct); 1597 else 1598 __sk_destruct(&sk->sk_rcu); 1599 } 1600 1601 static void __sk_free(struct sock *sk) 1602 { 1603 if (likely(sk->sk_net_refcnt)) 1604 sock_inuse_add(sock_net(sk), -1); 1605 1606 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1607 sock_diag_broadcast_destroy(sk); 1608 else 1609 sk_destruct(sk); 1610 } 1611 1612 void sk_free(struct sock *sk) 1613 { 1614 /* 1615 * We subtract one from sk_wmem_alloc and can know if 1616 * some packets are still in some tx queue. 1617 * If not null, sock_wfree() will call __sk_free(sk) later 1618 */ 1619 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1620 __sk_free(sk); 1621 } 1622 EXPORT_SYMBOL(sk_free); 1623 1624 static void sk_init_common(struct sock *sk) 1625 { 1626 skb_queue_head_init(&sk->sk_receive_queue); 1627 skb_queue_head_init(&sk->sk_write_queue); 1628 skb_queue_head_init(&sk->sk_error_queue); 1629 1630 rwlock_init(&sk->sk_callback_lock); 1631 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1632 af_rlock_keys + sk->sk_family, 1633 af_family_rlock_key_strings[sk->sk_family]); 1634 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1635 af_wlock_keys + sk->sk_family, 1636 af_family_wlock_key_strings[sk->sk_family]); 1637 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1638 af_elock_keys + sk->sk_family, 1639 af_family_elock_key_strings[sk->sk_family]); 1640 lockdep_set_class_and_name(&sk->sk_callback_lock, 1641 af_callback_keys + sk->sk_family, 1642 af_family_clock_key_strings[sk->sk_family]); 1643 } 1644 1645 /** 1646 * sk_clone_lock - clone a socket, and lock its clone 1647 * @sk: the socket to clone 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * 1650 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1651 */ 1652 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1653 { 1654 struct sock *newsk; 1655 bool is_charged = true; 1656 1657 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1658 if (newsk != NULL) { 1659 struct sk_filter *filter; 1660 1661 sock_copy(newsk, sk); 1662 1663 newsk->sk_prot_creator = sk->sk_prot; 1664 1665 /* SANITY */ 1666 if (likely(newsk->sk_net_refcnt)) 1667 get_net(sock_net(newsk)); 1668 sk_node_init(&newsk->sk_node); 1669 sock_lock_init(newsk); 1670 bh_lock_sock(newsk); 1671 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1672 newsk->sk_backlog.len = 0; 1673 1674 atomic_set(&newsk->sk_rmem_alloc, 0); 1675 /* 1676 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1677 */ 1678 refcount_set(&newsk->sk_wmem_alloc, 1); 1679 atomic_set(&newsk->sk_omem_alloc, 0); 1680 sk_init_common(newsk); 1681 1682 newsk->sk_dst_cache = NULL; 1683 newsk->sk_dst_pending_confirm = 0; 1684 newsk->sk_wmem_queued = 0; 1685 newsk->sk_forward_alloc = 0; 1686 1687 /* sk->sk_memcg will be populated at accept() time */ 1688 newsk->sk_memcg = NULL; 1689 1690 atomic_set(&newsk->sk_drops, 0); 1691 newsk->sk_send_head = NULL; 1692 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1693 atomic_set(&newsk->sk_zckey, 0); 1694 1695 sock_reset_flag(newsk, SOCK_DONE); 1696 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1697 1698 rcu_read_lock(); 1699 filter = rcu_dereference(sk->sk_filter); 1700 if (filter != NULL) 1701 /* though it's an empty new sock, the charging may fail 1702 * if sysctl_optmem_max was changed between creation of 1703 * original socket and cloning 1704 */ 1705 is_charged = sk_filter_charge(newsk, filter); 1706 RCU_INIT_POINTER(newsk->sk_filter, filter); 1707 rcu_read_unlock(); 1708 1709 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1710 /* We need to make sure that we don't uncharge the new 1711 * socket if we couldn't charge it in the first place 1712 * as otherwise we uncharge the parent's filter. 1713 */ 1714 if (!is_charged) 1715 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1716 sk_free_unlock_clone(newsk); 1717 newsk = NULL; 1718 goto out; 1719 } 1720 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1721 1722 newsk->sk_err = 0; 1723 newsk->sk_err_soft = 0; 1724 newsk->sk_priority = 0; 1725 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1726 atomic64_set(&newsk->sk_cookie, 0); 1727 if (likely(newsk->sk_net_refcnt)) 1728 sock_inuse_add(sock_net(newsk), 1); 1729 1730 /* 1731 * Before updating sk_refcnt, we must commit prior changes to memory 1732 * (Documentation/RCU/rculist_nulls.txt for details) 1733 */ 1734 smp_wmb(); 1735 refcount_set(&newsk->sk_refcnt, 2); 1736 1737 /* 1738 * Increment the counter in the same struct proto as the master 1739 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1740 * is the same as sk->sk_prot->socks, as this field was copied 1741 * with memcpy). 1742 * 1743 * This _changes_ the previous behaviour, where 1744 * tcp_create_openreq_child always was incrementing the 1745 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1746 * to be taken into account in all callers. -acme 1747 */ 1748 sk_refcnt_debug_inc(newsk); 1749 sk_set_socket(newsk, NULL); 1750 newsk->sk_wq = NULL; 1751 1752 if (newsk->sk_prot->sockets_allocated) 1753 sk_sockets_allocated_inc(newsk); 1754 1755 if (sock_needs_netstamp(sk) && 1756 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1757 net_enable_timestamp(); 1758 } 1759 out: 1760 return newsk; 1761 } 1762 EXPORT_SYMBOL_GPL(sk_clone_lock); 1763 1764 void sk_free_unlock_clone(struct sock *sk) 1765 { 1766 /* It is still raw copy of parent, so invalidate 1767 * destructor and make plain sk_free() */ 1768 sk->sk_destruct = NULL; 1769 bh_unlock_sock(sk); 1770 sk_free(sk); 1771 } 1772 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1773 1774 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1775 { 1776 u32 max_segs = 1; 1777 1778 sk_dst_set(sk, dst); 1779 sk->sk_route_caps = dst->dev->features; 1780 if (sk->sk_route_caps & NETIF_F_GSO) 1781 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1782 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1783 if (sk_can_gso(sk)) { 1784 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1785 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1786 } else { 1787 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1788 sk->sk_gso_max_size = dst->dev->gso_max_size; 1789 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1790 } 1791 } 1792 sk->sk_gso_max_segs = max_segs; 1793 } 1794 EXPORT_SYMBOL_GPL(sk_setup_caps); 1795 1796 /* 1797 * Simple resource managers for sockets. 1798 */ 1799 1800 1801 /* 1802 * Write buffer destructor automatically called from kfree_skb. 1803 */ 1804 void sock_wfree(struct sk_buff *skb) 1805 { 1806 struct sock *sk = skb->sk; 1807 unsigned int len = skb->truesize; 1808 1809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1810 /* 1811 * Keep a reference on sk_wmem_alloc, this will be released 1812 * after sk_write_space() call 1813 */ 1814 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1815 sk->sk_write_space(sk); 1816 len = 1; 1817 } 1818 /* 1819 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1820 * could not do because of in-flight packets 1821 */ 1822 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1823 __sk_free(sk); 1824 } 1825 EXPORT_SYMBOL(sock_wfree); 1826 1827 /* This variant of sock_wfree() is used by TCP, 1828 * since it sets SOCK_USE_WRITE_QUEUE. 1829 */ 1830 void __sock_wfree(struct sk_buff *skb) 1831 { 1832 struct sock *sk = skb->sk; 1833 1834 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1835 __sk_free(sk); 1836 } 1837 1838 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1839 { 1840 skb_orphan(skb); 1841 skb->sk = sk; 1842 #ifdef CONFIG_INET 1843 if (unlikely(!sk_fullsock(sk))) { 1844 skb->destructor = sock_edemux; 1845 sock_hold(sk); 1846 return; 1847 } 1848 #endif 1849 skb->destructor = sock_wfree; 1850 skb_set_hash_from_sk(skb, sk); 1851 /* 1852 * We used to take a refcount on sk, but following operation 1853 * is enough to guarantee sk_free() wont free this sock until 1854 * all in-flight packets are completed 1855 */ 1856 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1857 } 1858 EXPORT_SYMBOL(skb_set_owner_w); 1859 1860 /* This helper is used by netem, as it can hold packets in its 1861 * delay queue. We want to allow the owner socket to send more 1862 * packets, as if they were already TX completed by a typical driver. 1863 * But we also want to keep skb->sk set because some packet schedulers 1864 * rely on it (sch_fq for example). 1865 */ 1866 void skb_orphan_partial(struct sk_buff *skb) 1867 { 1868 if (skb_is_tcp_pure_ack(skb)) 1869 return; 1870 1871 if (skb->destructor == sock_wfree 1872 #ifdef CONFIG_INET 1873 || skb->destructor == tcp_wfree 1874 #endif 1875 ) { 1876 struct sock *sk = skb->sk; 1877 1878 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1879 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 1880 skb->destructor = sock_efree; 1881 } 1882 } else { 1883 skb_orphan(skb); 1884 } 1885 } 1886 EXPORT_SYMBOL(skb_orphan_partial); 1887 1888 /* 1889 * Read buffer destructor automatically called from kfree_skb. 1890 */ 1891 void sock_rfree(struct sk_buff *skb) 1892 { 1893 struct sock *sk = skb->sk; 1894 unsigned int len = skb->truesize; 1895 1896 atomic_sub(len, &sk->sk_rmem_alloc); 1897 sk_mem_uncharge(sk, len); 1898 } 1899 EXPORT_SYMBOL(sock_rfree); 1900 1901 /* 1902 * Buffer destructor for skbs that are not used directly in read or write 1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1904 */ 1905 void sock_efree(struct sk_buff *skb) 1906 { 1907 sock_put(skb->sk); 1908 } 1909 EXPORT_SYMBOL(sock_efree); 1910 1911 kuid_t sock_i_uid(struct sock *sk) 1912 { 1913 kuid_t uid; 1914 1915 read_lock_bh(&sk->sk_callback_lock); 1916 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1917 read_unlock_bh(&sk->sk_callback_lock); 1918 return uid; 1919 } 1920 EXPORT_SYMBOL(sock_i_uid); 1921 1922 unsigned long sock_i_ino(struct sock *sk) 1923 { 1924 unsigned long ino; 1925 1926 read_lock_bh(&sk->sk_callback_lock); 1927 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1928 read_unlock_bh(&sk->sk_callback_lock); 1929 return ino; 1930 } 1931 EXPORT_SYMBOL(sock_i_ino); 1932 1933 /* 1934 * Allocate a skb from the socket's send buffer. 1935 */ 1936 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1937 gfp_t priority) 1938 { 1939 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1940 struct sk_buff *skb = alloc_skb(size, priority); 1941 if (skb) { 1942 skb_set_owner_w(skb, sk); 1943 return skb; 1944 } 1945 } 1946 return NULL; 1947 } 1948 EXPORT_SYMBOL(sock_wmalloc); 1949 1950 static void sock_ofree(struct sk_buff *skb) 1951 { 1952 struct sock *sk = skb->sk; 1953 1954 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 1955 } 1956 1957 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1958 gfp_t priority) 1959 { 1960 struct sk_buff *skb; 1961 1962 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 1963 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 1964 sysctl_optmem_max) 1965 return NULL; 1966 1967 skb = alloc_skb(size, priority); 1968 if (!skb) 1969 return NULL; 1970 1971 atomic_add(skb->truesize, &sk->sk_omem_alloc); 1972 skb->sk = sk; 1973 skb->destructor = sock_ofree; 1974 return skb; 1975 } 1976 1977 /* 1978 * Allocate a memory block from the socket's option memory buffer. 1979 */ 1980 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1981 { 1982 if ((unsigned int)size <= sysctl_optmem_max && 1983 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1984 void *mem; 1985 /* First do the add, to avoid the race if kmalloc 1986 * might sleep. 1987 */ 1988 atomic_add(size, &sk->sk_omem_alloc); 1989 mem = kmalloc(size, priority); 1990 if (mem) 1991 return mem; 1992 atomic_sub(size, &sk->sk_omem_alloc); 1993 } 1994 return NULL; 1995 } 1996 EXPORT_SYMBOL(sock_kmalloc); 1997 1998 /* Free an option memory block. Note, we actually want the inline 1999 * here as this allows gcc to detect the nullify and fold away the 2000 * condition entirely. 2001 */ 2002 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2003 const bool nullify) 2004 { 2005 if (WARN_ON_ONCE(!mem)) 2006 return; 2007 if (nullify) 2008 kzfree(mem); 2009 else 2010 kfree(mem); 2011 atomic_sub(size, &sk->sk_omem_alloc); 2012 } 2013 2014 void sock_kfree_s(struct sock *sk, void *mem, int size) 2015 { 2016 __sock_kfree_s(sk, mem, size, false); 2017 } 2018 EXPORT_SYMBOL(sock_kfree_s); 2019 2020 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2021 { 2022 __sock_kfree_s(sk, mem, size, true); 2023 } 2024 EXPORT_SYMBOL(sock_kzfree_s); 2025 2026 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2027 I think, these locks should be removed for datagram sockets. 2028 */ 2029 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2030 { 2031 DEFINE_WAIT(wait); 2032 2033 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2034 for (;;) { 2035 if (!timeo) 2036 break; 2037 if (signal_pending(current)) 2038 break; 2039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2040 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2041 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2042 break; 2043 if (sk->sk_shutdown & SEND_SHUTDOWN) 2044 break; 2045 if (sk->sk_err) 2046 break; 2047 timeo = schedule_timeout(timeo); 2048 } 2049 finish_wait(sk_sleep(sk), &wait); 2050 return timeo; 2051 } 2052 2053 2054 /* 2055 * Generic send/receive buffer handlers 2056 */ 2057 2058 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2059 unsigned long data_len, int noblock, 2060 int *errcode, int max_page_order) 2061 { 2062 struct sk_buff *skb; 2063 long timeo; 2064 int err; 2065 2066 timeo = sock_sndtimeo(sk, noblock); 2067 for (;;) { 2068 err = sock_error(sk); 2069 if (err != 0) 2070 goto failure; 2071 2072 err = -EPIPE; 2073 if (sk->sk_shutdown & SEND_SHUTDOWN) 2074 goto failure; 2075 2076 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2077 break; 2078 2079 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2081 err = -EAGAIN; 2082 if (!timeo) 2083 goto failure; 2084 if (signal_pending(current)) 2085 goto interrupted; 2086 timeo = sock_wait_for_wmem(sk, timeo); 2087 } 2088 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2089 errcode, sk->sk_allocation); 2090 if (skb) 2091 skb_set_owner_w(skb, sk); 2092 return skb; 2093 2094 interrupted: 2095 err = sock_intr_errno(timeo); 2096 failure: 2097 *errcode = err; 2098 return NULL; 2099 } 2100 EXPORT_SYMBOL(sock_alloc_send_pskb); 2101 2102 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2103 int noblock, int *errcode) 2104 { 2105 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2106 } 2107 EXPORT_SYMBOL(sock_alloc_send_skb); 2108 2109 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2110 struct sockcm_cookie *sockc) 2111 { 2112 u32 tsflags; 2113 2114 switch (cmsg->cmsg_type) { 2115 case SO_MARK: 2116 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2117 return -EPERM; 2118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2119 return -EINVAL; 2120 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2121 break; 2122 case SO_TIMESTAMPING: 2123 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2124 return -EINVAL; 2125 2126 tsflags = *(u32 *)CMSG_DATA(cmsg); 2127 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2128 return -EINVAL; 2129 2130 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2131 sockc->tsflags |= tsflags; 2132 break; 2133 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2134 case SCM_RIGHTS: 2135 case SCM_CREDENTIALS: 2136 break; 2137 default: 2138 return -EINVAL; 2139 } 2140 return 0; 2141 } 2142 EXPORT_SYMBOL(__sock_cmsg_send); 2143 2144 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2145 struct sockcm_cookie *sockc) 2146 { 2147 struct cmsghdr *cmsg; 2148 int ret; 2149 2150 for_each_cmsghdr(cmsg, msg) { 2151 if (!CMSG_OK(msg, cmsg)) 2152 return -EINVAL; 2153 if (cmsg->cmsg_level != SOL_SOCKET) 2154 continue; 2155 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2156 if (ret) 2157 return ret; 2158 } 2159 return 0; 2160 } 2161 EXPORT_SYMBOL(sock_cmsg_send); 2162 2163 static void sk_enter_memory_pressure(struct sock *sk) 2164 { 2165 if (!sk->sk_prot->enter_memory_pressure) 2166 return; 2167 2168 sk->sk_prot->enter_memory_pressure(sk); 2169 } 2170 2171 static void sk_leave_memory_pressure(struct sock *sk) 2172 { 2173 if (sk->sk_prot->leave_memory_pressure) { 2174 sk->sk_prot->leave_memory_pressure(sk); 2175 } else { 2176 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2177 2178 if (memory_pressure && *memory_pressure) 2179 *memory_pressure = 0; 2180 } 2181 } 2182 2183 /* On 32bit arches, an skb frag is limited to 2^15 */ 2184 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2185 2186 /** 2187 * skb_page_frag_refill - check that a page_frag contains enough room 2188 * @sz: minimum size of the fragment we want to get 2189 * @pfrag: pointer to page_frag 2190 * @gfp: priority for memory allocation 2191 * 2192 * Note: While this allocator tries to use high order pages, there is 2193 * no guarantee that allocations succeed. Therefore, @sz MUST be 2194 * less or equal than PAGE_SIZE. 2195 */ 2196 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2197 { 2198 if (pfrag->page) { 2199 if (page_ref_count(pfrag->page) == 1) { 2200 pfrag->offset = 0; 2201 return true; 2202 } 2203 if (pfrag->offset + sz <= pfrag->size) 2204 return true; 2205 put_page(pfrag->page); 2206 } 2207 2208 pfrag->offset = 0; 2209 if (SKB_FRAG_PAGE_ORDER) { 2210 /* Avoid direct reclaim but allow kswapd to wake */ 2211 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2212 __GFP_COMP | __GFP_NOWARN | 2213 __GFP_NORETRY, 2214 SKB_FRAG_PAGE_ORDER); 2215 if (likely(pfrag->page)) { 2216 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2217 return true; 2218 } 2219 } 2220 pfrag->page = alloc_page(gfp); 2221 if (likely(pfrag->page)) { 2222 pfrag->size = PAGE_SIZE; 2223 return true; 2224 } 2225 return false; 2226 } 2227 EXPORT_SYMBOL(skb_page_frag_refill); 2228 2229 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2230 { 2231 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2232 return true; 2233 2234 sk_enter_memory_pressure(sk); 2235 sk_stream_moderate_sndbuf(sk); 2236 return false; 2237 } 2238 EXPORT_SYMBOL(sk_page_frag_refill); 2239 2240 static void __lock_sock(struct sock *sk) 2241 __releases(&sk->sk_lock.slock) 2242 __acquires(&sk->sk_lock.slock) 2243 { 2244 DEFINE_WAIT(wait); 2245 2246 for (;;) { 2247 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2248 TASK_UNINTERRUPTIBLE); 2249 spin_unlock_bh(&sk->sk_lock.slock); 2250 schedule(); 2251 spin_lock_bh(&sk->sk_lock.slock); 2252 if (!sock_owned_by_user(sk)) 2253 break; 2254 } 2255 finish_wait(&sk->sk_lock.wq, &wait); 2256 } 2257 2258 static void __release_sock(struct sock *sk) 2259 __releases(&sk->sk_lock.slock) 2260 __acquires(&sk->sk_lock.slock) 2261 { 2262 struct sk_buff *skb, *next; 2263 2264 while ((skb = sk->sk_backlog.head) != NULL) { 2265 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2266 2267 spin_unlock_bh(&sk->sk_lock.slock); 2268 2269 do { 2270 next = skb->next; 2271 prefetch(next); 2272 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2273 skb->next = NULL; 2274 sk_backlog_rcv(sk, skb); 2275 2276 cond_resched(); 2277 2278 skb = next; 2279 } while (skb != NULL); 2280 2281 spin_lock_bh(&sk->sk_lock.slock); 2282 } 2283 2284 /* 2285 * Doing the zeroing here guarantee we can not loop forever 2286 * while a wild producer attempts to flood us. 2287 */ 2288 sk->sk_backlog.len = 0; 2289 } 2290 2291 void __sk_flush_backlog(struct sock *sk) 2292 { 2293 spin_lock_bh(&sk->sk_lock.slock); 2294 __release_sock(sk); 2295 spin_unlock_bh(&sk->sk_lock.slock); 2296 } 2297 2298 /** 2299 * sk_wait_data - wait for data to arrive at sk_receive_queue 2300 * @sk: sock to wait on 2301 * @timeo: for how long 2302 * @skb: last skb seen on sk_receive_queue 2303 * 2304 * Now socket state including sk->sk_err is changed only under lock, 2305 * hence we may omit checks after joining wait queue. 2306 * We check receive queue before schedule() only as optimization; 2307 * it is very likely that release_sock() added new data. 2308 */ 2309 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2310 { 2311 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2312 int rc; 2313 2314 add_wait_queue(sk_sleep(sk), &wait); 2315 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2316 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2317 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2318 remove_wait_queue(sk_sleep(sk), &wait); 2319 return rc; 2320 } 2321 EXPORT_SYMBOL(sk_wait_data); 2322 2323 /** 2324 * __sk_mem_raise_allocated - increase memory_allocated 2325 * @sk: socket 2326 * @size: memory size to allocate 2327 * @amt: pages to allocate 2328 * @kind: allocation type 2329 * 2330 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2331 */ 2332 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2333 { 2334 struct proto *prot = sk->sk_prot; 2335 long allocated = sk_memory_allocated_add(sk, amt); 2336 2337 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2338 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2339 goto suppress_allocation; 2340 2341 /* Under limit. */ 2342 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2343 sk_leave_memory_pressure(sk); 2344 return 1; 2345 } 2346 2347 /* Under pressure. */ 2348 if (allocated > sk_prot_mem_limits(sk, 1)) 2349 sk_enter_memory_pressure(sk); 2350 2351 /* Over hard limit. */ 2352 if (allocated > sk_prot_mem_limits(sk, 2)) 2353 goto suppress_allocation; 2354 2355 /* guarantee minimum buffer size under pressure */ 2356 if (kind == SK_MEM_RECV) { 2357 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2358 return 1; 2359 2360 } else { /* SK_MEM_SEND */ 2361 int wmem0 = sk_get_wmem0(sk, prot); 2362 2363 if (sk->sk_type == SOCK_STREAM) { 2364 if (sk->sk_wmem_queued < wmem0) 2365 return 1; 2366 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2367 return 1; 2368 } 2369 } 2370 2371 if (sk_has_memory_pressure(sk)) { 2372 int alloc; 2373 2374 if (!sk_under_memory_pressure(sk)) 2375 return 1; 2376 alloc = sk_sockets_allocated_read_positive(sk); 2377 if (sk_prot_mem_limits(sk, 2) > alloc * 2378 sk_mem_pages(sk->sk_wmem_queued + 2379 atomic_read(&sk->sk_rmem_alloc) + 2380 sk->sk_forward_alloc)) 2381 return 1; 2382 } 2383 2384 suppress_allocation: 2385 2386 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2387 sk_stream_moderate_sndbuf(sk); 2388 2389 /* Fail only if socket is _under_ its sndbuf. 2390 * In this case we cannot block, so that we have to fail. 2391 */ 2392 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2393 return 1; 2394 } 2395 2396 trace_sock_exceed_buf_limit(sk, prot, allocated); 2397 2398 sk_memory_allocated_sub(sk, amt); 2399 2400 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2401 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2402 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2406 2407 /** 2408 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2409 * @sk: socket 2410 * @size: memory size to allocate 2411 * @kind: allocation type 2412 * 2413 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2414 * rmem allocation. This function assumes that protocols which have 2415 * memory_pressure use sk_wmem_queued as write buffer accounting. 2416 */ 2417 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2418 { 2419 int ret, amt = sk_mem_pages(size); 2420 2421 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2422 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2423 if (!ret) 2424 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(__sk_mem_schedule); 2428 2429 /** 2430 * __sk_mem_reduce_allocated - reclaim memory_allocated 2431 * @sk: socket 2432 * @amount: number of quanta 2433 * 2434 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2435 */ 2436 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2437 { 2438 sk_memory_allocated_sub(sk, amount); 2439 2440 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2441 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2442 2443 if (sk_under_memory_pressure(sk) && 2444 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2445 sk_leave_memory_pressure(sk); 2446 } 2447 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2448 2449 /** 2450 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2451 * @sk: socket 2452 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2453 */ 2454 void __sk_mem_reclaim(struct sock *sk, int amount) 2455 { 2456 amount >>= SK_MEM_QUANTUM_SHIFT; 2457 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2458 __sk_mem_reduce_allocated(sk, amount); 2459 } 2460 EXPORT_SYMBOL(__sk_mem_reclaim); 2461 2462 int sk_set_peek_off(struct sock *sk, int val) 2463 { 2464 sk->sk_peek_off = val; 2465 return 0; 2466 } 2467 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2468 2469 /* 2470 * Set of default routines for initialising struct proto_ops when 2471 * the protocol does not support a particular function. In certain 2472 * cases where it makes no sense for a protocol to have a "do nothing" 2473 * function, some default processing is provided. 2474 */ 2475 2476 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2477 { 2478 return -EOPNOTSUPP; 2479 } 2480 EXPORT_SYMBOL(sock_no_bind); 2481 2482 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2483 int len, int flags) 2484 { 2485 return -EOPNOTSUPP; 2486 } 2487 EXPORT_SYMBOL(sock_no_connect); 2488 2489 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2490 { 2491 return -EOPNOTSUPP; 2492 } 2493 EXPORT_SYMBOL(sock_no_socketpair); 2494 2495 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2496 bool kern) 2497 { 2498 return -EOPNOTSUPP; 2499 } 2500 EXPORT_SYMBOL(sock_no_accept); 2501 2502 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2503 int *len, int peer) 2504 { 2505 return -EOPNOTSUPP; 2506 } 2507 EXPORT_SYMBOL(sock_no_getname); 2508 2509 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2510 { 2511 return 0; 2512 } 2513 EXPORT_SYMBOL(sock_no_poll); 2514 2515 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2516 { 2517 return -EOPNOTSUPP; 2518 } 2519 EXPORT_SYMBOL(sock_no_ioctl); 2520 2521 int sock_no_listen(struct socket *sock, int backlog) 2522 { 2523 return -EOPNOTSUPP; 2524 } 2525 EXPORT_SYMBOL(sock_no_listen); 2526 2527 int sock_no_shutdown(struct socket *sock, int how) 2528 { 2529 return -EOPNOTSUPP; 2530 } 2531 EXPORT_SYMBOL(sock_no_shutdown); 2532 2533 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2534 char __user *optval, unsigned int optlen) 2535 { 2536 return -EOPNOTSUPP; 2537 } 2538 EXPORT_SYMBOL(sock_no_setsockopt); 2539 2540 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2541 char __user *optval, int __user *optlen) 2542 { 2543 return -EOPNOTSUPP; 2544 } 2545 EXPORT_SYMBOL(sock_no_getsockopt); 2546 2547 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2548 { 2549 return -EOPNOTSUPP; 2550 } 2551 EXPORT_SYMBOL(sock_no_sendmsg); 2552 2553 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2554 { 2555 return -EOPNOTSUPP; 2556 } 2557 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2558 2559 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2560 int flags) 2561 { 2562 return -EOPNOTSUPP; 2563 } 2564 EXPORT_SYMBOL(sock_no_recvmsg); 2565 2566 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2567 { 2568 /* Mirror missing mmap method error code */ 2569 return -ENODEV; 2570 } 2571 EXPORT_SYMBOL(sock_no_mmap); 2572 2573 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2574 { 2575 ssize_t res; 2576 struct msghdr msg = {.msg_flags = flags}; 2577 struct kvec iov; 2578 char *kaddr = kmap(page); 2579 iov.iov_base = kaddr + offset; 2580 iov.iov_len = size; 2581 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2582 kunmap(page); 2583 return res; 2584 } 2585 EXPORT_SYMBOL(sock_no_sendpage); 2586 2587 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2588 int offset, size_t size, int flags) 2589 { 2590 ssize_t res; 2591 struct msghdr msg = {.msg_flags = flags}; 2592 struct kvec iov; 2593 char *kaddr = kmap(page); 2594 2595 iov.iov_base = kaddr + offset; 2596 iov.iov_len = size; 2597 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2598 kunmap(page); 2599 return res; 2600 } 2601 EXPORT_SYMBOL(sock_no_sendpage_locked); 2602 2603 /* 2604 * Default Socket Callbacks 2605 */ 2606 2607 static void sock_def_wakeup(struct sock *sk) 2608 { 2609 struct socket_wq *wq; 2610 2611 rcu_read_lock(); 2612 wq = rcu_dereference(sk->sk_wq); 2613 if (skwq_has_sleeper(wq)) 2614 wake_up_interruptible_all(&wq->wait); 2615 rcu_read_unlock(); 2616 } 2617 2618 static void sock_def_error_report(struct sock *sk) 2619 { 2620 struct socket_wq *wq; 2621 2622 rcu_read_lock(); 2623 wq = rcu_dereference(sk->sk_wq); 2624 if (skwq_has_sleeper(wq)) 2625 wake_up_interruptible_poll(&wq->wait, POLLERR); 2626 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2627 rcu_read_unlock(); 2628 } 2629 2630 static void sock_def_readable(struct sock *sk) 2631 { 2632 struct socket_wq *wq; 2633 2634 rcu_read_lock(); 2635 wq = rcu_dereference(sk->sk_wq); 2636 if (skwq_has_sleeper(wq)) 2637 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2638 POLLRDNORM | POLLRDBAND); 2639 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2640 rcu_read_unlock(); 2641 } 2642 2643 static void sock_def_write_space(struct sock *sk) 2644 { 2645 struct socket_wq *wq; 2646 2647 rcu_read_lock(); 2648 2649 /* Do not wake up a writer until he can make "significant" 2650 * progress. --DaveM 2651 */ 2652 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2653 wq = rcu_dereference(sk->sk_wq); 2654 if (skwq_has_sleeper(wq)) 2655 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2656 POLLWRNORM | POLLWRBAND); 2657 2658 /* Should agree with poll, otherwise some programs break */ 2659 if (sock_writeable(sk)) 2660 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2661 } 2662 2663 rcu_read_unlock(); 2664 } 2665 2666 static void sock_def_destruct(struct sock *sk) 2667 { 2668 } 2669 2670 void sk_send_sigurg(struct sock *sk) 2671 { 2672 if (sk->sk_socket && sk->sk_socket->file) 2673 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2674 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2675 } 2676 EXPORT_SYMBOL(sk_send_sigurg); 2677 2678 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2679 unsigned long expires) 2680 { 2681 if (!mod_timer(timer, expires)) 2682 sock_hold(sk); 2683 } 2684 EXPORT_SYMBOL(sk_reset_timer); 2685 2686 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2687 { 2688 if (del_timer(timer)) 2689 __sock_put(sk); 2690 } 2691 EXPORT_SYMBOL(sk_stop_timer); 2692 2693 void sock_init_data(struct socket *sock, struct sock *sk) 2694 { 2695 sk_init_common(sk); 2696 sk->sk_send_head = NULL; 2697 2698 timer_setup(&sk->sk_timer, NULL, 0); 2699 2700 sk->sk_allocation = GFP_KERNEL; 2701 sk->sk_rcvbuf = sysctl_rmem_default; 2702 sk->sk_sndbuf = sysctl_wmem_default; 2703 sk->sk_state = TCP_CLOSE; 2704 sk_set_socket(sk, sock); 2705 2706 sock_set_flag(sk, SOCK_ZAPPED); 2707 2708 if (sock) { 2709 sk->sk_type = sock->type; 2710 sk->sk_wq = sock->wq; 2711 sock->sk = sk; 2712 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2713 } else { 2714 sk->sk_wq = NULL; 2715 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2716 } 2717 2718 rwlock_init(&sk->sk_callback_lock); 2719 if (sk->sk_kern_sock) 2720 lockdep_set_class_and_name( 2721 &sk->sk_callback_lock, 2722 af_kern_callback_keys + sk->sk_family, 2723 af_family_kern_clock_key_strings[sk->sk_family]); 2724 else 2725 lockdep_set_class_and_name( 2726 &sk->sk_callback_lock, 2727 af_callback_keys + sk->sk_family, 2728 af_family_clock_key_strings[sk->sk_family]); 2729 2730 sk->sk_state_change = sock_def_wakeup; 2731 sk->sk_data_ready = sock_def_readable; 2732 sk->sk_write_space = sock_def_write_space; 2733 sk->sk_error_report = sock_def_error_report; 2734 sk->sk_destruct = sock_def_destruct; 2735 2736 sk->sk_frag.page = NULL; 2737 sk->sk_frag.offset = 0; 2738 sk->sk_peek_off = -1; 2739 2740 sk->sk_peer_pid = NULL; 2741 sk->sk_peer_cred = NULL; 2742 sk->sk_write_pending = 0; 2743 sk->sk_rcvlowat = 1; 2744 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2745 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2746 2747 sk->sk_stamp = SK_DEFAULT_STAMP; 2748 atomic_set(&sk->sk_zckey, 0); 2749 2750 #ifdef CONFIG_NET_RX_BUSY_POLL 2751 sk->sk_napi_id = 0; 2752 sk->sk_ll_usec = sysctl_net_busy_read; 2753 #endif 2754 2755 sk->sk_max_pacing_rate = ~0U; 2756 sk->sk_pacing_rate = ~0U; 2757 sk->sk_pacing_shift = 10; 2758 sk->sk_incoming_cpu = -1; 2759 /* 2760 * Before updating sk_refcnt, we must commit prior changes to memory 2761 * (Documentation/RCU/rculist_nulls.txt for details) 2762 */ 2763 smp_wmb(); 2764 refcount_set(&sk->sk_refcnt, 1); 2765 atomic_set(&sk->sk_drops, 0); 2766 } 2767 EXPORT_SYMBOL(sock_init_data); 2768 2769 void lock_sock_nested(struct sock *sk, int subclass) 2770 { 2771 might_sleep(); 2772 spin_lock_bh(&sk->sk_lock.slock); 2773 if (sk->sk_lock.owned) 2774 __lock_sock(sk); 2775 sk->sk_lock.owned = 1; 2776 spin_unlock(&sk->sk_lock.slock); 2777 /* 2778 * The sk_lock has mutex_lock() semantics here: 2779 */ 2780 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2781 local_bh_enable(); 2782 } 2783 EXPORT_SYMBOL(lock_sock_nested); 2784 2785 void release_sock(struct sock *sk) 2786 { 2787 spin_lock_bh(&sk->sk_lock.slock); 2788 if (sk->sk_backlog.tail) 2789 __release_sock(sk); 2790 2791 /* Warning : release_cb() might need to release sk ownership, 2792 * ie call sock_release_ownership(sk) before us. 2793 */ 2794 if (sk->sk_prot->release_cb) 2795 sk->sk_prot->release_cb(sk); 2796 2797 sock_release_ownership(sk); 2798 if (waitqueue_active(&sk->sk_lock.wq)) 2799 wake_up(&sk->sk_lock.wq); 2800 spin_unlock_bh(&sk->sk_lock.slock); 2801 } 2802 EXPORT_SYMBOL(release_sock); 2803 2804 /** 2805 * lock_sock_fast - fast version of lock_sock 2806 * @sk: socket 2807 * 2808 * This version should be used for very small section, where process wont block 2809 * return false if fast path is taken: 2810 * 2811 * sk_lock.slock locked, owned = 0, BH disabled 2812 * 2813 * return true if slow path is taken: 2814 * 2815 * sk_lock.slock unlocked, owned = 1, BH enabled 2816 */ 2817 bool lock_sock_fast(struct sock *sk) 2818 { 2819 might_sleep(); 2820 spin_lock_bh(&sk->sk_lock.slock); 2821 2822 if (!sk->sk_lock.owned) 2823 /* 2824 * Note : We must disable BH 2825 */ 2826 return false; 2827 2828 __lock_sock(sk); 2829 sk->sk_lock.owned = 1; 2830 spin_unlock(&sk->sk_lock.slock); 2831 /* 2832 * The sk_lock has mutex_lock() semantics here: 2833 */ 2834 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2835 local_bh_enable(); 2836 return true; 2837 } 2838 EXPORT_SYMBOL(lock_sock_fast); 2839 2840 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2841 { 2842 struct timeval tv; 2843 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2844 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2845 tv = ktime_to_timeval(sk->sk_stamp); 2846 if (tv.tv_sec == -1) 2847 return -ENOENT; 2848 if (tv.tv_sec == 0) { 2849 sk->sk_stamp = ktime_get_real(); 2850 tv = ktime_to_timeval(sk->sk_stamp); 2851 } 2852 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2853 } 2854 EXPORT_SYMBOL(sock_get_timestamp); 2855 2856 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2857 { 2858 struct timespec ts; 2859 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2860 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2861 ts = ktime_to_timespec(sk->sk_stamp); 2862 if (ts.tv_sec == -1) 2863 return -ENOENT; 2864 if (ts.tv_sec == 0) { 2865 sk->sk_stamp = ktime_get_real(); 2866 ts = ktime_to_timespec(sk->sk_stamp); 2867 } 2868 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2869 } 2870 EXPORT_SYMBOL(sock_get_timestampns); 2871 2872 void sock_enable_timestamp(struct sock *sk, int flag) 2873 { 2874 if (!sock_flag(sk, flag)) { 2875 unsigned long previous_flags = sk->sk_flags; 2876 2877 sock_set_flag(sk, flag); 2878 /* 2879 * we just set one of the two flags which require net 2880 * time stamping, but time stamping might have been on 2881 * already because of the other one 2882 */ 2883 if (sock_needs_netstamp(sk) && 2884 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2885 net_enable_timestamp(); 2886 } 2887 } 2888 2889 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2890 int level, int type) 2891 { 2892 struct sock_exterr_skb *serr; 2893 struct sk_buff *skb; 2894 int copied, err; 2895 2896 err = -EAGAIN; 2897 skb = sock_dequeue_err_skb(sk); 2898 if (skb == NULL) 2899 goto out; 2900 2901 copied = skb->len; 2902 if (copied > len) { 2903 msg->msg_flags |= MSG_TRUNC; 2904 copied = len; 2905 } 2906 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2907 if (err) 2908 goto out_free_skb; 2909 2910 sock_recv_timestamp(msg, sk, skb); 2911 2912 serr = SKB_EXT_ERR(skb); 2913 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2914 2915 msg->msg_flags |= MSG_ERRQUEUE; 2916 err = copied; 2917 2918 out_free_skb: 2919 kfree_skb(skb); 2920 out: 2921 return err; 2922 } 2923 EXPORT_SYMBOL(sock_recv_errqueue); 2924 2925 /* 2926 * Get a socket option on an socket. 2927 * 2928 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2929 * asynchronous errors should be reported by getsockopt. We assume 2930 * this means if you specify SO_ERROR (otherwise whats the point of it). 2931 */ 2932 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2933 char __user *optval, int __user *optlen) 2934 { 2935 struct sock *sk = sock->sk; 2936 2937 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2938 } 2939 EXPORT_SYMBOL(sock_common_getsockopt); 2940 2941 #ifdef CONFIG_COMPAT 2942 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2943 char __user *optval, int __user *optlen) 2944 { 2945 struct sock *sk = sock->sk; 2946 2947 if (sk->sk_prot->compat_getsockopt != NULL) 2948 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2949 optval, optlen); 2950 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2951 } 2952 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2953 #endif 2954 2955 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2956 int flags) 2957 { 2958 struct sock *sk = sock->sk; 2959 int addr_len = 0; 2960 int err; 2961 2962 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2963 flags & ~MSG_DONTWAIT, &addr_len); 2964 if (err >= 0) 2965 msg->msg_namelen = addr_len; 2966 return err; 2967 } 2968 EXPORT_SYMBOL(sock_common_recvmsg); 2969 2970 /* 2971 * Set socket options on an inet socket. 2972 */ 2973 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2974 char __user *optval, unsigned int optlen) 2975 { 2976 struct sock *sk = sock->sk; 2977 2978 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2979 } 2980 EXPORT_SYMBOL(sock_common_setsockopt); 2981 2982 #ifdef CONFIG_COMPAT 2983 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2984 char __user *optval, unsigned int optlen) 2985 { 2986 struct sock *sk = sock->sk; 2987 2988 if (sk->sk_prot->compat_setsockopt != NULL) 2989 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2990 optval, optlen); 2991 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2992 } 2993 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2994 #endif 2995 2996 void sk_common_release(struct sock *sk) 2997 { 2998 if (sk->sk_prot->destroy) 2999 sk->sk_prot->destroy(sk); 3000 3001 /* 3002 * Observation: when sock_common_release is called, processes have 3003 * no access to socket. But net still has. 3004 * Step one, detach it from networking: 3005 * 3006 * A. Remove from hash tables. 3007 */ 3008 3009 sk->sk_prot->unhash(sk); 3010 3011 /* 3012 * In this point socket cannot receive new packets, but it is possible 3013 * that some packets are in flight because some CPU runs receiver and 3014 * did hash table lookup before we unhashed socket. They will achieve 3015 * receive queue and will be purged by socket destructor. 3016 * 3017 * Also we still have packets pending on receive queue and probably, 3018 * our own packets waiting in device queues. sock_destroy will drain 3019 * receive queue, but transmitted packets will delay socket destruction 3020 * until the last reference will be released. 3021 */ 3022 3023 sock_orphan(sk); 3024 3025 xfrm_sk_free_policy(sk); 3026 3027 sk_refcnt_debug_release(sk); 3028 3029 sock_put(sk); 3030 } 3031 EXPORT_SYMBOL(sk_common_release); 3032 3033 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3034 { 3035 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3036 3037 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3038 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3039 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3040 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3041 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3042 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3043 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3044 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3045 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3046 } 3047 3048 #ifdef CONFIG_PROC_FS 3049 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3050 struct prot_inuse { 3051 int val[PROTO_INUSE_NR]; 3052 }; 3053 3054 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3055 3056 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3057 { 3058 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3059 } 3060 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3061 3062 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3063 { 3064 int cpu, idx = prot->inuse_idx; 3065 int res = 0; 3066 3067 for_each_possible_cpu(cpu) 3068 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3069 3070 return res >= 0 ? res : 0; 3071 } 3072 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3073 3074 static void sock_inuse_add(struct net *net, int val) 3075 { 3076 this_cpu_add(*net->core.sock_inuse, val); 3077 } 3078 3079 int sock_inuse_get(struct net *net) 3080 { 3081 int cpu, res = 0; 3082 3083 for_each_possible_cpu(cpu) 3084 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3085 3086 return res; 3087 } 3088 3089 EXPORT_SYMBOL_GPL(sock_inuse_get); 3090 3091 static int __net_init sock_inuse_init_net(struct net *net) 3092 { 3093 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3094 if (net->core.prot_inuse == NULL) 3095 return -ENOMEM; 3096 3097 net->core.sock_inuse = alloc_percpu(int); 3098 if (net->core.sock_inuse == NULL) 3099 goto out; 3100 3101 return 0; 3102 3103 out: 3104 free_percpu(net->core.prot_inuse); 3105 return -ENOMEM; 3106 } 3107 3108 static void __net_exit sock_inuse_exit_net(struct net *net) 3109 { 3110 free_percpu(net->core.prot_inuse); 3111 free_percpu(net->core.sock_inuse); 3112 } 3113 3114 static struct pernet_operations net_inuse_ops = { 3115 .init = sock_inuse_init_net, 3116 .exit = sock_inuse_exit_net, 3117 }; 3118 3119 static __init int net_inuse_init(void) 3120 { 3121 if (register_pernet_subsys(&net_inuse_ops)) 3122 panic("Cannot initialize net inuse counters"); 3123 3124 return 0; 3125 } 3126 3127 core_initcall(net_inuse_init); 3128 3129 static void assign_proto_idx(struct proto *prot) 3130 { 3131 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3132 3133 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3134 pr_err("PROTO_INUSE_NR exhausted\n"); 3135 return; 3136 } 3137 3138 set_bit(prot->inuse_idx, proto_inuse_idx); 3139 } 3140 3141 static void release_proto_idx(struct proto *prot) 3142 { 3143 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3144 clear_bit(prot->inuse_idx, proto_inuse_idx); 3145 } 3146 #else 3147 static inline void assign_proto_idx(struct proto *prot) 3148 { 3149 } 3150 3151 static inline void release_proto_idx(struct proto *prot) 3152 { 3153 } 3154 3155 static void sock_inuse_add(struct net *net, int val) 3156 { 3157 } 3158 #endif 3159 3160 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3161 { 3162 if (!rsk_prot) 3163 return; 3164 kfree(rsk_prot->slab_name); 3165 rsk_prot->slab_name = NULL; 3166 kmem_cache_destroy(rsk_prot->slab); 3167 rsk_prot->slab = NULL; 3168 } 3169 3170 static int req_prot_init(const struct proto *prot) 3171 { 3172 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3173 3174 if (!rsk_prot) 3175 return 0; 3176 3177 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3178 prot->name); 3179 if (!rsk_prot->slab_name) 3180 return -ENOMEM; 3181 3182 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3183 rsk_prot->obj_size, 0, 3184 prot->slab_flags, NULL); 3185 3186 if (!rsk_prot->slab) { 3187 pr_crit("%s: Can't create request sock SLAB cache!\n", 3188 prot->name); 3189 return -ENOMEM; 3190 } 3191 return 0; 3192 } 3193 3194 int proto_register(struct proto *prot, int alloc_slab) 3195 { 3196 if (alloc_slab) { 3197 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 3198 SLAB_HWCACHE_ALIGN | prot->slab_flags, 3199 NULL); 3200 3201 if (prot->slab == NULL) { 3202 pr_crit("%s: Can't create sock SLAB cache!\n", 3203 prot->name); 3204 goto out; 3205 } 3206 3207 if (req_prot_init(prot)) 3208 goto out_free_request_sock_slab; 3209 3210 if (prot->twsk_prot != NULL) { 3211 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3212 3213 if (prot->twsk_prot->twsk_slab_name == NULL) 3214 goto out_free_request_sock_slab; 3215 3216 prot->twsk_prot->twsk_slab = 3217 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3218 prot->twsk_prot->twsk_obj_size, 3219 0, 3220 prot->slab_flags, 3221 NULL); 3222 if (prot->twsk_prot->twsk_slab == NULL) 3223 goto out_free_timewait_sock_slab_name; 3224 } 3225 } 3226 3227 mutex_lock(&proto_list_mutex); 3228 list_add(&prot->node, &proto_list); 3229 assign_proto_idx(prot); 3230 mutex_unlock(&proto_list_mutex); 3231 return 0; 3232 3233 out_free_timewait_sock_slab_name: 3234 kfree(prot->twsk_prot->twsk_slab_name); 3235 out_free_request_sock_slab: 3236 req_prot_cleanup(prot->rsk_prot); 3237 3238 kmem_cache_destroy(prot->slab); 3239 prot->slab = NULL; 3240 out: 3241 return -ENOBUFS; 3242 } 3243 EXPORT_SYMBOL(proto_register); 3244 3245 void proto_unregister(struct proto *prot) 3246 { 3247 mutex_lock(&proto_list_mutex); 3248 release_proto_idx(prot); 3249 list_del(&prot->node); 3250 mutex_unlock(&proto_list_mutex); 3251 3252 kmem_cache_destroy(prot->slab); 3253 prot->slab = NULL; 3254 3255 req_prot_cleanup(prot->rsk_prot); 3256 3257 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3258 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3259 kfree(prot->twsk_prot->twsk_slab_name); 3260 prot->twsk_prot->twsk_slab = NULL; 3261 } 3262 } 3263 EXPORT_SYMBOL(proto_unregister); 3264 3265 #ifdef CONFIG_PROC_FS 3266 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3267 __acquires(proto_list_mutex) 3268 { 3269 mutex_lock(&proto_list_mutex); 3270 return seq_list_start_head(&proto_list, *pos); 3271 } 3272 3273 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3274 { 3275 return seq_list_next(v, &proto_list, pos); 3276 } 3277 3278 static void proto_seq_stop(struct seq_file *seq, void *v) 3279 __releases(proto_list_mutex) 3280 { 3281 mutex_unlock(&proto_list_mutex); 3282 } 3283 3284 static char proto_method_implemented(const void *method) 3285 { 3286 return method == NULL ? 'n' : 'y'; 3287 } 3288 static long sock_prot_memory_allocated(struct proto *proto) 3289 { 3290 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3291 } 3292 3293 static char *sock_prot_memory_pressure(struct proto *proto) 3294 { 3295 return proto->memory_pressure != NULL ? 3296 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3297 } 3298 3299 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3300 { 3301 3302 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3303 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3304 proto->name, 3305 proto->obj_size, 3306 sock_prot_inuse_get(seq_file_net(seq), proto), 3307 sock_prot_memory_allocated(proto), 3308 sock_prot_memory_pressure(proto), 3309 proto->max_header, 3310 proto->slab == NULL ? "no" : "yes", 3311 module_name(proto->owner), 3312 proto_method_implemented(proto->close), 3313 proto_method_implemented(proto->connect), 3314 proto_method_implemented(proto->disconnect), 3315 proto_method_implemented(proto->accept), 3316 proto_method_implemented(proto->ioctl), 3317 proto_method_implemented(proto->init), 3318 proto_method_implemented(proto->destroy), 3319 proto_method_implemented(proto->shutdown), 3320 proto_method_implemented(proto->setsockopt), 3321 proto_method_implemented(proto->getsockopt), 3322 proto_method_implemented(proto->sendmsg), 3323 proto_method_implemented(proto->recvmsg), 3324 proto_method_implemented(proto->sendpage), 3325 proto_method_implemented(proto->bind), 3326 proto_method_implemented(proto->backlog_rcv), 3327 proto_method_implemented(proto->hash), 3328 proto_method_implemented(proto->unhash), 3329 proto_method_implemented(proto->get_port), 3330 proto_method_implemented(proto->enter_memory_pressure)); 3331 } 3332 3333 static int proto_seq_show(struct seq_file *seq, void *v) 3334 { 3335 if (v == &proto_list) 3336 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3337 "protocol", 3338 "size", 3339 "sockets", 3340 "memory", 3341 "press", 3342 "maxhdr", 3343 "slab", 3344 "module", 3345 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3346 else 3347 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3348 return 0; 3349 } 3350 3351 static const struct seq_operations proto_seq_ops = { 3352 .start = proto_seq_start, 3353 .next = proto_seq_next, 3354 .stop = proto_seq_stop, 3355 .show = proto_seq_show, 3356 }; 3357 3358 static int proto_seq_open(struct inode *inode, struct file *file) 3359 { 3360 return seq_open_net(inode, file, &proto_seq_ops, 3361 sizeof(struct seq_net_private)); 3362 } 3363 3364 static const struct file_operations proto_seq_fops = { 3365 .owner = THIS_MODULE, 3366 .open = proto_seq_open, 3367 .read = seq_read, 3368 .llseek = seq_lseek, 3369 .release = seq_release_net, 3370 }; 3371 3372 static __net_init int proto_init_net(struct net *net) 3373 { 3374 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3375 return -ENOMEM; 3376 3377 return 0; 3378 } 3379 3380 static __net_exit void proto_exit_net(struct net *net) 3381 { 3382 remove_proc_entry("protocols", net->proc_net); 3383 } 3384 3385 3386 static __net_initdata struct pernet_operations proto_net_ops = { 3387 .init = proto_init_net, 3388 .exit = proto_exit_net, 3389 }; 3390 3391 static int __init proto_init(void) 3392 { 3393 return register_pernet_subsys(&proto_net_ops); 3394 } 3395 3396 subsys_initcall(proto_init); 3397 3398 #endif /* PROC_FS */ 3399 3400 #ifdef CONFIG_NET_RX_BUSY_POLL 3401 bool sk_busy_loop_end(void *p, unsigned long start_time) 3402 { 3403 struct sock *sk = p; 3404 3405 return !skb_queue_empty(&sk->sk_receive_queue) || 3406 sk_busy_loop_timeout(sk, start_time); 3407 } 3408 EXPORT_SYMBOL(sk_busy_loop_end); 3409 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3410