1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 static DEFINE_MUTEX(proto_list_mutex); 145 static LIST_HEAD(proto_list); 146 147 static void sock_inuse_add(struct net *net, int val); 148 149 /** 150 * sk_ns_capable - General socket capability test 151 * @sk: Socket to use a capability on or through 152 * @user_ns: The user namespace of the capability to use 153 * @cap: The capability to use 154 * 155 * Test to see if the opener of the socket had when the socket was 156 * created and the current process has the capability @cap in the user 157 * namespace @user_ns. 158 */ 159 bool sk_ns_capable(const struct sock *sk, 160 struct user_namespace *user_ns, int cap) 161 { 162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 163 ns_capable(user_ns, cap); 164 } 165 EXPORT_SYMBOL(sk_ns_capable); 166 167 /** 168 * sk_capable - Socket global capability test 169 * @sk: Socket to use a capability on or through 170 * @cap: The global capability to use 171 * 172 * Test to see if the opener of the socket had when the socket was 173 * created and the current process has the capability @cap in all user 174 * namespaces. 175 */ 176 bool sk_capable(const struct sock *sk, int cap) 177 { 178 return sk_ns_capable(sk, &init_user_ns, cap); 179 } 180 EXPORT_SYMBOL(sk_capable); 181 182 /** 183 * sk_net_capable - Network namespace socket capability test 184 * @sk: Socket to use a capability on or through 185 * @cap: The capability to use 186 * 187 * Test to see if the opener of the socket had when the socket was created 188 * and the current process has the capability @cap over the network namespace 189 * the socket is a member of. 190 */ 191 bool sk_net_capable(const struct sock *sk, int cap) 192 { 193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 194 } 195 EXPORT_SYMBOL(sk_net_capable); 196 197 /* 198 * Each address family might have different locking rules, so we have 199 * one slock key per address family and separate keys for internal and 200 * userspace sockets. 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_keys[AF_MAX]; 204 static struct lock_class_key af_family_slock_keys[AF_MAX]; 205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 206 207 /* 208 * Make lock validator output more readable. (we pre-construct these 209 * strings build-time, so that runtime initialization of socket 210 * locks is fast): 211 */ 212 213 #define _sock_locks(x) \ 214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 223 x "27" , x "28" , x "AF_CAN" , \ 224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 229 x "AF_MCTP" , \ 230 x "AF_MAX" 231 232 static const char *const af_family_key_strings[AF_MAX+1] = { 233 _sock_locks("sk_lock-") 234 }; 235 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 236 _sock_locks("slock-") 237 }; 238 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 239 _sock_locks("clock-") 240 }; 241 242 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 243 _sock_locks("k-sk_lock-") 244 }; 245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-slock-") 247 }; 248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-clock-") 250 }; 251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 252 _sock_locks("rlock-") 253 }; 254 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 255 _sock_locks("wlock-") 256 }; 257 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 258 _sock_locks("elock-") 259 }; 260 261 /* 262 * sk_callback_lock and sk queues locking rules are per-address-family, 263 * so split the lock classes by using a per-AF key: 264 */ 265 static struct lock_class_key af_callback_keys[AF_MAX]; 266 static struct lock_class_key af_rlock_keys[AF_MAX]; 267 static struct lock_class_key af_wlock_keys[AF_MAX]; 268 static struct lock_class_key af_elock_keys[AF_MAX]; 269 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 270 271 /* Run time adjustable parameters. */ 272 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 273 EXPORT_SYMBOL(sysctl_wmem_max); 274 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 275 EXPORT_SYMBOL(sysctl_rmem_max); 276 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 277 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 278 279 /* Maximal space eaten by iovec or ancillary data plus some space */ 280 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 281 EXPORT_SYMBOL(sysctl_optmem_max); 282 283 int sysctl_tstamp_allow_data __read_mostly = 1; 284 285 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 286 EXPORT_SYMBOL_GPL(memalloc_socks_key); 287 288 /** 289 * sk_set_memalloc - sets %SOCK_MEMALLOC 290 * @sk: socket to set it on 291 * 292 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 293 * It's the responsibility of the admin to adjust min_free_kbytes 294 * to meet the requirements 295 */ 296 void sk_set_memalloc(struct sock *sk) 297 { 298 sock_set_flag(sk, SOCK_MEMALLOC); 299 sk->sk_allocation |= __GFP_MEMALLOC; 300 static_branch_inc(&memalloc_socks_key); 301 } 302 EXPORT_SYMBOL_GPL(sk_set_memalloc); 303 304 void sk_clear_memalloc(struct sock *sk) 305 { 306 sock_reset_flag(sk, SOCK_MEMALLOC); 307 sk->sk_allocation &= ~__GFP_MEMALLOC; 308 static_branch_dec(&memalloc_socks_key); 309 310 /* 311 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 312 * progress of swapping. SOCK_MEMALLOC may be cleared while 313 * it has rmem allocations due to the last swapfile being deactivated 314 * but there is a risk that the socket is unusable due to exceeding 315 * the rmem limits. Reclaim the reserves and obey rmem limits again. 316 */ 317 sk_mem_reclaim(sk); 318 } 319 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 320 321 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 322 { 323 int ret; 324 unsigned int noreclaim_flag; 325 326 /* these should have been dropped before queueing */ 327 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 328 329 noreclaim_flag = memalloc_noreclaim_save(); 330 ret = sk->sk_backlog_rcv(sk, skb); 331 memalloc_noreclaim_restore(noreclaim_flag); 332 333 return ret; 334 } 335 EXPORT_SYMBOL(__sk_backlog_rcv); 336 337 void sk_error_report(struct sock *sk) 338 { 339 sk->sk_error_report(sk); 340 341 switch (sk->sk_family) { 342 case AF_INET: 343 fallthrough; 344 case AF_INET6: 345 trace_inet_sk_error_report(sk); 346 break; 347 default: 348 break; 349 } 350 } 351 EXPORT_SYMBOL(sk_error_report); 352 353 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 354 { 355 struct __kernel_sock_timeval tv; 356 357 if (timeo == MAX_SCHEDULE_TIMEOUT) { 358 tv.tv_sec = 0; 359 tv.tv_usec = 0; 360 } else { 361 tv.tv_sec = timeo / HZ; 362 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 363 } 364 365 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 366 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 367 *(struct old_timeval32 *)optval = tv32; 368 return sizeof(tv32); 369 } 370 371 if (old_timeval) { 372 struct __kernel_old_timeval old_tv; 373 old_tv.tv_sec = tv.tv_sec; 374 old_tv.tv_usec = tv.tv_usec; 375 *(struct __kernel_old_timeval *)optval = old_tv; 376 return sizeof(old_tv); 377 } 378 379 *(struct __kernel_sock_timeval *)optval = tv; 380 return sizeof(tv); 381 } 382 383 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 384 bool old_timeval) 385 { 386 struct __kernel_sock_timeval tv; 387 388 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 389 struct old_timeval32 tv32; 390 391 if (optlen < sizeof(tv32)) 392 return -EINVAL; 393 394 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 395 return -EFAULT; 396 tv.tv_sec = tv32.tv_sec; 397 tv.tv_usec = tv32.tv_usec; 398 } else if (old_timeval) { 399 struct __kernel_old_timeval old_tv; 400 401 if (optlen < sizeof(old_tv)) 402 return -EINVAL; 403 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 404 return -EFAULT; 405 tv.tv_sec = old_tv.tv_sec; 406 tv.tv_usec = old_tv.tv_usec; 407 } else { 408 if (optlen < sizeof(tv)) 409 return -EINVAL; 410 if (copy_from_sockptr(&tv, optval, sizeof(tv))) 411 return -EFAULT; 412 } 413 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 414 return -EDOM; 415 416 if (tv.tv_sec < 0) { 417 static int warned __read_mostly; 418 419 *timeo_p = 0; 420 if (warned < 10 && net_ratelimit()) { 421 warned++; 422 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 423 __func__, current->comm, task_pid_nr(current)); 424 } 425 return 0; 426 } 427 *timeo_p = MAX_SCHEDULE_TIMEOUT; 428 if (tv.tv_sec == 0 && tv.tv_usec == 0) 429 return 0; 430 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 431 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 432 return 0; 433 } 434 435 static bool sock_needs_netstamp(const struct sock *sk) 436 { 437 switch (sk->sk_family) { 438 case AF_UNSPEC: 439 case AF_UNIX: 440 return false; 441 default: 442 return true; 443 } 444 } 445 446 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 447 { 448 if (sk->sk_flags & flags) { 449 sk->sk_flags &= ~flags; 450 if (sock_needs_netstamp(sk) && 451 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 452 net_disable_timestamp(); 453 } 454 } 455 456 457 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 458 { 459 unsigned long flags; 460 struct sk_buff_head *list = &sk->sk_receive_queue; 461 462 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 463 atomic_inc(&sk->sk_drops); 464 trace_sock_rcvqueue_full(sk, skb); 465 return -ENOMEM; 466 } 467 468 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 469 atomic_inc(&sk->sk_drops); 470 return -ENOBUFS; 471 } 472 473 skb->dev = NULL; 474 skb_set_owner_r(skb, sk); 475 476 /* we escape from rcu protected region, make sure we dont leak 477 * a norefcounted dst 478 */ 479 skb_dst_force(skb); 480 481 spin_lock_irqsave(&list->lock, flags); 482 sock_skb_set_dropcount(sk, skb); 483 __skb_queue_tail(list, skb); 484 spin_unlock_irqrestore(&list->lock, flags); 485 486 if (!sock_flag(sk, SOCK_DEAD)) 487 sk->sk_data_ready(sk); 488 return 0; 489 } 490 EXPORT_SYMBOL(__sock_queue_rcv_skb); 491 492 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 493 { 494 int err; 495 496 err = sk_filter(sk, skb); 497 if (err) 498 return err; 499 500 return __sock_queue_rcv_skb(sk, skb); 501 } 502 EXPORT_SYMBOL(sock_queue_rcv_skb); 503 504 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 505 const int nested, unsigned int trim_cap, bool refcounted) 506 { 507 int rc = NET_RX_SUCCESS; 508 509 if (sk_filter_trim_cap(sk, skb, trim_cap)) 510 goto discard_and_relse; 511 512 skb->dev = NULL; 513 514 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 515 atomic_inc(&sk->sk_drops); 516 goto discard_and_relse; 517 } 518 if (nested) 519 bh_lock_sock_nested(sk); 520 else 521 bh_lock_sock(sk); 522 if (!sock_owned_by_user(sk)) { 523 /* 524 * trylock + unlock semantics: 525 */ 526 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 527 528 rc = sk_backlog_rcv(sk, skb); 529 530 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 531 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 532 bh_unlock_sock(sk); 533 atomic_inc(&sk->sk_drops); 534 goto discard_and_relse; 535 } 536 537 bh_unlock_sock(sk); 538 out: 539 if (refcounted) 540 sock_put(sk); 541 return rc; 542 discard_and_relse: 543 kfree_skb(skb); 544 goto out; 545 } 546 EXPORT_SYMBOL(__sk_receive_skb); 547 548 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 549 u32)); 550 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 551 u32)); 552 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 553 { 554 struct dst_entry *dst = __sk_dst_get(sk); 555 556 if (dst && dst->obsolete && 557 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 558 dst, cookie) == NULL) { 559 sk_tx_queue_clear(sk); 560 sk->sk_dst_pending_confirm = 0; 561 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 562 dst_release(dst); 563 return NULL; 564 } 565 566 return dst; 567 } 568 EXPORT_SYMBOL(__sk_dst_check); 569 570 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 571 { 572 struct dst_entry *dst = sk_dst_get(sk); 573 574 if (dst && dst->obsolete && 575 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 576 dst, cookie) == NULL) { 577 sk_dst_reset(sk); 578 dst_release(dst); 579 return NULL; 580 } 581 582 return dst; 583 } 584 EXPORT_SYMBOL(sk_dst_check); 585 586 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 587 { 588 int ret = -ENOPROTOOPT; 589 #ifdef CONFIG_NETDEVICES 590 struct net *net = sock_net(sk); 591 592 /* Sorry... */ 593 ret = -EPERM; 594 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 595 goto out; 596 597 ret = -EINVAL; 598 if (ifindex < 0) 599 goto out; 600 601 sk->sk_bound_dev_if = ifindex; 602 if (sk->sk_prot->rehash) 603 sk->sk_prot->rehash(sk); 604 sk_dst_reset(sk); 605 606 ret = 0; 607 608 out: 609 #endif 610 611 return ret; 612 } 613 614 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 615 { 616 int ret; 617 618 if (lock_sk) 619 lock_sock(sk); 620 ret = sock_bindtoindex_locked(sk, ifindex); 621 if (lock_sk) 622 release_sock(sk); 623 624 return ret; 625 } 626 EXPORT_SYMBOL(sock_bindtoindex); 627 628 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 629 { 630 int ret = -ENOPROTOOPT; 631 #ifdef CONFIG_NETDEVICES 632 struct net *net = sock_net(sk); 633 char devname[IFNAMSIZ]; 634 int index; 635 636 ret = -EINVAL; 637 if (optlen < 0) 638 goto out; 639 640 /* Bind this socket to a particular device like "eth0", 641 * as specified in the passed interface name. If the 642 * name is "" or the option length is zero the socket 643 * is not bound. 644 */ 645 if (optlen > IFNAMSIZ - 1) 646 optlen = IFNAMSIZ - 1; 647 memset(devname, 0, sizeof(devname)); 648 649 ret = -EFAULT; 650 if (copy_from_sockptr(devname, optval, optlen)) 651 goto out; 652 653 index = 0; 654 if (devname[0] != '\0') { 655 struct net_device *dev; 656 657 rcu_read_lock(); 658 dev = dev_get_by_name_rcu(net, devname); 659 if (dev) 660 index = dev->ifindex; 661 rcu_read_unlock(); 662 ret = -ENODEV; 663 if (!dev) 664 goto out; 665 } 666 667 return sock_bindtoindex(sk, index, true); 668 out: 669 #endif 670 671 return ret; 672 } 673 674 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 675 int __user *optlen, int len) 676 { 677 int ret = -ENOPROTOOPT; 678 #ifdef CONFIG_NETDEVICES 679 struct net *net = sock_net(sk); 680 char devname[IFNAMSIZ]; 681 682 if (sk->sk_bound_dev_if == 0) { 683 len = 0; 684 goto zero; 685 } 686 687 ret = -EINVAL; 688 if (len < IFNAMSIZ) 689 goto out; 690 691 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 692 if (ret) 693 goto out; 694 695 len = strlen(devname) + 1; 696 697 ret = -EFAULT; 698 if (copy_to_user(optval, devname, len)) 699 goto out; 700 701 zero: 702 ret = -EFAULT; 703 if (put_user(len, optlen)) 704 goto out; 705 706 ret = 0; 707 708 out: 709 #endif 710 711 return ret; 712 } 713 714 bool sk_mc_loop(struct sock *sk) 715 { 716 if (dev_recursion_level()) 717 return false; 718 if (!sk) 719 return true; 720 switch (sk->sk_family) { 721 case AF_INET: 722 return inet_sk(sk)->mc_loop; 723 #if IS_ENABLED(CONFIG_IPV6) 724 case AF_INET6: 725 return inet6_sk(sk)->mc_loop; 726 #endif 727 } 728 WARN_ON_ONCE(1); 729 return true; 730 } 731 EXPORT_SYMBOL(sk_mc_loop); 732 733 void sock_set_reuseaddr(struct sock *sk) 734 { 735 lock_sock(sk); 736 sk->sk_reuse = SK_CAN_REUSE; 737 release_sock(sk); 738 } 739 EXPORT_SYMBOL(sock_set_reuseaddr); 740 741 void sock_set_reuseport(struct sock *sk) 742 { 743 lock_sock(sk); 744 sk->sk_reuseport = true; 745 release_sock(sk); 746 } 747 EXPORT_SYMBOL(sock_set_reuseport); 748 749 void sock_no_linger(struct sock *sk) 750 { 751 lock_sock(sk); 752 sk->sk_lingertime = 0; 753 sock_set_flag(sk, SOCK_LINGER); 754 release_sock(sk); 755 } 756 EXPORT_SYMBOL(sock_no_linger); 757 758 void sock_set_priority(struct sock *sk, u32 priority) 759 { 760 lock_sock(sk); 761 sk->sk_priority = priority; 762 release_sock(sk); 763 } 764 EXPORT_SYMBOL(sock_set_priority); 765 766 void sock_set_sndtimeo(struct sock *sk, s64 secs) 767 { 768 lock_sock(sk); 769 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 770 sk->sk_sndtimeo = secs * HZ; 771 else 772 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 773 release_sock(sk); 774 } 775 EXPORT_SYMBOL(sock_set_sndtimeo); 776 777 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 778 { 779 if (val) { 780 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 781 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 782 sock_set_flag(sk, SOCK_RCVTSTAMP); 783 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 784 } else { 785 sock_reset_flag(sk, SOCK_RCVTSTAMP); 786 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 787 } 788 } 789 790 void sock_enable_timestamps(struct sock *sk) 791 { 792 lock_sock(sk); 793 __sock_set_timestamps(sk, true, false, true); 794 release_sock(sk); 795 } 796 EXPORT_SYMBOL(sock_enable_timestamps); 797 798 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 799 { 800 switch (optname) { 801 case SO_TIMESTAMP_OLD: 802 __sock_set_timestamps(sk, valbool, false, false); 803 break; 804 case SO_TIMESTAMP_NEW: 805 __sock_set_timestamps(sk, valbool, true, false); 806 break; 807 case SO_TIMESTAMPNS_OLD: 808 __sock_set_timestamps(sk, valbool, false, true); 809 break; 810 case SO_TIMESTAMPNS_NEW: 811 __sock_set_timestamps(sk, valbool, true, true); 812 break; 813 } 814 } 815 816 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 817 { 818 struct net *net = sock_net(sk); 819 struct net_device *dev = NULL; 820 bool match = false; 821 int *vclock_index; 822 int i, num; 823 824 if (sk->sk_bound_dev_if) 825 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 826 827 if (!dev) { 828 pr_err("%s: sock not bind to device\n", __func__); 829 return -EOPNOTSUPP; 830 } 831 832 num = ethtool_get_phc_vclocks(dev, &vclock_index); 833 for (i = 0; i < num; i++) { 834 if (*(vclock_index + i) == phc_index) { 835 match = true; 836 break; 837 } 838 } 839 840 if (num > 0) 841 kfree(vclock_index); 842 843 if (!match) 844 return -EINVAL; 845 846 sk->sk_bind_phc = phc_index; 847 848 return 0; 849 } 850 851 int sock_set_timestamping(struct sock *sk, int optname, 852 struct so_timestamping timestamping) 853 { 854 int val = timestamping.flags; 855 int ret; 856 857 if (val & ~SOF_TIMESTAMPING_MASK) 858 return -EINVAL; 859 860 if (val & SOF_TIMESTAMPING_OPT_ID && 861 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 862 if (sk->sk_protocol == IPPROTO_TCP && 863 sk->sk_type == SOCK_STREAM) { 864 if ((1 << sk->sk_state) & 865 (TCPF_CLOSE | TCPF_LISTEN)) 866 return -EINVAL; 867 sk->sk_tskey = tcp_sk(sk)->snd_una; 868 } else { 869 sk->sk_tskey = 0; 870 } 871 } 872 873 if (val & SOF_TIMESTAMPING_OPT_STATS && 874 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 875 return -EINVAL; 876 877 if (val & SOF_TIMESTAMPING_BIND_PHC) { 878 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 879 if (ret) 880 return ret; 881 } 882 883 sk->sk_tsflags = val; 884 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 885 886 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 887 sock_enable_timestamp(sk, 888 SOCK_TIMESTAMPING_RX_SOFTWARE); 889 else 890 sock_disable_timestamp(sk, 891 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 892 return 0; 893 } 894 895 void sock_set_keepalive(struct sock *sk) 896 { 897 lock_sock(sk); 898 if (sk->sk_prot->keepalive) 899 sk->sk_prot->keepalive(sk, true); 900 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 901 release_sock(sk); 902 } 903 EXPORT_SYMBOL(sock_set_keepalive); 904 905 static void __sock_set_rcvbuf(struct sock *sk, int val) 906 { 907 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 908 * as a negative value. 909 */ 910 val = min_t(int, val, INT_MAX / 2); 911 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 912 913 /* We double it on the way in to account for "struct sk_buff" etc. 914 * overhead. Applications assume that the SO_RCVBUF setting they make 915 * will allow that much actual data to be received on that socket. 916 * 917 * Applications are unaware that "struct sk_buff" and other overheads 918 * allocate from the receive buffer during socket buffer allocation. 919 * 920 * And after considering the possible alternatives, returning the value 921 * we actually used in getsockopt is the most desirable behavior. 922 */ 923 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 924 } 925 926 void sock_set_rcvbuf(struct sock *sk, int val) 927 { 928 lock_sock(sk); 929 __sock_set_rcvbuf(sk, val); 930 release_sock(sk); 931 } 932 EXPORT_SYMBOL(sock_set_rcvbuf); 933 934 static void __sock_set_mark(struct sock *sk, u32 val) 935 { 936 if (val != sk->sk_mark) { 937 sk->sk_mark = val; 938 sk_dst_reset(sk); 939 } 940 } 941 942 void sock_set_mark(struct sock *sk, u32 val) 943 { 944 lock_sock(sk); 945 __sock_set_mark(sk, val); 946 release_sock(sk); 947 } 948 EXPORT_SYMBOL(sock_set_mark); 949 950 /* 951 * This is meant for all protocols to use and covers goings on 952 * at the socket level. Everything here is generic. 953 */ 954 955 int sock_setsockopt(struct socket *sock, int level, int optname, 956 sockptr_t optval, unsigned int optlen) 957 { 958 struct so_timestamping timestamping; 959 struct sock_txtime sk_txtime; 960 struct sock *sk = sock->sk; 961 int val; 962 int valbool; 963 struct linger ling; 964 int ret = 0; 965 966 /* 967 * Options without arguments 968 */ 969 970 if (optname == SO_BINDTODEVICE) 971 return sock_setbindtodevice(sk, optval, optlen); 972 973 if (optlen < sizeof(int)) 974 return -EINVAL; 975 976 if (copy_from_sockptr(&val, optval, sizeof(val))) 977 return -EFAULT; 978 979 valbool = val ? 1 : 0; 980 981 lock_sock(sk); 982 983 switch (optname) { 984 case SO_DEBUG: 985 if (val && !capable(CAP_NET_ADMIN)) 986 ret = -EACCES; 987 else 988 sock_valbool_flag(sk, SOCK_DBG, valbool); 989 break; 990 case SO_REUSEADDR: 991 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 992 break; 993 case SO_REUSEPORT: 994 sk->sk_reuseport = valbool; 995 break; 996 case SO_TYPE: 997 case SO_PROTOCOL: 998 case SO_DOMAIN: 999 case SO_ERROR: 1000 ret = -ENOPROTOOPT; 1001 break; 1002 case SO_DONTROUTE: 1003 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1004 sk_dst_reset(sk); 1005 break; 1006 case SO_BROADCAST: 1007 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1008 break; 1009 case SO_SNDBUF: 1010 /* Don't error on this BSD doesn't and if you think 1011 * about it this is right. Otherwise apps have to 1012 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1013 * are treated in BSD as hints 1014 */ 1015 val = min_t(u32, val, sysctl_wmem_max); 1016 set_sndbuf: 1017 /* Ensure val * 2 fits into an int, to prevent max_t() 1018 * from treating it as a negative value. 1019 */ 1020 val = min_t(int, val, INT_MAX / 2); 1021 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1022 WRITE_ONCE(sk->sk_sndbuf, 1023 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1024 /* Wake up sending tasks if we upped the value. */ 1025 sk->sk_write_space(sk); 1026 break; 1027 1028 case SO_SNDBUFFORCE: 1029 if (!capable(CAP_NET_ADMIN)) { 1030 ret = -EPERM; 1031 break; 1032 } 1033 1034 /* No negative values (to prevent underflow, as val will be 1035 * multiplied by 2). 1036 */ 1037 if (val < 0) 1038 val = 0; 1039 goto set_sndbuf; 1040 1041 case SO_RCVBUF: 1042 /* Don't error on this BSD doesn't and if you think 1043 * about it this is right. Otherwise apps have to 1044 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1045 * are treated in BSD as hints 1046 */ 1047 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1048 break; 1049 1050 case SO_RCVBUFFORCE: 1051 if (!capable(CAP_NET_ADMIN)) { 1052 ret = -EPERM; 1053 break; 1054 } 1055 1056 /* No negative values (to prevent underflow, as val will be 1057 * multiplied by 2). 1058 */ 1059 __sock_set_rcvbuf(sk, max(val, 0)); 1060 break; 1061 1062 case SO_KEEPALIVE: 1063 if (sk->sk_prot->keepalive) 1064 sk->sk_prot->keepalive(sk, valbool); 1065 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1066 break; 1067 1068 case SO_OOBINLINE: 1069 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1070 break; 1071 1072 case SO_NO_CHECK: 1073 sk->sk_no_check_tx = valbool; 1074 break; 1075 1076 case SO_PRIORITY: 1077 if ((val >= 0 && val <= 6) || 1078 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1079 sk->sk_priority = val; 1080 else 1081 ret = -EPERM; 1082 break; 1083 1084 case SO_LINGER: 1085 if (optlen < sizeof(ling)) { 1086 ret = -EINVAL; /* 1003.1g */ 1087 break; 1088 } 1089 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1090 ret = -EFAULT; 1091 break; 1092 } 1093 if (!ling.l_onoff) 1094 sock_reset_flag(sk, SOCK_LINGER); 1095 else { 1096 #if (BITS_PER_LONG == 32) 1097 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1098 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1099 else 1100 #endif 1101 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1102 sock_set_flag(sk, SOCK_LINGER); 1103 } 1104 break; 1105 1106 case SO_BSDCOMPAT: 1107 break; 1108 1109 case SO_PASSCRED: 1110 if (valbool) 1111 set_bit(SOCK_PASSCRED, &sock->flags); 1112 else 1113 clear_bit(SOCK_PASSCRED, &sock->flags); 1114 break; 1115 1116 case SO_TIMESTAMP_OLD: 1117 case SO_TIMESTAMP_NEW: 1118 case SO_TIMESTAMPNS_OLD: 1119 case SO_TIMESTAMPNS_NEW: 1120 sock_set_timestamp(sk, optname, valbool); 1121 break; 1122 1123 case SO_TIMESTAMPING_NEW: 1124 case SO_TIMESTAMPING_OLD: 1125 if (optlen == sizeof(timestamping)) { 1126 if (copy_from_sockptr(×tamping, optval, 1127 sizeof(timestamping))) { 1128 ret = -EFAULT; 1129 break; 1130 } 1131 } else { 1132 memset(×tamping, 0, sizeof(timestamping)); 1133 timestamping.flags = val; 1134 } 1135 ret = sock_set_timestamping(sk, optname, timestamping); 1136 break; 1137 1138 case SO_RCVLOWAT: 1139 if (val < 0) 1140 val = INT_MAX; 1141 if (sock->ops->set_rcvlowat) 1142 ret = sock->ops->set_rcvlowat(sk, val); 1143 else 1144 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1145 break; 1146 1147 case SO_RCVTIMEO_OLD: 1148 case SO_RCVTIMEO_NEW: 1149 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1150 optlen, optname == SO_RCVTIMEO_OLD); 1151 break; 1152 1153 case SO_SNDTIMEO_OLD: 1154 case SO_SNDTIMEO_NEW: 1155 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1156 optlen, optname == SO_SNDTIMEO_OLD); 1157 break; 1158 1159 case SO_ATTACH_FILTER: { 1160 struct sock_fprog fprog; 1161 1162 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1163 if (!ret) 1164 ret = sk_attach_filter(&fprog, sk); 1165 break; 1166 } 1167 case SO_ATTACH_BPF: 1168 ret = -EINVAL; 1169 if (optlen == sizeof(u32)) { 1170 u32 ufd; 1171 1172 ret = -EFAULT; 1173 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1174 break; 1175 1176 ret = sk_attach_bpf(ufd, sk); 1177 } 1178 break; 1179 1180 case SO_ATTACH_REUSEPORT_CBPF: { 1181 struct sock_fprog fprog; 1182 1183 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1184 if (!ret) 1185 ret = sk_reuseport_attach_filter(&fprog, sk); 1186 break; 1187 } 1188 case SO_ATTACH_REUSEPORT_EBPF: 1189 ret = -EINVAL; 1190 if (optlen == sizeof(u32)) { 1191 u32 ufd; 1192 1193 ret = -EFAULT; 1194 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1195 break; 1196 1197 ret = sk_reuseport_attach_bpf(ufd, sk); 1198 } 1199 break; 1200 1201 case SO_DETACH_REUSEPORT_BPF: 1202 ret = reuseport_detach_prog(sk); 1203 break; 1204 1205 case SO_DETACH_FILTER: 1206 ret = sk_detach_filter(sk); 1207 break; 1208 1209 case SO_LOCK_FILTER: 1210 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1211 ret = -EPERM; 1212 else 1213 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1214 break; 1215 1216 case SO_PASSSEC: 1217 if (valbool) 1218 set_bit(SOCK_PASSSEC, &sock->flags); 1219 else 1220 clear_bit(SOCK_PASSSEC, &sock->flags); 1221 break; 1222 case SO_MARK: 1223 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1224 ret = -EPERM; 1225 break; 1226 } 1227 1228 __sock_set_mark(sk, val); 1229 break; 1230 1231 case SO_RXQ_OVFL: 1232 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1233 break; 1234 1235 case SO_WIFI_STATUS: 1236 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1237 break; 1238 1239 case SO_PEEK_OFF: 1240 if (sock->ops->set_peek_off) 1241 ret = sock->ops->set_peek_off(sk, val); 1242 else 1243 ret = -EOPNOTSUPP; 1244 break; 1245 1246 case SO_NOFCS: 1247 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1248 break; 1249 1250 case SO_SELECT_ERR_QUEUE: 1251 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1252 break; 1253 1254 #ifdef CONFIG_NET_RX_BUSY_POLL 1255 case SO_BUSY_POLL: 1256 /* allow unprivileged users to decrease the value */ 1257 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1258 ret = -EPERM; 1259 else { 1260 if (val < 0) 1261 ret = -EINVAL; 1262 else 1263 WRITE_ONCE(sk->sk_ll_usec, val); 1264 } 1265 break; 1266 case SO_PREFER_BUSY_POLL: 1267 if (valbool && !capable(CAP_NET_ADMIN)) 1268 ret = -EPERM; 1269 else 1270 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1271 break; 1272 case SO_BUSY_POLL_BUDGET: 1273 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1274 ret = -EPERM; 1275 } else { 1276 if (val < 0 || val > U16_MAX) 1277 ret = -EINVAL; 1278 else 1279 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1280 } 1281 break; 1282 #endif 1283 1284 case SO_MAX_PACING_RATE: 1285 { 1286 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1287 1288 if (sizeof(ulval) != sizeof(val) && 1289 optlen >= sizeof(ulval) && 1290 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1291 ret = -EFAULT; 1292 break; 1293 } 1294 if (ulval != ~0UL) 1295 cmpxchg(&sk->sk_pacing_status, 1296 SK_PACING_NONE, 1297 SK_PACING_NEEDED); 1298 sk->sk_max_pacing_rate = ulval; 1299 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1300 break; 1301 } 1302 case SO_INCOMING_CPU: 1303 WRITE_ONCE(sk->sk_incoming_cpu, val); 1304 break; 1305 1306 case SO_CNX_ADVICE: 1307 if (val == 1) 1308 dst_negative_advice(sk); 1309 break; 1310 1311 case SO_ZEROCOPY: 1312 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1313 if (!((sk->sk_type == SOCK_STREAM && 1314 sk->sk_protocol == IPPROTO_TCP) || 1315 (sk->sk_type == SOCK_DGRAM && 1316 sk->sk_protocol == IPPROTO_UDP))) 1317 ret = -ENOTSUPP; 1318 } else if (sk->sk_family != PF_RDS) { 1319 ret = -ENOTSUPP; 1320 } 1321 if (!ret) { 1322 if (val < 0 || val > 1) 1323 ret = -EINVAL; 1324 else 1325 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1326 } 1327 break; 1328 1329 case SO_TXTIME: 1330 if (optlen != sizeof(struct sock_txtime)) { 1331 ret = -EINVAL; 1332 break; 1333 } else if (copy_from_sockptr(&sk_txtime, optval, 1334 sizeof(struct sock_txtime))) { 1335 ret = -EFAULT; 1336 break; 1337 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1338 ret = -EINVAL; 1339 break; 1340 } 1341 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1342 * scheduler has enough safe guards. 1343 */ 1344 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1345 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1346 ret = -EPERM; 1347 break; 1348 } 1349 sock_valbool_flag(sk, SOCK_TXTIME, true); 1350 sk->sk_clockid = sk_txtime.clockid; 1351 sk->sk_txtime_deadline_mode = 1352 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1353 sk->sk_txtime_report_errors = 1354 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1355 break; 1356 1357 case SO_BINDTOIFINDEX: 1358 ret = sock_bindtoindex_locked(sk, val); 1359 break; 1360 1361 case SO_BUF_LOCK: 1362 if (val & ~SOCK_BUF_LOCK_MASK) { 1363 ret = -EINVAL; 1364 break; 1365 } 1366 sk->sk_userlocks = val | (sk->sk_userlocks & 1367 ~SOCK_BUF_LOCK_MASK); 1368 break; 1369 1370 default: 1371 ret = -ENOPROTOOPT; 1372 break; 1373 } 1374 release_sock(sk); 1375 return ret; 1376 } 1377 EXPORT_SYMBOL(sock_setsockopt); 1378 1379 1380 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1381 struct ucred *ucred) 1382 { 1383 ucred->pid = pid_vnr(pid); 1384 ucred->uid = ucred->gid = -1; 1385 if (cred) { 1386 struct user_namespace *current_ns = current_user_ns(); 1387 1388 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1389 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1390 } 1391 } 1392 1393 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1394 { 1395 struct user_namespace *user_ns = current_user_ns(); 1396 int i; 1397 1398 for (i = 0; i < src->ngroups; i++) 1399 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1400 return -EFAULT; 1401 1402 return 0; 1403 } 1404 1405 int sock_getsockopt(struct socket *sock, int level, int optname, 1406 char __user *optval, int __user *optlen) 1407 { 1408 struct sock *sk = sock->sk; 1409 1410 union { 1411 int val; 1412 u64 val64; 1413 unsigned long ulval; 1414 struct linger ling; 1415 struct old_timeval32 tm32; 1416 struct __kernel_old_timeval tm; 1417 struct __kernel_sock_timeval stm; 1418 struct sock_txtime txtime; 1419 struct so_timestamping timestamping; 1420 } v; 1421 1422 int lv = sizeof(int); 1423 int len; 1424 1425 if (get_user(len, optlen)) 1426 return -EFAULT; 1427 if (len < 0) 1428 return -EINVAL; 1429 1430 memset(&v, 0, sizeof(v)); 1431 1432 switch (optname) { 1433 case SO_DEBUG: 1434 v.val = sock_flag(sk, SOCK_DBG); 1435 break; 1436 1437 case SO_DONTROUTE: 1438 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1439 break; 1440 1441 case SO_BROADCAST: 1442 v.val = sock_flag(sk, SOCK_BROADCAST); 1443 break; 1444 1445 case SO_SNDBUF: 1446 v.val = sk->sk_sndbuf; 1447 break; 1448 1449 case SO_RCVBUF: 1450 v.val = sk->sk_rcvbuf; 1451 break; 1452 1453 case SO_REUSEADDR: 1454 v.val = sk->sk_reuse; 1455 break; 1456 1457 case SO_REUSEPORT: 1458 v.val = sk->sk_reuseport; 1459 break; 1460 1461 case SO_KEEPALIVE: 1462 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1463 break; 1464 1465 case SO_TYPE: 1466 v.val = sk->sk_type; 1467 break; 1468 1469 case SO_PROTOCOL: 1470 v.val = sk->sk_protocol; 1471 break; 1472 1473 case SO_DOMAIN: 1474 v.val = sk->sk_family; 1475 break; 1476 1477 case SO_ERROR: 1478 v.val = -sock_error(sk); 1479 if (v.val == 0) 1480 v.val = xchg(&sk->sk_err_soft, 0); 1481 break; 1482 1483 case SO_OOBINLINE: 1484 v.val = sock_flag(sk, SOCK_URGINLINE); 1485 break; 1486 1487 case SO_NO_CHECK: 1488 v.val = sk->sk_no_check_tx; 1489 break; 1490 1491 case SO_PRIORITY: 1492 v.val = sk->sk_priority; 1493 break; 1494 1495 case SO_LINGER: 1496 lv = sizeof(v.ling); 1497 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1498 v.ling.l_linger = sk->sk_lingertime / HZ; 1499 break; 1500 1501 case SO_BSDCOMPAT: 1502 break; 1503 1504 case SO_TIMESTAMP_OLD: 1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1506 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1507 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1508 break; 1509 1510 case SO_TIMESTAMPNS_OLD: 1511 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1512 break; 1513 1514 case SO_TIMESTAMP_NEW: 1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1516 break; 1517 1518 case SO_TIMESTAMPNS_NEW: 1519 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1520 break; 1521 1522 case SO_TIMESTAMPING_OLD: 1523 lv = sizeof(v.timestamping); 1524 v.timestamping.flags = sk->sk_tsflags; 1525 v.timestamping.bind_phc = sk->sk_bind_phc; 1526 break; 1527 1528 case SO_RCVTIMEO_OLD: 1529 case SO_RCVTIMEO_NEW: 1530 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1531 break; 1532 1533 case SO_SNDTIMEO_OLD: 1534 case SO_SNDTIMEO_NEW: 1535 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1536 break; 1537 1538 case SO_RCVLOWAT: 1539 v.val = sk->sk_rcvlowat; 1540 break; 1541 1542 case SO_SNDLOWAT: 1543 v.val = 1; 1544 break; 1545 1546 case SO_PASSCRED: 1547 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1548 break; 1549 1550 case SO_PEERCRED: 1551 { 1552 struct ucred peercred; 1553 if (len > sizeof(peercred)) 1554 len = sizeof(peercred); 1555 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1556 if (copy_to_user(optval, &peercred, len)) 1557 return -EFAULT; 1558 goto lenout; 1559 } 1560 1561 case SO_PEERGROUPS: 1562 { 1563 int ret, n; 1564 1565 if (!sk->sk_peer_cred) 1566 return -ENODATA; 1567 1568 n = sk->sk_peer_cred->group_info->ngroups; 1569 if (len < n * sizeof(gid_t)) { 1570 len = n * sizeof(gid_t); 1571 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1572 } 1573 len = n * sizeof(gid_t); 1574 1575 ret = groups_to_user((gid_t __user *)optval, 1576 sk->sk_peer_cred->group_info); 1577 if (ret) 1578 return ret; 1579 goto lenout; 1580 } 1581 1582 case SO_PEERNAME: 1583 { 1584 char address[128]; 1585 1586 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1587 if (lv < 0) 1588 return -ENOTCONN; 1589 if (lv < len) 1590 return -EINVAL; 1591 if (copy_to_user(optval, address, len)) 1592 return -EFAULT; 1593 goto lenout; 1594 } 1595 1596 /* Dubious BSD thing... Probably nobody even uses it, but 1597 * the UNIX standard wants it for whatever reason... -DaveM 1598 */ 1599 case SO_ACCEPTCONN: 1600 v.val = sk->sk_state == TCP_LISTEN; 1601 break; 1602 1603 case SO_PASSSEC: 1604 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1605 break; 1606 1607 case SO_PEERSEC: 1608 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1609 1610 case SO_MARK: 1611 v.val = sk->sk_mark; 1612 break; 1613 1614 case SO_RXQ_OVFL: 1615 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1616 break; 1617 1618 case SO_WIFI_STATUS: 1619 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1620 break; 1621 1622 case SO_PEEK_OFF: 1623 if (!sock->ops->set_peek_off) 1624 return -EOPNOTSUPP; 1625 1626 v.val = sk->sk_peek_off; 1627 break; 1628 case SO_NOFCS: 1629 v.val = sock_flag(sk, SOCK_NOFCS); 1630 break; 1631 1632 case SO_BINDTODEVICE: 1633 return sock_getbindtodevice(sk, optval, optlen, len); 1634 1635 case SO_GET_FILTER: 1636 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1637 if (len < 0) 1638 return len; 1639 1640 goto lenout; 1641 1642 case SO_LOCK_FILTER: 1643 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1644 break; 1645 1646 case SO_BPF_EXTENSIONS: 1647 v.val = bpf_tell_extensions(); 1648 break; 1649 1650 case SO_SELECT_ERR_QUEUE: 1651 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1652 break; 1653 1654 #ifdef CONFIG_NET_RX_BUSY_POLL 1655 case SO_BUSY_POLL: 1656 v.val = sk->sk_ll_usec; 1657 break; 1658 case SO_PREFER_BUSY_POLL: 1659 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1660 break; 1661 #endif 1662 1663 case SO_MAX_PACING_RATE: 1664 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1665 lv = sizeof(v.ulval); 1666 v.ulval = sk->sk_max_pacing_rate; 1667 } else { 1668 /* 32bit version */ 1669 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1670 } 1671 break; 1672 1673 case SO_INCOMING_CPU: 1674 v.val = READ_ONCE(sk->sk_incoming_cpu); 1675 break; 1676 1677 case SO_MEMINFO: 1678 { 1679 u32 meminfo[SK_MEMINFO_VARS]; 1680 1681 sk_get_meminfo(sk, meminfo); 1682 1683 len = min_t(unsigned int, len, sizeof(meminfo)); 1684 if (copy_to_user(optval, &meminfo, len)) 1685 return -EFAULT; 1686 1687 goto lenout; 1688 } 1689 1690 #ifdef CONFIG_NET_RX_BUSY_POLL 1691 case SO_INCOMING_NAPI_ID: 1692 v.val = READ_ONCE(sk->sk_napi_id); 1693 1694 /* aggregate non-NAPI IDs down to 0 */ 1695 if (v.val < MIN_NAPI_ID) 1696 v.val = 0; 1697 1698 break; 1699 #endif 1700 1701 case SO_COOKIE: 1702 lv = sizeof(u64); 1703 if (len < lv) 1704 return -EINVAL; 1705 v.val64 = sock_gen_cookie(sk); 1706 break; 1707 1708 case SO_ZEROCOPY: 1709 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1710 break; 1711 1712 case SO_TXTIME: 1713 lv = sizeof(v.txtime); 1714 v.txtime.clockid = sk->sk_clockid; 1715 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1716 SOF_TXTIME_DEADLINE_MODE : 0; 1717 v.txtime.flags |= sk->sk_txtime_report_errors ? 1718 SOF_TXTIME_REPORT_ERRORS : 0; 1719 break; 1720 1721 case SO_BINDTOIFINDEX: 1722 v.val = sk->sk_bound_dev_if; 1723 break; 1724 1725 case SO_NETNS_COOKIE: 1726 lv = sizeof(u64); 1727 if (len != lv) 1728 return -EINVAL; 1729 v.val64 = sock_net(sk)->net_cookie; 1730 break; 1731 1732 case SO_BUF_LOCK: 1733 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1734 break; 1735 1736 default: 1737 /* We implement the SO_SNDLOWAT etc to not be settable 1738 * (1003.1g 7). 1739 */ 1740 return -ENOPROTOOPT; 1741 } 1742 1743 if (len > lv) 1744 len = lv; 1745 if (copy_to_user(optval, &v, len)) 1746 return -EFAULT; 1747 lenout: 1748 if (put_user(len, optlen)) 1749 return -EFAULT; 1750 return 0; 1751 } 1752 1753 /* 1754 * Initialize an sk_lock. 1755 * 1756 * (We also register the sk_lock with the lock validator.) 1757 */ 1758 static inline void sock_lock_init(struct sock *sk) 1759 { 1760 if (sk->sk_kern_sock) 1761 sock_lock_init_class_and_name( 1762 sk, 1763 af_family_kern_slock_key_strings[sk->sk_family], 1764 af_family_kern_slock_keys + sk->sk_family, 1765 af_family_kern_key_strings[sk->sk_family], 1766 af_family_kern_keys + sk->sk_family); 1767 else 1768 sock_lock_init_class_and_name( 1769 sk, 1770 af_family_slock_key_strings[sk->sk_family], 1771 af_family_slock_keys + sk->sk_family, 1772 af_family_key_strings[sk->sk_family], 1773 af_family_keys + sk->sk_family); 1774 } 1775 1776 /* 1777 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1778 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1779 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1780 */ 1781 static void sock_copy(struct sock *nsk, const struct sock *osk) 1782 { 1783 const struct proto *prot = READ_ONCE(osk->sk_prot); 1784 #ifdef CONFIG_SECURITY_NETWORK 1785 void *sptr = nsk->sk_security; 1786 #endif 1787 1788 /* If we move sk_tx_queue_mapping out of the private section, 1789 * we must check if sk_tx_queue_clear() is called after 1790 * sock_copy() in sk_clone_lock(). 1791 */ 1792 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1793 offsetof(struct sock, sk_dontcopy_begin) || 1794 offsetof(struct sock, sk_tx_queue_mapping) >= 1795 offsetof(struct sock, sk_dontcopy_end)); 1796 1797 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1798 1799 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1800 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1801 1802 #ifdef CONFIG_SECURITY_NETWORK 1803 nsk->sk_security = sptr; 1804 security_sk_clone(osk, nsk); 1805 #endif 1806 } 1807 1808 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1809 int family) 1810 { 1811 struct sock *sk; 1812 struct kmem_cache *slab; 1813 1814 slab = prot->slab; 1815 if (slab != NULL) { 1816 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1817 if (!sk) 1818 return sk; 1819 if (want_init_on_alloc(priority)) 1820 sk_prot_clear_nulls(sk, prot->obj_size); 1821 } else 1822 sk = kmalloc(prot->obj_size, priority); 1823 1824 if (sk != NULL) { 1825 if (security_sk_alloc(sk, family, priority)) 1826 goto out_free; 1827 1828 if (!try_module_get(prot->owner)) 1829 goto out_free_sec; 1830 } 1831 1832 return sk; 1833 1834 out_free_sec: 1835 security_sk_free(sk); 1836 out_free: 1837 if (slab != NULL) 1838 kmem_cache_free(slab, sk); 1839 else 1840 kfree(sk); 1841 return NULL; 1842 } 1843 1844 static void sk_prot_free(struct proto *prot, struct sock *sk) 1845 { 1846 struct kmem_cache *slab; 1847 struct module *owner; 1848 1849 owner = prot->owner; 1850 slab = prot->slab; 1851 1852 cgroup_sk_free(&sk->sk_cgrp_data); 1853 mem_cgroup_sk_free(sk); 1854 security_sk_free(sk); 1855 if (slab != NULL) 1856 kmem_cache_free(slab, sk); 1857 else 1858 kfree(sk); 1859 module_put(owner); 1860 } 1861 1862 /** 1863 * sk_alloc - All socket objects are allocated here 1864 * @net: the applicable net namespace 1865 * @family: protocol family 1866 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1867 * @prot: struct proto associated with this new sock instance 1868 * @kern: is this to be a kernel socket? 1869 */ 1870 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1871 struct proto *prot, int kern) 1872 { 1873 struct sock *sk; 1874 1875 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1876 if (sk) { 1877 sk->sk_family = family; 1878 /* 1879 * See comment in struct sock definition to understand 1880 * why we need sk_prot_creator -acme 1881 */ 1882 sk->sk_prot = sk->sk_prot_creator = prot; 1883 sk->sk_kern_sock = kern; 1884 sock_lock_init(sk); 1885 sk->sk_net_refcnt = kern ? 0 : 1; 1886 if (likely(sk->sk_net_refcnt)) { 1887 get_net(net); 1888 sock_inuse_add(net, 1); 1889 } 1890 1891 sock_net_set(sk, net); 1892 refcount_set(&sk->sk_wmem_alloc, 1); 1893 1894 mem_cgroup_sk_alloc(sk); 1895 cgroup_sk_alloc(&sk->sk_cgrp_data); 1896 sock_update_classid(&sk->sk_cgrp_data); 1897 sock_update_netprioidx(&sk->sk_cgrp_data); 1898 sk_tx_queue_clear(sk); 1899 } 1900 1901 return sk; 1902 } 1903 EXPORT_SYMBOL(sk_alloc); 1904 1905 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1906 * grace period. This is the case for UDP sockets and TCP listeners. 1907 */ 1908 static void __sk_destruct(struct rcu_head *head) 1909 { 1910 struct sock *sk = container_of(head, struct sock, sk_rcu); 1911 struct sk_filter *filter; 1912 1913 if (sk->sk_destruct) 1914 sk->sk_destruct(sk); 1915 1916 filter = rcu_dereference_check(sk->sk_filter, 1917 refcount_read(&sk->sk_wmem_alloc) == 0); 1918 if (filter) { 1919 sk_filter_uncharge(sk, filter); 1920 RCU_INIT_POINTER(sk->sk_filter, NULL); 1921 } 1922 1923 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1924 1925 #ifdef CONFIG_BPF_SYSCALL 1926 bpf_sk_storage_free(sk); 1927 #endif 1928 1929 if (atomic_read(&sk->sk_omem_alloc)) 1930 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1931 __func__, atomic_read(&sk->sk_omem_alloc)); 1932 1933 if (sk->sk_frag.page) { 1934 put_page(sk->sk_frag.page); 1935 sk->sk_frag.page = NULL; 1936 } 1937 1938 if (sk->sk_peer_cred) 1939 put_cred(sk->sk_peer_cred); 1940 put_pid(sk->sk_peer_pid); 1941 if (likely(sk->sk_net_refcnt)) 1942 put_net(sock_net(sk)); 1943 sk_prot_free(sk->sk_prot_creator, sk); 1944 } 1945 1946 void sk_destruct(struct sock *sk) 1947 { 1948 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1949 1950 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1951 reuseport_detach_sock(sk); 1952 use_call_rcu = true; 1953 } 1954 1955 if (use_call_rcu) 1956 call_rcu(&sk->sk_rcu, __sk_destruct); 1957 else 1958 __sk_destruct(&sk->sk_rcu); 1959 } 1960 1961 static void __sk_free(struct sock *sk) 1962 { 1963 if (likely(sk->sk_net_refcnt)) 1964 sock_inuse_add(sock_net(sk), -1); 1965 1966 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1967 sock_diag_broadcast_destroy(sk); 1968 else 1969 sk_destruct(sk); 1970 } 1971 1972 void sk_free(struct sock *sk) 1973 { 1974 /* 1975 * We subtract one from sk_wmem_alloc and can know if 1976 * some packets are still in some tx queue. 1977 * If not null, sock_wfree() will call __sk_free(sk) later 1978 */ 1979 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1980 __sk_free(sk); 1981 } 1982 EXPORT_SYMBOL(sk_free); 1983 1984 static void sk_init_common(struct sock *sk) 1985 { 1986 skb_queue_head_init(&sk->sk_receive_queue); 1987 skb_queue_head_init(&sk->sk_write_queue); 1988 skb_queue_head_init(&sk->sk_error_queue); 1989 1990 rwlock_init(&sk->sk_callback_lock); 1991 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1992 af_rlock_keys + sk->sk_family, 1993 af_family_rlock_key_strings[sk->sk_family]); 1994 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1995 af_wlock_keys + sk->sk_family, 1996 af_family_wlock_key_strings[sk->sk_family]); 1997 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1998 af_elock_keys + sk->sk_family, 1999 af_family_elock_key_strings[sk->sk_family]); 2000 lockdep_set_class_and_name(&sk->sk_callback_lock, 2001 af_callback_keys + sk->sk_family, 2002 af_family_clock_key_strings[sk->sk_family]); 2003 } 2004 2005 /** 2006 * sk_clone_lock - clone a socket, and lock its clone 2007 * @sk: the socket to clone 2008 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2009 * 2010 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2011 */ 2012 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2013 { 2014 struct proto *prot = READ_ONCE(sk->sk_prot); 2015 struct sk_filter *filter; 2016 bool is_charged = true; 2017 struct sock *newsk; 2018 2019 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2020 if (!newsk) 2021 goto out; 2022 2023 sock_copy(newsk, sk); 2024 2025 newsk->sk_prot_creator = prot; 2026 2027 /* SANITY */ 2028 if (likely(newsk->sk_net_refcnt)) 2029 get_net(sock_net(newsk)); 2030 sk_node_init(&newsk->sk_node); 2031 sock_lock_init(newsk); 2032 bh_lock_sock(newsk); 2033 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2034 newsk->sk_backlog.len = 0; 2035 2036 atomic_set(&newsk->sk_rmem_alloc, 0); 2037 2038 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2039 refcount_set(&newsk->sk_wmem_alloc, 1); 2040 2041 atomic_set(&newsk->sk_omem_alloc, 0); 2042 sk_init_common(newsk); 2043 2044 newsk->sk_dst_cache = NULL; 2045 newsk->sk_dst_pending_confirm = 0; 2046 newsk->sk_wmem_queued = 0; 2047 newsk->sk_forward_alloc = 0; 2048 atomic_set(&newsk->sk_drops, 0); 2049 newsk->sk_send_head = NULL; 2050 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2051 atomic_set(&newsk->sk_zckey, 0); 2052 2053 sock_reset_flag(newsk, SOCK_DONE); 2054 2055 /* sk->sk_memcg will be populated at accept() time */ 2056 newsk->sk_memcg = NULL; 2057 2058 cgroup_sk_clone(&newsk->sk_cgrp_data); 2059 2060 rcu_read_lock(); 2061 filter = rcu_dereference(sk->sk_filter); 2062 if (filter != NULL) 2063 /* though it's an empty new sock, the charging may fail 2064 * if sysctl_optmem_max was changed between creation of 2065 * original socket and cloning 2066 */ 2067 is_charged = sk_filter_charge(newsk, filter); 2068 RCU_INIT_POINTER(newsk->sk_filter, filter); 2069 rcu_read_unlock(); 2070 2071 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2072 /* We need to make sure that we don't uncharge the new 2073 * socket if we couldn't charge it in the first place 2074 * as otherwise we uncharge the parent's filter. 2075 */ 2076 if (!is_charged) 2077 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2078 sk_free_unlock_clone(newsk); 2079 newsk = NULL; 2080 goto out; 2081 } 2082 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2083 2084 if (bpf_sk_storage_clone(sk, newsk)) { 2085 sk_free_unlock_clone(newsk); 2086 newsk = NULL; 2087 goto out; 2088 } 2089 2090 /* Clear sk_user_data if parent had the pointer tagged 2091 * as not suitable for copying when cloning. 2092 */ 2093 if (sk_user_data_is_nocopy(newsk)) 2094 newsk->sk_user_data = NULL; 2095 2096 newsk->sk_err = 0; 2097 newsk->sk_err_soft = 0; 2098 newsk->sk_priority = 0; 2099 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2100 if (likely(newsk->sk_net_refcnt)) 2101 sock_inuse_add(sock_net(newsk), 1); 2102 2103 /* Before updating sk_refcnt, we must commit prior changes to memory 2104 * (Documentation/RCU/rculist_nulls.rst for details) 2105 */ 2106 smp_wmb(); 2107 refcount_set(&newsk->sk_refcnt, 2); 2108 2109 /* Increment the counter in the same struct proto as the master 2110 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2111 * is the same as sk->sk_prot->socks, as this field was copied 2112 * with memcpy). 2113 * 2114 * This _changes_ the previous behaviour, where 2115 * tcp_create_openreq_child always was incrementing the 2116 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2117 * to be taken into account in all callers. -acme 2118 */ 2119 sk_refcnt_debug_inc(newsk); 2120 sk_set_socket(newsk, NULL); 2121 sk_tx_queue_clear(newsk); 2122 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2123 2124 if (newsk->sk_prot->sockets_allocated) 2125 sk_sockets_allocated_inc(newsk); 2126 2127 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2128 net_enable_timestamp(); 2129 out: 2130 return newsk; 2131 } 2132 EXPORT_SYMBOL_GPL(sk_clone_lock); 2133 2134 void sk_free_unlock_clone(struct sock *sk) 2135 { 2136 /* It is still raw copy of parent, so invalidate 2137 * destructor and make plain sk_free() */ 2138 sk->sk_destruct = NULL; 2139 bh_unlock_sock(sk); 2140 sk_free(sk); 2141 } 2142 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2143 2144 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2145 { 2146 u32 max_segs = 1; 2147 2148 sk_dst_set(sk, dst); 2149 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 2150 if (sk->sk_route_caps & NETIF_F_GSO) 2151 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2152 sk->sk_route_caps &= ~sk->sk_route_nocaps; 2153 if (sk_can_gso(sk)) { 2154 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2155 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2156 } else { 2157 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2158 sk->sk_gso_max_size = dst->dev->gso_max_size; 2159 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 2160 } 2161 } 2162 sk->sk_gso_max_segs = max_segs; 2163 } 2164 EXPORT_SYMBOL_GPL(sk_setup_caps); 2165 2166 /* 2167 * Simple resource managers for sockets. 2168 */ 2169 2170 2171 /* 2172 * Write buffer destructor automatically called from kfree_skb. 2173 */ 2174 void sock_wfree(struct sk_buff *skb) 2175 { 2176 struct sock *sk = skb->sk; 2177 unsigned int len = skb->truesize; 2178 2179 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2180 /* 2181 * Keep a reference on sk_wmem_alloc, this will be released 2182 * after sk_write_space() call 2183 */ 2184 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2185 sk->sk_write_space(sk); 2186 len = 1; 2187 } 2188 /* 2189 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2190 * could not do because of in-flight packets 2191 */ 2192 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2193 __sk_free(sk); 2194 } 2195 EXPORT_SYMBOL(sock_wfree); 2196 2197 /* This variant of sock_wfree() is used by TCP, 2198 * since it sets SOCK_USE_WRITE_QUEUE. 2199 */ 2200 void __sock_wfree(struct sk_buff *skb) 2201 { 2202 struct sock *sk = skb->sk; 2203 2204 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2205 __sk_free(sk); 2206 } 2207 2208 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2209 { 2210 skb_orphan(skb); 2211 skb->sk = sk; 2212 #ifdef CONFIG_INET 2213 if (unlikely(!sk_fullsock(sk))) { 2214 skb->destructor = sock_edemux; 2215 sock_hold(sk); 2216 return; 2217 } 2218 #endif 2219 skb->destructor = sock_wfree; 2220 skb_set_hash_from_sk(skb, sk); 2221 /* 2222 * We used to take a refcount on sk, but following operation 2223 * is enough to guarantee sk_free() wont free this sock until 2224 * all in-flight packets are completed 2225 */ 2226 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2227 } 2228 EXPORT_SYMBOL(skb_set_owner_w); 2229 2230 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2231 { 2232 #ifdef CONFIG_TLS_DEVICE 2233 /* Drivers depend on in-order delivery for crypto offload, 2234 * partial orphan breaks out-of-order-OK logic. 2235 */ 2236 if (skb->decrypted) 2237 return false; 2238 #endif 2239 return (skb->destructor == sock_wfree || 2240 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2241 } 2242 2243 /* This helper is used by netem, as it can hold packets in its 2244 * delay queue. We want to allow the owner socket to send more 2245 * packets, as if they were already TX completed by a typical driver. 2246 * But we also want to keep skb->sk set because some packet schedulers 2247 * rely on it (sch_fq for example). 2248 */ 2249 void skb_orphan_partial(struct sk_buff *skb) 2250 { 2251 if (skb_is_tcp_pure_ack(skb)) 2252 return; 2253 2254 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2255 return; 2256 2257 skb_orphan(skb); 2258 } 2259 EXPORT_SYMBOL(skb_orphan_partial); 2260 2261 /* 2262 * Read buffer destructor automatically called from kfree_skb. 2263 */ 2264 void sock_rfree(struct sk_buff *skb) 2265 { 2266 struct sock *sk = skb->sk; 2267 unsigned int len = skb->truesize; 2268 2269 atomic_sub(len, &sk->sk_rmem_alloc); 2270 sk_mem_uncharge(sk, len); 2271 } 2272 EXPORT_SYMBOL(sock_rfree); 2273 2274 /* 2275 * Buffer destructor for skbs that are not used directly in read or write 2276 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2277 */ 2278 void sock_efree(struct sk_buff *skb) 2279 { 2280 sock_put(skb->sk); 2281 } 2282 EXPORT_SYMBOL(sock_efree); 2283 2284 /* Buffer destructor for prefetch/receive path where reference count may 2285 * not be held, e.g. for listen sockets. 2286 */ 2287 #ifdef CONFIG_INET 2288 void sock_pfree(struct sk_buff *skb) 2289 { 2290 if (sk_is_refcounted(skb->sk)) 2291 sock_gen_put(skb->sk); 2292 } 2293 EXPORT_SYMBOL(sock_pfree); 2294 #endif /* CONFIG_INET */ 2295 2296 kuid_t sock_i_uid(struct sock *sk) 2297 { 2298 kuid_t uid; 2299 2300 read_lock_bh(&sk->sk_callback_lock); 2301 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2302 read_unlock_bh(&sk->sk_callback_lock); 2303 return uid; 2304 } 2305 EXPORT_SYMBOL(sock_i_uid); 2306 2307 unsigned long sock_i_ino(struct sock *sk) 2308 { 2309 unsigned long ino; 2310 2311 read_lock_bh(&sk->sk_callback_lock); 2312 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2313 read_unlock_bh(&sk->sk_callback_lock); 2314 return ino; 2315 } 2316 EXPORT_SYMBOL(sock_i_ino); 2317 2318 /* 2319 * Allocate a skb from the socket's send buffer. 2320 */ 2321 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2322 gfp_t priority) 2323 { 2324 if (force || 2325 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2326 struct sk_buff *skb = alloc_skb(size, priority); 2327 2328 if (skb) { 2329 skb_set_owner_w(skb, sk); 2330 return skb; 2331 } 2332 } 2333 return NULL; 2334 } 2335 EXPORT_SYMBOL(sock_wmalloc); 2336 2337 static void sock_ofree(struct sk_buff *skb) 2338 { 2339 struct sock *sk = skb->sk; 2340 2341 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2342 } 2343 2344 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2345 gfp_t priority) 2346 { 2347 struct sk_buff *skb; 2348 2349 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2350 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2351 sysctl_optmem_max) 2352 return NULL; 2353 2354 skb = alloc_skb(size, priority); 2355 if (!skb) 2356 return NULL; 2357 2358 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2359 skb->sk = sk; 2360 skb->destructor = sock_ofree; 2361 return skb; 2362 } 2363 2364 /* 2365 * Allocate a memory block from the socket's option memory buffer. 2366 */ 2367 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2368 { 2369 if ((unsigned int)size <= sysctl_optmem_max && 2370 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2371 void *mem; 2372 /* First do the add, to avoid the race if kmalloc 2373 * might sleep. 2374 */ 2375 atomic_add(size, &sk->sk_omem_alloc); 2376 mem = kmalloc(size, priority); 2377 if (mem) 2378 return mem; 2379 atomic_sub(size, &sk->sk_omem_alloc); 2380 } 2381 return NULL; 2382 } 2383 EXPORT_SYMBOL(sock_kmalloc); 2384 2385 /* Free an option memory block. Note, we actually want the inline 2386 * here as this allows gcc to detect the nullify and fold away the 2387 * condition entirely. 2388 */ 2389 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2390 const bool nullify) 2391 { 2392 if (WARN_ON_ONCE(!mem)) 2393 return; 2394 if (nullify) 2395 kfree_sensitive(mem); 2396 else 2397 kfree(mem); 2398 atomic_sub(size, &sk->sk_omem_alloc); 2399 } 2400 2401 void sock_kfree_s(struct sock *sk, void *mem, int size) 2402 { 2403 __sock_kfree_s(sk, mem, size, false); 2404 } 2405 EXPORT_SYMBOL(sock_kfree_s); 2406 2407 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2408 { 2409 __sock_kfree_s(sk, mem, size, true); 2410 } 2411 EXPORT_SYMBOL(sock_kzfree_s); 2412 2413 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2414 I think, these locks should be removed for datagram sockets. 2415 */ 2416 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2417 { 2418 DEFINE_WAIT(wait); 2419 2420 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2421 for (;;) { 2422 if (!timeo) 2423 break; 2424 if (signal_pending(current)) 2425 break; 2426 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2427 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2428 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2429 break; 2430 if (sk->sk_shutdown & SEND_SHUTDOWN) 2431 break; 2432 if (sk->sk_err) 2433 break; 2434 timeo = schedule_timeout(timeo); 2435 } 2436 finish_wait(sk_sleep(sk), &wait); 2437 return timeo; 2438 } 2439 2440 2441 /* 2442 * Generic send/receive buffer handlers 2443 */ 2444 2445 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2446 unsigned long data_len, int noblock, 2447 int *errcode, int max_page_order) 2448 { 2449 struct sk_buff *skb; 2450 long timeo; 2451 int err; 2452 2453 timeo = sock_sndtimeo(sk, noblock); 2454 for (;;) { 2455 err = sock_error(sk); 2456 if (err != 0) 2457 goto failure; 2458 2459 err = -EPIPE; 2460 if (sk->sk_shutdown & SEND_SHUTDOWN) 2461 goto failure; 2462 2463 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2464 break; 2465 2466 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2467 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2468 err = -EAGAIN; 2469 if (!timeo) 2470 goto failure; 2471 if (signal_pending(current)) 2472 goto interrupted; 2473 timeo = sock_wait_for_wmem(sk, timeo); 2474 } 2475 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2476 errcode, sk->sk_allocation); 2477 if (skb) 2478 skb_set_owner_w(skb, sk); 2479 return skb; 2480 2481 interrupted: 2482 err = sock_intr_errno(timeo); 2483 failure: 2484 *errcode = err; 2485 return NULL; 2486 } 2487 EXPORT_SYMBOL(sock_alloc_send_pskb); 2488 2489 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2490 int noblock, int *errcode) 2491 { 2492 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2493 } 2494 EXPORT_SYMBOL(sock_alloc_send_skb); 2495 2496 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2497 struct sockcm_cookie *sockc) 2498 { 2499 u32 tsflags; 2500 2501 switch (cmsg->cmsg_type) { 2502 case SO_MARK: 2503 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2504 return -EPERM; 2505 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2506 return -EINVAL; 2507 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2508 break; 2509 case SO_TIMESTAMPING_OLD: 2510 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2511 return -EINVAL; 2512 2513 tsflags = *(u32 *)CMSG_DATA(cmsg); 2514 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2515 return -EINVAL; 2516 2517 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2518 sockc->tsflags |= tsflags; 2519 break; 2520 case SCM_TXTIME: 2521 if (!sock_flag(sk, SOCK_TXTIME)) 2522 return -EINVAL; 2523 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2524 return -EINVAL; 2525 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2526 break; 2527 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2528 case SCM_RIGHTS: 2529 case SCM_CREDENTIALS: 2530 break; 2531 default: 2532 return -EINVAL; 2533 } 2534 return 0; 2535 } 2536 EXPORT_SYMBOL(__sock_cmsg_send); 2537 2538 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2539 struct sockcm_cookie *sockc) 2540 { 2541 struct cmsghdr *cmsg; 2542 int ret; 2543 2544 for_each_cmsghdr(cmsg, msg) { 2545 if (!CMSG_OK(msg, cmsg)) 2546 return -EINVAL; 2547 if (cmsg->cmsg_level != SOL_SOCKET) 2548 continue; 2549 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2550 if (ret) 2551 return ret; 2552 } 2553 return 0; 2554 } 2555 EXPORT_SYMBOL(sock_cmsg_send); 2556 2557 static void sk_enter_memory_pressure(struct sock *sk) 2558 { 2559 if (!sk->sk_prot->enter_memory_pressure) 2560 return; 2561 2562 sk->sk_prot->enter_memory_pressure(sk); 2563 } 2564 2565 static void sk_leave_memory_pressure(struct sock *sk) 2566 { 2567 if (sk->sk_prot->leave_memory_pressure) { 2568 sk->sk_prot->leave_memory_pressure(sk); 2569 } else { 2570 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2571 2572 if (memory_pressure && READ_ONCE(*memory_pressure)) 2573 WRITE_ONCE(*memory_pressure, 0); 2574 } 2575 } 2576 2577 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2578 2579 /** 2580 * skb_page_frag_refill - check that a page_frag contains enough room 2581 * @sz: minimum size of the fragment we want to get 2582 * @pfrag: pointer to page_frag 2583 * @gfp: priority for memory allocation 2584 * 2585 * Note: While this allocator tries to use high order pages, there is 2586 * no guarantee that allocations succeed. Therefore, @sz MUST be 2587 * less or equal than PAGE_SIZE. 2588 */ 2589 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2590 { 2591 if (pfrag->page) { 2592 if (page_ref_count(pfrag->page) == 1) { 2593 pfrag->offset = 0; 2594 return true; 2595 } 2596 if (pfrag->offset + sz <= pfrag->size) 2597 return true; 2598 put_page(pfrag->page); 2599 } 2600 2601 pfrag->offset = 0; 2602 if (SKB_FRAG_PAGE_ORDER && 2603 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2604 /* Avoid direct reclaim but allow kswapd to wake */ 2605 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2606 __GFP_COMP | __GFP_NOWARN | 2607 __GFP_NORETRY, 2608 SKB_FRAG_PAGE_ORDER); 2609 if (likely(pfrag->page)) { 2610 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2611 return true; 2612 } 2613 } 2614 pfrag->page = alloc_page(gfp); 2615 if (likely(pfrag->page)) { 2616 pfrag->size = PAGE_SIZE; 2617 return true; 2618 } 2619 return false; 2620 } 2621 EXPORT_SYMBOL(skb_page_frag_refill); 2622 2623 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2624 { 2625 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2626 return true; 2627 2628 sk_enter_memory_pressure(sk); 2629 sk_stream_moderate_sndbuf(sk); 2630 return false; 2631 } 2632 EXPORT_SYMBOL(sk_page_frag_refill); 2633 2634 void __lock_sock(struct sock *sk) 2635 __releases(&sk->sk_lock.slock) 2636 __acquires(&sk->sk_lock.slock) 2637 { 2638 DEFINE_WAIT(wait); 2639 2640 for (;;) { 2641 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2642 TASK_UNINTERRUPTIBLE); 2643 spin_unlock_bh(&sk->sk_lock.slock); 2644 schedule(); 2645 spin_lock_bh(&sk->sk_lock.slock); 2646 if (!sock_owned_by_user(sk)) 2647 break; 2648 } 2649 finish_wait(&sk->sk_lock.wq, &wait); 2650 } 2651 2652 void __release_sock(struct sock *sk) 2653 __releases(&sk->sk_lock.slock) 2654 __acquires(&sk->sk_lock.slock) 2655 { 2656 struct sk_buff *skb, *next; 2657 2658 while ((skb = sk->sk_backlog.head) != NULL) { 2659 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2660 2661 spin_unlock_bh(&sk->sk_lock.slock); 2662 2663 do { 2664 next = skb->next; 2665 prefetch(next); 2666 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2667 skb_mark_not_on_list(skb); 2668 sk_backlog_rcv(sk, skb); 2669 2670 cond_resched(); 2671 2672 skb = next; 2673 } while (skb != NULL); 2674 2675 spin_lock_bh(&sk->sk_lock.slock); 2676 } 2677 2678 /* 2679 * Doing the zeroing here guarantee we can not loop forever 2680 * while a wild producer attempts to flood us. 2681 */ 2682 sk->sk_backlog.len = 0; 2683 } 2684 2685 void __sk_flush_backlog(struct sock *sk) 2686 { 2687 spin_lock_bh(&sk->sk_lock.slock); 2688 __release_sock(sk); 2689 spin_unlock_bh(&sk->sk_lock.slock); 2690 } 2691 2692 /** 2693 * sk_wait_data - wait for data to arrive at sk_receive_queue 2694 * @sk: sock to wait on 2695 * @timeo: for how long 2696 * @skb: last skb seen on sk_receive_queue 2697 * 2698 * Now socket state including sk->sk_err is changed only under lock, 2699 * hence we may omit checks after joining wait queue. 2700 * We check receive queue before schedule() only as optimization; 2701 * it is very likely that release_sock() added new data. 2702 */ 2703 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2704 { 2705 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2706 int rc; 2707 2708 add_wait_queue(sk_sleep(sk), &wait); 2709 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2710 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2711 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2712 remove_wait_queue(sk_sleep(sk), &wait); 2713 return rc; 2714 } 2715 EXPORT_SYMBOL(sk_wait_data); 2716 2717 /** 2718 * __sk_mem_raise_allocated - increase memory_allocated 2719 * @sk: socket 2720 * @size: memory size to allocate 2721 * @amt: pages to allocate 2722 * @kind: allocation type 2723 * 2724 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2725 */ 2726 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2727 { 2728 struct proto *prot = sk->sk_prot; 2729 long allocated = sk_memory_allocated_add(sk, amt); 2730 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2731 bool charged = true; 2732 2733 if (memcg_charge && 2734 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2735 gfp_memcg_charge()))) 2736 goto suppress_allocation; 2737 2738 /* Under limit. */ 2739 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2740 sk_leave_memory_pressure(sk); 2741 return 1; 2742 } 2743 2744 /* Under pressure. */ 2745 if (allocated > sk_prot_mem_limits(sk, 1)) 2746 sk_enter_memory_pressure(sk); 2747 2748 /* Over hard limit. */ 2749 if (allocated > sk_prot_mem_limits(sk, 2)) 2750 goto suppress_allocation; 2751 2752 /* guarantee minimum buffer size under pressure */ 2753 if (kind == SK_MEM_RECV) { 2754 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2755 return 1; 2756 2757 } else { /* SK_MEM_SEND */ 2758 int wmem0 = sk_get_wmem0(sk, prot); 2759 2760 if (sk->sk_type == SOCK_STREAM) { 2761 if (sk->sk_wmem_queued < wmem0) 2762 return 1; 2763 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2764 return 1; 2765 } 2766 } 2767 2768 if (sk_has_memory_pressure(sk)) { 2769 u64 alloc; 2770 2771 if (!sk_under_memory_pressure(sk)) 2772 return 1; 2773 alloc = sk_sockets_allocated_read_positive(sk); 2774 if (sk_prot_mem_limits(sk, 2) > alloc * 2775 sk_mem_pages(sk->sk_wmem_queued + 2776 atomic_read(&sk->sk_rmem_alloc) + 2777 sk->sk_forward_alloc)) 2778 return 1; 2779 } 2780 2781 suppress_allocation: 2782 2783 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2784 sk_stream_moderate_sndbuf(sk); 2785 2786 /* Fail only if socket is _under_ its sndbuf. 2787 * In this case we cannot block, so that we have to fail. 2788 */ 2789 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2790 /* Force charge with __GFP_NOFAIL */ 2791 if (memcg_charge && !charged) { 2792 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2793 gfp_memcg_charge() | __GFP_NOFAIL); 2794 } 2795 return 1; 2796 } 2797 } 2798 2799 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2800 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2801 2802 sk_memory_allocated_sub(sk, amt); 2803 2804 if (memcg_charge && charged) 2805 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2806 2807 return 0; 2808 } 2809 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2810 2811 /** 2812 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2813 * @sk: socket 2814 * @size: memory size to allocate 2815 * @kind: allocation type 2816 * 2817 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2818 * rmem allocation. This function assumes that protocols which have 2819 * memory_pressure use sk_wmem_queued as write buffer accounting. 2820 */ 2821 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2822 { 2823 int ret, amt = sk_mem_pages(size); 2824 2825 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2826 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2827 if (!ret) 2828 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2829 return ret; 2830 } 2831 EXPORT_SYMBOL(__sk_mem_schedule); 2832 2833 /** 2834 * __sk_mem_reduce_allocated - reclaim memory_allocated 2835 * @sk: socket 2836 * @amount: number of quanta 2837 * 2838 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2839 */ 2840 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2841 { 2842 sk_memory_allocated_sub(sk, amount); 2843 2844 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2845 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2846 2847 if (sk_under_memory_pressure(sk) && 2848 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2849 sk_leave_memory_pressure(sk); 2850 } 2851 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2852 2853 /** 2854 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2855 * @sk: socket 2856 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2857 */ 2858 void __sk_mem_reclaim(struct sock *sk, int amount) 2859 { 2860 amount >>= SK_MEM_QUANTUM_SHIFT; 2861 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2862 __sk_mem_reduce_allocated(sk, amount); 2863 } 2864 EXPORT_SYMBOL(__sk_mem_reclaim); 2865 2866 int sk_set_peek_off(struct sock *sk, int val) 2867 { 2868 sk->sk_peek_off = val; 2869 return 0; 2870 } 2871 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2872 2873 /* 2874 * Set of default routines for initialising struct proto_ops when 2875 * the protocol does not support a particular function. In certain 2876 * cases where it makes no sense for a protocol to have a "do nothing" 2877 * function, some default processing is provided. 2878 */ 2879 2880 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2881 { 2882 return -EOPNOTSUPP; 2883 } 2884 EXPORT_SYMBOL(sock_no_bind); 2885 2886 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2887 int len, int flags) 2888 { 2889 return -EOPNOTSUPP; 2890 } 2891 EXPORT_SYMBOL(sock_no_connect); 2892 2893 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2894 { 2895 return -EOPNOTSUPP; 2896 } 2897 EXPORT_SYMBOL(sock_no_socketpair); 2898 2899 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2900 bool kern) 2901 { 2902 return -EOPNOTSUPP; 2903 } 2904 EXPORT_SYMBOL(sock_no_accept); 2905 2906 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2907 int peer) 2908 { 2909 return -EOPNOTSUPP; 2910 } 2911 EXPORT_SYMBOL(sock_no_getname); 2912 2913 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2914 { 2915 return -EOPNOTSUPP; 2916 } 2917 EXPORT_SYMBOL(sock_no_ioctl); 2918 2919 int sock_no_listen(struct socket *sock, int backlog) 2920 { 2921 return -EOPNOTSUPP; 2922 } 2923 EXPORT_SYMBOL(sock_no_listen); 2924 2925 int sock_no_shutdown(struct socket *sock, int how) 2926 { 2927 return -EOPNOTSUPP; 2928 } 2929 EXPORT_SYMBOL(sock_no_shutdown); 2930 2931 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2932 { 2933 return -EOPNOTSUPP; 2934 } 2935 EXPORT_SYMBOL(sock_no_sendmsg); 2936 2937 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2938 { 2939 return -EOPNOTSUPP; 2940 } 2941 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2942 2943 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2944 int flags) 2945 { 2946 return -EOPNOTSUPP; 2947 } 2948 EXPORT_SYMBOL(sock_no_recvmsg); 2949 2950 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2951 { 2952 /* Mirror missing mmap method error code */ 2953 return -ENODEV; 2954 } 2955 EXPORT_SYMBOL(sock_no_mmap); 2956 2957 /* 2958 * When a file is received (via SCM_RIGHTS, etc), we must bump the 2959 * various sock-based usage counts. 2960 */ 2961 void __receive_sock(struct file *file) 2962 { 2963 struct socket *sock; 2964 2965 sock = sock_from_file(file); 2966 if (sock) { 2967 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 2968 sock_update_classid(&sock->sk->sk_cgrp_data); 2969 } 2970 } 2971 2972 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2973 { 2974 ssize_t res; 2975 struct msghdr msg = {.msg_flags = flags}; 2976 struct kvec iov; 2977 char *kaddr = kmap(page); 2978 iov.iov_base = kaddr + offset; 2979 iov.iov_len = size; 2980 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2981 kunmap(page); 2982 return res; 2983 } 2984 EXPORT_SYMBOL(sock_no_sendpage); 2985 2986 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2987 int offset, size_t size, int flags) 2988 { 2989 ssize_t res; 2990 struct msghdr msg = {.msg_flags = flags}; 2991 struct kvec iov; 2992 char *kaddr = kmap(page); 2993 2994 iov.iov_base = kaddr + offset; 2995 iov.iov_len = size; 2996 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2997 kunmap(page); 2998 return res; 2999 } 3000 EXPORT_SYMBOL(sock_no_sendpage_locked); 3001 3002 /* 3003 * Default Socket Callbacks 3004 */ 3005 3006 static void sock_def_wakeup(struct sock *sk) 3007 { 3008 struct socket_wq *wq; 3009 3010 rcu_read_lock(); 3011 wq = rcu_dereference(sk->sk_wq); 3012 if (skwq_has_sleeper(wq)) 3013 wake_up_interruptible_all(&wq->wait); 3014 rcu_read_unlock(); 3015 } 3016 3017 static void sock_def_error_report(struct sock *sk) 3018 { 3019 struct socket_wq *wq; 3020 3021 rcu_read_lock(); 3022 wq = rcu_dereference(sk->sk_wq); 3023 if (skwq_has_sleeper(wq)) 3024 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3025 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3026 rcu_read_unlock(); 3027 } 3028 3029 void sock_def_readable(struct sock *sk) 3030 { 3031 struct socket_wq *wq; 3032 3033 rcu_read_lock(); 3034 wq = rcu_dereference(sk->sk_wq); 3035 if (skwq_has_sleeper(wq)) 3036 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3037 EPOLLRDNORM | EPOLLRDBAND); 3038 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3039 rcu_read_unlock(); 3040 } 3041 3042 static void sock_def_write_space(struct sock *sk) 3043 { 3044 struct socket_wq *wq; 3045 3046 rcu_read_lock(); 3047 3048 /* Do not wake up a writer until he can make "significant" 3049 * progress. --DaveM 3050 */ 3051 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 3052 wq = rcu_dereference(sk->sk_wq); 3053 if (skwq_has_sleeper(wq)) 3054 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3055 EPOLLWRNORM | EPOLLWRBAND); 3056 3057 /* Should agree with poll, otherwise some programs break */ 3058 if (sock_writeable(sk)) 3059 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3060 } 3061 3062 rcu_read_unlock(); 3063 } 3064 3065 static void sock_def_destruct(struct sock *sk) 3066 { 3067 } 3068 3069 void sk_send_sigurg(struct sock *sk) 3070 { 3071 if (sk->sk_socket && sk->sk_socket->file) 3072 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3073 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3074 } 3075 EXPORT_SYMBOL(sk_send_sigurg); 3076 3077 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3078 unsigned long expires) 3079 { 3080 if (!mod_timer(timer, expires)) 3081 sock_hold(sk); 3082 } 3083 EXPORT_SYMBOL(sk_reset_timer); 3084 3085 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3086 { 3087 if (del_timer(timer)) 3088 __sock_put(sk); 3089 } 3090 EXPORT_SYMBOL(sk_stop_timer); 3091 3092 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3093 { 3094 if (del_timer_sync(timer)) 3095 __sock_put(sk); 3096 } 3097 EXPORT_SYMBOL(sk_stop_timer_sync); 3098 3099 void sock_init_data(struct socket *sock, struct sock *sk) 3100 { 3101 sk_init_common(sk); 3102 sk->sk_send_head = NULL; 3103 3104 timer_setup(&sk->sk_timer, NULL, 0); 3105 3106 sk->sk_allocation = GFP_KERNEL; 3107 sk->sk_rcvbuf = sysctl_rmem_default; 3108 sk->sk_sndbuf = sysctl_wmem_default; 3109 sk->sk_state = TCP_CLOSE; 3110 sk_set_socket(sk, sock); 3111 3112 sock_set_flag(sk, SOCK_ZAPPED); 3113 3114 if (sock) { 3115 sk->sk_type = sock->type; 3116 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3117 sock->sk = sk; 3118 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3119 } else { 3120 RCU_INIT_POINTER(sk->sk_wq, NULL); 3121 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3122 } 3123 3124 rwlock_init(&sk->sk_callback_lock); 3125 if (sk->sk_kern_sock) 3126 lockdep_set_class_and_name( 3127 &sk->sk_callback_lock, 3128 af_kern_callback_keys + sk->sk_family, 3129 af_family_kern_clock_key_strings[sk->sk_family]); 3130 else 3131 lockdep_set_class_and_name( 3132 &sk->sk_callback_lock, 3133 af_callback_keys + sk->sk_family, 3134 af_family_clock_key_strings[sk->sk_family]); 3135 3136 sk->sk_state_change = sock_def_wakeup; 3137 sk->sk_data_ready = sock_def_readable; 3138 sk->sk_write_space = sock_def_write_space; 3139 sk->sk_error_report = sock_def_error_report; 3140 sk->sk_destruct = sock_def_destruct; 3141 3142 sk->sk_frag.page = NULL; 3143 sk->sk_frag.offset = 0; 3144 sk->sk_peek_off = -1; 3145 3146 sk->sk_peer_pid = NULL; 3147 sk->sk_peer_cred = NULL; 3148 sk->sk_write_pending = 0; 3149 sk->sk_rcvlowat = 1; 3150 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3151 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3152 3153 sk->sk_stamp = SK_DEFAULT_STAMP; 3154 #if BITS_PER_LONG==32 3155 seqlock_init(&sk->sk_stamp_seq); 3156 #endif 3157 atomic_set(&sk->sk_zckey, 0); 3158 3159 #ifdef CONFIG_NET_RX_BUSY_POLL 3160 sk->sk_napi_id = 0; 3161 sk->sk_ll_usec = sysctl_net_busy_read; 3162 #endif 3163 3164 sk->sk_max_pacing_rate = ~0UL; 3165 sk->sk_pacing_rate = ~0UL; 3166 WRITE_ONCE(sk->sk_pacing_shift, 10); 3167 sk->sk_incoming_cpu = -1; 3168 3169 sk_rx_queue_clear(sk); 3170 /* 3171 * Before updating sk_refcnt, we must commit prior changes to memory 3172 * (Documentation/RCU/rculist_nulls.rst for details) 3173 */ 3174 smp_wmb(); 3175 refcount_set(&sk->sk_refcnt, 1); 3176 atomic_set(&sk->sk_drops, 0); 3177 } 3178 EXPORT_SYMBOL(sock_init_data); 3179 3180 void lock_sock_nested(struct sock *sk, int subclass) 3181 { 3182 might_sleep(); 3183 spin_lock_bh(&sk->sk_lock.slock); 3184 if (sk->sk_lock.owned) 3185 __lock_sock(sk); 3186 sk->sk_lock.owned = 1; 3187 spin_unlock(&sk->sk_lock.slock); 3188 /* 3189 * The sk_lock has mutex_lock() semantics here: 3190 */ 3191 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3192 local_bh_enable(); 3193 } 3194 EXPORT_SYMBOL(lock_sock_nested); 3195 3196 void release_sock(struct sock *sk) 3197 { 3198 spin_lock_bh(&sk->sk_lock.slock); 3199 if (sk->sk_backlog.tail) 3200 __release_sock(sk); 3201 3202 /* Warning : release_cb() might need to release sk ownership, 3203 * ie call sock_release_ownership(sk) before us. 3204 */ 3205 if (sk->sk_prot->release_cb) 3206 sk->sk_prot->release_cb(sk); 3207 3208 sock_release_ownership(sk); 3209 if (waitqueue_active(&sk->sk_lock.wq)) 3210 wake_up(&sk->sk_lock.wq); 3211 spin_unlock_bh(&sk->sk_lock.slock); 3212 } 3213 EXPORT_SYMBOL(release_sock); 3214 3215 /** 3216 * lock_sock_fast - fast version of lock_sock 3217 * @sk: socket 3218 * 3219 * This version should be used for very small section, where process wont block 3220 * return false if fast path is taken: 3221 * 3222 * sk_lock.slock locked, owned = 0, BH disabled 3223 * 3224 * return true if slow path is taken: 3225 * 3226 * sk_lock.slock unlocked, owned = 1, BH enabled 3227 */ 3228 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3229 { 3230 might_sleep(); 3231 spin_lock_bh(&sk->sk_lock.slock); 3232 3233 if (!sk->sk_lock.owned) 3234 /* 3235 * Note : We must disable BH 3236 */ 3237 return false; 3238 3239 __lock_sock(sk); 3240 sk->sk_lock.owned = 1; 3241 spin_unlock(&sk->sk_lock.slock); 3242 /* 3243 * The sk_lock has mutex_lock() semantics here: 3244 */ 3245 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3246 __acquire(&sk->sk_lock.slock); 3247 local_bh_enable(); 3248 return true; 3249 } 3250 EXPORT_SYMBOL(lock_sock_fast); 3251 3252 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3253 bool timeval, bool time32) 3254 { 3255 struct sock *sk = sock->sk; 3256 struct timespec64 ts; 3257 3258 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3259 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3260 if (ts.tv_sec == -1) 3261 return -ENOENT; 3262 if (ts.tv_sec == 0) { 3263 ktime_t kt = ktime_get_real(); 3264 sock_write_timestamp(sk, kt); 3265 ts = ktime_to_timespec64(kt); 3266 } 3267 3268 if (timeval) 3269 ts.tv_nsec /= 1000; 3270 3271 #ifdef CONFIG_COMPAT_32BIT_TIME 3272 if (time32) 3273 return put_old_timespec32(&ts, userstamp); 3274 #endif 3275 #ifdef CONFIG_SPARC64 3276 /* beware of padding in sparc64 timeval */ 3277 if (timeval && !in_compat_syscall()) { 3278 struct __kernel_old_timeval __user tv = { 3279 .tv_sec = ts.tv_sec, 3280 .tv_usec = ts.tv_nsec, 3281 }; 3282 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3283 return -EFAULT; 3284 return 0; 3285 } 3286 #endif 3287 return put_timespec64(&ts, userstamp); 3288 } 3289 EXPORT_SYMBOL(sock_gettstamp); 3290 3291 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3292 { 3293 if (!sock_flag(sk, flag)) { 3294 unsigned long previous_flags = sk->sk_flags; 3295 3296 sock_set_flag(sk, flag); 3297 /* 3298 * we just set one of the two flags which require net 3299 * time stamping, but time stamping might have been on 3300 * already because of the other one 3301 */ 3302 if (sock_needs_netstamp(sk) && 3303 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3304 net_enable_timestamp(); 3305 } 3306 } 3307 3308 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3309 int level, int type) 3310 { 3311 struct sock_exterr_skb *serr; 3312 struct sk_buff *skb; 3313 int copied, err; 3314 3315 err = -EAGAIN; 3316 skb = sock_dequeue_err_skb(sk); 3317 if (skb == NULL) 3318 goto out; 3319 3320 copied = skb->len; 3321 if (copied > len) { 3322 msg->msg_flags |= MSG_TRUNC; 3323 copied = len; 3324 } 3325 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3326 if (err) 3327 goto out_free_skb; 3328 3329 sock_recv_timestamp(msg, sk, skb); 3330 3331 serr = SKB_EXT_ERR(skb); 3332 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3333 3334 msg->msg_flags |= MSG_ERRQUEUE; 3335 err = copied; 3336 3337 out_free_skb: 3338 kfree_skb(skb); 3339 out: 3340 return err; 3341 } 3342 EXPORT_SYMBOL(sock_recv_errqueue); 3343 3344 /* 3345 * Get a socket option on an socket. 3346 * 3347 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3348 * asynchronous errors should be reported by getsockopt. We assume 3349 * this means if you specify SO_ERROR (otherwise whats the point of it). 3350 */ 3351 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3352 char __user *optval, int __user *optlen) 3353 { 3354 struct sock *sk = sock->sk; 3355 3356 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3357 } 3358 EXPORT_SYMBOL(sock_common_getsockopt); 3359 3360 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3361 int flags) 3362 { 3363 struct sock *sk = sock->sk; 3364 int addr_len = 0; 3365 int err; 3366 3367 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3368 flags & ~MSG_DONTWAIT, &addr_len); 3369 if (err >= 0) 3370 msg->msg_namelen = addr_len; 3371 return err; 3372 } 3373 EXPORT_SYMBOL(sock_common_recvmsg); 3374 3375 /* 3376 * Set socket options on an inet socket. 3377 */ 3378 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3379 sockptr_t optval, unsigned int optlen) 3380 { 3381 struct sock *sk = sock->sk; 3382 3383 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3384 } 3385 EXPORT_SYMBOL(sock_common_setsockopt); 3386 3387 void sk_common_release(struct sock *sk) 3388 { 3389 if (sk->sk_prot->destroy) 3390 sk->sk_prot->destroy(sk); 3391 3392 /* 3393 * Observation: when sk_common_release is called, processes have 3394 * no access to socket. But net still has. 3395 * Step one, detach it from networking: 3396 * 3397 * A. Remove from hash tables. 3398 */ 3399 3400 sk->sk_prot->unhash(sk); 3401 3402 /* 3403 * In this point socket cannot receive new packets, but it is possible 3404 * that some packets are in flight because some CPU runs receiver and 3405 * did hash table lookup before we unhashed socket. They will achieve 3406 * receive queue and will be purged by socket destructor. 3407 * 3408 * Also we still have packets pending on receive queue and probably, 3409 * our own packets waiting in device queues. sock_destroy will drain 3410 * receive queue, but transmitted packets will delay socket destruction 3411 * until the last reference will be released. 3412 */ 3413 3414 sock_orphan(sk); 3415 3416 xfrm_sk_free_policy(sk); 3417 3418 sk_refcnt_debug_release(sk); 3419 3420 sock_put(sk); 3421 } 3422 EXPORT_SYMBOL(sk_common_release); 3423 3424 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3425 { 3426 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3427 3428 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3429 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3430 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3431 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3432 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3433 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3434 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3435 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3436 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3437 } 3438 3439 #ifdef CONFIG_PROC_FS 3440 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3441 struct prot_inuse { 3442 int val[PROTO_INUSE_NR]; 3443 }; 3444 3445 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3446 3447 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3448 { 3449 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3450 } 3451 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3452 3453 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3454 { 3455 int cpu, idx = prot->inuse_idx; 3456 int res = 0; 3457 3458 for_each_possible_cpu(cpu) 3459 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3460 3461 return res >= 0 ? res : 0; 3462 } 3463 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3464 3465 static void sock_inuse_add(struct net *net, int val) 3466 { 3467 this_cpu_add(*net->core.sock_inuse, val); 3468 } 3469 3470 int sock_inuse_get(struct net *net) 3471 { 3472 int cpu, res = 0; 3473 3474 for_each_possible_cpu(cpu) 3475 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3476 3477 return res; 3478 } 3479 3480 EXPORT_SYMBOL_GPL(sock_inuse_get); 3481 3482 static int __net_init sock_inuse_init_net(struct net *net) 3483 { 3484 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3485 if (net->core.prot_inuse == NULL) 3486 return -ENOMEM; 3487 3488 net->core.sock_inuse = alloc_percpu(int); 3489 if (net->core.sock_inuse == NULL) 3490 goto out; 3491 3492 return 0; 3493 3494 out: 3495 free_percpu(net->core.prot_inuse); 3496 return -ENOMEM; 3497 } 3498 3499 static void __net_exit sock_inuse_exit_net(struct net *net) 3500 { 3501 free_percpu(net->core.prot_inuse); 3502 free_percpu(net->core.sock_inuse); 3503 } 3504 3505 static struct pernet_operations net_inuse_ops = { 3506 .init = sock_inuse_init_net, 3507 .exit = sock_inuse_exit_net, 3508 }; 3509 3510 static __init int net_inuse_init(void) 3511 { 3512 if (register_pernet_subsys(&net_inuse_ops)) 3513 panic("Cannot initialize net inuse counters"); 3514 3515 return 0; 3516 } 3517 3518 core_initcall(net_inuse_init); 3519 3520 static int assign_proto_idx(struct proto *prot) 3521 { 3522 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3523 3524 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3525 pr_err("PROTO_INUSE_NR exhausted\n"); 3526 return -ENOSPC; 3527 } 3528 3529 set_bit(prot->inuse_idx, proto_inuse_idx); 3530 return 0; 3531 } 3532 3533 static void release_proto_idx(struct proto *prot) 3534 { 3535 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3536 clear_bit(prot->inuse_idx, proto_inuse_idx); 3537 } 3538 #else 3539 static inline int assign_proto_idx(struct proto *prot) 3540 { 3541 return 0; 3542 } 3543 3544 static inline void release_proto_idx(struct proto *prot) 3545 { 3546 } 3547 3548 static void sock_inuse_add(struct net *net, int val) 3549 { 3550 } 3551 #endif 3552 3553 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3554 { 3555 if (!twsk_prot) 3556 return; 3557 kfree(twsk_prot->twsk_slab_name); 3558 twsk_prot->twsk_slab_name = NULL; 3559 kmem_cache_destroy(twsk_prot->twsk_slab); 3560 twsk_prot->twsk_slab = NULL; 3561 } 3562 3563 static int tw_prot_init(const struct proto *prot) 3564 { 3565 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3566 3567 if (!twsk_prot) 3568 return 0; 3569 3570 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3571 prot->name); 3572 if (!twsk_prot->twsk_slab_name) 3573 return -ENOMEM; 3574 3575 twsk_prot->twsk_slab = 3576 kmem_cache_create(twsk_prot->twsk_slab_name, 3577 twsk_prot->twsk_obj_size, 0, 3578 SLAB_ACCOUNT | prot->slab_flags, 3579 NULL); 3580 if (!twsk_prot->twsk_slab) { 3581 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3582 prot->name); 3583 return -ENOMEM; 3584 } 3585 3586 return 0; 3587 } 3588 3589 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3590 { 3591 if (!rsk_prot) 3592 return; 3593 kfree(rsk_prot->slab_name); 3594 rsk_prot->slab_name = NULL; 3595 kmem_cache_destroy(rsk_prot->slab); 3596 rsk_prot->slab = NULL; 3597 } 3598 3599 static int req_prot_init(const struct proto *prot) 3600 { 3601 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3602 3603 if (!rsk_prot) 3604 return 0; 3605 3606 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3607 prot->name); 3608 if (!rsk_prot->slab_name) 3609 return -ENOMEM; 3610 3611 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3612 rsk_prot->obj_size, 0, 3613 SLAB_ACCOUNT | prot->slab_flags, 3614 NULL); 3615 3616 if (!rsk_prot->slab) { 3617 pr_crit("%s: Can't create request sock SLAB cache!\n", 3618 prot->name); 3619 return -ENOMEM; 3620 } 3621 return 0; 3622 } 3623 3624 int proto_register(struct proto *prot, int alloc_slab) 3625 { 3626 int ret = -ENOBUFS; 3627 3628 if (alloc_slab) { 3629 prot->slab = kmem_cache_create_usercopy(prot->name, 3630 prot->obj_size, 0, 3631 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3632 prot->slab_flags, 3633 prot->useroffset, prot->usersize, 3634 NULL); 3635 3636 if (prot->slab == NULL) { 3637 pr_crit("%s: Can't create sock SLAB cache!\n", 3638 prot->name); 3639 goto out; 3640 } 3641 3642 if (req_prot_init(prot)) 3643 goto out_free_request_sock_slab; 3644 3645 if (tw_prot_init(prot)) 3646 goto out_free_timewait_sock_slab; 3647 } 3648 3649 mutex_lock(&proto_list_mutex); 3650 ret = assign_proto_idx(prot); 3651 if (ret) { 3652 mutex_unlock(&proto_list_mutex); 3653 goto out_free_timewait_sock_slab; 3654 } 3655 list_add(&prot->node, &proto_list); 3656 mutex_unlock(&proto_list_mutex); 3657 return ret; 3658 3659 out_free_timewait_sock_slab: 3660 if (alloc_slab) 3661 tw_prot_cleanup(prot->twsk_prot); 3662 out_free_request_sock_slab: 3663 if (alloc_slab) { 3664 req_prot_cleanup(prot->rsk_prot); 3665 3666 kmem_cache_destroy(prot->slab); 3667 prot->slab = NULL; 3668 } 3669 out: 3670 return ret; 3671 } 3672 EXPORT_SYMBOL(proto_register); 3673 3674 void proto_unregister(struct proto *prot) 3675 { 3676 mutex_lock(&proto_list_mutex); 3677 release_proto_idx(prot); 3678 list_del(&prot->node); 3679 mutex_unlock(&proto_list_mutex); 3680 3681 kmem_cache_destroy(prot->slab); 3682 prot->slab = NULL; 3683 3684 req_prot_cleanup(prot->rsk_prot); 3685 tw_prot_cleanup(prot->twsk_prot); 3686 } 3687 EXPORT_SYMBOL(proto_unregister); 3688 3689 int sock_load_diag_module(int family, int protocol) 3690 { 3691 if (!protocol) { 3692 if (!sock_is_registered(family)) 3693 return -ENOENT; 3694 3695 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3696 NETLINK_SOCK_DIAG, family); 3697 } 3698 3699 #ifdef CONFIG_INET 3700 if (family == AF_INET && 3701 protocol != IPPROTO_RAW && 3702 protocol < MAX_INET_PROTOS && 3703 !rcu_access_pointer(inet_protos[protocol])) 3704 return -ENOENT; 3705 #endif 3706 3707 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3708 NETLINK_SOCK_DIAG, family, protocol); 3709 } 3710 EXPORT_SYMBOL(sock_load_diag_module); 3711 3712 #ifdef CONFIG_PROC_FS 3713 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3714 __acquires(proto_list_mutex) 3715 { 3716 mutex_lock(&proto_list_mutex); 3717 return seq_list_start_head(&proto_list, *pos); 3718 } 3719 3720 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3721 { 3722 return seq_list_next(v, &proto_list, pos); 3723 } 3724 3725 static void proto_seq_stop(struct seq_file *seq, void *v) 3726 __releases(proto_list_mutex) 3727 { 3728 mutex_unlock(&proto_list_mutex); 3729 } 3730 3731 static char proto_method_implemented(const void *method) 3732 { 3733 return method == NULL ? 'n' : 'y'; 3734 } 3735 static long sock_prot_memory_allocated(struct proto *proto) 3736 { 3737 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3738 } 3739 3740 static const char *sock_prot_memory_pressure(struct proto *proto) 3741 { 3742 return proto->memory_pressure != NULL ? 3743 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3744 } 3745 3746 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3747 { 3748 3749 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3750 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3751 proto->name, 3752 proto->obj_size, 3753 sock_prot_inuse_get(seq_file_net(seq), proto), 3754 sock_prot_memory_allocated(proto), 3755 sock_prot_memory_pressure(proto), 3756 proto->max_header, 3757 proto->slab == NULL ? "no" : "yes", 3758 module_name(proto->owner), 3759 proto_method_implemented(proto->close), 3760 proto_method_implemented(proto->connect), 3761 proto_method_implemented(proto->disconnect), 3762 proto_method_implemented(proto->accept), 3763 proto_method_implemented(proto->ioctl), 3764 proto_method_implemented(proto->init), 3765 proto_method_implemented(proto->destroy), 3766 proto_method_implemented(proto->shutdown), 3767 proto_method_implemented(proto->setsockopt), 3768 proto_method_implemented(proto->getsockopt), 3769 proto_method_implemented(proto->sendmsg), 3770 proto_method_implemented(proto->recvmsg), 3771 proto_method_implemented(proto->sendpage), 3772 proto_method_implemented(proto->bind), 3773 proto_method_implemented(proto->backlog_rcv), 3774 proto_method_implemented(proto->hash), 3775 proto_method_implemented(proto->unhash), 3776 proto_method_implemented(proto->get_port), 3777 proto_method_implemented(proto->enter_memory_pressure)); 3778 } 3779 3780 static int proto_seq_show(struct seq_file *seq, void *v) 3781 { 3782 if (v == &proto_list) 3783 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3784 "protocol", 3785 "size", 3786 "sockets", 3787 "memory", 3788 "press", 3789 "maxhdr", 3790 "slab", 3791 "module", 3792 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3793 else 3794 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3795 return 0; 3796 } 3797 3798 static const struct seq_operations proto_seq_ops = { 3799 .start = proto_seq_start, 3800 .next = proto_seq_next, 3801 .stop = proto_seq_stop, 3802 .show = proto_seq_show, 3803 }; 3804 3805 static __net_init int proto_init_net(struct net *net) 3806 { 3807 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3808 sizeof(struct seq_net_private))) 3809 return -ENOMEM; 3810 3811 return 0; 3812 } 3813 3814 static __net_exit void proto_exit_net(struct net *net) 3815 { 3816 remove_proc_entry("protocols", net->proc_net); 3817 } 3818 3819 3820 static __net_initdata struct pernet_operations proto_net_ops = { 3821 .init = proto_init_net, 3822 .exit = proto_exit_net, 3823 }; 3824 3825 static int __init proto_init(void) 3826 { 3827 return register_pernet_subsys(&proto_net_ops); 3828 } 3829 3830 subsys_initcall(proto_init); 3831 3832 #endif /* PROC_FS */ 3833 3834 #ifdef CONFIG_NET_RX_BUSY_POLL 3835 bool sk_busy_loop_end(void *p, unsigned long start_time) 3836 { 3837 struct sock *sk = p; 3838 3839 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3840 sk_busy_loop_timeout(sk, start_time); 3841 } 3842 EXPORT_SYMBOL(sk_busy_loop_end); 3843 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3844 3845 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3846 { 3847 if (!sk->sk_prot->bind_add) 3848 return -EOPNOTSUPP; 3849 return sk->sk_prot->bind_add(sk, addr, addr_len); 3850 } 3851 EXPORT_SYMBOL(sock_bind_add); 3852