xref: /openbmc/linux/net/core/sock.c (revision 95b384f9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
456 {
457 	int rc = NET_RX_SUCCESS;
458 
459 	if (sk_filter(sk, skb))
460 		goto discard_and_relse;
461 
462 	skb->dev = NULL;
463 
464 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
465 		atomic_inc(&sk->sk_drops);
466 		goto discard_and_relse;
467 	}
468 	if (nested)
469 		bh_lock_sock_nested(sk);
470 	else
471 		bh_lock_sock(sk);
472 	if (!sock_owned_by_user(sk)) {
473 		/*
474 		 * trylock + unlock semantics:
475 		 */
476 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
477 
478 		rc = sk_backlog_rcv(sk, skb);
479 
480 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
481 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
482 		bh_unlock_sock(sk);
483 		atomic_inc(&sk->sk_drops);
484 		goto discard_and_relse;
485 	}
486 
487 	bh_unlock_sock(sk);
488 out:
489 	sock_put(sk);
490 	return rc;
491 discard_and_relse:
492 	kfree_skb(skb);
493 	goto out;
494 }
495 EXPORT_SYMBOL(sk_receive_skb);
496 
497 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
498 {
499 	struct dst_entry *dst = __sk_dst_get(sk);
500 
501 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
502 		sk_tx_queue_clear(sk);
503 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
504 		dst_release(dst);
505 		return NULL;
506 	}
507 
508 	return dst;
509 }
510 EXPORT_SYMBOL(__sk_dst_check);
511 
512 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
513 {
514 	struct dst_entry *dst = sk_dst_get(sk);
515 
516 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
517 		sk_dst_reset(sk);
518 		dst_release(dst);
519 		return NULL;
520 	}
521 
522 	return dst;
523 }
524 EXPORT_SYMBOL(sk_dst_check);
525 
526 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
527 				int optlen)
528 {
529 	int ret = -ENOPROTOOPT;
530 #ifdef CONFIG_NETDEVICES
531 	struct net *net = sock_net(sk);
532 	char devname[IFNAMSIZ];
533 	int index;
534 
535 	/* Sorry... */
536 	ret = -EPERM;
537 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
538 		goto out;
539 
540 	ret = -EINVAL;
541 	if (optlen < 0)
542 		goto out;
543 
544 	/* Bind this socket to a particular device like "eth0",
545 	 * as specified in the passed interface name. If the
546 	 * name is "" or the option length is zero the socket
547 	 * is not bound.
548 	 */
549 	if (optlen > IFNAMSIZ - 1)
550 		optlen = IFNAMSIZ - 1;
551 	memset(devname, 0, sizeof(devname));
552 
553 	ret = -EFAULT;
554 	if (copy_from_user(devname, optval, optlen))
555 		goto out;
556 
557 	index = 0;
558 	if (devname[0] != '\0') {
559 		struct net_device *dev;
560 
561 		rcu_read_lock();
562 		dev = dev_get_by_name_rcu(net, devname);
563 		if (dev)
564 			index = dev->ifindex;
565 		rcu_read_unlock();
566 		ret = -ENODEV;
567 		if (!dev)
568 			goto out;
569 	}
570 
571 	lock_sock(sk);
572 	sk->sk_bound_dev_if = index;
573 	sk_dst_reset(sk);
574 	release_sock(sk);
575 
576 	ret = 0;
577 
578 out:
579 #endif
580 
581 	return ret;
582 }
583 
584 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
585 				int __user *optlen, int len)
586 {
587 	int ret = -ENOPROTOOPT;
588 #ifdef CONFIG_NETDEVICES
589 	struct net *net = sock_net(sk);
590 	char devname[IFNAMSIZ];
591 
592 	if (sk->sk_bound_dev_if == 0) {
593 		len = 0;
594 		goto zero;
595 	}
596 
597 	ret = -EINVAL;
598 	if (len < IFNAMSIZ)
599 		goto out;
600 
601 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
602 	if (ret)
603 		goto out;
604 
605 	len = strlen(devname) + 1;
606 
607 	ret = -EFAULT;
608 	if (copy_to_user(optval, devname, len))
609 		goto out;
610 
611 zero:
612 	ret = -EFAULT;
613 	if (put_user(len, optlen))
614 		goto out;
615 
616 	ret = 0;
617 
618 out:
619 #endif
620 
621 	return ret;
622 }
623 
624 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
625 {
626 	if (valbool)
627 		sock_set_flag(sk, bit);
628 	else
629 		sock_reset_flag(sk, bit);
630 }
631 
632 bool sk_mc_loop(struct sock *sk)
633 {
634 	if (dev_recursion_level())
635 		return false;
636 	if (!sk)
637 		return true;
638 	switch (sk->sk_family) {
639 	case AF_INET:
640 		return inet_sk(sk)->mc_loop;
641 #if IS_ENABLED(CONFIG_IPV6)
642 	case AF_INET6:
643 		return inet6_sk(sk)->mc_loop;
644 #endif
645 	}
646 	WARN_ON(1);
647 	return true;
648 }
649 EXPORT_SYMBOL(sk_mc_loop);
650 
651 /*
652  *	This is meant for all protocols to use and covers goings on
653  *	at the socket level. Everything here is generic.
654  */
655 
656 int sock_setsockopt(struct socket *sock, int level, int optname,
657 		    char __user *optval, unsigned int optlen)
658 {
659 	struct sock *sk = sock->sk;
660 	int val;
661 	int valbool;
662 	struct linger ling;
663 	int ret = 0;
664 
665 	/*
666 	 *	Options without arguments
667 	 */
668 
669 	if (optname == SO_BINDTODEVICE)
670 		return sock_setbindtodevice(sk, optval, optlen);
671 
672 	if (optlen < sizeof(int))
673 		return -EINVAL;
674 
675 	if (get_user(val, (int __user *)optval))
676 		return -EFAULT;
677 
678 	valbool = val ? 1 : 0;
679 
680 	lock_sock(sk);
681 
682 	switch (optname) {
683 	case SO_DEBUG:
684 		if (val && !capable(CAP_NET_ADMIN))
685 			ret = -EACCES;
686 		else
687 			sock_valbool_flag(sk, SOCK_DBG, valbool);
688 		break;
689 	case SO_REUSEADDR:
690 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
691 		break;
692 	case SO_REUSEPORT:
693 		sk->sk_reuseport = valbool;
694 		break;
695 	case SO_TYPE:
696 	case SO_PROTOCOL:
697 	case SO_DOMAIN:
698 	case SO_ERROR:
699 		ret = -ENOPROTOOPT;
700 		break;
701 	case SO_DONTROUTE:
702 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
703 		break;
704 	case SO_BROADCAST:
705 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
706 		break;
707 	case SO_SNDBUF:
708 		/* Don't error on this BSD doesn't and if you think
709 		 * about it this is right. Otherwise apps have to
710 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
711 		 * are treated in BSD as hints
712 		 */
713 		val = min_t(u32, val, sysctl_wmem_max);
714 set_sndbuf:
715 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
716 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
717 		/* Wake up sending tasks if we upped the value. */
718 		sk->sk_write_space(sk);
719 		break;
720 
721 	case SO_SNDBUFFORCE:
722 		if (!capable(CAP_NET_ADMIN)) {
723 			ret = -EPERM;
724 			break;
725 		}
726 		goto set_sndbuf;
727 
728 	case SO_RCVBUF:
729 		/* Don't error on this BSD doesn't and if you think
730 		 * about it this is right. Otherwise apps have to
731 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
732 		 * are treated in BSD as hints
733 		 */
734 		val = min_t(u32, val, sysctl_rmem_max);
735 set_rcvbuf:
736 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
737 		/*
738 		 * We double it on the way in to account for
739 		 * "struct sk_buff" etc. overhead.   Applications
740 		 * assume that the SO_RCVBUF setting they make will
741 		 * allow that much actual data to be received on that
742 		 * socket.
743 		 *
744 		 * Applications are unaware that "struct sk_buff" and
745 		 * other overheads allocate from the receive buffer
746 		 * during socket buffer allocation.
747 		 *
748 		 * And after considering the possible alternatives,
749 		 * returning the value we actually used in getsockopt
750 		 * is the most desirable behavior.
751 		 */
752 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
753 		break;
754 
755 	case SO_RCVBUFFORCE:
756 		if (!capable(CAP_NET_ADMIN)) {
757 			ret = -EPERM;
758 			break;
759 		}
760 		goto set_rcvbuf;
761 
762 	case SO_KEEPALIVE:
763 #ifdef CONFIG_INET
764 		if (sk->sk_protocol == IPPROTO_TCP &&
765 		    sk->sk_type == SOCK_STREAM)
766 			tcp_set_keepalive(sk, valbool);
767 #endif
768 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
769 		break;
770 
771 	case SO_OOBINLINE:
772 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
773 		break;
774 
775 	case SO_NO_CHECK:
776 		sk->sk_no_check_tx = valbool;
777 		break;
778 
779 	case SO_PRIORITY:
780 		if ((val >= 0 && val <= 6) ||
781 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
782 			sk->sk_priority = val;
783 		else
784 			ret = -EPERM;
785 		break;
786 
787 	case SO_LINGER:
788 		if (optlen < sizeof(ling)) {
789 			ret = -EINVAL;	/* 1003.1g */
790 			break;
791 		}
792 		if (copy_from_user(&ling, optval, sizeof(ling))) {
793 			ret = -EFAULT;
794 			break;
795 		}
796 		if (!ling.l_onoff)
797 			sock_reset_flag(sk, SOCK_LINGER);
798 		else {
799 #if (BITS_PER_LONG == 32)
800 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
801 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
802 			else
803 #endif
804 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
805 			sock_set_flag(sk, SOCK_LINGER);
806 		}
807 		break;
808 
809 	case SO_BSDCOMPAT:
810 		sock_warn_obsolete_bsdism("setsockopt");
811 		break;
812 
813 	case SO_PASSCRED:
814 		if (valbool)
815 			set_bit(SOCK_PASSCRED, &sock->flags);
816 		else
817 			clear_bit(SOCK_PASSCRED, &sock->flags);
818 		break;
819 
820 	case SO_TIMESTAMP:
821 	case SO_TIMESTAMPNS:
822 		if (valbool)  {
823 			if (optname == SO_TIMESTAMP)
824 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
825 			else
826 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
827 			sock_set_flag(sk, SOCK_RCVTSTAMP);
828 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
829 		} else {
830 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
831 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
832 		}
833 		break;
834 
835 	case SO_TIMESTAMPING:
836 		if (val & ~SOF_TIMESTAMPING_MASK) {
837 			ret = -EINVAL;
838 			break;
839 		}
840 
841 		if (val & SOF_TIMESTAMPING_OPT_ID &&
842 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
843 			if (sk->sk_protocol == IPPROTO_TCP &&
844 			    sk->sk_type == SOCK_STREAM) {
845 				if ((1 << sk->sk_state) &
846 				    (TCPF_CLOSE | TCPF_LISTEN)) {
847 					ret = -EINVAL;
848 					break;
849 				}
850 				sk->sk_tskey = tcp_sk(sk)->snd_una;
851 			} else {
852 				sk->sk_tskey = 0;
853 			}
854 		}
855 		sk->sk_tsflags = val;
856 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
857 			sock_enable_timestamp(sk,
858 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
859 		else
860 			sock_disable_timestamp(sk,
861 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
862 		break;
863 
864 	case SO_RCVLOWAT:
865 		if (val < 0)
866 			val = INT_MAX;
867 		sk->sk_rcvlowat = val ? : 1;
868 		break;
869 
870 	case SO_RCVTIMEO:
871 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
872 		break;
873 
874 	case SO_SNDTIMEO:
875 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
876 		break;
877 
878 	case SO_ATTACH_FILTER:
879 		ret = -EINVAL;
880 		if (optlen == sizeof(struct sock_fprog)) {
881 			struct sock_fprog fprog;
882 
883 			ret = -EFAULT;
884 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
885 				break;
886 
887 			ret = sk_attach_filter(&fprog, sk);
888 		}
889 		break;
890 
891 	case SO_ATTACH_BPF:
892 		ret = -EINVAL;
893 		if (optlen == sizeof(u32)) {
894 			u32 ufd;
895 
896 			ret = -EFAULT;
897 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
898 				break;
899 
900 			ret = sk_attach_bpf(ufd, sk);
901 		}
902 		break;
903 
904 	case SO_ATTACH_REUSEPORT_CBPF:
905 		ret = -EINVAL;
906 		if (optlen == sizeof(struct sock_fprog)) {
907 			struct sock_fprog fprog;
908 
909 			ret = -EFAULT;
910 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
911 				break;
912 
913 			ret = sk_reuseport_attach_filter(&fprog, sk);
914 		}
915 		break;
916 
917 	case SO_ATTACH_REUSEPORT_EBPF:
918 		ret = -EINVAL;
919 		if (optlen == sizeof(u32)) {
920 			u32 ufd;
921 
922 			ret = -EFAULT;
923 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
924 				break;
925 
926 			ret = sk_reuseport_attach_bpf(ufd, sk);
927 		}
928 		break;
929 
930 	case SO_DETACH_FILTER:
931 		ret = sk_detach_filter(sk);
932 		break;
933 
934 	case SO_LOCK_FILTER:
935 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
936 			ret = -EPERM;
937 		else
938 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
939 		break;
940 
941 	case SO_PASSSEC:
942 		if (valbool)
943 			set_bit(SOCK_PASSSEC, &sock->flags);
944 		else
945 			clear_bit(SOCK_PASSSEC, &sock->flags);
946 		break;
947 	case SO_MARK:
948 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
949 			ret = -EPERM;
950 		else
951 			sk->sk_mark = val;
952 		break;
953 
954 	case SO_RXQ_OVFL:
955 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
956 		break;
957 
958 	case SO_WIFI_STATUS:
959 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
960 		break;
961 
962 	case SO_PEEK_OFF:
963 		if (sock->ops->set_peek_off)
964 			ret = sock->ops->set_peek_off(sk, val);
965 		else
966 			ret = -EOPNOTSUPP;
967 		break;
968 
969 	case SO_NOFCS:
970 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
971 		break;
972 
973 	case SO_SELECT_ERR_QUEUE:
974 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
975 		break;
976 
977 #ifdef CONFIG_NET_RX_BUSY_POLL
978 	case SO_BUSY_POLL:
979 		/* allow unprivileged users to decrease the value */
980 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
981 			ret = -EPERM;
982 		else {
983 			if (val < 0)
984 				ret = -EINVAL;
985 			else
986 				sk->sk_ll_usec = val;
987 		}
988 		break;
989 #endif
990 
991 	case SO_MAX_PACING_RATE:
992 		sk->sk_max_pacing_rate = val;
993 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
994 					 sk->sk_max_pacing_rate);
995 		break;
996 
997 	case SO_INCOMING_CPU:
998 		sk->sk_incoming_cpu = val;
999 		break;
1000 
1001 	case SO_CNX_ADVICE:
1002 		if (val == 1)
1003 			dst_negative_advice(sk);
1004 		break;
1005 	default:
1006 		ret = -ENOPROTOOPT;
1007 		break;
1008 	}
1009 	release_sock(sk);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(sock_setsockopt);
1013 
1014 
1015 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1016 			  struct ucred *ucred)
1017 {
1018 	ucred->pid = pid_vnr(pid);
1019 	ucred->uid = ucred->gid = -1;
1020 	if (cred) {
1021 		struct user_namespace *current_ns = current_user_ns();
1022 
1023 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1024 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1025 	}
1026 }
1027 
1028 int sock_getsockopt(struct socket *sock, int level, int optname,
1029 		    char __user *optval, int __user *optlen)
1030 {
1031 	struct sock *sk = sock->sk;
1032 
1033 	union {
1034 		int val;
1035 		struct linger ling;
1036 		struct timeval tm;
1037 	} v;
1038 
1039 	int lv = sizeof(int);
1040 	int len;
1041 
1042 	if (get_user(len, optlen))
1043 		return -EFAULT;
1044 	if (len < 0)
1045 		return -EINVAL;
1046 
1047 	memset(&v, 0, sizeof(v));
1048 
1049 	switch (optname) {
1050 	case SO_DEBUG:
1051 		v.val = sock_flag(sk, SOCK_DBG);
1052 		break;
1053 
1054 	case SO_DONTROUTE:
1055 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1056 		break;
1057 
1058 	case SO_BROADCAST:
1059 		v.val = sock_flag(sk, SOCK_BROADCAST);
1060 		break;
1061 
1062 	case SO_SNDBUF:
1063 		v.val = sk->sk_sndbuf;
1064 		break;
1065 
1066 	case SO_RCVBUF:
1067 		v.val = sk->sk_rcvbuf;
1068 		break;
1069 
1070 	case SO_REUSEADDR:
1071 		v.val = sk->sk_reuse;
1072 		break;
1073 
1074 	case SO_REUSEPORT:
1075 		v.val = sk->sk_reuseport;
1076 		break;
1077 
1078 	case SO_KEEPALIVE:
1079 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1080 		break;
1081 
1082 	case SO_TYPE:
1083 		v.val = sk->sk_type;
1084 		break;
1085 
1086 	case SO_PROTOCOL:
1087 		v.val = sk->sk_protocol;
1088 		break;
1089 
1090 	case SO_DOMAIN:
1091 		v.val = sk->sk_family;
1092 		break;
1093 
1094 	case SO_ERROR:
1095 		v.val = -sock_error(sk);
1096 		if (v.val == 0)
1097 			v.val = xchg(&sk->sk_err_soft, 0);
1098 		break;
1099 
1100 	case SO_OOBINLINE:
1101 		v.val = sock_flag(sk, SOCK_URGINLINE);
1102 		break;
1103 
1104 	case SO_NO_CHECK:
1105 		v.val = sk->sk_no_check_tx;
1106 		break;
1107 
1108 	case SO_PRIORITY:
1109 		v.val = sk->sk_priority;
1110 		break;
1111 
1112 	case SO_LINGER:
1113 		lv		= sizeof(v.ling);
1114 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1115 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1116 		break;
1117 
1118 	case SO_BSDCOMPAT:
1119 		sock_warn_obsolete_bsdism("getsockopt");
1120 		break;
1121 
1122 	case SO_TIMESTAMP:
1123 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1124 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1125 		break;
1126 
1127 	case SO_TIMESTAMPNS:
1128 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1129 		break;
1130 
1131 	case SO_TIMESTAMPING:
1132 		v.val = sk->sk_tsflags;
1133 		break;
1134 
1135 	case SO_RCVTIMEO:
1136 		lv = sizeof(struct timeval);
1137 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1138 			v.tm.tv_sec = 0;
1139 			v.tm.tv_usec = 0;
1140 		} else {
1141 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1142 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1143 		}
1144 		break;
1145 
1146 	case SO_SNDTIMEO:
1147 		lv = sizeof(struct timeval);
1148 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1149 			v.tm.tv_sec = 0;
1150 			v.tm.tv_usec = 0;
1151 		} else {
1152 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1153 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1154 		}
1155 		break;
1156 
1157 	case SO_RCVLOWAT:
1158 		v.val = sk->sk_rcvlowat;
1159 		break;
1160 
1161 	case SO_SNDLOWAT:
1162 		v.val = 1;
1163 		break;
1164 
1165 	case SO_PASSCRED:
1166 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1167 		break;
1168 
1169 	case SO_PEERCRED:
1170 	{
1171 		struct ucred peercred;
1172 		if (len > sizeof(peercred))
1173 			len = sizeof(peercred);
1174 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1175 		if (copy_to_user(optval, &peercred, len))
1176 			return -EFAULT;
1177 		goto lenout;
1178 	}
1179 
1180 	case SO_PEERNAME:
1181 	{
1182 		char address[128];
1183 
1184 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1185 			return -ENOTCONN;
1186 		if (lv < len)
1187 			return -EINVAL;
1188 		if (copy_to_user(optval, address, len))
1189 			return -EFAULT;
1190 		goto lenout;
1191 	}
1192 
1193 	/* Dubious BSD thing... Probably nobody even uses it, but
1194 	 * the UNIX standard wants it for whatever reason... -DaveM
1195 	 */
1196 	case SO_ACCEPTCONN:
1197 		v.val = sk->sk_state == TCP_LISTEN;
1198 		break;
1199 
1200 	case SO_PASSSEC:
1201 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1202 		break;
1203 
1204 	case SO_PEERSEC:
1205 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1206 
1207 	case SO_MARK:
1208 		v.val = sk->sk_mark;
1209 		break;
1210 
1211 	case SO_RXQ_OVFL:
1212 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1213 		break;
1214 
1215 	case SO_WIFI_STATUS:
1216 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1217 		break;
1218 
1219 	case SO_PEEK_OFF:
1220 		if (!sock->ops->set_peek_off)
1221 			return -EOPNOTSUPP;
1222 
1223 		v.val = sk->sk_peek_off;
1224 		break;
1225 	case SO_NOFCS:
1226 		v.val = sock_flag(sk, SOCK_NOFCS);
1227 		break;
1228 
1229 	case SO_BINDTODEVICE:
1230 		return sock_getbindtodevice(sk, optval, optlen, len);
1231 
1232 	case SO_GET_FILTER:
1233 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1234 		if (len < 0)
1235 			return len;
1236 
1237 		goto lenout;
1238 
1239 	case SO_LOCK_FILTER:
1240 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1241 		break;
1242 
1243 	case SO_BPF_EXTENSIONS:
1244 		v.val = bpf_tell_extensions();
1245 		break;
1246 
1247 	case SO_SELECT_ERR_QUEUE:
1248 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1249 		break;
1250 
1251 #ifdef CONFIG_NET_RX_BUSY_POLL
1252 	case SO_BUSY_POLL:
1253 		v.val = sk->sk_ll_usec;
1254 		break;
1255 #endif
1256 
1257 	case SO_MAX_PACING_RATE:
1258 		v.val = sk->sk_max_pacing_rate;
1259 		break;
1260 
1261 	case SO_INCOMING_CPU:
1262 		v.val = sk->sk_incoming_cpu;
1263 		break;
1264 
1265 	default:
1266 		/* We implement the SO_SNDLOWAT etc to not be settable
1267 		 * (1003.1g 7).
1268 		 */
1269 		return -ENOPROTOOPT;
1270 	}
1271 
1272 	if (len > lv)
1273 		len = lv;
1274 	if (copy_to_user(optval, &v, len))
1275 		return -EFAULT;
1276 lenout:
1277 	if (put_user(len, optlen))
1278 		return -EFAULT;
1279 	return 0;
1280 }
1281 
1282 /*
1283  * Initialize an sk_lock.
1284  *
1285  * (We also register the sk_lock with the lock validator.)
1286  */
1287 static inline void sock_lock_init(struct sock *sk)
1288 {
1289 	sock_lock_init_class_and_name(sk,
1290 			af_family_slock_key_strings[sk->sk_family],
1291 			af_family_slock_keys + sk->sk_family,
1292 			af_family_key_strings[sk->sk_family],
1293 			af_family_keys + sk->sk_family);
1294 }
1295 
1296 /*
1297  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1298  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1299  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1300  */
1301 static void sock_copy(struct sock *nsk, const struct sock *osk)
1302 {
1303 #ifdef CONFIG_SECURITY_NETWORK
1304 	void *sptr = nsk->sk_security;
1305 #endif
1306 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1307 
1308 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1309 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1310 
1311 #ifdef CONFIG_SECURITY_NETWORK
1312 	nsk->sk_security = sptr;
1313 	security_sk_clone(osk, nsk);
1314 #endif
1315 }
1316 
1317 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1318 {
1319 	unsigned long nulls1, nulls2;
1320 
1321 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1322 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1323 	if (nulls1 > nulls2)
1324 		swap(nulls1, nulls2);
1325 
1326 	if (nulls1 != 0)
1327 		memset((char *)sk, 0, nulls1);
1328 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1329 	       nulls2 - nulls1 - sizeof(void *));
1330 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1331 	       size - nulls2 - sizeof(void *));
1332 }
1333 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1334 
1335 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1336 		int family)
1337 {
1338 	struct sock *sk;
1339 	struct kmem_cache *slab;
1340 
1341 	slab = prot->slab;
1342 	if (slab != NULL) {
1343 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1344 		if (!sk)
1345 			return sk;
1346 		if (priority & __GFP_ZERO) {
1347 			if (prot->clear_sk)
1348 				prot->clear_sk(sk, prot->obj_size);
1349 			else
1350 				sk_prot_clear_nulls(sk, prot->obj_size);
1351 		}
1352 	} else
1353 		sk = kmalloc(prot->obj_size, priority);
1354 
1355 	if (sk != NULL) {
1356 		kmemcheck_annotate_bitfield(sk, flags);
1357 
1358 		if (security_sk_alloc(sk, family, priority))
1359 			goto out_free;
1360 
1361 		if (!try_module_get(prot->owner))
1362 			goto out_free_sec;
1363 		sk_tx_queue_clear(sk);
1364 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1365 	}
1366 
1367 	return sk;
1368 
1369 out_free_sec:
1370 	security_sk_free(sk);
1371 out_free:
1372 	if (slab != NULL)
1373 		kmem_cache_free(slab, sk);
1374 	else
1375 		kfree(sk);
1376 	return NULL;
1377 }
1378 
1379 static void sk_prot_free(struct proto *prot, struct sock *sk)
1380 {
1381 	struct kmem_cache *slab;
1382 	struct module *owner;
1383 
1384 	owner = prot->owner;
1385 	slab = prot->slab;
1386 
1387 	cgroup_sk_free(&sk->sk_cgrp_data);
1388 	security_sk_free(sk);
1389 	if (slab != NULL)
1390 		kmem_cache_free(slab, sk);
1391 	else
1392 		kfree(sk);
1393 	module_put(owner);
1394 }
1395 
1396 /**
1397  *	sk_alloc - All socket objects are allocated here
1398  *	@net: the applicable net namespace
1399  *	@family: protocol family
1400  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1401  *	@prot: struct proto associated with this new sock instance
1402  *	@kern: is this to be a kernel socket?
1403  */
1404 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1405 		      struct proto *prot, int kern)
1406 {
1407 	struct sock *sk;
1408 
1409 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1410 	if (sk) {
1411 		sk->sk_family = family;
1412 		/*
1413 		 * See comment in struct sock definition to understand
1414 		 * why we need sk_prot_creator -acme
1415 		 */
1416 		sk->sk_prot = sk->sk_prot_creator = prot;
1417 		sock_lock_init(sk);
1418 		sk->sk_net_refcnt = kern ? 0 : 1;
1419 		if (likely(sk->sk_net_refcnt))
1420 			get_net(net);
1421 		sock_net_set(sk, net);
1422 		atomic_set(&sk->sk_wmem_alloc, 1);
1423 
1424 		sock_update_classid(&sk->sk_cgrp_data);
1425 		sock_update_netprioidx(&sk->sk_cgrp_data);
1426 	}
1427 
1428 	return sk;
1429 }
1430 EXPORT_SYMBOL(sk_alloc);
1431 
1432 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1433  * grace period. This is the case for UDP sockets and TCP listeners.
1434  */
1435 static void __sk_destruct(struct rcu_head *head)
1436 {
1437 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1438 	struct sk_filter *filter;
1439 
1440 	if (sk->sk_destruct)
1441 		sk->sk_destruct(sk);
1442 
1443 	filter = rcu_dereference_check(sk->sk_filter,
1444 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1445 	if (filter) {
1446 		sk_filter_uncharge(sk, filter);
1447 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1448 	}
1449 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1450 		reuseport_detach_sock(sk);
1451 
1452 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1453 
1454 	if (atomic_read(&sk->sk_omem_alloc))
1455 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1456 			 __func__, atomic_read(&sk->sk_omem_alloc));
1457 
1458 	if (sk->sk_peer_cred)
1459 		put_cred(sk->sk_peer_cred);
1460 	put_pid(sk->sk_peer_pid);
1461 	if (likely(sk->sk_net_refcnt))
1462 		put_net(sock_net(sk));
1463 	sk_prot_free(sk->sk_prot_creator, sk);
1464 }
1465 
1466 void sk_destruct(struct sock *sk)
1467 {
1468 	if (sock_flag(sk, SOCK_RCU_FREE))
1469 		call_rcu(&sk->sk_rcu, __sk_destruct);
1470 	else
1471 		__sk_destruct(&sk->sk_rcu);
1472 }
1473 
1474 static void __sk_free(struct sock *sk)
1475 {
1476 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1477 		sock_diag_broadcast_destroy(sk);
1478 	else
1479 		sk_destruct(sk);
1480 }
1481 
1482 void sk_free(struct sock *sk)
1483 {
1484 	/*
1485 	 * We subtract one from sk_wmem_alloc and can know if
1486 	 * some packets are still in some tx queue.
1487 	 * If not null, sock_wfree() will call __sk_free(sk) later
1488 	 */
1489 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1490 		__sk_free(sk);
1491 }
1492 EXPORT_SYMBOL(sk_free);
1493 
1494 /**
1495  *	sk_clone_lock - clone a socket, and lock its clone
1496  *	@sk: the socket to clone
1497  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1498  *
1499  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1500  */
1501 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1502 {
1503 	struct sock *newsk;
1504 	bool is_charged = true;
1505 
1506 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1507 	if (newsk != NULL) {
1508 		struct sk_filter *filter;
1509 
1510 		sock_copy(newsk, sk);
1511 
1512 		/* SANITY */
1513 		if (likely(newsk->sk_net_refcnt))
1514 			get_net(sock_net(newsk));
1515 		sk_node_init(&newsk->sk_node);
1516 		sock_lock_init(newsk);
1517 		bh_lock_sock(newsk);
1518 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1519 		newsk->sk_backlog.len = 0;
1520 
1521 		atomic_set(&newsk->sk_rmem_alloc, 0);
1522 		/*
1523 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1524 		 */
1525 		atomic_set(&newsk->sk_wmem_alloc, 1);
1526 		atomic_set(&newsk->sk_omem_alloc, 0);
1527 		skb_queue_head_init(&newsk->sk_receive_queue);
1528 		skb_queue_head_init(&newsk->sk_write_queue);
1529 
1530 		rwlock_init(&newsk->sk_callback_lock);
1531 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1532 				af_callback_keys + newsk->sk_family,
1533 				af_family_clock_key_strings[newsk->sk_family]);
1534 
1535 		newsk->sk_dst_cache	= NULL;
1536 		newsk->sk_wmem_queued	= 0;
1537 		newsk->sk_forward_alloc = 0;
1538 		atomic_set(&newsk->sk_drops, 0);
1539 		newsk->sk_send_head	= NULL;
1540 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1541 
1542 		sock_reset_flag(newsk, SOCK_DONE);
1543 		skb_queue_head_init(&newsk->sk_error_queue);
1544 
1545 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1546 		if (filter != NULL)
1547 			/* though it's an empty new sock, the charging may fail
1548 			 * if sysctl_optmem_max was changed between creation of
1549 			 * original socket and cloning
1550 			 */
1551 			is_charged = sk_filter_charge(newsk, filter);
1552 
1553 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1554 			/* It is still raw copy of parent, so invalidate
1555 			 * destructor and make plain sk_free() */
1556 			newsk->sk_destruct = NULL;
1557 			bh_unlock_sock(newsk);
1558 			sk_free(newsk);
1559 			newsk = NULL;
1560 			goto out;
1561 		}
1562 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1563 
1564 		newsk->sk_err	   = 0;
1565 		newsk->sk_priority = 0;
1566 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1567 		atomic64_set(&newsk->sk_cookie, 0);
1568 		/*
1569 		 * Before updating sk_refcnt, we must commit prior changes to memory
1570 		 * (Documentation/RCU/rculist_nulls.txt for details)
1571 		 */
1572 		smp_wmb();
1573 		atomic_set(&newsk->sk_refcnt, 2);
1574 
1575 		/*
1576 		 * Increment the counter in the same struct proto as the master
1577 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1578 		 * is the same as sk->sk_prot->socks, as this field was copied
1579 		 * with memcpy).
1580 		 *
1581 		 * This _changes_ the previous behaviour, where
1582 		 * tcp_create_openreq_child always was incrementing the
1583 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1584 		 * to be taken into account in all callers. -acme
1585 		 */
1586 		sk_refcnt_debug_inc(newsk);
1587 		sk_set_socket(newsk, NULL);
1588 		newsk->sk_wq = NULL;
1589 
1590 		if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1591 			sock_update_memcg(newsk);
1592 
1593 		if (newsk->sk_prot->sockets_allocated)
1594 			sk_sockets_allocated_inc(newsk);
1595 
1596 		if (sock_needs_netstamp(sk) &&
1597 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1598 			net_enable_timestamp();
1599 	}
1600 out:
1601 	return newsk;
1602 }
1603 EXPORT_SYMBOL_GPL(sk_clone_lock);
1604 
1605 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1606 {
1607 	u32 max_segs = 1;
1608 
1609 	sk_dst_set(sk, dst);
1610 	sk->sk_route_caps = dst->dev->features;
1611 	if (sk->sk_route_caps & NETIF_F_GSO)
1612 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1613 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1614 	if (sk_can_gso(sk)) {
1615 		if (dst->header_len) {
1616 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1617 		} else {
1618 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1619 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1620 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1621 		}
1622 	}
1623 	sk->sk_gso_max_segs = max_segs;
1624 }
1625 EXPORT_SYMBOL_GPL(sk_setup_caps);
1626 
1627 /*
1628  *	Simple resource managers for sockets.
1629  */
1630 
1631 
1632 /*
1633  * Write buffer destructor automatically called from kfree_skb.
1634  */
1635 void sock_wfree(struct sk_buff *skb)
1636 {
1637 	struct sock *sk = skb->sk;
1638 	unsigned int len = skb->truesize;
1639 
1640 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1641 		/*
1642 		 * Keep a reference on sk_wmem_alloc, this will be released
1643 		 * after sk_write_space() call
1644 		 */
1645 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1646 		sk->sk_write_space(sk);
1647 		len = 1;
1648 	}
1649 	/*
1650 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1651 	 * could not do because of in-flight packets
1652 	 */
1653 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1654 		__sk_free(sk);
1655 }
1656 EXPORT_SYMBOL(sock_wfree);
1657 
1658 /* This variant of sock_wfree() is used by TCP,
1659  * since it sets SOCK_USE_WRITE_QUEUE.
1660  */
1661 void __sock_wfree(struct sk_buff *skb)
1662 {
1663 	struct sock *sk = skb->sk;
1664 
1665 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1666 		__sk_free(sk);
1667 }
1668 
1669 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1670 {
1671 	skb_orphan(skb);
1672 	skb->sk = sk;
1673 #ifdef CONFIG_INET
1674 	if (unlikely(!sk_fullsock(sk))) {
1675 		skb->destructor = sock_edemux;
1676 		sock_hold(sk);
1677 		return;
1678 	}
1679 #endif
1680 	skb->destructor = sock_wfree;
1681 	skb_set_hash_from_sk(skb, sk);
1682 	/*
1683 	 * We used to take a refcount on sk, but following operation
1684 	 * is enough to guarantee sk_free() wont free this sock until
1685 	 * all in-flight packets are completed
1686 	 */
1687 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1688 }
1689 EXPORT_SYMBOL(skb_set_owner_w);
1690 
1691 /* This helper is used by netem, as it can hold packets in its
1692  * delay queue. We want to allow the owner socket to send more
1693  * packets, as if they were already TX completed by a typical driver.
1694  * But we also want to keep skb->sk set because some packet schedulers
1695  * rely on it (sch_fq for example). So we set skb->truesize to a small
1696  * amount (1) and decrease sk_wmem_alloc accordingly.
1697  */
1698 void skb_orphan_partial(struct sk_buff *skb)
1699 {
1700 	/* If this skb is a TCP pure ACK or already went here,
1701 	 * we have nothing to do. 2 is already a very small truesize.
1702 	 */
1703 	if (skb->truesize <= 2)
1704 		return;
1705 
1706 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1707 	 * so we do not completely orphan skb, but transfert all
1708 	 * accounted bytes but one, to avoid unexpected reorders.
1709 	 */
1710 	if (skb->destructor == sock_wfree
1711 #ifdef CONFIG_INET
1712 	    || skb->destructor == tcp_wfree
1713 #endif
1714 		) {
1715 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1716 		skb->truesize = 1;
1717 	} else {
1718 		skb_orphan(skb);
1719 	}
1720 }
1721 EXPORT_SYMBOL(skb_orphan_partial);
1722 
1723 /*
1724  * Read buffer destructor automatically called from kfree_skb.
1725  */
1726 void sock_rfree(struct sk_buff *skb)
1727 {
1728 	struct sock *sk = skb->sk;
1729 	unsigned int len = skb->truesize;
1730 
1731 	atomic_sub(len, &sk->sk_rmem_alloc);
1732 	sk_mem_uncharge(sk, len);
1733 }
1734 EXPORT_SYMBOL(sock_rfree);
1735 
1736 /*
1737  * Buffer destructor for skbs that are not used directly in read or write
1738  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1739  */
1740 void sock_efree(struct sk_buff *skb)
1741 {
1742 	sock_put(skb->sk);
1743 }
1744 EXPORT_SYMBOL(sock_efree);
1745 
1746 kuid_t sock_i_uid(struct sock *sk)
1747 {
1748 	kuid_t uid;
1749 
1750 	read_lock_bh(&sk->sk_callback_lock);
1751 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1752 	read_unlock_bh(&sk->sk_callback_lock);
1753 	return uid;
1754 }
1755 EXPORT_SYMBOL(sock_i_uid);
1756 
1757 unsigned long sock_i_ino(struct sock *sk)
1758 {
1759 	unsigned long ino;
1760 
1761 	read_lock_bh(&sk->sk_callback_lock);
1762 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1763 	read_unlock_bh(&sk->sk_callback_lock);
1764 	return ino;
1765 }
1766 EXPORT_SYMBOL(sock_i_ino);
1767 
1768 /*
1769  * Allocate a skb from the socket's send buffer.
1770  */
1771 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1772 			     gfp_t priority)
1773 {
1774 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1775 		struct sk_buff *skb = alloc_skb(size, priority);
1776 		if (skb) {
1777 			skb_set_owner_w(skb, sk);
1778 			return skb;
1779 		}
1780 	}
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL(sock_wmalloc);
1784 
1785 /*
1786  * Allocate a memory block from the socket's option memory buffer.
1787  */
1788 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1789 {
1790 	if ((unsigned int)size <= sysctl_optmem_max &&
1791 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1792 		void *mem;
1793 		/* First do the add, to avoid the race if kmalloc
1794 		 * might sleep.
1795 		 */
1796 		atomic_add(size, &sk->sk_omem_alloc);
1797 		mem = kmalloc(size, priority);
1798 		if (mem)
1799 			return mem;
1800 		atomic_sub(size, &sk->sk_omem_alloc);
1801 	}
1802 	return NULL;
1803 }
1804 EXPORT_SYMBOL(sock_kmalloc);
1805 
1806 /* Free an option memory block. Note, we actually want the inline
1807  * here as this allows gcc to detect the nullify and fold away the
1808  * condition entirely.
1809  */
1810 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1811 				  const bool nullify)
1812 {
1813 	if (WARN_ON_ONCE(!mem))
1814 		return;
1815 	if (nullify)
1816 		kzfree(mem);
1817 	else
1818 		kfree(mem);
1819 	atomic_sub(size, &sk->sk_omem_alloc);
1820 }
1821 
1822 void sock_kfree_s(struct sock *sk, void *mem, int size)
1823 {
1824 	__sock_kfree_s(sk, mem, size, false);
1825 }
1826 EXPORT_SYMBOL(sock_kfree_s);
1827 
1828 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1829 {
1830 	__sock_kfree_s(sk, mem, size, true);
1831 }
1832 EXPORT_SYMBOL(sock_kzfree_s);
1833 
1834 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1835    I think, these locks should be removed for datagram sockets.
1836  */
1837 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1838 {
1839 	DEFINE_WAIT(wait);
1840 
1841 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1842 	for (;;) {
1843 		if (!timeo)
1844 			break;
1845 		if (signal_pending(current))
1846 			break;
1847 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1848 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1849 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1850 			break;
1851 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1852 			break;
1853 		if (sk->sk_err)
1854 			break;
1855 		timeo = schedule_timeout(timeo);
1856 	}
1857 	finish_wait(sk_sleep(sk), &wait);
1858 	return timeo;
1859 }
1860 
1861 
1862 /*
1863  *	Generic send/receive buffer handlers
1864  */
1865 
1866 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1867 				     unsigned long data_len, int noblock,
1868 				     int *errcode, int max_page_order)
1869 {
1870 	struct sk_buff *skb;
1871 	long timeo;
1872 	int err;
1873 
1874 	timeo = sock_sndtimeo(sk, noblock);
1875 	for (;;) {
1876 		err = sock_error(sk);
1877 		if (err != 0)
1878 			goto failure;
1879 
1880 		err = -EPIPE;
1881 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1882 			goto failure;
1883 
1884 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1885 			break;
1886 
1887 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1888 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1889 		err = -EAGAIN;
1890 		if (!timeo)
1891 			goto failure;
1892 		if (signal_pending(current))
1893 			goto interrupted;
1894 		timeo = sock_wait_for_wmem(sk, timeo);
1895 	}
1896 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1897 				   errcode, sk->sk_allocation);
1898 	if (skb)
1899 		skb_set_owner_w(skb, sk);
1900 	return skb;
1901 
1902 interrupted:
1903 	err = sock_intr_errno(timeo);
1904 failure:
1905 	*errcode = err;
1906 	return NULL;
1907 }
1908 EXPORT_SYMBOL(sock_alloc_send_pskb);
1909 
1910 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1911 				    int noblock, int *errcode)
1912 {
1913 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1914 }
1915 EXPORT_SYMBOL(sock_alloc_send_skb);
1916 
1917 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1918 		     struct sockcm_cookie *sockc)
1919 {
1920 	u32 tsflags;
1921 
1922 	switch (cmsg->cmsg_type) {
1923 	case SO_MARK:
1924 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1925 			return -EPERM;
1926 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1927 			return -EINVAL;
1928 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1929 		break;
1930 	case SO_TIMESTAMPING:
1931 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1932 			return -EINVAL;
1933 
1934 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1935 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1936 			return -EINVAL;
1937 
1938 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1939 		sockc->tsflags |= tsflags;
1940 		break;
1941 	default:
1942 		return -EINVAL;
1943 	}
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL(__sock_cmsg_send);
1947 
1948 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1949 		   struct sockcm_cookie *sockc)
1950 {
1951 	struct cmsghdr *cmsg;
1952 	int ret;
1953 
1954 	for_each_cmsghdr(cmsg, msg) {
1955 		if (!CMSG_OK(msg, cmsg))
1956 			return -EINVAL;
1957 		if (cmsg->cmsg_level != SOL_SOCKET)
1958 			continue;
1959 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1960 		if (ret)
1961 			return ret;
1962 	}
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(sock_cmsg_send);
1966 
1967 /* On 32bit arches, an skb frag is limited to 2^15 */
1968 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1969 
1970 /**
1971  * skb_page_frag_refill - check that a page_frag contains enough room
1972  * @sz: minimum size of the fragment we want to get
1973  * @pfrag: pointer to page_frag
1974  * @gfp: priority for memory allocation
1975  *
1976  * Note: While this allocator tries to use high order pages, there is
1977  * no guarantee that allocations succeed. Therefore, @sz MUST be
1978  * less or equal than PAGE_SIZE.
1979  */
1980 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1981 {
1982 	if (pfrag->page) {
1983 		if (page_ref_count(pfrag->page) == 1) {
1984 			pfrag->offset = 0;
1985 			return true;
1986 		}
1987 		if (pfrag->offset + sz <= pfrag->size)
1988 			return true;
1989 		put_page(pfrag->page);
1990 	}
1991 
1992 	pfrag->offset = 0;
1993 	if (SKB_FRAG_PAGE_ORDER) {
1994 		/* Avoid direct reclaim but allow kswapd to wake */
1995 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1996 					  __GFP_COMP | __GFP_NOWARN |
1997 					  __GFP_NORETRY,
1998 					  SKB_FRAG_PAGE_ORDER);
1999 		if (likely(pfrag->page)) {
2000 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2001 			return true;
2002 		}
2003 	}
2004 	pfrag->page = alloc_page(gfp);
2005 	if (likely(pfrag->page)) {
2006 		pfrag->size = PAGE_SIZE;
2007 		return true;
2008 	}
2009 	return false;
2010 }
2011 EXPORT_SYMBOL(skb_page_frag_refill);
2012 
2013 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2014 {
2015 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2016 		return true;
2017 
2018 	sk_enter_memory_pressure(sk);
2019 	sk_stream_moderate_sndbuf(sk);
2020 	return false;
2021 }
2022 EXPORT_SYMBOL(sk_page_frag_refill);
2023 
2024 static void __lock_sock(struct sock *sk)
2025 	__releases(&sk->sk_lock.slock)
2026 	__acquires(&sk->sk_lock.slock)
2027 {
2028 	DEFINE_WAIT(wait);
2029 
2030 	for (;;) {
2031 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2032 					TASK_UNINTERRUPTIBLE);
2033 		spin_unlock_bh(&sk->sk_lock.slock);
2034 		schedule();
2035 		spin_lock_bh(&sk->sk_lock.slock);
2036 		if (!sock_owned_by_user(sk))
2037 			break;
2038 	}
2039 	finish_wait(&sk->sk_lock.wq, &wait);
2040 }
2041 
2042 static void __release_sock(struct sock *sk)
2043 	__releases(&sk->sk_lock.slock)
2044 	__acquires(&sk->sk_lock.slock)
2045 {
2046 	struct sk_buff *skb, *next;
2047 
2048 	while ((skb = sk->sk_backlog.head) != NULL) {
2049 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2050 
2051 		spin_unlock_bh(&sk->sk_lock.slock);
2052 
2053 		do {
2054 			next = skb->next;
2055 			prefetch(next);
2056 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2057 			skb->next = NULL;
2058 			sk_backlog_rcv(sk, skb);
2059 
2060 			cond_resched();
2061 
2062 			skb = next;
2063 		} while (skb != NULL);
2064 
2065 		spin_lock_bh(&sk->sk_lock.slock);
2066 	}
2067 
2068 	/*
2069 	 * Doing the zeroing here guarantee we can not loop forever
2070 	 * while a wild producer attempts to flood us.
2071 	 */
2072 	sk->sk_backlog.len = 0;
2073 }
2074 
2075 void __sk_flush_backlog(struct sock *sk)
2076 {
2077 	spin_lock_bh(&sk->sk_lock.slock);
2078 	__release_sock(sk);
2079 	spin_unlock_bh(&sk->sk_lock.slock);
2080 }
2081 
2082 /**
2083  * sk_wait_data - wait for data to arrive at sk_receive_queue
2084  * @sk:    sock to wait on
2085  * @timeo: for how long
2086  * @skb:   last skb seen on sk_receive_queue
2087  *
2088  * Now socket state including sk->sk_err is changed only under lock,
2089  * hence we may omit checks after joining wait queue.
2090  * We check receive queue before schedule() only as optimization;
2091  * it is very likely that release_sock() added new data.
2092  */
2093 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2094 {
2095 	int rc;
2096 	DEFINE_WAIT(wait);
2097 
2098 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2099 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2100 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2101 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2102 	finish_wait(sk_sleep(sk), &wait);
2103 	return rc;
2104 }
2105 EXPORT_SYMBOL(sk_wait_data);
2106 
2107 /**
2108  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2109  *	@sk: socket
2110  *	@size: memory size to allocate
2111  *	@kind: allocation type
2112  *
2113  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2114  *	rmem allocation. This function assumes that protocols which have
2115  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2116  */
2117 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2118 {
2119 	struct proto *prot = sk->sk_prot;
2120 	int amt = sk_mem_pages(size);
2121 	long allocated;
2122 
2123 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2124 
2125 	allocated = sk_memory_allocated_add(sk, amt);
2126 
2127 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2128 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2129 		goto suppress_allocation;
2130 
2131 	/* Under limit. */
2132 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2133 		sk_leave_memory_pressure(sk);
2134 		return 1;
2135 	}
2136 
2137 	/* Under pressure. */
2138 	if (allocated > sk_prot_mem_limits(sk, 1))
2139 		sk_enter_memory_pressure(sk);
2140 
2141 	/* Over hard limit. */
2142 	if (allocated > sk_prot_mem_limits(sk, 2))
2143 		goto suppress_allocation;
2144 
2145 	/* guarantee minimum buffer size under pressure */
2146 	if (kind == SK_MEM_RECV) {
2147 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2148 			return 1;
2149 
2150 	} else { /* SK_MEM_SEND */
2151 		if (sk->sk_type == SOCK_STREAM) {
2152 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2153 				return 1;
2154 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2155 			   prot->sysctl_wmem[0])
2156 				return 1;
2157 	}
2158 
2159 	if (sk_has_memory_pressure(sk)) {
2160 		int alloc;
2161 
2162 		if (!sk_under_memory_pressure(sk))
2163 			return 1;
2164 		alloc = sk_sockets_allocated_read_positive(sk);
2165 		if (sk_prot_mem_limits(sk, 2) > alloc *
2166 		    sk_mem_pages(sk->sk_wmem_queued +
2167 				 atomic_read(&sk->sk_rmem_alloc) +
2168 				 sk->sk_forward_alloc))
2169 			return 1;
2170 	}
2171 
2172 suppress_allocation:
2173 
2174 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2175 		sk_stream_moderate_sndbuf(sk);
2176 
2177 		/* Fail only if socket is _under_ its sndbuf.
2178 		 * In this case we cannot block, so that we have to fail.
2179 		 */
2180 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2181 			return 1;
2182 	}
2183 
2184 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2185 
2186 	/* Alas. Undo changes. */
2187 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2188 
2189 	sk_memory_allocated_sub(sk, amt);
2190 
2191 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2192 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2193 
2194 	return 0;
2195 }
2196 EXPORT_SYMBOL(__sk_mem_schedule);
2197 
2198 /**
2199  *	__sk_mem_reclaim - reclaim memory_allocated
2200  *	@sk: socket
2201  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2202  */
2203 void __sk_mem_reclaim(struct sock *sk, int amount)
2204 {
2205 	amount >>= SK_MEM_QUANTUM_SHIFT;
2206 	sk_memory_allocated_sub(sk, amount);
2207 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2208 
2209 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2210 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2211 
2212 	if (sk_under_memory_pressure(sk) &&
2213 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2214 		sk_leave_memory_pressure(sk);
2215 }
2216 EXPORT_SYMBOL(__sk_mem_reclaim);
2217 
2218 int sk_set_peek_off(struct sock *sk, int val)
2219 {
2220 	if (val < 0)
2221 		return -EINVAL;
2222 
2223 	sk->sk_peek_off = val;
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2227 
2228 /*
2229  * Set of default routines for initialising struct proto_ops when
2230  * the protocol does not support a particular function. In certain
2231  * cases where it makes no sense for a protocol to have a "do nothing"
2232  * function, some default processing is provided.
2233  */
2234 
2235 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2236 {
2237 	return -EOPNOTSUPP;
2238 }
2239 EXPORT_SYMBOL(sock_no_bind);
2240 
2241 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2242 		    int len, int flags)
2243 {
2244 	return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_connect);
2247 
2248 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2249 {
2250 	return -EOPNOTSUPP;
2251 }
2252 EXPORT_SYMBOL(sock_no_socketpair);
2253 
2254 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2255 {
2256 	return -EOPNOTSUPP;
2257 }
2258 EXPORT_SYMBOL(sock_no_accept);
2259 
2260 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2261 		    int *len, int peer)
2262 {
2263 	return -EOPNOTSUPP;
2264 }
2265 EXPORT_SYMBOL(sock_no_getname);
2266 
2267 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2268 {
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL(sock_no_poll);
2272 
2273 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2274 {
2275 	return -EOPNOTSUPP;
2276 }
2277 EXPORT_SYMBOL(sock_no_ioctl);
2278 
2279 int sock_no_listen(struct socket *sock, int backlog)
2280 {
2281 	return -EOPNOTSUPP;
2282 }
2283 EXPORT_SYMBOL(sock_no_listen);
2284 
2285 int sock_no_shutdown(struct socket *sock, int how)
2286 {
2287 	return -EOPNOTSUPP;
2288 }
2289 EXPORT_SYMBOL(sock_no_shutdown);
2290 
2291 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2292 		    char __user *optval, unsigned int optlen)
2293 {
2294 	return -EOPNOTSUPP;
2295 }
2296 EXPORT_SYMBOL(sock_no_setsockopt);
2297 
2298 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2299 		    char __user *optval, int __user *optlen)
2300 {
2301 	return -EOPNOTSUPP;
2302 }
2303 EXPORT_SYMBOL(sock_no_getsockopt);
2304 
2305 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2306 {
2307 	return -EOPNOTSUPP;
2308 }
2309 EXPORT_SYMBOL(sock_no_sendmsg);
2310 
2311 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2312 		    int flags)
2313 {
2314 	return -EOPNOTSUPP;
2315 }
2316 EXPORT_SYMBOL(sock_no_recvmsg);
2317 
2318 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2319 {
2320 	/* Mirror missing mmap method error code */
2321 	return -ENODEV;
2322 }
2323 EXPORT_SYMBOL(sock_no_mmap);
2324 
2325 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2326 {
2327 	ssize_t res;
2328 	struct msghdr msg = {.msg_flags = flags};
2329 	struct kvec iov;
2330 	char *kaddr = kmap(page);
2331 	iov.iov_base = kaddr + offset;
2332 	iov.iov_len = size;
2333 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2334 	kunmap(page);
2335 	return res;
2336 }
2337 EXPORT_SYMBOL(sock_no_sendpage);
2338 
2339 /*
2340  *	Default Socket Callbacks
2341  */
2342 
2343 static void sock_def_wakeup(struct sock *sk)
2344 {
2345 	struct socket_wq *wq;
2346 
2347 	rcu_read_lock();
2348 	wq = rcu_dereference(sk->sk_wq);
2349 	if (skwq_has_sleeper(wq))
2350 		wake_up_interruptible_all(&wq->wait);
2351 	rcu_read_unlock();
2352 }
2353 
2354 static void sock_def_error_report(struct sock *sk)
2355 {
2356 	struct socket_wq *wq;
2357 
2358 	rcu_read_lock();
2359 	wq = rcu_dereference(sk->sk_wq);
2360 	if (skwq_has_sleeper(wq))
2361 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2362 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2363 	rcu_read_unlock();
2364 }
2365 
2366 static void sock_def_readable(struct sock *sk)
2367 {
2368 	struct socket_wq *wq;
2369 
2370 	rcu_read_lock();
2371 	wq = rcu_dereference(sk->sk_wq);
2372 	if (skwq_has_sleeper(wq))
2373 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2374 						POLLRDNORM | POLLRDBAND);
2375 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2376 	rcu_read_unlock();
2377 }
2378 
2379 static void sock_def_write_space(struct sock *sk)
2380 {
2381 	struct socket_wq *wq;
2382 
2383 	rcu_read_lock();
2384 
2385 	/* Do not wake up a writer until he can make "significant"
2386 	 * progress.  --DaveM
2387 	 */
2388 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2389 		wq = rcu_dereference(sk->sk_wq);
2390 		if (skwq_has_sleeper(wq))
2391 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2392 						POLLWRNORM | POLLWRBAND);
2393 
2394 		/* Should agree with poll, otherwise some programs break */
2395 		if (sock_writeable(sk))
2396 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2397 	}
2398 
2399 	rcu_read_unlock();
2400 }
2401 
2402 static void sock_def_destruct(struct sock *sk)
2403 {
2404 }
2405 
2406 void sk_send_sigurg(struct sock *sk)
2407 {
2408 	if (sk->sk_socket && sk->sk_socket->file)
2409 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2410 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2411 }
2412 EXPORT_SYMBOL(sk_send_sigurg);
2413 
2414 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2415 		    unsigned long expires)
2416 {
2417 	if (!mod_timer(timer, expires))
2418 		sock_hold(sk);
2419 }
2420 EXPORT_SYMBOL(sk_reset_timer);
2421 
2422 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2423 {
2424 	if (del_timer(timer))
2425 		__sock_put(sk);
2426 }
2427 EXPORT_SYMBOL(sk_stop_timer);
2428 
2429 void sock_init_data(struct socket *sock, struct sock *sk)
2430 {
2431 	skb_queue_head_init(&sk->sk_receive_queue);
2432 	skb_queue_head_init(&sk->sk_write_queue);
2433 	skb_queue_head_init(&sk->sk_error_queue);
2434 
2435 	sk->sk_send_head	=	NULL;
2436 
2437 	init_timer(&sk->sk_timer);
2438 
2439 	sk->sk_allocation	=	GFP_KERNEL;
2440 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2441 	sk->sk_sndbuf		=	sysctl_wmem_default;
2442 	sk->sk_state		=	TCP_CLOSE;
2443 	sk_set_socket(sk, sock);
2444 
2445 	sock_set_flag(sk, SOCK_ZAPPED);
2446 
2447 	if (sock) {
2448 		sk->sk_type	=	sock->type;
2449 		sk->sk_wq	=	sock->wq;
2450 		sock->sk	=	sk;
2451 	} else
2452 		sk->sk_wq	=	NULL;
2453 
2454 	rwlock_init(&sk->sk_callback_lock);
2455 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2456 			af_callback_keys + sk->sk_family,
2457 			af_family_clock_key_strings[sk->sk_family]);
2458 
2459 	sk->sk_state_change	=	sock_def_wakeup;
2460 	sk->sk_data_ready	=	sock_def_readable;
2461 	sk->sk_write_space	=	sock_def_write_space;
2462 	sk->sk_error_report	=	sock_def_error_report;
2463 	sk->sk_destruct		=	sock_def_destruct;
2464 
2465 	sk->sk_frag.page	=	NULL;
2466 	sk->sk_frag.offset	=	0;
2467 	sk->sk_peek_off		=	-1;
2468 
2469 	sk->sk_peer_pid 	=	NULL;
2470 	sk->sk_peer_cred	=	NULL;
2471 	sk->sk_write_pending	=	0;
2472 	sk->sk_rcvlowat		=	1;
2473 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2474 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2475 
2476 	sk->sk_stamp = ktime_set(-1L, 0);
2477 
2478 #ifdef CONFIG_NET_RX_BUSY_POLL
2479 	sk->sk_napi_id		=	0;
2480 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2481 #endif
2482 
2483 	sk->sk_max_pacing_rate = ~0U;
2484 	sk->sk_pacing_rate = ~0U;
2485 	sk->sk_incoming_cpu = -1;
2486 	/*
2487 	 * Before updating sk_refcnt, we must commit prior changes to memory
2488 	 * (Documentation/RCU/rculist_nulls.txt for details)
2489 	 */
2490 	smp_wmb();
2491 	atomic_set(&sk->sk_refcnt, 1);
2492 	atomic_set(&sk->sk_drops, 0);
2493 }
2494 EXPORT_SYMBOL(sock_init_data);
2495 
2496 void lock_sock_nested(struct sock *sk, int subclass)
2497 {
2498 	might_sleep();
2499 	spin_lock_bh(&sk->sk_lock.slock);
2500 	if (sk->sk_lock.owned)
2501 		__lock_sock(sk);
2502 	sk->sk_lock.owned = 1;
2503 	spin_unlock(&sk->sk_lock.slock);
2504 	/*
2505 	 * The sk_lock has mutex_lock() semantics here:
2506 	 */
2507 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2508 	local_bh_enable();
2509 }
2510 EXPORT_SYMBOL(lock_sock_nested);
2511 
2512 void release_sock(struct sock *sk)
2513 {
2514 	spin_lock_bh(&sk->sk_lock.slock);
2515 	if (sk->sk_backlog.tail)
2516 		__release_sock(sk);
2517 
2518 	/* Warning : release_cb() might need to release sk ownership,
2519 	 * ie call sock_release_ownership(sk) before us.
2520 	 */
2521 	if (sk->sk_prot->release_cb)
2522 		sk->sk_prot->release_cb(sk);
2523 
2524 	sock_release_ownership(sk);
2525 	if (waitqueue_active(&sk->sk_lock.wq))
2526 		wake_up(&sk->sk_lock.wq);
2527 	spin_unlock_bh(&sk->sk_lock.slock);
2528 }
2529 EXPORT_SYMBOL(release_sock);
2530 
2531 /**
2532  * lock_sock_fast - fast version of lock_sock
2533  * @sk: socket
2534  *
2535  * This version should be used for very small section, where process wont block
2536  * return false if fast path is taken
2537  *   sk_lock.slock locked, owned = 0, BH disabled
2538  * return true if slow path is taken
2539  *   sk_lock.slock unlocked, owned = 1, BH enabled
2540  */
2541 bool lock_sock_fast(struct sock *sk)
2542 {
2543 	might_sleep();
2544 	spin_lock_bh(&sk->sk_lock.slock);
2545 
2546 	if (!sk->sk_lock.owned)
2547 		/*
2548 		 * Note : We must disable BH
2549 		 */
2550 		return false;
2551 
2552 	__lock_sock(sk);
2553 	sk->sk_lock.owned = 1;
2554 	spin_unlock(&sk->sk_lock.slock);
2555 	/*
2556 	 * The sk_lock has mutex_lock() semantics here:
2557 	 */
2558 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2559 	local_bh_enable();
2560 	return true;
2561 }
2562 EXPORT_SYMBOL(lock_sock_fast);
2563 
2564 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2565 {
2566 	struct timeval tv;
2567 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2568 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2569 	tv = ktime_to_timeval(sk->sk_stamp);
2570 	if (tv.tv_sec == -1)
2571 		return -ENOENT;
2572 	if (tv.tv_sec == 0) {
2573 		sk->sk_stamp = ktime_get_real();
2574 		tv = ktime_to_timeval(sk->sk_stamp);
2575 	}
2576 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2577 }
2578 EXPORT_SYMBOL(sock_get_timestamp);
2579 
2580 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2581 {
2582 	struct timespec ts;
2583 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2584 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2585 	ts = ktime_to_timespec(sk->sk_stamp);
2586 	if (ts.tv_sec == -1)
2587 		return -ENOENT;
2588 	if (ts.tv_sec == 0) {
2589 		sk->sk_stamp = ktime_get_real();
2590 		ts = ktime_to_timespec(sk->sk_stamp);
2591 	}
2592 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2593 }
2594 EXPORT_SYMBOL(sock_get_timestampns);
2595 
2596 void sock_enable_timestamp(struct sock *sk, int flag)
2597 {
2598 	if (!sock_flag(sk, flag)) {
2599 		unsigned long previous_flags = sk->sk_flags;
2600 
2601 		sock_set_flag(sk, flag);
2602 		/*
2603 		 * we just set one of the two flags which require net
2604 		 * time stamping, but time stamping might have been on
2605 		 * already because of the other one
2606 		 */
2607 		if (sock_needs_netstamp(sk) &&
2608 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2609 			net_enable_timestamp();
2610 	}
2611 }
2612 
2613 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2614 		       int level, int type)
2615 {
2616 	struct sock_exterr_skb *serr;
2617 	struct sk_buff *skb;
2618 	int copied, err;
2619 
2620 	err = -EAGAIN;
2621 	skb = sock_dequeue_err_skb(sk);
2622 	if (skb == NULL)
2623 		goto out;
2624 
2625 	copied = skb->len;
2626 	if (copied > len) {
2627 		msg->msg_flags |= MSG_TRUNC;
2628 		copied = len;
2629 	}
2630 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2631 	if (err)
2632 		goto out_free_skb;
2633 
2634 	sock_recv_timestamp(msg, sk, skb);
2635 
2636 	serr = SKB_EXT_ERR(skb);
2637 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2638 
2639 	msg->msg_flags |= MSG_ERRQUEUE;
2640 	err = copied;
2641 
2642 out_free_skb:
2643 	kfree_skb(skb);
2644 out:
2645 	return err;
2646 }
2647 EXPORT_SYMBOL(sock_recv_errqueue);
2648 
2649 /*
2650  *	Get a socket option on an socket.
2651  *
2652  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2653  *	asynchronous errors should be reported by getsockopt. We assume
2654  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2655  */
2656 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2657 			   char __user *optval, int __user *optlen)
2658 {
2659 	struct sock *sk = sock->sk;
2660 
2661 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2662 }
2663 EXPORT_SYMBOL(sock_common_getsockopt);
2664 
2665 #ifdef CONFIG_COMPAT
2666 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2667 				  char __user *optval, int __user *optlen)
2668 {
2669 	struct sock *sk = sock->sk;
2670 
2671 	if (sk->sk_prot->compat_getsockopt != NULL)
2672 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2673 						      optval, optlen);
2674 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2675 }
2676 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2677 #endif
2678 
2679 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2680 			int flags)
2681 {
2682 	struct sock *sk = sock->sk;
2683 	int addr_len = 0;
2684 	int err;
2685 
2686 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2687 				   flags & ~MSG_DONTWAIT, &addr_len);
2688 	if (err >= 0)
2689 		msg->msg_namelen = addr_len;
2690 	return err;
2691 }
2692 EXPORT_SYMBOL(sock_common_recvmsg);
2693 
2694 /*
2695  *	Set socket options on an inet socket.
2696  */
2697 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2698 			   char __user *optval, unsigned int optlen)
2699 {
2700 	struct sock *sk = sock->sk;
2701 
2702 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2703 }
2704 EXPORT_SYMBOL(sock_common_setsockopt);
2705 
2706 #ifdef CONFIG_COMPAT
2707 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2708 				  char __user *optval, unsigned int optlen)
2709 {
2710 	struct sock *sk = sock->sk;
2711 
2712 	if (sk->sk_prot->compat_setsockopt != NULL)
2713 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2714 						      optval, optlen);
2715 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2716 }
2717 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2718 #endif
2719 
2720 void sk_common_release(struct sock *sk)
2721 {
2722 	if (sk->sk_prot->destroy)
2723 		sk->sk_prot->destroy(sk);
2724 
2725 	/*
2726 	 * Observation: when sock_common_release is called, processes have
2727 	 * no access to socket. But net still has.
2728 	 * Step one, detach it from networking:
2729 	 *
2730 	 * A. Remove from hash tables.
2731 	 */
2732 
2733 	sk->sk_prot->unhash(sk);
2734 
2735 	/*
2736 	 * In this point socket cannot receive new packets, but it is possible
2737 	 * that some packets are in flight because some CPU runs receiver and
2738 	 * did hash table lookup before we unhashed socket. They will achieve
2739 	 * receive queue and will be purged by socket destructor.
2740 	 *
2741 	 * Also we still have packets pending on receive queue and probably,
2742 	 * our own packets waiting in device queues. sock_destroy will drain
2743 	 * receive queue, but transmitted packets will delay socket destruction
2744 	 * until the last reference will be released.
2745 	 */
2746 
2747 	sock_orphan(sk);
2748 
2749 	xfrm_sk_free_policy(sk);
2750 
2751 	sk_refcnt_debug_release(sk);
2752 
2753 	if (sk->sk_frag.page) {
2754 		put_page(sk->sk_frag.page);
2755 		sk->sk_frag.page = NULL;
2756 	}
2757 
2758 	sock_put(sk);
2759 }
2760 EXPORT_SYMBOL(sk_common_release);
2761 
2762 #ifdef CONFIG_PROC_FS
2763 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2764 struct prot_inuse {
2765 	int val[PROTO_INUSE_NR];
2766 };
2767 
2768 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2769 
2770 #ifdef CONFIG_NET_NS
2771 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2772 {
2773 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2774 }
2775 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2776 
2777 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2778 {
2779 	int cpu, idx = prot->inuse_idx;
2780 	int res = 0;
2781 
2782 	for_each_possible_cpu(cpu)
2783 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2784 
2785 	return res >= 0 ? res : 0;
2786 }
2787 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2788 
2789 static int __net_init sock_inuse_init_net(struct net *net)
2790 {
2791 	net->core.inuse = alloc_percpu(struct prot_inuse);
2792 	return net->core.inuse ? 0 : -ENOMEM;
2793 }
2794 
2795 static void __net_exit sock_inuse_exit_net(struct net *net)
2796 {
2797 	free_percpu(net->core.inuse);
2798 }
2799 
2800 static struct pernet_operations net_inuse_ops = {
2801 	.init = sock_inuse_init_net,
2802 	.exit = sock_inuse_exit_net,
2803 };
2804 
2805 static __init int net_inuse_init(void)
2806 {
2807 	if (register_pernet_subsys(&net_inuse_ops))
2808 		panic("Cannot initialize net inuse counters");
2809 
2810 	return 0;
2811 }
2812 
2813 core_initcall(net_inuse_init);
2814 #else
2815 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2816 
2817 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2818 {
2819 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2820 }
2821 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2822 
2823 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2824 {
2825 	int cpu, idx = prot->inuse_idx;
2826 	int res = 0;
2827 
2828 	for_each_possible_cpu(cpu)
2829 		res += per_cpu(prot_inuse, cpu).val[idx];
2830 
2831 	return res >= 0 ? res : 0;
2832 }
2833 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2834 #endif
2835 
2836 static void assign_proto_idx(struct proto *prot)
2837 {
2838 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2839 
2840 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2841 		pr_err("PROTO_INUSE_NR exhausted\n");
2842 		return;
2843 	}
2844 
2845 	set_bit(prot->inuse_idx, proto_inuse_idx);
2846 }
2847 
2848 static void release_proto_idx(struct proto *prot)
2849 {
2850 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2851 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2852 }
2853 #else
2854 static inline void assign_proto_idx(struct proto *prot)
2855 {
2856 }
2857 
2858 static inline void release_proto_idx(struct proto *prot)
2859 {
2860 }
2861 #endif
2862 
2863 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2864 {
2865 	if (!rsk_prot)
2866 		return;
2867 	kfree(rsk_prot->slab_name);
2868 	rsk_prot->slab_name = NULL;
2869 	kmem_cache_destroy(rsk_prot->slab);
2870 	rsk_prot->slab = NULL;
2871 }
2872 
2873 static int req_prot_init(const struct proto *prot)
2874 {
2875 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2876 
2877 	if (!rsk_prot)
2878 		return 0;
2879 
2880 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2881 					prot->name);
2882 	if (!rsk_prot->slab_name)
2883 		return -ENOMEM;
2884 
2885 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2886 					   rsk_prot->obj_size, 0,
2887 					   prot->slab_flags, NULL);
2888 
2889 	if (!rsk_prot->slab) {
2890 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2891 			prot->name);
2892 		return -ENOMEM;
2893 	}
2894 	return 0;
2895 }
2896 
2897 int proto_register(struct proto *prot, int alloc_slab)
2898 {
2899 	if (alloc_slab) {
2900 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2901 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2902 					NULL);
2903 
2904 		if (prot->slab == NULL) {
2905 			pr_crit("%s: Can't create sock SLAB cache!\n",
2906 				prot->name);
2907 			goto out;
2908 		}
2909 
2910 		if (req_prot_init(prot))
2911 			goto out_free_request_sock_slab;
2912 
2913 		if (prot->twsk_prot != NULL) {
2914 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2915 
2916 			if (prot->twsk_prot->twsk_slab_name == NULL)
2917 				goto out_free_request_sock_slab;
2918 
2919 			prot->twsk_prot->twsk_slab =
2920 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2921 						  prot->twsk_prot->twsk_obj_size,
2922 						  0,
2923 						  prot->slab_flags,
2924 						  NULL);
2925 			if (prot->twsk_prot->twsk_slab == NULL)
2926 				goto out_free_timewait_sock_slab_name;
2927 		}
2928 	}
2929 
2930 	mutex_lock(&proto_list_mutex);
2931 	list_add(&prot->node, &proto_list);
2932 	assign_proto_idx(prot);
2933 	mutex_unlock(&proto_list_mutex);
2934 	return 0;
2935 
2936 out_free_timewait_sock_slab_name:
2937 	kfree(prot->twsk_prot->twsk_slab_name);
2938 out_free_request_sock_slab:
2939 	req_prot_cleanup(prot->rsk_prot);
2940 
2941 	kmem_cache_destroy(prot->slab);
2942 	prot->slab = NULL;
2943 out:
2944 	return -ENOBUFS;
2945 }
2946 EXPORT_SYMBOL(proto_register);
2947 
2948 void proto_unregister(struct proto *prot)
2949 {
2950 	mutex_lock(&proto_list_mutex);
2951 	release_proto_idx(prot);
2952 	list_del(&prot->node);
2953 	mutex_unlock(&proto_list_mutex);
2954 
2955 	kmem_cache_destroy(prot->slab);
2956 	prot->slab = NULL;
2957 
2958 	req_prot_cleanup(prot->rsk_prot);
2959 
2960 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2961 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2962 		kfree(prot->twsk_prot->twsk_slab_name);
2963 		prot->twsk_prot->twsk_slab = NULL;
2964 	}
2965 }
2966 EXPORT_SYMBOL(proto_unregister);
2967 
2968 #ifdef CONFIG_PROC_FS
2969 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2970 	__acquires(proto_list_mutex)
2971 {
2972 	mutex_lock(&proto_list_mutex);
2973 	return seq_list_start_head(&proto_list, *pos);
2974 }
2975 
2976 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2977 {
2978 	return seq_list_next(v, &proto_list, pos);
2979 }
2980 
2981 static void proto_seq_stop(struct seq_file *seq, void *v)
2982 	__releases(proto_list_mutex)
2983 {
2984 	mutex_unlock(&proto_list_mutex);
2985 }
2986 
2987 static char proto_method_implemented(const void *method)
2988 {
2989 	return method == NULL ? 'n' : 'y';
2990 }
2991 static long sock_prot_memory_allocated(struct proto *proto)
2992 {
2993 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2994 }
2995 
2996 static char *sock_prot_memory_pressure(struct proto *proto)
2997 {
2998 	return proto->memory_pressure != NULL ?
2999 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3000 }
3001 
3002 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3003 {
3004 
3005 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3006 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3007 		   proto->name,
3008 		   proto->obj_size,
3009 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3010 		   sock_prot_memory_allocated(proto),
3011 		   sock_prot_memory_pressure(proto),
3012 		   proto->max_header,
3013 		   proto->slab == NULL ? "no" : "yes",
3014 		   module_name(proto->owner),
3015 		   proto_method_implemented(proto->close),
3016 		   proto_method_implemented(proto->connect),
3017 		   proto_method_implemented(proto->disconnect),
3018 		   proto_method_implemented(proto->accept),
3019 		   proto_method_implemented(proto->ioctl),
3020 		   proto_method_implemented(proto->init),
3021 		   proto_method_implemented(proto->destroy),
3022 		   proto_method_implemented(proto->shutdown),
3023 		   proto_method_implemented(proto->setsockopt),
3024 		   proto_method_implemented(proto->getsockopt),
3025 		   proto_method_implemented(proto->sendmsg),
3026 		   proto_method_implemented(proto->recvmsg),
3027 		   proto_method_implemented(proto->sendpage),
3028 		   proto_method_implemented(proto->bind),
3029 		   proto_method_implemented(proto->backlog_rcv),
3030 		   proto_method_implemented(proto->hash),
3031 		   proto_method_implemented(proto->unhash),
3032 		   proto_method_implemented(proto->get_port),
3033 		   proto_method_implemented(proto->enter_memory_pressure));
3034 }
3035 
3036 static int proto_seq_show(struct seq_file *seq, void *v)
3037 {
3038 	if (v == &proto_list)
3039 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3040 			   "protocol",
3041 			   "size",
3042 			   "sockets",
3043 			   "memory",
3044 			   "press",
3045 			   "maxhdr",
3046 			   "slab",
3047 			   "module",
3048 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3049 	else
3050 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3051 	return 0;
3052 }
3053 
3054 static const struct seq_operations proto_seq_ops = {
3055 	.start  = proto_seq_start,
3056 	.next   = proto_seq_next,
3057 	.stop   = proto_seq_stop,
3058 	.show   = proto_seq_show,
3059 };
3060 
3061 static int proto_seq_open(struct inode *inode, struct file *file)
3062 {
3063 	return seq_open_net(inode, file, &proto_seq_ops,
3064 			    sizeof(struct seq_net_private));
3065 }
3066 
3067 static const struct file_operations proto_seq_fops = {
3068 	.owner		= THIS_MODULE,
3069 	.open		= proto_seq_open,
3070 	.read		= seq_read,
3071 	.llseek		= seq_lseek,
3072 	.release	= seq_release_net,
3073 };
3074 
3075 static __net_init int proto_init_net(struct net *net)
3076 {
3077 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3078 		return -ENOMEM;
3079 
3080 	return 0;
3081 }
3082 
3083 static __net_exit void proto_exit_net(struct net *net)
3084 {
3085 	remove_proc_entry("protocols", net->proc_net);
3086 }
3087 
3088 
3089 static __net_initdata struct pernet_operations proto_net_ops = {
3090 	.init = proto_init_net,
3091 	.exit = proto_exit_net,
3092 };
3093 
3094 static int __init proto_init(void)
3095 {
3096 	return register_pernet_subsys(&proto_net_ops);
3097 }
3098 
3099 subsys_initcall(proto_init);
3100 
3101 #endif /* PROC_FS */
3102