xref: /openbmc/linux/net/core/sock.c (revision 8dcf07be)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 		     const int nested, unsigned int trim_cap, bool refcounted)
457 {
458 	int rc = NET_RX_SUCCESS;
459 
460 	if (sk_filter_trim_cap(sk, skb, trim_cap))
461 		goto discard_and_relse;
462 
463 	skb->dev = NULL;
464 
465 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 		atomic_inc(&sk->sk_drops);
467 		goto discard_and_relse;
468 	}
469 	if (nested)
470 		bh_lock_sock_nested(sk);
471 	else
472 		bh_lock_sock(sk);
473 	if (!sock_owned_by_user(sk)) {
474 		/*
475 		 * trylock + unlock semantics:
476 		 */
477 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479 		rc = sk_backlog_rcv(sk, skb);
480 
481 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 		bh_unlock_sock(sk);
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 
488 	bh_unlock_sock(sk);
489 out:
490 	if (refcounted)
491 		sock_put(sk);
492 	return rc;
493 discard_and_relse:
494 	kfree_skb(skb);
495 	goto out;
496 }
497 EXPORT_SYMBOL(__sk_receive_skb);
498 
499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500 {
501 	struct dst_entry *dst = __sk_dst_get(sk);
502 
503 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 		sk_tx_queue_clear(sk);
505 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
506 		dst_release(dst);
507 		return NULL;
508 	}
509 
510 	return dst;
511 }
512 EXPORT_SYMBOL(__sk_dst_check);
513 
514 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
515 {
516 	struct dst_entry *dst = sk_dst_get(sk);
517 
518 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
519 		sk_dst_reset(sk);
520 		dst_release(dst);
521 		return NULL;
522 	}
523 
524 	return dst;
525 }
526 EXPORT_SYMBOL(sk_dst_check);
527 
528 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
529 				int optlen)
530 {
531 	int ret = -ENOPROTOOPT;
532 #ifdef CONFIG_NETDEVICES
533 	struct net *net = sock_net(sk);
534 	char devname[IFNAMSIZ];
535 	int index;
536 
537 	/* Sorry... */
538 	ret = -EPERM;
539 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
540 		goto out;
541 
542 	ret = -EINVAL;
543 	if (optlen < 0)
544 		goto out;
545 
546 	/* Bind this socket to a particular device like "eth0",
547 	 * as specified in the passed interface name. If the
548 	 * name is "" or the option length is zero the socket
549 	 * is not bound.
550 	 */
551 	if (optlen > IFNAMSIZ - 1)
552 		optlen = IFNAMSIZ - 1;
553 	memset(devname, 0, sizeof(devname));
554 
555 	ret = -EFAULT;
556 	if (copy_from_user(devname, optval, optlen))
557 		goto out;
558 
559 	index = 0;
560 	if (devname[0] != '\0') {
561 		struct net_device *dev;
562 
563 		rcu_read_lock();
564 		dev = dev_get_by_name_rcu(net, devname);
565 		if (dev)
566 			index = dev->ifindex;
567 		rcu_read_unlock();
568 		ret = -ENODEV;
569 		if (!dev)
570 			goto out;
571 	}
572 
573 	lock_sock(sk);
574 	sk->sk_bound_dev_if = index;
575 	sk_dst_reset(sk);
576 	release_sock(sk);
577 
578 	ret = 0;
579 
580 out:
581 #endif
582 
583 	return ret;
584 }
585 
586 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
587 				int __user *optlen, int len)
588 {
589 	int ret = -ENOPROTOOPT;
590 #ifdef CONFIG_NETDEVICES
591 	struct net *net = sock_net(sk);
592 	char devname[IFNAMSIZ];
593 
594 	if (sk->sk_bound_dev_if == 0) {
595 		len = 0;
596 		goto zero;
597 	}
598 
599 	ret = -EINVAL;
600 	if (len < IFNAMSIZ)
601 		goto out;
602 
603 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
604 	if (ret)
605 		goto out;
606 
607 	len = strlen(devname) + 1;
608 
609 	ret = -EFAULT;
610 	if (copy_to_user(optval, devname, len))
611 		goto out;
612 
613 zero:
614 	ret = -EFAULT;
615 	if (put_user(len, optlen))
616 		goto out;
617 
618 	ret = 0;
619 
620 out:
621 #endif
622 
623 	return ret;
624 }
625 
626 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
627 {
628 	if (valbool)
629 		sock_set_flag(sk, bit);
630 	else
631 		sock_reset_flag(sk, bit);
632 }
633 
634 bool sk_mc_loop(struct sock *sk)
635 {
636 	if (dev_recursion_level())
637 		return false;
638 	if (!sk)
639 		return true;
640 	switch (sk->sk_family) {
641 	case AF_INET:
642 		return inet_sk(sk)->mc_loop;
643 #if IS_ENABLED(CONFIG_IPV6)
644 	case AF_INET6:
645 		return inet6_sk(sk)->mc_loop;
646 #endif
647 	}
648 	WARN_ON(1);
649 	return true;
650 }
651 EXPORT_SYMBOL(sk_mc_loop);
652 
653 /*
654  *	This is meant for all protocols to use and covers goings on
655  *	at the socket level. Everything here is generic.
656  */
657 
658 int sock_setsockopt(struct socket *sock, int level, int optname,
659 		    char __user *optval, unsigned int optlen)
660 {
661 	struct sock *sk = sock->sk;
662 	int val;
663 	int valbool;
664 	struct linger ling;
665 	int ret = 0;
666 
667 	/*
668 	 *	Options without arguments
669 	 */
670 
671 	if (optname == SO_BINDTODEVICE)
672 		return sock_setbindtodevice(sk, optval, optlen);
673 
674 	if (optlen < sizeof(int))
675 		return -EINVAL;
676 
677 	if (get_user(val, (int __user *)optval))
678 		return -EFAULT;
679 
680 	valbool = val ? 1 : 0;
681 
682 	lock_sock(sk);
683 
684 	switch (optname) {
685 	case SO_DEBUG:
686 		if (val && !capable(CAP_NET_ADMIN))
687 			ret = -EACCES;
688 		else
689 			sock_valbool_flag(sk, SOCK_DBG, valbool);
690 		break;
691 	case SO_REUSEADDR:
692 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
693 		break;
694 	case SO_REUSEPORT:
695 		sk->sk_reuseport = valbool;
696 		break;
697 	case SO_TYPE:
698 	case SO_PROTOCOL:
699 	case SO_DOMAIN:
700 	case SO_ERROR:
701 		ret = -ENOPROTOOPT;
702 		break;
703 	case SO_DONTROUTE:
704 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
705 		break;
706 	case SO_BROADCAST:
707 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
708 		break;
709 	case SO_SNDBUF:
710 		/* Don't error on this BSD doesn't and if you think
711 		 * about it this is right. Otherwise apps have to
712 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
713 		 * are treated in BSD as hints
714 		 */
715 		val = min_t(u32, val, sysctl_wmem_max);
716 set_sndbuf:
717 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
718 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
719 		/* Wake up sending tasks if we upped the value. */
720 		sk->sk_write_space(sk);
721 		break;
722 
723 	case SO_SNDBUFFORCE:
724 		if (!capable(CAP_NET_ADMIN)) {
725 			ret = -EPERM;
726 			break;
727 		}
728 		goto set_sndbuf;
729 
730 	case SO_RCVBUF:
731 		/* Don't error on this BSD doesn't and if you think
732 		 * about it this is right. Otherwise apps have to
733 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
734 		 * are treated in BSD as hints
735 		 */
736 		val = min_t(u32, val, sysctl_rmem_max);
737 set_rcvbuf:
738 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
739 		/*
740 		 * We double it on the way in to account for
741 		 * "struct sk_buff" etc. overhead.   Applications
742 		 * assume that the SO_RCVBUF setting they make will
743 		 * allow that much actual data to be received on that
744 		 * socket.
745 		 *
746 		 * Applications are unaware that "struct sk_buff" and
747 		 * other overheads allocate from the receive buffer
748 		 * during socket buffer allocation.
749 		 *
750 		 * And after considering the possible alternatives,
751 		 * returning the value we actually used in getsockopt
752 		 * is the most desirable behavior.
753 		 */
754 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
755 		break;
756 
757 	case SO_RCVBUFFORCE:
758 		if (!capable(CAP_NET_ADMIN)) {
759 			ret = -EPERM;
760 			break;
761 		}
762 		goto set_rcvbuf;
763 
764 	case SO_KEEPALIVE:
765 #ifdef CONFIG_INET
766 		if (sk->sk_protocol == IPPROTO_TCP &&
767 		    sk->sk_type == SOCK_STREAM)
768 			tcp_set_keepalive(sk, valbool);
769 #endif
770 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
771 		break;
772 
773 	case SO_OOBINLINE:
774 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
775 		break;
776 
777 	case SO_NO_CHECK:
778 		sk->sk_no_check_tx = valbool;
779 		break;
780 
781 	case SO_PRIORITY:
782 		if ((val >= 0 && val <= 6) ||
783 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
784 			sk->sk_priority = val;
785 		else
786 			ret = -EPERM;
787 		break;
788 
789 	case SO_LINGER:
790 		if (optlen < sizeof(ling)) {
791 			ret = -EINVAL;	/* 1003.1g */
792 			break;
793 		}
794 		if (copy_from_user(&ling, optval, sizeof(ling))) {
795 			ret = -EFAULT;
796 			break;
797 		}
798 		if (!ling.l_onoff)
799 			sock_reset_flag(sk, SOCK_LINGER);
800 		else {
801 #if (BITS_PER_LONG == 32)
802 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
803 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
804 			else
805 #endif
806 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
807 			sock_set_flag(sk, SOCK_LINGER);
808 		}
809 		break;
810 
811 	case SO_BSDCOMPAT:
812 		sock_warn_obsolete_bsdism("setsockopt");
813 		break;
814 
815 	case SO_PASSCRED:
816 		if (valbool)
817 			set_bit(SOCK_PASSCRED, &sock->flags);
818 		else
819 			clear_bit(SOCK_PASSCRED, &sock->flags);
820 		break;
821 
822 	case SO_TIMESTAMP:
823 	case SO_TIMESTAMPNS:
824 		if (valbool)  {
825 			if (optname == SO_TIMESTAMP)
826 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827 			else
828 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
829 			sock_set_flag(sk, SOCK_RCVTSTAMP);
830 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
831 		} else {
832 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
833 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
834 		}
835 		break;
836 
837 	case SO_TIMESTAMPING:
838 		if (val & ~SOF_TIMESTAMPING_MASK) {
839 			ret = -EINVAL;
840 			break;
841 		}
842 
843 		if (val & SOF_TIMESTAMPING_OPT_ID &&
844 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 			if (sk->sk_protocol == IPPROTO_TCP &&
846 			    sk->sk_type == SOCK_STREAM) {
847 				if ((1 << sk->sk_state) &
848 				    (TCPF_CLOSE | TCPF_LISTEN)) {
849 					ret = -EINVAL;
850 					break;
851 				}
852 				sk->sk_tskey = tcp_sk(sk)->snd_una;
853 			} else {
854 				sk->sk_tskey = 0;
855 			}
856 		}
857 		sk->sk_tsflags = val;
858 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
859 			sock_enable_timestamp(sk,
860 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
861 		else
862 			sock_disable_timestamp(sk,
863 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
864 		break;
865 
866 	case SO_RCVLOWAT:
867 		if (val < 0)
868 			val = INT_MAX;
869 		sk->sk_rcvlowat = val ? : 1;
870 		break;
871 
872 	case SO_RCVTIMEO:
873 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
874 		break;
875 
876 	case SO_SNDTIMEO:
877 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
878 		break;
879 
880 	case SO_ATTACH_FILTER:
881 		ret = -EINVAL;
882 		if (optlen == sizeof(struct sock_fprog)) {
883 			struct sock_fprog fprog;
884 
885 			ret = -EFAULT;
886 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
887 				break;
888 
889 			ret = sk_attach_filter(&fprog, sk);
890 		}
891 		break;
892 
893 	case SO_ATTACH_BPF:
894 		ret = -EINVAL;
895 		if (optlen == sizeof(u32)) {
896 			u32 ufd;
897 
898 			ret = -EFAULT;
899 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
900 				break;
901 
902 			ret = sk_attach_bpf(ufd, sk);
903 		}
904 		break;
905 
906 	case SO_ATTACH_REUSEPORT_CBPF:
907 		ret = -EINVAL;
908 		if (optlen == sizeof(struct sock_fprog)) {
909 			struct sock_fprog fprog;
910 
911 			ret = -EFAULT;
912 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
913 				break;
914 
915 			ret = sk_reuseport_attach_filter(&fprog, sk);
916 		}
917 		break;
918 
919 	case SO_ATTACH_REUSEPORT_EBPF:
920 		ret = -EINVAL;
921 		if (optlen == sizeof(u32)) {
922 			u32 ufd;
923 
924 			ret = -EFAULT;
925 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
926 				break;
927 
928 			ret = sk_reuseport_attach_bpf(ufd, sk);
929 		}
930 		break;
931 
932 	case SO_DETACH_FILTER:
933 		ret = sk_detach_filter(sk);
934 		break;
935 
936 	case SO_LOCK_FILTER:
937 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
938 			ret = -EPERM;
939 		else
940 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
941 		break;
942 
943 	case SO_PASSSEC:
944 		if (valbool)
945 			set_bit(SOCK_PASSSEC, &sock->flags);
946 		else
947 			clear_bit(SOCK_PASSSEC, &sock->flags);
948 		break;
949 	case SO_MARK:
950 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
951 			ret = -EPERM;
952 		else
953 			sk->sk_mark = val;
954 		break;
955 
956 	case SO_RXQ_OVFL:
957 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
958 		break;
959 
960 	case SO_WIFI_STATUS:
961 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
962 		break;
963 
964 	case SO_PEEK_OFF:
965 		if (sock->ops->set_peek_off)
966 			ret = sock->ops->set_peek_off(sk, val);
967 		else
968 			ret = -EOPNOTSUPP;
969 		break;
970 
971 	case SO_NOFCS:
972 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
973 		break;
974 
975 	case SO_SELECT_ERR_QUEUE:
976 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
977 		break;
978 
979 #ifdef CONFIG_NET_RX_BUSY_POLL
980 	case SO_BUSY_POLL:
981 		/* allow unprivileged users to decrease the value */
982 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
983 			ret = -EPERM;
984 		else {
985 			if (val < 0)
986 				ret = -EINVAL;
987 			else
988 				sk->sk_ll_usec = val;
989 		}
990 		break;
991 #endif
992 
993 	case SO_MAX_PACING_RATE:
994 		sk->sk_max_pacing_rate = val;
995 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
996 					 sk->sk_max_pacing_rate);
997 		break;
998 
999 	case SO_INCOMING_CPU:
1000 		sk->sk_incoming_cpu = val;
1001 		break;
1002 
1003 	case SO_CNX_ADVICE:
1004 		if (val == 1)
1005 			dst_negative_advice(sk);
1006 		break;
1007 	default:
1008 		ret = -ENOPROTOOPT;
1009 		break;
1010 	}
1011 	release_sock(sk);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(sock_setsockopt);
1015 
1016 
1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018 			  struct ucred *ucred)
1019 {
1020 	ucred->pid = pid_vnr(pid);
1021 	ucred->uid = ucred->gid = -1;
1022 	if (cred) {
1023 		struct user_namespace *current_ns = current_user_ns();
1024 
1025 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027 	}
1028 }
1029 
1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031 		    char __user *optval, int __user *optlen)
1032 {
1033 	struct sock *sk = sock->sk;
1034 
1035 	union {
1036 		int val;
1037 		struct linger ling;
1038 		struct timeval tm;
1039 	} v;
1040 
1041 	int lv = sizeof(int);
1042 	int len;
1043 
1044 	if (get_user(len, optlen))
1045 		return -EFAULT;
1046 	if (len < 0)
1047 		return -EINVAL;
1048 
1049 	memset(&v, 0, sizeof(v));
1050 
1051 	switch (optname) {
1052 	case SO_DEBUG:
1053 		v.val = sock_flag(sk, SOCK_DBG);
1054 		break;
1055 
1056 	case SO_DONTROUTE:
1057 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058 		break;
1059 
1060 	case SO_BROADCAST:
1061 		v.val = sock_flag(sk, SOCK_BROADCAST);
1062 		break;
1063 
1064 	case SO_SNDBUF:
1065 		v.val = sk->sk_sndbuf;
1066 		break;
1067 
1068 	case SO_RCVBUF:
1069 		v.val = sk->sk_rcvbuf;
1070 		break;
1071 
1072 	case SO_REUSEADDR:
1073 		v.val = sk->sk_reuse;
1074 		break;
1075 
1076 	case SO_REUSEPORT:
1077 		v.val = sk->sk_reuseport;
1078 		break;
1079 
1080 	case SO_KEEPALIVE:
1081 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082 		break;
1083 
1084 	case SO_TYPE:
1085 		v.val = sk->sk_type;
1086 		break;
1087 
1088 	case SO_PROTOCOL:
1089 		v.val = sk->sk_protocol;
1090 		break;
1091 
1092 	case SO_DOMAIN:
1093 		v.val = sk->sk_family;
1094 		break;
1095 
1096 	case SO_ERROR:
1097 		v.val = -sock_error(sk);
1098 		if (v.val == 0)
1099 			v.val = xchg(&sk->sk_err_soft, 0);
1100 		break;
1101 
1102 	case SO_OOBINLINE:
1103 		v.val = sock_flag(sk, SOCK_URGINLINE);
1104 		break;
1105 
1106 	case SO_NO_CHECK:
1107 		v.val = sk->sk_no_check_tx;
1108 		break;
1109 
1110 	case SO_PRIORITY:
1111 		v.val = sk->sk_priority;
1112 		break;
1113 
1114 	case SO_LINGER:
1115 		lv		= sizeof(v.ling);
1116 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1117 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1118 		break;
1119 
1120 	case SO_BSDCOMPAT:
1121 		sock_warn_obsolete_bsdism("getsockopt");
1122 		break;
1123 
1124 	case SO_TIMESTAMP:
1125 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1127 		break;
1128 
1129 	case SO_TIMESTAMPNS:
1130 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131 		break;
1132 
1133 	case SO_TIMESTAMPING:
1134 		v.val = sk->sk_tsflags;
1135 		break;
1136 
1137 	case SO_RCVTIMEO:
1138 		lv = sizeof(struct timeval);
1139 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140 			v.tm.tv_sec = 0;
1141 			v.tm.tv_usec = 0;
1142 		} else {
1143 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145 		}
1146 		break;
1147 
1148 	case SO_SNDTIMEO:
1149 		lv = sizeof(struct timeval);
1150 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151 			v.tm.tv_sec = 0;
1152 			v.tm.tv_usec = 0;
1153 		} else {
1154 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156 		}
1157 		break;
1158 
1159 	case SO_RCVLOWAT:
1160 		v.val = sk->sk_rcvlowat;
1161 		break;
1162 
1163 	case SO_SNDLOWAT:
1164 		v.val = 1;
1165 		break;
1166 
1167 	case SO_PASSCRED:
1168 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169 		break;
1170 
1171 	case SO_PEERCRED:
1172 	{
1173 		struct ucred peercred;
1174 		if (len > sizeof(peercred))
1175 			len = sizeof(peercred);
1176 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1177 		if (copy_to_user(optval, &peercred, len))
1178 			return -EFAULT;
1179 		goto lenout;
1180 	}
1181 
1182 	case SO_PEERNAME:
1183 	{
1184 		char address[128];
1185 
1186 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1187 			return -ENOTCONN;
1188 		if (lv < len)
1189 			return -EINVAL;
1190 		if (copy_to_user(optval, address, len))
1191 			return -EFAULT;
1192 		goto lenout;
1193 	}
1194 
1195 	/* Dubious BSD thing... Probably nobody even uses it, but
1196 	 * the UNIX standard wants it for whatever reason... -DaveM
1197 	 */
1198 	case SO_ACCEPTCONN:
1199 		v.val = sk->sk_state == TCP_LISTEN;
1200 		break;
1201 
1202 	case SO_PASSSEC:
1203 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1204 		break;
1205 
1206 	case SO_PEERSEC:
1207 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1208 
1209 	case SO_MARK:
1210 		v.val = sk->sk_mark;
1211 		break;
1212 
1213 	case SO_RXQ_OVFL:
1214 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1215 		break;
1216 
1217 	case SO_WIFI_STATUS:
1218 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1219 		break;
1220 
1221 	case SO_PEEK_OFF:
1222 		if (!sock->ops->set_peek_off)
1223 			return -EOPNOTSUPP;
1224 
1225 		v.val = sk->sk_peek_off;
1226 		break;
1227 	case SO_NOFCS:
1228 		v.val = sock_flag(sk, SOCK_NOFCS);
1229 		break;
1230 
1231 	case SO_BINDTODEVICE:
1232 		return sock_getbindtodevice(sk, optval, optlen, len);
1233 
1234 	case SO_GET_FILTER:
1235 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1236 		if (len < 0)
1237 			return len;
1238 
1239 		goto lenout;
1240 
1241 	case SO_LOCK_FILTER:
1242 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1243 		break;
1244 
1245 	case SO_BPF_EXTENSIONS:
1246 		v.val = bpf_tell_extensions();
1247 		break;
1248 
1249 	case SO_SELECT_ERR_QUEUE:
1250 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1251 		break;
1252 
1253 #ifdef CONFIG_NET_RX_BUSY_POLL
1254 	case SO_BUSY_POLL:
1255 		v.val = sk->sk_ll_usec;
1256 		break;
1257 #endif
1258 
1259 	case SO_MAX_PACING_RATE:
1260 		v.val = sk->sk_max_pacing_rate;
1261 		break;
1262 
1263 	case SO_INCOMING_CPU:
1264 		v.val = sk->sk_incoming_cpu;
1265 		break;
1266 
1267 	default:
1268 		/* We implement the SO_SNDLOWAT etc to not be settable
1269 		 * (1003.1g 7).
1270 		 */
1271 		return -ENOPROTOOPT;
1272 	}
1273 
1274 	if (len > lv)
1275 		len = lv;
1276 	if (copy_to_user(optval, &v, len))
1277 		return -EFAULT;
1278 lenout:
1279 	if (put_user(len, optlen))
1280 		return -EFAULT;
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Initialize an sk_lock.
1286  *
1287  * (We also register the sk_lock with the lock validator.)
1288  */
1289 static inline void sock_lock_init(struct sock *sk)
1290 {
1291 	sock_lock_init_class_and_name(sk,
1292 			af_family_slock_key_strings[sk->sk_family],
1293 			af_family_slock_keys + sk->sk_family,
1294 			af_family_key_strings[sk->sk_family],
1295 			af_family_keys + sk->sk_family);
1296 }
1297 
1298 /*
1299  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1300  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1301  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1302  */
1303 static void sock_copy(struct sock *nsk, const struct sock *osk)
1304 {
1305 #ifdef CONFIG_SECURITY_NETWORK
1306 	void *sptr = nsk->sk_security;
1307 #endif
1308 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1309 
1310 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1311 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1312 
1313 #ifdef CONFIG_SECURITY_NETWORK
1314 	nsk->sk_security = sptr;
1315 	security_sk_clone(osk, nsk);
1316 #endif
1317 }
1318 
1319 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1320 		int family)
1321 {
1322 	struct sock *sk;
1323 	struct kmem_cache *slab;
1324 
1325 	slab = prot->slab;
1326 	if (slab != NULL) {
1327 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1328 		if (!sk)
1329 			return sk;
1330 		if (priority & __GFP_ZERO)
1331 			sk_prot_clear_nulls(sk, prot->obj_size);
1332 	} else
1333 		sk = kmalloc(prot->obj_size, priority);
1334 
1335 	if (sk != NULL) {
1336 		kmemcheck_annotate_bitfield(sk, flags);
1337 
1338 		if (security_sk_alloc(sk, family, priority))
1339 			goto out_free;
1340 
1341 		if (!try_module_get(prot->owner))
1342 			goto out_free_sec;
1343 		sk_tx_queue_clear(sk);
1344 	}
1345 
1346 	return sk;
1347 
1348 out_free_sec:
1349 	security_sk_free(sk);
1350 out_free:
1351 	if (slab != NULL)
1352 		kmem_cache_free(slab, sk);
1353 	else
1354 		kfree(sk);
1355 	return NULL;
1356 }
1357 
1358 static void sk_prot_free(struct proto *prot, struct sock *sk)
1359 {
1360 	struct kmem_cache *slab;
1361 	struct module *owner;
1362 
1363 	owner = prot->owner;
1364 	slab = prot->slab;
1365 
1366 	cgroup_sk_free(&sk->sk_cgrp_data);
1367 	mem_cgroup_sk_free(sk);
1368 	security_sk_free(sk);
1369 	if (slab != NULL)
1370 		kmem_cache_free(slab, sk);
1371 	else
1372 		kfree(sk);
1373 	module_put(owner);
1374 }
1375 
1376 /**
1377  *	sk_alloc - All socket objects are allocated here
1378  *	@net: the applicable net namespace
1379  *	@family: protocol family
1380  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1381  *	@prot: struct proto associated with this new sock instance
1382  *	@kern: is this to be a kernel socket?
1383  */
1384 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1385 		      struct proto *prot, int kern)
1386 {
1387 	struct sock *sk;
1388 
1389 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1390 	if (sk) {
1391 		sk->sk_family = family;
1392 		/*
1393 		 * See comment in struct sock definition to understand
1394 		 * why we need sk_prot_creator -acme
1395 		 */
1396 		sk->sk_prot = sk->sk_prot_creator = prot;
1397 		sock_lock_init(sk);
1398 		sk->sk_net_refcnt = kern ? 0 : 1;
1399 		if (likely(sk->sk_net_refcnt))
1400 			get_net(net);
1401 		sock_net_set(sk, net);
1402 		atomic_set(&sk->sk_wmem_alloc, 1);
1403 
1404 		mem_cgroup_sk_alloc(sk);
1405 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1406 		sock_update_classid(&sk->sk_cgrp_data);
1407 		sock_update_netprioidx(&sk->sk_cgrp_data);
1408 	}
1409 
1410 	return sk;
1411 }
1412 EXPORT_SYMBOL(sk_alloc);
1413 
1414 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1415  * grace period. This is the case for UDP sockets and TCP listeners.
1416  */
1417 static void __sk_destruct(struct rcu_head *head)
1418 {
1419 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1420 	struct sk_filter *filter;
1421 
1422 	if (sk->sk_destruct)
1423 		sk->sk_destruct(sk);
1424 
1425 	filter = rcu_dereference_check(sk->sk_filter,
1426 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1427 	if (filter) {
1428 		sk_filter_uncharge(sk, filter);
1429 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1430 	}
1431 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1432 		reuseport_detach_sock(sk);
1433 
1434 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1435 
1436 	if (atomic_read(&sk->sk_omem_alloc))
1437 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1438 			 __func__, atomic_read(&sk->sk_omem_alloc));
1439 
1440 	if (sk->sk_peer_cred)
1441 		put_cred(sk->sk_peer_cred);
1442 	put_pid(sk->sk_peer_pid);
1443 	if (likely(sk->sk_net_refcnt))
1444 		put_net(sock_net(sk));
1445 	sk_prot_free(sk->sk_prot_creator, sk);
1446 }
1447 
1448 void sk_destruct(struct sock *sk)
1449 {
1450 	if (sock_flag(sk, SOCK_RCU_FREE))
1451 		call_rcu(&sk->sk_rcu, __sk_destruct);
1452 	else
1453 		__sk_destruct(&sk->sk_rcu);
1454 }
1455 
1456 static void __sk_free(struct sock *sk)
1457 {
1458 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1459 		sock_diag_broadcast_destroy(sk);
1460 	else
1461 		sk_destruct(sk);
1462 }
1463 
1464 void sk_free(struct sock *sk)
1465 {
1466 	/*
1467 	 * We subtract one from sk_wmem_alloc and can know if
1468 	 * some packets are still in some tx queue.
1469 	 * If not null, sock_wfree() will call __sk_free(sk) later
1470 	 */
1471 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1472 		__sk_free(sk);
1473 }
1474 EXPORT_SYMBOL(sk_free);
1475 
1476 /**
1477  *	sk_clone_lock - clone a socket, and lock its clone
1478  *	@sk: the socket to clone
1479  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1480  *
1481  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1482  */
1483 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1484 {
1485 	struct sock *newsk;
1486 	bool is_charged = true;
1487 
1488 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1489 	if (newsk != NULL) {
1490 		struct sk_filter *filter;
1491 
1492 		sock_copy(newsk, sk);
1493 
1494 		/* SANITY */
1495 		if (likely(newsk->sk_net_refcnt))
1496 			get_net(sock_net(newsk));
1497 		sk_node_init(&newsk->sk_node);
1498 		sock_lock_init(newsk);
1499 		bh_lock_sock(newsk);
1500 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1501 		newsk->sk_backlog.len = 0;
1502 
1503 		atomic_set(&newsk->sk_rmem_alloc, 0);
1504 		/*
1505 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1506 		 */
1507 		atomic_set(&newsk->sk_wmem_alloc, 1);
1508 		atomic_set(&newsk->sk_omem_alloc, 0);
1509 		skb_queue_head_init(&newsk->sk_receive_queue);
1510 		skb_queue_head_init(&newsk->sk_write_queue);
1511 
1512 		rwlock_init(&newsk->sk_callback_lock);
1513 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1514 				af_callback_keys + newsk->sk_family,
1515 				af_family_clock_key_strings[newsk->sk_family]);
1516 
1517 		newsk->sk_dst_cache	= NULL;
1518 		newsk->sk_wmem_queued	= 0;
1519 		newsk->sk_forward_alloc = 0;
1520 		atomic_set(&newsk->sk_drops, 0);
1521 		newsk->sk_send_head	= NULL;
1522 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1523 
1524 		sock_reset_flag(newsk, SOCK_DONE);
1525 		skb_queue_head_init(&newsk->sk_error_queue);
1526 
1527 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1528 		if (filter != NULL)
1529 			/* though it's an empty new sock, the charging may fail
1530 			 * if sysctl_optmem_max was changed between creation of
1531 			 * original socket and cloning
1532 			 */
1533 			is_charged = sk_filter_charge(newsk, filter);
1534 
1535 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1536 			/* It is still raw copy of parent, so invalidate
1537 			 * destructor and make plain sk_free() */
1538 			newsk->sk_destruct = NULL;
1539 			bh_unlock_sock(newsk);
1540 			sk_free(newsk);
1541 			newsk = NULL;
1542 			goto out;
1543 		}
1544 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1545 
1546 		newsk->sk_err	   = 0;
1547 		newsk->sk_err_soft = 0;
1548 		newsk->sk_priority = 0;
1549 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1550 		atomic64_set(&newsk->sk_cookie, 0);
1551 
1552 		mem_cgroup_sk_alloc(newsk);
1553 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1554 
1555 		/*
1556 		 * Before updating sk_refcnt, we must commit prior changes to memory
1557 		 * (Documentation/RCU/rculist_nulls.txt for details)
1558 		 */
1559 		smp_wmb();
1560 		atomic_set(&newsk->sk_refcnt, 2);
1561 
1562 		/*
1563 		 * Increment the counter in the same struct proto as the master
1564 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1565 		 * is the same as sk->sk_prot->socks, as this field was copied
1566 		 * with memcpy).
1567 		 *
1568 		 * This _changes_ the previous behaviour, where
1569 		 * tcp_create_openreq_child always was incrementing the
1570 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1571 		 * to be taken into account in all callers. -acme
1572 		 */
1573 		sk_refcnt_debug_inc(newsk);
1574 		sk_set_socket(newsk, NULL);
1575 		newsk->sk_wq = NULL;
1576 
1577 		if (newsk->sk_prot->sockets_allocated)
1578 			sk_sockets_allocated_inc(newsk);
1579 
1580 		if (sock_needs_netstamp(sk) &&
1581 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1582 			net_enable_timestamp();
1583 	}
1584 out:
1585 	return newsk;
1586 }
1587 EXPORT_SYMBOL_GPL(sk_clone_lock);
1588 
1589 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1590 {
1591 	u32 max_segs = 1;
1592 
1593 	sk_dst_set(sk, dst);
1594 	sk->sk_route_caps = dst->dev->features;
1595 	if (sk->sk_route_caps & NETIF_F_GSO)
1596 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1597 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1598 	if (sk_can_gso(sk)) {
1599 		if (dst->header_len) {
1600 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1601 		} else {
1602 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1603 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1604 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1605 		}
1606 	}
1607 	sk->sk_gso_max_segs = max_segs;
1608 }
1609 EXPORT_SYMBOL_GPL(sk_setup_caps);
1610 
1611 /*
1612  *	Simple resource managers for sockets.
1613  */
1614 
1615 
1616 /*
1617  * Write buffer destructor automatically called from kfree_skb.
1618  */
1619 void sock_wfree(struct sk_buff *skb)
1620 {
1621 	struct sock *sk = skb->sk;
1622 	unsigned int len = skb->truesize;
1623 
1624 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1625 		/*
1626 		 * Keep a reference on sk_wmem_alloc, this will be released
1627 		 * after sk_write_space() call
1628 		 */
1629 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1630 		sk->sk_write_space(sk);
1631 		len = 1;
1632 	}
1633 	/*
1634 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1635 	 * could not do because of in-flight packets
1636 	 */
1637 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1638 		__sk_free(sk);
1639 }
1640 EXPORT_SYMBOL(sock_wfree);
1641 
1642 /* This variant of sock_wfree() is used by TCP,
1643  * since it sets SOCK_USE_WRITE_QUEUE.
1644  */
1645 void __sock_wfree(struct sk_buff *skb)
1646 {
1647 	struct sock *sk = skb->sk;
1648 
1649 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1650 		__sk_free(sk);
1651 }
1652 
1653 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1654 {
1655 	skb_orphan(skb);
1656 	skb->sk = sk;
1657 #ifdef CONFIG_INET
1658 	if (unlikely(!sk_fullsock(sk))) {
1659 		skb->destructor = sock_edemux;
1660 		sock_hold(sk);
1661 		return;
1662 	}
1663 #endif
1664 	skb->destructor = sock_wfree;
1665 	skb_set_hash_from_sk(skb, sk);
1666 	/*
1667 	 * We used to take a refcount on sk, but following operation
1668 	 * is enough to guarantee sk_free() wont free this sock until
1669 	 * all in-flight packets are completed
1670 	 */
1671 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1672 }
1673 EXPORT_SYMBOL(skb_set_owner_w);
1674 
1675 /* This helper is used by netem, as it can hold packets in its
1676  * delay queue. We want to allow the owner socket to send more
1677  * packets, as if they were already TX completed by a typical driver.
1678  * But we also want to keep skb->sk set because some packet schedulers
1679  * rely on it (sch_fq for example). So we set skb->truesize to a small
1680  * amount (1) and decrease sk_wmem_alloc accordingly.
1681  */
1682 void skb_orphan_partial(struct sk_buff *skb)
1683 {
1684 	/* If this skb is a TCP pure ACK or already went here,
1685 	 * we have nothing to do. 2 is already a very small truesize.
1686 	 */
1687 	if (skb->truesize <= 2)
1688 		return;
1689 
1690 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1691 	 * so we do not completely orphan skb, but transfert all
1692 	 * accounted bytes but one, to avoid unexpected reorders.
1693 	 */
1694 	if (skb->destructor == sock_wfree
1695 #ifdef CONFIG_INET
1696 	    || skb->destructor == tcp_wfree
1697 #endif
1698 		) {
1699 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1700 		skb->truesize = 1;
1701 	} else {
1702 		skb_orphan(skb);
1703 	}
1704 }
1705 EXPORT_SYMBOL(skb_orphan_partial);
1706 
1707 /*
1708  * Read buffer destructor automatically called from kfree_skb.
1709  */
1710 void sock_rfree(struct sk_buff *skb)
1711 {
1712 	struct sock *sk = skb->sk;
1713 	unsigned int len = skb->truesize;
1714 
1715 	atomic_sub(len, &sk->sk_rmem_alloc);
1716 	sk_mem_uncharge(sk, len);
1717 }
1718 EXPORT_SYMBOL(sock_rfree);
1719 
1720 /*
1721  * Buffer destructor for skbs that are not used directly in read or write
1722  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1723  */
1724 void sock_efree(struct sk_buff *skb)
1725 {
1726 	sock_put(skb->sk);
1727 }
1728 EXPORT_SYMBOL(sock_efree);
1729 
1730 kuid_t sock_i_uid(struct sock *sk)
1731 {
1732 	kuid_t uid;
1733 
1734 	read_lock_bh(&sk->sk_callback_lock);
1735 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1736 	read_unlock_bh(&sk->sk_callback_lock);
1737 	return uid;
1738 }
1739 EXPORT_SYMBOL(sock_i_uid);
1740 
1741 unsigned long sock_i_ino(struct sock *sk)
1742 {
1743 	unsigned long ino;
1744 
1745 	read_lock_bh(&sk->sk_callback_lock);
1746 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1747 	read_unlock_bh(&sk->sk_callback_lock);
1748 	return ino;
1749 }
1750 EXPORT_SYMBOL(sock_i_ino);
1751 
1752 /*
1753  * Allocate a skb from the socket's send buffer.
1754  */
1755 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1756 			     gfp_t priority)
1757 {
1758 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1759 		struct sk_buff *skb = alloc_skb(size, priority);
1760 		if (skb) {
1761 			skb_set_owner_w(skb, sk);
1762 			return skb;
1763 		}
1764 	}
1765 	return NULL;
1766 }
1767 EXPORT_SYMBOL(sock_wmalloc);
1768 
1769 /*
1770  * Allocate a memory block from the socket's option memory buffer.
1771  */
1772 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1773 {
1774 	if ((unsigned int)size <= sysctl_optmem_max &&
1775 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1776 		void *mem;
1777 		/* First do the add, to avoid the race if kmalloc
1778 		 * might sleep.
1779 		 */
1780 		atomic_add(size, &sk->sk_omem_alloc);
1781 		mem = kmalloc(size, priority);
1782 		if (mem)
1783 			return mem;
1784 		atomic_sub(size, &sk->sk_omem_alloc);
1785 	}
1786 	return NULL;
1787 }
1788 EXPORT_SYMBOL(sock_kmalloc);
1789 
1790 /* Free an option memory block. Note, we actually want the inline
1791  * here as this allows gcc to detect the nullify and fold away the
1792  * condition entirely.
1793  */
1794 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1795 				  const bool nullify)
1796 {
1797 	if (WARN_ON_ONCE(!mem))
1798 		return;
1799 	if (nullify)
1800 		kzfree(mem);
1801 	else
1802 		kfree(mem);
1803 	atomic_sub(size, &sk->sk_omem_alloc);
1804 }
1805 
1806 void sock_kfree_s(struct sock *sk, void *mem, int size)
1807 {
1808 	__sock_kfree_s(sk, mem, size, false);
1809 }
1810 EXPORT_SYMBOL(sock_kfree_s);
1811 
1812 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1813 {
1814 	__sock_kfree_s(sk, mem, size, true);
1815 }
1816 EXPORT_SYMBOL(sock_kzfree_s);
1817 
1818 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1819    I think, these locks should be removed for datagram sockets.
1820  */
1821 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1822 {
1823 	DEFINE_WAIT(wait);
1824 
1825 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1826 	for (;;) {
1827 		if (!timeo)
1828 			break;
1829 		if (signal_pending(current))
1830 			break;
1831 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1832 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1833 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1834 			break;
1835 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1836 			break;
1837 		if (sk->sk_err)
1838 			break;
1839 		timeo = schedule_timeout(timeo);
1840 	}
1841 	finish_wait(sk_sleep(sk), &wait);
1842 	return timeo;
1843 }
1844 
1845 
1846 /*
1847  *	Generic send/receive buffer handlers
1848  */
1849 
1850 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1851 				     unsigned long data_len, int noblock,
1852 				     int *errcode, int max_page_order)
1853 {
1854 	struct sk_buff *skb;
1855 	long timeo;
1856 	int err;
1857 
1858 	timeo = sock_sndtimeo(sk, noblock);
1859 	for (;;) {
1860 		err = sock_error(sk);
1861 		if (err != 0)
1862 			goto failure;
1863 
1864 		err = -EPIPE;
1865 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1866 			goto failure;
1867 
1868 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1869 			break;
1870 
1871 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1872 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1873 		err = -EAGAIN;
1874 		if (!timeo)
1875 			goto failure;
1876 		if (signal_pending(current))
1877 			goto interrupted;
1878 		timeo = sock_wait_for_wmem(sk, timeo);
1879 	}
1880 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1881 				   errcode, sk->sk_allocation);
1882 	if (skb)
1883 		skb_set_owner_w(skb, sk);
1884 	return skb;
1885 
1886 interrupted:
1887 	err = sock_intr_errno(timeo);
1888 failure:
1889 	*errcode = err;
1890 	return NULL;
1891 }
1892 EXPORT_SYMBOL(sock_alloc_send_pskb);
1893 
1894 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1895 				    int noblock, int *errcode)
1896 {
1897 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1898 }
1899 EXPORT_SYMBOL(sock_alloc_send_skb);
1900 
1901 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1902 		     struct sockcm_cookie *sockc)
1903 {
1904 	u32 tsflags;
1905 
1906 	switch (cmsg->cmsg_type) {
1907 	case SO_MARK:
1908 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1909 			return -EPERM;
1910 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1911 			return -EINVAL;
1912 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1913 		break;
1914 	case SO_TIMESTAMPING:
1915 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1916 			return -EINVAL;
1917 
1918 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1919 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1920 			return -EINVAL;
1921 
1922 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1923 		sockc->tsflags |= tsflags;
1924 		break;
1925 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1926 	case SCM_RIGHTS:
1927 	case SCM_CREDENTIALS:
1928 		break;
1929 	default:
1930 		return -EINVAL;
1931 	}
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL(__sock_cmsg_send);
1935 
1936 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1937 		   struct sockcm_cookie *sockc)
1938 {
1939 	struct cmsghdr *cmsg;
1940 	int ret;
1941 
1942 	for_each_cmsghdr(cmsg, msg) {
1943 		if (!CMSG_OK(msg, cmsg))
1944 			return -EINVAL;
1945 		if (cmsg->cmsg_level != SOL_SOCKET)
1946 			continue;
1947 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1948 		if (ret)
1949 			return ret;
1950 	}
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL(sock_cmsg_send);
1954 
1955 /* On 32bit arches, an skb frag is limited to 2^15 */
1956 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1957 
1958 /**
1959  * skb_page_frag_refill - check that a page_frag contains enough room
1960  * @sz: minimum size of the fragment we want to get
1961  * @pfrag: pointer to page_frag
1962  * @gfp: priority for memory allocation
1963  *
1964  * Note: While this allocator tries to use high order pages, there is
1965  * no guarantee that allocations succeed. Therefore, @sz MUST be
1966  * less or equal than PAGE_SIZE.
1967  */
1968 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1969 {
1970 	if (pfrag->page) {
1971 		if (page_ref_count(pfrag->page) == 1) {
1972 			pfrag->offset = 0;
1973 			return true;
1974 		}
1975 		if (pfrag->offset + sz <= pfrag->size)
1976 			return true;
1977 		put_page(pfrag->page);
1978 	}
1979 
1980 	pfrag->offset = 0;
1981 	if (SKB_FRAG_PAGE_ORDER) {
1982 		/* Avoid direct reclaim but allow kswapd to wake */
1983 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1984 					  __GFP_COMP | __GFP_NOWARN |
1985 					  __GFP_NORETRY,
1986 					  SKB_FRAG_PAGE_ORDER);
1987 		if (likely(pfrag->page)) {
1988 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1989 			return true;
1990 		}
1991 	}
1992 	pfrag->page = alloc_page(gfp);
1993 	if (likely(pfrag->page)) {
1994 		pfrag->size = PAGE_SIZE;
1995 		return true;
1996 	}
1997 	return false;
1998 }
1999 EXPORT_SYMBOL(skb_page_frag_refill);
2000 
2001 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2002 {
2003 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2004 		return true;
2005 
2006 	sk_enter_memory_pressure(sk);
2007 	sk_stream_moderate_sndbuf(sk);
2008 	return false;
2009 }
2010 EXPORT_SYMBOL(sk_page_frag_refill);
2011 
2012 static void __lock_sock(struct sock *sk)
2013 	__releases(&sk->sk_lock.slock)
2014 	__acquires(&sk->sk_lock.slock)
2015 {
2016 	DEFINE_WAIT(wait);
2017 
2018 	for (;;) {
2019 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2020 					TASK_UNINTERRUPTIBLE);
2021 		spin_unlock_bh(&sk->sk_lock.slock);
2022 		schedule();
2023 		spin_lock_bh(&sk->sk_lock.slock);
2024 		if (!sock_owned_by_user(sk))
2025 			break;
2026 	}
2027 	finish_wait(&sk->sk_lock.wq, &wait);
2028 }
2029 
2030 static void __release_sock(struct sock *sk)
2031 	__releases(&sk->sk_lock.slock)
2032 	__acquires(&sk->sk_lock.slock)
2033 {
2034 	struct sk_buff *skb, *next;
2035 
2036 	while ((skb = sk->sk_backlog.head) != NULL) {
2037 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2038 
2039 		spin_unlock_bh(&sk->sk_lock.slock);
2040 
2041 		do {
2042 			next = skb->next;
2043 			prefetch(next);
2044 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2045 			skb->next = NULL;
2046 			sk_backlog_rcv(sk, skb);
2047 
2048 			cond_resched();
2049 
2050 			skb = next;
2051 		} while (skb != NULL);
2052 
2053 		spin_lock_bh(&sk->sk_lock.slock);
2054 	}
2055 
2056 	/*
2057 	 * Doing the zeroing here guarantee we can not loop forever
2058 	 * while a wild producer attempts to flood us.
2059 	 */
2060 	sk->sk_backlog.len = 0;
2061 }
2062 
2063 void __sk_flush_backlog(struct sock *sk)
2064 {
2065 	spin_lock_bh(&sk->sk_lock.slock);
2066 	__release_sock(sk);
2067 	spin_unlock_bh(&sk->sk_lock.slock);
2068 }
2069 
2070 /**
2071  * sk_wait_data - wait for data to arrive at sk_receive_queue
2072  * @sk:    sock to wait on
2073  * @timeo: for how long
2074  * @skb:   last skb seen on sk_receive_queue
2075  *
2076  * Now socket state including sk->sk_err is changed only under lock,
2077  * hence we may omit checks after joining wait queue.
2078  * We check receive queue before schedule() only as optimization;
2079  * it is very likely that release_sock() added new data.
2080  */
2081 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2082 {
2083 	int rc;
2084 	DEFINE_WAIT(wait);
2085 
2086 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2087 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2088 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2089 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2090 	finish_wait(sk_sleep(sk), &wait);
2091 	return rc;
2092 }
2093 EXPORT_SYMBOL(sk_wait_data);
2094 
2095 /**
2096  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2097  *	@sk: socket
2098  *	@size: memory size to allocate
2099  *	@kind: allocation type
2100  *
2101  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2102  *	rmem allocation. This function assumes that protocols which have
2103  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2104  */
2105 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2106 {
2107 	struct proto *prot = sk->sk_prot;
2108 	int amt = sk_mem_pages(size);
2109 	long allocated;
2110 
2111 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2112 
2113 	allocated = sk_memory_allocated_add(sk, amt);
2114 
2115 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2116 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2117 		goto suppress_allocation;
2118 
2119 	/* Under limit. */
2120 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2121 		sk_leave_memory_pressure(sk);
2122 		return 1;
2123 	}
2124 
2125 	/* Under pressure. */
2126 	if (allocated > sk_prot_mem_limits(sk, 1))
2127 		sk_enter_memory_pressure(sk);
2128 
2129 	/* Over hard limit. */
2130 	if (allocated > sk_prot_mem_limits(sk, 2))
2131 		goto suppress_allocation;
2132 
2133 	/* guarantee minimum buffer size under pressure */
2134 	if (kind == SK_MEM_RECV) {
2135 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2136 			return 1;
2137 
2138 	} else { /* SK_MEM_SEND */
2139 		if (sk->sk_type == SOCK_STREAM) {
2140 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2141 				return 1;
2142 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2143 			   prot->sysctl_wmem[0])
2144 				return 1;
2145 	}
2146 
2147 	if (sk_has_memory_pressure(sk)) {
2148 		int alloc;
2149 
2150 		if (!sk_under_memory_pressure(sk))
2151 			return 1;
2152 		alloc = sk_sockets_allocated_read_positive(sk);
2153 		if (sk_prot_mem_limits(sk, 2) > alloc *
2154 		    sk_mem_pages(sk->sk_wmem_queued +
2155 				 atomic_read(&sk->sk_rmem_alloc) +
2156 				 sk->sk_forward_alloc))
2157 			return 1;
2158 	}
2159 
2160 suppress_allocation:
2161 
2162 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2163 		sk_stream_moderate_sndbuf(sk);
2164 
2165 		/* Fail only if socket is _under_ its sndbuf.
2166 		 * In this case we cannot block, so that we have to fail.
2167 		 */
2168 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2169 			return 1;
2170 	}
2171 
2172 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2173 
2174 	/* Alas. Undo changes. */
2175 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2176 
2177 	sk_memory_allocated_sub(sk, amt);
2178 
2179 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2180 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2181 
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(__sk_mem_schedule);
2185 
2186 /**
2187  *	__sk_mem_reclaim - reclaim memory_allocated
2188  *	@sk: socket
2189  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2190  */
2191 void __sk_mem_reclaim(struct sock *sk, int amount)
2192 {
2193 	amount >>= SK_MEM_QUANTUM_SHIFT;
2194 	sk_memory_allocated_sub(sk, amount);
2195 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2196 
2197 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2198 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2199 
2200 	if (sk_under_memory_pressure(sk) &&
2201 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2202 		sk_leave_memory_pressure(sk);
2203 }
2204 EXPORT_SYMBOL(__sk_mem_reclaim);
2205 
2206 int sk_set_peek_off(struct sock *sk, int val)
2207 {
2208 	if (val < 0)
2209 		return -EINVAL;
2210 
2211 	sk->sk_peek_off = val;
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2215 
2216 /*
2217  * Set of default routines for initialising struct proto_ops when
2218  * the protocol does not support a particular function. In certain
2219  * cases where it makes no sense for a protocol to have a "do nothing"
2220  * function, some default processing is provided.
2221  */
2222 
2223 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2224 {
2225 	return -EOPNOTSUPP;
2226 }
2227 EXPORT_SYMBOL(sock_no_bind);
2228 
2229 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2230 		    int len, int flags)
2231 {
2232 	return -EOPNOTSUPP;
2233 }
2234 EXPORT_SYMBOL(sock_no_connect);
2235 
2236 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2237 {
2238 	return -EOPNOTSUPP;
2239 }
2240 EXPORT_SYMBOL(sock_no_socketpair);
2241 
2242 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2243 {
2244 	return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_accept);
2247 
2248 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2249 		    int *len, int peer)
2250 {
2251 	return -EOPNOTSUPP;
2252 }
2253 EXPORT_SYMBOL(sock_no_getname);
2254 
2255 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2256 {
2257 	return 0;
2258 }
2259 EXPORT_SYMBOL(sock_no_poll);
2260 
2261 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2262 {
2263 	return -EOPNOTSUPP;
2264 }
2265 EXPORT_SYMBOL(sock_no_ioctl);
2266 
2267 int sock_no_listen(struct socket *sock, int backlog)
2268 {
2269 	return -EOPNOTSUPP;
2270 }
2271 EXPORT_SYMBOL(sock_no_listen);
2272 
2273 int sock_no_shutdown(struct socket *sock, int how)
2274 {
2275 	return -EOPNOTSUPP;
2276 }
2277 EXPORT_SYMBOL(sock_no_shutdown);
2278 
2279 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2280 		    char __user *optval, unsigned int optlen)
2281 {
2282 	return -EOPNOTSUPP;
2283 }
2284 EXPORT_SYMBOL(sock_no_setsockopt);
2285 
2286 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2287 		    char __user *optval, int __user *optlen)
2288 {
2289 	return -EOPNOTSUPP;
2290 }
2291 EXPORT_SYMBOL(sock_no_getsockopt);
2292 
2293 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2294 {
2295 	return -EOPNOTSUPP;
2296 }
2297 EXPORT_SYMBOL(sock_no_sendmsg);
2298 
2299 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2300 		    int flags)
2301 {
2302 	return -EOPNOTSUPP;
2303 }
2304 EXPORT_SYMBOL(sock_no_recvmsg);
2305 
2306 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2307 {
2308 	/* Mirror missing mmap method error code */
2309 	return -ENODEV;
2310 }
2311 EXPORT_SYMBOL(sock_no_mmap);
2312 
2313 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2314 {
2315 	ssize_t res;
2316 	struct msghdr msg = {.msg_flags = flags};
2317 	struct kvec iov;
2318 	char *kaddr = kmap(page);
2319 	iov.iov_base = kaddr + offset;
2320 	iov.iov_len = size;
2321 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2322 	kunmap(page);
2323 	return res;
2324 }
2325 EXPORT_SYMBOL(sock_no_sendpage);
2326 
2327 /*
2328  *	Default Socket Callbacks
2329  */
2330 
2331 static void sock_def_wakeup(struct sock *sk)
2332 {
2333 	struct socket_wq *wq;
2334 
2335 	rcu_read_lock();
2336 	wq = rcu_dereference(sk->sk_wq);
2337 	if (skwq_has_sleeper(wq))
2338 		wake_up_interruptible_all(&wq->wait);
2339 	rcu_read_unlock();
2340 }
2341 
2342 static void sock_def_error_report(struct sock *sk)
2343 {
2344 	struct socket_wq *wq;
2345 
2346 	rcu_read_lock();
2347 	wq = rcu_dereference(sk->sk_wq);
2348 	if (skwq_has_sleeper(wq))
2349 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2350 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2351 	rcu_read_unlock();
2352 }
2353 
2354 static void sock_def_readable(struct sock *sk)
2355 {
2356 	struct socket_wq *wq;
2357 
2358 	rcu_read_lock();
2359 	wq = rcu_dereference(sk->sk_wq);
2360 	if (skwq_has_sleeper(wq))
2361 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2362 						POLLRDNORM | POLLRDBAND);
2363 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2364 	rcu_read_unlock();
2365 }
2366 
2367 static void sock_def_write_space(struct sock *sk)
2368 {
2369 	struct socket_wq *wq;
2370 
2371 	rcu_read_lock();
2372 
2373 	/* Do not wake up a writer until he can make "significant"
2374 	 * progress.  --DaveM
2375 	 */
2376 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2377 		wq = rcu_dereference(sk->sk_wq);
2378 		if (skwq_has_sleeper(wq))
2379 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2380 						POLLWRNORM | POLLWRBAND);
2381 
2382 		/* Should agree with poll, otherwise some programs break */
2383 		if (sock_writeable(sk))
2384 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2385 	}
2386 
2387 	rcu_read_unlock();
2388 }
2389 
2390 static void sock_def_destruct(struct sock *sk)
2391 {
2392 }
2393 
2394 void sk_send_sigurg(struct sock *sk)
2395 {
2396 	if (sk->sk_socket && sk->sk_socket->file)
2397 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2398 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2399 }
2400 EXPORT_SYMBOL(sk_send_sigurg);
2401 
2402 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2403 		    unsigned long expires)
2404 {
2405 	if (!mod_timer(timer, expires))
2406 		sock_hold(sk);
2407 }
2408 EXPORT_SYMBOL(sk_reset_timer);
2409 
2410 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2411 {
2412 	if (del_timer(timer))
2413 		__sock_put(sk);
2414 }
2415 EXPORT_SYMBOL(sk_stop_timer);
2416 
2417 void sock_init_data(struct socket *sock, struct sock *sk)
2418 {
2419 	skb_queue_head_init(&sk->sk_receive_queue);
2420 	skb_queue_head_init(&sk->sk_write_queue);
2421 	skb_queue_head_init(&sk->sk_error_queue);
2422 
2423 	sk->sk_send_head	=	NULL;
2424 
2425 	init_timer(&sk->sk_timer);
2426 
2427 	sk->sk_allocation	=	GFP_KERNEL;
2428 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2429 	sk->sk_sndbuf		=	sysctl_wmem_default;
2430 	sk->sk_state		=	TCP_CLOSE;
2431 	sk_set_socket(sk, sock);
2432 
2433 	sock_set_flag(sk, SOCK_ZAPPED);
2434 
2435 	if (sock) {
2436 		sk->sk_type	=	sock->type;
2437 		sk->sk_wq	=	sock->wq;
2438 		sock->sk	=	sk;
2439 	} else
2440 		sk->sk_wq	=	NULL;
2441 
2442 	rwlock_init(&sk->sk_callback_lock);
2443 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2444 			af_callback_keys + sk->sk_family,
2445 			af_family_clock_key_strings[sk->sk_family]);
2446 
2447 	sk->sk_state_change	=	sock_def_wakeup;
2448 	sk->sk_data_ready	=	sock_def_readable;
2449 	sk->sk_write_space	=	sock_def_write_space;
2450 	sk->sk_error_report	=	sock_def_error_report;
2451 	sk->sk_destruct		=	sock_def_destruct;
2452 
2453 	sk->sk_frag.page	=	NULL;
2454 	sk->sk_frag.offset	=	0;
2455 	sk->sk_peek_off		=	-1;
2456 
2457 	sk->sk_peer_pid 	=	NULL;
2458 	sk->sk_peer_cred	=	NULL;
2459 	sk->sk_write_pending	=	0;
2460 	sk->sk_rcvlowat		=	1;
2461 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2462 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2463 
2464 	sk->sk_stamp = ktime_set(-1L, 0);
2465 
2466 #ifdef CONFIG_NET_RX_BUSY_POLL
2467 	sk->sk_napi_id		=	0;
2468 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2469 #endif
2470 
2471 	sk->sk_max_pacing_rate = ~0U;
2472 	sk->sk_pacing_rate = ~0U;
2473 	sk->sk_incoming_cpu = -1;
2474 	/*
2475 	 * Before updating sk_refcnt, we must commit prior changes to memory
2476 	 * (Documentation/RCU/rculist_nulls.txt for details)
2477 	 */
2478 	smp_wmb();
2479 	atomic_set(&sk->sk_refcnt, 1);
2480 	atomic_set(&sk->sk_drops, 0);
2481 }
2482 EXPORT_SYMBOL(sock_init_data);
2483 
2484 void lock_sock_nested(struct sock *sk, int subclass)
2485 {
2486 	might_sleep();
2487 	spin_lock_bh(&sk->sk_lock.slock);
2488 	if (sk->sk_lock.owned)
2489 		__lock_sock(sk);
2490 	sk->sk_lock.owned = 1;
2491 	spin_unlock(&sk->sk_lock.slock);
2492 	/*
2493 	 * The sk_lock has mutex_lock() semantics here:
2494 	 */
2495 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2496 	local_bh_enable();
2497 }
2498 EXPORT_SYMBOL(lock_sock_nested);
2499 
2500 void release_sock(struct sock *sk)
2501 {
2502 	spin_lock_bh(&sk->sk_lock.slock);
2503 	if (sk->sk_backlog.tail)
2504 		__release_sock(sk);
2505 
2506 	/* Warning : release_cb() might need to release sk ownership,
2507 	 * ie call sock_release_ownership(sk) before us.
2508 	 */
2509 	if (sk->sk_prot->release_cb)
2510 		sk->sk_prot->release_cb(sk);
2511 
2512 	sock_release_ownership(sk);
2513 	if (waitqueue_active(&sk->sk_lock.wq))
2514 		wake_up(&sk->sk_lock.wq);
2515 	spin_unlock_bh(&sk->sk_lock.slock);
2516 }
2517 EXPORT_SYMBOL(release_sock);
2518 
2519 /**
2520  * lock_sock_fast - fast version of lock_sock
2521  * @sk: socket
2522  *
2523  * This version should be used for very small section, where process wont block
2524  * return false if fast path is taken
2525  *   sk_lock.slock locked, owned = 0, BH disabled
2526  * return true if slow path is taken
2527  *   sk_lock.slock unlocked, owned = 1, BH enabled
2528  */
2529 bool lock_sock_fast(struct sock *sk)
2530 {
2531 	might_sleep();
2532 	spin_lock_bh(&sk->sk_lock.slock);
2533 
2534 	if (!sk->sk_lock.owned)
2535 		/*
2536 		 * Note : We must disable BH
2537 		 */
2538 		return false;
2539 
2540 	__lock_sock(sk);
2541 	sk->sk_lock.owned = 1;
2542 	spin_unlock(&sk->sk_lock.slock);
2543 	/*
2544 	 * The sk_lock has mutex_lock() semantics here:
2545 	 */
2546 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2547 	local_bh_enable();
2548 	return true;
2549 }
2550 EXPORT_SYMBOL(lock_sock_fast);
2551 
2552 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2553 {
2554 	struct timeval tv;
2555 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2556 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2557 	tv = ktime_to_timeval(sk->sk_stamp);
2558 	if (tv.tv_sec == -1)
2559 		return -ENOENT;
2560 	if (tv.tv_sec == 0) {
2561 		sk->sk_stamp = ktime_get_real();
2562 		tv = ktime_to_timeval(sk->sk_stamp);
2563 	}
2564 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2565 }
2566 EXPORT_SYMBOL(sock_get_timestamp);
2567 
2568 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2569 {
2570 	struct timespec ts;
2571 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2572 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2573 	ts = ktime_to_timespec(sk->sk_stamp);
2574 	if (ts.tv_sec == -1)
2575 		return -ENOENT;
2576 	if (ts.tv_sec == 0) {
2577 		sk->sk_stamp = ktime_get_real();
2578 		ts = ktime_to_timespec(sk->sk_stamp);
2579 	}
2580 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2581 }
2582 EXPORT_SYMBOL(sock_get_timestampns);
2583 
2584 void sock_enable_timestamp(struct sock *sk, int flag)
2585 {
2586 	if (!sock_flag(sk, flag)) {
2587 		unsigned long previous_flags = sk->sk_flags;
2588 
2589 		sock_set_flag(sk, flag);
2590 		/*
2591 		 * we just set one of the two flags which require net
2592 		 * time stamping, but time stamping might have been on
2593 		 * already because of the other one
2594 		 */
2595 		if (sock_needs_netstamp(sk) &&
2596 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2597 			net_enable_timestamp();
2598 	}
2599 }
2600 
2601 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2602 		       int level, int type)
2603 {
2604 	struct sock_exterr_skb *serr;
2605 	struct sk_buff *skb;
2606 	int copied, err;
2607 
2608 	err = -EAGAIN;
2609 	skb = sock_dequeue_err_skb(sk);
2610 	if (skb == NULL)
2611 		goto out;
2612 
2613 	copied = skb->len;
2614 	if (copied > len) {
2615 		msg->msg_flags |= MSG_TRUNC;
2616 		copied = len;
2617 	}
2618 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2619 	if (err)
2620 		goto out_free_skb;
2621 
2622 	sock_recv_timestamp(msg, sk, skb);
2623 
2624 	serr = SKB_EXT_ERR(skb);
2625 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2626 
2627 	msg->msg_flags |= MSG_ERRQUEUE;
2628 	err = copied;
2629 
2630 out_free_skb:
2631 	kfree_skb(skb);
2632 out:
2633 	return err;
2634 }
2635 EXPORT_SYMBOL(sock_recv_errqueue);
2636 
2637 /*
2638  *	Get a socket option on an socket.
2639  *
2640  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2641  *	asynchronous errors should be reported by getsockopt. We assume
2642  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2643  */
2644 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2645 			   char __user *optval, int __user *optlen)
2646 {
2647 	struct sock *sk = sock->sk;
2648 
2649 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2650 }
2651 EXPORT_SYMBOL(sock_common_getsockopt);
2652 
2653 #ifdef CONFIG_COMPAT
2654 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2655 				  char __user *optval, int __user *optlen)
2656 {
2657 	struct sock *sk = sock->sk;
2658 
2659 	if (sk->sk_prot->compat_getsockopt != NULL)
2660 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2661 						      optval, optlen);
2662 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2663 }
2664 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2665 #endif
2666 
2667 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2668 			int flags)
2669 {
2670 	struct sock *sk = sock->sk;
2671 	int addr_len = 0;
2672 	int err;
2673 
2674 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2675 				   flags & ~MSG_DONTWAIT, &addr_len);
2676 	if (err >= 0)
2677 		msg->msg_namelen = addr_len;
2678 	return err;
2679 }
2680 EXPORT_SYMBOL(sock_common_recvmsg);
2681 
2682 /*
2683  *	Set socket options on an inet socket.
2684  */
2685 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2686 			   char __user *optval, unsigned int optlen)
2687 {
2688 	struct sock *sk = sock->sk;
2689 
2690 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2691 }
2692 EXPORT_SYMBOL(sock_common_setsockopt);
2693 
2694 #ifdef CONFIG_COMPAT
2695 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2696 				  char __user *optval, unsigned int optlen)
2697 {
2698 	struct sock *sk = sock->sk;
2699 
2700 	if (sk->sk_prot->compat_setsockopt != NULL)
2701 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2702 						      optval, optlen);
2703 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2704 }
2705 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2706 #endif
2707 
2708 void sk_common_release(struct sock *sk)
2709 {
2710 	if (sk->sk_prot->destroy)
2711 		sk->sk_prot->destroy(sk);
2712 
2713 	/*
2714 	 * Observation: when sock_common_release is called, processes have
2715 	 * no access to socket. But net still has.
2716 	 * Step one, detach it from networking:
2717 	 *
2718 	 * A. Remove from hash tables.
2719 	 */
2720 
2721 	sk->sk_prot->unhash(sk);
2722 
2723 	/*
2724 	 * In this point socket cannot receive new packets, but it is possible
2725 	 * that some packets are in flight because some CPU runs receiver and
2726 	 * did hash table lookup before we unhashed socket. They will achieve
2727 	 * receive queue and will be purged by socket destructor.
2728 	 *
2729 	 * Also we still have packets pending on receive queue and probably,
2730 	 * our own packets waiting in device queues. sock_destroy will drain
2731 	 * receive queue, but transmitted packets will delay socket destruction
2732 	 * until the last reference will be released.
2733 	 */
2734 
2735 	sock_orphan(sk);
2736 
2737 	xfrm_sk_free_policy(sk);
2738 
2739 	sk_refcnt_debug_release(sk);
2740 
2741 	if (sk->sk_frag.page) {
2742 		put_page(sk->sk_frag.page);
2743 		sk->sk_frag.page = NULL;
2744 	}
2745 
2746 	sock_put(sk);
2747 }
2748 EXPORT_SYMBOL(sk_common_release);
2749 
2750 #ifdef CONFIG_PROC_FS
2751 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2752 struct prot_inuse {
2753 	int val[PROTO_INUSE_NR];
2754 };
2755 
2756 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2757 
2758 #ifdef CONFIG_NET_NS
2759 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2760 {
2761 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2762 }
2763 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2764 
2765 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2766 {
2767 	int cpu, idx = prot->inuse_idx;
2768 	int res = 0;
2769 
2770 	for_each_possible_cpu(cpu)
2771 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2772 
2773 	return res >= 0 ? res : 0;
2774 }
2775 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2776 
2777 static int __net_init sock_inuse_init_net(struct net *net)
2778 {
2779 	net->core.inuse = alloc_percpu(struct prot_inuse);
2780 	return net->core.inuse ? 0 : -ENOMEM;
2781 }
2782 
2783 static void __net_exit sock_inuse_exit_net(struct net *net)
2784 {
2785 	free_percpu(net->core.inuse);
2786 }
2787 
2788 static struct pernet_operations net_inuse_ops = {
2789 	.init = sock_inuse_init_net,
2790 	.exit = sock_inuse_exit_net,
2791 };
2792 
2793 static __init int net_inuse_init(void)
2794 {
2795 	if (register_pernet_subsys(&net_inuse_ops))
2796 		panic("Cannot initialize net inuse counters");
2797 
2798 	return 0;
2799 }
2800 
2801 core_initcall(net_inuse_init);
2802 #else
2803 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2804 
2805 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2806 {
2807 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2808 }
2809 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2810 
2811 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2812 {
2813 	int cpu, idx = prot->inuse_idx;
2814 	int res = 0;
2815 
2816 	for_each_possible_cpu(cpu)
2817 		res += per_cpu(prot_inuse, cpu).val[idx];
2818 
2819 	return res >= 0 ? res : 0;
2820 }
2821 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2822 #endif
2823 
2824 static void assign_proto_idx(struct proto *prot)
2825 {
2826 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2827 
2828 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2829 		pr_err("PROTO_INUSE_NR exhausted\n");
2830 		return;
2831 	}
2832 
2833 	set_bit(prot->inuse_idx, proto_inuse_idx);
2834 }
2835 
2836 static void release_proto_idx(struct proto *prot)
2837 {
2838 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2839 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2840 }
2841 #else
2842 static inline void assign_proto_idx(struct proto *prot)
2843 {
2844 }
2845 
2846 static inline void release_proto_idx(struct proto *prot)
2847 {
2848 }
2849 #endif
2850 
2851 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2852 {
2853 	if (!rsk_prot)
2854 		return;
2855 	kfree(rsk_prot->slab_name);
2856 	rsk_prot->slab_name = NULL;
2857 	kmem_cache_destroy(rsk_prot->slab);
2858 	rsk_prot->slab = NULL;
2859 }
2860 
2861 static int req_prot_init(const struct proto *prot)
2862 {
2863 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2864 
2865 	if (!rsk_prot)
2866 		return 0;
2867 
2868 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2869 					prot->name);
2870 	if (!rsk_prot->slab_name)
2871 		return -ENOMEM;
2872 
2873 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2874 					   rsk_prot->obj_size, 0,
2875 					   prot->slab_flags, NULL);
2876 
2877 	if (!rsk_prot->slab) {
2878 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2879 			prot->name);
2880 		return -ENOMEM;
2881 	}
2882 	return 0;
2883 }
2884 
2885 int proto_register(struct proto *prot, int alloc_slab)
2886 {
2887 	if (alloc_slab) {
2888 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2889 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2890 					NULL);
2891 
2892 		if (prot->slab == NULL) {
2893 			pr_crit("%s: Can't create sock SLAB cache!\n",
2894 				prot->name);
2895 			goto out;
2896 		}
2897 
2898 		if (req_prot_init(prot))
2899 			goto out_free_request_sock_slab;
2900 
2901 		if (prot->twsk_prot != NULL) {
2902 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2903 
2904 			if (prot->twsk_prot->twsk_slab_name == NULL)
2905 				goto out_free_request_sock_slab;
2906 
2907 			prot->twsk_prot->twsk_slab =
2908 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2909 						  prot->twsk_prot->twsk_obj_size,
2910 						  0,
2911 						  prot->slab_flags,
2912 						  NULL);
2913 			if (prot->twsk_prot->twsk_slab == NULL)
2914 				goto out_free_timewait_sock_slab_name;
2915 		}
2916 	}
2917 
2918 	mutex_lock(&proto_list_mutex);
2919 	list_add(&prot->node, &proto_list);
2920 	assign_proto_idx(prot);
2921 	mutex_unlock(&proto_list_mutex);
2922 	return 0;
2923 
2924 out_free_timewait_sock_slab_name:
2925 	kfree(prot->twsk_prot->twsk_slab_name);
2926 out_free_request_sock_slab:
2927 	req_prot_cleanup(prot->rsk_prot);
2928 
2929 	kmem_cache_destroy(prot->slab);
2930 	prot->slab = NULL;
2931 out:
2932 	return -ENOBUFS;
2933 }
2934 EXPORT_SYMBOL(proto_register);
2935 
2936 void proto_unregister(struct proto *prot)
2937 {
2938 	mutex_lock(&proto_list_mutex);
2939 	release_proto_idx(prot);
2940 	list_del(&prot->node);
2941 	mutex_unlock(&proto_list_mutex);
2942 
2943 	kmem_cache_destroy(prot->slab);
2944 	prot->slab = NULL;
2945 
2946 	req_prot_cleanup(prot->rsk_prot);
2947 
2948 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2949 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2950 		kfree(prot->twsk_prot->twsk_slab_name);
2951 		prot->twsk_prot->twsk_slab = NULL;
2952 	}
2953 }
2954 EXPORT_SYMBOL(proto_unregister);
2955 
2956 #ifdef CONFIG_PROC_FS
2957 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2958 	__acquires(proto_list_mutex)
2959 {
2960 	mutex_lock(&proto_list_mutex);
2961 	return seq_list_start_head(&proto_list, *pos);
2962 }
2963 
2964 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2965 {
2966 	return seq_list_next(v, &proto_list, pos);
2967 }
2968 
2969 static void proto_seq_stop(struct seq_file *seq, void *v)
2970 	__releases(proto_list_mutex)
2971 {
2972 	mutex_unlock(&proto_list_mutex);
2973 }
2974 
2975 static char proto_method_implemented(const void *method)
2976 {
2977 	return method == NULL ? 'n' : 'y';
2978 }
2979 static long sock_prot_memory_allocated(struct proto *proto)
2980 {
2981 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2982 }
2983 
2984 static char *sock_prot_memory_pressure(struct proto *proto)
2985 {
2986 	return proto->memory_pressure != NULL ?
2987 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2988 }
2989 
2990 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2991 {
2992 
2993 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2994 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2995 		   proto->name,
2996 		   proto->obj_size,
2997 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2998 		   sock_prot_memory_allocated(proto),
2999 		   sock_prot_memory_pressure(proto),
3000 		   proto->max_header,
3001 		   proto->slab == NULL ? "no" : "yes",
3002 		   module_name(proto->owner),
3003 		   proto_method_implemented(proto->close),
3004 		   proto_method_implemented(proto->connect),
3005 		   proto_method_implemented(proto->disconnect),
3006 		   proto_method_implemented(proto->accept),
3007 		   proto_method_implemented(proto->ioctl),
3008 		   proto_method_implemented(proto->init),
3009 		   proto_method_implemented(proto->destroy),
3010 		   proto_method_implemented(proto->shutdown),
3011 		   proto_method_implemented(proto->setsockopt),
3012 		   proto_method_implemented(proto->getsockopt),
3013 		   proto_method_implemented(proto->sendmsg),
3014 		   proto_method_implemented(proto->recvmsg),
3015 		   proto_method_implemented(proto->sendpage),
3016 		   proto_method_implemented(proto->bind),
3017 		   proto_method_implemented(proto->backlog_rcv),
3018 		   proto_method_implemented(proto->hash),
3019 		   proto_method_implemented(proto->unhash),
3020 		   proto_method_implemented(proto->get_port),
3021 		   proto_method_implemented(proto->enter_memory_pressure));
3022 }
3023 
3024 static int proto_seq_show(struct seq_file *seq, void *v)
3025 {
3026 	if (v == &proto_list)
3027 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3028 			   "protocol",
3029 			   "size",
3030 			   "sockets",
3031 			   "memory",
3032 			   "press",
3033 			   "maxhdr",
3034 			   "slab",
3035 			   "module",
3036 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3037 	else
3038 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3039 	return 0;
3040 }
3041 
3042 static const struct seq_operations proto_seq_ops = {
3043 	.start  = proto_seq_start,
3044 	.next   = proto_seq_next,
3045 	.stop   = proto_seq_stop,
3046 	.show   = proto_seq_show,
3047 };
3048 
3049 static int proto_seq_open(struct inode *inode, struct file *file)
3050 {
3051 	return seq_open_net(inode, file, &proto_seq_ops,
3052 			    sizeof(struct seq_net_private));
3053 }
3054 
3055 static const struct file_operations proto_seq_fops = {
3056 	.owner		= THIS_MODULE,
3057 	.open		= proto_seq_open,
3058 	.read		= seq_read,
3059 	.llseek		= seq_lseek,
3060 	.release	= seq_release_net,
3061 };
3062 
3063 static __net_init int proto_init_net(struct net *net)
3064 {
3065 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3066 		return -ENOMEM;
3067 
3068 	return 0;
3069 }
3070 
3071 static __net_exit void proto_exit_net(struct net *net)
3072 {
3073 	remove_proc_entry("protocols", net->proc_net);
3074 }
3075 
3076 
3077 static __net_initdata struct pernet_operations proto_net_ops = {
3078 	.init = proto_init_net,
3079 	.exit = proto_exit_net,
3080 };
3081 
3082 static int __init proto_init(void)
3083 {
3084 	return register_pernet_subsys(&proto_net_ops);
3085 }
3086 
3087 subsys_initcall(proto_init);
3088 
3089 #endif /* PROC_FS */
3090