xref: /openbmc/linux/net/core/sock.c (revision 7ae5c03a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 #include <linux/ethtool.h>
143 
144 #include "dev.h"
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 static void sock_def_write_space_wfree(struct sock *sk);
150 static void sock_def_write_space(struct sock *sk);
151 
152 /**
153  * sk_ns_capable - General socket capability test
154  * @sk: Socket to use a capability on or through
155  * @user_ns: The user namespace of the capability to use
156  * @cap: The capability to use
157  *
158  * Test to see if the opener of the socket had when the socket was
159  * created and the current process has the capability @cap in the user
160  * namespace @user_ns.
161  */
162 bool sk_ns_capable(const struct sock *sk,
163 		   struct user_namespace *user_ns, int cap)
164 {
165 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 		ns_capable(user_ns, cap);
167 }
168 EXPORT_SYMBOL(sk_ns_capable);
169 
170 /**
171  * sk_capable - Socket global capability test
172  * @sk: Socket to use a capability on or through
173  * @cap: The global capability to use
174  *
175  * Test to see if the opener of the socket had when the socket was
176  * created and the current process has the capability @cap in all user
177  * namespaces.
178  */
179 bool sk_capable(const struct sock *sk, int cap)
180 {
181 	return sk_ns_capable(sk, &init_user_ns, cap);
182 }
183 EXPORT_SYMBOL(sk_capable);
184 
185 /**
186  * sk_net_capable - Network namespace socket capability test
187  * @sk: Socket to use a capability on or through
188  * @cap: The capability to use
189  *
190  * Test to see if the opener of the socket had when the socket was created
191  * and the current process has the capability @cap over the network namespace
192  * the socket is a member of.
193  */
194 bool sk_net_capable(const struct sock *sk, int cap)
195 {
196 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197 }
198 EXPORT_SYMBOL(sk_net_capable);
199 
200 /*
201  * Each address family might have different locking rules, so we have
202  * one slock key per address family and separate keys for internal and
203  * userspace sockets.
204  */
205 static struct lock_class_key af_family_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_keys[AF_MAX];
207 static struct lock_class_key af_family_slock_keys[AF_MAX];
208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209 
210 /*
211  * Make lock validator output more readable. (we pre-construct these
212  * strings build-time, so that runtime initialization of socket
213  * locks is fast):
214  */
215 
216 #define _sock_locks(x)						  \
217   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
218   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
219   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
220   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
221   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
222   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
223   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
224   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
225   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
226   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
227   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
228   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
229   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
230   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
231   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
232   x "AF_MCTP"  , \
233   x "AF_MAX"
234 
235 static const char *const af_family_key_strings[AF_MAX+1] = {
236 	_sock_locks("sk_lock-")
237 };
238 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 	_sock_locks("slock-")
240 };
241 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 	_sock_locks("clock-")
243 };
244 
245 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-sk_lock-")
247 };
248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 	_sock_locks("k-slock-")
250 };
251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 	_sock_locks("k-clock-")
253 };
254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 	_sock_locks("rlock-")
256 };
257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 	_sock_locks("wlock-")
259 };
260 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 	_sock_locks("elock-")
262 };
263 
264 /*
265  * sk_callback_lock and sk queues locking rules are per-address-family,
266  * so split the lock classes by using a per-AF key:
267  */
268 static struct lock_class_key af_callback_keys[AF_MAX];
269 static struct lock_class_key af_rlock_keys[AF_MAX];
270 static struct lock_class_key af_wlock_keys[AF_MAX];
271 static struct lock_class_key af_elock_keys[AF_MAX];
272 static struct lock_class_key af_kern_callback_keys[AF_MAX];
273 
274 /* Run time adjustable parameters. */
275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276 EXPORT_SYMBOL(sysctl_wmem_max);
277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278 EXPORT_SYMBOL(sysctl_rmem_max);
279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281 
282 /* Maximal space eaten by iovec or ancillary data plus some space */
283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284 EXPORT_SYMBOL(sysctl_optmem_max);
285 
286 int sysctl_tstamp_allow_data __read_mostly = 1;
287 
288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289 EXPORT_SYMBOL_GPL(memalloc_socks_key);
290 
291 /**
292  * sk_set_memalloc - sets %SOCK_MEMALLOC
293  * @sk: socket to set it on
294  *
295  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296  * It's the responsibility of the admin to adjust min_free_kbytes
297  * to meet the requirements
298  */
299 void sk_set_memalloc(struct sock *sk)
300 {
301 	sock_set_flag(sk, SOCK_MEMALLOC);
302 	sk->sk_allocation |= __GFP_MEMALLOC;
303 	static_branch_inc(&memalloc_socks_key);
304 }
305 EXPORT_SYMBOL_GPL(sk_set_memalloc);
306 
307 void sk_clear_memalloc(struct sock *sk)
308 {
309 	sock_reset_flag(sk, SOCK_MEMALLOC);
310 	sk->sk_allocation &= ~__GFP_MEMALLOC;
311 	static_branch_dec(&memalloc_socks_key);
312 
313 	/*
314 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 	 * it has rmem allocations due to the last swapfile being deactivated
317 	 * but there is a risk that the socket is unusable due to exceeding
318 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 	 */
320 	sk_mem_reclaim(sk);
321 }
322 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323 
324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325 {
326 	int ret;
327 	unsigned int noreclaim_flag;
328 
329 	/* these should have been dropped before queueing */
330 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331 
332 	noreclaim_flag = memalloc_noreclaim_save();
333 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 				 tcp_v6_do_rcv,
335 				 tcp_v4_do_rcv,
336 				 sk, skb);
337 	memalloc_noreclaim_restore(noreclaim_flag);
338 
339 	return ret;
340 }
341 EXPORT_SYMBOL(__sk_backlog_rcv);
342 
343 void sk_error_report(struct sock *sk)
344 {
345 	sk->sk_error_report(sk);
346 
347 	switch (sk->sk_family) {
348 	case AF_INET:
349 		fallthrough;
350 	case AF_INET6:
351 		trace_inet_sk_error_report(sk);
352 		break;
353 	default:
354 		break;
355 	}
356 }
357 EXPORT_SYMBOL(sk_error_report);
358 
359 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360 {
361 	struct __kernel_sock_timeval tv;
362 
363 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 		tv.tv_sec = 0;
365 		tv.tv_usec = 0;
366 	} else {
367 		tv.tv_sec = timeo / HZ;
368 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 	}
370 
371 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 		*(struct old_timeval32 *)optval = tv32;
374 		return sizeof(tv32);
375 	}
376 
377 	if (old_timeval) {
378 		struct __kernel_old_timeval old_tv;
379 		old_tv.tv_sec = tv.tv_sec;
380 		old_tv.tv_usec = tv.tv_usec;
381 		*(struct __kernel_old_timeval *)optval = old_tv;
382 		return sizeof(old_tv);
383 	}
384 
385 	*(struct __kernel_sock_timeval *)optval = tv;
386 	return sizeof(tv);
387 }
388 EXPORT_SYMBOL(sock_get_timeout);
389 
390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 			   sockptr_t optval, int optlen, bool old_timeval)
392 {
393 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 		struct old_timeval32 tv32;
395 
396 		if (optlen < sizeof(tv32))
397 			return -EINVAL;
398 
399 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 			return -EFAULT;
401 		tv->tv_sec = tv32.tv_sec;
402 		tv->tv_usec = tv32.tv_usec;
403 	} else if (old_timeval) {
404 		struct __kernel_old_timeval old_tv;
405 
406 		if (optlen < sizeof(old_tv))
407 			return -EINVAL;
408 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 			return -EFAULT;
410 		tv->tv_sec = old_tv.tv_sec;
411 		tv->tv_usec = old_tv.tv_usec;
412 	} else {
413 		if (optlen < sizeof(*tv))
414 			return -EINVAL;
415 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 			return -EFAULT;
417 	}
418 
419 	return 0;
420 }
421 EXPORT_SYMBOL(sock_copy_user_timeval);
422 
423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 			    bool old_timeval)
425 {
426 	struct __kernel_sock_timeval tv;
427 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428 
429 	if (err)
430 		return err;
431 
432 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 		return -EDOM;
434 
435 	if (tv.tv_sec < 0) {
436 		static int warned __read_mostly;
437 
438 		*timeo_p = 0;
439 		if (warned < 10 && net_ratelimit()) {
440 			warned++;
441 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 				__func__, current->comm, task_pid_nr(current));
443 		}
444 		return 0;
445 	}
446 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
447 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 		return 0;
449 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 	return 0;
452 }
453 
454 static bool sock_needs_netstamp(const struct sock *sk)
455 {
456 	switch (sk->sk_family) {
457 	case AF_UNSPEC:
458 	case AF_UNIX:
459 		return false;
460 	default:
461 		return true;
462 	}
463 }
464 
465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466 {
467 	if (sk->sk_flags & flags) {
468 		sk->sk_flags &= ~flags;
469 		if (sock_needs_netstamp(sk) &&
470 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 			net_disable_timestamp();
472 	}
473 }
474 
475 
476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477 {
478 	unsigned long flags;
479 	struct sk_buff_head *list = &sk->sk_receive_queue;
480 
481 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 		atomic_inc(&sk->sk_drops);
483 		trace_sock_rcvqueue_full(sk, skb);
484 		return -ENOMEM;
485 	}
486 
487 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 		atomic_inc(&sk->sk_drops);
489 		return -ENOBUFS;
490 	}
491 
492 	skb->dev = NULL;
493 	skb_set_owner_r(skb, sk);
494 
495 	/* we escape from rcu protected region, make sure we dont leak
496 	 * a norefcounted dst
497 	 */
498 	skb_dst_force(skb);
499 
500 	spin_lock_irqsave(&list->lock, flags);
501 	sock_skb_set_dropcount(sk, skb);
502 	__skb_queue_tail(list, skb);
503 	spin_unlock_irqrestore(&list->lock, flags);
504 
505 	if (!sock_flag(sk, SOCK_DEAD))
506 		sk->sk_data_ready(sk);
507 	return 0;
508 }
509 EXPORT_SYMBOL(__sock_queue_rcv_skb);
510 
511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 			      enum skb_drop_reason *reason)
513 {
514 	enum skb_drop_reason drop_reason;
515 	int err;
516 
517 	err = sk_filter(sk, skb);
518 	if (err) {
519 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 		goto out;
521 	}
522 	err = __sock_queue_rcv_skb(sk, skb);
523 	switch (err) {
524 	case -ENOMEM:
525 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 		break;
527 	case -ENOBUFS:
528 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 		break;
530 	default:
531 		drop_reason = SKB_NOT_DROPPED_YET;
532 		break;
533 	}
534 out:
535 	if (reason)
536 		*reason = drop_reason;
537 	return err;
538 }
539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540 
541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 		     const int nested, unsigned int trim_cap, bool refcounted)
543 {
544 	int rc = NET_RX_SUCCESS;
545 
546 	if (sk_filter_trim_cap(sk, skb, trim_cap))
547 		goto discard_and_relse;
548 
549 	skb->dev = NULL;
550 
551 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 		atomic_inc(&sk->sk_drops);
553 		goto discard_and_relse;
554 	}
555 	if (nested)
556 		bh_lock_sock_nested(sk);
557 	else
558 		bh_lock_sock(sk);
559 	if (!sock_owned_by_user(sk)) {
560 		/*
561 		 * trylock + unlock semantics:
562 		 */
563 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564 
565 		rc = sk_backlog_rcv(sk, skb);
566 
567 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 		bh_unlock_sock(sk);
570 		atomic_inc(&sk->sk_drops);
571 		goto discard_and_relse;
572 	}
573 
574 	bh_unlock_sock(sk);
575 out:
576 	if (refcounted)
577 		sock_put(sk);
578 	return rc;
579 discard_and_relse:
580 	kfree_skb(skb);
581 	goto out;
582 }
583 EXPORT_SYMBOL(__sk_receive_skb);
584 
585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 							  u32));
587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 							   u32));
589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590 {
591 	struct dst_entry *dst = __sk_dst_get(sk);
592 
593 	if (dst && dst->obsolete &&
594 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 			       dst, cookie) == NULL) {
596 		sk_tx_queue_clear(sk);
597 		sk->sk_dst_pending_confirm = 0;
598 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 		dst_release(dst);
600 		return NULL;
601 	}
602 
603 	return dst;
604 }
605 EXPORT_SYMBOL(__sk_dst_check);
606 
607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608 {
609 	struct dst_entry *dst = sk_dst_get(sk);
610 
611 	if (dst && dst->obsolete &&
612 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 			       dst, cookie) == NULL) {
614 		sk_dst_reset(sk);
615 		dst_release(dst);
616 		return NULL;
617 	}
618 
619 	return dst;
620 }
621 EXPORT_SYMBOL(sk_dst_check);
622 
623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624 {
625 	int ret = -ENOPROTOOPT;
626 #ifdef CONFIG_NETDEVICES
627 	struct net *net = sock_net(sk);
628 
629 	/* Sorry... */
630 	ret = -EPERM;
631 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 		goto out;
633 
634 	ret = -EINVAL;
635 	if (ifindex < 0)
636 		goto out;
637 
638 	/* Paired with all READ_ONCE() done locklessly. */
639 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640 
641 	if (sk->sk_prot->rehash)
642 		sk->sk_prot->rehash(sk);
643 	sk_dst_reset(sk);
644 
645 	ret = 0;
646 
647 out:
648 #endif
649 
650 	return ret;
651 }
652 
653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654 {
655 	int ret;
656 
657 	if (lock_sk)
658 		lock_sock(sk);
659 	ret = sock_bindtoindex_locked(sk, ifindex);
660 	if (lock_sk)
661 		release_sock(sk);
662 
663 	return ret;
664 }
665 EXPORT_SYMBOL(sock_bindtoindex);
666 
667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668 {
669 	int ret = -ENOPROTOOPT;
670 #ifdef CONFIG_NETDEVICES
671 	struct net *net = sock_net(sk);
672 	char devname[IFNAMSIZ];
673 	int index;
674 
675 	ret = -EINVAL;
676 	if (optlen < 0)
677 		goto out;
678 
679 	/* Bind this socket to a particular device like "eth0",
680 	 * as specified in the passed interface name. If the
681 	 * name is "" or the option length is zero the socket
682 	 * is not bound.
683 	 */
684 	if (optlen > IFNAMSIZ - 1)
685 		optlen = IFNAMSIZ - 1;
686 	memset(devname, 0, sizeof(devname));
687 
688 	ret = -EFAULT;
689 	if (copy_from_sockptr(devname, optval, optlen))
690 		goto out;
691 
692 	index = 0;
693 	if (devname[0] != '\0') {
694 		struct net_device *dev;
695 
696 		rcu_read_lock();
697 		dev = dev_get_by_name_rcu(net, devname);
698 		if (dev)
699 			index = dev->ifindex;
700 		rcu_read_unlock();
701 		ret = -ENODEV;
702 		if (!dev)
703 			goto out;
704 	}
705 
706 	return sock_bindtoindex(sk, index, true);
707 out:
708 #endif
709 
710 	return ret;
711 }
712 
713 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
714 				int __user *optlen, int len)
715 {
716 	int ret = -ENOPROTOOPT;
717 #ifdef CONFIG_NETDEVICES
718 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
719 	struct net *net = sock_net(sk);
720 	char devname[IFNAMSIZ];
721 
722 	if (bound_dev_if == 0) {
723 		len = 0;
724 		goto zero;
725 	}
726 
727 	ret = -EINVAL;
728 	if (len < IFNAMSIZ)
729 		goto out;
730 
731 	ret = netdev_get_name(net, devname, bound_dev_if);
732 	if (ret)
733 		goto out;
734 
735 	len = strlen(devname) + 1;
736 
737 	ret = -EFAULT;
738 	if (copy_to_user(optval, devname, len))
739 		goto out;
740 
741 zero:
742 	ret = -EFAULT;
743 	if (put_user(len, optlen))
744 		goto out;
745 
746 	ret = 0;
747 
748 out:
749 #endif
750 
751 	return ret;
752 }
753 
754 bool sk_mc_loop(struct sock *sk)
755 {
756 	if (dev_recursion_level())
757 		return false;
758 	if (!sk)
759 		return true;
760 	switch (sk->sk_family) {
761 	case AF_INET:
762 		return inet_sk(sk)->mc_loop;
763 #if IS_ENABLED(CONFIG_IPV6)
764 	case AF_INET6:
765 		return inet6_sk(sk)->mc_loop;
766 #endif
767 	}
768 	WARN_ON_ONCE(1);
769 	return true;
770 }
771 EXPORT_SYMBOL(sk_mc_loop);
772 
773 void sock_set_reuseaddr(struct sock *sk)
774 {
775 	lock_sock(sk);
776 	sk->sk_reuse = SK_CAN_REUSE;
777 	release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_reuseaddr);
780 
781 void sock_set_reuseport(struct sock *sk)
782 {
783 	lock_sock(sk);
784 	sk->sk_reuseport = true;
785 	release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_reuseport);
788 
789 void sock_no_linger(struct sock *sk)
790 {
791 	lock_sock(sk);
792 	sk->sk_lingertime = 0;
793 	sock_set_flag(sk, SOCK_LINGER);
794 	release_sock(sk);
795 }
796 EXPORT_SYMBOL(sock_no_linger);
797 
798 void sock_set_priority(struct sock *sk, u32 priority)
799 {
800 	lock_sock(sk);
801 	sk->sk_priority = priority;
802 	release_sock(sk);
803 }
804 EXPORT_SYMBOL(sock_set_priority);
805 
806 void sock_set_sndtimeo(struct sock *sk, s64 secs)
807 {
808 	lock_sock(sk);
809 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
810 		sk->sk_sndtimeo = secs * HZ;
811 	else
812 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
813 	release_sock(sk);
814 }
815 EXPORT_SYMBOL(sock_set_sndtimeo);
816 
817 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
818 {
819 	if (val)  {
820 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
821 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
822 		sock_set_flag(sk, SOCK_RCVTSTAMP);
823 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
824 	} else {
825 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
826 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827 	}
828 }
829 
830 void sock_enable_timestamps(struct sock *sk)
831 {
832 	lock_sock(sk);
833 	__sock_set_timestamps(sk, true, false, true);
834 	release_sock(sk);
835 }
836 EXPORT_SYMBOL(sock_enable_timestamps);
837 
838 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
839 {
840 	switch (optname) {
841 	case SO_TIMESTAMP_OLD:
842 		__sock_set_timestamps(sk, valbool, false, false);
843 		break;
844 	case SO_TIMESTAMP_NEW:
845 		__sock_set_timestamps(sk, valbool, true, false);
846 		break;
847 	case SO_TIMESTAMPNS_OLD:
848 		__sock_set_timestamps(sk, valbool, false, true);
849 		break;
850 	case SO_TIMESTAMPNS_NEW:
851 		__sock_set_timestamps(sk, valbool, true, true);
852 		break;
853 	}
854 }
855 
856 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
857 {
858 	struct net *net = sock_net(sk);
859 	struct net_device *dev = NULL;
860 	bool match = false;
861 	int *vclock_index;
862 	int i, num;
863 
864 	if (sk->sk_bound_dev_if)
865 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
866 
867 	if (!dev) {
868 		pr_err("%s: sock not bind to device\n", __func__);
869 		return -EOPNOTSUPP;
870 	}
871 
872 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
873 	dev_put(dev);
874 
875 	for (i = 0; i < num; i++) {
876 		if (*(vclock_index + i) == phc_index) {
877 			match = true;
878 			break;
879 		}
880 	}
881 
882 	if (num > 0)
883 		kfree(vclock_index);
884 
885 	if (!match)
886 		return -EINVAL;
887 
888 	sk->sk_bind_phc = phc_index;
889 
890 	return 0;
891 }
892 
893 int sock_set_timestamping(struct sock *sk, int optname,
894 			  struct so_timestamping timestamping)
895 {
896 	int val = timestamping.flags;
897 	int ret;
898 
899 	if (val & ~SOF_TIMESTAMPING_MASK)
900 		return -EINVAL;
901 
902 	if (val & SOF_TIMESTAMPING_OPT_ID &&
903 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
904 		if (sk_is_tcp(sk)) {
905 			if ((1 << sk->sk_state) &
906 			    (TCPF_CLOSE | TCPF_LISTEN))
907 				return -EINVAL;
908 			atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
909 		} else {
910 			atomic_set(&sk->sk_tskey, 0);
911 		}
912 	}
913 
914 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
915 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
916 		return -EINVAL;
917 
918 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
919 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
920 		if (ret)
921 			return ret;
922 	}
923 
924 	sk->sk_tsflags = val;
925 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
926 
927 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
928 		sock_enable_timestamp(sk,
929 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
930 	else
931 		sock_disable_timestamp(sk,
932 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
933 	return 0;
934 }
935 
936 void sock_set_keepalive(struct sock *sk)
937 {
938 	lock_sock(sk);
939 	if (sk->sk_prot->keepalive)
940 		sk->sk_prot->keepalive(sk, true);
941 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
942 	release_sock(sk);
943 }
944 EXPORT_SYMBOL(sock_set_keepalive);
945 
946 static void __sock_set_rcvbuf(struct sock *sk, int val)
947 {
948 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
949 	 * as a negative value.
950 	 */
951 	val = min_t(int, val, INT_MAX / 2);
952 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
953 
954 	/* We double it on the way in to account for "struct sk_buff" etc.
955 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
956 	 * will allow that much actual data to be received on that socket.
957 	 *
958 	 * Applications are unaware that "struct sk_buff" and other overheads
959 	 * allocate from the receive buffer during socket buffer allocation.
960 	 *
961 	 * And after considering the possible alternatives, returning the value
962 	 * we actually used in getsockopt is the most desirable behavior.
963 	 */
964 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
965 }
966 
967 void sock_set_rcvbuf(struct sock *sk, int val)
968 {
969 	lock_sock(sk);
970 	__sock_set_rcvbuf(sk, val);
971 	release_sock(sk);
972 }
973 EXPORT_SYMBOL(sock_set_rcvbuf);
974 
975 static void __sock_set_mark(struct sock *sk, u32 val)
976 {
977 	if (val != sk->sk_mark) {
978 		sk->sk_mark = val;
979 		sk_dst_reset(sk);
980 	}
981 }
982 
983 void sock_set_mark(struct sock *sk, u32 val)
984 {
985 	lock_sock(sk);
986 	__sock_set_mark(sk, val);
987 	release_sock(sk);
988 }
989 EXPORT_SYMBOL(sock_set_mark);
990 
991 static void sock_release_reserved_memory(struct sock *sk, int bytes)
992 {
993 	/* Round down bytes to multiple of pages */
994 	bytes = round_down(bytes, PAGE_SIZE);
995 
996 	WARN_ON(bytes > sk->sk_reserved_mem);
997 	sk->sk_reserved_mem -= bytes;
998 	sk_mem_reclaim(sk);
999 }
1000 
1001 static int sock_reserve_memory(struct sock *sk, int bytes)
1002 {
1003 	long allocated;
1004 	bool charged;
1005 	int pages;
1006 
1007 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1008 		return -EOPNOTSUPP;
1009 
1010 	if (!bytes)
1011 		return 0;
1012 
1013 	pages = sk_mem_pages(bytes);
1014 
1015 	/* pre-charge to memcg */
1016 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1017 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1018 	if (!charged)
1019 		return -ENOMEM;
1020 
1021 	/* pre-charge to forward_alloc */
1022 	sk_memory_allocated_add(sk, pages);
1023 	allocated = sk_memory_allocated(sk);
1024 	/* If the system goes into memory pressure with this
1025 	 * precharge, give up and return error.
1026 	 */
1027 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1028 		sk_memory_allocated_sub(sk, pages);
1029 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1030 		return -ENOMEM;
1031 	}
1032 	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1033 
1034 	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  *	This is meant for all protocols to use and covers goings on
1041  *	at the socket level. Everything here is generic.
1042  */
1043 
1044 int sock_setsockopt(struct socket *sock, int level, int optname,
1045 		    sockptr_t optval, unsigned int optlen)
1046 {
1047 	struct so_timestamping timestamping;
1048 	struct sock_txtime sk_txtime;
1049 	struct sock *sk = sock->sk;
1050 	int val;
1051 	int valbool;
1052 	struct linger ling;
1053 	int ret = 0;
1054 
1055 	/*
1056 	 *	Options without arguments
1057 	 */
1058 
1059 	if (optname == SO_BINDTODEVICE)
1060 		return sock_setbindtodevice(sk, optval, optlen);
1061 
1062 	if (optlen < sizeof(int))
1063 		return -EINVAL;
1064 
1065 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1066 		return -EFAULT;
1067 
1068 	valbool = val ? 1 : 0;
1069 
1070 	lock_sock(sk);
1071 
1072 	switch (optname) {
1073 	case SO_DEBUG:
1074 		if (val && !capable(CAP_NET_ADMIN))
1075 			ret = -EACCES;
1076 		else
1077 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1078 		break;
1079 	case SO_REUSEADDR:
1080 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1081 		break;
1082 	case SO_REUSEPORT:
1083 		sk->sk_reuseport = valbool;
1084 		break;
1085 	case SO_TYPE:
1086 	case SO_PROTOCOL:
1087 	case SO_DOMAIN:
1088 	case SO_ERROR:
1089 		ret = -ENOPROTOOPT;
1090 		break;
1091 	case SO_DONTROUTE:
1092 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1093 		sk_dst_reset(sk);
1094 		break;
1095 	case SO_BROADCAST:
1096 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1097 		break;
1098 	case SO_SNDBUF:
1099 		/* Don't error on this BSD doesn't and if you think
1100 		 * about it this is right. Otherwise apps have to
1101 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1102 		 * are treated in BSD as hints
1103 		 */
1104 		val = min_t(u32, val, sysctl_wmem_max);
1105 set_sndbuf:
1106 		/* Ensure val * 2 fits into an int, to prevent max_t()
1107 		 * from treating it as a negative value.
1108 		 */
1109 		val = min_t(int, val, INT_MAX / 2);
1110 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1111 		WRITE_ONCE(sk->sk_sndbuf,
1112 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1113 		/* Wake up sending tasks if we upped the value. */
1114 		sk->sk_write_space(sk);
1115 		break;
1116 
1117 	case SO_SNDBUFFORCE:
1118 		if (!capable(CAP_NET_ADMIN)) {
1119 			ret = -EPERM;
1120 			break;
1121 		}
1122 
1123 		/* No negative values (to prevent underflow, as val will be
1124 		 * multiplied by 2).
1125 		 */
1126 		if (val < 0)
1127 			val = 0;
1128 		goto set_sndbuf;
1129 
1130 	case SO_RCVBUF:
1131 		/* Don't error on this BSD doesn't and if you think
1132 		 * about it this is right. Otherwise apps have to
1133 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1134 		 * are treated in BSD as hints
1135 		 */
1136 		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1137 		break;
1138 
1139 	case SO_RCVBUFFORCE:
1140 		if (!capable(CAP_NET_ADMIN)) {
1141 			ret = -EPERM;
1142 			break;
1143 		}
1144 
1145 		/* No negative values (to prevent underflow, as val will be
1146 		 * multiplied by 2).
1147 		 */
1148 		__sock_set_rcvbuf(sk, max(val, 0));
1149 		break;
1150 
1151 	case SO_KEEPALIVE:
1152 		if (sk->sk_prot->keepalive)
1153 			sk->sk_prot->keepalive(sk, valbool);
1154 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1155 		break;
1156 
1157 	case SO_OOBINLINE:
1158 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1159 		break;
1160 
1161 	case SO_NO_CHECK:
1162 		sk->sk_no_check_tx = valbool;
1163 		break;
1164 
1165 	case SO_PRIORITY:
1166 		if ((val >= 0 && val <= 6) ||
1167 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1168 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1169 			sk->sk_priority = val;
1170 		else
1171 			ret = -EPERM;
1172 		break;
1173 
1174 	case SO_LINGER:
1175 		if (optlen < sizeof(ling)) {
1176 			ret = -EINVAL;	/* 1003.1g */
1177 			break;
1178 		}
1179 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1180 			ret = -EFAULT;
1181 			break;
1182 		}
1183 		if (!ling.l_onoff)
1184 			sock_reset_flag(sk, SOCK_LINGER);
1185 		else {
1186 #if (BITS_PER_LONG == 32)
1187 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1188 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1189 			else
1190 #endif
1191 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1192 			sock_set_flag(sk, SOCK_LINGER);
1193 		}
1194 		break;
1195 
1196 	case SO_BSDCOMPAT:
1197 		break;
1198 
1199 	case SO_PASSCRED:
1200 		if (valbool)
1201 			set_bit(SOCK_PASSCRED, &sock->flags);
1202 		else
1203 			clear_bit(SOCK_PASSCRED, &sock->flags);
1204 		break;
1205 
1206 	case SO_TIMESTAMP_OLD:
1207 	case SO_TIMESTAMP_NEW:
1208 	case SO_TIMESTAMPNS_OLD:
1209 	case SO_TIMESTAMPNS_NEW:
1210 		sock_set_timestamp(sk, optname, valbool);
1211 		break;
1212 
1213 	case SO_TIMESTAMPING_NEW:
1214 	case SO_TIMESTAMPING_OLD:
1215 		if (optlen == sizeof(timestamping)) {
1216 			if (copy_from_sockptr(&timestamping, optval,
1217 					      sizeof(timestamping))) {
1218 				ret = -EFAULT;
1219 				break;
1220 			}
1221 		} else {
1222 			memset(&timestamping, 0, sizeof(timestamping));
1223 			timestamping.flags = val;
1224 		}
1225 		ret = sock_set_timestamping(sk, optname, timestamping);
1226 		break;
1227 
1228 	case SO_RCVLOWAT:
1229 		if (val < 0)
1230 			val = INT_MAX;
1231 		if (sock->ops->set_rcvlowat)
1232 			ret = sock->ops->set_rcvlowat(sk, val);
1233 		else
1234 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1235 		break;
1236 
1237 	case SO_RCVTIMEO_OLD:
1238 	case SO_RCVTIMEO_NEW:
1239 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1240 				       optlen, optname == SO_RCVTIMEO_OLD);
1241 		break;
1242 
1243 	case SO_SNDTIMEO_OLD:
1244 	case SO_SNDTIMEO_NEW:
1245 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1246 				       optlen, optname == SO_SNDTIMEO_OLD);
1247 		break;
1248 
1249 	case SO_ATTACH_FILTER: {
1250 		struct sock_fprog fprog;
1251 
1252 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1253 		if (!ret)
1254 			ret = sk_attach_filter(&fprog, sk);
1255 		break;
1256 	}
1257 	case SO_ATTACH_BPF:
1258 		ret = -EINVAL;
1259 		if (optlen == sizeof(u32)) {
1260 			u32 ufd;
1261 
1262 			ret = -EFAULT;
1263 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1264 				break;
1265 
1266 			ret = sk_attach_bpf(ufd, sk);
1267 		}
1268 		break;
1269 
1270 	case SO_ATTACH_REUSEPORT_CBPF: {
1271 		struct sock_fprog fprog;
1272 
1273 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1274 		if (!ret)
1275 			ret = sk_reuseport_attach_filter(&fprog, sk);
1276 		break;
1277 	}
1278 	case SO_ATTACH_REUSEPORT_EBPF:
1279 		ret = -EINVAL;
1280 		if (optlen == sizeof(u32)) {
1281 			u32 ufd;
1282 
1283 			ret = -EFAULT;
1284 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1285 				break;
1286 
1287 			ret = sk_reuseport_attach_bpf(ufd, sk);
1288 		}
1289 		break;
1290 
1291 	case SO_DETACH_REUSEPORT_BPF:
1292 		ret = reuseport_detach_prog(sk);
1293 		break;
1294 
1295 	case SO_DETACH_FILTER:
1296 		ret = sk_detach_filter(sk);
1297 		break;
1298 
1299 	case SO_LOCK_FILTER:
1300 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1301 			ret = -EPERM;
1302 		else
1303 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1304 		break;
1305 
1306 	case SO_PASSSEC:
1307 		if (valbool)
1308 			set_bit(SOCK_PASSSEC, &sock->flags);
1309 		else
1310 			clear_bit(SOCK_PASSSEC, &sock->flags);
1311 		break;
1312 	case SO_MARK:
1313 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1314 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1315 			ret = -EPERM;
1316 			break;
1317 		}
1318 
1319 		__sock_set_mark(sk, val);
1320 		break;
1321 	case SO_RCVMARK:
1322 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1323 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1324 			ret = -EPERM;
1325 			break;
1326 		}
1327 
1328 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1329 		break;
1330 
1331 	case SO_RXQ_OVFL:
1332 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1333 		break;
1334 
1335 	case SO_WIFI_STATUS:
1336 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1337 		break;
1338 
1339 	case SO_PEEK_OFF:
1340 		if (sock->ops->set_peek_off)
1341 			ret = sock->ops->set_peek_off(sk, val);
1342 		else
1343 			ret = -EOPNOTSUPP;
1344 		break;
1345 
1346 	case SO_NOFCS:
1347 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1348 		break;
1349 
1350 	case SO_SELECT_ERR_QUEUE:
1351 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1352 		break;
1353 
1354 #ifdef CONFIG_NET_RX_BUSY_POLL
1355 	case SO_BUSY_POLL:
1356 		/* allow unprivileged users to decrease the value */
1357 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1358 			ret = -EPERM;
1359 		else {
1360 			if (val < 0)
1361 				ret = -EINVAL;
1362 			else
1363 				WRITE_ONCE(sk->sk_ll_usec, val);
1364 		}
1365 		break;
1366 	case SO_PREFER_BUSY_POLL:
1367 		if (valbool && !capable(CAP_NET_ADMIN))
1368 			ret = -EPERM;
1369 		else
1370 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1371 		break;
1372 	case SO_BUSY_POLL_BUDGET:
1373 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1374 			ret = -EPERM;
1375 		} else {
1376 			if (val < 0 || val > U16_MAX)
1377 				ret = -EINVAL;
1378 			else
1379 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1380 		}
1381 		break;
1382 #endif
1383 
1384 	case SO_MAX_PACING_RATE:
1385 		{
1386 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1387 
1388 		if (sizeof(ulval) != sizeof(val) &&
1389 		    optlen >= sizeof(ulval) &&
1390 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1391 			ret = -EFAULT;
1392 			break;
1393 		}
1394 		if (ulval != ~0UL)
1395 			cmpxchg(&sk->sk_pacing_status,
1396 				SK_PACING_NONE,
1397 				SK_PACING_NEEDED);
1398 		sk->sk_max_pacing_rate = ulval;
1399 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1400 		break;
1401 		}
1402 	case SO_INCOMING_CPU:
1403 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1404 		break;
1405 
1406 	case SO_CNX_ADVICE:
1407 		if (val == 1)
1408 			dst_negative_advice(sk);
1409 		break;
1410 
1411 	case SO_ZEROCOPY:
1412 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1413 			if (!(sk_is_tcp(sk) ||
1414 			      (sk->sk_type == SOCK_DGRAM &&
1415 			       sk->sk_protocol == IPPROTO_UDP)))
1416 				ret = -EOPNOTSUPP;
1417 		} else if (sk->sk_family != PF_RDS) {
1418 			ret = -EOPNOTSUPP;
1419 		}
1420 		if (!ret) {
1421 			if (val < 0 || val > 1)
1422 				ret = -EINVAL;
1423 			else
1424 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1425 		}
1426 		break;
1427 
1428 	case SO_TXTIME:
1429 		if (optlen != sizeof(struct sock_txtime)) {
1430 			ret = -EINVAL;
1431 			break;
1432 		} else if (copy_from_sockptr(&sk_txtime, optval,
1433 			   sizeof(struct sock_txtime))) {
1434 			ret = -EFAULT;
1435 			break;
1436 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1437 			ret = -EINVAL;
1438 			break;
1439 		}
1440 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1441 		 * scheduler has enough safe guards.
1442 		 */
1443 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1444 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1445 			ret = -EPERM;
1446 			break;
1447 		}
1448 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1449 		sk->sk_clockid = sk_txtime.clockid;
1450 		sk->sk_txtime_deadline_mode =
1451 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1452 		sk->sk_txtime_report_errors =
1453 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1454 		break;
1455 
1456 	case SO_BINDTOIFINDEX:
1457 		ret = sock_bindtoindex_locked(sk, val);
1458 		break;
1459 
1460 	case SO_BUF_LOCK:
1461 		if (val & ~SOCK_BUF_LOCK_MASK) {
1462 			ret = -EINVAL;
1463 			break;
1464 		}
1465 		sk->sk_userlocks = val | (sk->sk_userlocks &
1466 					  ~SOCK_BUF_LOCK_MASK);
1467 		break;
1468 
1469 	case SO_RESERVE_MEM:
1470 	{
1471 		int delta;
1472 
1473 		if (val < 0) {
1474 			ret = -EINVAL;
1475 			break;
1476 		}
1477 
1478 		delta = val - sk->sk_reserved_mem;
1479 		if (delta < 0)
1480 			sock_release_reserved_memory(sk, -delta);
1481 		else
1482 			ret = sock_reserve_memory(sk, delta);
1483 		break;
1484 	}
1485 
1486 	case SO_TXREHASH:
1487 		if (val < -1 || val > 1) {
1488 			ret = -EINVAL;
1489 			break;
1490 		}
1491 		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1492 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1493 		break;
1494 
1495 	default:
1496 		ret = -ENOPROTOOPT;
1497 		break;
1498 	}
1499 	release_sock(sk);
1500 	return ret;
1501 }
1502 EXPORT_SYMBOL(sock_setsockopt);
1503 
1504 static const struct cred *sk_get_peer_cred(struct sock *sk)
1505 {
1506 	const struct cred *cred;
1507 
1508 	spin_lock(&sk->sk_peer_lock);
1509 	cred = get_cred(sk->sk_peer_cred);
1510 	spin_unlock(&sk->sk_peer_lock);
1511 
1512 	return cred;
1513 }
1514 
1515 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1516 			  struct ucred *ucred)
1517 {
1518 	ucred->pid = pid_vnr(pid);
1519 	ucred->uid = ucred->gid = -1;
1520 	if (cred) {
1521 		struct user_namespace *current_ns = current_user_ns();
1522 
1523 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1524 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1525 	}
1526 }
1527 
1528 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1529 {
1530 	struct user_namespace *user_ns = current_user_ns();
1531 	int i;
1532 
1533 	for (i = 0; i < src->ngroups; i++)
1534 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1535 			return -EFAULT;
1536 
1537 	return 0;
1538 }
1539 
1540 int sock_getsockopt(struct socket *sock, int level, int optname,
1541 		    char __user *optval, int __user *optlen)
1542 {
1543 	struct sock *sk = sock->sk;
1544 
1545 	union {
1546 		int val;
1547 		u64 val64;
1548 		unsigned long ulval;
1549 		struct linger ling;
1550 		struct old_timeval32 tm32;
1551 		struct __kernel_old_timeval tm;
1552 		struct  __kernel_sock_timeval stm;
1553 		struct sock_txtime txtime;
1554 		struct so_timestamping timestamping;
1555 	} v;
1556 
1557 	int lv = sizeof(int);
1558 	int len;
1559 
1560 	if (get_user(len, optlen))
1561 		return -EFAULT;
1562 	if (len < 0)
1563 		return -EINVAL;
1564 
1565 	memset(&v, 0, sizeof(v));
1566 
1567 	switch (optname) {
1568 	case SO_DEBUG:
1569 		v.val = sock_flag(sk, SOCK_DBG);
1570 		break;
1571 
1572 	case SO_DONTROUTE:
1573 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1574 		break;
1575 
1576 	case SO_BROADCAST:
1577 		v.val = sock_flag(sk, SOCK_BROADCAST);
1578 		break;
1579 
1580 	case SO_SNDBUF:
1581 		v.val = sk->sk_sndbuf;
1582 		break;
1583 
1584 	case SO_RCVBUF:
1585 		v.val = sk->sk_rcvbuf;
1586 		break;
1587 
1588 	case SO_REUSEADDR:
1589 		v.val = sk->sk_reuse;
1590 		break;
1591 
1592 	case SO_REUSEPORT:
1593 		v.val = sk->sk_reuseport;
1594 		break;
1595 
1596 	case SO_KEEPALIVE:
1597 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1598 		break;
1599 
1600 	case SO_TYPE:
1601 		v.val = sk->sk_type;
1602 		break;
1603 
1604 	case SO_PROTOCOL:
1605 		v.val = sk->sk_protocol;
1606 		break;
1607 
1608 	case SO_DOMAIN:
1609 		v.val = sk->sk_family;
1610 		break;
1611 
1612 	case SO_ERROR:
1613 		v.val = -sock_error(sk);
1614 		if (v.val == 0)
1615 			v.val = xchg(&sk->sk_err_soft, 0);
1616 		break;
1617 
1618 	case SO_OOBINLINE:
1619 		v.val = sock_flag(sk, SOCK_URGINLINE);
1620 		break;
1621 
1622 	case SO_NO_CHECK:
1623 		v.val = sk->sk_no_check_tx;
1624 		break;
1625 
1626 	case SO_PRIORITY:
1627 		v.val = sk->sk_priority;
1628 		break;
1629 
1630 	case SO_LINGER:
1631 		lv		= sizeof(v.ling);
1632 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1633 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1634 		break;
1635 
1636 	case SO_BSDCOMPAT:
1637 		break;
1638 
1639 	case SO_TIMESTAMP_OLD:
1640 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1641 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1642 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1643 		break;
1644 
1645 	case SO_TIMESTAMPNS_OLD:
1646 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1647 		break;
1648 
1649 	case SO_TIMESTAMP_NEW:
1650 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1651 		break;
1652 
1653 	case SO_TIMESTAMPNS_NEW:
1654 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1655 		break;
1656 
1657 	case SO_TIMESTAMPING_OLD:
1658 		lv = sizeof(v.timestamping);
1659 		v.timestamping.flags = sk->sk_tsflags;
1660 		v.timestamping.bind_phc = sk->sk_bind_phc;
1661 		break;
1662 
1663 	case SO_RCVTIMEO_OLD:
1664 	case SO_RCVTIMEO_NEW:
1665 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1666 		break;
1667 
1668 	case SO_SNDTIMEO_OLD:
1669 	case SO_SNDTIMEO_NEW:
1670 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1671 		break;
1672 
1673 	case SO_RCVLOWAT:
1674 		v.val = sk->sk_rcvlowat;
1675 		break;
1676 
1677 	case SO_SNDLOWAT:
1678 		v.val = 1;
1679 		break;
1680 
1681 	case SO_PASSCRED:
1682 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1683 		break;
1684 
1685 	case SO_PEERCRED:
1686 	{
1687 		struct ucred peercred;
1688 		if (len > sizeof(peercred))
1689 			len = sizeof(peercred);
1690 
1691 		spin_lock(&sk->sk_peer_lock);
1692 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1693 		spin_unlock(&sk->sk_peer_lock);
1694 
1695 		if (copy_to_user(optval, &peercred, len))
1696 			return -EFAULT;
1697 		goto lenout;
1698 	}
1699 
1700 	case SO_PEERGROUPS:
1701 	{
1702 		const struct cred *cred;
1703 		int ret, n;
1704 
1705 		cred = sk_get_peer_cred(sk);
1706 		if (!cred)
1707 			return -ENODATA;
1708 
1709 		n = cred->group_info->ngroups;
1710 		if (len < n * sizeof(gid_t)) {
1711 			len = n * sizeof(gid_t);
1712 			put_cred(cred);
1713 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1714 		}
1715 		len = n * sizeof(gid_t);
1716 
1717 		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1718 		put_cred(cred);
1719 		if (ret)
1720 			return ret;
1721 		goto lenout;
1722 	}
1723 
1724 	case SO_PEERNAME:
1725 	{
1726 		char address[128];
1727 
1728 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1729 		if (lv < 0)
1730 			return -ENOTCONN;
1731 		if (lv < len)
1732 			return -EINVAL;
1733 		if (copy_to_user(optval, address, len))
1734 			return -EFAULT;
1735 		goto lenout;
1736 	}
1737 
1738 	/* Dubious BSD thing... Probably nobody even uses it, but
1739 	 * the UNIX standard wants it for whatever reason... -DaveM
1740 	 */
1741 	case SO_ACCEPTCONN:
1742 		v.val = sk->sk_state == TCP_LISTEN;
1743 		break;
1744 
1745 	case SO_PASSSEC:
1746 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1747 		break;
1748 
1749 	case SO_PEERSEC:
1750 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1751 
1752 	case SO_MARK:
1753 		v.val = sk->sk_mark;
1754 		break;
1755 
1756 	case SO_RCVMARK:
1757 		v.val = sock_flag(sk, SOCK_RCVMARK);
1758 		break;
1759 
1760 	case SO_RXQ_OVFL:
1761 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1762 		break;
1763 
1764 	case SO_WIFI_STATUS:
1765 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1766 		break;
1767 
1768 	case SO_PEEK_OFF:
1769 		if (!sock->ops->set_peek_off)
1770 			return -EOPNOTSUPP;
1771 
1772 		v.val = sk->sk_peek_off;
1773 		break;
1774 	case SO_NOFCS:
1775 		v.val = sock_flag(sk, SOCK_NOFCS);
1776 		break;
1777 
1778 	case SO_BINDTODEVICE:
1779 		return sock_getbindtodevice(sk, optval, optlen, len);
1780 
1781 	case SO_GET_FILTER:
1782 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1783 		if (len < 0)
1784 			return len;
1785 
1786 		goto lenout;
1787 
1788 	case SO_LOCK_FILTER:
1789 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1790 		break;
1791 
1792 	case SO_BPF_EXTENSIONS:
1793 		v.val = bpf_tell_extensions();
1794 		break;
1795 
1796 	case SO_SELECT_ERR_QUEUE:
1797 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1798 		break;
1799 
1800 #ifdef CONFIG_NET_RX_BUSY_POLL
1801 	case SO_BUSY_POLL:
1802 		v.val = sk->sk_ll_usec;
1803 		break;
1804 	case SO_PREFER_BUSY_POLL:
1805 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1806 		break;
1807 #endif
1808 
1809 	case SO_MAX_PACING_RATE:
1810 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1811 			lv = sizeof(v.ulval);
1812 			v.ulval = sk->sk_max_pacing_rate;
1813 		} else {
1814 			/* 32bit version */
1815 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1816 		}
1817 		break;
1818 
1819 	case SO_INCOMING_CPU:
1820 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1821 		break;
1822 
1823 	case SO_MEMINFO:
1824 	{
1825 		u32 meminfo[SK_MEMINFO_VARS];
1826 
1827 		sk_get_meminfo(sk, meminfo);
1828 
1829 		len = min_t(unsigned int, len, sizeof(meminfo));
1830 		if (copy_to_user(optval, &meminfo, len))
1831 			return -EFAULT;
1832 
1833 		goto lenout;
1834 	}
1835 
1836 #ifdef CONFIG_NET_RX_BUSY_POLL
1837 	case SO_INCOMING_NAPI_ID:
1838 		v.val = READ_ONCE(sk->sk_napi_id);
1839 
1840 		/* aggregate non-NAPI IDs down to 0 */
1841 		if (v.val < MIN_NAPI_ID)
1842 			v.val = 0;
1843 
1844 		break;
1845 #endif
1846 
1847 	case SO_COOKIE:
1848 		lv = sizeof(u64);
1849 		if (len < lv)
1850 			return -EINVAL;
1851 		v.val64 = sock_gen_cookie(sk);
1852 		break;
1853 
1854 	case SO_ZEROCOPY:
1855 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1856 		break;
1857 
1858 	case SO_TXTIME:
1859 		lv = sizeof(v.txtime);
1860 		v.txtime.clockid = sk->sk_clockid;
1861 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1862 				  SOF_TXTIME_DEADLINE_MODE : 0;
1863 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1864 				  SOF_TXTIME_REPORT_ERRORS : 0;
1865 		break;
1866 
1867 	case SO_BINDTOIFINDEX:
1868 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1869 		break;
1870 
1871 	case SO_NETNS_COOKIE:
1872 		lv = sizeof(u64);
1873 		if (len != lv)
1874 			return -EINVAL;
1875 		v.val64 = sock_net(sk)->net_cookie;
1876 		break;
1877 
1878 	case SO_BUF_LOCK:
1879 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1880 		break;
1881 
1882 	case SO_RESERVE_MEM:
1883 		v.val = sk->sk_reserved_mem;
1884 		break;
1885 
1886 	case SO_TXREHASH:
1887 		v.val = sk->sk_txrehash;
1888 		break;
1889 
1890 	default:
1891 		/* We implement the SO_SNDLOWAT etc to not be settable
1892 		 * (1003.1g 7).
1893 		 */
1894 		return -ENOPROTOOPT;
1895 	}
1896 
1897 	if (len > lv)
1898 		len = lv;
1899 	if (copy_to_user(optval, &v, len))
1900 		return -EFAULT;
1901 lenout:
1902 	if (put_user(len, optlen))
1903 		return -EFAULT;
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Initialize an sk_lock.
1909  *
1910  * (We also register the sk_lock with the lock validator.)
1911  */
1912 static inline void sock_lock_init(struct sock *sk)
1913 {
1914 	if (sk->sk_kern_sock)
1915 		sock_lock_init_class_and_name(
1916 			sk,
1917 			af_family_kern_slock_key_strings[sk->sk_family],
1918 			af_family_kern_slock_keys + sk->sk_family,
1919 			af_family_kern_key_strings[sk->sk_family],
1920 			af_family_kern_keys + sk->sk_family);
1921 	else
1922 		sock_lock_init_class_and_name(
1923 			sk,
1924 			af_family_slock_key_strings[sk->sk_family],
1925 			af_family_slock_keys + sk->sk_family,
1926 			af_family_key_strings[sk->sk_family],
1927 			af_family_keys + sk->sk_family);
1928 }
1929 
1930 /*
1931  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1932  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1933  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1934  */
1935 static void sock_copy(struct sock *nsk, const struct sock *osk)
1936 {
1937 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1938 #ifdef CONFIG_SECURITY_NETWORK
1939 	void *sptr = nsk->sk_security;
1940 #endif
1941 
1942 	/* If we move sk_tx_queue_mapping out of the private section,
1943 	 * we must check if sk_tx_queue_clear() is called after
1944 	 * sock_copy() in sk_clone_lock().
1945 	 */
1946 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1947 		     offsetof(struct sock, sk_dontcopy_begin) ||
1948 		     offsetof(struct sock, sk_tx_queue_mapping) >=
1949 		     offsetof(struct sock, sk_dontcopy_end));
1950 
1951 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1952 
1953 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1954 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1955 
1956 #ifdef CONFIG_SECURITY_NETWORK
1957 	nsk->sk_security = sptr;
1958 	security_sk_clone(osk, nsk);
1959 #endif
1960 }
1961 
1962 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1963 		int family)
1964 {
1965 	struct sock *sk;
1966 	struct kmem_cache *slab;
1967 
1968 	slab = prot->slab;
1969 	if (slab != NULL) {
1970 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1971 		if (!sk)
1972 			return sk;
1973 		if (want_init_on_alloc(priority))
1974 			sk_prot_clear_nulls(sk, prot->obj_size);
1975 	} else
1976 		sk = kmalloc(prot->obj_size, priority);
1977 
1978 	if (sk != NULL) {
1979 		if (security_sk_alloc(sk, family, priority))
1980 			goto out_free;
1981 
1982 		if (!try_module_get(prot->owner))
1983 			goto out_free_sec;
1984 	}
1985 
1986 	return sk;
1987 
1988 out_free_sec:
1989 	security_sk_free(sk);
1990 out_free:
1991 	if (slab != NULL)
1992 		kmem_cache_free(slab, sk);
1993 	else
1994 		kfree(sk);
1995 	return NULL;
1996 }
1997 
1998 static void sk_prot_free(struct proto *prot, struct sock *sk)
1999 {
2000 	struct kmem_cache *slab;
2001 	struct module *owner;
2002 
2003 	owner = prot->owner;
2004 	slab = prot->slab;
2005 
2006 	cgroup_sk_free(&sk->sk_cgrp_data);
2007 	mem_cgroup_sk_free(sk);
2008 	security_sk_free(sk);
2009 	if (slab != NULL)
2010 		kmem_cache_free(slab, sk);
2011 	else
2012 		kfree(sk);
2013 	module_put(owner);
2014 }
2015 
2016 /**
2017  *	sk_alloc - All socket objects are allocated here
2018  *	@net: the applicable net namespace
2019  *	@family: protocol family
2020  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2021  *	@prot: struct proto associated with this new sock instance
2022  *	@kern: is this to be a kernel socket?
2023  */
2024 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2025 		      struct proto *prot, int kern)
2026 {
2027 	struct sock *sk;
2028 
2029 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2030 	if (sk) {
2031 		sk->sk_family = family;
2032 		/*
2033 		 * See comment in struct sock definition to understand
2034 		 * why we need sk_prot_creator -acme
2035 		 */
2036 		sk->sk_prot = sk->sk_prot_creator = prot;
2037 		sk->sk_kern_sock = kern;
2038 		sock_lock_init(sk);
2039 		sk->sk_net_refcnt = kern ? 0 : 1;
2040 		if (likely(sk->sk_net_refcnt)) {
2041 			get_net_track(net, &sk->ns_tracker, priority);
2042 			sock_inuse_add(net, 1);
2043 		}
2044 
2045 		sock_net_set(sk, net);
2046 		refcount_set(&sk->sk_wmem_alloc, 1);
2047 
2048 		mem_cgroup_sk_alloc(sk);
2049 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2050 		sock_update_classid(&sk->sk_cgrp_data);
2051 		sock_update_netprioidx(&sk->sk_cgrp_data);
2052 		sk_tx_queue_clear(sk);
2053 	}
2054 
2055 	return sk;
2056 }
2057 EXPORT_SYMBOL(sk_alloc);
2058 
2059 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2060  * grace period. This is the case for UDP sockets and TCP listeners.
2061  */
2062 static void __sk_destruct(struct rcu_head *head)
2063 {
2064 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2065 	struct sk_filter *filter;
2066 
2067 	if (sk->sk_destruct)
2068 		sk->sk_destruct(sk);
2069 
2070 	filter = rcu_dereference_check(sk->sk_filter,
2071 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2072 	if (filter) {
2073 		sk_filter_uncharge(sk, filter);
2074 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2075 	}
2076 
2077 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2078 
2079 #ifdef CONFIG_BPF_SYSCALL
2080 	bpf_sk_storage_free(sk);
2081 #endif
2082 
2083 	if (atomic_read(&sk->sk_omem_alloc))
2084 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2085 			 __func__, atomic_read(&sk->sk_omem_alloc));
2086 
2087 	if (sk->sk_frag.page) {
2088 		put_page(sk->sk_frag.page);
2089 		sk->sk_frag.page = NULL;
2090 	}
2091 
2092 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2093 	put_cred(sk->sk_peer_cred);
2094 	put_pid(sk->sk_peer_pid);
2095 
2096 	if (likely(sk->sk_net_refcnt))
2097 		put_net_track(sock_net(sk), &sk->ns_tracker);
2098 	sk_prot_free(sk->sk_prot_creator, sk);
2099 }
2100 
2101 void sk_destruct(struct sock *sk)
2102 {
2103 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2104 
2105 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2106 		reuseport_detach_sock(sk);
2107 		use_call_rcu = true;
2108 	}
2109 
2110 	if (use_call_rcu)
2111 		call_rcu(&sk->sk_rcu, __sk_destruct);
2112 	else
2113 		__sk_destruct(&sk->sk_rcu);
2114 }
2115 
2116 static void __sk_free(struct sock *sk)
2117 {
2118 	if (likely(sk->sk_net_refcnt))
2119 		sock_inuse_add(sock_net(sk), -1);
2120 
2121 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2122 		sock_diag_broadcast_destroy(sk);
2123 	else
2124 		sk_destruct(sk);
2125 }
2126 
2127 void sk_free(struct sock *sk)
2128 {
2129 	/*
2130 	 * We subtract one from sk_wmem_alloc and can know if
2131 	 * some packets are still in some tx queue.
2132 	 * If not null, sock_wfree() will call __sk_free(sk) later
2133 	 */
2134 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2135 		__sk_free(sk);
2136 }
2137 EXPORT_SYMBOL(sk_free);
2138 
2139 static void sk_init_common(struct sock *sk)
2140 {
2141 	skb_queue_head_init(&sk->sk_receive_queue);
2142 	skb_queue_head_init(&sk->sk_write_queue);
2143 	skb_queue_head_init(&sk->sk_error_queue);
2144 
2145 	rwlock_init(&sk->sk_callback_lock);
2146 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2147 			af_rlock_keys + sk->sk_family,
2148 			af_family_rlock_key_strings[sk->sk_family]);
2149 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2150 			af_wlock_keys + sk->sk_family,
2151 			af_family_wlock_key_strings[sk->sk_family]);
2152 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2153 			af_elock_keys + sk->sk_family,
2154 			af_family_elock_key_strings[sk->sk_family]);
2155 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2156 			af_callback_keys + sk->sk_family,
2157 			af_family_clock_key_strings[sk->sk_family]);
2158 }
2159 
2160 /**
2161  *	sk_clone_lock - clone a socket, and lock its clone
2162  *	@sk: the socket to clone
2163  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2164  *
2165  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2166  */
2167 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2168 {
2169 	struct proto *prot = READ_ONCE(sk->sk_prot);
2170 	struct sk_filter *filter;
2171 	bool is_charged = true;
2172 	struct sock *newsk;
2173 
2174 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2175 	if (!newsk)
2176 		goto out;
2177 
2178 	sock_copy(newsk, sk);
2179 
2180 	newsk->sk_prot_creator = prot;
2181 
2182 	/* SANITY */
2183 	if (likely(newsk->sk_net_refcnt)) {
2184 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2185 		sock_inuse_add(sock_net(newsk), 1);
2186 	}
2187 	sk_node_init(&newsk->sk_node);
2188 	sock_lock_init(newsk);
2189 	bh_lock_sock(newsk);
2190 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2191 	newsk->sk_backlog.len = 0;
2192 
2193 	atomic_set(&newsk->sk_rmem_alloc, 0);
2194 
2195 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2196 	refcount_set(&newsk->sk_wmem_alloc, 1);
2197 
2198 	atomic_set(&newsk->sk_omem_alloc, 0);
2199 	sk_init_common(newsk);
2200 
2201 	newsk->sk_dst_cache	= NULL;
2202 	newsk->sk_dst_pending_confirm = 0;
2203 	newsk->sk_wmem_queued	= 0;
2204 	newsk->sk_forward_alloc = 0;
2205 	newsk->sk_reserved_mem  = 0;
2206 	atomic_set(&newsk->sk_drops, 0);
2207 	newsk->sk_send_head	= NULL;
2208 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2209 	atomic_set(&newsk->sk_zckey, 0);
2210 
2211 	sock_reset_flag(newsk, SOCK_DONE);
2212 
2213 	/* sk->sk_memcg will be populated at accept() time */
2214 	newsk->sk_memcg = NULL;
2215 
2216 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2217 
2218 	rcu_read_lock();
2219 	filter = rcu_dereference(sk->sk_filter);
2220 	if (filter != NULL)
2221 		/* though it's an empty new sock, the charging may fail
2222 		 * if sysctl_optmem_max was changed between creation of
2223 		 * original socket and cloning
2224 		 */
2225 		is_charged = sk_filter_charge(newsk, filter);
2226 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2227 	rcu_read_unlock();
2228 
2229 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2230 		/* We need to make sure that we don't uncharge the new
2231 		 * socket if we couldn't charge it in the first place
2232 		 * as otherwise we uncharge the parent's filter.
2233 		 */
2234 		if (!is_charged)
2235 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2236 		sk_free_unlock_clone(newsk);
2237 		newsk = NULL;
2238 		goto out;
2239 	}
2240 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2241 
2242 	if (bpf_sk_storage_clone(sk, newsk)) {
2243 		sk_free_unlock_clone(newsk);
2244 		newsk = NULL;
2245 		goto out;
2246 	}
2247 
2248 	/* Clear sk_user_data if parent had the pointer tagged
2249 	 * as not suitable for copying when cloning.
2250 	 */
2251 	if (sk_user_data_is_nocopy(newsk))
2252 		newsk->sk_user_data = NULL;
2253 
2254 	newsk->sk_err	   = 0;
2255 	newsk->sk_err_soft = 0;
2256 	newsk->sk_priority = 0;
2257 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2258 
2259 	/* Before updating sk_refcnt, we must commit prior changes to memory
2260 	 * (Documentation/RCU/rculist_nulls.rst for details)
2261 	 */
2262 	smp_wmb();
2263 	refcount_set(&newsk->sk_refcnt, 2);
2264 
2265 	/* Increment the counter in the same struct proto as the master
2266 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2267 	 * is the same as sk->sk_prot->socks, as this field was copied
2268 	 * with memcpy).
2269 	 *
2270 	 * This _changes_ the previous behaviour, where
2271 	 * tcp_create_openreq_child always was incrementing the
2272 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2273 	 * to be taken into account in all callers. -acme
2274 	 */
2275 	sk_refcnt_debug_inc(newsk);
2276 	sk_set_socket(newsk, NULL);
2277 	sk_tx_queue_clear(newsk);
2278 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2279 
2280 	if (newsk->sk_prot->sockets_allocated)
2281 		sk_sockets_allocated_inc(newsk);
2282 
2283 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2284 		net_enable_timestamp();
2285 out:
2286 	return newsk;
2287 }
2288 EXPORT_SYMBOL_GPL(sk_clone_lock);
2289 
2290 void sk_free_unlock_clone(struct sock *sk)
2291 {
2292 	/* It is still raw copy of parent, so invalidate
2293 	 * destructor and make plain sk_free() */
2294 	sk->sk_destruct = NULL;
2295 	bh_unlock_sock(sk);
2296 	sk_free(sk);
2297 }
2298 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2299 
2300 static void sk_trim_gso_size(struct sock *sk)
2301 {
2302 	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2303 		return;
2304 #if IS_ENABLED(CONFIG_IPV6)
2305 	if (sk->sk_family == AF_INET6 &&
2306 	    sk_is_tcp(sk) &&
2307 	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2308 		return;
2309 #endif
2310 	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2311 }
2312 
2313 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2314 {
2315 	u32 max_segs = 1;
2316 
2317 	sk_dst_set(sk, dst);
2318 	sk->sk_route_caps = dst->dev->features;
2319 	if (sk_is_tcp(sk))
2320 		sk->sk_route_caps |= NETIF_F_GSO;
2321 	if (sk->sk_route_caps & NETIF_F_GSO)
2322 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2323 	if (unlikely(sk->sk_gso_disabled))
2324 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2325 	if (sk_can_gso(sk)) {
2326 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2327 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2328 		} else {
2329 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2330 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2331 			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2332 			sk_trim_gso_size(sk);
2333 			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2334 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2335 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2336 		}
2337 	}
2338 	sk->sk_gso_max_segs = max_segs;
2339 }
2340 EXPORT_SYMBOL_GPL(sk_setup_caps);
2341 
2342 /*
2343  *	Simple resource managers for sockets.
2344  */
2345 
2346 
2347 /*
2348  * Write buffer destructor automatically called from kfree_skb.
2349  */
2350 void sock_wfree(struct sk_buff *skb)
2351 {
2352 	struct sock *sk = skb->sk;
2353 	unsigned int len = skb->truesize;
2354 	bool free;
2355 
2356 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2357 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2358 		    sk->sk_write_space == sock_def_write_space) {
2359 			rcu_read_lock();
2360 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2361 			sock_def_write_space_wfree(sk);
2362 			rcu_read_unlock();
2363 			if (unlikely(free))
2364 				__sk_free(sk);
2365 			return;
2366 		}
2367 
2368 		/*
2369 		 * Keep a reference on sk_wmem_alloc, this will be released
2370 		 * after sk_write_space() call
2371 		 */
2372 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2373 		sk->sk_write_space(sk);
2374 		len = 1;
2375 	}
2376 	/*
2377 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2378 	 * could not do because of in-flight packets
2379 	 */
2380 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2381 		__sk_free(sk);
2382 }
2383 EXPORT_SYMBOL(sock_wfree);
2384 
2385 /* This variant of sock_wfree() is used by TCP,
2386  * since it sets SOCK_USE_WRITE_QUEUE.
2387  */
2388 void __sock_wfree(struct sk_buff *skb)
2389 {
2390 	struct sock *sk = skb->sk;
2391 
2392 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2393 		__sk_free(sk);
2394 }
2395 
2396 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2397 {
2398 	skb_orphan(skb);
2399 	skb->sk = sk;
2400 #ifdef CONFIG_INET
2401 	if (unlikely(!sk_fullsock(sk))) {
2402 		skb->destructor = sock_edemux;
2403 		sock_hold(sk);
2404 		return;
2405 	}
2406 #endif
2407 	skb->destructor = sock_wfree;
2408 	skb_set_hash_from_sk(skb, sk);
2409 	/*
2410 	 * We used to take a refcount on sk, but following operation
2411 	 * is enough to guarantee sk_free() wont free this sock until
2412 	 * all in-flight packets are completed
2413 	 */
2414 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2415 }
2416 EXPORT_SYMBOL(skb_set_owner_w);
2417 
2418 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2419 {
2420 #ifdef CONFIG_TLS_DEVICE
2421 	/* Drivers depend on in-order delivery for crypto offload,
2422 	 * partial orphan breaks out-of-order-OK logic.
2423 	 */
2424 	if (skb->decrypted)
2425 		return false;
2426 #endif
2427 	return (skb->destructor == sock_wfree ||
2428 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2429 }
2430 
2431 /* This helper is used by netem, as it can hold packets in its
2432  * delay queue. We want to allow the owner socket to send more
2433  * packets, as if they were already TX completed by a typical driver.
2434  * But we also want to keep skb->sk set because some packet schedulers
2435  * rely on it (sch_fq for example).
2436  */
2437 void skb_orphan_partial(struct sk_buff *skb)
2438 {
2439 	if (skb_is_tcp_pure_ack(skb))
2440 		return;
2441 
2442 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2443 		return;
2444 
2445 	skb_orphan(skb);
2446 }
2447 EXPORT_SYMBOL(skb_orphan_partial);
2448 
2449 /*
2450  * Read buffer destructor automatically called from kfree_skb.
2451  */
2452 void sock_rfree(struct sk_buff *skb)
2453 {
2454 	struct sock *sk = skb->sk;
2455 	unsigned int len = skb->truesize;
2456 
2457 	atomic_sub(len, &sk->sk_rmem_alloc);
2458 	sk_mem_uncharge(sk, len);
2459 }
2460 EXPORT_SYMBOL(sock_rfree);
2461 
2462 /*
2463  * Buffer destructor for skbs that are not used directly in read or write
2464  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2465  */
2466 void sock_efree(struct sk_buff *skb)
2467 {
2468 	sock_put(skb->sk);
2469 }
2470 EXPORT_SYMBOL(sock_efree);
2471 
2472 /* Buffer destructor for prefetch/receive path where reference count may
2473  * not be held, e.g. for listen sockets.
2474  */
2475 #ifdef CONFIG_INET
2476 void sock_pfree(struct sk_buff *skb)
2477 {
2478 	if (sk_is_refcounted(skb->sk))
2479 		sock_gen_put(skb->sk);
2480 }
2481 EXPORT_SYMBOL(sock_pfree);
2482 #endif /* CONFIG_INET */
2483 
2484 kuid_t sock_i_uid(struct sock *sk)
2485 {
2486 	kuid_t uid;
2487 
2488 	read_lock_bh(&sk->sk_callback_lock);
2489 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2490 	read_unlock_bh(&sk->sk_callback_lock);
2491 	return uid;
2492 }
2493 EXPORT_SYMBOL(sock_i_uid);
2494 
2495 unsigned long sock_i_ino(struct sock *sk)
2496 {
2497 	unsigned long ino;
2498 
2499 	read_lock_bh(&sk->sk_callback_lock);
2500 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2501 	read_unlock_bh(&sk->sk_callback_lock);
2502 	return ino;
2503 }
2504 EXPORT_SYMBOL(sock_i_ino);
2505 
2506 /*
2507  * Allocate a skb from the socket's send buffer.
2508  */
2509 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2510 			     gfp_t priority)
2511 {
2512 	if (force ||
2513 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2514 		struct sk_buff *skb = alloc_skb(size, priority);
2515 
2516 		if (skb) {
2517 			skb_set_owner_w(skb, sk);
2518 			return skb;
2519 		}
2520 	}
2521 	return NULL;
2522 }
2523 EXPORT_SYMBOL(sock_wmalloc);
2524 
2525 static void sock_ofree(struct sk_buff *skb)
2526 {
2527 	struct sock *sk = skb->sk;
2528 
2529 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2530 }
2531 
2532 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2533 			     gfp_t priority)
2534 {
2535 	struct sk_buff *skb;
2536 
2537 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2538 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2539 	    sysctl_optmem_max)
2540 		return NULL;
2541 
2542 	skb = alloc_skb(size, priority);
2543 	if (!skb)
2544 		return NULL;
2545 
2546 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2547 	skb->sk = sk;
2548 	skb->destructor = sock_ofree;
2549 	return skb;
2550 }
2551 
2552 /*
2553  * Allocate a memory block from the socket's option memory buffer.
2554  */
2555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2556 {
2557 	if ((unsigned int)size <= sysctl_optmem_max &&
2558 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2559 		void *mem;
2560 		/* First do the add, to avoid the race if kmalloc
2561 		 * might sleep.
2562 		 */
2563 		atomic_add(size, &sk->sk_omem_alloc);
2564 		mem = kmalloc(size, priority);
2565 		if (mem)
2566 			return mem;
2567 		atomic_sub(size, &sk->sk_omem_alloc);
2568 	}
2569 	return NULL;
2570 }
2571 EXPORT_SYMBOL(sock_kmalloc);
2572 
2573 /* Free an option memory block. Note, we actually want the inline
2574  * here as this allows gcc to detect the nullify and fold away the
2575  * condition entirely.
2576  */
2577 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2578 				  const bool nullify)
2579 {
2580 	if (WARN_ON_ONCE(!mem))
2581 		return;
2582 	if (nullify)
2583 		kfree_sensitive(mem);
2584 	else
2585 		kfree(mem);
2586 	atomic_sub(size, &sk->sk_omem_alloc);
2587 }
2588 
2589 void sock_kfree_s(struct sock *sk, void *mem, int size)
2590 {
2591 	__sock_kfree_s(sk, mem, size, false);
2592 }
2593 EXPORT_SYMBOL(sock_kfree_s);
2594 
2595 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2596 {
2597 	__sock_kfree_s(sk, mem, size, true);
2598 }
2599 EXPORT_SYMBOL(sock_kzfree_s);
2600 
2601 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2602    I think, these locks should be removed for datagram sockets.
2603  */
2604 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2605 {
2606 	DEFINE_WAIT(wait);
2607 
2608 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2609 	for (;;) {
2610 		if (!timeo)
2611 			break;
2612 		if (signal_pending(current))
2613 			break;
2614 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2615 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2616 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2617 			break;
2618 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2619 			break;
2620 		if (sk->sk_err)
2621 			break;
2622 		timeo = schedule_timeout(timeo);
2623 	}
2624 	finish_wait(sk_sleep(sk), &wait);
2625 	return timeo;
2626 }
2627 
2628 
2629 /*
2630  *	Generic send/receive buffer handlers
2631  */
2632 
2633 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2634 				     unsigned long data_len, int noblock,
2635 				     int *errcode, int max_page_order)
2636 {
2637 	struct sk_buff *skb;
2638 	long timeo;
2639 	int err;
2640 
2641 	timeo = sock_sndtimeo(sk, noblock);
2642 	for (;;) {
2643 		err = sock_error(sk);
2644 		if (err != 0)
2645 			goto failure;
2646 
2647 		err = -EPIPE;
2648 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2649 			goto failure;
2650 
2651 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2652 			break;
2653 
2654 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2655 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2656 		err = -EAGAIN;
2657 		if (!timeo)
2658 			goto failure;
2659 		if (signal_pending(current))
2660 			goto interrupted;
2661 		timeo = sock_wait_for_wmem(sk, timeo);
2662 	}
2663 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2664 				   errcode, sk->sk_allocation);
2665 	if (skb)
2666 		skb_set_owner_w(skb, sk);
2667 	return skb;
2668 
2669 interrupted:
2670 	err = sock_intr_errno(timeo);
2671 failure:
2672 	*errcode = err;
2673 	return NULL;
2674 }
2675 EXPORT_SYMBOL(sock_alloc_send_pskb);
2676 
2677 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2678 		     struct sockcm_cookie *sockc)
2679 {
2680 	u32 tsflags;
2681 
2682 	switch (cmsg->cmsg_type) {
2683 	case SO_MARK:
2684 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2685 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2686 			return -EPERM;
2687 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2688 			return -EINVAL;
2689 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2690 		break;
2691 	case SO_TIMESTAMPING_OLD:
2692 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2693 			return -EINVAL;
2694 
2695 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2696 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2697 			return -EINVAL;
2698 
2699 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2700 		sockc->tsflags |= tsflags;
2701 		break;
2702 	case SCM_TXTIME:
2703 		if (!sock_flag(sk, SOCK_TXTIME))
2704 			return -EINVAL;
2705 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2706 			return -EINVAL;
2707 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2708 		break;
2709 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2710 	case SCM_RIGHTS:
2711 	case SCM_CREDENTIALS:
2712 		break;
2713 	default:
2714 		return -EINVAL;
2715 	}
2716 	return 0;
2717 }
2718 EXPORT_SYMBOL(__sock_cmsg_send);
2719 
2720 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2721 		   struct sockcm_cookie *sockc)
2722 {
2723 	struct cmsghdr *cmsg;
2724 	int ret;
2725 
2726 	for_each_cmsghdr(cmsg, msg) {
2727 		if (!CMSG_OK(msg, cmsg))
2728 			return -EINVAL;
2729 		if (cmsg->cmsg_level != SOL_SOCKET)
2730 			continue;
2731 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 	return 0;
2736 }
2737 EXPORT_SYMBOL(sock_cmsg_send);
2738 
2739 static void sk_enter_memory_pressure(struct sock *sk)
2740 {
2741 	if (!sk->sk_prot->enter_memory_pressure)
2742 		return;
2743 
2744 	sk->sk_prot->enter_memory_pressure(sk);
2745 }
2746 
2747 static void sk_leave_memory_pressure(struct sock *sk)
2748 {
2749 	if (sk->sk_prot->leave_memory_pressure) {
2750 		sk->sk_prot->leave_memory_pressure(sk);
2751 	} else {
2752 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2753 
2754 		if (memory_pressure && READ_ONCE(*memory_pressure))
2755 			WRITE_ONCE(*memory_pressure, 0);
2756 	}
2757 }
2758 
2759 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2760 
2761 /**
2762  * skb_page_frag_refill - check that a page_frag contains enough room
2763  * @sz: minimum size of the fragment we want to get
2764  * @pfrag: pointer to page_frag
2765  * @gfp: priority for memory allocation
2766  *
2767  * Note: While this allocator tries to use high order pages, there is
2768  * no guarantee that allocations succeed. Therefore, @sz MUST be
2769  * less or equal than PAGE_SIZE.
2770  */
2771 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2772 {
2773 	if (pfrag->page) {
2774 		if (page_ref_count(pfrag->page) == 1) {
2775 			pfrag->offset = 0;
2776 			return true;
2777 		}
2778 		if (pfrag->offset + sz <= pfrag->size)
2779 			return true;
2780 		put_page(pfrag->page);
2781 	}
2782 
2783 	pfrag->offset = 0;
2784 	if (SKB_FRAG_PAGE_ORDER &&
2785 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2786 		/* Avoid direct reclaim but allow kswapd to wake */
2787 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2788 					  __GFP_COMP | __GFP_NOWARN |
2789 					  __GFP_NORETRY,
2790 					  SKB_FRAG_PAGE_ORDER);
2791 		if (likely(pfrag->page)) {
2792 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2793 			return true;
2794 		}
2795 	}
2796 	pfrag->page = alloc_page(gfp);
2797 	if (likely(pfrag->page)) {
2798 		pfrag->size = PAGE_SIZE;
2799 		return true;
2800 	}
2801 	return false;
2802 }
2803 EXPORT_SYMBOL(skb_page_frag_refill);
2804 
2805 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2806 {
2807 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2808 		return true;
2809 
2810 	sk_enter_memory_pressure(sk);
2811 	sk_stream_moderate_sndbuf(sk);
2812 	return false;
2813 }
2814 EXPORT_SYMBOL(sk_page_frag_refill);
2815 
2816 void __lock_sock(struct sock *sk)
2817 	__releases(&sk->sk_lock.slock)
2818 	__acquires(&sk->sk_lock.slock)
2819 {
2820 	DEFINE_WAIT(wait);
2821 
2822 	for (;;) {
2823 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2824 					TASK_UNINTERRUPTIBLE);
2825 		spin_unlock_bh(&sk->sk_lock.slock);
2826 		schedule();
2827 		spin_lock_bh(&sk->sk_lock.slock);
2828 		if (!sock_owned_by_user(sk))
2829 			break;
2830 	}
2831 	finish_wait(&sk->sk_lock.wq, &wait);
2832 }
2833 
2834 void __release_sock(struct sock *sk)
2835 	__releases(&sk->sk_lock.slock)
2836 	__acquires(&sk->sk_lock.slock)
2837 {
2838 	struct sk_buff *skb, *next;
2839 
2840 	while ((skb = sk->sk_backlog.head) != NULL) {
2841 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2842 
2843 		spin_unlock_bh(&sk->sk_lock.slock);
2844 
2845 		do {
2846 			next = skb->next;
2847 			prefetch(next);
2848 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2849 			skb_mark_not_on_list(skb);
2850 			sk_backlog_rcv(sk, skb);
2851 
2852 			cond_resched();
2853 
2854 			skb = next;
2855 		} while (skb != NULL);
2856 
2857 		spin_lock_bh(&sk->sk_lock.slock);
2858 	}
2859 
2860 	/*
2861 	 * Doing the zeroing here guarantee we can not loop forever
2862 	 * while a wild producer attempts to flood us.
2863 	 */
2864 	sk->sk_backlog.len = 0;
2865 }
2866 
2867 void __sk_flush_backlog(struct sock *sk)
2868 {
2869 	spin_lock_bh(&sk->sk_lock.slock);
2870 	__release_sock(sk);
2871 	spin_unlock_bh(&sk->sk_lock.slock);
2872 }
2873 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2874 
2875 /**
2876  * sk_wait_data - wait for data to arrive at sk_receive_queue
2877  * @sk:    sock to wait on
2878  * @timeo: for how long
2879  * @skb:   last skb seen on sk_receive_queue
2880  *
2881  * Now socket state including sk->sk_err is changed only under lock,
2882  * hence we may omit checks after joining wait queue.
2883  * We check receive queue before schedule() only as optimization;
2884  * it is very likely that release_sock() added new data.
2885  */
2886 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2887 {
2888 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2889 	int rc;
2890 
2891 	add_wait_queue(sk_sleep(sk), &wait);
2892 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2893 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2894 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2895 	remove_wait_queue(sk_sleep(sk), &wait);
2896 	return rc;
2897 }
2898 EXPORT_SYMBOL(sk_wait_data);
2899 
2900 /**
2901  *	__sk_mem_raise_allocated - increase memory_allocated
2902  *	@sk: socket
2903  *	@size: memory size to allocate
2904  *	@amt: pages to allocate
2905  *	@kind: allocation type
2906  *
2907  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2908  */
2909 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2910 {
2911 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2912 	struct proto *prot = sk->sk_prot;
2913 	bool charged = true;
2914 	long allocated;
2915 
2916 	sk_memory_allocated_add(sk, amt);
2917 	allocated = sk_memory_allocated(sk);
2918 	if (memcg_charge &&
2919 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2920 						gfp_memcg_charge())))
2921 		goto suppress_allocation;
2922 
2923 	/* Under limit. */
2924 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2925 		sk_leave_memory_pressure(sk);
2926 		return 1;
2927 	}
2928 
2929 	/* Under pressure. */
2930 	if (allocated > sk_prot_mem_limits(sk, 1))
2931 		sk_enter_memory_pressure(sk);
2932 
2933 	/* Over hard limit. */
2934 	if (allocated > sk_prot_mem_limits(sk, 2))
2935 		goto suppress_allocation;
2936 
2937 	/* guarantee minimum buffer size under pressure */
2938 	if (kind == SK_MEM_RECV) {
2939 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2940 			return 1;
2941 
2942 	} else { /* SK_MEM_SEND */
2943 		int wmem0 = sk_get_wmem0(sk, prot);
2944 
2945 		if (sk->sk_type == SOCK_STREAM) {
2946 			if (sk->sk_wmem_queued < wmem0)
2947 				return 1;
2948 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2949 				return 1;
2950 		}
2951 	}
2952 
2953 	if (sk_has_memory_pressure(sk)) {
2954 		u64 alloc;
2955 
2956 		if (!sk_under_memory_pressure(sk))
2957 			return 1;
2958 		alloc = sk_sockets_allocated_read_positive(sk);
2959 		if (sk_prot_mem_limits(sk, 2) > alloc *
2960 		    sk_mem_pages(sk->sk_wmem_queued +
2961 				 atomic_read(&sk->sk_rmem_alloc) +
2962 				 sk->sk_forward_alloc))
2963 			return 1;
2964 	}
2965 
2966 suppress_allocation:
2967 
2968 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2969 		sk_stream_moderate_sndbuf(sk);
2970 
2971 		/* Fail only if socket is _under_ its sndbuf.
2972 		 * In this case we cannot block, so that we have to fail.
2973 		 */
2974 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
2975 			/* Force charge with __GFP_NOFAIL */
2976 			if (memcg_charge && !charged) {
2977 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2978 					gfp_memcg_charge() | __GFP_NOFAIL);
2979 			}
2980 			return 1;
2981 		}
2982 	}
2983 
2984 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2985 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2986 
2987 	sk_memory_allocated_sub(sk, amt);
2988 
2989 	if (memcg_charge && charged)
2990 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2991 
2992 	return 0;
2993 }
2994 
2995 /**
2996  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2997  *	@sk: socket
2998  *	@size: memory size to allocate
2999  *	@kind: allocation type
3000  *
3001  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3002  *	rmem allocation. This function assumes that protocols which have
3003  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3004  */
3005 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3006 {
3007 	int ret, amt = sk_mem_pages(size);
3008 
3009 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3010 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3011 	if (!ret)
3012 		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL(__sk_mem_schedule);
3016 
3017 /**
3018  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3019  *	@sk: socket
3020  *	@amount: number of quanta
3021  *
3022  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3023  */
3024 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3025 {
3026 	sk_memory_allocated_sub(sk, amount);
3027 
3028 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3029 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3030 
3031 	if (sk_under_memory_pressure(sk) &&
3032 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3033 		sk_leave_memory_pressure(sk);
3034 }
3035 
3036 /**
3037  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3038  *	@sk: socket
3039  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3040  */
3041 void __sk_mem_reclaim(struct sock *sk, int amount)
3042 {
3043 	amount >>= PAGE_SHIFT;
3044 	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3045 	__sk_mem_reduce_allocated(sk, amount);
3046 }
3047 EXPORT_SYMBOL(__sk_mem_reclaim);
3048 
3049 int sk_set_peek_off(struct sock *sk, int val)
3050 {
3051 	sk->sk_peek_off = val;
3052 	return 0;
3053 }
3054 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3055 
3056 /*
3057  * Set of default routines for initialising struct proto_ops when
3058  * the protocol does not support a particular function. In certain
3059  * cases where it makes no sense for a protocol to have a "do nothing"
3060  * function, some default processing is provided.
3061  */
3062 
3063 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3064 {
3065 	return -EOPNOTSUPP;
3066 }
3067 EXPORT_SYMBOL(sock_no_bind);
3068 
3069 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3070 		    int len, int flags)
3071 {
3072 	return -EOPNOTSUPP;
3073 }
3074 EXPORT_SYMBOL(sock_no_connect);
3075 
3076 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3077 {
3078 	return -EOPNOTSUPP;
3079 }
3080 EXPORT_SYMBOL(sock_no_socketpair);
3081 
3082 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3083 		   bool kern)
3084 {
3085 	return -EOPNOTSUPP;
3086 }
3087 EXPORT_SYMBOL(sock_no_accept);
3088 
3089 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3090 		    int peer)
3091 {
3092 	return -EOPNOTSUPP;
3093 }
3094 EXPORT_SYMBOL(sock_no_getname);
3095 
3096 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3097 {
3098 	return -EOPNOTSUPP;
3099 }
3100 EXPORT_SYMBOL(sock_no_ioctl);
3101 
3102 int sock_no_listen(struct socket *sock, int backlog)
3103 {
3104 	return -EOPNOTSUPP;
3105 }
3106 EXPORT_SYMBOL(sock_no_listen);
3107 
3108 int sock_no_shutdown(struct socket *sock, int how)
3109 {
3110 	return -EOPNOTSUPP;
3111 }
3112 EXPORT_SYMBOL(sock_no_shutdown);
3113 
3114 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3115 {
3116 	return -EOPNOTSUPP;
3117 }
3118 EXPORT_SYMBOL(sock_no_sendmsg);
3119 
3120 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3121 {
3122 	return -EOPNOTSUPP;
3123 }
3124 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3125 
3126 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3127 		    int flags)
3128 {
3129 	return -EOPNOTSUPP;
3130 }
3131 EXPORT_SYMBOL(sock_no_recvmsg);
3132 
3133 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3134 {
3135 	/* Mirror missing mmap method error code */
3136 	return -ENODEV;
3137 }
3138 EXPORT_SYMBOL(sock_no_mmap);
3139 
3140 /*
3141  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3142  * various sock-based usage counts.
3143  */
3144 void __receive_sock(struct file *file)
3145 {
3146 	struct socket *sock;
3147 
3148 	sock = sock_from_file(file);
3149 	if (sock) {
3150 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3151 		sock_update_classid(&sock->sk->sk_cgrp_data);
3152 	}
3153 }
3154 
3155 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3156 {
3157 	ssize_t res;
3158 	struct msghdr msg = {.msg_flags = flags};
3159 	struct kvec iov;
3160 	char *kaddr = kmap(page);
3161 	iov.iov_base = kaddr + offset;
3162 	iov.iov_len = size;
3163 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3164 	kunmap(page);
3165 	return res;
3166 }
3167 EXPORT_SYMBOL(sock_no_sendpage);
3168 
3169 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3170 				int offset, size_t size, int flags)
3171 {
3172 	ssize_t res;
3173 	struct msghdr msg = {.msg_flags = flags};
3174 	struct kvec iov;
3175 	char *kaddr = kmap(page);
3176 
3177 	iov.iov_base = kaddr + offset;
3178 	iov.iov_len = size;
3179 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3180 	kunmap(page);
3181 	return res;
3182 }
3183 EXPORT_SYMBOL(sock_no_sendpage_locked);
3184 
3185 /*
3186  *	Default Socket Callbacks
3187  */
3188 
3189 static void sock_def_wakeup(struct sock *sk)
3190 {
3191 	struct socket_wq *wq;
3192 
3193 	rcu_read_lock();
3194 	wq = rcu_dereference(sk->sk_wq);
3195 	if (skwq_has_sleeper(wq))
3196 		wake_up_interruptible_all(&wq->wait);
3197 	rcu_read_unlock();
3198 }
3199 
3200 static void sock_def_error_report(struct sock *sk)
3201 {
3202 	struct socket_wq *wq;
3203 
3204 	rcu_read_lock();
3205 	wq = rcu_dereference(sk->sk_wq);
3206 	if (skwq_has_sleeper(wq))
3207 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3208 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3209 	rcu_read_unlock();
3210 }
3211 
3212 void sock_def_readable(struct sock *sk)
3213 {
3214 	struct socket_wq *wq;
3215 
3216 	rcu_read_lock();
3217 	wq = rcu_dereference(sk->sk_wq);
3218 	if (skwq_has_sleeper(wq))
3219 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3220 						EPOLLRDNORM | EPOLLRDBAND);
3221 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3222 	rcu_read_unlock();
3223 }
3224 
3225 static void sock_def_write_space(struct sock *sk)
3226 {
3227 	struct socket_wq *wq;
3228 
3229 	rcu_read_lock();
3230 
3231 	/* Do not wake up a writer until he can make "significant"
3232 	 * progress.  --DaveM
3233 	 */
3234 	if (sock_writeable(sk)) {
3235 		wq = rcu_dereference(sk->sk_wq);
3236 		if (skwq_has_sleeper(wq))
3237 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3238 						EPOLLWRNORM | EPOLLWRBAND);
3239 
3240 		/* Should agree with poll, otherwise some programs break */
3241 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3242 	}
3243 
3244 	rcu_read_unlock();
3245 }
3246 
3247 /* An optimised version of sock_def_write_space(), should only be called
3248  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3249  * ->sk_wmem_alloc.
3250  */
3251 static void sock_def_write_space_wfree(struct sock *sk)
3252 {
3253 	/* Do not wake up a writer until he can make "significant"
3254 	 * progress.  --DaveM
3255 	 */
3256 	if (sock_writeable(sk)) {
3257 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3258 
3259 		/* rely on refcount_sub from sock_wfree() */
3260 		smp_mb__after_atomic();
3261 		if (wq && waitqueue_active(&wq->wait))
3262 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3263 						EPOLLWRNORM | EPOLLWRBAND);
3264 
3265 		/* Should agree with poll, otherwise some programs break */
3266 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3267 	}
3268 }
3269 
3270 static void sock_def_destruct(struct sock *sk)
3271 {
3272 }
3273 
3274 void sk_send_sigurg(struct sock *sk)
3275 {
3276 	if (sk->sk_socket && sk->sk_socket->file)
3277 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3278 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3279 }
3280 EXPORT_SYMBOL(sk_send_sigurg);
3281 
3282 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3283 		    unsigned long expires)
3284 {
3285 	if (!mod_timer(timer, expires))
3286 		sock_hold(sk);
3287 }
3288 EXPORT_SYMBOL(sk_reset_timer);
3289 
3290 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3291 {
3292 	if (del_timer(timer))
3293 		__sock_put(sk);
3294 }
3295 EXPORT_SYMBOL(sk_stop_timer);
3296 
3297 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3298 {
3299 	if (del_timer_sync(timer))
3300 		__sock_put(sk);
3301 }
3302 EXPORT_SYMBOL(sk_stop_timer_sync);
3303 
3304 void sock_init_data(struct socket *sock, struct sock *sk)
3305 {
3306 	sk_init_common(sk);
3307 	sk->sk_send_head	=	NULL;
3308 
3309 	timer_setup(&sk->sk_timer, NULL, 0);
3310 
3311 	sk->sk_allocation	=	GFP_KERNEL;
3312 	sk->sk_rcvbuf		=	sysctl_rmem_default;
3313 	sk->sk_sndbuf		=	sysctl_wmem_default;
3314 	sk->sk_state		=	TCP_CLOSE;
3315 	sk_set_socket(sk, sock);
3316 
3317 	sock_set_flag(sk, SOCK_ZAPPED);
3318 
3319 	if (sock) {
3320 		sk->sk_type	=	sock->type;
3321 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3322 		sock->sk	=	sk;
3323 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3324 	} else {
3325 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3326 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3327 	}
3328 
3329 	rwlock_init(&sk->sk_callback_lock);
3330 	if (sk->sk_kern_sock)
3331 		lockdep_set_class_and_name(
3332 			&sk->sk_callback_lock,
3333 			af_kern_callback_keys + sk->sk_family,
3334 			af_family_kern_clock_key_strings[sk->sk_family]);
3335 	else
3336 		lockdep_set_class_and_name(
3337 			&sk->sk_callback_lock,
3338 			af_callback_keys + sk->sk_family,
3339 			af_family_clock_key_strings[sk->sk_family]);
3340 
3341 	sk->sk_state_change	=	sock_def_wakeup;
3342 	sk->sk_data_ready	=	sock_def_readable;
3343 	sk->sk_write_space	=	sock_def_write_space;
3344 	sk->sk_error_report	=	sock_def_error_report;
3345 	sk->sk_destruct		=	sock_def_destruct;
3346 
3347 	sk->sk_frag.page	=	NULL;
3348 	sk->sk_frag.offset	=	0;
3349 	sk->sk_peek_off		=	-1;
3350 
3351 	sk->sk_peer_pid 	=	NULL;
3352 	sk->sk_peer_cred	=	NULL;
3353 	spin_lock_init(&sk->sk_peer_lock);
3354 
3355 	sk->sk_write_pending	=	0;
3356 	sk->sk_rcvlowat		=	1;
3357 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3358 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3359 
3360 	sk->sk_stamp = SK_DEFAULT_STAMP;
3361 #if BITS_PER_LONG==32
3362 	seqlock_init(&sk->sk_stamp_seq);
3363 #endif
3364 	atomic_set(&sk->sk_zckey, 0);
3365 
3366 #ifdef CONFIG_NET_RX_BUSY_POLL
3367 	sk->sk_napi_id		=	0;
3368 	sk->sk_ll_usec		=	sysctl_net_busy_read;
3369 #endif
3370 
3371 	sk->sk_max_pacing_rate = ~0UL;
3372 	sk->sk_pacing_rate = ~0UL;
3373 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3374 	sk->sk_incoming_cpu = -1;
3375 	sk->sk_txrehash = SOCK_TXREHASH_DEFAULT;
3376 
3377 	sk_rx_queue_clear(sk);
3378 	/*
3379 	 * Before updating sk_refcnt, we must commit prior changes to memory
3380 	 * (Documentation/RCU/rculist_nulls.rst for details)
3381 	 */
3382 	smp_wmb();
3383 	refcount_set(&sk->sk_refcnt, 1);
3384 	atomic_set(&sk->sk_drops, 0);
3385 }
3386 EXPORT_SYMBOL(sock_init_data);
3387 
3388 void lock_sock_nested(struct sock *sk, int subclass)
3389 {
3390 	/* The sk_lock has mutex_lock() semantics here. */
3391 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3392 
3393 	might_sleep();
3394 	spin_lock_bh(&sk->sk_lock.slock);
3395 	if (sock_owned_by_user_nocheck(sk))
3396 		__lock_sock(sk);
3397 	sk->sk_lock.owned = 1;
3398 	spin_unlock_bh(&sk->sk_lock.slock);
3399 }
3400 EXPORT_SYMBOL(lock_sock_nested);
3401 
3402 void release_sock(struct sock *sk)
3403 {
3404 	spin_lock_bh(&sk->sk_lock.slock);
3405 	if (sk->sk_backlog.tail)
3406 		__release_sock(sk);
3407 
3408 	/* Warning : release_cb() might need to release sk ownership,
3409 	 * ie call sock_release_ownership(sk) before us.
3410 	 */
3411 	if (sk->sk_prot->release_cb)
3412 		sk->sk_prot->release_cb(sk);
3413 
3414 	sock_release_ownership(sk);
3415 	if (waitqueue_active(&sk->sk_lock.wq))
3416 		wake_up(&sk->sk_lock.wq);
3417 	spin_unlock_bh(&sk->sk_lock.slock);
3418 }
3419 EXPORT_SYMBOL(release_sock);
3420 
3421 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3422 {
3423 	might_sleep();
3424 	spin_lock_bh(&sk->sk_lock.slock);
3425 
3426 	if (!sock_owned_by_user_nocheck(sk)) {
3427 		/*
3428 		 * Fast path return with bottom halves disabled and
3429 		 * sock::sk_lock.slock held.
3430 		 *
3431 		 * The 'mutex' is not contended and holding
3432 		 * sock::sk_lock.slock prevents all other lockers to
3433 		 * proceed so the corresponding unlock_sock_fast() can
3434 		 * avoid the slow path of release_sock() completely and
3435 		 * just release slock.
3436 		 *
3437 		 * From a semantical POV this is equivalent to 'acquiring'
3438 		 * the 'mutex', hence the corresponding lockdep
3439 		 * mutex_release() has to happen in the fast path of
3440 		 * unlock_sock_fast().
3441 		 */
3442 		return false;
3443 	}
3444 
3445 	__lock_sock(sk);
3446 	sk->sk_lock.owned = 1;
3447 	__acquire(&sk->sk_lock.slock);
3448 	spin_unlock_bh(&sk->sk_lock.slock);
3449 	return true;
3450 }
3451 EXPORT_SYMBOL(__lock_sock_fast);
3452 
3453 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3454 		   bool timeval, bool time32)
3455 {
3456 	struct sock *sk = sock->sk;
3457 	struct timespec64 ts;
3458 
3459 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3460 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3461 	if (ts.tv_sec == -1)
3462 		return -ENOENT;
3463 	if (ts.tv_sec == 0) {
3464 		ktime_t kt = ktime_get_real();
3465 		sock_write_timestamp(sk, kt);
3466 		ts = ktime_to_timespec64(kt);
3467 	}
3468 
3469 	if (timeval)
3470 		ts.tv_nsec /= 1000;
3471 
3472 #ifdef CONFIG_COMPAT_32BIT_TIME
3473 	if (time32)
3474 		return put_old_timespec32(&ts, userstamp);
3475 #endif
3476 #ifdef CONFIG_SPARC64
3477 	/* beware of padding in sparc64 timeval */
3478 	if (timeval && !in_compat_syscall()) {
3479 		struct __kernel_old_timeval __user tv = {
3480 			.tv_sec = ts.tv_sec,
3481 			.tv_usec = ts.tv_nsec,
3482 		};
3483 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3484 			return -EFAULT;
3485 		return 0;
3486 	}
3487 #endif
3488 	return put_timespec64(&ts, userstamp);
3489 }
3490 EXPORT_SYMBOL(sock_gettstamp);
3491 
3492 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3493 {
3494 	if (!sock_flag(sk, flag)) {
3495 		unsigned long previous_flags = sk->sk_flags;
3496 
3497 		sock_set_flag(sk, flag);
3498 		/*
3499 		 * we just set one of the two flags which require net
3500 		 * time stamping, but time stamping might have been on
3501 		 * already because of the other one
3502 		 */
3503 		if (sock_needs_netstamp(sk) &&
3504 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3505 			net_enable_timestamp();
3506 	}
3507 }
3508 
3509 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3510 		       int level, int type)
3511 {
3512 	struct sock_exterr_skb *serr;
3513 	struct sk_buff *skb;
3514 	int copied, err;
3515 
3516 	err = -EAGAIN;
3517 	skb = sock_dequeue_err_skb(sk);
3518 	if (skb == NULL)
3519 		goto out;
3520 
3521 	copied = skb->len;
3522 	if (copied > len) {
3523 		msg->msg_flags |= MSG_TRUNC;
3524 		copied = len;
3525 	}
3526 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3527 	if (err)
3528 		goto out_free_skb;
3529 
3530 	sock_recv_timestamp(msg, sk, skb);
3531 
3532 	serr = SKB_EXT_ERR(skb);
3533 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3534 
3535 	msg->msg_flags |= MSG_ERRQUEUE;
3536 	err = copied;
3537 
3538 out_free_skb:
3539 	kfree_skb(skb);
3540 out:
3541 	return err;
3542 }
3543 EXPORT_SYMBOL(sock_recv_errqueue);
3544 
3545 /*
3546  *	Get a socket option on an socket.
3547  *
3548  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3549  *	asynchronous errors should be reported by getsockopt. We assume
3550  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3551  */
3552 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3553 			   char __user *optval, int __user *optlen)
3554 {
3555 	struct sock *sk = sock->sk;
3556 
3557 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3558 }
3559 EXPORT_SYMBOL(sock_common_getsockopt);
3560 
3561 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3562 			int flags)
3563 {
3564 	struct sock *sk = sock->sk;
3565 	int addr_len = 0;
3566 	int err;
3567 
3568 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3569 	if (err >= 0)
3570 		msg->msg_namelen = addr_len;
3571 	return err;
3572 }
3573 EXPORT_SYMBOL(sock_common_recvmsg);
3574 
3575 /*
3576  *	Set socket options on an inet socket.
3577  */
3578 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3579 			   sockptr_t optval, unsigned int optlen)
3580 {
3581 	struct sock *sk = sock->sk;
3582 
3583 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3584 }
3585 EXPORT_SYMBOL(sock_common_setsockopt);
3586 
3587 void sk_common_release(struct sock *sk)
3588 {
3589 	if (sk->sk_prot->destroy)
3590 		sk->sk_prot->destroy(sk);
3591 
3592 	/*
3593 	 * Observation: when sk_common_release is called, processes have
3594 	 * no access to socket. But net still has.
3595 	 * Step one, detach it from networking:
3596 	 *
3597 	 * A. Remove from hash tables.
3598 	 */
3599 
3600 	sk->sk_prot->unhash(sk);
3601 
3602 	/*
3603 	 * In this point socket cannot receive new packets, but it is possible
3604 	 * that some packets are in flight because some CPU runs receiver and
3605 	 * did hash table lookup before we unhashed socket. They will achieve
3606 	 * receive queue and will be purged by socket destructor.
3607 	 *
3608 	 * Also we still have packets pending on receive queue and probably,
3609 	 * our own packets waiting in device queues. sock_destroy will drain
3610 	 * receive queue, but transmitted packets will delay socket destruction
3611 	 * until the last reference will be released.
3612 	 */
3613 
3614 	sock_orphan(sk);
3615 
3616 	xfrm_sk_free_policy(sk);
3617 
3618 	sk_refcnt_debug_release(sk);
3619 
3620 	sock_put(sk);
3621 }
3622 EXPORT_SYMBOL(sk_common_release);
3623 
3624 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3625 {
3626 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3627 
3628 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3629 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3630 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3631 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3632 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3633 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3634 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3635 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3636 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3637 }
3638 
3639 #ifdef CONFIG_PROC_FS
3640 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3641 
3642 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3643 {
3644 	int cpu, idx = prot->inuse_idx;
3645 	int res = 0;
3646 
3647 	for_each_possible_cpu(cpu)
3648 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3649 
3650 	return res >= 0 ? res : 0;
3651 }
3652 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3653 
3654 int sock_inuse_get(struct net *net)
3655 {
3656 	int cpu, res = 0;
3657 
3658 	for_each_possible_cpu(cpu)
3659 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3660 
3661 	return res;
3662 }
3663 
3664 EXPORT_SYMBOL_GPL(sock_inuse_get);
3665 
3666 static int __net_init sock_inuse_init_net(struct net *net)
3667 {
3668 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3669 	if (net->core.prot_inuse == NULL)
3670 		return -ENOMEM;
3671 	return 0;
3672 }
3673 
3674 static void __net_exit sock_inuse_exit_net(struct net *net)
3675 {
3676 	free_percpu(net->core.prot_inuse);
3677 }
3678 
3679 static struct pernet_operations net_inuse_ops = {
3680 	.init = sock_inuse_init_net,
3681 	.exit = sock_inuse_exit_net,
3682 };
3683 
3684 static __init int net_inuse_init(void)
3685 {
3686 	if (register_pernet_subsys(&net_inuse_ops))
3687 		panic("Cannot initialize net inuse counters");
3688 
3689 	return 0;
3690 }
3691 
3692 core_initcall(net_inuse_init);
3693 
3694 static int assign_proto_idx(struct proto *prot)
3695 {
3696 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3697 
3698 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3699 		pr_err("PROTO_INUSE_NR exhausted\n");
3700 		return -ENOSPC;
3701 	}
3702 
3703 	set_bit(prot->inuse_idx, proto_inuse_idx);
3704 	return 0;
3705 }
3706 
3707 static void release_proto_idx(struct proto *prot)
3708 {
3709 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3710 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3711 }
3712 #else
3713 static inline int assign_proto_idx(struct proto *prot)
3714 {
3715 	return 0;
3716 }
3717 
3718 static inline void release_proto_idx(struct proto *prot)
3719 {
3720 }
3721 
3722 #endif
3723 
3724 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3725 {
3726 	if (!twsk_prot)
3727 		return;
3728 	kfree(twsk_prot->twsk_slab_name);
3729 	twsk_prot->twsk_slab_name = NULL;
3730 	kmem_cache_destroy(twsk_prot->twsk_slab);
3731 	twsk_prot->twsk_slab = NULL;
3732 }
3733 
3734 static int tw_prot_init(const struct proto *prot)
3735 {
3736 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3737 
3738 	if (!twsk_prot)
3739 		return 0;
3740 
3741 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3742 					      prot->name);
3743 	if (!twsk_prot->twsk_slab_name)
3744 		return -ENOMEM;
3745 
3746 	twsk_prot->twsk_slab =
3747 		kmem_cache_create(twsk_prot->twsk_slab_name,
3748 				  twsk_prot->twsk_obj_size, 0,
3749 				  SLAB_ACCOUNT | prot->slab_flags,
3750 				  NULL);
3751 	if (!twsk_prot->twsk_slab) {
3752 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3753 			prot->name);
3754 		return -ENOMEM;
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3761 {
3762 	if (!rsk_prot)
3763 		return;
3764 	kfree(rsk_prot->slab_name);
3765 	rsk_prot->slab_name = NULL;
3766 	kmem_cache_destroy(rsk_prot->slab);
3767 	rsk_prot->slab = NULL;
3768 }
3769 
3770 static int req_prot_init(const struct proto *prot)
3771 {
3772 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3773 
3774 	if (!rsk_prot)
3775 		return 0;
3776 
3777 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3778 					prot->name);
3779 	if (!rsk_prot->slab_name)
3780 		return -ENOMEM;
3781 
3782 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3783 					   rsk_prot->obj_size, 0,
3784 					   SLAB_ACCOUNT | prot->slab_flags,
3785 					   NULL);
3786 
3787 	if (!rsk_prot->slab) {
3788 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3789 			prot->name);
3790 		return -ENOMEM;
3791 	}
3792 	return 0;
3793 }
3794 
3795 int proto_register(struct proto *prot, int alloc_slab)
3796 {
3797 	int ret = -ENOBUFS;
3798 
3799 	if (prot->memory_allocated && !prot->sysctl_mem) {
3800 		pr_err("%s: missing sysctl_mem\n", prot->name);
3801 		return -EINVAL;
3802 	}
3803 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3804 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3805 		return -EINVAL;
3806 	}
3807 	if (alloc_slab) {
3808 		prot->slab = kmem_cache_create_usercopy(prot->name,
3809 					prot->obj_size, 0,
3810 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3811 					prot->slab_flags,
3812 					prot->useroffset, prot->usersize,
3813 					NULL);
3814 
3815 		if (prot->slab == NULL) {
3816 			pr_crit("%s: Can't create sock SLAB cache!\n",
3817 				prot->name);
3818 			goto out;
3819 		}
3820 
3821 		if (req_prot_init(prot))
3822 			goto out_free_request_sock_slab;
3823 
3824 		if (tw_prot_init(prot))
3825 			goto out_free_timewait_sock_slab;
3826 	}
3827 
3828 	mutex_lock(&proto_list_mutex);
3829 	ret = assign_proto_idx(prot);
3830 	if (ret) {
3831 		mutex_unlock(&proto_list_mutex);
3832 		goto out_free_timewait_sock_slab;
3833 	}
3834 	list_add(&prot->node, &proto_list);
3835 	mutex_unlock(&proto_list_mutex);
3836 	return ret;
3837 
3838 out_free_timewait_sock_slab:
3839 	if (alloc_slab)
3840 		tw_prot_cleanup(prot->twsk_prot);
3841 out_free_request_sock_slab:
3842 	if (alloc_slab) {
3843 		req_prot_cleanup(prot->rsk_prot);
3844 
3845 		kmem_cache_destroy(prot->slab);
3846 		prot->slab = NULL;
3847 	}
3848 out:
3849 	return ret;
3850 }
3851 EXPORT_SYMBOL(proto_register);
3852 
3853 void proto_unregister(struct proto *prot)
3854 {
3855 	mutex_lock(&proto_list_mutex);
3856 	release_proto_idx(prot);
3857 	list_del(&prot->node);
3858 	mutex_unlock(&proto_list_mutex);
3859 
3860 	kmem_cache_destroy(prot->slab);
3861 	prot->slab = NULL;
3862 
3863 	req_prot_cleanup(prot->rsk_prot);
3864 	tw_prot_cleanup(prot->twsk_prot);
3865 }
3866 EXPORT_SYMBOL(proto_unregister);
3867 
3868 int sock_load_diag_module(int family, int protocol)
3869 {
3870 	if (!protocol) {
3871 		if (!sock_is_registered(family))
3872 			return -ENOENT;
3873 
3874 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3875 				      NETLINK_SOCK_DIAG, family);
3876 	}
3877 
3878 #ifdef CONFIG_INET
3879 	if (family == AF_INET &&
3880 	    protocol != IPPROTO_RAW &&
3881 	    protocol < MAX_INET_PROTOS &&
3882 	    !rcu_access_pointer(inet_protos[protocol]))
3883 		return -ENOENT;
3884 #endif
3885 
3886 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3887 			      NETLINK_SOCK_DIAG, family, protocol);
3888 }
3889 EXPORT_SYMBOL(sock_load_diag_module);
3890 
3891 #ifdef CONFIG_PROC_FS
3892 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3893 	__acquires(proto_list_mutex)
3894 {
3895 	mutex_lock(&proto_list_mutex);
3896 	return seq_list_start_head(&proto_list, *pos);
3897 }
3898 
3899 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3900 {
3901 	return seq_list_next(v, &proto_list, pos);
3902 }
3903 
3904 static void proto_seq_stop(struct seq_file *seq, void *v)
3905 	__releases(proto_list_mutex)
3906 {
3907 	mutex_unlock(&proto_list_mutex);
3908 }
3909 
3910 static char proto_method_implemented(const void *method)
3911 {
3912 	return method == NULL ? 'n' : 'y';
3913 }
3914 static long sock_prot_memory_allocated(struct proto *proto)
3915 {
3916 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3917 }
3918 
3919 static const char *sock_prot_memory_pressure(struct proto *proto)
3920 {
3921 	return proto->memory_pressure != NULL ?
3922 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3923 }
3924 
3925 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3926 {
3927 
3928 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3929 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3930 		   proto->name,
3931 		   proto->obj_size,
3932 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3933 		   sock_prot_memory_allocated(proto),
3934 		   sock_prot_memory_pressure(proto),
3935 		   proto->max_header,
3936 		   proto->slab == NULL ? "no" : "yes",
3937 		   module_name(proto->owner),
3938 		   proto_method_implemented(proto->close),
3939 		   proto_method_implemented(proto->connect),
3940 		   proto_method_implemented(proto->disconnect),
3941 		   proto_method_implemented(proto->accept),
3942 		   proto_method_implemented(proto->ioctl),
3943 		   proto_method_implemented(proto->init),
3944 		   proto_method_implemented(proto->destroy),
3945 		   proto_method_implemented(proto->shutdown),
3946 		   proto_method_implemented(proto->setsockopt),
3947 		   proto_method_implemented(proto->getsockopt),
3948 		   proto_method_implemented(proto->sendmsg),
3949 		   proto_method_implemented(proto->recvmsg),
3950 		   proto_method_implemented(proto->sendpage),
3951 		   proto_method_implemented(proto->bind),
3952 		   proto_method_implemented(proto->backlog_rcv),
3953 		   proto_method_implemented(proto->hash),
3954 		   proto_method_implemented(proto->unhash),
3955 		   proto_method_implemented(proto->get_port),
3956 		   proto_method_implemented(proto->enter_memory_pressure));
3957 }
3958 
3959 static int proto_seq_show(struct seq_file *seq, void *v)
3960 {
3961 	if (v == &proto_list)
3962 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3963 			   "protocol",
3964 			   "size",
3965 			   "sockets",
3966 			   "memory",
3967 			   "press",
3968 			   "maxhdr",
3969 			   "slab",
3970 			   "module",
3971 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3972 	else
3973 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3974 	return 0;
3975 }
3976 
3977 static const struct seq_operations proto_seq_ops = {
3978 	.start  = proto_seq_start,
3979 	.next   = proto_seq_next,
3980 	.stop   = proto_seq_stop,
3981 	.show   = proto_seq_show,
3982 };
3983 
3984 static __net_init int proto_init_net(struct net *net)
3985 {
3986 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3987 			sizeof(struct seq_net_private)))
3988 		return -ENOMEM;
3989 
3990 	return 0;
3991 }
3992 
3993 static __net_exit void proto_exit_net(struct net *net)
3994 {
3995 	remove_proc_entry("protocols", net->proc_net);
3996 }
3997 
3998 
3999 static __net_initdata struct pernet_operations proto_net_ops = {
4000 	.init = proto_init_net,
4001 	.exit = proto_exit_net,
4002 };
4003 
4004 static int __init proto_init(void)
4005 {
4006 	return register_pernet_subsys(&proto_net_ops);
4007 }
4008 
4009 subsys_initcall(proto_init);
4010 
4011 #endif /* PROC_FS */
4012 
4013 #ifdef CONFIG_NET_RX_BUSY_POLL
4014 bool sk_busy_loop_end(void *p, unsigned long start_time)
4015 {
4016 	struct sock *sk = p;
4017 
4018 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4019 	       sk_busy_loop_timeout(sk, start_time);
4020 }
4021 EXPORT_SYMBOL(sk_busy_loop_end);
4022 #endif /* CONFIG_NET_RX_BUSY_POLL */
4023 
4024 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4025 {
4026 	if (!sk->sk_prot->bind_add)
4027 		return -EOPNOTSUPP;
4028 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4029 }
4030 EXPORT_SYMBOL(sock_bind_add);
4031