1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 int size; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 size = sizeof(old_tv); 358 } else { 359 *(struct __kernel_sock_timeval *)optval = tv; 360 size = sizeof(tv); 361 } 362 363 return size; 364 } 365 366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 367 { 368 struct __kernel_sock_timeval tv; 369 370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 371 struct old_timeval32 tv32; 372 373 if (optlen < sizeof(tv32)) 374 return -EINVAL; 375 376 if (copy_from_user(&tv32, optval, sizeof(tv32))) 377 return -EFAULT; 378 tv.tv_sec = tv32.tv_sec; 379 tv.tv_usec = tv32.tv_usec; 380 } else if (old_timeval) { 381 struct __kernel_old_timeval old_tv; 382 383 if (optlen < sizeof(old_tv)) 384 return -EINVAL; 385 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 386 return -EFAULT; 387 tv.tv_sec = old_tv.tv_sec; 388 tv.tv_usec = old_tv.tv_usec; 389 } else { 390 if (optlen < sizeof(tv)) 391 return -EINVAL; 392 if (copy_from_user(&tv, optval, sizeof(tv))) 393 return -EFAULT; 394 } 395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 396 return -EDOM; 397 398 if (tv.tv_sec < 0) { 399 static int warned __read_mostly; 400 401 *timeo_p = 0; 402 if (warned < 10 && net_ratelimit()) { 403 warned++; 404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 405 __func__, current->comm, task_pid_nr(current)); 406 } 407 return 0; 408 } 409 *timeo_p = MAX_SCHEDULE_TIMEOUT; 410 if (tv.tv_sec == 0 && tv.tv_usec == 0) 411 return 0; 412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 414 return 0; 415 } 416 417 static void sock_warn_obsolete_bsdism(const char *name) 418 { 419 static int warned; 420 static char warncomm[TASK_COMM_LEN]; 421 if (strcmp(warncomm, current->comm) && warned < 5) { 422 strcpy(warncomm, current->comm); 423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 424 warncomm, name); 425 warned++; 426 } 427 } 428 429 static bool sock_needs_netstamp(const struct sock *sk) 430 { 431 switch (sk->sk_family) { 432 case AF_UNSPEC: 433 case AF_UNIX: 434 return false; 435 default: 436 return true; 437 } 438 } 439 440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 441 { 442 if (sk->sk_flags & flags) { 443 sk->sk_flags &= ~flags; 444 if (sock_needs_netstamp(sk) && 445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 446 net_disable_timestamp(); 447 } 448 } 449 450 451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 452 { 453 unsigned long flags; 454 struct sk_buff_head *list = &sk->sk_receive_queue; 455 456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 457 atomic_inc(&sk->sk_drops); 458 trace_sock_rcvqueue_full(sk, skb); 459 return -ENOMEM; 460 } 461 462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 463 atomic_inc(&sk->sk_drops); 464 return -ENOBUFS; 465 } 466 467 skb->dev = NULL; 468 skb_set_owner_r(skb, sk); 469 470 /* we escape from rcu protected region, make sure we dont leak 471 * a norefcounted dst 472 */ 473 skb_dst_force(skb); 474 475 spin_lock_irqsave(&list->lock, flags); 476 sock_skb_set_dropcount(sk, skb); 477 __skb_queue_tail(list, skb); 478 spin_unlock_irqrestore(&list->lock, flags); 479 480 if (!sock_flag(sk, SOCK_DEAD)) 481 sk->sk_data_ready(sk); 482 return 0; 483 } 484 EXPORT_SYMBOL(__sock_queue_rcv_skb); 485 486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 int err; 489 490 err = sk_filter(sk, skb); 491 if (err) 492 return err; 493 494 return __sock_queue_rcv_skb(sk, skb); 495 } 496 EXPORT_SYMBOL(sock_queue_rcv_skb); 497 498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 499 const int nested, unsigned int trim_cap, bool refcounted) 500 { 501 int rc = NET_RX_SUCCESS; 502 503 if (sk_filter_trim_cap(sk, skb, trim_cap)) 504 goto discard_and_relse; 505 506 skb->dev = NULL; 507 508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 509 atomic_inc(&sk->sk_drops); 510 goto discard_and_relse; 511 } 512 if (nested) 513 bh_lock_sock_nested(sk); 514 else 515 bh_lock_sock(sk); 516 if (!sock_owned_by_user(sk)) { 517 /* 518 * trylock + unlock semantics: 519 */ 520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 521 522 rc = sk_backlog_rcv(sk, skb); 523 524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 526 bh_unlock_sock(sk); 527 atomic_inc(&sk->sk_drops); 528 goto discard_and_relse; 529 } 530 531 bh_unlock_sock(sk); 532 out: 533 if (refcounted) 534 sock_put(sk); 535 return rc; 536 discard_and_relse: 537 kfree_skb(skb); 538 goto out; 539 } 540 EXPORT_SYMBOL(__sk_receive_skb); 541 542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 543 { 544 struct dst_entry *dst = __sk_dst_get(sk); 545 546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 547 sk_tx_queue_clear(sk); 548 sk->sk_dst_pending_confirm = 0; 549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(__sk_dst_check); 557 558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 559 { 560 struct dst_entry *dst = sk_dst_get(sk); 561 562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 563 sk_dst_reset(sk); 564 dst_release(dst); 565 return NULL; 566 } 567 568 return dst; 569 } 570 EXPORT_SYMBOL(sk_dst_check); 571 572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 573 { 574 int ret = -ENOPROTOOPT; 575 #ifdef CONFIG_NETDEVICES 576 struct net *net = sock_net(sk); 577 578 /* Sorry... */ 579 ret = -EPERM; 580 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 581 goto out; 582 583 ret = -EINVAL; 584 if (ifindex < 0) 585 goto out; 586 587 sk->sk_bound_dev_if = ifindex; 588 if (sk->sk_prot->rehash) 589 sk->sk_prot->rehash(sk); 590 sk_dst_reset(sk); 591 592 ret = 0; 593 594 out: 595 #endif 596 597 return ret; 598 } 599 600 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 601 int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_user(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 lock_sock(sk); 641 ret = sock_setbindtodevice_locked(sk, index); 642 release_sock(sk); 643 644 out: 645 #endif 646 647 return ret; 648 } 649 650 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 651 int __user *optlen, int len) 652 { 653 int ret = -ENOPROTOOPT; 654 #ifdef CONFIG_NETDEVICES 655 struct net *net = sock_net(sk); 656 char devname[IFNAMSIZ]; 657 658 if (sk->sk_bound_dev_if == 0) { 659 len = 0; 660 goto zero; 661 } 662 663 ret = -EINVAL; 664 if (len < IFNAMSIZ) 665 goto out; 666 667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 668 if (ret) 669 goto out; 670 671 len = strlen(devname) + 1; 672 673 ret = -EFAULT; 674 if (copy_to_user(optval, devname, len)) 675 goto out; 676 677 zero: 678 ret = -EFAULT; 679 if (put_user(len, optlen)) 680 goto out; 681 682 ret = 0; 683 684 out: 685 #endif 686 687 return ret; 688 } 689 690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 691 { 692 if (valbool) 693 sock_set_flag(sk, bit); 694 else 695 sock_reset_flag(sk, bit); 696 } 697 698 bool sk_mc_loop(struct sock *sk) 699 { 700 if (dev_recursion_level()) 701 return false; 702 if (!sk) 703 return true; 704 switch (sk->sk_family) { 705 case AF_INET: 706 return inet_sk(sk)->mc_loop; 707 #if IS_ENABLED(CONFIG_IPV6) 708 case AF_INET6: 709 return inet6_sk(sk)->mc_loop; 710 #endif 711 } 712 WARN_ON(1); 713 return true; 714 } 715 EXPORT_SYMBOL(sk_mc_loop); 716 717 /* 718 * This is meant for all protocols to use and covers goings on 719 * at the socket level. Everything here is generic. 720 */ 721 722 int sock_setsockopt(struct socket *sock, int level, int optname, 723 char __user *optval, unsigned int optlen) 724 { 725 struct sock_txtime sk_txtime; 726 struct sock *sk = sock->sk; 727 int val; 728 int valbool; 729 struct linger ling; 730 int ret = 0; 731 732 /* 733 * Options without arguments 734 */ 735 736 if (optname == SO_BINDTODEVICE) 737 return sock_setbindtodevice(sk, optval, optlen); 738 739 if (optlen < sizeof(int)) 740 return -EINVAL; 741 742 if (get_user(val, (int __user *)optval)) 743 return -EFAULT; 744 745 valbool = val ? 1 : 0; 746 747 lock_sock(sk); 748 749 switch (optname) { 750 case SO_DEBUG: 751 if (val && !capable(CAP_NET_ADMIN)) 752 ret = -EACCES; 753 else 754 sock_valbool_flag(sk, SOCK_DBG, valbool); 755 break; 756 case SO_REUSEADDR: 757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 758 break; 759 case SO_REUSEPORT: 760 sk->sk_reuseport = valbool; 761 break; 762 case SO_TYPE: 763 case SO_PROTOCOL: 764 case SO_DOMAIN: 765 case SO_ERROR: 766 ret = -ENOPROTOOPT; 767 break; 768 case SO_DONTROUTE: 769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 770 sk_dst_reset(sk); 771 break; 772 case SO_BROADCAST: 773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 774 break; 775 case SO_SNDBUF: 776 /* Don't error on this BSD doesn't and if you think 777 * about it this is right. Otherwise apps have to 778 * play 'guess the biggest size' games. RCVBUF/SNDBUF 779 * are treated in BSD as hints 780 */ 781 val = min_t(u32, val, sysctl_wmem_max); 782 set_sndbuf: 783 /* Ensure val * 2 fits into an int, to prevent max_t() 784 * from treating it as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 789 /* Wake up sending tasks if we upped the value. */ 790 sk->sk_write_space(sk); 791 break; 792 793 case SO_SNDBUFFORCE: 794 if (!capable(CAP_NET_ADMIN)) { 795 ret = -EPERM; 796 break; 797 } 798 799 /* No negative values (to prevent underflow, as val will be 800 * multiplied by 2). 801 */ 802 if (val < 0) 803 val = 0; 804 goto set_sndbuf; 805 806 case SO_RCVBUF: 807 /* Don't error on this BSD doesn't and if you think 808 * about it this is right. Otherwise apps have to 809 * play 'guess the biggest size' games. RCVBUF/SNDBUF 810 * are treated in BSD as hints 811 */ 812 val = min_t(u32, val, sysctl_rmem_max); 813 set_rcvbuf: 814 /* Ensure val * 2 fits into an int, to prevent max_t() 815 * from treating it as a negative value. 816 */ 817 val = min_t(int, val, INT_MAX / 2); 818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 819 /* 820 * We double it on the way in to account for 821 * "struct sk_buff" etc. overhead. Applications 822 * assume that the SO_RCVBUF setting they make will 823 * allow that much actual data to be received on that 824 * socket. 825 * 826 * Applications are unaware that "struct sk_buff" and 827 * other overheads allocate from the receive buffer 828 * during socket buffer allocation. 829 * 830 * And after considering the possible alternatives, 831 * returning the value we actually used in getsockopt 832 * is the most desirable behavior. 833 */ 834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 sk->sk_rcvlowat = val ? : 1; 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 sk->sk_incoming_cpu = val; 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = sk->sk_incoming_cpu; 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 #ifdef CONFIG_SECURITY_NETWORK 1576 void *sptr = nsk->sk_security; 1577 #endif 1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1579 1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1582 1583 #ifdef CONFIG_SECURITY_NETWORK 1584 nsk->sk_security = sptr; 1585 security_sk_clone(osk, nsk); 1586 #endif 1587 } 1588 1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1590 int family) 1591 { 1592 struct sock *sk; 1593 struct kmem_cache *slab; 1594 1595 slab = prot->slab; 1596 if (slab != NULL) { 1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1598 if (!sk) 1599 return sk; 1600 if (want_init_on_alloc(priority)) 1601 sk_prot_clear_nulls(sk, prot->obj_size); 1602 } else 1603 sk = kmalloc(prot->obj_size, priority); 1604 1605 if (sk != NULL) { 1606 if (security_sk_alloc(sk, family, priority)) 1607 goto out_free; 1608 1609 if (!try_module_get(prot->owner)) 1610 goto out_free_sec; 1611 sk_tx_queue_clear(sk); 1612 } 1613 1614 return sk; 1615 1616 out_free_sec: 1617 security_sk_free(sk); 1618 out_free: 1619 if (slab != NULL) 1620 kmem_cache_free(slab, sk); 1621 else 1622 kfree(sk); 1623 return NULL; 1624 } 1625 1626 static void sk_prot_free(struct proto *prot, struct sock *sk) 1627 { 1628 struct kmem_cache *slab; 1629 struct module *owner; 1630 1631 owner = prot->owner; 1632 slab = prot->slab; 1633 1634 cgroup_sk_free(&sk->sk_cgrp_data); 1635 mem_cgroup_sk_free(sk); 1636 security_sk_free(sk); 1637 if (slab != NULL) 1638 kmem_cache_free(slab, sk); 1639 else 1640 kfree(sk); 1641 module_put(owner); 1642 } 1643 1644 /** 1645 * sk_alloc - All socket objects are allocated here 1646 * @net: the applicable net namespace 1647 * @family: protocol family 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * @prot: struct proto associated with this new sock instance 1650 * @kern: is this to be a kernel socket? 1651 */ 1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1653 struct proto *prot, int kern) 1654 { 1655 struct sock *sk; 1656 1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1658 if (sk) { 1659 sk->sk_family = family; 1660 /* 1661 * See comment in struct sock definition to understand 1662 * why we need sk_prot_creator -acme 1663 */ 1664 sk->sk_prot = sk->sk_prot_creator = prot; 1665 sk->sk_kern_sock = kern; 1666 sock_lock_init(sk); 1667 sk->sk_net_refcnt = kern ? 0 : 1; 1668 if (likely(sk->sk_net_refcnt)) { 1669 get_net(net); 1670 sock_inuse_add(net, 1); 1671 } 1672 1673 sock_net_set(sk, net); 1674 refcount_set(&sk->sk_wmem_alloc, 1); 1675 1676 mem_cgroup_sk_alloc(sk); 1677 cgroup_sk_alloc(&sk->sk_cgrp_data); 1678 sock_update_classid(&sk->sk_cgrp_data); 1679 sock_update_netprioidx(&sk->sk_cgrp_data); 1680 } 1681 1682 return sk; 1683 } 1684 EXPORT_SYMBOL(sk_alloc); 1685 1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1687 * grace period. This is the case for UDP sockets and TCP listeners. 1688 */ 1689 static void __sk_destruct(struct rcu_head *head) 1690 { 1691 struct sock *sk = container_of(head, struct sock, sk_rcu); 1692 struct sk_filter *filter; 1693 1694 if (sk->sk_destruct) 1695 sk->sk_destruct(sk); 1696 1697 filter = rcu_dereference_check(sk->sk_filter, 1698 refcount_read(&sk->sk_wmem_alloc) == 0); 1699 if (filter) { 1700 sk_filter_uncharge(sk, filter); 1701 RCU_INIT_POINTER(sk->sk_filter, NULL); 1702 } 1703 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1704 reuseport_detach_sock(sk); 1705 1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1707 1708 #ifdef CONFIG_BPF_SYSCALL 1709 bpf_sk_storage_free(sk); 1710 #endif 1711 1712 if (atomic_read(&sk->sk_omem_alloc)) 1713 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1714 __func__, atomic_read(&sk->sk_omem_alloc)); 1715 1716 if (sk->sk_frag.page) { 1717 put_page(sk->sk_frag.page); 1718 sk->sk_frag.page = NULL; 1719 } 1720 1721 if (sk->sk_peer_cred) 1722 put_cred(sk->sk_peer_cred); 1723 put_pid(sk->sk_peer_pid); 1724 if (likely(sk->sk_net_refcnt)) 1725 put_net(sock_net(sk)); 1726 sk_prot_free(sk->sk_prot_creator, sk); 1727 } 1728 1729 void sk_destruct(struct sock *sk) 1730 { 1731 if (sock_flag(sk, SOCK_RCU_FREE)) 1732 call_rcu(&sk->sk_rcu, __sk_destruct); 1733 else 1734 __sk_destruct(&sk->sk_rcu); 1735 } 1736 1737 static void __sk_free(struct sock *sk) 1738 { 1739 if (likely(sk->sk_net_refcnt)) 1740 sock_inuse_add(sock_net(sk), -1); 1741 1742 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1743 sock_diag_broadcast_destroy(sk); 1744 else 1745 sk_destruct(sk); 1746 } 1747 1748 void sk_free(struct sock *sk) 1749 { 1750 /* 1751 * We subtract one from sk_wmem_alloc and can know if 1752 * some packets are still in some tx queue. 1753 * If not null, sock_wfree() will call __sk_free(sk) later 1754 */ 1755 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1756 __sk_free(sk); 1757 } 1758 EXPORT_SYMBOL(sk_free); 1759 1760 static void sk_init_common(struct sock *sk) 1761 { 1762 skb_queue_head_init(&sk->sk_receive_queue); 1763 skb_queue_head_init(&sk->sk_write_queue); 1764 skb_queue_head_init(&sk->sk_error_queue); 1765 1766 rwlock_init(&sk->sk_callback_lock); 1767 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1768 af_rlock_keys + sk->sk_family, 1769 af_family_rlock_key_strings[sk->sk_family]); 1770 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1771 af_wlock_keys + sk->sk_family, 1772 af_family_wlock_key_strings[sk->sk_family]); 1773 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1774 af_elock_keys + sk->sk_family, 1775 af_family_elock_key_strings[sk->sk_family]); 1776 lockdep_set_class_and_name(&sk->sk_callback_lock, 1777 af_callback_keys + sk->sk_family, 1778 af_family_clock_key_strings[sk->sk_family]); 1779 } 1780 1781 /** 1782 * sk_clone_lock - clone a socket, and lock its clone 1783 * @sk: the socket to clone 1784 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1785 * 1786 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1787 */ 1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1789 { 1790 struct sock *newsk; 1791 bool is_charged = true; 1792 1793 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1794 if (newsk != NULL) { 1795 struct sk_filter *filter; 1796 1797 sock_copy(newsk, sk); 1798 1799 newsk->sk_prot_creator = sk->sk_prot; 1800 1801 /* SANITY */ 1802 if (likely(newsk->sk_net_refcnt)) 1803 get_net(sock_net(newsk)); 1804 sk_node_init(&newsk->sk_node); 1805 sock_lock_init(newsk); 1806 bh_lock_sock(newsk); 1807 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1808 newsk->sk_backlog.len = 0; 1809 1810 atomic_set(&newsk->sk_rmem_alloc, 0); 1811 /* 1812 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1813 */ 1814 refcount_set(&newsk->sk_wmem_alloc, 1); 1815 atomic_set(&newsk->sk_omem_alloc, 0); 1816 sk_init_common(newsk); 1817 1818 newsk->sk_dst_cache = NULL; 1819 newsk->sk_dst_pending_confirm = 0; 1820 newsk->sk_wmem_queued = 0; 1821 newsk->sk_forward_alloc = 0; 1822 atomic_set(&newsk->sk_drops, 0); 1823 newsk->sk_send_head = NULL; 1824 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1825 atomic_set(&newsk->sk_zckey, 0); 1826 1827 sock_reset_flag(newsk, SOCK_DONE); 1828 mem_cgroup_sk_alloc(newsk); 1829 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1830 1831 rcu_read_lock(); 1832 filter = rcu_dereference(sk->sk_filter); 1833 if (filter != NULL) 1834 /* though it's an empty new sock, the charging may fail 1835 * if sysctl_optmem_max was changed between creation of 1836 * original socket and cloning 1837 */ 1838 is_charged = sk_filter_charge(newsk, filter); 1839 RCU_INIT_POINTER(newsk->sk_filter, filter); 1840 rcu_read_unlock(); 1841 1842 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1843 /* We need to make sure that we don't uncharge the new 1844 * socket if we couldn't charge it in the first place 1845 * as otherwise we uncharge the parent's filter. 1846 */ 1847 if (!is_charged) 1848 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1849 sk_free_unlock_clone(newsk); 1850 newsk = NULL; 1851 goto out; 1852 } 1853 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1854 #ifdef CONFIG_BPF_SYSCALL 1855 RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); 1856 #endif 1857 1858 newsk->sk_err = 0; 1859 newsk->sk_err_soft = 0; 1860 newsk->sk_priority = 0; 1861 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1862 if (likely(newsk->sk_net_refcnt)) 1863 sock_inuse_add(sock_net(newsk), 1); 1864 1865 /* 1866 * Before updating sk_refcnt, we must commit prior changes to memory 1867 * (Documentation/RCU/rculist_nulls.txt for details) 1868 */ 1869 smp_wmb(); 1870 refcount_set(&newsk->sk_refcnt, 2); 1871 1872 /* 1873 * Increment the counter in the same struct proto as the master 1874 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1875 * is the same as sk->sk_prot->socks, as this field was copied 1876 * with memcpy). 1877 * 1878 * This _changes_ the previous behaviour, where 1879 * tcp_create_openreq_child always was incrementing the 1880 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1881 * to be taken into account in all callers. -acme 1882 */ 1883 sk_refcnt_debug_inc(newsk); 1884 sk_set_socket(newsk, NULL); 1885 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1886 1887 if (newsk->sk_prot->sockets_allocated) 1888 sk_sockets_allocated_inc(newsk); 1889 1890 if (sock_needs_netstamp(sk) && 1891 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1892 net_enable_timestamp(); 1893 } 1894 out: 1895 return newsk; 1896 } 1897 EXPORT_SYMBOL_GPL(sk_clone_lock); 1898 1899 void sk_free_unlock_clone(struct sock *sk) 1900 { 1901 /* It is still raw copy of parent, so invalidate 1902 * destructor and make plain sk_free() */ 1903 sk->sk_destruct = NULL; 1904 bh_unlock_sock(sk); 1905 sk_free(sk); 1906 } 1907 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1908 1909 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1910 { 1911 u32 max_segs = 1; 1912 1913 sk_dst_set(sk, dst); 1914 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1915 if (sk->sk_route_caps & NETIF_F_GSO) 1916 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1917 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1918 if (sk_can_gso(sk)) { 1919 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1920 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1921 } else { 1922 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1923 sk->sk_gso_max_size = dst->dev->gso_max_size; 1924 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1925 } 1926 } 1927 sk->sk_gso_max_segs = max_segs; 1928 } 1929 EXPORT_SYMBOL_GPL(sk_setup_caps); 1930 1931 /* 1932 * Simple resource managers for sockets. 1933 */ 1934 1935 1936 /* 1937 * Write buffer destructor automatically called from kfree_skb. 1938 */ 1939 void sock_wfree(struct sk_buff *skb) 1940 { 1941 struct sock *sk = skb->sk; 1942 unsigned int len = skb->truesize; 1943 1944 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1945 /* 1946 * Keep a reference on sk_wmem_alloc, this will be released 1947 * after sk_write_space() call 1948 */ 1949 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1950 sk->sk_write_space(sk); 1951 len = 1; 1952 } 1953 /* 1954 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1955 * could not do because of in-flight packets 1956 */ 1957 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1958 __sk_free(sk); 1959 } 1960 EXPORT_SYMBOL(sock_wfree); 1961 1962 /* This variant of sock_wfree() is used by TCP, 1963 * since it sets SOCK_USE_WRITE_QUEUE. 1964 */ 1965 void __sock_wfree(struct sk_buff *skb) 1966 { 1967 struct sock *sk = skb->sk; 1968 1969 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1970 __sk_free(sk); 1971 } 1972 1973 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1974 { 1975 skb_orphan(skb); 1976 skb->sk = sk; 1977 #ifdef CONFIG_INET 1978 if (unlikely(!sk_fullsock(sk))) { 1979 skb->destructor = sock_edemux; 1980 sock_hold(sk); 1981 return; 1982 } 1983 #endif 1984 skb->destructor = sock_wfree; 1985 skb_set_hash_from_sk(skb, sk); 1986 /* 1987 * We used to take a refcount on sk, but following operation 1988 * is enough to guarantee sk_free() wont free this sock until 1989 * all in-flight packets are completed 1990 */ 1991 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1992 } 1993 EXPORT_SYMBOL(skb_set_owner_w); 1994 1995 static bool can_skb_orphan_partial(const struct sk_buff *skb) 1996 { 1997 #ifdef CONFIG_TLS_DEVICE 1998 /* Drivers depend on in-order delivery for crypto offload, 1999 * partial orphan breaks out-of-order-OK logic. 2000 */ 2001 if (skb->decrypted) 2002 return false; 2003 #endif 2004 return (skb->destructor == sock_wfree || 2005 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2006 } 2007 2008 /* This helper is used by netem, as it can hold packets in its 2009 * delay queue. We want to allow the owner socket to send more 2010 * packets, as if they were already TX completed by a typical driver. 2011 * But we also want to keep skb->sk set because some packet schedulers 2012 * rely on it (sch_fq for example). 2013 */ 2014 void skb_orphan_partial(struct sk_buff *skb) 2015 { 2016 if (skb_is_tcp_pure_ack(skb)) 2017 return; 2018 2019 if (can_skb_orphan_partial(skb)) { 2020 struct sock *sk = skb->sk; 2021 2022 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2023 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2024 skb->destructor = sock_efree; 2025 } 2026 } else { 2027 skb_orphan(skb); 2028 } 2029 } 2030 EXPORT_SYMBOL(skb_orphan_partial); 2031 2032 /* 2033 * Read buffer destructor automatically called from kfree_skb. 2034 */ 2035 void sock_rfree(struct sk_buff *skb) 2036 { 2037 struct sock *sk = skb->sk; 2038 unsigned int len = skb->truesize; 2039 2040 atomic_sub(len, &sk->sk_rmem_alloc); 2041 sk_mem_uncharge(sk, len); 2042 } 2043 EXPORT_SYMBOL(sock_rfree); 2044 2045 /* 2046 * Buffer destructor for skbs that are not used directly in read or write 2047 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2048 */ 2049 void sock_efree(struct sk_buff *skb) 2050 { 2051 sock_put(skb->sk); 2052 } 2053 EXPORT_SYMBOL(sock_efree); 2054 2055 kuid_t sock_i_uid(struct sock *sk) 2056 { 2057 kuid_t uid; 2058 2059 read_lock_bh(&sk->sk_callback_lock); 2060 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2061 read_unlock_bh(&sk->sk_callback_lock); 2062 return uid; 2063 } 2064 EXPORT_SYMBOL(sock_i_uid); 2065 2066 unsigned long sock_i_ino(struct sock *sk) 2067 { 2068 unsigned long ino; 2069 2070 read_lock_bh(&sk->sk_callback_lock); 2071 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2072 read_unlock_bh(&sk->sk_callback_lock); 2073 return ino; 2074 } 2075 EXPORT_SYMBOL(sock_i_ino); 2076 2077 /* 2078 * Allocate a skb from the socket's send buffer. 2079 */ 2080 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2081 gfp_t priority) 2082 { 2083 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2084 struct sk_buff *skb = alloc_skb(size, priority); 2085 if (skb) { 2086 skb_set_owner_w(skb, sk); 2087 return skb; 2088 } 2089 } 2090 return NULL; 2091 } 2092 EXPORT_SYMBOL(sock_wmalloc); 2093 2094 static void sock_ofree(struct sk_buff *skb) 2095 { 2096 struct sock *sk = skb->sk; 2097 2098 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2099 } 2100 2101 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2102 gfp_t priority) 2103 { 2104 struct sk_buff *skb; 2105 2106 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2107 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2108 sysctl_optmem_max) 2109 return NULL; 2110 2111 skb = alloc_skb(size, priority); 2112 if (!skb) 2113 return NULL; 2114 2115 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2116 skb->sk = sk; 2117 skb->destructor = sock_ofree; 2118 return skb; 2119 } 2120 2121 /* 2122 * Allocate a memory block from the socket's option memory buffer. 2123 */ 2124 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2125 { 2126 if ((unsigned int)size <= sysctl_optmem_max && 2127 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2128 void *mem; 2129 /* First do the add, to avoid the race if kmalloc 2130 * might sleep. 2131 */ 2132 atomic_add(size, &sk->sk_omem_alloc); 2133 mem = kmalloc(size, priority); 2134 if (mem) 2135 return mem; 2136 atomic_sub(size, &sk->sk_omem_alloc); 2137 } 2138 return NULL; 2139 } 2140 EXPORT_SYMBOL(sock_kmalloc); 2141 2142 /* Free an option memory block. Note, we actually want the inline 2143 * here as this allows gcc to detect the nullify and fold away the 2144 * condition entirely. 2145 */ 2146 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2147 const bool nullify) 2148 { 2149 if (WARN_ON_ONCE(!mem)) 2150 return; 2151 if (nullify) 2152 kzfree(mem); 2153 else 2154 kfree(mem); 2155 atomic_sub(size, &sk->sk_omem_alloc); 2156 } 2157 2158 void sock_kfree_s(struct sock *sk, void *mem, int size) 2159 { 2160 __sock_kfree_s(sk, mem, size, false); 2161 } 2162 EXPORT_SYMBOL(sock_kfree_s); 2163 2164 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2165 { 2166 __sock_kfree_s(sk, mem, size, true); 2167 } 2168 EXPORT_SYMBOL(sock_kzfree_s); 2169 2170 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2171 I think, these locks should be removed for datagram sockets. 2172 */ 2173 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2174 { 2175 DEFINE_WAIT(wait); 2176 2177 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2178 for (;;) { 2179 if (!timeo) 2180 break; 2181 if (signal_pending(current)) 2182 break; 2183 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2184 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2185 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2186 break; 2187 if (sk->sk_shutdown & SEND_SHUTDOWN) 2188 break; 2189 if (sk->sk_err) 2190 break; 2191 timeo = schedule_timeout(timeo); 2192 } 2193 finish_wait(sk_sleep(sk), &wait); 2194 return timeo; 2195 } 2196 2197 2198 /* 2199 * Generic send/receive buffer handlers 2200 */ 2201 2202 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2203 unsigned long data_len, int noblock, 2204 int *errcode, int max_page_order) 2205 { 2206 struct sk_buff *skb; 2207 long timeo; 2208 int err; 2209 2210 timeo = sock_sndtimeo(sk, noblock); 2211 for (;;) { 2212 err = sock_error(sk); 2213 if (err != 0) 2214 goto failure; 2215 2216 err = -EPIPE; 2217 if (sk->sk_shutdown & SEND_SHUTDOWN) 2218 goto failure; 2219 2220 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2221 break; 2222 2223 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2224 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2225 err = -EAGAIN; 2226 if (!timeo) 2227 goto failure; 2228 if (signal_pending(current)) 2229 goto interrupted; 2230 timeo = sock_wait_for_wmem(sk, timeo); 2231 } 2232 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2233 errcode, sk->sk_allocation); 2234 if (skb) 2235 skb_set_owner_w(skb, sk); 2236 return skb; 2237 2238 interrupted: 2239 err = sock_intr_errno(timeo); 2240 failure: 2241 *errcode = err; 2242 return NULL; 2243 } 2244 EXPORT_SYMBOL(sock_alloc_send_pskb); 2245 2246 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2247 int noblock, int *errcode) 2248 { 2249 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2250 } 2251 EXPORT_SYMBOL(sock_alloc_send_skb); 2252 2253 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2254 struct sockcm_cookie *sockc) 2255 { 2256 u32 tsflags; 2257 2258 switch (cmsg->cmsg_type) { 2259 case SO_MARK: 2260 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2261 return -EPERM; 2262 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2263 return -EINVAL; 2264 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2265 break; 2266 case SO_TIMESTAMPING_OLD: 2267 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2268 return -EINVAL; 2269 2270 tsflags = *(u32 *)CMSG_DATA(cmsg); 2271 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2272 return -EINVAL; 2273 2274 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2275 sockc->tsflags |= tsflags; 2276 break; 2277 case SCM_TXTIME: 2278 if (!sock_flag(sk, SOCK_TXTIME)) 2279 return -EINVAL; 2280 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2281 return -EINVAL; 2282 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2283 break; 2284 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2285 case SCM_RIGHTS: 2286 case SCM_CREDENTIALS: 2287 break; 2288 default: 2289 return -EINVAL; 2290 } 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(__sock_cmsg_send); 2294 2295 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2296 struct sockcm_cookie *sockc) 2297 { 2298 struct cmsghdr *cmsg; 2299 int ret; 2300 2301 for_each_cmsghdr(cmsg, msg) { 2302 if (!CMSG_OK(msg, cmsg)) 2303 return -EINVAL; 2304 if (cmsg->cmsg_level != SOL_SOCKET) 2305 continue; 2306 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2307 if (ret) 2308 return ret; 2309 } 2310 return 0; 2311 } 2312 EXPORT_SYMBOL(sock_cmsg_send); 2313 2314 static void sk_enter_memory_pressure(struct sock *sk) 2315 { 2316 if (!sk->sk_prot->enter_memory_pressure) 2317 return; 2318 2319 sk->sk_prot->enter_memory_pressure(sk); 2320 } 2321 2322 static void sk_leave_memory_pressure(struct sock *sk) 2323 { 2324 if (sk->sk_prot->leave_memory_pressure) { 2325 sk->sk_prot->leave_memory_pressure(sk); 2326 } else { 2327 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2328 2329 if (memory_pressure && *memory_pressure) 2330 *memory_pressure = 0; 2331 } 2332 } 2333 2334 /* On 32bit arches, an skb frag is limited to 2^15 */ 2335 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2336 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2337 2338 /** 2339 * skb_page_frag_refill - check that a page_frag contains enough room 2340 * @sz: minimum size of the fragment we want to get 2341 * @pfrag: pointer to page_frag 2342 * @gfp: priority for memory allocation 2343 * 2344 * Note: While this allocator tries to use high order pages, there is 2345 * no guarantee that allocations succeed. Therefore, @sz MUST be 2346 * less or equal than PAGE_SIZE. 2347 */ 2348 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2349 { 2350 if (pfrag->page) { 2351 if (page_ref_count(pfrag->page) == 1) { 2352 pfrag->offset = 0; 2353 return true; 2354 } 2355 if (pfrag->offset + sz <= pfrag->size) 2356 return true; 2357 put_page(pfrag->page); 2358 } 2359 2360 pfrag->offset = 0; 2361 if (SKB_FRAG_PAGE_ORDER && 2362 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2363 /* Avoid direct reclaim but allow kswapd to wake */ 2364 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2365 __GFP_COMP | __GFP_NOWARN | 2366 __GFP_NORETRY, 2367 SKB_FRAG_PAGE_ORDER); 2368 if (likely(pfrag->page)) { 2369 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2370 return true; 2371 } 2372 } 2373 pfrag->page = alloc_page(gfp); 2374 if (likely(pfrag->page)) { 2375 pfrag->size = PAGE_SIZE; 2376 return true; 2377 } 2378 return false; 2379 } 2380 EXPORT_SYMBOL(skb_page_frag_refill); 2381 2382 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2383 { 2384 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2385 return true; 2386 2387 sk_enter_memory_pressure(sk); 2388 sk_stream_moderate_sndbuf(sk); 2389 return false; 2390 } 2391 EXPORT_SYMBOL(sk_page_frag_refill); 2392 2393 static void __lock_sock(struct sock *sk) 2394 __releases(&sk->sk_lock.slock) 2395 __acquires(&sk->sk_lock.slock) 2396 { 2397 DEFINE_WAIT(wait); 2398 2399 for (;;) { 2400 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2401 TASK_UNINTERRUPTIBLE); 2402 spin_unlock_bh(&sk->sk_lock.slock); 2403 schedule(); 2404 spin_lock_bh(&sk->sk_lock.slock); 2405 if (!sock_owned_by_user(sk)) 2406 break; 2407 } 2408 finish_wait(&sk->sk_lock.wq, &wait); 2409 } 2410 2411 void __release_sock(struct sock *sk) 2412 __releases(&sk->sk_lock.slock) 2413 __acquires(&sk->sk_lock.slock) 2414 { 2415 struct sk_buff *skb, *next; 2416 2417 while ((skb = sk->sk_backlog.head) != NULL) { 2418 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2419 2420 spin_unlock_bh(&sk->sk_lock.slock); 2421 2422 do { 2423 next = skb->next; 2424 prefetch(next); 2425 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2426 skb_mark_not_on_list(skb); 2427 sk_backlog_rcv(sk, skb); 2428 2429 cond_resched(); 2430 2431 skb = next; 2432 } while (skb != NULL); 2433 2434 spin_lock_bh(&sk->sk_lock.slock); 2435 } 2436 2437 /* 2438 * Doing the zeroing here guarantee we can not loop forever 2439 * while a wild producer attempts to flood us. 2440 */ 2441 sk->sk_backlog.len = 0; 2442 } 2443 2444 void __sk_flush_backlog(struct sock *sk) 2445 { 2446 spin_lock_bh(&sk->sk_lock.slock); 2447 __release_sock(sk); 2448 spin_unlock_bh(&sk->sk_lock.slock); 2449 } 2450 2451 /** 2452 * sk_wait_data - wait for data to arrive at sk_receive_queue 2453 * @sk: sock to wait on 2454 * @timeo: for how long 2455 * @skb: last skb seen on sk_receive_queue 2456 * 2457 * Now socket state including sk->sk_err is changed only under lock, 2458 * hence we may omit checks after joining wait queue. 2459 * We check receive queue before schedule() only as optimization; 2460 * it is very likely that release_sock() added new data. 2461 */ 2462 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2463 { 2464 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2465 int rc; 2466 2467 add_wait_queue(sk_sleep(sk), &wait); 2468 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2469 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2470 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2471 remove_wait_queue(sk_sleep(sk), &wait); 2472 return rc; 2473 } 2474 EXPORT_SYMBOL(sk_wait_data); 2475 2476 /** 2477 * __sk_mem_raise_allocated - increase memory_allocated 2478 * @sk: socket 2479 * @size: memory size to allocate 2480 * @amt: pages to allocate 2481 * @kind: allocation type 2482 * 2483 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2484 */ 2485 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2486 { 2487 struct proto *prot = sk->sk_prot; 2488 long allocated = sk_memory_allocated_add(sk, amt); 2489 bool charged = true; 2490 2491 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2492 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2493 goto suppress_allocation; 2494 2495 /* Under limit. */ 2496 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2497 sk_leave_memory_pressure(sk); 2498 return 1; 2499 } 2500 2501 /* Under pressure. */ 2502 if (allocated > sk_prot_mem_limits(sk, 1)) 2503 sk_enter_memory_pressure(sk); 2504 2505 /* Over hard limit. */ 2506 if (allocated > sk_prot_mem_limits(sk, 2)) 2507 goto suppress_allocation; 2508 2509 /* guarantee minimum buffer size under pressure */ 2510 if (kind == SK_MEM_RECV) { 2511 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2512 return 1; 2513 2514 } else { /* SK_MEM_SEND */ 2515 int wmem0 = sk_get_wmem0(sk, prot); 2516 2517 if (sk->sk_type == SOCK_STREAM) { 2518 if (sk->sk_wmem_queued < wmem0) 2519 return 1; 2520 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2521 return 1; 2522 } 2523 } 2524 2525 if (sk_has_memory_pressure(sk)) { 2526 u64 alloc; 2527 2528 if (!sk_under_memory_pressure(sk)) 2529 return 1; 2530 alloc = sk_sockets_allocated_read_positive(sk); 2531 if (sk_prot_mem_limits(sk, 2) > alloc * 2532 sk_mem_pages(sk->sk_wmem_queued + 2533 atomic_read(&sk->sk_rmem_alloc) + 2534 sk->sk_forward_alloc)) 2535 return 1; 2536 } 2537 2538 suppress_allocation: 2539 2540 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2541 sk_stream_moderate_sndbuf(sk); 2542 2543 /* Fail only if socket is _under_ its sndbuf. 2544 * In this case we cannot block, so that we have to fail. 2545 */ 2546 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2547 return 1; 2548 } 2549 2550 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2551 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2552 2553 sk_memory_allocated_sub(sk, amt); 2554 2555 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2556 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2557 2558 return 0; 2559 } 2560 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2561 2562 /** 2563 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2564 * @sk: socket 2565 * @size: memory size to allocate 2566 * @kind: allocation type 2567 * 2568 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2569 * rmem allocation. This function assumes that protocols which have 2570 * memory_pressure use sk_wmem_queued as write buffer accounting. 2571 */ 2572 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2573 { 2574 int ret, amt = sk_mem_pages(size); 2575 2576 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2577 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2578 if (!ret) 2579 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(__sk_mem_schedule); 2583 2584 /** 2585 * __sk_mem_reduce_allocated - reclaim memory_allocated 2586 * @sk: socket 2587 * @amount: number of quanta 2588 * 2589 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2590 */ 2591 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2592 { 2593 sk_memory_allocated_sub(sk, amount); 2594 2595 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2596 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2597 2598 if (sk_under_memory_pressure(sk) && 2599 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2600 sk_leave_memory_pressure(sk); 2601 } 2602 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2603 2604 /** 2605 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2606 * @sk: socket 2607 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2608 */ 2609 void __sk_mem_reclaim(struct sock *sk, int amount) 2610 { 2611 amount >>= SK_MEM_QUANTUM_SHIFT; 2612 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2613 __sk_mem_reduce_allocated(sk, amount); 2614 } 2615 EXPORT_SYMBOL(__sk_mem_reclaim); 2616 2617 int sk_set_peek_off(struct sock *sk, int val) 2618 { 2619 sk->sk_peek_off = val; 2620 return 0; 2621 } 2622 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2623 2624 /* 2625 * Set of default routines for initialising struct proto_ops when 2626 * the protocol does not support a particular function. In certain 2627 * cases where it makes no sense for a protocol to have a "do nothing" 2628 * function, some default processing is provided. 2629 */ 2630 2631 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2632 { 2633 return -EOPNOTSUPP; 2634 } 2635 EXPORT_SYMBOL(sock_no_bind); 2636 2637 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2638 int len, int flags) 2639 { 2640 return -EOPNOTSUPP; 2641 } 2642 EXPORT_SYMBOL(sock_no_connect); 2643 2644 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2645 { 2646 return -EOPNOTSUPP; 2647 } 2648 EXPORT_SYMBOL(sock_no_socketpair); 2649 2650 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2651 bool kern) 2652 { 2653 return -EOPNOTSUPP; 2654 } 2655 EXPORT_SYMBOL(sock_no_accept); 2656 2657 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2658 int peer) 2659 { 2660 return -EOPNOTSUPP; 2661 } 2662 EXPORT_SYMBOL(sock_no_getname); 2663 2664 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2665 { 2666 return -EOPNOTSUPP; 2667 } 2668 EXPORT_SYMBOL(sock_no_ioctl); 2669 2670 int sock_no_listen(struct socket *sock, int backlog) 2671 { 2672 return -EOPNOTSUPP; 2673 } 2674 EXPORT_SYMBOL(sock_no_listen); 2675 2676 int sock_no_shutdown(struct socket *sock, int how) 2677 { 2678 return -EOPNOTSUPP; 2679 } 2680 EXPORT_SYMBOL(sock_no_shutdown); 2681 2682 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2683 char __user *optval, unsigned int optlen) 2684 { 2685 return -EOPNOTSUPP; 2686 } 2687 EXPORT_SYMBOL(sock_no_setsockopt); 2688 2689 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2690 char __user *optval, int __user *optlen) 2691 { 2692 return -EOPNOTSUPP; 2693 } 2694 EXPORT_SYMBOL(sock_no_getsockopt); 2695 2696 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2697 { 2698 return -EOPNOTSUPP; 2699 } 2700 EXPORT_SYMBOL(sock_no_sendmsg); 2701 2702 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2703 { 2704 return -EOPNOTSUPP; 2705 } 2706 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2707 2708 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2709 int flags) 2710 { 2711 return -EOPNOTSUPP; 2712 } 2713 EXPORT_SYMBOL(sock_no_recvmsg); 2714 2715 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2716 { 2717 /* Mirror missing mmap method error code */ 2718 return -ENODEV; 2719 } 2720 EXPORT_SYMBOL(sock_no_mmap); 2721 2722 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2723 { 2724 ssize_t res; 2725 struct msghdr msg = {.msg_flags = flags}; 2726 struct kvec iov; 2727 char *kaddr = kmap(page); 2728 iov.iov_base = kaddr + offset; 2729 iov.iov_len = size; 2730 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2731 kunmap(page); 2732 return res; 2733 } 2734 EXPORT_SYMBOL(sock_no_sendpage); 2735 2736 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2737 int offset, size_t size, int flags) 2738 { 2739 ssize_t res; 2740 struct msghdr msg = {.msg_flags = flags}; 2741 struct kvec iov; 2742 char *kaddr = kmap(page); 2743 2744 iov.iov_base = kaddr + offset; 2745 iov.iov_len = size; 2746 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2747 kunmap(page); 2748 return res; 2749 } 2750 EXPORT_SYMBOL(sock_no_sendpage_locked); 2751 2752 /* 2753 * Default Socket Callbacks 2754 */ 2755 2756 static void sock_def_wakeup(struct sock *sk) 2757 { 2758 struct socket_wq *wq; 2759 2760 rcu_read_lock(); 2761 wq = rcu_dereference(sk->sk_wq); 2762 if (skwq_has_sleeper(wq)) 2763 wake_up_interruptible_all(&wq->wait); 2764 rcu_read_unlock(); 2765 } 2766 2767 static void sock_def_error_report(struct sock *sk) 2768 { 2769 struct socket_wq *wq; 2770 2771 rcu_read_lock(); 2772 wq = rcu_dereference(sk->sk_wq); 2773 if (skwq_has_sleeper(wq)) 2774 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2775 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2776 rcu_read_unlock(); 2777 } 2778 2779 static void sock_def_readable(struct sock *sk) 2780 { 2781 struct socket_wq *wq; 2782 2783 rcu_read_lock(); 2784 wq = rcu_dereference(sk->sk_wq); 2785 if (skwq_has_sleeper(wq)) 2786 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2787 EPOLLRDNORM | EPOLLRDBAND); 2788 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2789 rcu_read_unlock(); 2790 } 2791 2792 static void sock_def_write_space(struct sock *sk) 2793 { 2794 struct socket_wq *wq; 2795 2796 rcu_read_lock(); 2797 2798 /* Do not wake up a writer until he can make "significant" 2799 * progress. --DaveM 2800 */ 2801 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2802 wq = rcu_dereference(sk->sk_wq); 2803 if (skwq_has_sleeper(wq)) 2804 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2805 EPOLLWRNORM | EPOLLWRBAND); 2806 2807 /* Should agree with poll, otherwise some programs break */ 2808 if (sock_writeable(sk)) 2809 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2810 } 2811 2812 rcu_read_unlock(); 2813 } 2814 2815 static void sock_def_destruct(struct sock *sk) 2816 { 2817 } 2818 2819 void sk_send_sigurg(struct sock *sk) 2820 { 2821 if (sk->sk_socket && sk->sk_socket->file) 2822 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2823 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2824 } 2825 EXPORT_SYMBOL(sk_send_sigurg); 2826 2827 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2828 unsigned long expires) 2829 { 2830 if (!mod_timer(timer, expires)) 2831 sock_hold(sk); 2832 } 2833 EXPORT_SYMBOL(sk_reset_timer); 2834 2835 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2836 { 2837 if (del_timer(timer)) 2838 __sock_put(sk); 2839 } 2840 EXPORT_SYMBOL(sk_stop_timer); 2841 2842 void sock_init_data(struct socket *sock, struct sock *sk) 2843 { 2844 sk_init_common(sk); 2845 sk->sk_send_head = NULL; 2846 2847 timer_setup(&sk->sk_timer, NULL, 0); 2848 2849 sk->sk_allocation = GFP_KERNEL; 2850 sk->sk_rcvbuf = sysctl_rmem_default; 2851 sk->sk_sndbuf = sysctl_wmem_default; 2852 sk->sk_state = TCP_CLOSE; 2853 sk_set_socket(sk, sock); 2854 2855 sock_set_flag(sk, SOCK_ZAPPED); 2856 2857 if (sock) { 2858 sk->sk_type = sock->type; 2859 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2860 sock->sk = sk; 2861 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2862 } else { 2863 RCU_INIT_POINTER(sk->sk_wq, NULL); 2864 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2865 } 2866 2867 rwlock_init(&sk->sk_callback_lock); 2868 if (sk->sk_kern_sock) 2869 lockdep_set_class_and_name( 2870 &sk->sk_callback_lock, 2871 af_kern_callback_keys + sk->sk_family, 2872 af_family_kern_clock_key_strings[sk->sk_family]); 2873 else 2874 lockdep_set_class_and_name( 2875 &sk->sk_callback_lock, 2876 af_callback_keys + sk->sk_family, 2877 af_family_clock_key_strings[sk->sk_family]); 2878 2879 sk->sk_state_change = sock_def_wakeup; 2880 sk->sk_data_ready = sock_def_readable; 2881 sk->sk_write_space = sock_def_write_space; 2882 sk->sk_error_report = sock_def_error_report; 2883 sk->sk_destruct = sock_def_destruct; 2884 2885 sk->sk_frag.page = NULL; 2886 sk->sk_frag.offset = 0; 2887 sk->sk_peek_off = -1; 2888 2889 sk->sk_peer_pid = NULL; 2890 sk->sk_peer_cred = NULL; 2891 sk->sk_write_pending = 0; 2892 sk->sk_rcvlowat = 1; 2893 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2894 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2895 2896 sk->sk_stamp = SK_DEFAULT_STAMP; 2897 #if BITS_PER_LONG==32 2898 seqlock_init(&sk->sk_stamp_seq); 2899 #endif 2900 atomic_set(&sk->sk_zckey, 0); 2901 2902 #ifdef CONFIG_NET_RX_BUSY_POLL 2903 sk->sk_napi_id = 0; 2904 sk->sk_ll_usec = sysctl_net_busy_read; 2905 #endif 2906 2907 sk->sk_max_pacing_rate = ~0UL; 2908 sk->sk_pacing_rate = ~0UL; 2909 sk->sk_pacing_shift = 10; 2910 sk->sk_incoming_cpu = -1; 2911 2912 sk_rx_queue_clear(sk); 2913 /* 2914 * Before updating sk_refcnt, we must commit prior changes to memory 2915 * (Documentation/RCU/rculist_nulls.txt for details) 2916 */ 2917 smp_wmb(); 2918 refcount_set(&sk->sk_refcnt, 1); 2919 atomic_set(&sk->sk_drops, 0); 2920 } 2921 EXPORT_SYMBOL(sock_init_data); 2922 2923 void lock_sock_nested(struct sock *sk, int subclass) 2924 { 2925 might_sleep(); 2926 spin_lock_bh(&sk->sk_lock.slock); 2927 if (sk->sk_lock.owned) 2928 __lock_sock(sk); 2929 sk->sk_lock.owned = 1; 2930 spin_unlock(&sk->sk_lock.slock); 2931 /* 2932 * The sk_lock has mutex_lock() semantics here: 2933 */ 2934 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2935 local_bh_enable(); 2936 } 2937 EXPORT_SYMBOL(lock_sock_nested); 2938 2939 void release_sock(struct sock *sk) 2940 { 2941 spin_lock_bh(&sk->sk_lock.slock); 2942 if (sk->sk_backlog.tail) 2943 __release_sock(sk); 2944 2945 /* Warning : release_cb() might need to release sk ownership, 2946 * ie call sock_release_ownership(sk) before us. 2947 */ 2948 if (sk->sk_prot->release_cb) 2949 sk->sk_prot->release_cb(sk); 2950 2951 sock_release_ownership(sk); 2952 if (waitqueue_active(&sk->sk_lock.wq)) 2953 wake_up(&sk->sk_lock.wq); 2954 spin_unlock_bh(&sk->sk_lock.slock); 2955 } 2956 EXPORT_SYMBOL(release_sock); 2957 2958 /** 2959 * lock_sock_fast - fast version of lock_sock 2960 * @sk: socket 2961 * 2962 * This version should be used for very small section, where process wont block 2963 * return false if fast path is taken: 2964 * 2965 * sk_lock.slock locked, owned = 0, BH disabled 2966 * 2967 * return true if slow path is taken: 2968 * 2969 * sk_lock.slock unlocked, owned = 1, BH enabled 2970 */ 2971 bool lock_sock_fast(struct sock *sk) 2972 { 2973 might_sleep(); 2974 spin_lock_bh(&sk->sk_lock.slock); 2975 2976 if (!sk->sk_lock.owned) 2977 /* 2978 * Note : We must disable BH 2979 */ 2980 return false; 2981 2982 __lock_sock(sk); 2983 sk->sk_lock.owned = 1; 2984 spin_unlock(&sk->sk_lock.slock); 2985 /* 2986 * The sk_lock has mutex_lock() semantics here: 2987 */ 2988 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2989 local_bh_enable(); 2990 return true; 2991 } 2992 EXPORT_SYMBOL(lock_sock_fast); 2993 2994 int sock_gettstamp(struct socket *sock, void __user *userstamp, 2995 bool timeval, bool time32) 2996 { 2997 struct sock *sk = sock->sk; 2998 struct timespec64 ts; 2999 3000 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3001 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3002 if (ts.tv_sec == -1) 3003 return -ENOENT; 3004 if (ts.tv_sec == 0) { 3005 ktime_t kt = ktime_get_real(); 3006 sock_write_timestamp(sk, kt);; 3007 ts = ktime_to_timespec64(kt); 3008 } 3009 3010 if (timeval) 3011 ts.tv_nsec /= 1000; 3012 3013 #ifdef CONFIG_COMPAT_32BIT_TIME 3014 if (time32) 3015 return put_old_timespec32(&ts, userstamp); 3016 #endif 3017 #ifdef CONFIG_SPARC64 3018 /* beware of padding in sparc64 timeval */ 3019 if (timeval && !in_compat_syscall()) { 3020 struct __kernel_old_timeval __user tv = { 3021 .tv_sec = ts.tv_sec, 3022 .tv_usec = ts.tv_nsec, 3023 }; 3024 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3025 return -EFAULT; 3026 return 0; 3027 } 3028 #endif 3029 return put_timespec64(&ts, userstamp); 3030 } 3031 EXPORT_SYMBOL(sock_gettstamp); 3032 3033 void sock_enable_timestamp(struct sock *sk, int flag) 3034 { 3035 if (!sock_flag(sk, flag)) { 3036 unsigned long previous_flags = sk->sk_flags; 3037 3038 sock_set_flag(sk, flag); 3039 /* 3040 * we just set one of the two flags which require net 3041 * time stamping, but time stamping might have been on 3042 * already because of the other one 3043 */ 3044 if (sock_needs_netstamp(sk) && 3045 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3046 net_enable_timestamp(); 3047 } 3048 } 3049 3050 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3051 int level, int type) 3052 { 3053 struct sock_exterr_skb *serr; 3054 struct sk_buff *skb; 3055 int copied, err; 3056 3057 err = -EAGAIN; 3058 skb = sock_dequeue_err_skb(sk); 3059 if (skb == NULL) 3060 goto out; 3061 3062 copied = skb->len; 3063 if (copied > len) { 3064 msg->msg_flags |= MSG_TRUNC; 3065 copied = len; 3066 } 3067 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3068 if (err) 3069 goto out_free_skb; 3070 3071 sock_recv_timestamp(msg, sk, skb); 3072 3073 serr = SKB_EXT_ERR(skb); 3074 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3075 3076 msg->msg_flags |= MSG_ERRQUEUE; 3077 err = copied; 3078 3079 out_free_skb: 3080 kfree_skb(skb); 3081 out: 3082 return err; 3083 } 3084 EXPORT_SYMBOL(sock_recv_errqueue); 3085 3086 /* 3087 * Get a socket option on an socket. 3088 * 3089 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3090 * asynchronous errors should be reported by getsockopt. We assume 3091 * this means if you specify SO_ERROR (otherwise whats the point of it). 3092 */ 3093 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3094 char __user *optval, int __user *optlen) 3095 { 3096 struct sock *sk = sock->sk; 3097 3098 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3099 } 3100 EXPORT_SYMBOL(sock_common_getsockopt); 3101 3102 #ifdef CONFIG_COMPAT 3103 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3104 char __user *optval, int __user *optlen) 3105 { 3106 struct sock *sk = sock->sk; 3107 3108 if (sk->sk_prot->compat_getsockopt != NULL) 3109 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3110 optval, optlen); 3111 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3112 } 3113 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3114 #endif 3115 3116 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3117 int flags) 3118 { 3119 struct sock *sk = sock->sk; 3120 int addr_len = 0; 3121 int err; 3122 3123 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3124 flags & ~MSG_DONTWAIT, &addr_len); 3125 if (err >= 0) 3126 msg->msg_namelen = addr_len; 3127 return err; 3128 } 3129 EXPORT_SYMBOL(sock_common_recvmsg); 3130 3131 /* 3132 * Set socket options on an inet socket. 3133 */ 3134 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3135 char __user *optval, unsigned int optlen) 3136 { 3137 struct sock *sk = sock->sk; 3138 3139 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3140 } 3141 EXPORT_SYMBOL(sock_common_setsockopt); 3142 3143 #ifdef CONFIG_COMPAT 3144 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3145 char __user *optval, unsigned int optlen) 3146 { 3147 struct sock *sk = sock->sk; 3148 3149 if (sk->sk_prot->compat_setsockopt != NULL) 3150 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3151 optval, optlen); 3152 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3153 } 3154 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3155 #endif 3156 3157 void sk_common_release(struct sock *sk) 3158 { 3159 if (sk->sk_prot->destroy) 3160 sk->sk_prot->destroy(sk); 3161 3162 /* 3163 * Observation: when sock_common_release is called, processes have 3164 * no access to socket. But net still has. 3165 * Step one, detach it from networking: 3166 * 3167 * A. Remove from hash tables. 3168 */ 3169 3170 sk->sk_prot->unhash(sk); 3171 3172 /* 3173 * In this point socket cannot receive new packets, but it is possible 3174 * that some packets are in flight because some CPU runs receiver and 3175 * did hash table lookup before we unhashed socket. They will achieve 3176 * receive queue and will be purged by socket destructor. 3177 * 3178 * Also we still have packets pending on receive queue and probably, 3179 * our own packets waiting in device queues. sock_destroy will drain 3180 * receive queue, but transmitted packets will delay socket destruction 3181 * until the last reference will be released. 3182 */ 3183 3184 sock_orphan(sk); 3185 3186 xfrm_sk_free_policy(sk); 3187 3188 sk_refcnt_debug_release(sk); 3189 3190 sock_put(sk); 3191 } 3192 EXPORT_SYMBOL(sk_common_release); 3193 3194 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3195 { 3196 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3197 3198 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3199 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3200 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3201 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3202 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3203 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3204 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3205 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3206 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3207 } 3208 3209 #ifdef CONFIG_PROC_FS 3210 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3211 struct prot_inuse { 3212 int val[PROTO_INUSE_NR]; 3213 }; 3214 3215 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3216 3217 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3218 { 3219 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3220 } 3221 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3222 3223 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3224 { 3225 int cpu, idx = prot->inuse_idx; 3226 int res = 0; 3227 3228 for_each_possible_cpu(cpu) 3229 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3230 3231 return res >= 0 ? res : 0; 3232 } 3233 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3234 3235 static void sock_inuse_add(struct net *net, int val) 3236 { 3237 this_cpu_add(*net->core.sock_inuse, val); 3238 } 3239 3240 int sock_inuse_get(struct net *net) 3241 { 3242 int cpu, res = 0; 3243 3244 for_each_possible_cpu(cpu) 3245 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3246 3247 return res; 3248 } 3249 3250 EXPORT_SYMBOL_GPL(sock_inuse_get); 3251 3252 static int __net_init sock_inuse_init_net(struct net *net) 3253 { 3254 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3255 if (net->core.prot_inuse == NULL) 3256 return -ENOMEM; 3257 3258 net->core.sock_inuse = alloc_percpu(int); 3259 if (net->core.sock_inuse == NULL) 3260 goto out; 3261 3262 return 0; 3263 3264 out: 3265 free_percpu(net->core.prot_inuse); 3266 return -ENOMEM; 3267 } 3268 3269 static void __net_exit sock_inuse_exit_net(struct net *net) 3270 { 3271 free_percpu(net->core.prot_inuse); 3272 free_percpu(net->core.sock_inuse); 3273 } 3274 3275 static struct pernet_operations net_inuse_ops = { 3276 .init = sock_inuse_init_net, 3277 .exit = sock_inuse_exit_net, 3278 }; 3279 3280 static __init int net_inuse_init(void) 3281 { 3282 if (register_pernet_subsys(&net_inuse_ops)) 3283 panic("Cannot initialize net inuse counters"); 3284 3285 return 0; 3286 } 3287 3288 core_initcall(net_inuse_init); 3289 3290 static int assign_proto_idx(struct proto *prot) 3291 { 3292 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3293 3294 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3295 pr_err("PROTO_INUSE_NR exhausted\n"); 3296 return -ENOSPC; 3297 } 3298 3299 set_bit(prot->inuse_idx, proto_inuse_idx); 3300 return 0; 3301 } 3302 3303 static void release_proto_idx(struct proto *prot) 3304 { 3305 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3306 clear_bit(prot->inuse_idx, proto_inuse_idx); 3307 } 3308 #else 3309 static inline int assign_proto_idx(struct proto *prot) 3310 { 3311 return 0; 3312 } 3313 3314 static inline void release_proto_idx(struct proto *prot) 3315 { 3316 } 3317 3318 static void sock_inuse_add(struct net *net, int val) 3319 { 3320 } 3321 #endif 3322 3323 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3324 { 3325 if (!rsk_prot) 3326 return; 3327 kfree(rsk_prot->slab_name); 3328 rsk_prot->slab_name = NULL; 3329 kmem_cache_destroy(rsk_prot->slab); 3330 rsk_prot->slab = NULL; 3331 } 3332 3333 static int req_prot_init(const struct proto *prot) 3334 { 3335 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3336 3337 if (!rsk_prot) 3338 return 0; 3339 3340 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3341 prot->name); 3342 if (!rsk_prot->slab_name) 3343 return -ENOMEM; 3344 3345 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3346 rsk_prot->obj_size, 0, 3347 SLAB_ACCOUNT | prot->slab_flags, 3348 NULL); 3349 3350 if (!rsk_prot->slab) { 3351 pr_crit("%s: Can't create request sock SLAB cache!\n", 3352 prot->name); 3353 return -ENOMEM; 3354 } 3355 return 0; 3356 } 3357 3358 int proto_register(struct proto *prot, int alloc_slab) 3359 { 3360 int ret = -ENOBUFS; 3361 3362 if (alloc_slab) { 3363 prot->slab = kmem_cache_create_usercopy(prot->name, 3364 prot->obj_size, 0, 3365 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3366 prot->slab_flags, 3367 prot->useroffset, prot->usersize, 3368 NULL); 3369 3370 if (prot->slab == NULL) { 3371 pr_crit("%s: Can't create sock SLAB cache!\n", 3372 prot->name); 3373 goto out; 3374 } 3375 3376 if (req_prot_init(prot)) 3377 goto out_free_request_sock_slab; 3378 3379 if (prot->twsk_prot != NULL) { 3380 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3381 3382 if (prot->twsk_prot->twsk_slab_name == NULL) 3383 goto out_free_request_sock_slab; 3384 3385 prot->twsk_prot->twsk_slab = 3386 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3387 prot->twsk_prot->twsk_obj_size, 3388 0, 3389 SLAB_ACCOUNT | 3390 prot->slab_flags, 3391 NULL); 3392 if (prot->twsk_prot->twsk_slab == NULL) 3393 goto out_free_timewait_sock_slab_name; 3394 } 3395 } 3396 3397 mutex_lock(&proto_list_mutex); 3398 ret = assign_proto_idx(prot); 3399 if (ret) { 3400 mutex_unlock(&proto_list_mutex); 3401 goto out_free_timewait_sock_slab_name; 3402 } 3403 list_add(&prot->node, &proto_list); 3404 mutex_unlock(&proto_list_mutex); 3405 return ret; 3406 3407 out_free_timewait_sock_slab_name: 3408 if (alloc_slab && prot->twsk_prot) 3409 kfree(prot->twsk_prot->twsk_slab_name); 3410 out_free_request_sock_slab: 3411 if (alloc_slab) { 3412 req_prot_cleanup(prot->rsk_prot); 3413 3414 kmem_cache_destroy(prot->slab); 3415 prot->slab = NULL; 3416 } 3417 out: 3418 return ret; 3419 } 3420 EXPORT_SYMBOL(proto_register); 3421 3422 void proto_unregister(struct proto *prot) 3423 { 3424 mutex_lock(&proto_list_mutex); 3425 release_proto_idx(prot); 3426 list_del(&prot->node); 3427 mutex_unlock(&proto_list_mutex); 3428 3429 kmem_cache_destroy(prot->slab); 3430 prot->slab = NULL; 3431 3432 req_prot_cleanup(prot->rsk_prot); 3433 3434 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3435 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3436 kfree(prot->twsk_prot->twsk_slab_name); 3437 prot->twsk_prot->twsk_slab = NULL; 3438 } 3439 } 3440 EXPORT_SYMBOL(proto_unregister); 3441 3442 int sock_load_diag_module(int family, int protocol) 3443 { 3444 if (!protocol) { 3445 if (!sock_is_registered(family)) 3446 return -ENOENT; 3447 3448 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3449 NETLINK_SOCK_DIAG, family); 3450 } 3451 3452 #ifdef CONFIG_INET 3453 if (family == AF_INET && 3454 protocol != IPPROTO_RAW && 3455 !rcu_access_pointer(inet_protos[protocol])) 3456 return -ENOENT; 3457 #endif 3458 3459 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3460 NETLINK_SOCK_DIAG, family, protocol); 3461 } 3462 EXPORT_SYMBOL(sock_load_diag_module); 3463 3464 #ifdef CONFIG_PROC_FS 3465 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3466 __acquires(proto_list_mutex) 3467 { 3468 mutex_lock(&proto_list_mutex); 3469 return seq_list_start_head(&proto_list, *pos); 3470 } 3471 3472 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3473 { 3474 return seq_list_next(v, &proto_list, pos); 3475 } 3476 3477 static void proto_seq_stop(struct seq_file *seq, void *v) 3478 __releases(proto_list_mutex) 3479 { 3480 mutex_unlock(&proto_list_mutex); 3481 } 3482 3483 static char proto_method_implemented(const void *method) 3484 { 3485 return method == NULL ? 'n' : 'y'; 3486 } 3487 static long sock_prot_memory_allocated(struct proto *proto) 3488 { 3489 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3490 } 3491 3492 static char *sock_prot_memory_pressure(struct proto *proto) 3493 { 3494 return proto->memory_pressure != NULL ? 3495 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3496 } 3497 3498 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3499 { 3500 3501 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3502 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3503 proto->name, 3504 proto->obj_size, 3505 sock_prot_inuse_get(seq_file_net(seq), proto), 3506 sock_prot_memory_allocated(proto), 3507 sock_prot_memory_pressure(proto), 3508 proto->max_header, 3509 proto->slab == NULL ? "no" : "yes", 3510 module_name(proto->owner), 3511 proto_method_implemented(proto->close), 3512 proto_method_implemented(proto->connect), 3513 proto_method_implemented(proto->disconnect), 3514 proto_method_implemented(proto->accept), 3515 proto_method_implemented(proto->ioctl), 3516 proto_method_implemented(proto->init), 3517 proto_method_implemented(proto->destroy), 3518 proto_method_implemented(proto->shutdown), 3519 proto_method_implemented(proto->setsockopt), 3520 proto_method_implemented(proto->getsockopt), 3521 proto_method_implemented(proto->sendmsg), 3522 proto_method_implemented(proto->recvmsg), 3523 proto_method_implemented(proto->sendpage), 3524 proto_method_implemented(proto->bind), 3525 proto_method_implemented(proto->backlog_rcv), 3526 proto_method_implemented(proto->hash), 3527 proto_method_implemented(proto->unhash), 3528 proto_method_implemented(proto->get_port), 3529 proto_method_implemented(proto->enter_memory_pressure)); 3530 } 3531 3532 static int proto_seq_show(struct seq_file *seq, void *v) 3533 { 3534 if (v == &proto_list) 3535 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3536 "protocol", 3537 "size", 3538 "sockets", 3539 "memory", 3540 "press", 3541 "maxhdr", 3542 "slab", 3543 "module", 3544 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3545 else 3546 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3547 return 0; 3548 } 3549 3550 static const struct seq_operations proto_seq_ops = { 3551 .start = proto_seq_start, 3552 .next = proto_seq_next, 3553 .stop = proto_seq_stop, 3554 .show = proto_seq_show, 3555 }; 3556 3557 static __net_init int proto_init_net(struct net *net) 3558 { 3559 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3560 sizeof(struct seq_net_private))) 3561 return -ENOMEM; 3562 3563 return 0; 3564 } 3565 3566 static __net_exit void proto_exit_net(struct net *net) 3567 { 3568 remove_proc_entry("protocols", net->proc_net); 3569 } 3570 3571 3572 static __net_initdata struct pernet_operations proto_net_ops = { 3573 .init = proto_init_net, 3574 .exit = proto_exit_net, 3575 }; 3576 3577 static int __init proto_init(void) 3578 { 3579 return register_pernet_subsys(&proto_net_ops); 3580 } 3581 3582 subsys_initcall(proto_init); 3583 3584 #endif /* PROC_FS */ 3585 3586 #ifdef CONFIG_NET_RX_BUSY_POLL 3587 bool sk_busy_loop_end(void *p, unsigned long start_time) 3588 { 3589 struct sock *sk = p; 3590 3591 return !skb_queue_empty(&sk->sk_receive_queue) || 3592 sk_busy_loop_timeout(sk, start_time); 3593 } 3594 EXPORT_SYMBOL(sk_busy_loop_end); 3595 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3596