xref: /openbmc/linux/net/core/sock.c (revision 6a613ac6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 
138 #include <trace/events/sock.h>
139 
140 #ifdef CONFIG_INET
141 #include <net/tcp.h>
142 #endif
143 
144 #include <net/busy_poll.h>
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 /**
150  * sk_ns_capable - General socket capability test
151  * @sk: Socket to use a capability on or through
152  * @user_ns: The user namespace of the capability to use
153  * @cap: The capability to use
154  *
155  * Test to see if the opener of the socket had when the socket was
156  * created and the current process has the capability @cap in the user
157  * namespace @user_ns.
158  */
159 bool sk_ns_capable(const struct sock *sk,
160 		   struct user_namespace *user_ns, int cap)
161 {
162 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 		ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166 
167 /**
168  * sk_capable - Socket global capability test
169  * @sk: Socket to use a capability on or through
170  * @cap: The global capability to use
171  *
172  * Test to see if the opener of the socket had when the socket was
173  * created and the current process has the capability @cap in all user
174  * namespaces.
175  */
176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 	return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181 
182 /**
183  * sk_net_capable - Network namespace socket capability test
184  * @sk: Socket to use a capability on or through
185  * @cap: The capability to use
186  *
187  * Test to see if the opener of the socket had when the socket was created
188  * and the current process has the capability @cap over the network namespace
189  * the socket is a member of.
190  */
191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196 
197 
198 #ifdef CONFIG_MEMCG_KMEM
199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
200 {
201 	struct proto *proto;
202 	int ret = 0;
203 
204 	mutex_lock(&proto_list_mutex);
205 	list_for_each_entry(proto, &proto_list, node) {
206 		if (proto->init_cgroup) {
207 			ret = proto->init_cgroup(memcg, ss);
208 			if (ret)
209 				goto out;
210 		}
211 	}
212 
213 	mutex_unlock(&proto_list_mutex);
214 	return ret;
215 out:
216 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 		if (proto->destroy_cgroup)
218 			proto->destroy_cgroup(memcg);
219 	mutex_unlock(&proto_list_mutex);
220 	return ret;
221 }
222 
223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
224 {
225 	struct proto *proto;
226 
227 	mutex_lock(&proto_list_mutex);
228 	list_for_each_entry_reverse(proto, &proto_list, node)
229 		if (proto->destroy_cgroup)
230 			proto->destroy_cgroup(memcg);
231 	mutex_unlock(&proto_list_mutex);
232 }
233 #endif
234 
235 /*
236  * Each address family might have different locking rules, so we have
237  * one slock key per address family:
238  */
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
241 
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
245 #endif
246 
247 /*
248  * Make lock validator output more readable. (we pre-construct these
249  * strings build-time, so that runtime initialization of socket
250  * locks is fast):
251  */
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
254   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
255   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
256   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
257   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
258   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
259   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
260   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
261   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
262   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
263   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
264   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
265   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
266   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
267 };
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
270   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
271   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
272   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
273   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
274   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
275   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
276   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
277   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
278   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
279   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
280   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
281   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
282   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
283 };
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
286   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
287   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
288   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
289   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
290   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
291   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
292   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
293   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
294   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
295   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
296   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
297   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
298   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
299 };
300 
301 /*
302  * sk_callback_lock locking rules are per-address-family,
303  * so split the lock classes by using a per-AF key:
304  */
305 static struct lock_class_key af_callback_keys[AF_MAX];
306 
307 /* Take into consideration the size of the struct sk_buff overhead in the
308  * determination of these values, since that is non-constant across
309  * platforms.  This makes socket queueing behavior and performance
310  * not depend upon such differences.
311  */
312 #define _SK_MEM_PACKETS		256
313 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324 
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
328 
329 int sysctl_tstamp_allow_data __read_mostly = 1;
330 
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
333 
334 /**
335  * sk_set_memalloc - sets %SOCK_MEMALLOC
336  * @sk: socket to set it on
337  *
338  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339  * It's the responsibility of the admin to adjust min_free_kbytes
340  * to meet the requirements
341  */
342 void sk_set_memalloc(struct sock *sk)
343 {
344 	sock_set_flag(sk, SOCK_MEMALLOC);
345 	sk->sk_allocation |= __GFP_MEMALLOC;
346 	static_key_slow_inc(&memalloc_socks);
347 }
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
349 
350 void sk_clear_memalloc(struct sock *sk)
351 {
352 	sock_reset_flag(sk, SOCK_MEMALLOC);
353 	sk->sk_allocation &= ~__GFP_MEMALLOC;
354 	static_key_slow_dec(&memalloc_socks);
355 
356 	/*
357 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 	 * it has rmem allocations due to the last swapfile being deactivated
360 	 * but there is a risk that the socket is unusable due to exceeding
361 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
362 	 */
363 	sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
425 static bool sock_needs_netstamp(const struct sock *sk)
426 {
427 	switch (sk->sk_family) {
428 	case AF_UNSPEC:
429 	case AF_UNIX:
430 		return false;
431 	default:
432 		return true;
433 	}
434 }
435 
436 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
437 
438 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
439 {
440 	if (sk->sk_flags & flags) {
441 		sk->sk_flags &= ~flags;
442 		if (sock_needs_netstamp(sk) &&
443 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
444 			net_disable_timestamp();
445 	}
446 }
447 
448 
449 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
450 {
451 	int err;
452 	unsigned long flags;
453 	struct sk_buff_head *list = &sk->sk_receive_queue;
454 
455 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 		atomic_inc(&sk->sk_drops);
457 		trace_sock_rcvqueue_full(sk, skb);
458 		return -ENOMEM;
459 	}
460 
461 	err = sk_filter(sk, skb);
462 	if (err)
463 		return err;
464 
465 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
466 		atomic_inc(&sk->sk_drops);
467 		return -ENOBUFS;
468 	}
469 
470 	skb->dev = NULL;
471 	skb_set_owner_r(skb, sk);
472 
473 	/* we escape from rcu protected region, make sure we dont leak
474 	 * a norefcounted dst
475 	 */
476 	skb_dst_force(skb);
477 
478 	spin_lock_irqsave(&list->lock, flags);
479 	sock_skb_set_dropcount(sk, skb);
480 	__skb_queue_tail(list, skb);
481 	spin_unlock_irqrestore(&list->lock, flags);
482 
483 	if (!sock_flag(sk, SOCK_DEAD))
484 		sk->sk_data_ready(sk);
485 	return 0;
486 }
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
488 
489 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
490 {
491 	int rc = NET_RX_SUCCESS;
492 
493 	if (sk_filter(sk, skb))
494 		goto discard_and_relse;
495 
496 	skb->dev = NULL;
497 
498 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
499 		atomic_inc(&sk->sk_drops);
500 		goto discard_and_relse;
501 	}
502 	if (nested)
503 		bh_lock_sock_nested(sk);
504 	else
505 		bh_lock_sock(sk);
506 	if (!sock_owned_by_user(sk)) {
507 		/*
508 		 * trylock + unlock semantics:
509 		 */
510 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
511 
512 		rc = sk_backlog_rcv(sk, skb);
513 
514 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
515 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
516 		bh_unlock_sock(sk);
517 		atomic_inc(&sk->sk_drops);
518 		goto discard_and_relse;
519 	}
520 
521 	bh_unlock_sock(sk);
522 out:
523 	sock_put(sk);
524 	return rc;
525 discard_and_relse:
526 	kfree_skb(skb);
527 	goto out;
528 }
529 EXPORT_SYMBOL(sk_receive_skb);
530 
531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
532 {
533 	struct dst_entry *dst = __sk_dst_get(sk);
534 
535 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536 		sk_tx_queue_clear(sk);
537 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
538 		dst_release(dst);
539 		return NULL;
540 	}
541 
542 	return dst;
543 }
544 EXPORT_SYMBOL(__sk_dst_check);
545 
546 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
547 {
548 	struct dst_entry *dst = sk_dst_get(sk);
549 
550 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
551 		sk_dst_reset(sk);
552 		dst_release(dst);
553 		return NULL;
554 	}
555 
556 	return dst;
557 }
558 EXPORT_SYMBOL(sk_dst_check);
559 
560 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
561 				int optlen)
562 {
563 	int ret = -ENOPROTOOPT;
564 #ifdef CONFIG_NETDEVICES
565 	struct net *net = sock_net(sk);
566 	char devname[IFNAMSIZ];
567 	int index;
568 
569 	/* Sorry... */
570 	ret = -EPERM;
571 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
572 		goto out;
573 
574 	ret = -EINVAL;
575 	if (optlen < 0)
576 		goto out;
577 
578 	/* Bind this socket to a particular device like "eth0",
579 	 * as specified in the passed interface name. If the
580 	 * name is "" or the option length is zero the socket
581 	 * is not bound.
582 	 */
583 	if (optlen > IFNAMSIZ - 1)
584 		optlen = IFNAMSIZ - 1;
585 	memset(devname, 0, sizeof(devname));
586 
587 	ret = -EFAULT;
588 	if (copy_from_user(devname, optval, optlen))
589 		goto out;
590 
591 	index = 0;
592 	if (devname[0] != '\0') {
593 		struct net_device *dev;
594 
595 		rcu_read_lock();
596 		dev = dev_get_by_name_rcu(net, devname);
597 		if (dev)
598 			index = dev->ifindex;
599 		rcu_read_unlock();
600 		ret = -ENODEV;
601 		if (!dev)
602 			goto out;
603 	}
604 
605 	lock_sock(sk);
606 	sk->sk_bound_dev_if = index;
607 	sk_dst_reset(sk);
608 	release_sock(sk);
609 
610 	ret = 0;
611 
612 out:
613 #endif
614 
615 	return ret;
616 }
617 
618 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
619 				int __user *optlen, int len)
620 {
621 	int ret = -ENOPROTOOPT;
622 #ifdef CONFIG_NETDEVICES
623 	struct net *net = sock_net(sk);
624 	char devname[IFNAMSIZ];
625 
626 	if (sk->sk_bound_dev_if == 0) {
627 		len = 0;
628 		goto zero;
629 	}
630 
631 	ret = -EINVAL;
632 	if (len < IFNAMSIZ)
633 		goto out;
634 
635 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
636 	if (ret)
637 		goto out;
638 
639 	len = strlen(devname) + 1;
640 
641 	ret = -EFAULT;
642 	if (copy_to_user(optval, devname, len))
643 		goto out;
644 
645 zero:
646 	ret = -EFAULT;
647 	if (put_user(len, optlen))
648 		goto out;
649 
650 	ret = 0;
651 
652 out:
653 #endif
654 
655 	return ret;
656 }
657 
658 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
659 {
660 	if (valbool)
661 		sock_set_flag(sk, bit);
662 	else
663 		sock_reset_flag(sk, bit);
664 }
665 
666 bool sk_mc_loop(struct sock *sk)
667 {
668 	if (dev_recursion_level())
669 		return false;
670 	if (!sk)
671 		return true;
672 	switch (sk->sk_family) {
673 	case AF_INET:
674 		return inet_sk(sk)->mc_loop;
675 #if IS_ENABLED(CONFIG_IPV6)
676 	case AF_INET6:
677 		return inet6_sk(sk)->mc_loop;
678 #endif
679 	}
680 	WARN_ON(1);
681 	return true;
682 }
683 EXPORT_SYMBOL(sk_mc_loop);
684 
685 /*
686  *	This is meant for all protocols to use and covers goings on
687  *	at the socket level. Everything here is generic.
688  */
689 
690 int sock_setsockopt(struct socket *sock, int level, int optname,
691 		    char __user *optval, unsigned int optlen)
692 {
693 	struct sock *sk = sock->sk;
694 	int val;
695 	int valbool;
696 	struct linger ling;
697 	int ret = 0;
698 
699 	/*
700 	 *	Options without arguments
701 	 */
702 
703 	if (optname == SO_BINDTODEVICE)
704 		return sock_setbindtodevice(sk, optval, optlen);
705 
706 	if (optlen < sizeof(int))
707 		return -EINVAL;
708 
709 	if (get_user(val, (int __user *)optval))
710 		return -EFAULT;
711 
712 	valbool = val ? 1 : 0;
713 
714 	lock_sock(sk);
715 
716 	switch (optname) {
717 	case SO_DEBUG:
718 		if (val && !capable(CAP_NET_ADMIN))
719 			ret = -EACCES;
720 		else
721 			sock_valbool_flag(sk, SOCK_DBG, valbool);
722 		break;
723 	case SO_REUSEADDR:
724 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
725 		break;
726 	case SO_REUSEPORT:
727 		sk->sk_reuseport = valbool;
728 		break;
729 	case SO_TYPE:
730 	case SO_PROTOCOL:
731 	case SO_DOMAIN:
732 	case SO_ERROR:
733 		ret = -ENOPROTOOPT;
734 		break;
735 	case SO_DONTROUTE:
736 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
737 		break;
738 	case SO_BROADCAST:
739 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
740 		break;
741 	case SO_SNDBUF:
742 		/* Don't error on this BSD doesn't and if you think
743 		 * about it this is right. Otherwise apps have to
744 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
745 		 * are treated in BSD as hints
746 		 */
747 		val = min_t(u32, val, sysctl_wmem_max);
748 set_sndbuf:
749 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
750 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
751 		/* Wake up sending tasks if we upped the value. */
752 		sk->sk_write_space(sk);
753 		break;
754 
755 	case SO_SNDBUFFORCE:
756 		if (!capable(CAP_NET_ADMIN)) {
757 			ret = -EPERM;
758 			break;
759 		}
760 		goto set_sndbuf;
761 
762 	case SO_RCVBUF:
763 		/* Don't error on this BSD doesn't and if you think
764 		 * about it this is right. Otherwise apps have to
765 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
766 		 * are treated in BSD as hints
767 		 */
768 		val = min_t(u32, val, sysctl_rmem_max);
769 set_rcvbuf:
770 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
771 		/*
772 		 * We double it on the way in to account for
773 		 * "struct sk_buff" etc. overhead.   Applications
774 		 * assume that the SO_RCVBUF setting they make will
775 		 * allow that much actual data to be received on that
776 		 * socket.
777 		 *
778 		 * Applications are unaware that "struct sk_buff" and
779 		 * other overheads allocate from the receive buffer
780 		 * during socket buffer allocation.
781 		 *
782 		 * And after considering the possible alternatives,
783 		 * returning the value we actually used in getsockopt
784 		 * is the most desirable behavior.
785 		 */
786 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
787 		break;
788 
789 	case SO_RCVBUFFORCE:
790 		if (!capable(CAP_NET_ADMIN)) {
791 			ret = -EPERM;
792 			break;
793 		}
794 		goto set_rcvbuf;
795 
796 	case SO_KEEPALIVE:
797 #ifdef CONFIG_INET
798 		if (sk->sk_protocol == IPPROTO_TCP &&
799 		    sk->sk_type == SOCK_STREAM)
800 			tcp_set_keepalive(sk, valbool);
801 #endif
802 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 		break;
804 
805 	case SO_OOBINLINE:
806 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 		break;
808 
809 	case SO_NO_CHECK:
810 		sk->sk_no_check_tx = valbool;
811 		break;
812 
813 	case SO_PRIORITY:
814 		if ((val >= 0 && val <= 6) ||
815 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 			sk->sk_priority = val;
817 		else
818 			ret = -EPERM;
819 		break;
820 
821 	case SO_LINGER:
822 		if (optlen < sizeof(ling)) {
823 			ret = -EINVAL;	/* 1003.1g */
824 			break;
825 		}
826 		if (copy_from_user(&ling, optval, sizeof(ling))) {
827 			ret = -EFAULT;
828 			break;
829 		}
830 		if (!ling.l_onoff)
831 			sock_reset_flag(sk, SOCK_LINGER);
832 		else {
833 #if (BITS_PER_LONG == 32)
834 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 			else
837 #endif
838 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 			sock_set_flag(sk, SOCK_LINGER);
840 		}
841 		break;
842 
843 	case SO_BSDCOMPAT:
844 		sock_warn_obsolete_bsdism("setsockopt");
845 		break;
846 
847 	case SO_PASSCRED:
848 		if (valbool)
849 			set_bit(SOCK_PASSCRED, &sock->flags);
850 		else
851 			clear_bit(SOCK_PASSCRED, &sock->flags);
852 		break;
853 
854 	case SO_TIMESTAMP:
855 	case SO_TIMESTAMPNS:
856 		if (valbool)  {
857 			if (optname == SO_TIMESTAMP)
858 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 			else
860 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 			sock_set_flag(sk, SOCK_RCVTSTAMP);
862 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 		} else {
864 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 		}
867 		break;
868 
869 	case SO_TIMESTAMPING:
870 		if (val & ~SOF_TIMESTAMPING_MASK) {
871 			ret = -EINVAL;
872 			break;
873 		}
874 
875 		if (val & SOF_TIMESTAMPING_OPT_ID &&
876 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 			if (sk->sk_protocol == IPPROTO_TCP) {
878 				if (sk->sk_state != TCP_ESTABLISHED) {
879 					ret = -EINVAL;
880 					break;
881 				}
882 				sk->sk_tskey = tcp_sk(sk)->snd_una;
883 			} else {
884 				sk->sk_tskey = 0;
885 			}
886 		}
887 		sk->sk_tsflags = val;
888 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
889 			sock_enable_timestamp(sk,
890 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
891 		else
892 			sock_disable_timestamp(sk,
893 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
894 		break;
895 
896 	case SO_RCVLOWAT:
897 		if (val < 0)
898 			val = INT_MAX;
899 		sk->sk_rcvlowat = val ? : 1;
900 		break;
901 
902 	case SO_RCVTIMEO:
903 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
904 		break;
905 
906 	case SO_SNDTIMEO:
907 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
908 		break;
909 
910 	case SO_ATTACH_FILTER:
911 		ret = -EINVAL;
912 		if (optlen == sizeof(struct sock_fprog)) {
913 			struct sock_fprog fprog;
914 
915 			ret = -EFAULT;
916 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
917 				break;
918 
919 			ret = sk_attach_filter(&fprog, sk);
920 		}
921 		break;
922 
923 	case SO_ATTACH_BPF:
924 		ret = -EINVAL;
925 		if (optlen == sizeof(u32)) {
926 			u32 ufd;
927 
928 			ret = -EFAULT;
929 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
930 				break;
931 
932 			ret = sk_attach_bpf(ufd, sk);
933 		}
934 		break;
935 
936 	case SO_DETACH_FILTER:
937 		ret = sk_detach_filter(sk);
938 		break;
939 
940 	case SO_LOCK_FILTER:
941 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
942 			ret = -EPERM;
943 		else
944 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
945 		break;
946 
947 	case SO_PASSSEC:
948 		if (valbool)
949 			set_bit(SOCK_PASSSEC, &sock->flags);
950 		else
951 			clear_bit(SOCK_PASSSEC, &sock->flags);
952 		break;
953 	case SO_MARK:
954 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
955 			ret = -EPERM;
956 		else
957 			sk->sk_mark = val;
958 		break;
959 
960 	case SO_RXQ_OVFL:
961 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
962 		break;
963 
964 	case SO_WIFI_STATUS:
965 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
966 		break;
967 
968 	case SO_PEEK_OFF:
969 		if (sock->ops->set_peek_off)
970 			ret = sock->ops->set_peek_off(sk, val);
971 		else
972 			ret = -EOPNOTSUPP;
973 		break;
974 
975 	case SO_NOFCS:
976 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
977 		break;
978 
979 	case SO_SELECT_ERR_QUEUE:
980 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
981 		break;
982 
983 #ifdef CONFIG_NET_RX_BUSY_POLL
984 	case SO_BUSY_POLL:
985 		/* allow unprivileged users to decrease the value */
986 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
987 			ret = -EPERM;
988 		else {
989 			if (val < 0)
990 				ret = -EINVAL;
991 			else
992 				sk->sk_ll_usec = val;
993 		}
994 		break;
995 #endif
996 
997 	case SO_MAX_PACING_RATE:
998 		sk->sk_max_pacing_rate = val;
999 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1000 					 sk->sk_max_pacing_rate);
1001 		break;
1002 
1003 	case SO_INCOMING_CPU:
1004 		sk->sk_incoming_cpu = val;
1005 		break;
1006 
1007 	default:
1008 		ret = -ENOPROTOOPT;
1009 		break;
1010 	}
1011 	release_sock(sk);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(sock_setsockopt);
1015 
1016 
1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018 			  struct ucred *ucred)
1019 {
1020 	ucred->pid = pid_vnr(pid);
1021 	ucred->uid = ucred->gid = -1;
1022 	if (cred) {
1023 		struct user_namespace *current_ns = current_user_ns();
1024 
1025 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027 	}
1028 }
1029 
1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031 		    char __user *optval, int __user *optlen)
1032 {
1033 	struct sock *sk = sock->sk;
1034 
1035 	union {
1036 		int val;
1037 		struct linger ling;
1038 		struct timeval tm;
1039 	} v;
1040 
1041 	int lv = sizeof(int);
1042 	int len;
1043 
1044 	if (get_user(len, optlen))
1045 		return -EFAULT;
1046 	if (len < 0)
1047 		return -EINVAL;
1048 
1049 	memset(&v, 0, sizeof(v));
1050 
1051 	switch (optname) {
1052 	case SO_DEBUG:
1053 		v.val = sock_flag(sk, SOCK_DBG);
1054 		break;
1055 
1056 	case SO_DONTROUTE:
1057 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058 		break;
1059 
1060 	case SO_BROADCAST:
1061 		v.val = sock_flag(sk, SOCK_BROADCAST);
1062 		break;
1063 
1064 	case SO_SNDBUF:
1065 		v.val = sk->sk_sndbuf;
1066 		break;
1067 
1068 	case SO_RCVBUF:
1069 		v.val = sk->sk_rcvbuf;
1070 		break;
1071 
1072 	case SO_REUSEADDR:
1073 		v.val = sk->sk_reuse;
1074 		break;
1075 
1076 	case SO_REUSEPORT:
1077 		v.val = sk->sk_reuseport;
1078 		break;
1079 
1080 	case SO_KEEPALIVE:
1081 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082 		break;
1083 
1084 	case SO_TYPE:
1085 		v.val = sk->sk_type;
1086 		break;
1087 
1088 	case SO_PROTOCOL:
1089 		v.val = sk->sk_protocol;
1090 		break;
1091 
1092 	case SO_DOMAIN:
1093 		v.val = sk->sk_family;
1094 		break;
1095 
1096 	case SO_ERROR:
1097 		v.val = -sock_error(sk);
1098 		if (v.val == 0)
1099 			v.val = xchg(&sk->sk_err_soft, 0);
1100 		break;
1101 
1102 	case SO_OOBINLINE:
1103 		v.val = sock_flag(sk, SOCK_URGINLINE);
1104 		break;
1105 
1106 	case SO_NO_CHECK:
1107 		v.val = sk->sk_no_check_tx;
1108 		break;
1109 
1110 	case SO_PRIORITY:
1111 		v.val = sk->sk_priority;
1112 		break;
1113 
1114 	case SO_LINGER:
1115 		lv		= sizeof(v.ling);
1116 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1117 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1118 		break;
1119 
1120 	case SO_BSDCOMPAT:
1121 		sock_warn_obsolete_bsdism("getsockopt");
1122 		break;
1123 
1124 	case SO_TIMESTAMP:
1125 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1127 		break;
1128 
1129 	case SO_TIMESTAMPNS:
1130 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131 		break;
1132 
1133 	case SO_TIMESTAMPING:
1134 		v.val = sk->sk_tsflags;
1135 		break;
1136 
1137 	case SO_RCVTIMEO:
1138 		lv = sizeof(struct timeval);
1139 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140 			v.tm.tv_sec = 0;
1141 			v.tm.tv_usec = 0;
1142 		} else {
1143 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145 		}
1146 		break;
1147 
1148 	case SO_SNDTIMEO:
1149 		lv = sizeof(struct timeval);
1150 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151 			v.tm.tv_sec = 0;
1152 			v.tm.tv_usec = 0;
1153 		} else {
1154 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156 		}
1157 		break;
1158 
1159 	case SO_RCVLOWAT:
1160 		v.val = sk->sk_rcvlowat;
1161 		break;
1162 
1163 	case SO_SNDLOWAT:
1164 		v.val = 1;
1165 		break;
1166 
1167 	case SO_PASSCRED:
1168 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169 		break;
1170 
1171 	case SO_PEERCRED:
1172 	{
1173 		struct ucred peercred;
1174 		if (len > sizeof(peercred))
1175 			len = sizeof(peercred);
1176 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1177 		if (copy_to_user(optval, &peercred, len))
1178 			return -EFAULT;
1179 		goto lenout;
1180 	}
1181 
1182 	case SO_PEERNAME:
1183 	{
1184 		char address[128];
1185 
1186 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1187 			return -ENOTCONN;
1188 		if (lv < len)
1189 			return -EINVAL;
1190 		if (copy_to_user(optval, address, len))
1191 			return -EFAULT;
1192 		goto lenout;
1193 	}
1194 
1195 	/* Dubious BSD thing... Probably nobody even uses it, but
1196 	 * the UNIX standard wants it for whatever reason... -DaveM
1197 	 */
1198 	case SO_ACCEPTCONN:
1199 		v.val = sk->sk_state == TCP_LISTEN;
1200 		break;
1201 
1202 	case SO_PASSSEC:
1203 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1204 		break;
1205 
1206 	case SO_PEERSEC:
1207 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1208 
1209 	case SO_MARK:
1210 		v.val = sk->sk_mark;
1211 		break;
1212 
1213 	case SO_RXQ_OVFL:
1214 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1215 		break;
1216 
1217 	case SO_WIFI_STATUS:
1218 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1219 		break;
1220 
1221 	case SO_PEEK_OFF:
1222 		if (!sock->ops->set_peek_off)
1223 			return -EOPNOTSUPP;
1224 
1225 		v.val = sk->sk_peek_off;
1226 		break;
1227 	case SO_NOFCS:
1228 		v.val = sock_flag(sk, SOCK_NOFCS);
1229 		break;
1230 
1231 	case SO_BINDTODEVICE:
1232 		return sock_getbindtodevice(sk, optval, optlen, len);
1233 
1234 	case SO_GET_FILTER:
1235 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1236 		if (len < 0)
1237 			return len;
1238 
1239 		goto lenout;
1240 
1241 	case SO_LOCK_FILTER:
1242 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1243 		break;
1244 
1245 	case SO_BPF_EXTENSIONS:
1246 		v.val = bpf_tell_extensions();
1247 		break;
1248 
1249 	case SO_SELECT_ERR_QUEUE:
1250 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1251 		break;
1252 
1253 #ifdef CONFIG_NET_RX_BUSY_POLL
1254 	case SO_BUSY_POLL:
1255 		v.val = sk->sk_ll_usec;
1256 		break;
1257 #endif
1258 
1259 	case SO_MAX_PACING_RATE:
1260 		v.val = sk->sk_max_pacing_rate;
1261 		break;
1262 
1263 	case SO_INCOMING_CPU:
1264 		v.val = sk->sk_incoming_cpu;
1265 		break;
1266 
1267 	default:
1268 		/* We implement the SO_SNDLOWAT etc to not be settable
1269 		 * (1003.1g 7).
1270 		 */
1271 		return -ENOPROTOOPT;
1272 	}
1273 
1274 	if (len > lv)
1275 		len = lv;
1276 	if (copy_to_user(optval, &v, len))
1277 		return -EFAULT;
1278 lenout:
1279 	if (put_user(len, optlen))
1280 		return -EFAULT;
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Initialize an sk_lock.
1286  *
1287  * (We also register the sk_lock with the lock validator.)
1288  */
1289 static inline void sock_lock_init(struct sock *sk)
1290 {
1291 	sock_lock_init_class_and_name(sk,
1292 			af_family_slock_key_strings[sk->sk_family],
1293 			af_family_slock_keys + sk->sk_family,
1294 			af_family_key_strings[sk->sk_family],
1295 			af_family_keys + sk->sk_family);
1296 }
1297 
1298 /*
1299  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1300  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1301  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1302  */
1303 static void sock_copy(struct sock *nsk, const struct sock *osk)
1304 {
1305 #ifdef CONFIG_SECURITY_NETWORK
1306 	void *sptr = nsk->sk_security;
1307 #endif
1308 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1309 
1310 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1311 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1312 
1313 #ifdef CONFIG_SECURITY_NETWORK
1314 	nsk->sk_security = sptr;
1315 	security_sk_clone(osk, nsk);
1316 #endif
1317 }
1318 
1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1320 {
1321 	unsigned long nulls1, nulls2;
1322 
1323 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1324 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1325 	if (nulls1 > nulls2)
1326 		swap(nulls1, nulls2);
1327 
1328 	if (nulls1 != 0)
1329 		memset((char *)sk, 0, nulls1);
1330 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1331 	       nulls2 - nulls1 - sizeof(void *));
1332 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1333 	       size - nulls2 - sizeof(void *));
1334 }
1335 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1336 
1337 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1338 		int family)
1339 {
1340 	struct sock *sk;
1341 	struct kmem_cache *slab;
1342 
1343 	slab = prot->slab;
1344 	if (slab != NULL) {
1345 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1346 		if (!sk)
1347 			return sk;
1348 		if (priority & __GFP_ZERO) {
1349 			if (prot->clear_sk)
1350 				prot->clear_sk(sk, prot->obj_size);
1351 			else
1352 				sk_prot_clear_nulls(sk, prot->obj_size);
1353 		}
1354 	} else
1355 		sk = kmalloc(prot->obj_size, priority);
1356 
1357 	if (sk != NULL) {
1358 		kmemcheck_annotate_bitfield(sk, flags);
1359 
1360 		if (security_sk_alloc(sk, family, priority))
1361 			goto out_free;
1362 
1363 		if (!try_module_get(prot->owner))
1364 			goto out_free_sec;
1365 		sk_tx_queue_clear(sk);
1366 	}
1367 
1368 	return sk;
1369 
1370 out_free_sec:
1371 	security_sk_free(sk);
1372 out_free:
1373 	if (slab != NULL)
1374 		kmem_cache_free(slab, sk);
1375 	else
1376 		kfree(sk);
1377 	return NULL;
1378 }
1379 
1380 static void sk_prot_free(struct proto *prot, struct sock *sk)
1381 {
1382 	struct kmem_cache *slab;
1383 	struct module *owner;
1384 
1385 	owner = prot->owner;
1386 	slab = prot->slab;
1387 
1388 	security_sk_free(sk);
1389 	if (slab != NULL)
1390 		kmem_cache_free(slab, sk);
1391 	else
1392 		kfree(sk);
1393 	module_put(owner);
1394 }
1395 
1396 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1397 void sock_update_netprioidx(struct sock *sk)
1398 {
1399 	if (in_interrupt())
1400 		return;
1401 
1402 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1403 }
1404 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1405 #endif
1406 
1407 /**
1408  *	sk_alloc - All socket objects are allocated here
1409  *	@net: the applicable net namespace
1410  *	@family: protocol family
1411  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1412  *	@prot: struct proto associated with this new sock instance
1413  *	@kern: is this to be a kernel socket?
1414  */
1415 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1416 		      struct proto *prot, int kern)
1417 {
1418 	struct sock *sk;
1419 
1420 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1421 	if (sk) {
1422 		sk->sk_family = family;
1423 		/*
1424 		 * See comment in struct sock definition to understand
1425 		 * why we need sk_prot_creator -acme
1426 		 */
1427 		sk->sk_prot = sk->sk_prot_creator = prot;
1428 		sock_lock_init(sk);
1429 		sk->sk_net_refcnt = kern ? 0 : 1;
1430 		if (likely(sk->sk_net_refcnt))
1431 			get_net(net);
1432 		sock_net_set(sk, net);
1433 		atomic_set(&sk->sk_wmem_alloc, 1);
1434 
1435 		sock_update_classid(sk);
1436 		sock_update_netprioidx(sk);
1437 	}
1438 
1439 	return sk;
1440 }
1441 EXPORT_SYMBOL(sk_alloc);
1442 
1443 void sk_destruct(struct sock *sk)
1444 {
1445 	struct sk_filter *filter;
1446 
1447 	if (sk->sk_destruct)
1448 		sk->sk_destruct(sk);
1449 
1450 	filter = rcu_dereference_check(sk->sk_filter,
1451 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1452 	if (filter) {
1453 		sk_filter_uncharge(sk, filter);
1454 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1455 	}
1456 
1457 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1458 
1459 	if (atomic_read(&sk->sk_omem_alloc))
1460 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1461 			 __func__, atomic_read(&sk->sk_omem_alloc));
1462 
1463 	if (sk->sk_peer_cred)
1464 		put_cred(sk->sk_peer_cred);
1465 	put_pid(sk->sk_peer_pid);
1466 	if (likely(sk->sk_net_refcnt))
1467 		put_net(sock_net(sk));
1468 	sk_prot_free(sk->sk_prot_creator, sk);
1469 }
1470 
1471 static void __sk_free(struct sock *sk)
1472 {
1473 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1474 		sock_diag_broadcast_destroy(sk);
1475 	else
1476 		sk_destruct(sk);
1477 }
1478 
1479 void sk_free(struct sock *sk)
1480 {
1481 	/*
1482 	 * We subtract one from sk_wmem_alloc and can know if
1483 	 * some packets are still in some tx queue.
1484 	 * If not null, sock_wfree() will call __sk_free(sk) later
1485 	 */
1486 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1487 		__sk_free(sk);
1488 }
1489 EXPORT_SYMBOL(sk_free);
1490 
1491 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1492 {
1493 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1494 		sock_update_memcg(newsk);
1495 }
1496 
1497 /**
1498  *	sk_clone_lock - clone a socket, and lock its clone
1499  *	@sk: the socket to clone
1500  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1501  *
1502  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1503  */
1504 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1505 {
1506 	struct sock *newsk;
1507 	bool is_charged = true;
1508 
1509 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1510 	if (newsk != NULL) {
1511 		struct sk_filter *filter;
1512 
1513 		sock_copy(newsk, sk);
1514 
1515 		/* SANITY */
1516 		if (likely(newsk->sk_net_refcnt))
1517 			get_net(sock_net(newsk));
1518 		sk_node_init(&newsk->sk_node);
1519 		sock_lock_init(newsk);
1520 		bh_lock_sock(newsk);
1521 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1522 		newsk->sk_backlog.len = 0;
1523 
1524 		atomic_set(&newsk->sk_rmem_alloc, 0);
1525 		/*
1526 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1527 		 */
1528 		atomic_set(&newsk->sk_wmem_alloc, 1);
1529 		atomic_set(&newsk->sk_omem_alloc, 0);
1530 		skb_queue_head_init(&newsk->sk_receive_queue);
1531 		skb_queue_head_init(&newsk->sk_write_queue);
1532 
1533 		rwlock_init(&newsk->sk_callback_lock);
1534 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1535 				af_callback_keys + newsk->sk_family,
1536 				af_family_clock_key_strings[newsk->sk_family]);
1537 
1538 		newsk->sk_dst_cache	= NULL;
1539 		newsk->sk_wmem_queued	= 0;
1540 		newsk->sk_forward_alloc = 0;
1541 		newsk->sk_send_head	= NULL;
1542 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1543 
1544 		sock_reset_flag(newsk, SOCK_DONE);
1545 		skb_queue_head_init(&newsk->sk_error_queue);
1546 
1547 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1548 		if (filter != NULL)
1549 			/* though it's an empty new sock, the charging may fail
1550 			 * if sysctl_optmem_max was changed between creation of
1551 			 * original socket and cloning
1552 			 */
1553 			is_charged = sk_filter_charge(newsk, filter);
1554 
1555 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1556 			/* It is still raw copy of parent, so invalidate
1557 			 * destructor and make plain sk_free() */
1558 			newsk->sk_destruct = NULL;
1559 			bh_unlock_sock(newsk);
1560 			sk_free(newsk);
1561 			newsk = NULL;
1562 			goto out;
1563 		}
1564 
1565 		newsk->sk_err	   = 0;
1566 		newsk->sk_priority = 0;
1567 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1568 		atomic64_set(&newsk->sk_cookie, 0);
1569 		/*
1570 		 * Before updating sk_refcnt, we must commit prior changes to memory
1571 		 * (Documentation/RCU/rculist_nulls.txt for details)
1572 		 */
1573 		smp_wmb();
1574 		atomic_set(&newsk->sk_refcnt, 2);
1575 
1576 		/*
1577 		 * Increment the counter in the same struct proto as the master
1578 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1579 		 * is the same as sk->sk_prot->socks, as this field was copied
1580 		 * with memcpy).
1581 		 *
1582 		 * This _changes_ the previous behaviour, where
1583 		 * tcp_create_openreq_child always was incrementing the
1584 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1585 		 * to be taken into account in all callers. -acme
1586 		 */
1587 		sk_refcnt_debug_inc(newsk);
1588 		sk_set_socket(newsk, NULL);
1589 		newsk->sk_wq = NULL;
1590 
1591 		sk_update_clone(sk, newsk);
1592 
1593 		if (newsk->sk_prot->sockets_allocated)
1594 			sk_sockets_allocated_inc(newsk);
1595 
1596 		if (sock_needs_netstamp(sk) &&
1597 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1598 			net_enable_timestamp();
1599 	}
1600 out:
1601 	return newsk;
1602 }
1603 EXPORT_SYMBOL_GPL(sk_clone_lock);
1604 
1605 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1606 {
1607 	u32 max_segs = 1;
1608 
1609 	sk_dst_set(sk, dst);
1610 	sk->sk_route_caps = dst->dev->features;
1611 	if (sk->sk_route_caps & NETIF_F_GSO)
1612 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1613 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1614 	if (sk_can_gso(sk)) {
1615 		if (dst->header_len) {
1616 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1617 		} else {
1618 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1619 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1620 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1621 		}
1622 	}
1623 	sk->sk_gso_max_segs = max_segs;
1624 }
1625 EXPORT_SYMBOL_GPL(sk_setup_caps);
1626 
1627 /*
1628  *	Simple resource managers for sockets.
1629  */
1630 
1631 
1632 /*
1633  * Write buffer destructor automatically called from kfree_skb.
1634  */
1635 void sock_wfree(struct sk_buff *skb)
1636 {
1637 	struct sock *sk = skb->sk;
1638 	unsigned int len = skb->truesize;
1639 
1640 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1641 		/*
1642 		 * Keep a reference on sk_wmem_alloc, this will be released
1643 		 * after sk_write_space() call
1644 		 */
1645 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1646 		sk->sk_write_space(sk);
1647 		len = 1;
1648 	}
1649 	/*
1650 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1651 	 * could not do because of in-flight packets
1652 	 */
1653 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1654 		__sk_free(sk);
1655 }
1656 EXPORT_SYMBOL(sock_wfree);
1657 
1658 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1659 {
1660 	skb_orphan(skb);
1661 	skb->sk = sk;
1662 #ifdef CONFIG_INET
1663 	if (unlikely(!sk_fullsock(sk))) {
1664 		skb->destructor = sock_edemux;
1665 		sock_hold(sk);
1666 		return;
1667 	}
1668 #endif
1669 	skb->destructor = sock_wfree;
1670 	skb_set_hash_from_sk(skb, sk);
1671 	/*
1672 	 * We used to take a refcount on sk, but following operation
1673 	 * is enough to guarantee sk_free() wont free this sock until
1674 	 * all in-flight packets are completed
1675 	 */
1676 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1677 }
1678 EXPORT_SYMBOL(skb_set_owner_w);
1679 
1680 void skb_orphan_partial(struct sk_buff *skb)
1681 {
1682 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1683 	 * so we do not completely orphan skb, but transfert all
1684 	 * accounted bytes but one, to avoid unexpected reorders.
1685 	 */
1686 	if (skb->destructor == sock_wfree
1687 #ifdef CONFIG_INET
1688 	    || skb->destructor == tcp_wfree
1689 #endif
1690 		) {
1691 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1692 		skb->truesize = 1;
1693 	} else {
1694 		skb_orphan(skb);
1695 	}
1696 }
1697 EXPORT_SYMBOL(skb_orphan_partial);
1698 
1699 /*
1700  * Read buffer destructor automatically called from kfree_skb.
1701  */
1702 void sock_rfree(struct sk_buff *skb)
1703 {
1704 	struct sock *sk = skb->sk;
1705 	unsigned int len = skb->truesize;
1706 
1707 	atomic_sub(len, &sk->sk_rmem_alloc);
1708 	sk_mem_uncharge(sk, len);
1709 }
1710 EXPORT_SYMBOL(sock_rfree);
1711 
1712 /*
1713  * Buffer destructor for skbs that are not used directly in read or write
1714  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1715  */
1716 void sock_efree(struct sk_buff *skb)
1717 {
1718 	sock_put(skb->sk);
1719 }
1720 EXPORT_SYMBOL(sock_efree);
1721 
1722 kuid_t sock_i_uid(struct sock *sk)
1723 {
1724 	kuid_t uid;
1725 
1726 	read_lock_bh(&sk->sk_callback_lock);
1727 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1728 	read_unlock_bh(&sk->sk_callback_lock);
1729 	return uid;
1730 }
1731 EXPORT_SYMBOL(sock_i_uid);
1732 
1733 unsigned long sock_i_ino(struct sock *sk)
1734 {
1735 	unsigned long ino;
1736 
1737 	read_lock_bh(&sk->sk_callback_lock);
1738 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1739 	read_unlock_bh(&sk->sk_callback_lock);
1740 	return ino;
1741 }
1742 EXPORT_SYMBOL(sock_i_ino);
1743 
1744 /*
1745  * Allocate a skb from the socket's send buffer.
1746  */
1747 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1748 			     gfp_t priority)
1749 {
1750 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1751 		struct sk_buff *skb = alloc_skb(size, priority);
1752 		if (skb) {
1753 			skb_set_owner_w(skb, sk);
1754 			return skb;
1755 		}
1756 	}
1757 	return NULL;
1758 }
1759 EXPORT_SYMBOL(sock_wmalloc);
1760 
1761 /*
1762  * Allocate a memory block from the socket's option memory buffer.
1763  */
1764 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1765 {
1766 	if ((unsigned int)size <= sysctl_optmem_max &&
1767 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1768 		void *mem;
1769 		/* First do the add, to avoid the race if kmalloc
1770 		 * might sleep.
1771 		 */
1772 		atomic_add(size, &sk->sk_omem_alloc);
1773 		mem = kmalloc(size, priority);
1774 		if (mem)
1775 			return mem;
1776 		atomic_sub(size, &sk->sk_omem_alloc);
1777 	}
1778 	return NULL;
1779 }
1780 EXPORT_SYMBOL(sock_kmalloc);
1781 
1782 /* Free an option memory block. Note, we actually want the inline
1783  * here as this allows gcc to detect the nullify and fold away the
1784  * condition entirely.
1785  */
1786 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1787 				  const bool nullify)
1788 {
1789 	if (WARN_ON_ONCE(!mem))
1790 		return;
1791 	if (nullify)
1792 		kzfree(mem);
1793 	else
1794 		kfree(mem);
1795 	atomic_sub(size, &sk->sk_omem_alloc);
1796 }
1797 
1798 void sock_kfree_s(struct sock *sk, void *mem, int size)
1799 {
1800 	__sock_kfree_s(sk, mem, size, false);
1801 }
1802 EXPORT_SYMBOL(sock_kfree_s);
1803 
1804 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1805 {
1806 	__sock_kfree_s(sk, mem, size, true);
1807 }
1808 EXPORT_SYMBOL(sock_kzfree_s);
1809 
1810 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1811    I think, these locks should be removed for datagram sockets.
1812  */
1813 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1814 {
1815 	DEFINE_WAIT(wait);
1816 
1817 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1818 	for (;;) {
1819 		if (!timeo)
1820 			break;
1821 		if (signal_pending(current))
1822 			break;
1823 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1824 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1825 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1826 			break;
1827 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1828 			break;
1829 		if (sk->sk_err)
1830 			break;
1831 		timeo = schedule_timeout(timeo);
1832 	}
1833 	finish_wait(sk_sleep(sk), &wait);
1834 	return timeo;
1835 }
1836 
1837 
1838 /*
1839  *	Generic send/receive buffer handlers
1840  */
1841 
1842 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1843 				     unsigned long data_len, int noblock,
1844 				     int *errcode, int max_page_order)
1845 {
1846 	struct sk_buff *skb;
1847 	long timeo;
1848 	int err;
1849 
1850 	timeo = sock_sndtimeo(sk, noblock);
1851 	for (;;) {
1852 		err = sock_error(sk);
1853 		if (err != 0)
1854 			goto failure;
1855 
1856 		err = -EPIPE;
1857 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1858 			goto failure;
1859 
1860 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1861 			break;
1862 
1863 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1864 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1865 		err = -EAGAIN;
1866 		if (!timeo)
1867 			goto failure;
1868 		if (signal_pending(current))
1869 			goto interrupted;
1870 		timeo = sock_wait_for_wmem(sk, timeo);
1871 	}
1872 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1873 				   errcode, sk->sk_allocation);
1874 	if (skb)
1875 		skb_set_owner_w(skb, sk);
1876 	return skb;
1877 
1878 interrupted:
1879 	err = sock_intr_errno(timeo);
1880 failure:
1881 	*errcode = err;
1882 	return NULL;
1883 }
1884 EXPORT_SYMBOL(sock_alloc_send_pskb);
1885 
1886 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1887 				    int noblock, int *errcode)
1888 {
1889 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1890 }
1891 EXPORT_SYMBOL(sock_alloc_send_skb);
1892 
1893 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1894 		   struct sockcm_cookie *sockc)
1895 {
1896 	struct cmsghdr *cmsg;
1897 
1898 	for_each_cmsghdr(cmsg, msg) {
1899 		if (!CMSG_OK(msg, cmsg))
1900 			return -EINVAL;
1901 		if (cmsg->cmsg_level != SOL_SOCKET)
1902 			continue;
1903 		switch (cmsg->cmsg_type) {
1904 		case SO_MARK:
1905 			if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1906 				return -EPERM;
1907 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1908 				return -EINVAL;
1909 			sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1910 			break;
1911 		default:
1912 			return -EINVAL;
1913 		}
1914 	}
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL(sock_cmsg_send);
1918 
1919 /* On 32bit arches, an skb frag is limited to 2^15 */
1920 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1921 
1922 /**
1923  * skb_page_frag_refill - check that a page_frag contains enough room
1924  * @sz: minimum size of the fragment we want to get
1925  * @pfrag: pointer to page_frag
1926  * @gfp: priority for memory allocation
1927  *
1928  * Note: While this allocator tries to use high order pages, there is
1929  * no guarantee that allocations succeed. Therefore, @sz MUST be
1930  * less or equal than PAGE_SIZE.
1931  */
1932 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1933 {
1934 	if (pfrag->page) {
1935 		if (atomic_read(&pfrag->page->_count) == 1) {
1936 			pfrag->offset = 0;
1937 			return true;
1938 		}
1939 		if (pfrag->offset + sz <= pfrag->size)
1940 			return true;
1941 		put_page(pfrag->page);
1942 	}
1943 
1944 	pfrag->offset = 0;
1945 	if (SKB_FRAG_PAGE_ORDER) {
1946 		/* Avoid direct reclaim but allow kswapd to wake */
1947 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1948 					  __GFP_COMP | __GFP_NOWARN |
1949 					  __GFP_NORETRY,
1950 					  SKB_FRAG_PAGE_ORDER);
1951 		if (likely(pfrag->page)) {
1952 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1953 			return true;
1954 		}
1955 	}
1956 	pfrag->page = alloc_page(gfp);
1957 	if (likely(pfrag->page)) {
1958 		pfrag->size = PAGE_SIZE;
1959 		return true;
1960 	}
1961 	return false;
1962 }
1963 EXPORT_SYMBOL(skb_page_frag_refill);
1964 
1965 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1966 {
1967 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1968 		return true;
1969 
1970 	sk_enter_memory_pressure(sk);
1971 	sk_stream_moderate_sndbuf(sk);
1972 	return false;
1973 }
1974 EXPORT_SYMBOL(sk_page_frag_refill);
1975 
1976 static void __lock_sock(struct sock *sk)
1977 	__releases(&sk->sk_lock.slock)
1978 	__acquires(&sk->sk_lock.slock)
1979 {
1980 	DEFINE_WAIT(wait);
1981 
1982 	for (;;) {
1983 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1984 					TASK_UNINTERRUPTIBLE);
1985 		spin_unlock_bh(&sk->sk_lock.slock);
1986 		schedule();
1987 		spin_lock_bh(&sk->sk_lock.slock);
1988 		if (!sock_owned_by_user(sk))
1989 			break;
1990 	}
1991 	finish_wait(&sk->sk_lock.wq, &wait);
1992 }
1993 
1994 static void __release_sock(struct sock *sk)
1995 	__releases(&sk->sk_lock.slock)
1996 	__acquires(&sk->sk_lock.slock)
1997 {
1998 	struct sk_buff *skb = sk->sk_backlog.head;
1999 
2000 	do {
2001 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2002 		bh_unlock_sock(sk);
2003 
2004 		do {
2005 			struct sk_buff *next = skb->next;
2006 
2007 			prefetch(next);
2008 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2009 			skb->next = NULL;
2010 			sk_backlog_rcv(sk, skb);
2011 
2012 			/*
2013 			 * We are in process context here with softirqs
2014 			 * disabled, use cond_resched_softirq() to preempt.
2015 			 * This is safe to do because we've taken the backlog
2016 			 * queue private:
2017 			 */
2018 			cond_resched_softirq();
2019 
2020 			skb = next;
2021 		} while (skb != NULL);
2022 
2023 		bh_lock_sock(sk);
2024 	} while ((skb = sk->sk_backlog.head) != NULL);
2025 
2026 	/*
2027 	 * Doing the zeroing here guarantee we can not loop forever
2028 	 * while a wild producer attempts to flood us.
2029 	 */
2030 	sk->sk_backlog.len = 0;
2031 }
2032 
2033 /**
2034  * sk_wait_data - wait for data to arrive at sk_receive_queue
2035  * @sk:    sock to wait on
2036  * @timeo: for how long
2037  * @skb:   last skb seen on sk_receive_queue
2038  *
2039  * Now socket state including sk->sk_err is changed only under lock,
2040  * hence we may omit checks after joining wait queue.
2041  * We check receive queue before schedule() only as optimization;
2042  * it is very likely that release_sock() added new data.
2043  */
2044 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2045 {
2046 	int rc;
2047 	DEFINE_WAIT(wait);
2048 
2049 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2050 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2051 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2052 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2053 	finish_wait(sk_sleep(sk), &wait);
2054 	return rc;
2055 }
2056 EXPORT_SYMBOL(sk_wait_data);
2057 
2058 /**
2059  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2060  *	@sk: socket
2061  *	@size: memory size to allocate
2062  *	@kind: allocation type
2063  *
2064  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2065  *	rmem allocation. This function assumes that protocols which have
2066  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2067  */
2068 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2069 {
2070 	struct proto *prot = sk->sk_prot;
2071 	int amt = sk_mem_pages(size);
2072 	long allocated;
2073 	int parent_status = UNDER_LIMIT;
2074 
2075 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2076 
2077 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2078 
2079 	/* Under limit. */
2080 	if (parent_status == UNDER_LIMIT &&
2081 			allocated <= sk_prot_mem_limits(sk, 0)) {
2082 		sk_leave_memory_pressure(sk);
2083 		return 1;
2084 	}
2085 
2086 	/* Under pressure. (we or our parents) */
2087 	if ((parent_status > SOFT_LIMIT) ||
2088 			allocated > sk_prot_mem_limits(sk, 1))
2089 		sk_enter_memory_pressure(sk);
2090 
2091 	/* Over hard limit (we or our parents) */
2092 	if ((parent_status == OVER_LIMIT) ||
2093 			(allocated > sk_prot_mem_limits(sk, 2)))
2094 		goto suppress_allocation;
2095 
2096 	/* guarantee minimum buffer size under pressure */
2097 	if (kind == SK_MEM_RECV) {
2098 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2099 			return 1;
2100 
2101 	} else { /* SK_MEM_SEND */
2102 		if (sk->sk_type == SOCK_STREAM) {
2103 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2104 				return 1;
2105 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2106 			   prot->sysctl_wmem[0])
2107 				return 1;
2108 	}
2109 
2110 	if (sk_has_memory_pressure(sk)) {
2111 		int alloc;
2112 
2113 		if (!sk_under_memory_pressure(sk))
2114 			return 1;
2115 		alloc = sk_sockets_allocated_read_positive(sk);
2116 		if (sk_prot_mem_limits(sk, 2) > alloc *
2117 		    sk_mem_pages(sk->sk_wmem_queued +
2118 				 atomic_read(&sk->sk_rmem_alloc) +
2119 				 sk->sk_forward_alloc))
2120 			return 1;
2121 	}
2122 
2123 suppress_allocation:
2124 
2125 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2126 		sk_stream_moderate_sndbuf(sk);
2127 
2128 		/* Fail only if socket is _under_ its sndbuf.
2129 		 * In this case we cannot block, so that we have to fail.
2130 		 */
2131 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2132 			return 1;
2133 	}
2134 
2135 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2136 
2137 	/* Alas. Undo changes. */
2138 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2139 
2140 	sk_memory_allocated_sub(sk, amt);
2141 
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL(__sk_mem_schedule);
2145 
2146 /**
2147  *	__sk_mem_reclaim - reclaim memory_allocated
2148  *	@sk: socket
2149  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2150  */
2151 void __sk_mem_reclaim(struct sock *sk, int amount)
2152 {
2153 	amount >>= SK_MEM_QUANTUM_SHIFT;
2154 	sk_memory_allocated_sub(sk, amount);
2155 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2156 
2157 	if (sk_under_memory_pressure(sk) &&
2158 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2159 		sk_leave_memory_pressure(sk);
2160 }
2161 EXPORT_SYMBOL(__sk_mem_reclaim);
2162 
2163 
2164 /*
2165  * Set of default routines for initialising struct proto_ops when
2166  * the protocol does not support a particular function. In certain
2167  * cases where it makes no sense for a protocol to have a "do nothing"
2168  * function, some default processing is provided.
2169  */
2170 
2171 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2172 {
2173 	return -EOPNOTSUPP;
2174 }
2175 EXPORT_SYMBOL(sock_no_bind);
2176 
2177 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2178 		    int len, int flags)
2179 {
2180 	return -EOPNOTSUPP;
2181 }
2182 EXPORT_SYMBOL(sock_no_connect);
2183 
2184 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2185 {
2186 	return -EOPNOTSUPP;
2187 }
2188 EXPORT_SYMBOL(sock_no_socketpair);
2189 
2190 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2191 {
2192 	return -EOPNOTSUPP;
2193 }
2194 EXPORT_SYMBOL(sock_no_accept);
2195 
2196 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2197 		    int *len, int peer)
2198 {
2199 	return -EOPNOTSUPP;
2200 }
2201 EXPORT_SYMBOL(sock_no_getname);
2202 
2203 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2204 {
2205 	return 0;
2206 }
2207 EXPORT_SYMBOL(sock_no_poll);
2208 
2209 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2210 {
2211 	return -EOPNOTSUPP;
2212 }
2213 EXPORT_SYMBOL(sock_no_ioctl);
2214 
2215 int sock_no_listen(struct socket *sock, int backlog)
2216 {
2217 	return -EOPNOTSUPP;
2218 }
2219 EXPORT_SYMBOL(sock_no_listen);
2220 
2221 int sock_no_shutdown(struct socket *sock, int how)
2222 {
2223 	return -EOPNOTSUPP;
2224 }
2225 EXPORT_SYMBOL(sock_no_shutdown);
2226 
2227 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2228 		    char __user *optval, unsigned int optlen)
2229 {
2230 	return -EOPNOTSUPP;
2231 }
2232 EXPORT_SYMBOL(sock_no_setsockopt);
2233 
2234 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2235 		    char __user *optval, int __user *optlen)
2236 {
2237 	return -EOPNOTSUPP;
2238 }
2239 EXPORT_SYMBOL(sock_no_getsockopt);
2240 
2241 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2242 {
2243 	return -EOPNOTSUPP;
2244 }
2245 EXPORT_SYMBOL(sock_no_sendmsg);
2246 
2247 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2248 		    int flags)
2249 {
2250 	return -EOPNOTSUPP;
2251 }
2252 EXPORT_SYMBOL(sock_no_recvmsg);
2253 
2254 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2255 {
2256 	/* Mirror missing mmap method error code */
2257 	return -ENODEV;
2258 }
2259 EXPORT_SYMBOL(sock_no_mmap);
2260 
2261 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2262 {
2263 	ssize_t res;
2264 	struct msghdr msg = {.msg_flags = flags};
2265 	struct kvec iov;
2266 	char *kaddr = kmap(page);
2267 	iov.iov_base = kaddr + offset;
2268 	iov.iov_len = size;
2269 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2270 	kunmap(page);
2271 	return res;
2272 }
2273 EXPORT_SYMBOL(sock_no_sendpage);
2274 
2275 /*
2276  *	Default Socket Callbacks
2277  */
2278 
2279 static void sock_def_wakeup(struct sock *sk)
2280 {
2281 	struct socket_wq *wq;
2282 
2283 	rcu_read_lock();
2284 	wq = rcu_dereference(sk->sk_wq);
2285 	if (wq_has_sleeper(wq))
2286 		wake_up_interruptible_all(&wq->wait);
2287 	rcu_read_unlock();
2288 }
2289 
2290 static void sock_def_error_report(struct sock *sk)
2291 {
2292 	struct socket_wq *wq;
2293 
2294 	rcu_read_lock();
2295 	wq = rcu_dereference(sk->sk_wq);
2296 	if (wq_has_sleeper(wq))
2297 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2298 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2299 	rcu_read_unlock();
2300 }
2301 
2302 static void sock_def_readable(struct sock *sk)
2303 {
2304 	struct socket_wq *wq;
2305 
2306 	rcu_read_lock();
2307 	wq = rcu_dereference(sk->sk_wq);
2308 	if (wq_has_sleeper(wq))
2309 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2310 						POLLRDNORM | POLLRDBAND);
2311 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2312 	rcu_read_unlock();
2313 }
2314 
2315 static void sock_def_write_space(struct sock *sk)
2316 {
2317 	struct socket_wq *wq;
2318 
2319 	rcu_read_lock();
2320 
2321 	/* Do not wake up a writer until he can make "significant"
2322 	 * progress.  --DaveM
2323 	 */
2324 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2325 		wq = rcu_dereference(sk->sk_wq);
2326 		if (wq_has_sleeper(wq))
2327 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2328 						POLLWRNORM | POLLWRBAND);
2329 
2330 		/* Should agree with poll, otherwise some programs break */
2331 		if (sock_writeable(sk))
2332 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2333 	}
2334 
2335 	rcu_read_unlock();
2336 }
2337 
2338 static void sock_def_destruct(struct sock *sk)
2339 {
2340 }
2341 
2342 void sk_send_sigurg(struct sock *sk)
2343 {
2344 	if (sk->sk_socket && sk->sk_socket->file)
2345 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2346 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2347 }
2348 EXPORT_SYMBOL(sk_send_sigurg);
2349 
2350 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2351 		    unsigned long expires)
2352 {
2353 	if (!mod_timer(timer, expires))
2354 		sock_hold(sk);
2355 }
2356 EXPORT_SYMBOL(sk_reset_timer);
2357 
2358 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2359 {
2360 	if (del_timer(timer))
2361 		__sock_put(sk);
2362 }
2363 EXPORT_SYMBOL(sk_stop_timer);
2364 
2365 void sock_init_data(struct socket *sock, struct sock *sk)
2366 {
2367 	skb_queue_head_init(&sk->sk_receive_queue);
2368 	skb_queue_head_init(&sk->sk_write_queue);
2369 	skb_queue_head_init(&sk->sk_error_queue);
2370 
2371 	sk->sk_send_head	=	NULL;
2372 
2373 	init_timer(&sk->sk_timer);
2374 
2375 	sk->sk_allocation	=	GFP_KERNEL;
2376 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2377 	sk->sk_sndbuf		=	sysctl_wmem_default;
2378 	sk->sk_state		=	TCP_CLOSE;
2379 	sk_set_socket(sk, sock);
2380 
2381 	sock_set_flag(sk, SOCK_ZAPPED);
2382 
2383 	if (sock) {
2384 		sk->sk_type	=	sock->type;
2385 		sk->sk_wq	=	sock->wq;
2386 		sock->sk	=	sk;
2387 	} else
2388 		sk->sk_wq	=	NULL;
2389 
2390 	rwlock_init(&sk->sk_callback_lock);
2391 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2392 			af_callback_keys + sk->sk_family,
2393 			af_family_clock_key_strings[sk->sk_family]);
2394 
2395 	sk->sk_state_change	=	sock_def_wakeup;
2396 	sk->sk_data_ready	=	sock_def_readable;
2397 	sk->sk_write_space	=	sock_def_write_space;
2398 	sk->sk_error_report	=	sock_def_error_report;
2399 	sk->sk_destruct		=	sock_def_destruct;
2400 
2401 	sk->sk_frag.page	=	NULL;
2402 	sk->sk_frag.offset	=	0;
2403 	sk->sk_peek_off		=	-1;
2404 
2405 	sk->sk_peer_pid 	=	NULL;
2406 	sk->sk_peer_cred	=	NULL;
2407 	sk->sk_write_pending	=	0;
2408 	sk->sk_rcvlowat		=	1;
2409 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2410 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2411 
2412 	sk->sk_stamp = ktime_set(-1L, 0);
2413 
2414 #ifdef CONFIG_NET_RX_BUSY_POLL
2415 	sk->sk_napi_id		=	0;
2416 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2417 #endif
2418 
2419 	sk->sk_max_pacing_rate = ~0U;
2420 	sk->sk_pacing_rate = ~0U;
2421 	sk->sk_incoming_cpu = -1;
2422 	/*
2423 	 * Before updating sk_refcnt, we must commit prior changes to memory
2424 	 * (Documentation/RCU/rculist_nulls.txt for details)
2425 	 */
2426 	smp_wmb();
2427 	atomic_set(&sk->sk_refcnt, 1);
2428 	atomic_set(&sk->sk_drops, 0);
2429 }
2430 EXPORT_SYMBOL(sock_init_data);
2431 
2432 void lock_sock_nested(struct sock *sk, int subclass)
2433 {
2434 	might_sleep();
2435 	spin_lock_bh(&sk->sk_lock.slock);
2436 	if (sk->sk_lock.owned)
2437 		__lock_sock(sk);
2438 	sk->sk_lock.owned = 1;
2439 	spin_unlock(&sk->sk_lock.slock);
2440 	/*
2441 	 * The sk_lock has mutex_lock() semantics here:
2442 	 */
2443 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2444 	local_bh_enable();
2445 }
2446 EXPORT_SYMBOL(lock_sock_nested);
2447 
2448 void release_sock(struct sock *sk)
2449 {
2450 	/*
2451 	 * The sk_lock has mutex_unlock() semantics:
2452 	 */
2453 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2454 
2455 	spin_lock_bh(&sk->sk_lock.slock);
2456 	if (sk->sk_backlog.tail)
2457 		__release_sock(sk);
2458 
2459 	/* Warning : release_cb() might need to release sk ownership,
2460 	 * ie call sock_release_ownership(sk) before us.
2461 	 */
2462 	if (sk->sk_prot->release_cb)
2463 		sk->sk_prot->release_cb(sk);
2464 
2465 	sock_release_ownership(sk);
2466 	if (waitqueue_active(&sk->sk_lock.wq))
2467 		wake_up(&sk->sk_lock.wq);
2468 	spin_unlock_bh(&sk->sk_lock.slock);
2469 }
2470 EXPORT_SYMBOL(release_sock);
2471 
2472 /**
2473  * lock_sock_fast - fast version of lock_sock
2474  * @sk: socket
2475  *
2476  * This version should be used for very small section, where process wont block
2477  * return false if fast path is taken
2478  *   sk_lock.slock locked, owned = 0, BH disabled
2479  * return true if slow path is taken
2480  *   sk_lock.slock unlocked, owned = 1, BH enabled
2481  */
2482 bool lock_sock_fast(struct sock *sk)
2483 {
2484 	might_sleep();
2485 	spin_lock_bh(&sk->sk_lock.slock);
2486 
2487 	if (!sk->sk_lock.owned)
2488 		/*
2489 		 * Note : We must disable BH
2490 		 */
2491 		return false;
2492 
2493 	__lock_sock(sk);
2494 	sk->sk_lock.owned = 1;
2495 	spin_unlock(&sk->sk_lock.slock);
2496 	/*
2497 	 * The sk_lock has mutex_lock() semantics here:
2498 	 */
2499 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2500 	local_bh_enable();
2501 	return true;
2502 }
2503 EXPORT_SYMBOL(lock_sock_fast);
2504 
2505 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2506 {
2507 	struct timeval tv;
2508 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2509 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2510 	tv = ktime_to_timeval(sk->sk_stamp);
2511 	if (tv.tv_sec == -1)
2512 		return -ENOENT;
2513 	if (tv.tv_sec == 0) {
2514 		sk->sk_stamp = ktime_get_real();
2515 		tv = ktime_to_timeval(sk->sk_stamp);
2516 	}
2517 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2518 }
2519 EXPORT_SYMBOL(sock_get_timestamp);
2520 
2521 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2522 {
2523 	struct timespec ts;
2524 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2525 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2526 	ts = ktime_to_timespec(sk->sk_stamp);
2527 	if (ts.tv_sec == -1)
2528 		return -ENOENT;
2529 	if (ts.tv_sec == 0) {
2530 		sk->sk_stamp = ktime_get_real();
2531 		ts = ktime_to_timespec(sk->sk_stamp);
2532 	}
2533 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2534 }
2535 EXPORT_SYMBOL(sock_get_timestampns);
2536 
2537 void sock_enable_timestamp(struct sock *sk, int flag)
2538 {
2539 	if (!sock_flag(sk, flag)) {
2540 		unsigned long previous_flags = sk->sk_flags;
2541 
2542 		sock_set_flag(sk, flag);
2543 		/*
2544 		 * we just set one of the two flags which require net
2545 		 * time stamping, but time stamping might have been on
2546 		 * already because of the other one
2547 		 */
2548 		if (sock_needs_netstamp(sk) &&
2549 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2550 			net_enable_timestamp();
2551 	}
2552 }
2553 
2554 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2555 		       int level, int type)
2556 {
2557 	struct sock_exterr_skb *serr;
2558 	struct sk_buff *skb;
2559 	int copied, err;
2560 
2561 	err = -EAGAIN;
2562 	skb = sock_dequeue_err_skb(sk);
2563 	if (skb == NULL)
2564 		goto out;
2565 
2566 	copied = skb->len;
2567 	if (copied > len) {
2568 		msg->msg_flags |= MSG_TRUNC;
2569 		copied = len;
2570 	}
2571 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2572 	if (err)
2573 		goto out_free_skb;
2574 
2575 	sock_recv_timestamp(msg, sk, skb);
2576 
2577 	serr = SKB_EXT_ERR(skb);
2578 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2579 
2580 	msg->msg_flags |= MSG_ERRQUEUE;
2581 	err = copied;
2582 
2583 out_free_skb:
2584 	kfree_skb(skb);
2585 out:
2586 	return err;
2587 }
2588 EXPORT_SYMBOL(sock_recv_errqueue);
2589 
2590 /*
2591  *	Get a socket option on an socket.
2592  *
2593  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2594  *	asynchronous errors should be reported by getsockopt. We assume
2595  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2596  */
2597 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2598 			   char __user *optval, int __user *optlen)
2599 {
2600 	struct sock *sk = sock->sk;
2601 
2602 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2603 }
2604 EXPORT_SYMBOL(sock_common_getsockopt);
2605 
2606 #ifdef CONFIG_COMPAT
2607 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2608 				  char __user *optval, int __user *optlen)
2609 {
2610 	struct sock *sk = sock->sk;
2611 
2612 	if (sk->sk_prot->compat_getsockopt != NULL)
2613 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2614 						      optval, optlen);
2615 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2616 }
2617 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2618 #endif
2619 
2620 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2621 			int flags)
2622 {
2623 	struct sock *sk = sock->sk;
2624 	int addr_len = 0;
2625 	int err;
2626 
2627 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2628 				   flags & ~MSG_DONTWAIT, &addr_len);
2629 	if (err >= 0)
2630 		msg->msg_namelen = addr_len;
2631 	return err;
2632 }
2633 EXPORT_SYMBOL(sock_common_recvmsg);
2634 
2635 /*
2636  *	Set socket options on an inet socket.
2637  */
2638 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2639 			   char __user *optval, unsigned int optlen)
2640 {
2641 	struct sock *sk = sock->sk;
2642 
2643 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2644 }
2645 EXPORT_SYMBOL(sock_common_setsockopt);
2646 
2647 #ifdef CONFIG_COMPAT
2648 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2649 				  char __user *optval, unsigned int optlen)
2650 {
2651 	struct sock *sk = sock->sk;
2652 
2653 	if (sk->sk_prot->compat_setsockopt != NULL)
2654 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2655 						      optval, optlen);
2656 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2657 }
2658 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2659 #endif
2660 
2661 void sk_common_release(struct sock *sk)
2662 {
2663 	if (sk->sk_prot->destroy)
2664 		sk->sk_prot->destroy(sk);
2665 
2666 	/*
2667 	 * Observation: when sock_common_release is called, processes have
2668 	 * no access to socket. But net still has.
2669 	 * Step one, detach it from networking:
2670 	 *
2671 	 * A. Remove from hash tables.
2672 	 */
2673 
2674 	sk->sk_prot->unhash(sk);
2675 
2676 	/*
2677 	 * In this point socket cannot receive new packets, but it is possible
2678 	 * that some packets are in flight because some CPU runs receiver and
2679 	 * did hash table lookup before we unhashed socket. They will achieve
2680 	 * receive queue and will be purged by socket destructor.
2681 	 *
2682 	 * Also we still have packets pending on receive queue and probably,
2683 	 * our own packets waiting in device queues. sock_destroy will drain
2684 	 * receive queue, but transmitted packets will delay socket destruction
2685 	 * until the last reference will be released.
2686 	 */
2687 
2688 	sock_orphan(sk);
2689 
2690 	xfrm_sk_free_policy(sk);
2691 
2692 	sk_refcnt_debug_release(sk);
2693 
2694 	if (sk->sk_frag.page) {
2695 		put_page(sk->sk_frag.page);
2696 		sk->sk_frag.page = NULL;
2697 	}
2698 
2699 	sock_put(sk);
2700 }
2701 EXPORT_SYMBOL(sk_common_release);
2702 
2703 #ifdef CONFIG_PROC_FS
2704 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2705 struct prot_inuse {
2706 	int val[PROTO_INUSE_NR];
2707 };
2708 
2709 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2710 
2711 #ifdef CONFIG_NET_NS
2712 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2713 {
2714 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2715 }
2716 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2717 
2718 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2719 {
2720 	int cpu, idx = prot->inuse_idx;
2721 	int res = 0;
2722 
2723 	for_each_possible_cpu(cpu)
2724 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2725 
2726 	return res >= 0 ? res : 0;
2727 }
2728 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2729 
2730 static int __net_init sock_inuse_init_net(struct net *net)
2731 {
2732 	net->core.inuse = alloc_percpu(struct prot_inuse);
2733 	return net->core.inuse ? 0 : -ENOMEM;
2734 }
2735 
2736 static void __net_exit sock_inuse_exit_net(struct net *net)
2737 {
2738 	free_percpu(net->core.inuse);
2739 }
2740 
2741 static struct pernet_operations net_inuse_ops = {
2742 	.init = sock_inuse_init_net,
2743 	.exit = sock_inuse_exit_net,
2744 };
2745 
2746 static __init int net_inuse_init(void)
2747 {
2748 	if (register_pernet_subsys(&net_inuse_ops))
2749 		panic("Cannot initialize net inuse counters");
2750 
2751 	return 0;
2752 }
2753 
2754 core_initcall(net_inuse_init);
2755 #else
2756 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2757 
2758 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2759 {
2760 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2761 }
2762 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2763 
2764 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2765 {
2766 	int cpu, idx = prot->inuse_idx;
2767 	int res = 0;
2768 
2769 	for_each_possible_cpu(cpu)
2770 		res += per_cpu(prot_inuse, cpu).val[idx];
2771 
2772 	return res >= 0 ? res : 0;
2773 }
2774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2775 #endif
2776 
2777 static void assign_proto_idx(struct proto *prot)
2778 {
2779 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2780 
2781 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2782 		pr_err("PROTO_INUSE_NR exhausted\n");
2783 		return;
2784 	}
2785 
2786 	set_bit(prot->inuse_idx, proto_inuse_idx);
2787 }
2788 
2789 static void release_proto_idx(struct proto *prot)
2790 {
2791 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2792 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2793 }
2794 #else
2795 static inline void assign_proto_idx(struct proto *prot)
2796 {
2797 }
2798 
2799 static inline void release_proto_idx(struct proto *prot)
2800 {
2801 }
2802 #endif
2803 
2804 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2805 {
2806 	if (!rsk_prot)
2807 		return;
2808 	kfree(rsk_prot->slab_name);
2809 	rsk_prot->slab_name = NULL;
2810 	kmem_cache_destroy(rsk_prot->slab);
2811 	rsk_prot->slab = NULL;
2812 }
2813 
2814 static int req_prot_init(const struct proto *prot)
2815 {
2816 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2817 
2818 	if (!rsk_prot)
2819 		return 0;
2820 
2821 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2822 					prot->name);
2823 	if (!rsk_prot->slab_name)
2824 		return -ENOMEM;
2825 
2826 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2827 					   rsk_prot->obj_size, 0,
2828 					   prot->slab_flags, NULL);
2829 
2830 	if (!rsk_prot->slab) {
2831 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2832 			prot->name);
2833 		return -ENOMEM;
2834 	}
2835 	return 0;
2836 }
2837 
2838 int proto_register(struct proto *prot, int alloc_slab)
2839 {
2840 	if (alloc_slab) {
2841 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2842 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2843 					NULL);
2844 
2845 		if (prot->slab == NULL) {
2846 			pr_crit("%s: Can't create sock SLAB cache!\n",
2847 				prot->name);
2848 			goto out;
2849 		}
2850 
2851 		if (req_prot_init(prot))
2852 			goto out_free_request_sock_slab;
2853 
2854 		if (prot->twsk_prot != NULL) {
2855 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2856 
2857 			if (prot->twsk_prot->twsk_slab_name == NULL)
2858 				goto out_free_request_sock_slab;
2859 
2860 			prot->twsk_prot->twsk_slab =
2861 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2862 						  prot->twsk_prot->twsk_obj_size,
2863 						  0,
2864 						  prot->slab_flags,
2865 						  NULL);
2866 			if (prot->twsk_prot->twsk_slab == NULL)
2867 				goto out_free_timewait_sock_slab_name;
2868 		}
2869 	}
2870 
2871 	mutex_lock(&proto_list_mutex);
2872 	list_add(&prot->node, &proto_list);
2873 	assign_proto_idx(prot);
2874 	mutex_unlock(&proto_list_mutex);
2875 	return 0;
2876 
2877 out_free_timewait_sock_slab_name:
2878 	kfree(prot->twsk_prot->twsk_slab_name);
2879 out_free_request_sock_slab:
2880 	req_prot_cleanup(prot->rsk_prot);
2881 
2882 	kmem_cache_destroy(prot->slab);
2883 	prot->slab = NULL;
2884 out:
2885 	return -ENOBUFS;
2886 }
2887 EXPORT_SYMBOL(proto_register);
2888 
2889 void proto_unregister(struct proto *prot)
2890 {
2891 	mutex_lock(&proto_list_mutex);
2892 	release_proto_idx(prot);
2893 	list_del(&prot->node);
2894 	mutex_unlock(&proto_list_mutex);
2895 
2896 	kmem_cache_destroy(prot->slab);
2897 	prot->slab = NULL;
2898 
2899 	req_prot_cleanup(prot->rsk_prot);
2900 
2901 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2902 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2903 		kfree(prot->twsk_prot->twsk_slab_name);
2904 		prot->twsk_prot->twsk_slab = NULL;
2905 	}
2906 }
2907 EXPORT_SYMBOL(proto_unregister);
2908 
2909 #ifdef CONFIG_PROC_FS
2910 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2911 	__acquires(proto_list_mutex)
2912 {
2913 	mutex_lock(&proto_list_mutex);
2914 	return seq_list_start_head(&proto_list, *pos);
2915 }
2916 
2917 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2918 {
2919 	return seq_list_next(v, &proto_list, pos);
2920 }
2921 
2922 static void proto_seq_stop(struct seq_file *seq, void *v)
2923 	__releases(proto_list_mutex)
2924 {
2925 	mutex_unlock(&proto_list_mutex);
2926 }
2927 
2928 static char proto_method_implemented(const void *method)
2929 {
2930 	return method == NULL ? 'n' : 'y';
2931 }
2932 static long sock_prot_memory_allocated(struct proto *proto)
2933 {
2934 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2935 }
2936 
2937 static char *sock_prot_memory_pressure(struct proto *proto)
2938 {
2939 	return proto->memory_pressure != NULL ?
2940 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2941 }
2942 
2943 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2944 {
2945 
2946 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2947 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2948 		   proto->name,
2949 		   proto->obj_size,
2950 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2951 		   sock_prot_memory_allocated(proto),
2952 		   sock_prot_memory_pressure(proto),
2953 		   proto->max_header,
2954 		   proto->slab == NULL ? "no" : "yes",
2955 		   module_name(proto->owner),
2956 		   proto_method_implemented(proto->close),
2957 		   proto_method_implemented(proto->connect),
2958 		   proto_method_implemented(proto->disconnect),
2959 		   proto_method_implemented(proto->accept),
2960 		   proto_method_implemented(proto->ioctl),
2961 		   proto_method_implemented(proto->init),
2962 		   proto_method_implemented(proto->destroy),
2963 		   proto_method_implemented(proto->shutdown),
2964 		   proto_method_implemented(proto->setsockopt),
2965 		   proto_method_implemented(proto->getsockopt),
2966 		   proto_method_implemented(proto->sendmsg),
2967 		   proto_method_implemented(proto->recvmsg),
2968 		   proto_method_implemented(proto->sendpage),
2969 		   proto_method_implemented(proto->bind),
2970 		   proto_method_implemented(proto->backlog_rcv),
2971 		   proto_method_implemented(proto->hash),
2972 		   proto_method_implemented(proto->unhash),
2973 		   proto_method_implemented(proto->get_port),
2974 		   proto_method_implemented(proto->enter_memory_pressure));
2975 }
2976 
2977 static int proto_seq_show(struct seq_file *seq, void *v)
2978 {
2979 	if (v == &proto_list)
2980 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2981 			   "protocol",
2982 			   "size",
2983 			   "sockets",
2984 			   "memory",
2985 			   "press",
2986 			   "maxhdr",
2987 			   "slab",
2988 			   "module",
2989 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2990 	else
2991 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2992 	return 0;
2993 }
2994 
2995 static const struct seq_operations proto_seq_ops = {
2996 	.start  = proto_seq_start,
2997 	.next   = proto_seq_next,
2998 	.stop   = proto_seq_stop,
2999 	.show   = proto_seq_show,
3000 };
3001 
3002 static int proto_seq_open(struct inode *inode, struct file *file)
3003 {
3004 	return seq_open_net(inode, file, &proto_seq_ops,
3005 			    sizeof(struct seq_net_private));
3006 }
3007 
3008 static const struct file_operations proto_seq_fops = {
3009 	.owner		= THIS_MODULE,
3010 	.open		= proto_seq_open,
3011 	.read		= seq_read,
3012 	.llseek		= seq_lseek,
3013 	.release	= seq_release_net,
3014 };
3015 
3016 static __net_init int proto_init_net(struct net *net)
3017 {
3018 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3019 		return -ENOMEM;
3020 
3021 	return 0;
3022 }
3023 
3024 static __net_exit void proto_exit_net(struct net *net)
3025 {
3026 	remove_proc_entry("protocols", net->proc_net);
3027 }
3028 
3029 
3030 static __net_initdata struct pernet_operations proto_net_ops = {
3031 	.init = proto_init_net,
3032 	.exit = proto_exit_net,
3033 };
3034 
3035 static int __init proto_init(void)
3036 {
3037 	return register_pernet_subsys(&proto_net_ops);
3038 }
3039 
3040 subsys_initcall(proto_init);
3041 
3042 #endif /* PROC_FS */
3043