xref: /openbmc/linux/net/core/sock.c (revision 61a3e166)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117 
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128 
129 #include <linux/filter.h>
130 
131 #ifdef CONFIG_INET
132 #include <net/tcp.h>
133 #endif
134 
135 /*
136  * Each address family might have different locking rules, so we have
137  * one slock key per address family:
138  */
139 static struct lock_class_key af_family_keys[AF_MAX];
140 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *const af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161   "sk_lock-AF_MAX"
162 };
163 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176   "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177   "slock-AF_MAX"
178 };
179 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192   "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193   "clock-AF_MAX"
194 };
195 
196 /*
197  * sk_callback_lock locking rules are per-address-family,
198  * so split the lock classes by using a per-AF key:
199  */
200 static struct lock_class_key af_callback_keys[AF_MAX];
201 
202 /* Take into consideration the size of the struct sk_buff overhead in the
203  * determination of these values, since that is non-constant across
204  * platforms.  This makes socket queueing behavior and performance
205  * not depend upon such differences.
206  */
207 #define _SK_MEM_PACKETS		256
208 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211 
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217 
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220 EXPORT_SYMBOL(sysctl_optmem_max);
221 
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id = -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225 #endif
226 
227 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228 {
229 	struct timeval tv;
230 
231 	if (optlen < sizeof(tv))
232 		return -EINVAL;
233 	if (copy_from_user(&tv, optval, sizeof(tv)))
234 		return -EFAULT;
235 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236 		return -EDOM;
237 
238 	if (tv.tv_sec < 0) {
239 		static int warned __read_mostly;
240 
241 		*timeo_p = 0;
242 		if (warned < 10 && net_ratelimit()) {
243 			warned++;
244 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245 			       "tries to set negative timeout\n",
246 				current->comm, task_pid_nr(current));
247 		}
248 		return 0;
249 	}
250 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
251 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
252 		return 0;
253 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255 	return 0;
256 }
257 
258 static void sock_warn_obsolete_bsdism(const char *name)
259 {
260 	static int warned;
261 	static char warncomm[TASK_COMM_LEN];
262 	if (strcmp(warncomm, current->comm) && warned < 5) {
263 		strcpy(warncomm,  current->comm);
264 		printk(KERN_WARNING "process `%s' is using obsolete "
265 		       "%s SO_BSDCOMPAT\n", warncomm, name);
266 		warned++;
267 	}
268 }
269 
270 static void sock_disable_timestamp(struct sock *sk, int flag)
271 {
272 	if (sock_flag(sk, flag)) {
273 		sock_reset_flag(sk, flag);
274 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276 			net_disable_timestamp();
277 		}
278 	}
279 }
280 
281 
282 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283 {
284 	int err;
285 	int skb_len;
286 	unsigned long flags;
287 	struct sk_buff_head *list = &sk->sk_receive_queue;
288 
289 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290 	   number of warnings when compiling with -W --ANK
291 	 */
292 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293 	    (unsigned)sk->sk_rcvbuf) {
294 		atomic_inc(&sk->sk_drops);
295 		return -ENOMEM;
296 	}
297 
298 	err = sk_filter(sk, skb);
299 	if (err)
300 		return err;
301 
302 	if (!sk_rmem_schedule(sk, skb->truesize)) {
303 		atomic_inc(&sk->sk_drops);
304 		return -ENOBUFS;
305 	}
306 
307 	skb->dev = NULL;
308 	skb_set_owner_r(skb, sk);
309 
310 	/* Cache the SKB length before we tack it onto the receive
311 	 * queue.  Once it is added it no longer belongs to us and
312 	 * may be freed by other threads of control pulling packets
313 	 * from the queue.
314 	 */
315 	skb_len = skb->len;
316 
317 	/* we escape from rcu protected region, make sure we dont leak
318 	 * a norefcounted dst
319 	 */
320 	skb_dst_force(skb);
321 
322 	spin_lock_irqsave(&list->lock, flags);
323 	skb->dropcount = atomic_read(&sk->sk_drops);
324 	__skb_queue_tail(list, skb);
325 	spin_unlock_irqrestore(&list->lock, flags);
326 
327 	if (!sock_flag(sk, SOCK_DEAD))
328 		sk->sk_data_ready(sk, skb_len);
329 	return 0;
330 }
331 EXPORT_SYMBOL(sock_queue_rcv_skb);
332 
333 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 {
335 	int rc = NET_RX_SUCCESS;
336 
337 	if (sk_filter(sk, skb))
338 		goto discard_and_relse;
339 
340 	skb->dev = NULL;
341 
342 	if (sk_rcvqueues_full(sk, skb)) {
343 		atomic_inc(&sk->sk_drops);
344 		goto discard_and_relse;
345 	}
346 	if (nested)
347 		bh_lock_sock_nested(sk);
348 	else
349 		bh_lock_sock(sk);
350 	if (!sock_owned_by_user(sk)) {
351 		/*
352 		 * trylock + unlock semantics:
353 		 */
354 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355 
356 		rc = sk_backlog_rcv(sk, skb);
357 
358 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359 	} else if (sk_add_backlog(sk, skb)) {
360 		bh_unlock_sock(sk);
361 		atomic_inc(&sk->sk_drops);
362 		goto discard_and_relse;
363 	}
364 
365 	bh_unlock_sock(sk);
366 out:
367 	sock_put(sk);
368 	return rc;
369 discard_and_relse:
370 	kfree_skb(skb);
371 	goto out;
372 }
373 EXPORT_SYMBOL(sk_receive_skb);
374 
375 void sk_reset_txq(struct sock *sk)
376 {
377 	sk_tx_queue_clear(sk);
378 }
379 EXPORT_SYMBOL(sk_reset_txq);
380 
381 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 {
383 	struct dst_entry *dst = __sk_dst_get(sk);
384 
385 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386 		sk_tx_queue_clear(sk);
387 		rcu_assign_pointer(sk->sk_dst_cache, NULL);
388 		dst_release(dst);
389 		return NULL;
390 	}
391 
392 	return dst;
393 }
394 EXPORT_SYMBOL(__sk_dst_check);
395 
396 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 {
398 	struct dst_entry *dst = sk_dst_get(sk);
399 
400 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401 		sk_dst_reset(sk);
402 		dst_release(dst);
403 		return NULL;
404 	}
405 
406 	return dst;
407 }
408 EXPORT_SYMBOL(sk_dst_check);
409 
410 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 {
412 	int ret = -ENOPROTOOPT;
413 #ifdef CONFIG_NETDEVICES
414 	struct net *net = sock_net(sk);
415 	char devname[IFNAMSIZ];
416 	int index;
417 
418 	/* Sorry... */
419 	ret = -EPERM;
420 	if (!capable(CAP_NET_RAW))
421 		goto out;
422 
423 	ret = -EINVAL;
424 	if (optlen < 0)
425 		goto out;
426 
427 	/* Bind this socket to a particular device like "eth0",
428 	 * as specified in the passed interface name. If the
429 	 * name is "" or the option length is zero the socket
430 	 * is not bound.
431 	 */
432 	if (optlen > IFNAMSIZ - 1)
433 		optlen = IFNAMSIZ - 1;
434 	memset(devname, 0, sizeof(devname));
435 
436 	ret = -EFAULT;
437 	if (copy_from_user(devname, optval, optlen))
438 		goto out;
439 
440 	index = 0;
441 	if (devname[0] != '\0') {
442 		struct net_device *dev;
443 
444 		rcu_read_lock();
445 		dev = dev_get_by_name_rcu(net, devname);
446 		if (dev)
447 			index = dev->ifindex;
448 		rcu_read_unlock();
449 		ret = -ENODEV;
450 		if (!dev)
451 			goto out;
452 	}
453 
454 	lock_sock(sk);
455 	sk->sk_bound_dev_if = index;
456 	sk_dst_reset(sk);
457 	release_sock(sk);
458 
459 	ret = 0;
460 
461 out:
462 #endif
463 
464 	return ret;
465 }
466 
467 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468 {
469 	if (valbool)
470 		sock_set_flag(sk, bit);
471 	else
472 		sock_reset_flag(sk, bit);
473 }
474 
475 /*
476  *	This is meant for all protocols to use and covers goings on
477  *	at the socket level. Everything here is generic.
478  */
479 
480 int sock_setsockopt(struct socket *sock, int level, int optname,
481 		    char __user *optval, unsigned int optlen)
482 {
483 	struct sock *sk = sock->sk;
484 	int val;
485 	int valbool;
486 	struct linger ling;
487 	int ret = 0;
488 
489 	/*
490 	 *	Options without arguments
491 	 */
492 
493 	if (optname == SO_BINDTODEVICE)
494 		return sock_bindtodevice(sk, optval, optlen);
495 
496 	if (optlen < sizeof(int))
497 		return -EINVAL;
498 
499 	if (get_user(val, (int __user *)optval))
500 		return -EFAULT;
501 
502 	valbool = val ? 1 : 0;
503 
504 	lock_sock(sk);
505 
506 	switch (optname) {
507 	case SO_DEBUG:
508 		if (val && !capable(CAP_NET_ADMIN))
509 			ret = -EACCES;
510 		else
511 			sock_valbool_flag(sk, SOCK_DBG, valbool);
512 		break;
513 	case SO_REUSEADDR:
514 		sk->sk_reuse = valbool;
515 		break;
516 	case SO_TYPE:
517 	case SO_PROTOCOL:
518 	case SO_DOMAIN:
519 	case SO_ERROR:
520 		ret = -ENOPROTOOPT;
521 		break;
522 	case SO_DONTROUTE:
523 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524 		break;
525 	case SO_BROADCAST:
526 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527 		break;
528 	case SO_SNDBUF:
529 		/* Don't error on this BSD doesn't and if you think
530 		   about it this is right. Otherwise apps have to
531 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
532 		   are treated in BSD as hints */
533 
534 		if (val > sysctl_wmem_max)
535 			val = sysctl_wmem_max;
536 set_sndbuf:
537 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538 		if ((val * 2) < SOCK_MIN_SNDBUF)
539 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540 		else
541 			sk->sk_sndbuf = val * 2;
542 
543 		/*
544 		 *	Wake up sending tasks if we
545 		 *	upped the value.
546 		 */
547 		sk->sk_write_space(sk);
548 		break;
549 
550 	case SO_SNDBUFFORCE:
551 		if (!capable(CAP_NET_ADMIN)) {
552 			ret = -EPERM;
553 			break;
554 		}
555 		goto set_sndbuf;
556 
557 	case SO_RCVBUF:
558 		/* Don't error on this BSD doesn't and if you think
559 		   about it this is right. Otherwise apps have to
560 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
561 		   are treated in BSD as hints */
562 
563 		if (val > sysctl_rmem_max)
564 			val = sysctl_rmem_max;
565 set_rcvbuf:
566 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567 		/*
568 		 * We double it on the way in to account for
569 		 * "struct sk_buff" etc. overhead.   Applications
570 		 * assume that the SO_RCVBUF setting they make will
571 		 * allow that much actual data to be received on that
572 		 * socket.
573 		 *
574 		 * Applications are unaware that "struct sk_buff" and
575 		 * other overheads allocate from the receive buffer
576 		 * during socket buffer allocation.
577 		 *
578 		 * And after considering the possible alternatives,
579 		 * returning the value we actually used in getsockopt
580 		 * is the most desirable behavior.
581 		 */
582 		if ((val * 2) < SOCK_MIN_RCVBUF)
583 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584 		else
585 			sk->sk_rcvbuf = val * 2;
586 		break;
587 
588 	case SO_RCVBUFFORCE:
589 		if (!capable(CAP_NET_ADMIN)) {
590 			ret = -EPERM;
591 			break;
592 		}
593 		goto set_rcvbuf;
594 
595 	case SO_KEEPALIVE:
596 #ifdef CONFIG_INET
597 		if (sk->sk_protocol == IPPROTO_TCP)
598 			tcp_set_keepalive(sk, valbool);
599 #endif
600 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601 		break;
602 
603 	case SO_OOBINLINE:
604 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605 		break;
606 
607 	case SO_NO_CHECK:
608 		sk->sk_no_check = valbool;
609 		break;
610 
611 	case SO_PRIORITY:
612 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613 			sk->sk_priority = val;
614 		else
615 			ret = -EPERM;
616 		break;
617 
618 	case SO_LINGER:
619 		if (optlen < sizeof(ling)) {
620 			ret = -EINVAL;	/* 1003.1g */
621 			break;
622 		}
623 		if (copy_from_user(&ling, optval, sizeof(ling))) {
624 			ret = -EFAULT;
625 			break;
626 		}
627 		if (!ling.l_onoff)
628 			sock_reset_flag(sk, SOCK_LINGER);
629 		else {
630 #if (BITS_PER_LONG == 32)
631 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633 			else
634 #endif
635 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636 			sock_set_flag(sk, SOCK_LINGER);
637 		}
638 		break;
639 
640 	case SO_BSDCOMPAT:
641 		sock_warn_obsolete_bsdism("setsockopt");
642 		break;
643 
644 	case SO_PASSCRED:
645 		if (valbool)
646 			set_bit(SOCK_PASSCRED, &sock->flags);
647 		else
648 			clear_bit(SOCK_PASSCRED, &sock->flags);
649 		break;
650 
651 	case SO_TIMESTAMP:
652 	case SO_TIMESTAMPNS:
653 		if (valbool)  {
654 			if (optname == SO_TIMESTAMP)
655 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656 			else
657 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658 			sock_set_flag(sk, SOCK_RCVTSTAMP);
659 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660 		} else {
661 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
662 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663 		}
664 		break;
665 
666 	case SO_TIMESTAMPING:
667 		if (val & ~SOF_TIMESTAMPING_MASK) {
668 			ret = -EINVAL;
669 			break;
670 		}
671 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
673 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
675 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
677 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678 			sock_enable_timestamp(sk,
679 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
680 		else
681 			sock_disable_timestamp(sk,
682 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
683 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684 				  val & SOF_TIMESTAMPING_SOFTWARE);
685 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
687 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
689 		break;
690 
691 	case SO_RCVLOWAT:
692 		if (val < 0)
693 			val = INT_MAX;
694 		sk->sk_rcvlowat = val ? : 1;
695 		break;
696 
697 	case SO_RCVTIMEO:
698 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699 		break;
700 
701 	case SO_SNDTIMEO:
702 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703 		break;
704 
705 	case SO_ATTACH_FILTER:
706 		ret = -EINVAL;
707 		if (optlen == sizeof(struct sock_fprog)) {
708 			struct sock_fprog fprog;
709 
710 			ret = -EFAULT;
711 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
712 				break;
713 
714 			ret = sk_attach_filter(&fprog, sk);
715 		}
716 		break;
717 
718 	case SO_DETACH_FILTER:
719 		ret = sk_detach_filter(sk);
720 		break;
721 
722 	case SO_PASSSEC:
723 		if (valbool)
724 			set_bit(SOCK_PASSSEC, &sock->flags);
725 		else
726 			clear_bit(SOCK_PASSSEC, &sock->flags);
727 		break;
728 	case SO_MARK:
729 		if (!capable(CAP_NET_ADMIN))
730 			ret = -EPERM;
731 		else
732 			sk->sk_mark = val;
733 		break;
734 
735 		/* We implement the SO_SNDLOWAT etc to
736 		   not be settable (1003.1g 5.3) */
737 	case SO_RXQ_OVFL:
738 		if (valbool)
739 			sock_set_flag(sk, SOCK_RXQ_OVFL);
740 		else
741 			sock_reset_flag(sk, SOCK_RXQ_OVFL);
742 		break;
743 	default:
744 		ret = -ENOPROTOOPT;
745 		break;
746 	}
747 	release_sock(sk);
748 	return ret;
749 }
750 EXPORT_SYMBOL(sock_setsockopt);
751 
752 
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
754 		   struct ucred *ucred)
755 {
756 	ucred->pid = pid_vnr(pid);
757 	ucred->uid = ucred->gid = -1;
758 	if (cred) {
759 		struct user_namespace *current_ns = current_user_ns();
760 
761 		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762 		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763 	}
764 }
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
766 
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768 		    char __user *optval, int __user *optlen)
769 {
770 	struct sock *sk = sock->sk;
771 
772 	union {
773 		int val;
774 		struct linger ling;
775 		struct timeval tm;
776 	} v;
777 
778 	int lv = sizeof(int);
779 	int len;
780 
781 	if (get_user(len, optlen))
782 		return -EFAULT;
783 	if (len < 0)
784 		return -EINVAL;
785 
786 	memset(&v, 0, sizeof(v));
787 
788 	switch (optname) {
789 	case SO_DEBUG:
790 		v.val = sock_flag(sk, SOCK_DBG);
791 		break;
792 
793 	case SO_DONTROUTE:
794 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
795 		break;
796 
797 	case SO_BROADCAST:
798 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
799 		break;
800 
801 	case SO_SNDBUF:
802 		v.val = sk->sk_sndbuf;
803 		break;
804 
805 	case SO_RCVBUF:
806 		v.val = sk->sk_rcvbuf;
807 		break;
808 
809 	case SO_REUSEADDR:
810 		v.val = sk->sk_reuse;
811 		break;
812 
813 	case SO_KEEPALIVE:
814 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815 		break;
816 
817 	case SO_TYPE:
818 		v.val = sk->sk_type;
819 		break;
820 
821 	case SO_PROTOCOL:
822 		v.val = sk->sk_protocol;
823 		break;
824 
825 	case SO_DOMAIN:
826 		v.val = sk->sk_family;
827 		break;
828 
829 	case SO_ERROR:
830 		v.val = -sock_error(sk);
831 		if (v.val == 0)
832 			v.val = xchg(&sk->sk_err_soft, 0);
833 		break;
834 
835 	case SO_OOBINLINE:
836 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
837 		break;
838 
839 	case SO_NO_CHECK:
840 		v.val = sk->sk_no_check;
841 		break;
842 
843 	case SO_PRIORITY:
844 		v.val = sk->sk_priority;
845 		break;
846 
847 	case SO_LINGER:
848 		lv		= sizeof(v.ling);
849 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
850 		v.ling.l_linger	= sk->sk_lingertime / HZ;
851 		break;
852 
853 	case SO_BSDCOMPAT:
854 		sock_warn_obsolete_bsdism("getsockopt");
855 		break;
856 
857 	case SO_TIMESTAMP:
858 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
860 		break;
861 
862 	case SO_TIMESTAMPNS:
863 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864 		break;
865 
866 	case SO_TIMESTAMPING:
867 		v.val = 0;
868 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
878 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882 		break;
883 
884 	case SO_RCVTIMEO:
885 		lv = sizeof(struct timeval);
886 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887 			v.tm.tv_sec = 0;
888 			v.tm.tv_usec = 0;
889 		} else {
890 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892 		}
893 		break;
894 
895 	case SO_SNDTIMEO:
896 		lv = sizeof(struct timeval);
897 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898 			v.tm.tv_sec = 0;
899 			v.tm.tv_usec = 0;
900 		} else {
901 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903 		}
904 		break;
905 
906 	case SO_RCVLOWAT:
907 		v.val = sk->sk_rcvlowat;
908 		break;
909 
910 	case SO_SNDLOWAT:
911 		v.val = 1;
912 		break;
913 
914 	case SO_PASSCRED:
915 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916 		break;
917 
918 	case SO_PEERCRED:
919 	{
920 		struct ucred peercred;
921 		if (len > sizeof(peercred))
922 			len = sizeof(peercred);
923 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924 		if (copy_to_user(optval, &peercred, len))
925 			return -EFAULT;
926 		goto lenout;
927 	}
928 
929 	case SO_PEERNAME:
930 	{
931 		char address[128];
932 
933 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934 			return -ENOTCONN;
935 		if (lv < len)
936 			return -EINVAL;
937 		if (copy_to_user(optval, address, len))
938 			return -EFAULT;
939 		goto lenout;
940 	}
941 
942 	/* Dubious BSD thing... Probably nobody even uses it, but
943 	 * the UNIX standard wants it for whatever reason... -DaveM
944 	 */
945 	case SO_ACCEPTCONN:
946 		v.val = sk->sk_state == TCP_LISTEN;
947 		break;
948 
949 	case SO_PASSSEC:
950 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951 		break;
952 
953 	case SO_PEERSEC:
954 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
955 
956 	case SO_MARK:
957 		v.val = sk->sk_mark;
958 		break;
959 
960 	case SO_RXQ_OVFL:
961 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962 		break;
963 
964 	default:
965 		return -ENOPROTOOPT;
966 	}
967 
968 	if (len > lv)
969 		len = lv;
970 	if (copy_to_user(optval, &v, len))
971 		return -EFAULT;
972 lenout:
973 	if (put_user(len, optlen))
974 		return -EFAULT;
975 	return 0;
976 }
977 
978 /*
979  * Initialize an sk_lock.
980  *
981  * (We also register the sk_lock with the lock validator.)
982  */
983 static inline void sock_lock_init(struct sock *sk)
984 {
985 	sock_lock_init_class_and_name(sk,
986 			af_family_slock_key_strings[sk->sk_family],
987 			af_family_slock_keys + sk->sk_family,
988 			af_family_key_strings[sk->sk_family],
989 			af_family_keys + sk->sk_family);
990 }
991 
992 /*
993  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994  * even temporarly, because of RCU lookups. sk_node should also be left as is.
995  */
996 static void sock_copy(struct sock *nsk, const struct sock *osk)
997 {
998 #ifdef CONFIG_SECURITY_NETWORK
999 	void *sptr = nsk->sk_security;
1000 #endif
1001 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
1002 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
1003 		     sizeof(osk->sk_tx_queue_mapping));
1004 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
1005 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
1006 #ifdef CONFIG_SECURITY_NETWORK
1007 	nsk->sk_security = sptr;
1008 	security_sk_clone(osk, nsk);
1009 #endif
1010 }
1011 
1012 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1013 		int family)
1014 {
1015 	struct sock *sk;
1016 	struct kmem_cache *slab;
1017 
1018 	slab = prot->slab;
1019 	if (slab != NULL) {
1020 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1021 		if (!sk)
1022 			return sk;
1023 		if (priority & __GFP_ZERO) {
1024 			/*
1025 			 * caches using SLAB_DESTROY_BY_RCU should let
1026 			 * sk_node.next un-modified. Special care is taken
1027 			 * when initializing object to zero.
1028 			 */
1029 			if (offsetof(struct sock, sk_node.next) != 0)
1030 				memset(sk, 0, offsetof(struct sock, sk_node.next));
1031 			memset(&sk->sk_node.pprev, 0,
1032 			       prot->obj_size - offsetof(struct sock,
1033 							 sk_node.pprev));
1034 		}
1035 	}
1036 	else
1037 		sk = kmalloc(prot->obj_size, priority);
1038 
1039 	if (sk != NULL) {
1040 		kmemcheck_annotate_bitfield(sk, flags);
1041 
1042 		if (security_sk_alloc(sk, family, priority))
1043 			goto out_free;
1044 
1045 		if (!try_module_get(prot->owner))
1046 			goto out_free_sec;
1047 		sk_tx_queue_clear(sk);
1048 	}
1049 
1050 	return sk;
1051 
1052 out_free_sec:
1053 	security_sk_free(sk);
1054 out_free:
1055 	if (slab != NULL)
1056 		kmem_cache_free(slab, sk);
1057 	else
1058 		kfree(sk);
1059 	return NULL;
1060 }
1061 
1062 static void sk_prot_free(struct proto *prot, struct sock *sk)
1063 {
1064 	struct kmem_cache *slab;
1065 	struct module *owner;
1066 
1067 	owner = prot->owner;
1068 	slab = prot->slab;
1069 
1070 	security_sk_free(sk);
1071 	if (slab != NULL)
1072 		kmem_cache_free(slab, sk);
1073 	else
1074 		kfree(sk);
1075 	module_put(owner);
1076 }
1077 
1078 #ifdef CONFIG_CGROUPS
1079 void sock_update_classid(struct sock *sk)
1080 {
1081 	u32 classid = task_cls_classid(current);
1082 
1083 	if (classid && classid != sk->sk_classid)
1084 		sk->sk_classid = classid;
1085 }
1086 EXPORT_SYMBOL(sock_update_classid);
1087 #endif
1088 
1089 /**
1090  *	sk_alloc - All socket objects are allocated here
1091  *	@net: the applicable net namespace
1092  *	@family: protocol family
1093  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1094  *	@prot: struct proto associated with this new sock instance
1095  */
1096 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1097 		      struct proto *prot)
1098 {
1099 	struct sock *sk;
1100 
1101 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1102 	if (sk) {
1103 		sk->sk_family = family;
1104 		/*
1105 		 * See comment in struct sock definition to understand
1106 		 * why we need sk_prot_creator -acme
1107 		 */
1108 		sk->sk_prot = sk->sk_prot_creator = prot;
1109 		sock_lock_init(sk);
1110 		sock_net_set(sk, get_net(net));
1111 		atomic_set(&sk->sk_wmem_alloc, 1);
1112 
1113 		sock_update_classid(sk);
1114 	}
1115 
1116 	return sk;
1117 }
1118 EXPORT_SYMBOL(sk_alloc);
1119 
1120 static void __sk_free(struct sock *sk)
1121 {
1122 	struct sk_filter *filter;
1123 
1124 	if (sk->sk_destruct)
1125 		sk->sk_destruct(sk);
1126 
1127 	filter = rcu_dereference_check(sk->sk_filter,
1128 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1129 	if (filter) {
1130 		sk_filter_uncharge(sk, filter);
1131 		rcu_assign_pointer(sk->sk_filter, NULL);
1132 	}
1133 
1134 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1135 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1136 
1137 	if (atomic_read(&sk->sk_omem_alloc))
1138 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1139 		       __func__, atomic_read(&sk->sk_omem_alloc));
1140 
1141 	if (sk->sk_peer_cred)
1142 		put_cred(sk->sk_peer_cred);
1143 	put_pid(sk->sk_peer_pid);
1144 	put_net(sock_net(sk));
1145 	sk_prot_free(sk->sk_prot_creator, sk);
1146 }
1147 
1148 void sk_free(struct sock *sk)
1149 {
1150 	/*
1151 	 * We substract one from sk_wmem_alloc and can know if
1152 	 * some packets are still in some tx queue.
1153 	 * If not null, sock_wfree() will call __sk_free(sk) later
1154 	 */
1155 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1156 		__sk_free(sk);
1157 }
1158 EXPORT_SYMBOL(sk_free);
1159 
1160 /*
1161  * Last sock_put should drop referrence to sk->sk_net. It has already
1162  * been dropped in sk_change_net. Taking referrence to stopping namespace
1163  * is not an option.
1164  * Take referrence to a socket to remove it from hash _alive_ and after that
1165  * destroy it in the context of init_net.
1166  */
1167 void sk_release_kernel(struct sock *sk)
1168 {
1169 	if (sk == NULL || sk->sk_socket == NULL)
1170 		return;
1171 
1172 	sock_hold(sk);
1173 	sock_release(sk->sk_socket);
1174 	release_net(sock_net(sk));
1175 	sock_net_set(sk, get_net(&init_net));
1176 	sock_put(sk);
1177 }
1178 EXPORT_SYMBOL(sk_release_kernel);
1179 
1180 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1181 {
1182 	struct sock *newsk;
1183 
1184 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1185 	if (newsk != NULL) {
1186 		struct sk_filter *filter;
1187 
1188 		sock_copy(newsk, sk);
1189 
1190 		/* SANITY */
1191 		get_net(sock_net(newsk));
1192 		sk_node_init(&newsk->sk_node);
1193 		sock_lock_init(newsk);
1194 		bh_lock_sock(newsk);
1195 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1196 		newsk->sk_backlog.len = 0;
1197 
1198 		atomic_set(&newsk->sk_rmem_alloc, 0);
1199 		/*
1200 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1201 		 */
1202 		atomic_set(&newsk->sk_wmem_alloc, 1);
1203 		atomic_set(&newsk->sk_omem_alloc, 0);
1204 		skb_queue_head_init(&newsk->sk_receive_queue);
1205 		skb_queue_head_init(&newsk->sk_write_queue);
1206 #ifdef CONFIG_NET_DMA
1207 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1208 #endif
1209 
1210 		spin_lock_init(&newsk->sk_dst_lock);
1211 		rwlock_init(&newsk->sk_callback_lock);
1212 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1213 				af_callback_keys + newsk->sk_family,
1214 				af_family_clock_key_strings[newsk->sk_family]);
1215 
1216 		newsk->sk_dst_cache	= NULL;
1217 		newsk->sk_wmem_queued	= 0;
1218 		newsk->sk_forward_alloc = 0;
1219 		newsk->sk_send_head	= NULL;
1220 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1221 
1222 		sock_reset_flag(newsk, SOCK_DONE);
1223 		skb_queue_head_init(&newsk->sk_error_queue);
1224 
1225 		filter = newsk->sk_filter;
1226 		if (filter != NULL)
1227 			sk_filter_charge(newsk, filter);
1228 
1229 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1230 			/* It is still raw copy of parent, so invalidate
1231 			 * destructor and make plain sk_free() */
1232 			newsk->sk_destruct = NULL;
1233 			sk_free(newsk);
1234 			newsk = NULL;
1235 			goto out;
1236 		}
1237 
1238 		newsk->sk_err	   = 0;
1239 		newsk->sk_priority = 0;
1240 		/*
1241 		 * Before updating sk_refcnt, we must commit prior changes to memory
1242 		 * (Documentation/RCU/rculist_nulls.txt for details)
1243 		 */
1244 		smp_wmb();
1245 		atomic_set(&newsk->sk_refcnt, 2);
1246 
1247 		/*
1248 		 * Increment the counter in the same struct proto as the master
1249 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1250 		 * is the same as sk->sk_prot->socks, as this field was copied
1251 		 * with memcpy).
1252 		 *
1253 		 * This _changes_ the previous behaviour, where
1254 		 * tcp_create_openreq_child always was incrementing the
1255 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1256 		 * to be taken into account in all callers. -acme
1257 		 */
1258 		sk_refcnt_debug_inc(newsk);
1259 		sk_set_socket(newsk, NULL);
1260 		newsk->sk_wq = NULL;
1261 
1262 		if (newsk->sk_prot->sockets_allocated)
1263 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1264 
1265 		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1266 		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1267 			net_enable_timestamp();
1268 	}
1269 out:
1270 	return newsk;
1271 }
1272 EXPORT_SYMBOL_GPL(sk_clone);
1273 
1274 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1275 {
1276 	__sk_dst_set(sk, dst);
1277 	sk->sk_route_caps = dst->dev->features;
1278 	if (sk->sk_route_caps & NETIF_F_GSO)
1279 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1280 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1281 	if (sk_can_gso(sk)) {
1282 		if (dst->header_len) {
1283 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1284 		} else {
1285 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1286 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1287 		}
1288 	}
1289 }
1290 EXPORT_SYMBOL_GPL(sk_setup_caps);
1291 
1292 void __init sk_init(void)
1293 {
1294 	if (totalram_pages <= 4096) {
1295 		sysctl_wmem_max = 32767;
1296 		sysctl_rmem_max = 32767;
1297 		sysctl_wmem_default = 32767;
1298 		sysctl_rmem_default = 32767;
1299 	} else if (totalram_pages >= 131072) {
1300 		sysctl_wmem_max = 131071;
1301 		sysctl_rmem_max = 131071;
1302 	}
1303 }
1304 
1305 /*
1306  *	Simple resource managers for sockets.
1307  */
1308 
1309 
1310 /*
1311  * Write buffer destructor automatically called from kfree_skb.
1312  */
1313 void sock_wfree(struct sk_buff *skb)
1314 {
1315 	struct sock *sk = skb->sk;
1316 	unsigned int len = skb->truesize;
1317 
1318 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1319 		/*
1320 		 * Keep a reference on sk_wmem_alloc, this will be released
1321 		 * after sk_write_space() call
1322 		 */
1323 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1324 		sk->sk_write_space(sk);
1325 		len = 1;
1326 	}
1327 	/*
1328 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1329 	 * could not do because of in-flight packets
1330 	 */
1331 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1332 		__sk_free(sk);
1333 }
1334 EXPORT_SYMBOL(sock_wfree);
1335 
1336 /*
1337  * Read buffer destructor automatically called from kfree_skb.
1338  */
1339 void sock_rfree(struct sk_buff *skb)
1340 {
1341 	struct sock *sk = skb->sk;
1342 	unsigned int len = skb->truesize;
1343 
1344 	atomic_sub(len, &sk->sk_rmem_alloc);
1345 	sk_mem_uncharge(sk, len);
1346 }
1347 EXPORT_SYMBOL(sock_rfree);
1348 
1349 
1350 int sock_i_uid(struct sock *sk)
1351 {
1352 	int uid;
1353 
1354 	read_lock(&sk->sk_callback_lock);
1355 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1356 	read_unlock(&sk->sk_callback_lock);
1357 	return uid;
1358 }
1359 EXPORT_SYMBOL(sock_i_uid);
1360 
1361 unsigned long sock_i_ino(struct sock *sk)
1362 {
1363 	unsigned long ino;
1364 
1365 	read_lock(&sk->sk_callback_lock);
1366 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1367 	read_unlock(&sk->sk_callback_lock);
1368 	return ino;
1369 }
1370 EXPORT_SYMBOL(sock_i_ino);
1371 
1372 /*
1373  * Allocate a skb from the socket's send buffer.
1374  */
1375 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1376 			     gfp_t priority)
1377 {
1378 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1379 		struct sk_buff *skb = alloc_skb(size, priority);
1380 		if (skb) {
1381 			skb_set_owner_w(skb, sk);
1382 			return skb;
1383 		}
1384 	}
1385 	return NULL;
1386 }
1387 EXPORT_SYMBOL(sock_wmalloc);
1388 
1389 /*
1390  * Allocate a skb from the socket's receive buffer.
1391  */
1392 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1393 			     gfp_t priority)
1394 {
1395 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1396 		struct sk_buff *skb = alloc_skb(size, priority);
1397 		if (skb) {
1398 			skb_set_owner_r(skb, sk);
1399 			return skb;
1400 		}
1401 	}
1402 	return NULL;
1403 }
1404 
1405 /*
1406  * Allocate a memory block from the socket's option memory buffer.
1407  */
1408 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1409 {
1410 	if ((unsigned)size <= sysctl_optmem_max &&
1411 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1412 		void *mem;
1413 		/* First do the add, to avoid the race if kmalloc
1414 		 * might sleep.
1415 		 */
1416 		atomic_add(size, &sk->sk_omem_alloc);
1417 		mem = kmalloc(size, priority);
1418 		if (mem)
1419 			return mem;
1420 		atomic_sub(size, &sk->sk_omem_alloc);
1421 	}
1422 	return NULL;
1423 }
1424 EXPORT_SYMBOL(sock_kmalloc);
1425 
1426 /*
1427  * Free an option memory block.
1428  */
1429 void sock_kfree_s(struct sock *sk, void *mem, int size)
1430 {
1431 	kfree(mem);
1432 	atomic_sub(size, &sk->sk_omem_alloc);
1433 }
1434 EXPORT_SYMBOL(sock_kfree_s);
1435 
1436 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1437    I think, these locks should be removed for datagram sockets.
1438  */
1439 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1440 {
1441 	DEFINE_WAIT(wait);
1442 
1443 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1444 	for (;;) {
1445 		if (!timeo)
1446 			break;
1447 		if (signal_pending(current))
1448 			break;
1449 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1450 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1451 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1452 			break;
1453 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1454 			break;
1455 		if (sk->sk_err)
1456 			break;
1457 		timeo = schedule_timeout(timeo);
1458 	}
1459 	finish_wait(sk_sleep(sk), &wait);
1460 	return timeo;
1461 }
1462 
1463 
1464 /*
1465  *	Generic send/receive buffer handlers
1466  */
1467 
1468 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1469 				     unsigned long data_len, int noblock,
1470 				     int *errcode)
1471 {
1472 	struct sk_buff *skb;
1473 	gfp_t gfp_mask;
1474 	long timeo;
1475 	int err;
1476 
1477 	gfp_mask = sk->sk_allocation;
1478 	if (gfp_mask & __GFP_WAIT)
1479 		gfp_mask |= __GFP_REPEAT;
1480 
1481 	timeo = sock_sndtimeo(sk, noblock);
1482 	while (1) {
1483 		err = sock_error(sk);
1484 		if (err != 0)
1485 			goto failure;
1486 
1487 		err = -EPIPE;
1488 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1489 			goto failure;
1490 
1491 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1492 			skb = alloc_skb(header_len, gfp_mask);
1493 			if (skb) {
1494 				int npages;
1495 				int i;
1496 
1497 				/* No pages, we're done... */
1498 				if (!data_len)
1499 					break;
1500 
1501 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1502 				skb->truesize += data_len;
1503 				skb_shinfo(skb)->nr_frags = npages;
1504 				for (i = 0; i < npages; i++) {
1505 					struct page *page;
1506 					skb_frag_t *frag;
1507 
1508 					page = alloc_pages(sk->sk_allocation, 0);
1509 					if (!page) {
1510 						err = -ENOBUFS;
1511 						skb_shinfo(skb)->nr_frags = i;
1512 						kfree_skb(skb);
1513 						goto failure;
1514 					}
1515 
1516 					frag = &skb_shinfo(skb)->frags[i];
1517 					frag->page = page;
1518 					frag->page_offset = 0;
1519 					frag->size = (data_len >= PAGE_SIZE ?
1520 						      PAGE_SIZE :
1521 						      data_len);
1522 					data_len -= PAGE_SIZE;
1523 				}
1524 
1525 				/* Full success... */
1526 				break;
1527 			}
1528 			err = -ENOBUFS;
1529 			goto failure;
1530 		}
1531 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1532 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1533 		err = -EAGAIN;
1534 		if (!timeo)
1535 			goto failure;
1536 		if (signal_pending(current))
1537 			goto interrupted;
1538 		timeo = sock_wait_for_wmem(sk, timeo);
1539 	}
1540 
1541 	skb_set_owner_w(skb, sk);
1542 	return skb;
1543 
1544 interrupted:
1545 	err = sock_intr_errno(timeo);
1546 failure:
1547 	*errcode = err;
1548 	return NULL;
1549 }
1550 EXPORT_SYMBOL(sock_alloc_send_pskb);
1551 
1552 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1553 				    int noblock, int *errcode)
1554 {
1555 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1556 }
1557 EXPORT_SYMBOL(sock_alloc_send_skb);
1558 
1559 static void __lock_sock(struct sock *sk)
1560 {
1561 	DEFINE_WAIT(wait);
1562 
1563 	for (;;) {
1564 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1565 					TASK_UNINTERRUPTIBLE);
1566 		spin_unlock_bh(&sk->sk_lock.slock);
1567 		schedule();
1568 		spin_lock_bh(&sk->sk_lock.slock);
1569 		if (!sock_owned_by_user(sk))
1570 			break;
1571 	}
1572 	finish_wait(&sk->sk_lock.wq, &wait);
1573 }
1574 
1575 static void __release_sock(struct sock *sk)
1576 {
1577 	struct sk_buff *skb = sk->sk_backlog.head;
1578 
1579 	do {
1580 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1581 		bh_unlock_sock(sk);
1582 
1583 		do {
1584 			struct sk_buff *next = skb->next;
1585 
1586 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1587 			skb->next = NULL;
1588 			sk_backlog_rcv(sk, skb);
1589 
1590 			/*
1591 			 * We are in process context here with softirqs
1592 			 * disabled, use cond_resched_softirq() to preempt.
1593 			 * This is safe to do because we've taken the backlog
1594 			 * queue private:
1595 			 */
1596 			cond_resched_softirq();
1597 
1598 			skb = next;
1599 		} while (skb != NULL);
1600 
1601 		bh_lock_sock(sk);
1602 	} while ((skb = sk->sk_backlog.head) != NULL);
1603 
1604 	/*
1605 	 * Doing the zeroing here guarantee we can not loop forever
1606 	 * while a wild producer attempts to flood us.
1607 	 */
1608 	sk->sk_backlog.len = 0;
1609 }
1610 
1611 /**
1612  * sk_wait_data - wait for data to arrive at sk_receive_queue
1613  * @sk:    sock to wait on
1614  * @timeo: for how long
1615  *
1616  * Now socket state including sk->sk_err is changed only under lock,
1617  * hence we may omit checks after joining wait queue.
1618  * We check receive queue before schedule() only as optimization;
1619  * it is very likely that release_sock() added new data.
1620  */
1621 int sk_wait_data(struct sock *sk, long *timeo)
1622 {
1623 	int rc;
1624 	DEFINE_WAIT(wait);
1625 
1626 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1627 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1628 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1629 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1630 	finish_wait(sk_sleep(sk), &wait);
1631 	return rc;
1632 }
1633 EXPORT_SYMBOL(sk_wait_data);
1634 
1635 /**
1636  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1637  *	@sk: socket
1638  *	@size: memory size to allocate
1639  *	@kind: allocation type
1640  *
1641  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1642  *	rmem allocation. This function assumes that protocols which have
1643  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1644  */
1645 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1646 {
1647 	struct proto *prot = sk->sk_prot;
1648 	int amt = sk_mem_pages(size);
1649 	int allocated;
1650 
1651 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1652 	allocated = atomic_add_return(amt, prot->memory_allocated);
1653 
1654 	/* Under limit. */
1655 	if (allocated <= prot->sysctl_mem[0]) {
1656 		if (prot->memory_pressure && *prot->memory_pressure)
1657 			*prot->memory_pressure = 0;
1658 		return 1;
1659 	}
1660 
1661 	/* Under pressure. */
1662 	if (allocated > prot->sysctl_mem[1])
1663 		if (prot->enter_memory_pressure)
1664 			prot->enter_memory_pressure(sk);
1665 
1666 	/* Over hard limit. */
1667 	if (allocated > prot->sysctl_mem[2])
1668 		goto suppress_allocation;
1669 
1670 	/* guarantee minimum buffer size under pressure */
1671 	if (kind == SK_MEM_RECV) {
1672 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1673 			return 1;
1674 	} else { /* SK_MEM_SEND */
1675 		if (sk->sk_type == SOCK_STREAM) {
1676 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1677 				return 1;
1678 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1679 			   prot->sysctl_wmem[0])
1680 				return 1;
1681 	}
1682 
1683 	if (prot->memory_pressure) {
1684 		int alloc;
1685 
1686 		if (!*prot->memory_pressure)
1687 			return 1;
1688 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1689 		if (prot->sysctl_mem[2] > alloc *
1690 		    sk_mem_pages(sk->sk_wmem_queued +
1691 				 atomic_read(&sk->sk_rmem_alloc) +
1692 				 sk->sk_forward_alloc))
1693 			return 1;
1694 	}
1695 
1696 suppress_allocation:
1697 
1698 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1699 		sk_stream_moderate_sndbuf(sk);
1700 
1701 		/* Fail only if socket is _under_ its sndbuf.
1702 		 * In this case we cannot block, so that we have to fail.
1703 		 */
1704 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1705 			return 1;
1706 	}
1707 
1708 	/* Alas. Undo changes. */
1709 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1710 	atomic_sub(amt, prot->memory_allocated);
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL(__sk_mem_schedule);
1714 
1715 /**
1716  *	__sk_reclaim - reclaim memory_allocated
1717  *	@sk: socket
1718  */
1719 void __sk_mem_reclaim(struct sock *sk)
1720 {
1721 	struct proto *prot = sk->sk_prot;
1722 
1723 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1724 		   prot->memory_allocated);
1725 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1726 
1727 	if (prot->memory_pressure && *prot->memory_pressure &&
1728 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1729 		*prot->memory_pressure = 0;
1730 }
1731 EXPORT_SYMBOL(__sk_mem_reclaim);
1732 
1733 
1734 /*
1735  * Set of default routines for initialising struct proto_ops when
1736  * the protocol does not support a particular function. In certain
1737  * cases where it makes no sense for a protocol to have a "do nothing"
1738  * function, some default processing is provided.
1739  */
1740 
1741 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1742 {
1743 	return -EOPNOTSUPP;
1744 }
1745 EXPORT_SYMBOL(sock_no_bind);
1746 
1747 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1748 		    int len, int flags)
1749 {
1750 	return -EOPNOTSUPP;
1751 }
1752 EXPORT_SYMBOL(sock_no_connect);
1753 
1754 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1755 {
1756 	return -EOPNOTSUPP;
1757 }
1758 EXPORT_SYMBOL(sock_no_socketpair);
1759 
1760 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1761 {
1762 	return -EOPNOTSUPP;
1763 }
1764 EXPORT_SYMBOL(sock_no_accept);
1765 
1766 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1767 		    int *len, int peer)
1768 {
1769 	return -EOPNOTSUPP;
1770 }
1771 EXPORT_SYMBOL(sock_no_getname);
1772 
1773 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1774 {
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL(sock_no_poll);
1778 
1779 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1780 {
1781 	return -EOPNOTSUPP;
1782 }
1783 EXPORT_SYMBOL(sock_no_ioctl);
1784 
1785 int sock_no_listen(struct socket *sock, int backlog)
1786 {
1787 	return -EOPNOTSUPP;
1788 }
1789 EXPORT_SYMBOL(sock_no_listen);
1790 
1791 int sock_no_shutdown(struct socket *sock, int how)
1792 {
1793 	return -EOPNOTSUPP;
1794 }
1795 EXPORT_SYMBOL(sock_no_shutdown);
1796 
1797 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1798 		    char __user *optval, unsigned int optlen)
1799 {
1800 	return -EOPNOTSUPP;
1801 }
1802 EXPORT_SYMBOL(sock_no_setsockopt);
1803 
1804 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1805 		    char __user *optval, int __user *optlen)
1806 {
1807 	return -EOPNOTSUPP;
1808 }
1809 EXPORT_SYMBOL(sock_no_getsockopt);
1810 
1811 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1812 		    size_t len)
1813 {
1814 	return -EOPNOTSUPP;
1815 }
1816 EXPORT_SYMBOL(sock_no_sendmsg);
1817 
1818 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1819 		    size_t len, int flags)
1820 {
1821 	return -EOPNOTSUPP;
1822 }
1823 EXPORT_SYMBOL(sock_no_recvmsg);
1824 
1825 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1826 {
1827 	/* Mirror missing mmap method error code */
1828 	return -ENODEV;
1829 }
1830 EXPORT_SYMBOL(sock_no_mmap);
1831 
1832 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1833 {
1834 	ssize_t res;
1835 	struct msghdr msg = {.msg_flags = flags};
1836 	struct kvec iov;
1837 	char *kaddr = kmap(page);
1838 	iov.iov_base = kaddr + offset;
1839 	iov.iov_len = size;
1840 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1841 	kunmap(page);
1842 	return res;
1843 }
1844 EXPORT_SYMBOL(sock_no_sendpage);
1845 
1846 /*
1847  *	Default Socket Callbacks
1848  */
1849 
1850 static void sock_def_wakeup(struct sock *sk)
1851 {
1852 	struct socket_wq *wq;
1853 
1854 	rcu_read_lock();
1855 	wq = rcu_dereference(sk->sk_wq);
1856 	if (wq_has_sleeper(wq))
1857 		wake_up_interruptible_all(&wq->wait);
1858 	rcu_read_unlock();
1859 }
1860 
1861 static void sock_def_error_report(struct sock *sk)
1862 {
1863 	struct socket_wq *wq;
1864 
1865 	rcu_read_lock();
1866 	wq = rcu_dereference(sk->sk_wq);
1867 	if (wq_has_sleeper(wq))
1868 		wake_up_interruptible_poll(&wq->wait, POLLERR);
1869 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1870 	rcu_read_unlock();
1871 }
1872 
1873 static void sock_def_readable(struct sock *sk, int len)
1874 {
1875 	struct socket_wq *wq;
1876 
1877 	rcu_read_lock();
1878 	wq = rcu_dereference(sk->sk_wq);
1879 	if (wq_has_sleeper(wq))
1880 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1881 						POLLRDNORM | POLLRDBAND);
1882 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1883 	rcu_read_unlock();
1884 }
1885 
1886 static void sock_def_write_space(struct sock *sk)
1887 {
1888 	struct socket_wq *wq;
1889 
1890 	rcu_read_lock();
1891 
1892 	/* Do not wake up a writer until he can make "significant"
1893 	 * progress.  --DaveM
1894 	 */
1895 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1896 		wq = rcu_dereference(sk->sk_wq);
1897 		if (wq_has_sleeper(wq))
1898 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1899 						POLLWRNORM | POLLWRBAND);
1900 
1901 		/* Should agree with poll, otherwise some programs break */
1902 		if (sock_writeable(sk))
1903 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1904 	}
1905 
1906 	rcu_read_unlock();
1907 }
1908 
1909 static void sock_def_destruct(struct sock *sk)
1910 {
1911 	kfree(sk->sk_protinfo);
1912 }
1913 
1914 void sk_send_sigurg(struct sock *sk)
1915 {
1916 	if (sk->sk_socket && sk->sk_socket->file)
1917 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1918 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1919 }
1920 EXPORT_SYMBOL(sk_send_sigurg);
1921 
1922 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1923 		    unsigned long expires)
1924 {
1925 	if (!mod_timer(timer, expires))
1926 		sock_hold(sk);
1927 }
1928 EXPORT_SYMBOL(sk_reset_timer);
1929 
1930 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1931 {
1932 	if (timer_pending(timer) && del_timer(timer))
1933 		__sock_put(sk);
1934 }
1935 EXPORT_SYMBOL(sk_stop_timer);
1936 
1937 void sock_init_data(struct socket *sock, struct sock *sk)
1938 {
1939 	skb_queue_head_init(&sk->sk_receive_queue);
1940 	skb_queue_head_init(&sk->sk_write_queue);
1941 	skb_queue_head_init(&sk->sk_error_queue);
1942 #ifdef CONFIG_NET_DMA
1943 	skb_queue_head_init(&sk->sk_async_wait_queue);
1944 #endif
1945 
1946 	sk->sk_send_head	=	NULL;
1947 
1948 	init_timer(&sk->sk_timer);
1949 
1950 	sk->sk_allocation	=	GFP_KERNEL;
1951 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1952 	sk->sk_sndbuf		=	sysctl_wmem_default;
1953 	sk->sk_state		=	TCP_CLOSE;
1954 	sk_set_socket(sk, sock);
1955 
1956 	sock_set_flag(sk, SOCK_ZAPPED);
1957 
1958 	if (sock) {
1959 		sk->sk_type	=	sock->type;
1960 		sk->sk_wq	=	sock->wq;
1961 		sock->sk	=	sk;
1962 	} else
1963 		sk->sk_wq	=	NULL;
1964 
1965 	spin_lock_init(&sk->sk_dst_lock);
1966 	rwlock_init(&sk->sk_callback_lock);
1967 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1968 			af_callback_keys + sk->sk_family,
1969 			af_family_clock_key_strings[sk->sk_family]);
1970 
1971 	sk->sk_state_change	=	sock_def_wakeup;
1972 	sk->sk_data_ready	=	sock_def_readable;
1973 	sk->sk_write_space	=	sock_def_write_space;
1974 	sk->sk_error_report	=	sock_def_error_report;
1975 	sk->sk_destruct		=	sock_def_destruct;
1976 
1977 	sk->sk_sndmsg_page	=	NULL;
1978 	sk->sk_sndmsg_off	=	0;
1979 
1980 	sk->sk_peer_pid 	=	NULL;
1981 	sk->sk_peer_cred	=	NULL;
1982 	sk->sk_write_pending	=	0;
1983 	sk->sk_rcvlowat		=	1;
1984 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1985 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1986 
1987 	sk->sk_stamp = ktime_set(-1L, 0);
1988 
1989 	/*
1990 	 * Before updating sk_refcnt, we must commit prior changes to memory
1991 	 * (Documentation/RCU/rculist_nulls.txt for details)
1992 	 */
1993 	smp_wmb();
1994 	atomic_set(&sk->sk_refcnt, 1);
1995 	atomic_set(&sk->sk_drops, 0);
1996 }
1997 EXPORT_SYMBOL(sock_init_data);
1998 
1999 void lock_sock_nested(struct sock *sk, int subclass)
2000 {
2001 	might_sleep();
2002 	spin_lock_bh(&sk->sk_lock.slock);
2003 	if (sk->sk_lock.owned)
2004 		__lock_sock(sk);
2005 	sk->sk_lock.owned = 1;
2006 	spin_unlock(&sk->sk_lock.slock);
2007 	/*
2008 	 * The sk_lock has mutex_lock() semantics here:
2009 	 */
2010 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2011 	local_bh_enable();
2012 }
2013 EXPORT_SYMBOL(lock_sock_nested);
2014 
2015 void release_sock(struct sock *sk)
2016 {
2017 	/*
2018 	 * The sk_lock has mutex_unlock() semantics:
2019 	 */
2020 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2021 
2022 	spin_lock_bh(&sk->sk_lock.slock);
2023 	if (sk->sk_backlog.tail)
2024 		__release_sock(sk);
2025 	sk->sk_lock.owned = 0;
2026 	if (waitqueue_active(&sk->sk_lock.wq))
2027 		wake_up(&sk->sk_lock.wq);
2028 	spin_unlock_bh(&sk->sk_lock.slock);
2029 }
2030 EXPORT_SYMBOL(release_sock);
2031 
2032 /**
2033  * lock_sock_fast - fast version of lock_sock
2034  * @sk: socket
2035  *
2036  * This version should be used for very small section, where process wont block
2037  * return false if fast path is taken
2038  *   sk_lock.slock locked, owned = 0, BH disabled
2039  * return true if slow path is taken
2040  *   sk_lock.slock unlocked, owned = 1, BH enabled
2041  */
2042 bool lock_sock_fast(struct sock *sk)
2043 {
2044 	might_sleep();
2045 	spin_lock_bh(&sk->sk_lock.slock);
2046 
2047 	if (!sk->sk_lock.owned)
2048 		/*
2049 		 * Note : We must disable BH
2050 		 */
2051 		return false;
2052 
2053 	__lock_sock(sk);
2054 	sk->sk_lock.owned = 1;
2055 	spin_unlock(&sk->sk_lock.slock);
2056 	/*
2057 	 * The sk_lock has mutex_lock() semantics here:
2058 	 */
2059 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2060 	local_bh_enable();
2061 	return true;
2062 }
2063 EXPORT_SYMBOL(lock_sock_fast);
2064 
2065 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2066 {
2067 	struct timeval tv;
2068 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2069 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2070 	tv = ktime_to_timeval(sk->sk_stamp);
2071 	if (tv.tv_sec == -1)
2072 		return -ENOENT;
2073 	if (tv.tv_sec == 0) {
2074 		sk->sk_stamp = ktime_get_real();
2075 		tv = ktime_to_timeval(sk->sk_stamp);
2076 	}
2077 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2078 }
2079 EXPORT_SYMBOL(sock_get_timestamp);
2080 
2081 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2082 {
2083 	struct timespec ts;
2084 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2085 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2086 	ts = ktime_to_timespec(sk->sk_stamp);
2087 	if (ts.tv_sec == -1)
2088 		return -ENOENT;
2089 	if (ts.tv_sec == 0) {
2090 		sk->sk_stamp = ktime_get_real();
2091 		ts = ktime_to_timespec(sk->sk_stamp);
2092 	}
2093 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2094 }
2095 EXPORT_SYMBOL(sock_get_timestampns);
2096 
2097 void sock_enable_timestamp(struct sock *sk, int flag)
2098 {
2099 	if (!sock_flag(sk, flag)) {
2100 		sock_set_flag(sk, flag);
2101 		/*
2102 		 * we just set one of the two flags which require net
2103 		 * time stamping, but time stamping might have been on
2104 		 * already because of the other one
2105 		 */
2106 		if (!sock_flag(sk,
2107 				flag == SOCK_TIMESTAMP ?
2108 				SOCK_TIMESTAMPING_RX_SOFTWARE :
2109 				SOCK_TIMESTAMP))
2110 			net_enable_timestamp();
2111 	}
2112 }
2113 
2114 /*
2115  *	Get a socket option on an socket.
2116  *
2117  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2118  *	asynchronous errors should be reported by getsockopt. We assume
2119  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2120  */
2121 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2122 			   char __user *optval, int __user *optlen)
2123 {
2124 	struct sock *sk = sock->sk;
2125 
2126 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2127 }
2128 EXPORT_SYMBOL(sock_common_getsockopt);
2129 
2130 #ifdef CONFIG_COMPAT
2131 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2132 				  char __user *optval, int __user *optlen)
2133 {
2134 	struct sock *sk = sock->sk;
2135 
2136 	if (sk->sk_prot->compat_getsockopt != NULL)
2137 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2138 						      optval, optlen);
2139 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2140 }
2141 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2142 #endif
2143 
2144 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2145 			struct msghdr *msg, size_t size, int flags)
2146 {
2147 	struct sock *sk = sock->sk;
2148 	int addr_len = 0;
2149 	int err;
2150 
2151 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2152 				   flags & ~MSG_DONTWAIT, &addr_len);
2153 	if (err >= 0)
2154 		msg->msg_namelen = addr_len;
2155 	return err;
2156 }
2157 EXPORT_SYMBOL(sock_common_recvmsg);
2158 
2159 /*
2160  *	Set socket options on an inet socket.
2161  */
2162 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2163 			   char __user *optval, unsigned int optlen)
2164 {
2165 	struct sock *sk = sock->sk;
2166 
2167 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2168 }
2169 EXPORT_SYMBOL(sock_common_setsockopt);
2170 
2171 #ifdef CONFIG_COMPAT
2172 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2173 				  char __user *optval, unsigned int optlen)
2174 {
2175 	struct sock *sk = sock->sk;
2176 
2177 	if (sk->sk_prot->compat_setsockopt != NULL)
2178 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2179 						      optval, optlen);
2180 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2181 }
2182 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2183 #endif
2184 
2185 void sk_common_release(struct sock *sk)
2186 {
2187 	if (sk->sk_prot->destroy)
2188 		sk->sk_prot->destroy(sk);
2189 
2190 	/*
2191 	 * Observation: when sock_common_release is called, processes have
2192 	 * no access to socket. But net still has.
2193 	 * Step one, detach it from networking:
2194 	 *
2195 	 * A. Remove from hash tables.
2196 	 */
2197 
2198 	sk->sk_prot->unhash(sk);
2199 
2200 	/*
2201 	 * In this point socket cannot receive new packets, but it is possible
2202 	 * that some packets are in flight because some CPU runs receiver and
2203 	 * did hash table lookup before we unhashed socket. They will achieve
2204 	 * receive queue and will be purged by socket destructor.
2205 	 *
2206 	 * Also we still have packets pending on receive queue and probably,
2207 	 * our own packets waiting in device queues. sock_destroy will drain
2208 	 * receive queue, but transmitted packets will delay socket destruction
2209 	 * until the last reference will be released.
2210 	 */
2211 
2212 	sock_orphan(sk);
2213 
2214 	xfrm_sk_free_policy(sk);
2215 
2216 	sk_refcnt_debug_release(sk);
2217 	sock_put(sk);
2218 }
2219 EXPORT_SYMBOL(sk_common_release);
2220 
2221 static DEFINE_RWLOCK(proto_list_lock);
2222 static LIST_HEAD(proto_list);
2223 
2224 #ifdef CONFIG_PROC_FS
2225 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2226 struct prot_inuse {
2227 	int val[PROTO_INUSE_NR];
2228 };
2229 
2230 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2231 
2232 #ifdef CONFIG_NET_NS
2233 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2234 {
2235 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2236 }
2237 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2238 
2239 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2240 {
2241 	int cpu, idx = prot->inuse_idx;
2242 	int res = 0;
2243 
2244 	for_each_possible_cpu(cpu)
2245 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2246 
2247 	return res >= 0 ? res : 0;
2248 }
2249 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2250 
2251 static int __net_init sock_inuse_init_net(struct net *net)
2252 {
2253 	net->core.inuse = alloc_percpu(struct prot_inuse);
2254 	return net->core.inuse ? 0 : -ENOMEM;
2255 }
2256 
2257 static void __net_exit sock_inuse_exit_net(struct net *net)
2258 {
2259 	free_percpu(net->core.inuse);
2260 }
2261 
2262 static struct pernet_operations net_inuse_ops = {
2263 	.init = sock_inuse_init_net,
2264 	.exit = sock_inuse_exit_net,
2265 };
2266 
2267 static __init int net_inuse_init(void)
2268 {
2269 	if (register_pernet_subsys(&net_inuse_ops))
2270 		panic("Cannot initialize net inuse counters");
2271 
2272 	return 0;
2273 }
2274 
2275 core_initcall(net_inuse_init);
2276 #else
2277 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2278 
2279 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2280 {
2281 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2282 }
2283 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2284 
2285 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2286 {
2287 	int cpu, idx = prot->inuse_idx;
2288 	int res = 0;
2289 
2290 	for_each_possible_cpu(cpu)
2291 		res += per_cpu(prot_inuse, cpu).val[idx];
2292 
2293 	return res >= 0 ? res : 0;
2294 }
2295 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2296 #endif
2297 
2298 static void assign_proto_idx(struct proto *prot)
2299 {
2300 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2301 
2302 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2303 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2304 		return;
2305 	}
2306 
2307 	set_bit(prot->inuse_idx, proto_inuse_idx);
2308 }
2309 
2310 static void release_proto_idx(struct proto *prot)
2311 {
2312 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2313 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2314 }
2315 #else
2316 static inline void assign_proto_idx(struct proto *prot)
2317 {
2318 }
2319 
2320 static inline void release_proto_idx(struct proto *prot)
2321 {
2322 }
2323 #endif
2324 
2325 int proto_register(struct proto *prot, int alloc_slab)
2326 {
2327 	if (alloc_slab) {
2328 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2329 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2330 					NULL);
2331 
2332 		if (prot->slab == NULL) {
2333 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2334 			       prot->name);
2335 			goto out;
2336 		}
2337 
2338 		if (prot->rsk_prot != NULL) {
2339 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2340 			if (prot->rsk_prot->slab_name == NULL)
2341 				goto out_free_sock_slab;
2342 
2343 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2344 								 prot->rsk_prot->obj_size, 0,
2345 								 SLAB_HWCACHE_ALIGN, NULL);
2346 
2347 			if (prot->rsk_prot->slab == NULL) {
2348 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2349 				       prot->name);
2350 				goto out_free_request_sock_slab_name;
2351 			}
2352 		}
2353 
2354 		if (prot->twsk_prot != NULL) {
2355 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2356 
2357 			if (prot->twsk_prot->twsk_slab_name == NULL)
2358 				goto out_free_request_sock_slab;
2359 
2360 			prot->twsk_prot->twsk_slab =
2361 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2362 						  prot->twsk_prot->twsk_obj_size,
2363 						  0,
2364 						  SLAB_HWCACHE_ALIGN |
2365 							prot->slab_flags,
2366 						  NULL);
2367 			if (prot->twsk_prot->twsk_slab == NULL)
2368 				goto out_free_timewait_sock_slab_name;
2369 		}
2370 	}
2371 
2372 	write_lock(&proto_list_lock);
2373 	list_add(&prot->node, &proto_list);
2374 	assign_proto_idx(prot);
2375 	write_unlock(&proto_list_lock);
2376 	return 0;
2377 
2378 out_free_timewait_sock_slab_name:
2379 	kfree(prot->twsk_prot->twsk_slab_name);
2380 out_free_request_sock_slab:
2381 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2382 		kmem_cache_destroy(prot->rsk_prot->slab);
2383 		prot->rsk_prot->slab = NULL;
2384 	}
2385 out_free_request_sock_slab_name:
2386 	if (prot->rsk_prot)
2387 		kfree(prot->rsk_prot->slab_name);
2388 out_free_sock_slab:
2389 	kmem_cache_destroy(prot->slab);
2390 	prot->slab = NULL;
2391 out:
2392 	return -ENOBUFS;
2393 }
2394 EXPORT_SYMBOL(proto_register);
2395 
2396 void proto_unregister(struct proto *prot)
2397 {
2398 	write_lock(&proto_list_lock);
2399 	release_proto_idx(prot);
2400 	list_del(&prot->node);
2401 	write_unlock(&proto_list_lock);
2402 
2403 	if (prot->slab != NULL) {
2404 		kmem_cache_destroy(prot->slab);
2405 		prot->slab = NULL;
2406 	}
2407 
2408 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2409 		kmem_cache_destroy(prot->rsk_prot->slab);
2410 		kfree(prot->rsk_prot->slab_name);
2411 		prot->rsk_prot->slab = NULL;
2412 	}
2413 
2414 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2415 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2416 		kfree(prot->twsk_prot->twsk_slab_name);
2417 		prot->twsk_prot->twsk_slab = NULL;
2418 	}
2419 }
2420 EXPORT_SYMBOL(proto_unregister);
2421 
2422 #ifdef CONFIG_PROC_FS
2423 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2424 	__acquires(proto_list_lock)
2425 {
2426 	read_lock(&proto_list_lock);
2427 	return seq_list_start_head(&proto_list, *pos);
2428 }
2429 
2430 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2431 {
2432 	return seq_list_next(v, &proto_list, pos);
2433 }
2434 
2435 static void proto_seq_stop(struct seq_file *seq, void *v)
2436 	__releases(proto_list_lock)
2437 {
2438 	read_unlock(&proto_list_lock);
2439 }
2440 
2441 static char proto_method_implemented(const void *method)
2442 {
2443 	return method == NULL ? 'n' : 'y';
2444 }
2445 
2446 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2447 {
2448 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2449 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2450 		   proto->name,
2451 		   proto->obj_size,
2452 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2453 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2454 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2455 		   proto->max_header,
2456 		   proto->slab == NULL ? "no" : "yes",
2457 		   module_name(proto->owner),
2458 		   proto_method_implemented(proto->close),
2459 		   proto_method_implemented(proto->connect),
2460 		   proto_method_implemented(proto->disconnect),
2461 		   proto_method_implemented(proto->accept),
2462 		   proto_method_implemented(proto->ioctl),
2463 		   proto_method_implemented(proto->init),
2464 		   proto_method_implemented(proto->destroy),
2465 		   proto_method_implemented(proto->shutdown),
2466 		   proto_method_implemented(proto->setsockopt),
2467 		   proto_method_implemented(proto->getsockopt),
2468 		   proto_method_implemented(proto->sendmsg),
2469 		   proto_method_implemented(proto->recvmsg),
2470 		   proto_method_implemented(proto->sendpage),
2471 		   proto_method_implemented(proto->bind),
2472 		   proto_method_implemented(proto->backlog_rcv),
2473 		   proto_method_implemented(proto->hash),
2474 		   proto_method_implemented(proto->unhash),
2475 		   proto_method_implemented(proto->get_port),
2476 		   proto_method_implemented(proto->enter_memory_pressure));
2477 }
2478 
2479 static int proto_seq_show(struct seq_file *seq, void *v)
2480 {
2481 	if (v == &proto_list)
2482 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2483 			   "protocol",
2484 			   "size",
2485 			   "sockets",
2486 			   "memory",
2487 			   "press",
2488 			   "maxhdr",
2489 			   "slab",
2490 			   "module",
2491 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2492 	else
2493 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2494 	return 0;
2495 }
2496 
2497 static const struct seq_operations proto_seq_ops = {
2498 	.start  = proto_seq_start,
2499 	.next   = proto_seq_next,
2500 	.stop   = proto_seq_stop,
2501 	.show   = proto_seq_show,
2502 };
2503 
2504 static int proto_seq_open(struct inode *inode, struct file *file)
2505 {
2506 	return seq_open_net(inode, file, &proto_seq_ops,
2507 			    sizeof(struct seq_net_private));
2508 }
2509 
2510 static const struct file_operations proto_seq_fops = {
2511 	.owner		= THIS_MODULE,
2512 	.open		= proto_seq_open,
2513 	.read		= seq_read,
2514 	.llseek		= seq_lseek,
2515 	.release	= seq_release_net,
2516 };
2517 
2518 static __net_init int proto_init_net(struct net *net)
2519 {
2520 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2521 		return -ENOMEM;
2522 
2523 	return 0;
2524 }
2525 
2526 static __net_exit void proto_exit_net(struct net *net)
2527 {
2528 	proc_net_remove(net, "protocols");
2529 }
2530 
2531 
2532 static __net_initdata struct pernet_operations proto_net_ops = {
2533 	.init = proto_init_net,
2534 	.exit = proto_exit_net,
2535 };
2536 
2537 static int __init proto_init(void)
2538 {
2539 	return register_pernet_subsys(&proto_net_ops);
2540 }
2541 
2542 subsys_initcall(proto_init);
2543 
2544 #endif /* PROC_FS */
2545