1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 sockopt_lock_sock(sk); 707 ret = sock_bindtoindex_locked(sk, index); 708 sockopt_release_sock(sk); 709 out: 710 #endif 711 712 return ret; 713 } 714 715 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 716 sockptr_t optlen, int len) 717 { 718 int ret = -ENOPROTOOPT; 719 #ifdef CONFIG_NETDEVICES 720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 721 struct net *net = sock_net(sk); 722 char devname[IFNAMSIZ]; 723 724 if (bound_dev_if == 0) { 725 len = 0; 726 goto zero; 727 } 728 729 ret = -EINVAL; 730 if (len < IFNAMSIZ) 731 goto out; 732 733 ret = netdev_get_name(net, devname, bound_dev_if); 734 if (ret) 735 goto out; 736 737 len = strlen(devname) + 1; 738 739 ret = -EFAULT; 740 if (copy_to_sockptr(optval, devname, len)) 741 goto out; 742 743 zero: 744 ret = -EFAULT; 745 if (copy_to_sockptr(optlen, &len, sizeof(int))) 746 goto out; 747 748 ret = 0; 749 750 out: 751 #endif 752 753 return ret; 754 } 755 756 bool sk_mc_loop(struct sock *sk) 757 { 758 if (dev_recursion_level()) 759 return false; 760 if (!sk) 761 return true; 762 switch (sk->sk_family) { 763 case AF_INET: 764 return inet_sk(sk)->mc_loop; 765 #if IS_ENABLED(CONFIG_IPV6) 766 case AF_INET6: 767 return inet6_sk(sk)->mc_loop; 768 #endif 769 } 770 WARN_ON_ONCE(1); 771 return true; 772 } 773 EXPORT_SYMBOL(sk_mc_loop); 774 775 void sock_set_reuseaddr(struct sock *sk) 776 { 777 lock_sock(sk); 778 sk->sk_reuse = SK_CAN_REUSE; 779 release_sock(sk); 780 } 781 EXPORT_SYMBOL(sock_set_reuseaddr); 782 783 void sock_set_reuseport(struct sock *sk) 784 { 785 lock_sock(sk); 786 sk->sk_reuseport = true; 787 release_sock(sk); 788 } 789 EXPORT_SYMBOL(sock_set_reuseport); 790 791 void sock_no_linger(struct sock *sk) 792 { 793 lock_sock(sk); 794 sk->sk_lingertime = 0; 795 sock_set_flag(sk, SOCK_LINGER); 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_no_linger); 799 800 void sock_set_priority(struct sock *sk, u32 priority) 801 { 802 lock_sock(sk); 803 sk->sk_priority = priority; 804 release_sock(sk); 805 } 806 EXPORT_SYMBOL(sock_set_priority); 807 808 void sock_set_sndtimeo(struct sock *sk, s64 secs) 809 { 810 lock_sock(sk); 811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 812 sk->sk_sndtimeo = secs * HZ; 813 else 814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 815 release_sock(sk); 816 } 817 EXPORT_SYMBOL(sock_set_sndtimeo); 818 819 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 820 { 821 if (val) { 822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 824 sock_set_flag(sk, SOCK_RCVTSTAMP); 825 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 826 } else { 827 sock_reset_flag(sk, SOCK_RCVTSTAMP); 828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 829 } 830 } 831 832 void sock_enable_timestamps(struct sock *sk) 833 { 834 lock_sock(sk); 835 __sock_set_timestamps(sk, true, false, true); 836 release_sock(sk); 837 } 838 EXPORT_SYMBOL(sock_enable_timestamps); 839 840 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 841 { 842 switch (optname) { 843 case SO_TIMESTAMP_OLD: 844 __sock_set_timestamps(sk, valbool, false, false); 845 break; 846 case SO_TIMESTAMP_NEW: 847 __sock_set_timestamps(sk, valbool, true, false); 848 break; 849 case SO_TIMESTAMPNS_OLD: 850 __sock_set_timestamps(sk, valbool, false, true); 851 break; 852 case SO_TIMESTAMPNS_NEW: 853 __sock_set_timestamps(sk, valbool, true, true); 854 break; 855 } 856 } 857 858 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 859 { 860 struct net *net = sock_net(sk); 861 struct net_device *dev = NULL; 862 bool match = false; 863 int *vclock_index; 864 int i, num; 865 866 if (sk->sk_bound_dev_if) 867 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 868 869 if (!dev) { 870 pr_err("%s: sock not bind to device\n", __func__); 871 return -EOPNOTSUPP; 872 } 873 874 num = ethtool_get_phc_vclocks(dev, &vclock_index); 875 dev_put(dev); 876 877 for (i = 0; i < num; i++) { 878 if (*(vclock_index + i) == phc_index) { 879 match = true; 880 break; 881 } 882 } 883 884 if (num > 0) 885 kfree(vclock_index); 886 887 if (!match) 888 return -EINVAL; 889 890 sk->sk_bind_phc = phc_index; 891 892 return 0; 893 } 894 895 int sock_set_timestamping(struct sock *sk, int optname, 896 struct so_timestamping timestamping) 897 { 898 int val = timestamping.flags; 899 int ret; 900 901 if (val & ~SOF_TIMESTAMPING_MASK) 902 return -EINVAL; 903 904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 905 !(val & SOF_TIMESTAMPING_OPT_ID)) 906 return -EINVAL; 907 908 if (val & SOF_TIMESTAMPING_OPT_ID && 909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 910 if (sk_is_tcp(sk)) { 911 if ((1 << sk->sk_state) & 912 (TCPF_CLOSE | TCPF_LISTEN)) 913 return -EINVAL; 914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 916 else 917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 918 } else { 919 atomic_set(&sk->sk_tskey, 0); 920 } 921 } 922 923 if (val & SOF_TIMESTAMPING_OPT_STATS && 924 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 925 return -EINVAL; 926 927 if (val & SOF_TIMESTAMPING_BIND_PHC) { 928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 929 if (ret) 930 return ret; 931 } 932 933 sk->sk_tsflags = val; 934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 935 936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 937 sock_enable_timestamp(sk, 938 SOCK_TIMESTAMPING_RX_SOFTWARE); 939 else 940 sock_disable_timestamp(sk, 941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 942 return 0; 943 } 944 945 void sock_set_keepalive(struct sock *sk) 946 { 947 lock_sock(sk); 948 if (sk->sk_prot->keepalive) 949 sk->sk_prot->keepalive(sk, true); 950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 951 release_sock(sk); 952 } 953 EXPORT_SYMBOL(sock_set_keepalive); 954 955 static void __sock_set_rcvbuf(struct sock *sk, int val) 956 { 957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 958 * as a negative value. 959 */ 960 val = min_t(int, val, INT_MAX / 2); 961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 962 963 /* We double it on the way in to account for "struct sk_buff" etc. 964 * overhead. Applications assume that the SO_RCVBUF setting they make 965 * will allow that much actual data to be received on that socket. 966 * 967 * Applications are unaware that "struct sk_buff" and other overheads 968 * allocate from the receive buffer during socket buffer allocation. 969 * 970 * And after considering the possible alternatives, returning the value 971 * we actually used in getsockopt is the most desirable behavior. 972 */ 973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 974 } 975 976 void sock_set_rcvbuf(struct sock *sk, int val) 977 { 978 lock_sock(sk); 979 __sock_set_rcvbuf(sk, val); 980 release_sock(sk); 981 } 982 EXPORT_SYMBOL(sock_set_rcvbuf); 983 984 static void __sock_set_mark(struct sock *sk, u32 val) 985 { 986 if (val != sk->sk_mark) { 987 sk->sk_mark = val; 988 sk_dst_reset(sk); 989 } 990 } 991 992 void sock_set_mark(struct sock *sk, u32 val) 993 { 994 lock_sock(sk); 995 __sock_set_mark(sk, val); 996 release_sock(sk); 997 } 998 EXPORT_SYMBOL(sock_set_mark); 999 1000 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1001 { 1002 /* Round down bytes to multiple of pages */ 1003 bytes = round_down(bytes, PAGE_SIZE); 1004 1005 WARN_ON(bytes > sk->sk_reserved_mem); 1006 sk->sk_reserved_mem -= bytes; 1007 sk_mem_reclaim(sk); 1008 } 1009 1010 static int sock_reserve_memory(struct sock *sk, int bytes) 1011 { 1012 long allocated; 1013 bool charged; 1014 int pages; 1015 1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1017 return -EOPNOTSUPP; 1018 1019 if (!bytes) 1020 return 0; 1021 1022 pages = sk_mem_pages(bytes); 1023 1024 /* pre-charge to memcg */ 1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1027 if (!charged) 1028 return -ENOMEM; 1029 1030 /* pre-charge to forward_alloc */ 1031 sk_memory_allocated_add(sk, pages); 1032 allocated = sk_memory_allocated(sk); 1033 /* If the system goes into memory pressure with this 1034 * precharge, give up and return error. 1035 */ 1036 if (allocated > sk_prot_mem_limits(sk, 1)) { 1037 sk_memory_allocated_sub(sk, pages); 1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1039 return -ENOMEM; 1040 } 1041 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1042 1043 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1044 1045 return 0; 1046 } 1047 1048 void sockopt_lock_sock(struct sock *sk) 1049 { 1050 /* When current->bpf_ctx is set, the setsockopt is called from 1051 * a bpf prog. bpf has ensured the sk lock has been 1052 * acquired before calling setsockopt(). 1053 */ 1054 if (has_current_bpf_ctx()) 1055 return; 1056 1057 lock_sock(sk); 1058 } 1059 EXPORT_SYMBOL(sockopt_lock_sock); 1060 1061 void sockopt_release_sock(struct sock *sk) 1062 { 1063 if (has_current_bpf_ctx()) 1064 return; 1065 1066 release_sock(sk); 1067 } 1068 EXPORT_SYMBOL(sockopt_release_sock); 1069 1070 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1071 { 1072 return has_current_bpf_ctx() || ns_capable(ns, cap); 1073 } 1074 EXPORT_SYMBOL(sockopt_ns_capable); 1075 1076 bool sockopt_capable(int cap) 1077 { 1078 return has_current_bpf_ctx() || capable(cap); 1079 } 1080 EXPORT_SYMBOL(sockopt_capable); 1081 1082 /* 1083 * This is meant for all protocols to use and covers goings on 1084 * at the socket level. Everything here is generic. 1085 */ 1086 1087 int sk_setsockopt(struct sock *sk, int level, int optname, 1088 sockptr_t optval, unsigned int optlen) 1089 { 1090 struct so_timestamping timestamping; 1091 struct socket *sock = sk->sk_socket; 1092 struct sock_txtime sk_txtime; 1093 int val; 1094 int valbool; 1095 struct linger ling; 1096 int ret = 0; 1097 1098 /* 1099 * Options without arguments 1100 */ 1101 1102 if (optname == SO_BINDTODEVICE) 1103 return sock_setbindtodevice(sk, optval, optlen); 1104 1105 if (optlen < sizeof(int)) 1106 return -EINVAL; 1107 1108 if (copy_from_sockptr(&val, optval, sizeof(val))) 1109 return -EFAULT; 1110 1111 valbool = val ? 1 : 0; 1112 1113 sockopt_lock_sock(sk); 1114 1115 switch (optname) { 1116 case SO_DEBUG: 1117 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1118 ret = -EACCES; 1119 else 1120 sock_valbool_flag(sk, SOCK_DBG, valbool); 1121 break; 1122 case SO_REUSEADDR: 1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1124 break; 1125 case SO_REUSEPORT: 1126 sk->sk_reuseport = valbool; 1127 break; 1128 case SO_TYPE: 1129 case SO_PROTOCOL: 1130 case SO_DOMAIN: 1131 case SO_ERROR: 1132 ret = -ENOPROTOOPT; 1133 break; 1134 case SO_DONTROUTE: 1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1136 sk_dst_reset(sk); 1137 break; 1138 case SO_BROADCAST: 1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1140 break; 1141 case SO_SNDBUF: 1142 /* Don't error on this BSD doesn't and if you think 1143 * about it this is right. Otherwise apps have to 1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1145 * are treated in BSD as hints 1146 */ 1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1148 set_sndbuf: 1149 /* Ensure val * 2 fits into an int, to prevent max_t() 1150 * from treating it as a negative value. 1151 */ 1152 val = min_t(int, val, INT_MAX / 2); 1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1154 WRITE_ONCE(sk->sk_sndbuf, 1155 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1156 /* Wake up sending tasks if we upped the value. */ 1157 sk->sk_write_space(sk); 1158 break; 1159 1160 case SO_SNDBUFFORCE: 1161 if (!sockopt_capable(CAP_NET_ADMIN)) { 1162 ret = -EPERM; 1163 break; 1164 } 1165 1166 /* No negative values (to prevent underflow, as val will be 1167 * multiplied by 2). 1168 */ 1169 if (val < 0) 1170 val = 0; 1171 goto set_sndbuf; 1172 1173 case SO_RCVBUF: 1174 /* Don't error on this BSD doesn't and if you think 1175 * about it this is right. Otherwise apps have to 1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1177 * are treated in BSD as hints 1178 */ 1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1180 break; 1181 1182 case SO_RCVBUFFORCE: 1183 if (!sockopt_capable(CAP_NET_ADMIN)) { 1184 ret = -EPERM; 1185 break; 1186 } 1187 1188 /* No negative values (to prevent underflow, as val will be 1189 * multiplied by 2). 1190 */ 1191 __sock_set_rcvbuf(sk, max(val, 0)); 1192 break; 1193 1194 case SO_KEEPALIVE: 1195 if (sk->sk_prot->keepalive) 1196 sk->sk_prot->keepalive(sk, valbool); 1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1198 break; 1199 1200 case SO_OOBINLINE: 1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1202 break; 1203 1204 case SO_NO_CHECK: 1205 sk->sk_no_check_tx = valbool; 1206 break; 1207 1208 case SO_PRIORITY: 1209 if ((val >= 0 && val <= 6) || 1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1212 sk->sk_priority = val; 1213 else 1214 ret = -EPERM; 1215 break; 1216 1217 case SO_LINGER: 1218 if (optlen < sizeof(ling)) { 1219 ret = -EINVAL; /* 1003.1g */ 1220 break; 1221 } 1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1223 ret = -EFAULT; 1224 break; 1225 } 1226 if (!ling.l_onoff) 1227 sock_reset_flag(sk, SOCK_LINGER); 1228 else { 1229 #if (BITS_PER_LONG == 32) 1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1232 else 1233 #endif 1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1235 sock_set_flag(sk, SOCK_LINGER); 1236 } 1237 break; 1238 1239 case SO_BSDCOMPAT: 1240 break; 1241 1242 case SO_PASSCRED: 1243 if (valbool) 1244 set_bit(SOCK_PASSCRED, &sock->flags); 1245 else 1246 clear_bit(SOCK_PASSCRED, &sock->flags); 1247 break; 1248 1249 case SO_TIMESTAMP_OLD: 1250 case SO_TIMESTAMP_NEW: 1251 case SO_TIMESTAMPNS_OLD: 1252 case SO_TIMESTAMPNS_NEW: 1253 sock_set_timestamp(sk, optname, valbool); 1254 break; 1255 1256 case SO_TIMESTAMPING_NEW: 1257 case SO_TIMESTAMPING_OLD: 1258 if (optlen == sizeof(timestamping)) { 1259 if (copy_from_sockptr(×tamping, optval, 1260 sizeof(timestamping))) { 1261 ret = -EFAULT; 1262 break; 1263 } 1264 } else { 1265 memset(×tamping, 0, sizeof(timestamping)); 1266 timestamping.flags = val; 1267 } 1268 ret = sock_set_timestamping(sk, optname, timestamping); 1269 break; 1270 1271 case SO_RCVLOWAT: 1272 if (val < 0) 1273 val = INT_MAX; 1274 if (sock && sock->ops->set_rcvlowat) 1275 ret = sock->ops->set_rcvlowat(sk, val); 1276 else 1277 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1278 break; 1279 1280 case SO_RCVTIMEO_OLD: 1281 case SO_RCVTIMEO_NEW: 1282 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1283 optlen, optname == SO_RCVTIMEO_OLD); 1284 break; 1285 1286 case SO_SNDTIMEO_OLD: 1287 case SO_SNDTIMEO_NEW: 1288 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1289 optlen, optname == SO_SNDTIMEO_OLD); 1290 break; 1291 1292 case SO_ATTACH_FILTER: { 1293 struct sock_fprog fprog; 1294 1295 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1296 if (!ret) 1297 ret = sk_attach_filter(&fprog, sk); 1298 break; 1299 } 1300 case SO_ATTACH_BPF: 1301 ret = -EINVAL; 1302 if (optlen == sizeof(u32)) { 1303 u32 ufd; 1304 1305 ret = -EFAULT; 1306 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1307 break; 1308 1309 ret = sk_attach_bpf(ufd, sk); 1310 } 1311 break; 1312 1313 case SO_ATTACH_REUSEPORT_CBPF: { 1314 struct sock_fprog fprog; 1315 1316 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1317 if (!ret) 1318 ret = sk_reuseport_attach_filter(&fprog, sk); 1319 break; 1320 } 1321 case SO_ATTACH_REUSEPORT_EBPF: 1322 ret = -EINVAL; 1323 if (optlen == sizeof(u32)) { 1324 u32 ufd; 1325 1326 ret = -EFAULT; 1327 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1328 break; 1329 1330 ret = sk_reuseport_attach_bpf(ufd, sk); 1331 } 1332 break; 1333 1334 case SO_DETACH_REUSEPORT_BPF: 1335 ret = reuseport_detach_prog(sk); 1336 break; 1337 1338 case SO_DETACH_FILTER: 1339 ret = sk_detach_filter(sk); 1340 break; 1341 1342 case SO_LOCK_FILTER: 1343 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1344 ret = -EPERM; 1345 else 1346 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1347 break; 1348 1349 case SO_PASSSEC: 1350 if (valbool) 1351 set_bit(SOCK_PASSSEC, &sock->flags); 1352 else 1353 clear_bit(SOCK_PASSSEC, &sock->flags); 1354 break; 1355 case SO_MARK: 1356 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1357 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1358 ret = -EPERM; 1359 break; 1360 } 1361 1362 __sock_set_mark(sk, val); 1363 break; 1364 case SO_RCVMARK: 1365 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1366 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1367 ret = -EPERM; 1368 break; 1369 } 1370 1371 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1372 break; 1373 1374 case SO_RXQ_OVFL: 1375 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1376 break; 1377 1378 case SO_WIFI_STATUS: 1379 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1380 break; 1381 1382 case SO_PEEK_OFF: 1383 if (sock->ops->set_peek_off) 1384 ret = sock->ops->set_peek_off(sk, val); 1385 else 1386 ret = -EOPNOTSUPP; 1387 break; 1388 1389 case SO_NOFCS: 1390 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1391 break; 1392 1393 case SO_SELECT_ERR_QUEUE: 1394 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1395 break; 1396 1397 #ifdef CONFIG_NET_RX_BUSY_POLL 1398 case SO_BUSY_POLL: 1399 /* allow unprivileged users to decrease the value */ 1400 if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN)) 1401 ret = -EPERM; 1402 else { 1403 if (val < 0) 1404 ret = -EINVAL; 1405 else 1406 WRITE_ONCE(sk->sk_ll_usec, val); 1407 } 1408 break; 1409 case SO_PREFER_BUSY_POLL: 1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1411 ret = -EPERM; 1412 else 1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1414 break; 1415 case SO_BUSY_POLL_BUDGET: 1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1417 ret = -EPERM; 1418 } else { 1419 if (val < 0 || val > U16_MAX) 1420 ret = -EINVAL; 1421 else 1422 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1423 } 1424 break; 1425 #endif 1426 1427 case SO_MAX_PACING_RATE: 1428 { 1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1430 1431 if (sizeof(ulval) != sizeof(val) && 1432 optlen >= sizeof(ulval) && 1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1434 ret = -EFAULT; 1435 break; 1436 } 1437 if (ulval != ~0UL) 1438 cmpxchg(&sk->sk_pacing_status, 1439 SK_PACING_NONE, 1440 SK_PACING_NEEDED); 1441 sk->sk_max_pacing_rate = ulval; 1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1443 break; 1444 } 1445 case SO_INCOMING_CPU: 1446 reuseport_update_incoming_cpu(sk, val); 1447 break; 1448 1449 case SO_CNX_ADVICE: 1450 if (val == 1) 1451 dst_negative_advice(sk); 1452 break; 1453 1454 case SO_ZEROCOPY: 1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1456 if (!(sk_is_tcp(sk) || 1457 (sk->sk_type == SOCK_DGRAM && 1458 sk->sk_protocol == IPPROTO_UDP))) 1459 ret = -EOPNOTSUPP; 1460 } else if (sk->sk_family != PF_RDS) { 1461 ret = -EOPNOTSUPP; 1462 } 1463 if (!ret) { 1464 if (val < 0 || val > 1) 1465 ret = -EINVAL; 1466 else 1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1468 } 1469 break; 1470 1471 case SO_TXTIME: 1472 if (optlen != sizeof(struct sock_txtime)) { 1473 ret = -EINVAL; 1474 break; 1475 } else if (copy_from_sockptr(&sk_txtime, optval, 1476 sizeof(struct sock_txtime))) { 1477 ret = -EFAULT; 1478 break; 1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1480 ret = -EINVAL; 1481 break; 1482 } 1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1484 * scheduler has enough safe guards. 1485 */ 1486 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1488 ret = -EPERM; 1489 break; 1490 } 1491 sock_valbool_flag(sk, SOCK_TXTIME, true); 1492 sk->sk_clockid = sk_txtime.clockid; 1493 sk->sk_txtime_deadline_mode = 1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1495 sk->sk_txtime_report_errors = 1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1497 break; 1498 1499 case SO_BINDTOIFINDEX: 1500 ret = sock_bindtoindex_locked(sk, val); 1501 break; 1502 1503 case SO_BUF_LOCK: 1504 if (val & ~SOCK_BUF_LOCK_MASK) { 1505 ret = -EINVAL; 1506 break; 1507 } 1508 sk->sk_userlocks = val | (sk->sk_userlocks & 1509 ~SOCK_BUF_LOCK_MASK); 1510 break; 1511 1512 case SO_RESERVE_MEM: 1513 { 1514 int delta; 1515 1516 if (val < 0) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 1521 delta = val - sk->sk_reserved_mem; 1522 if (delta < 0) 1523 sock_release_reserved_memory(sk, -delta); 1524 else 1525 ret = sock_reserve_memory(sk, delta); 1526 break; 1527 } 1528 1529 case SO_TXREHASH: 1530 if (val < -1 || val > 1) { 1531 ret = -EINVAL; 1532 break; 1533 } 1534 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1537 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1538 break; 1539 1540 default: 1541 ret = -ENOPROTOOPT; 1542 break; 1543 } 1544 sockopt_release_sock(sk); 1545 return ret; 1546 } 1547 1548 int sock_setsockopt(struct socket *sock, int level, int optname, 1549 sockptr_t optval, unsigned int optlen) 1550 { 1551 return sk_setsockopt(sock->sk, level, optname, 1552 optval, optlen); 1553 } 1554 EXPORT_SYMBOL(sock_setsockopt); 1555 1556 static const struct cred *sk_get_peer_cred(struct sock *sk) 1557 { 1558 const struct cred *cred; 1559 1560 spin_lock(&sk->sk_peer_lock); 1561 cred = get_cred(sk->sk_peer_cred); 1562 spin_unlock(&sk->sk_peer_lock); 1563 1564 return cred; 1565 } 1566 1567 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1568 struct ucred *ucred) 1569 { 1570 ucred->pid = pid_vnr(pid); 1571 ucred->uid = ucred->gid = -1; 1572 if (cred) { 1573 struct user_namespace *current_ns = current_user_ns(); 1574 1575 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1576 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1577 } 1578 } 1579 1580 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1581 { 1582 struct user_namespace *user_ns = current_user_ns(); 1583 int i; 1584 1585 for (i = 0; i < src->ngroups; i++) { 1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1587 1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1589 return -EFAULT; 1590 } 1591 1592 return 0; 1593 } 1594 1595 int sk_getsockopt(struct sock *sk, int level, int optname, 1596 sockptr_t optval, sockptr_t optlen) 1597 { 1598 struct socket *sock = sk->sk_socket; 1599 1600 union { 1601 int val; 1602 u64 val64; 1603 unsigned long ulval; 1604 struct linger ling; 1605 struct old_timeval32 tm32; 1606 struct __kernel_old_timeval tm; 1607 struct __kernel_sock_timeval stm; 1608 struct sock_txtime txtime; 1609 struct so_timestamping timestamping; 1610 } v; 1611 1612 int lv = sizeof(int); 1613 int len; 1614 1615 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1616 return -EFAULT; 1617 if (len < 0) 1618 return -EINVAL; 1619 1620 memset(&v, 0, sizeof(v)); 1621 1622 switch (optname) { 1623 case SO_DEBUG: 1624 v.val = sock_flag(sk, SOCK_DBG); 1625 break; 1626 1627 case SO_DONTROUTE: 1628 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1629 break; 1630 1631 case SO_BROADCAST: 1632 v.val = sock_flag(sk, SOCK_BROADCAST); 1633 break; 1634 1635 case SO_SNDBUF: 1636 v.val = sk->sk_sndbuf; 1637 break; 1638 1639 case SO_RCVBUF: 1640 v.val = sk->sk_rcvbuf; 1641 break; 1642 1643 case SO_REUSEADDR: 1644 v.val = sk->sk_reuse; 1645 break; 1646 1647 case SO_REUSEPORT: 1648 v.val = sk->sk_reuseport; 1649 break; 1650 1651 case SO_KEEPALIVE: 1652 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1653 break; 1654 1655 case SO_TYPE: 1656 v.val = sk->sk_type; 1657 break; 1658 1659 case SO_PROTOCOL: 1660 v.val = sk->sk_protocol; 1661 break; 1662 1663 case SO_DOMAIN: 1664 v.val = sk->sk_family; 1665 break; 1666 1667 case SO_ERROR: 1668 v.val = -sock_error(sk); 1669 if (v.val == 0) 1670 v.val = xchg(&sk->sk_err_soft, 0); 1671 break; 1672 1673 case SO_OOBINLINE: 1674 v.val = sock_flag(sk, SOCK_URGINLINE); 1675 break; 1676 1677 case SO_NO_CHECK: 1678 v.val = sk->sk_no_check_tx; 1679 break; 1680 1681 case SO_PRIORITY: 1682 v.val = sk->sk_priority; 1683 break; 1684 1685 case SO_LINGER: 1686 lv = sizeof(v.ling); 1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1688 v.ling.l_linger = sk->sk_lingertime / HZ; 1689 break; 1690 1691 case SO_BSDCOMPAT: 1692 break; 1693 1694 case SO_TIMESTAMP_OLD: 1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1696 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1697 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1698 break; 1699 1700 case SO_TIMESTAMPNS_OLD: 1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1702 break; 1703 1704 case SO_TIMESTAMP_NEW: 1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1706 break; 1707 1708 case SO_TIMESTAMPNS_NEW: 1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1710 break; 1711 1712 case SO_TIMESTAMPING_OLD: 1713 lv = sizeof(v.timestamping); 1714 v.timestamping.flags = sk->sk_tsflags; 1715 v.timestamping.bind_phc = sk->sk_bind_phc; 1716 break; 1717 1718 case SO_RCVTIMEO_OLD: 1719 case SO_RCVTIMEO_NEW: 1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1721 break; 1722 1723 case SO_SNDTIMEO_OLD: 1724 case SO_SNDTIMEO_NEW: 1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1726 break; 1727 1728 case SO_RCVLOWAT: 1729 v.val = sk->sk_rcvlowat; 1730 break; 1731 1732 case SO_SNDLOWAT: 1733 v.val = 1; 1734 break; 1735 1736 case SO_PASSCRED: 1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1738 break; 1739 1740 case SO_PEERCRED: 1741 { 1742 struct ucred peercred; 1743 if (len > sizeof(peercred)) 1744 len = sizeof(peercred); 1745 1746 spin_lock(&sk->sk_peer_lock); 1747 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1748 spin_unlock(&sk->sk_peer_lock); 1749 1750 if (copy_to_sockptr(optval, &peercred, len)) 1751 return -EFAULT; 1752 goto lenout; 1753 } 1754 1755 case SO_PEERGROUPS: 1756 { 1757 const struct cred *cred; 1758 int ret, n; 1759 1760 cred = sk_get_peer_cred(sk); 1761 if (!cred) 1762 return -ENODATA; 1763 1764 n = cred->group_info->ngroups; 1765 if (len < n * sizeof(gid_t)) { 1766 len = n * sizeof(gid_t); 1767 put_cred(cred); 1768 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1769 } 1770 len = n * sizeof(gid_t); 1771 1772 ret = groups_to_user(optval, cred->group_info); 1773 put_cred(cred); 1774 if (ret) 1775 return ret; 1776 goto lenout; 1777 } 1778 1779 case SO_PEERNAME: 1780 { 1781 char address[128]; 1782 1783 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1784 if (lv < 0) 1785 return -ENOTCONN; 1786 if (lv < len) 1787 return -EINVAL; 1788 if (copy_to_sockptr(optval, address, len)) 1789 return -EFAULT; 1790 goto lenout; 1791 } 1792 1793 /* Dubious BSD thing... Probably nobody even uses it, but 1794 * the UNIX standard wants it for whatever reason... -DaveM 1795 */ 1796 case SO_ACCEPTCONN: 1797 v.val = sk->sk_state == TCP_LISTEN; 1798 break; 1799 1800 case SO_PASSSEC: 1801 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1802 break; 1803 1804 case SO_PEERSEC: 1805 return security_socket_getpeersec_stream(sock, 1806 optval, optlen, len); 1807 1808 case SO_MARK: 1809 v.val = sk->sk_mark; 1810 break; 1811 1812 case SO_RCVMARK: 1813 v.val = sock_flag(sk, SOCK_RCVMARK); 1814 break; 1815 1816 case SO_RXQ_OVFL: 1817 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1818 break; 1819 1820 case SO_WIFI_STATUS: 1821 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1822 break; 1823 1824 case SO_PEEK_OFF: 1825 if (!sock->ops->set_peek_off) 1826 return -EOPNOTSUPP; 1827 1828 v.val = sk->sk_peek_off; 1829 break; 1830 case SO_NOFCS: 1831 v.val = sock_flag(sk, SOCK_NOFCS); 1832 break; 1833 1834 case SO_BINDTODEVICE: 1835 return sock_getbindtodevice(sk, optval, optlen, len); 1836 1837 case SO_GET_FILTER: 1838 len = sk_get_filter(sk, optval, len); 1839 if (len < 0) 1840 return len; 1841 1842 goto lenout; 1843 1844 case SO_LOCK_FILTER: 1845 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1846 break; 1847 1848 case SO_BPF_EXTENSIONS: 1849 v.val = bpf_tell_extensions(); 1850 break; 1851 1852 case SO_SELECT_ERR_QUEUE: 1853 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1854 break; 1855 1856 #ifdef CONFIG_NET_RX_BUSY_POLL 1857 case SO_BUSY_POLL: 1858 v.val = sk->sk_ll_usec; 1859 break; 1860 case SO_PREFER_BUSY_POLL: 1861 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1862 break; 1863 #endif 1864 1865 case SO_MAX_PACING_RATE: 1866 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1867 lv = sizeof(v.ulval); 1868 v.ulval = sk->sk_max_pacing_rate; 1869 } else { 1870 /* 32bit version */ 1871 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1872 } 1873 break; 1874 1875 case SO_INCOMING_CPU: 1876 v.val = READ_ONCE(sk->sk_incoming_cpu); 1877 break; 1878 1879 case SO_MEMINFO: 1880 { 1881 u32 meminfo[SK_MEMINFO_VARS]; 1882 1883 sk_get_meminfo(sk, meminfo); 1884 1885 len = min_t(unsigned int, len, sizeof(meminfo)); 1886 if (copy_to_sockptr(optval, &meminfo, len)) 1887 return -EFAULT; 1888 1889 goto lenout; 1890 } 1891 1892 #ifdef CONFIG_NET_RX_BUSY_POLL 1893 case SO_INCOMING_NAPI_ID: 1894 v.val = READ_ONCE(sk->sk_napi_id); 1895 1896 /* aggregate non-NAPI IDs down to 0 */ 1897 if (v.val < MIN_NAPI_ID) 1898 v.val = 0; 1899 1900 break; 1901 #endif 1902 1903 case SO_COOKIE: 1904 lv = sizeof(u64); 1905 if (len < lv) 1906 return -EINVAL; 1907 v.val64 = sock_gen_cookie(sk); 1908 break; 1909 1910 case SO_ZEROCOPY: 1911 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1912 break; 1913 1914 case SO_TXTIME: 1915 lv = sizeof(v.txtime); 1916 v.txtime.clockid = sk->sk_clockid; 1917 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1918 SOF_TXTIME_DEADLINE_MODE : 0; 1919 v.txtime.flags |= sk->sk_txtime_report_errors ? 1920 SOF_TXTIME_REPORT_ERRORS : 0; 1921 break; 1922 1923 case SO_BINDTOIFINDEX: 1924 v.val = READ_ONCE(sk->sk_bound_dev_if); 1925 break; 1926 1927 case SO_NETNS_COOKIE: 1928 lv = sizeof(u64); 1929 if (len != lv) 1930 return -EINVAL; 1931 v.val64 = sock_net(sk)->net_cookie; 1932 break; 1933 1934 case SO_BUF_LOCK: 1935 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1936 break; 1937 1938 case SO_RESERVE_MEM: 1939 v.val = sk->sk_reserved_mem; 1940 break; 1941 1942 case SO_TXREHASH: 1943 v.val = sk->sk_txrehash; 1944 break; 1945 1946 default: 1947 /* We implement the SO_SNDLOWAT etc to not be settable 1948 * (1003.1g 7). 1949 */ 1950 return -ENOPROTOOPT; 1951 } 1952 1953 if (len > lv) 1954 len = lv; 1955 if (copy_to_sockptr(optval, &v, len)) 1956 return -EFAULT; 1957 lenout: 1958 if (copy_to_sockptr(optlen, &len, sizeof(int))) 1959 return -EFAULT; 1960 return 0; 1961 } 1962 1963 int sock_getsockopt(struct socket *sock, int level, int optname, 1964 char __user *optval, int __user *optlen) 1965 { 1966 return sk_getsockopt(sock->sk, level, optname, 1967 USER_SOCKPTR(optval), 1968 USER_SOCKPTR(optlen)); 1969 } 1970 1971 /* 1972 * Initialize an sk_lock. 1973 * 1974 * (We also register the sk_lock with the lock validator.) 1975 */ 1976 static inline void sock_lock_init(struct sock *sk) 1977 { 1978 if (sk->sk_kern_sock) 1979 sock_lock_init_class_and_name( 1980 sk, 1981 af_family_kern_slock_key_strings[sk->sk_family], 1982 af_family_kern_slock_keys + sk->sk_family, 1983 af_family_kern_key_strings[sk->sk_family], 1984 af_family_kern_keys + sk->sk_family); 1985 else 1986 sock_lock_init_class_and_name( 1987 sk, 1988 af_family_slock_key_strings[sk->sk_family], 1989 af_family_slock_keys + sk->sk_family, 1990 af_family_key_strings[sk->sk_family], 1991 af_family_keys + sk->sk_family); 1992 } 1993 1994 /* 1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1996 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1998 */ 1999 static void sock_copy(struct sock *nsk, const struct sock *osk) 2000 { 2001 const struct proto *prot = READ_ONCE(osk->sk_prot); 2002 #ifdef CONFIG_SECURITY_NETWORK 2003 void *sptr = nsk->sk_security; 2004 #endif 2005 2006 /* If we move sk_tx_queue_mapping out of the private section, 2007 * we must check if sk_tx_queue_clear() is called after 2008 * sock_copy() in sk_clone_lock(). 2009 */ 2010 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2011 offsetof(struct sock, sk_dontcopy_begin) || 2012 offsetof(struct sock, sk_tx_queue_mapping) >= 2013 offsetof(struct sock, sk_dontcopy_end)); 2014 2015 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2016 2017 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2018 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2019 2020 #ifdef CONFIG_SECURITY_NETWORK 2021 nsk->sk_security = sptr; 2022 security_sk_clone(osk, nsk); 2023 #endif 2024 } 2025 2026 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2027 int family) 2028 { 2029 struct sock *sk; 2030 struct kmem_cache *slab; 2031 2032 slab = prot->slab; 2033 if (slab != NULL) { 2034 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2035 if (!sk) 2036 return sk; 2037 if (want_init_on_alloc(priority)) 2038 sk_prot_clear_nulls(sk, prot->obj_size); 2039 } else 2040 sk = kmalloc(prot->obj_size, priority); 2041 2042 if (sk != NULL) { 2043 if (security_sk_alloc(sk, family, priority)) 2044 goto out_free; 2045 2046 if (!try_module_get(prot->owner)) 2047 goto out_free_sec; 2048 } 2049 2050 return sk; 2051 2052 out_free_sec: 2053 security_sk_free(sk); 2054 out_free: 2055 if (slab != NULL) 2056 kmem_cache_free(slab, sk); 2057 else 2058 kfree(sk); 2059 return NULL; 2060 } 2061 2062 static void sk_prot_free(struct proto *prot, struct sock *sk) 2063 { 2064 struct kmem_cache *slab; 2065 struct module *owner; 2066 2067 owner = prot->owner; 2068 slab = prot->slab; 2069 2070 cgroup_sk_free(&sk->sk_cgrp_data); 2071 mem_cgroup_sk_free(sk); 2072 security_sk_free(sk); 2073 if (slab != NULL) 2074 kmem_cache_free(slab, sk); 2075 else 2076 kfree(sk); 2077 module_put(owner); 2078 } 2079 2080 /** 2081 * sk_alloc - All socket objects are allocated here 2082 * @net: the applicable net namespace 2083 * @family: protocol family 2084 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2085 * @prot: struct proto associated with this new sock instance 2086 * @kern: is this to be a kernel socket? 2087 */ 2088 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2089 struct proto *prot, int kern) 2090 { 2091 struct sock *sk; 2092 2093 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2094 if (sk) { 2095 sk->sk_family = family; 2096 /* 2097 * See comment in struct sock definition to understand 2098 * why we need sk_prot_creator -acme 2099 */ 2100 sk->sk_prot = sk->sk_prot_creator = prot; 2101 sk->sk_kern_sock = kern; 2102 sock_lock_init(sk); 2103 sk->sk_net_refcnt = kern ? 0 : 1; 2104 if (likely(sk->sk_net_refcnt)) { 2105 get_net_track(net, &sk->ns_tracker, priority); 2106 sock_inuse_add(net, 1); 2107 } else { 2108 __netns_tracker_alloc(net, &sk->ns_tracker, 2109 false, priority); 2110 } 2111 2112 sock_net_set(sk, net); 2113 refcount_set(&sk->sk_wmem_alloc, 1); 2114 2115 mem_cgroup_sk_alloc(sk); 2116 cgroup_sk_alloc(&sk->sk_cgrp_data); 2117 sock_update_classid(&sk->sk_cgrp_data); 2118 sock_update_netprioidx(&sk->sk_cgrp_data); 2119 sk_tx_queue_clear(sk); 2120 } 2121 2122 return sk; 2123 } 2124 EXPORT_SYMBOL(sk_alloc); 2125 2126 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2127 * grace period. This is the case for UDP sockets and TCP listeners. 2128 */ 2129 static void __sk_destruct(struct rcu_head *head) 2130 { 2131 struct sock *sk = container_of(head, struct sock, sk_rcu); 2132 struct sk_filter *filter; 2133 2134 if (sk->sk_destruct) 2135 sk->sk_destruct(sk); 2136 2137 filter = rcu_dereference_check(sk->sk_filter, 2138 refcount_read(&sk->sk_wmem_alloc) == 0); 2139 if (filter) { 2140 sk_filter_uncharge(sk, filter); 2141 RCU_INIT_POINTER(sk->sk_filter, NULL); 2142 } 2143 2144 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2145 2146 #ifdef CONFIG_BPF_SYSCALL 2147 bpf_sk_storage_free(sk); 2148 #endif 2149 2150 if (atomic_read(&sk->sk_omem_alloc)) 2151 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2152 __func__, atomic_read(&sk->sk_omem_alloc)); 2153 2154 if (sk->sk_frag.page) { 2155 put_page(sk->sk_frag.page); 2156 sk->sk_frag.page = NULL; 2157 } 2158 2159 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2160 put_cred(sk->sk_peer_cred); 2161 put_pid(sk->sk_peer_pid); 2162 2163 if (likely(sk->sk_net_refcnt)) 2164 put_net_track(sock_net(sk), &sk->ns_tracker); 2165 else 2166 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2167 2168 sk_prot_free(sk->sk_prot_creator, sk); 2169 } 2170 2171 void sk_destruct(struct sock *sk) 2172 { 2173 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2174 2175 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2176 reuseport_detach_sock(sk); 2177 use_call_rcu = true; 2178 } 2179 2180 if (use_call_rcu) 2181 call_rcu(&sk->sk_rcu, __sk_destruct); 2182 else 2183 __sk_destruct(&sk->sk_rcu); 2184 } 2185 2186 static void __sk_free(struct sock *sk) 2187 { 2188 if (likely(sk->sk_net_refcnt)) 2189 sock_inuse_add(sock_net(sk), -1); 2190 2191 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2192 sock_diag_broadcast_destroy(sk); 2193 else 2194 sk_destruct(sk); 2195 } 2196 2197 void sk_free(struct sock *sk) 2198 { 2199 /* 2200 * We subtract one from sk_wmem_alloc and can know if 2201 * some packets are still in some tx queue. 2202 * If not null, sock_wfree() will call __sk_free(sk) later 2203 */ 2204 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2205 __sk_free(sk); 2206 } 2207 EXPORT_SYMBOL(sk_free); 2208 2209 static void sk_init_common(struct sock *sk) 2210 { 2211 skb_queue_head_init(&sk->sk_receive_queue); 2212 skb_queue_head_init(&sk->sk_write_queue); 2213 skb_queue_head_init(&sk->sk_error_queue); 2214 2215 rwlock_init(&sk->sk_callback_lock); 2216 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2217 af_rlock_keys + sk->sk_family, 2218 af_family_rlock_key_strings[sk->sk_family]); 2219 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2220 af_wlock_keys + sk->sk_family, 2221 af_family_wlock_key_strings[sk->sk_family]); 2222 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2223 af_elock_keys + sk->sk_family, 2224 af_family_elock_key_strings[sk->sk_family]); 2225 lockdep_set_class_and_name(&sk->sk_callback_lock, 2226 af_callback_keys + sk->sk_family, 2227 af_family_clock_key_strings[sk->sk_family]); 2228 } 2229 2230 /** 2231 * sk_clone_lock - clone a socket, and lock its clone 2232 * @sk: the socket to clone 2233 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2234 * 2235 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2236 */ 2237 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2238 { 2239 struct proto *prot = READ_ONCE(sk->sk_prot); 2240 struct sk_filter *filter; 2241 bool is_charged = true; 2242 struct sock *newsk; 2243 2244 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2245 if (!newsk) 2246 goto out; 2247 2248 sock_copy(newsk, sk); 2249 2250 newsk->sk_prot_creator = prot; 2251 2252 /* SANITY */ 2253 if (likely(newsk->sk_net_refcnt)) { 2254 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2255 sock_inuse_add(sock_net(newsk), 1); 2256 } else { 2257 /* Kernel sockets are not elevating the struct net refcount. 2258 * Instead, use a tracker to more easily detect if a layer 2259 * is not properly dismantling its kernel sockets at netns 2260 * destroy time. 2261 */ 2262 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2263 false, priority); 2264 } 2265 sk_node_init(&newsk->sk_node); 2266 sock_lock_init(newsk); 2267 bh_lock_sock(newsk); 2268 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2269 newsk->sk_backlog.len = 0; 2270 2271 atomic_set(&newsk->sk_rmem_alloc, 0); 2272 2273 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2274 refcount_set(&newsk->sk_wmem_alloc, 1); 2275 2276 atomic_set(&newsk->sk_omem_alloc, 0); 2277 sk_init_common(newsk); 2278 2279 newsk->sk_dst_cache = NULL; 2280 newsk->sk_dst_pending_confirm = 0; 2281 newsk->sk_wmem_queued = 0; 2282 newsk->sk_forward_alloc = 0; 2283 newsk->sk_reserved_mem = 0; 2284 atomic_set(&newsk->sk_drops, 0); 2285 newsk->sk_send_head = NULL; 2286 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2287 atomic_set(&newsk->sk_zckey, 0); 2288 2289 sock_reset_flag(newsk, SOCK_DONE); 2290 2291 /* sk->sk_memcg will be populated at accept() time */ 2292 newsk->sk_memcg = NULL; 2293 2294 cgroup_sk_clone(&newsk->sk_cgrp_data); 2295 2296 rcu_read_lock(); 2297 filter = rcu_dereference(sk->sk_filter); 2298 if (filter != NULL) 2299 /* though it's an empty new sock, the charging may fail 2300 * if sysctl_optmem_max was changed between creation of 2301 * original socket and cloning 2302 */ 2303 is_charged = sk_filter_charge(newsk, filter); 2304 RCU_INIT_POINTER(newsk->sk_filter, filter); 2305 rcu_read_unlock(); 2306 2307 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2308 /* We need to make sure that we don't uncharge the new 2309 * socket if we couldn't charge it in the first place 2310 * as otherwise we uncharge the parent's filter. 2311 */ 2312 if (!is_charged) 2313 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2314 sk_free_unlock_clone(newsk); 2315 newsk = NULL; 2316 goto out; 2317 } 2318 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2319 2320 if (bpf_sk_storage_clone(sk, newsk)) { 2321 sk_free_unlock_clone(newsk); 2322 newsk = NULL; 2323 goto out; 2324 } 2325 2326 /* Clear sk_user_data if parent had the pointer tagged 2327 * as not suitable for copying when cloning. 2328 */ 2329 if (sk_user_data_is_nocopy(newsk)) 2330 newsk->sk_user_data = NULL; 2331 2332 newsk->sk_err = 0; 2333 newsk->sk_err_soft = 0; 2334 newsk->sk_priority = 0; 2335 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2336 2337 /* Before updating sk_refcnt, we must commit prior changes to memory 2338 * (Documentation/RCU/rculist_nulls.rst for details) 2339 */ 2340 smp_wmb(); 2341 refcount_set(&newsk->sk_refcnt, 2); 2342 2343 sk_set_socket(newsk, NULL); 2344 sk_tx_queue_clear(newsk); 2345 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2346 2347 if (newsk->sk_prot->sockets_allocated) 2348 sk_sockets_allocated_inc(newsk); 2349 2350 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2351 net_enable_timestamp(); 2352 out: 2353 return newsk; 2354 } 2355 EXPORT_SYMBOL_GPL(sk_clone_lock); 2356 2357 void sk_free_unlock_clone(struct sock *sk) 2358 { 2359 /* It is still raw copy of parent, so invalidate 2360 * destructor and make plain sk_free() */ 2361 sk->sk_destruct = NULL; 2362 bh_unlock_sock(sk); 2363 sk_free(sk); 2364 } 2365 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2366 2367 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2368 { 2369 bool is_ipv6 = false; 2370 u32 max_size; 2371 2372 #if IS_ENABLED(CONFIG_IPV6) 2373 is_ipv6 = (sk->sk_family == AF_INET6 && 2374 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2375 #endif 2376 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2377 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2378 READ_ONCE(dst->dev->gso_ipv4_max_size); 2379 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2380 max_size = GSO_LEGACY_MAX_SIZE; 2381 2382 return max_size - (MAX_TCP_HEADER + 1); 2383 } 2384 2385 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2386 { 2387 u32 max_segs = 1; 2388 2389 sk_dst_set(sk, dst); 2390 sk->sk_route_caps = dst->dev->features; 2391 if (sk_is_tcp(sk)) 2392 sk->sk_route_caps |= NETIF_F_GSO; 2393 if (sk->sk_route_caps & NETIF_F_GSO) 2394 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2395 if (unlikely(sk->sk_gso_disabled)) 2396 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2397 if (sk_can_gso(sk)) { 2398 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2399 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2400 } else { 2401 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2402 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2403 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2404 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2405 } 2406 } 2407 sk->sk_gso_max_segs = max_segs; 2408 } 2409 EXPORT_SYMBOL_GPL(sk_setup_caps); 2410 2411 /* 2412 * Simple resource managers for sockets. 2413 */ 2414 2415 2416 /* 2417 * Write buffer destructor automatically called from kfree_skb. 2418 */ 2419 void sock_wfree(struct sk_buff *skb) 2420 { 2421 struct sock *sk = skb->sk; 2422 unsigned int len = skb->truesize; 2423 bool free; 2424 2425 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2426 if (sock_flag(sk, SOCK_RCU_FREE) && 2427 sk->sk_write_space == sock_def_write_space) { 2428 rcu_read_lock(); 2429 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2430 sock_def_write_space_wfree(sk); 2431 rcu_read_unlock(); 2432 if (unlikely(free)) 2433 __sk_free(sk); 2434 return; 2435 } 2436 2437 /* 2438 * Keep a reference on sk_wmem_alloc, this will be released 2439 * after sk_write_space() call 2440 */ 2441 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2442 sk->sk_write_space(sk); 2443 len = 1; 2444 } 2445 /* 2446 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2447 * could not do because of in-flight packets 2448 */ 2449 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2450 __sk_free(sk); 2451 } 2452 EXPORT_SYMBOL(sock_wfree); 2453 2454 /* This variant of sock_wfree() is used by TCP, 2455 * since it sets SOCK_USE_WRITE_QUEUE. 2456 */ 2457 void __sock_wfree(struct sk_buff *skb) 2458 { 2459 struct sock *sk = skb->sk; 2460 2461 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2462 __sk_free(sk); 2463 } 2464 2465 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2466 { 2467 skb_orphan(skb); 2468 skb->sk = sk; 2469 #ifdef CONFIG_INET 2470 if (unlikely(!sk_fullsock(sk))) { 2471 skb->destructor = sock_edemux; 2472 sock_hold(sk); 2473 return; 2474 } 2475 #endif 2476 skb->destructor = sock_wfree; 2477 skb_set_hash_from_sk(skb, sk); 2478 /* 2479 * We used to take a refcount on sk, but following operation 2480 * is enough to guarantee sk_free() wont free this sock until 2481 * all in-flight packets are completed 2482 */ 2483 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2484 } 2485 EXPORT_SYMBOL(skb_set_owner_w); 2486 2487 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2488 { 2489 #ifdef CONFIG_TLS_DEVICE 2490 /* Drivers depend on in-order delivery for crypto offload, 2491 * partial orphan breaks out-of-order-OK logic. 2492 */ 2493 if (skb->decrypted) 2494 return false; 2495 #endif 2496 return (skb->destructor == sock_wfree || 2497 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2498 } 2499 2500 /* This helper is used by netem, as it can hold packets in its 2501 * delay queue. We want to allow the owner socket to send more 2502 * packets, as if they were already TX completed by a typical driver. 2503 * But we also want to keep skb->sk set because some packet schedulers 2504 * rely on it (sch_fq for example). 2505 */ 2506 void skb_orphan_partial(struct sk_buff *skb) 2507 { 2508 if (skb_is_tcp_pure_ack(skb)) 2509 return; 2510 2511 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2512 return; 2513 2514 skb_orphan(skb); 2515 } 2516 EXPORT_SYMBOL(skb_orphan_partial); 2517 2518 /* 2519 * Read buffer destructor automatically called from kfree_skb. 2520 */ 2521 void sock_rfree(struct sk_buff *skb) 2522 { 2523 struct sock *sk = skb->sk; 2524 unsigned int len = skb->truesize; 2525 2526 atomic_sub(len, &sk->sk_rmem_alloc); 2527 sk_mem_uncharge(sk, len); 2528 } 2529 EXPORT_SYMBOL(sock_rfree); 2530 2531 /* 2532 * Buffer destructor for skbs that are not used directly in read or write 2533 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2534 */ 2535 void sock_efree(struct sk_buff *skb) 2536 { 2537 sock_put(skb->sk); 2538 } 2539 EXPORT_SYMBOL(sock_efree); 2540 2541 /* Buffer destructor for prefetch/receive path where reference count may 2542 * not be held, e.g. for listen sockets. 2543 */ 2544 #ifdef CONFIG_INET 2545 void sock_pfree(struct sk_buff *skb) 2546 { 2547 if (sk_is_refcounted(skb->sk)) 2548 sock_gen_put(skb->sk); 2549 } 2550 EXPORT_SYMBOL(sock_pfree); 2551 #endif /* CONFIG_INET */ 2552 2553 kuid_t sock_i_uid(struct sock *sk) 2554 { 2555 kuid_t uid; 2556 2557 read_lock_bh(&sk->sk_callback_lock); 2558 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2559 read_unlock_bh(&sk->sk_callback_lock); 2560 return uid; 2561 } 2562 EXPORT_SYMBOL(sock_i_uid); 2563 2564 unsigned long sock_i_ino(struct sock *sk) 2565 { 2566 unsigned long ino; 2567 2568 read_lock_bh(&sk->sk_callback_lock); 2569 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2570 read_unlock_bh(&sk->sk_callback_lock); 2571 return ino; 2572 } 2573 EXPORT_SYMBOL(sock_i_ino); 2574 2575 /* 2576 * Allocate a skb from the socket's send buffer. 2577 */ 2578 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2579 gfp_t priority) 2580 { 2581 if (force || 2582 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2583 struct sk_buff *skb = alloc_skb(size, priority); 2584 2585 if (skb) { 2586 skb_set_owner_w(skb, sk); 2587 return skb; 2588 } 2589 } 2590 return NULL; 2591 } 2592 EXPORT_SYMBOL(sock_wmalloc); 2593 2594 static void sock_ofree(struct sk_buff *skb) 2595 { 2596 struct sock *sk = skb->sk; 2597 2598 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2599 } 2600 2601 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2602 gfp_t priority) 2603 { 2604 struct sk_buff *skb; 2605 2606 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2607 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2608 READ_ONCE(sysctl_optmem_max)) 2609 return NULL; 2610 2611 skb = alloc_skb(size, priority); 2612 if (!skb) 2613 return NULL; 2614 2615 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2616 skb->sk = sk; 2617 skb->destructor = sock_ofree; 2618 return skb; 2619 } 2620 2621 /* 2622 * Allocate a memory block from the socket's option memory buffer. 2623 */ 2624 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2625 { 2626 int optmem_max = READ_ONCE(sysctl_optmem_max); 2627 2628 if ((unsigned int)size <= optmem_max && 2629 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2630 void *mem; 2631 /* First do the add, to avoid the race if kmalloc 2632 * might sleep. 2633 */ 2634 atomic_add(size, &sk->sk_omem_alloc); 2635 mem = kmalloc(size, priority); 2636 if (mem) 2637 return mem; 2638 atomic_sub(size, &sk->sk_omem_alloc); 2639 } 2640 return NULL; 2641 } 2642 EXPORT_SYMBOL(sock_kmalloc); 2643 2644 /* Free an option memory block. Note, we actually want the inline 2645 * here as this allows gcc to detect the nullify and fold away the 2646 * condition entirely. 2647 */ 2648 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2649 const bool nullify) 2650 { 2651 if (WARN_ON_ONCE(!mem)) 2652 return; 2653 if (nullify) 2654 kfree_sensitive(mem); 2655 else 2656 kfree(mem); 2657 atomic_sub(size, &sk->sk_omem_alloc); 2658 } 2659 2660 void sock_kfree_s(struct sock *sk, void *mem, int size) 2661 { 2662 __sock_kfree_s(sk, mem, size, false); 2663 } 2664 EXPORT_SYMBOL(sock_kfree_s); 2665 2666 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2667 { 2668 __sock_kfree_s(sk, mem, size, true); 2669 } 2670 EXPORT_SYMBOL(sock_kzfree_s); 2671 2672 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2673 I think, these locks should be removed for datagram sockets. 2674 */ 2675 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2676 { 2677 DEFINE_WAIT(wait); 2678 2679 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2680 for (;;) { 2681 if (!timeo) 2682 break; 2683 if (signal_pending(current)) 2684 break; 2685 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2686 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2687 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2688 break; 2689 if (sk->sk_shutdown & SEND_SHUTDOWN) 2690 break; 2691 if (sk->sk_err) 2692 break; 2693 timeo = schedule_timeout(timeo); 2694 } 2695 finish_wait(sk_sleep(sk), &wait); 2696 return timeo; 2697 } 2698 2699 2700 /* 2701 * Generic send/receive buffer handlers 2702 */ 2703 2704 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2705 unsigned long data_len, int noblock, 2706 int *errcode, int max_page_order) 2707 { 2708 struct sk_buff *skb; 2709 long timeo; 2710 int err; 2711 2712 timeo = sock_sndtimeo(sk, noblock); 2713 for (;;) { 2714 err = sock_error(sk); 2715 if (err != 0) 2716 goto failure; 2717 2718 err = -EPIPE; 2719 if (sk->sk_shutdown & SEND_SHUTDOWN) 2720 goto failure; 2721 2722 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2723 break; 2724 2725 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2726 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2727 err = -EAGAIN; 2728 if (!timeo) 2729 goto failure; 2730 if (signal_pending(current)) 2731 goto interrupted; 2732 timeo = sock_wait_for_wmem(sk, timeo); 2733 } 2734 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2735 errcode, sk->sk_allocation); 2736 if (skb) 2737 skb_set_owner_w(skb, sk); 2738 return skb; 2739 2740 interrupted: 2741 err = sock_intr_errno(timeo); 2742 failure: 2743 *errcode = err; 2744 return NULL; 2745 } 2746 EXPORT_SYMBOL(sock_alloc_send_pskb); 2747 2748 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2749 struct sockcm_cookie *sockc) 2750 { 2751 u32 tsflags; 2752 2753 switch (cmsg->cmsg_type) { 2754 case SO_MARK: 2755 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2756 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2757 return -EPERM; 2758 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2759 return -EINVAL; 2760 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2761 break; 2762 case SO_TIMESTAMPING_OLD: 2763 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2764 return -EINVAL; 2765 2766 tsflags = *(u32 *)CMSG_DATA(cmsg); 2767 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2768 return -EINVAL; 2769 2770 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2771 sockc->tsflags |= tsflags; 2772 break; 2773 case SCM_TXTIME: 2774 if (!sock_flag(sk, SOCK_TXTIME)) 2775 return -EINVAL; 2776 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2777 return -EINVAL; 2778 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2779 break; 2780 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2781 case SCM_RIGHTS: 2782 case SCM_CREDENTIALS: 2783 break; 2784 default: 2785 return -EINVAL; 2786 } 2787 return 0; 2788 } 2789 EXPORT_SYMBOL(__sock_cmsg_send); 2790 2791 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2792 struct sockcm_cookie *sockc) 2793 { 2794 struct cmsghdr *cmsg; 2795 int ret; 2796 2797 for_each_cmsghdr(cmsg, msg) { 2798 if (!CMSG_OK(msg, cmsg)) 2799 return -EINVAL; 2800 if (cmsg->cmsg_level != SOL_SOCKET) 2801 continue; 2802 ret = __sock_cmsg_send(sk, cmsg, sockc); 2803 if (ret) 2804 return ret; 2805 } 2806 return 0; 2807 } 2808 EXPORT_SYMBOL(sock_cmsg_send); 2809 2810 static void sk_enter_memory_pressure(struct sock *sk) 2811 { 2812 if (!sk->sk_prot->enter_memory_pressure) 2813 return; 2814 2815 sk->sk_prot->enter_memory_pressure(sk); 2816 } 2817 2818 static void sk_leave_memory_pressure(struct sock *sk) 2819 { 2820 if (sk->sk_prot->leave_memory_pressure) { 2821 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2822 tcp_leave_memory_pressure, sk); 2823 } else { 2824 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2825 2826 if (memory_pressure && READ_ONCE(*memory_pressure)) 2827 WRITE_ONCE(*memory_pressure, 0); 2828 } 2829 } 2830 2831 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2832 2833 /** 2834 * skb_page_frag_refill - check that a page_frag contains enough room 2835 * @sz: minimum size of the fragment we want to get 2836 * @pfrag: pointer to page_frag 2837 * @gfp: priority for memory allocation 2838 * 2839 * Note: While this allocator tries to use high order pages, there is 2840 * no guarantee that allocations succeed. Therefore, @sz MUST be 2841 * less or equal than PAGE_SIZE. 2842 */ 2843 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2844 { 2845 if (pfrag->page) { 2846 if (page_ref_count(pfrag->page) == 1) { 2847 pfrag->offset = 0; 2848 return true; 2849 } 2850 if (pfrag->offset + sz <= pfrag->size) 2851 return true; 2852 put_page(pfrag->page); 2853 } 2854 2855 pfrag->offset = 0; 2856 if (SKB_FRAG_PAGE_ORDER && 2857 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2858 /* Avoid direct reclaim but allow kswapd to wake */ 2859 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2860 __GFP_COMP | __GFP_NOWARN | 2861 __GFP_NORETRY, 2862 SKB_FRAG_PAGE_ORDER); 2863 if (likely(pfrag->page)) { 2864 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2865 return true; 2866 } 2867 } 2868 pfrag->page = alloc_page(gfp); 2869 if (likely(pfrag->page)) { 2870 pfrag->size = PAGE_SIZE; 2871 return true; 2872 } 2873 return false; 2874 } 2875 EXPORT_SYMBOL(skb_page_frag_refill); 2876 2877 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2878 { 2879 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2880 return true; 2881 2882 sk_enter_memory_pressure(sk); 2883 sk_stream_moderate_sndbuf(sk); 2884 return false; 2885 } 2886 EXPORT_SYMBOL(sk_page_frag_refill); 2887 2888 void __lock_sock(struct sock *sk) 2889 __releases(&sk->sk_lock.slock) 2890 __acquires(&sk->sk_lock.slock) 2891 { 2892 DEFINE_WAIT(wait); 2893 2894 for (;;) { 2895 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2896 TASK_UNINTERRUPTIBLE); 2897 spin_unlock_bh(&sk->sk_lock.slock); 2898 schedule(); 2899 spin_lock_bh(&sk->sk_lock.slock); 2900 if (!sock_owned_by_user(sk)) 2901 break; 2902 } 2903 finish_wait(&sk->sk_lock.wq, &wait); 2904 } 2905 2906 void __release_sock(struct sock *sk) 2907 __releases(&sk->sk_lock.slock) 2908 __acquires(&sk->sk_lock.slock) 2909 { 2910 struct sk_buff *skb, *next; 2911 2912 while ((skb = sk->sk_backlog.head) != NULL) { 2913 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2914 2915 spin_unlock_bh(&sk->sk_lock.slock); 2916 2917 do { 2918 next = skb->next; 2919 prefetch(next); 2920 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2921 skb_mark_not_on_list(skb); 2922 sk_backlog_rcv(sk, skb); 2923 2924 cond_resched(); 2925 2926 skb = next; 2927 } while (skb != NULL); 2928 2929 spin_lock_bh(&sk->sk_lock.slock); 2930 } 2931 2932 /* 2933 * Doing the zeroing here guarantee we can not loop forever 2934 * while a wild producer attempts to flood us. 2935 */ 2936 sk->sk_backlog.len = 0; 2937 } 2938 2939 void __sk_flush_backlog(struct sock *sk) 2940 { 2941 spin_lock_bh(&sk->sk_lock.slock); 2942 __release_sock(sk); 2943 spin_unlock_bh(&sk->sk_lock.slock); 2944 } 2945 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2946 2947 /** 2948 * sk_wait_data - wait for data to arrive at sk_receive_queue 2949 * @sk: sock to wait on 2950 * @timeo: for how long 2951 * @skb: last skb seen on sk_receive_queue 2952 * 2953 * Now socket state including sk->sk_err is changed only under lock, 2954 * hence we may omit checks after joining wait queue. 2955 * We check receive queue before schedule() only as optimization; 2956 * it is very likely that release_sock() added new data. 2957 */ 2958 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2959 { 2960 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2961 int rc; 2962 2963 add_wait_queue(sk_sleep(sk), &wait); 2964 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2965 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2966 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2967 remove_wait_queue(sk_sleep(sk), &wait); 2968 return rc; 2969 } 2970 EXPORT_SYMBOL(sk_wait_data); 2971 2972 /** 2973 * __sk_mem_raise_allocated - increase memory_allocated 2974 * @sk: socket 2975 * @size: memory size to allocate 2976 * @amt: pages to allocate 2977 * @kind: allocation type 2978 * 2979 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2980 */ 2981 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2982 { 2983 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2984 struct proto *prot = sk->sk_prot; 2985 bool charged = true; 2986 long allocated; 2987 2988 sk_memory_allocated_add(sk, amt); 2989 allocated = sk_memory_allocated(sk); 2990 if (memcg_charge && 2991 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2992 gfp_memcg_charge()))) 2993 goto suppress_allocation; 2994 2995 /* Under limit. */ 2996 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2997 sk_leave_memory_pressure(sk); 2998 return 1; 2999 } 3000 3001 /* Under pressure. */ 3002 if (allocated > sk_prot_mem_limits(sk, 1)) 3003 sk_enter_memory_pressure(sk); 3004 3005 /* Over hard limit. */ 3006 if (allocated > sk_prot_mem_limits(sk, 2)) 3007 goto suppress_allocation; 3008 3009 /* guarantee minimum buffer size under pressure */ 3010 if (kind == SK_MEM_RECV) { 3011 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3012 return 1; 3013 3014 } else { /* SK_MEM_SEND */ 3015 int wmem0 = sk_get_wmem0(sk, prot); 3016 3017 if (sk->sk_type == SOCK_STREAM) { 3018 if (sk->sk_wmem_queued < wmem0) 3019 return 1; 3020 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3021 return 1; 3022 } 3023 } 3024 3025 if (sk_has_memory_pressure(sk)) { 3026 u64 alloc; 3027 3028 if (!sk_under_memory_pressure(sk)) 3029 return 1; 3030 alloc = sk_sockets_allocated_read_positive(sk); 3031 if (sk_prot_mem_limits(sk, 2) > alloc * 3032 sk_mem_pages(sk->sk_wmem_queued + 3033 atomic_read(&sk->sk_rmem_alloc) + 3034 sk->sk_forward_alloc)) 3035 return 1; 3036 } 3037 3038 suppress_allocation: 3039 3040 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3041 sk_stream_moderate_sndbuf(sk); 3042 3043 /* Fail only if socket is _under_ its sndbuf. 3044 * In this case we cannot block, so that we have to fail. 3045 */ 3046 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3047 /* Force charge with __GFP_NOFAIL */ 3048 if (memcg_charge && !charged) { 3049 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3050 gfp_memcg_charge() | __GFP_NOFAIL); 3051 } 3052 return 1; 3053 } 3054 } 3055 3056 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3057 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3058 3059 sk_memory_allocated_sub(sk, amt); 3060 3061 if (memcg_charge && charged) 3062 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3063 3064 return 0; 3065 } 3066 3067 /** 3068 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3069 * @sk: socket 3070 * @size: memory size to allocate 3071 * @kind: allocation type 3072 * 3073 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3074 * rmem allocation. This function assumes that protocols which have 3075 * memory_pressure use sk_wmem_queued as write buffer accounting. 3076 */ 3077 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3078 { 3079 int ret, amt = sk_mem_pages(size); 3080 3081 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3082 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3083 if (!ret) 3084 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3085 return ret; 3086 } 3087 EXPORT_SYMBOL(__sk_mem_schedule); 3088 3089 /** 3090 * __sk_mem_reduce_allocated - reclaim memory_allocated 3091 * @sk: socket 3092 * @amount: number of quanta 3093 * 3094 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3095 */ 3096 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3097 { 3098 sk_memory_allocated_sub(sk, amount); 3099 3100 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3101 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3102 3103 if (sk_under_memory_pressure(sk) && 3104 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3105 sk_leave_memory_pressure(sk); 3106 } 3107 3108 /** 3109 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3110 * @sk: socket 3111 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3112 */ 3113 void __sk_mem_reclaim(struct sock *sk, int amount) 3114 { 3115 amount >>= PAGE_SHIFT; 3116 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3117 __sk_mem_reduce_allocated(sk, amount); 3118 } 3119 EXPORT_SYMBOL(__sk_mem_reclaim); 3120 3121 int sk_set_peek_off(struct sock *sk, int val) 3122 { 3123 sk->sk_peek_off = val; 3124 return 0; 3125 } 3126 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3127 3128 /* 3129 * Set of default routines for initialising struct proto_ops when 3130 * the protocol does not support a particular function. In certain 3131 * cases where it makes no sense for a protocol to have a "do nothing" 3132 * function, some default processing is provided. 3133 */ 3134 3135 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3136 { 3137 return -EOPNOTSUPP; 3138 } 3139 EXPORT_SYMBOL(sock_no_bind); 3140 3141 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3142 int len, int flags) 3143 { 3144 return -EOPNOTSUPP; 3145 } 3146 EXPORT_SYMBOL(sock_no_connect); 3147 3148 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3149 { 3150 return -EOPNOTSUPP; 3151 } 3152 EXPORT_SYMBOL(sock_no_socketpair); 3153 3154 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3155 bool kern) 3156 { 3157 return -EOPNOTSUPP; 3158 } 3159 EXPORT_SYMBOL(sock_no_accept); 3160 3161 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3162 int peer) 3163 { 3164 return -EOPNOTSUPP; 3165 } 3166 EXPORT_SYMBOL(sock_no_getname); 3167 3168 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3169 { 3170 return -EOPNOTSUPP; 3171 } 3172 EXPORT_SYMBOL(sock_no_ioctl); 3173 3174 int sock_no_listen(struct socket *sock, int backlog) 3175 { 3176 return -EOPNOTSUPP; 3177 } 3178 EXPORT_SYMBOL(sock_no_listen); 3179 3180 int sock_no_shutdown(struct socket *sock, int how) 3181 { 3182 return -EOPNOTSUPP; 3183 } 3184 EXPORT_SYMBOL(sock_no_shutdown); 3185 3186 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3187 { 3188 return -EOPNOTSUPP; 3189 } 3190 EXPORT_SYMBOL(sock_no_sendmsg); 3191 3192 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3193 { 3194 return -EOPNOTSUPP; 3195 } 3196 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3197 3198 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3199 int flags) 3200 { 3201 return -EOPNOTSUPP; 3202 } 3203 EXPORT_SYMBOL(sock_no_recvmsg); 3204 3205 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3206 { 3207 /* Mirror missing mmap method error code */ 3208 return -ENODEV; 3209 } 3210 EXPORT_SYMBOL(sock_no_mmap); 3211 3212 /* 3213 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3214 * various sock-based usage counts. 3215 */ 3216 void __receive_sock(struct file *file) 3217 { 3218 struct socket *sock; 3219 3220 sock = sock_from_file(file); 3221 if (sock) { 3222 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3223 sock_update_classid(&sock->sk->sk_cgrp_data); 3224 } 3225 } 3226 3227 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3228 { 3229 ssize_t res; 3230 struct msghdr msg = {.msg_flags = flags}; 3231 struct kvec iov; 3232 char *kaddr = kmap(page); 3233 iov.iov_base = kaddr + offset; 3234 iov.iov_len = size; 3235 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3236 kunmap(page); 3237 return res; 3238 } 3239 EXPORT_SYMBOL(sock_no_sendpage); 3240 3241 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3242 int offset, size_t size, int flags) 3243 { 3244 ssize_t res; 3245 struct msghdr msg = {.msg_flags = flags}; 3246 struct kvec iov; 3247 char *kaddr = kmap(page); 3248 3249 iov.iov_base = kaddr + offset; 3250 iov.iov_len = size; 3251 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3252 kunmap(page); 3253 return res; 3254 } 3255 EXPORT_SYMBOL(sock_no_sendpage_locked); 3256 3257 /* 3258 * Default Socket Callbacks 3259 */ 3260 3261 static void sock_def_wakeup(struct sock *sk) 3262 { 3263 struct socket_wq *wq; 3264 3265 rcu_read_lock(); 3266 wq = rcu_dereference(sk->sk_wq); 3267 if (skwq_has_sleeper(wq)) 3268 wake_up_interruptible_all(&wq->wait); 3269 rcu_read_unlock(); 3270 } 3271 3272 static void sock_def_error_report(struct sock *sk) 3273 { 3274 struct socket_wq *wq; 3275 3276 rcu_read_lock(); 3277 wq = rcu_dereference(sk->sk_wq); 3278 if (skwq_has_sleeper(wq)) 3279 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3280 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3281 rcu_read_unlock(); 3282 } 3283 3284 void sock_def_readable(struct sock *sk) 3285 { 3286 struct socket_wq *wq; 3287 3288 trace_sk_data_ready(sk); 3289 3290 rcu_read_lock(); 3291 wq = rcu_dereference(sk->sk_wq); 3292 if (skwq_has_sleeper(wq)) 3293 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3294 EPOLLRDNORM | EPOLLRDBAND); 3295 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3296 rcu_read_unlock(); 3297 } 3298 3299 static void sock_def_write_space(struct sock *sk) 3300 { 3301 struct socket_wq *wq; 3302 3303 rcu_read_lock(); 3304 3305 /* Do not wake up a writer until he can make "significant" 3306 * progress. --DaveM 3307 */ 3308 if (sock_writeable(sk)) { 3309 wq = rcu_dereference(sk->sk_wq); 3310 if (skwq_has_sleeper(wq)) 3311 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3312 EPOLLWRNORM | EPOLLWRBAND); 3313 3314 /* Should agree with poll, otherwise some programs break */ 3315 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3316 } 3317 3318 rcu_read_unlock(); 3319 } 3320 3321 /* An optimised version of sock_def_write_space(), should only be called 3322 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3323 * ->sk_wmem_alloc. 3324 */ 3325 static void sock_def_write_space_wfree(struct sock *sk) 3326 { 3327 /* Do not wake up a writer until he can make "significant" 3328 * progress. --DaveM 3329 */ 3330 if (sock_writeable(sk)) { 3331 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3332 3333 /* rely on refcount_sub from sock_wfree() */ 3334 smp_mb__after_atomic(); 3335 if (wq && waitqueue_active(&wq->wait)) 3336 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3337 EPOLLWRNORM | EPOLLWRBAND); 3338 3339 /* Should agree with poll, otherwise some programs break */ 3340 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3341 } 3342 } 3343 3344 static void sock_def_destruct(struct sock *sk) 3345 { 3346 } 3347 3348 void sk_send_sigurg(struct sock *sk) 3349 { 3350 if (sk->sk_socket && sk->sk_socket->file) 3351 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3352 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3353 } 3354 EXPORT_SYMBOL(sk_send_sigurg); 3355 3356 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3357 unsigned long expires) 3358 { 3359 if (!mod_timer(timer, expires)) 3360 sock_hold(sk); 3361 } 3362 EXPORT_SYMBOL(sk_reset_timer); 3363 3364 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3365 { 3366 if (del_timer(timer)) 3367 __sock_put(sk); 3368 } 3369 EXPORT_SYMBOL(sk_stop_timer); 3370 3371 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3372 { 3373 if (del_timer_sync(timer)) 3374 __sock_put(sk); 3375 } 3376 EXPORT_SYMBOL(sk_stop_timer_sync); 3377 3378 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3379 { 3380 sk_init_common(sk); 3381 sk->sk_send_head = NULL; 3382 3383 timer_setup(&sk->sk_timer, NULL, 0); 3384 3385 sk->sk_allocation = GFP_KERNEL; 3386 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3387 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3388 sk->sk_state = TCP_CLOSE; 3389 sk->sk_use_task_frag = true; 3390 sk_set_socket(sk, sock); 3391 3392 sock_set_flag(sk, SOCK_ZAPPED); 3393 3394 if (sock) { 3395 sk->sk_type = sock->type; 3396 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3397 sock->sk = sk; 3398 } else { 3399 RCU_INIT_POINTER(sk->sk_wq, NULL); 3400 } 3401 sk->sk_uid = uid; 3402 3403 rwlock_init(&sk->sk_callback_lock); 3404 if (sk->sk_kern_sock) 3405 lockdep_set_class_and_name( 3406 &sk->sk_callback_lock, 3407 af_kern_callback_keys + sk->sk_family, 3408 af_family_kern_clock_key_strings[sk->sk_family]); 3409 else 3410 lockdep_set_class_and_name( 3411 &sk->sk_callback_lock, 3412 af_callback_keys + sk->sk_family, 3413 af_family_clock_key_strings[sk->sk_family]); 3414 3415 sk->sk_state_change = sock_def_wakeup; 3416 sk->sk_data_ready = sock_def_readable; 3417 sk->sk_write_space = sock_def_write_space; 3418 sk->sk_error_report = sock_def_error_report; 3419 sk->sk_destruct = sock_def_destruct; 3420 3421 sk->sk_frag.page = NULL; 3422 sk->sk_frag.offset = 0; 3423 sk->sk_peek_off = -1; 3424 3425 sk->sk_peer_pid = NULL; 3426 sk->sk_peer_cred = NULL; 3427 spin_lock_init(&sk->sk_peer_lock); 3428 3429 sk->sk_write_pending = 0; 3430 sk->sk_rcvlowat = 1; 3431 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3432 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3433 3434 sk->sk_stamp = SK_DEFAULT_STAMP; 3435 #if BITS_PER_LONG==32 3436 seqlock_init(&sk->sk_stamp_seq); 3437 #endif 3438 atomic_set(&sk->sk_zckey, 0); 3439 3440 #ifdef CONFIG_NET_RX_BUSY_POLL 3441 sk->sk_napi_id = 0; 3442 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3443 #endif 3444 3445 sk->sk_max_pacing_rate = ~0UL; 3446 sk->sk_pacing_rate = ~0UL; 3447 WRITE_ONCE(sk->sk_pacing_shift, 10); 3448 sk->sk_incoming_cpu = -1; 3449 3450 sk_rx_queue_clear(sk); 3451 /* 3452 * Before updating sk_refcnt, we must commit prior changes to memory 3453 * (Documentation/RCU/rculist_nulls.rst for details) 3454 */ 3455 smp_wmb(); 3456 refcount_set(&sk->sk_refcnt, 1); 3457 atomic_set(&sk->sk_drops, 0); 3458 } 3459 EXPORT_SYMBOL(sock_init_data_uid); 3460 3461 void sock_init_data(struct socket *sock, struct sock *sk) 3462 { 3463 kuid_t uid = sock ? 3464 SOCK_INODE(sock)->i_uid : 3465 make_kuid(sock_net(sk)->user_ns, 0); 3466 3467 sock_init_data_uid(sock, sk, uid); 3468 } 3469 EXPORT_SYMBOL(sock_init_data); 3470 3471 void lock_sock_nested(struct sock *sk, int subclass) 3472 { 3473 /* The sk_lock has mutex_lock() semantics here. */ 3474 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3475 3476 might_sleep(); 3477 spin_lock_bh(&sk->sk_lock.slock); 3478 if (sock_owned_by_user_nocheck(sk)) 3479 __lock_sock(sk); 3480 sk->sk_lock.owned = 1; 3481 spin_unlock_bh(&sk->sk_lock.slock); 3482 } 3483 EXPORT_SYMBOL(lock_sock_nested); 3484 3485 void release_sock(struct sock *sk) 3486 { 3487 spin_lock_bh(&sk->sk_lock.slock); 3488 if (sk->sk_backlog.tail) 3489 __release_sock(sk); 3490 3491 /* Warning : release_cb() might need to release sk ownership, 3492 * ie call sock_release_ownership(sk) before us. 3493 */ 3494 if (sk->sk_prot->release_cb) 3495 sk->sk_prot->release_cb(sk); 3496 3497 sock_release_ownership(sk); 3498 if (waitqueue_active(&sk->sk_lock.wq)) 3499 wake_up(&sk->sk_lock.wq); 3500 spin_unlock_bh(&sk->sk_lock.slock); 3501 } 3502 EXPORT_SYMBOL(release_sock); 3503 3504 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3505 { 3506 might_sleep(); 3507 spin_lock_bh(&sk->sk_lock.slock); 3508 3509 if (!sock_owned_by_user_nocheck(sk)) { 3510 /* 3511 * Fast path return with bottom halves disabled and 3512 * sock::sk_lock.slock held. 3513 * 3514 * The 'mutex' is not contended and holding 3515 * sock::sk_lock.slock prevents all other lockers to 3516 * proceed so the corresponding unlock_sock_fast() can 3517 * avoid the slow path of release_sock() completely and 3518 * just release slock. 3519 * 3520 * From a semantical POV this is equivalent to 'acquiring' 3521 * the 'mutex', hence the corresponding lockdep 3522 * mutex_release() has to happen in the fast path of 3523 * unlock_sock_fast(). 3524 */ 3525 return false; 3526 } 3527 3528 __lock_sock(sk); 3529 sk->sk_lock.owned = 1; 3530 __acquire(&sk->sk_lock.slock); 3531 spin_unlock_bh(&sk->sk_lock.slock); 3532 return true; 3533 } 3534 EXPORT_SYMBOL(__lock_sock_fast); 3535 3536 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3537 bool timeval, bool time32) 3538 { 3539 struct sock *sk = sock->sk; 3540 struct timespec64 ts; 3541 3542 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3543 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3544 if (ts.tv_sec == -1) 3545 return -ENOENT; 3546 if (ts.tv_sec == 0) { 3547 ktime_t kt = ktime_get_real(); 3548 sock_write_timestamp(sk, kt); 3549 ts = ktime_to_timespec64(kt); 3550 } 3551 3552 if (timeval) 3553 ts.tv_nsec /= 1000; 3554 3555 #ifdef CONFIG_COMPAT_32BIT_TIME 3556 if (time32) 3557 return put_old_timespec32(&ts, userstamp); 3558 #endif 3559 #ifdef CONFIG_SPARC64 3560 /* beware of padding in sparc64 timeval */ 3561 if (timeval && !in_compat_syscall()) { 3562 struct __kernel_old_timeval __user tv = { 3563 .tv_sec = ts.tv_sec, 3564 .tv_usec = ts.tv_nsec, 3565 }; 3566 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3567 return -EFAULT; 3568 return 0; 3569 } 3570 #endif 3571 return put_timespec64(&ts, userstamp); 3572 } 3573 EXPORT_SYMBOL(sock_gettstamp); 3574 3575 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3576 { 3577 if (!sock_flag(sk, flag)) { 3578 unsigned long previous_flags = sk->sk_flags; 3579 3580 sock_set_flag(sk, flag); 3581 /* 3582 * we just set one of the two flags which require net 3583 * time stamping, but time stamping might have been on 3584 * already because of the other one 3585 */ 3586 if (sock_needs_netstamp(sk) && 3587 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3588 net_enable_timestamp(); 3589 } 3590 } 3591 3592 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3593 int level, int type) 3594 { 3595 struct sock_exterr_skb *serr; 3596 struct sk_buff *skb; 3597 int copied, err; 3598 3599 err = -EAGAIN; 3600 skb = sock_dequeue_err_skb(sk); 3601 if (skb == NULL) 3602 goto out; 3603 3604 copied = skb->len; 3605 if (copied > len) { 3606 msg->msg_flags |= MSG_TRUNC; 3607 copied = len; 3608 } 3609 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3610 if (err) 3611 goto out_free_skb; 3612 3613 sock_recv_timestamp(msg, sk, skb); 3614 3615 serr = SKB_EXT_ERR(skb); 3616 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3617 3618 msg->msg_flags |= MSG_ERRQUEUE; 3619 err = copied; 3620 3621 out_free_skb: 3622 kfree_skb(skb); 3623 out: 3624 return err; 3625 } 3626 EXPORT_SYMBOL(sock_recv_errqueue); 3627 3628 /* 3629 * Get a socket option on an socket. 3630 * 3631 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3632 * asynchronous errors should be reported by getsockopt. We assume 3633 * this means if you specify SO_ERROR (otherwise whats the point of it). 3634 */ 3635 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3636 char __user *optval, int __user *optlen) 3637 { 3638 struct sock *sk = sock->sk; 3639 3640 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3641 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3642 } 3643 EXPORT_SYMBOL(sock_common_getsockopt); 3644 3645 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3646 int flags) 3647 { 3648 struct sock *sk = sock->sk; 3649 int addr_len = 0; 3650 int err; 3651 3652 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3653 if (err >= 0) 3654 msg->msg_namelen = addr_len; 3655 return err; 3656 } 3657 EXPORT_SYMBOL(sock_common_recvmsg); 3658 3659 /* 3660 * Set socket options on an inet socket. 3661 */ 3662 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3663 sockptr_t optval, unsigned int optlen) 3664 { 3665 struct sock *sk = sock->sk; 3666 3667 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3668 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3669 } 3670 EXPORT_SYMBOL(sock_common_setsockopt); 3671 3672 void sk_common_release(struct sock *sk) 3673 { 3674 if (sk->sk_prot->destroy) 3675 sk->sk_prot->destroy(sk); 3676 3677 /* 3678 * Observation: when sk_common_release is called, processes have 3679 * no access to socket. But net still has. 3680 * Step one, detach it from networking: 3681 * 3682 * A. Remove from hash tables. 3683 */ 3684 3685 sk->sk_prot->unhash(sk); 3686 3687 /* 3688 * In this point socket cannot receive new packets, but it is possible 3689 * that some packets are in flight because some CPU runs receiver and 3690 * did hash table lookup before we unhashed socket. They will achieve 3691 * receive queue and will be purged by socket destructor. 3692 * 3693 * Also we still have packets pending on receive queue and probably, 3694 * our own packets waiting in device queues. sock_destroy will drain 3695 * receive queue, but transmitted packets will delay socket destruction 3696 * until the last reference will be released. 3697 */ 3698 3699 sock_orphan(sk); 3700 3701 xfrm_sk_free_policy(sk); 3702 3703 sock_put(sk); 3704 } 3705 EXPORT_SYMBOL(sk_common_release); 3706 3707 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3708 { 3709 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3710 3711 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3712 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3713 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3714 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3715 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3716 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3717 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3718 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3719 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3720 } 3721 3722 #ifdef CONFIG_PROC_FS 3723 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3724 3725 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3726 { 3727 int cpu, idx = prot->inuse_idx; 3728 int res = 0; 3729 3730 for_each_possible_cpu(cpu) 3731 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3732 3733 return res >= 0 ? res : 0; 3734 } 3735 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3736 3737 int sock_inuse_get(struct net *net) 3738 { 3739 int cpu, res = 0; 3740 3741 for_each_possible_cpu(cpu) 3742 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3743 3744 return res; 3745 } 3746 3747 EXPORT_SYMBOL_GPL(sock_inuse_get); 3748 3749 static int __net_init sock_inuse_init_net(struct net *net) 3750 { 3751 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3752 if (net->core.prot_inuse == NULL) 3753 return -ENOMEM; 3754 return 0; 3755 } 3756 3757 static void __net_exit sock_inuse_exit_net(struct net *net) 3758 { 3759 free_percpu(net->core.prot_inuse); 3760 } 3761 3762 static struct pernet_operations net_inuse_ops = { 3763 .init = sock_inuse_init_net, 3764 .exit = sock_inuse_exit_net, 3765 }; 3766 3767 static __init int net_inuse_init(void) 3768 { 3769 if (register_pernet_subsys(&net_inuse_ops)) 3770 panic("Cannot initialize net inuse counters"); 3771 3772 return 0; 3773 } 3774 3775 core_initcall(net_inuse_init); 3776 3777 static int assign_proto_idx(struct proto *prot) 3778 { 3779 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3780 3781 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3782 pr_err("PROTO_INUSE_NR exhausted\n"); 3783 return -ENOSPC; 3784 } 3785 3786 set_bit(prot->inuse_idx, proto_inuse_idx); 3787 return 0; 3788 } 3789 3790 static void release_proto_idx(struct proto *prot) 3791 { 3792 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3793 clear_bit(prot->inuse_idx, proto_inuse_idx); 3794 } 3795 #else 3796 static inline int assign_proto_idx(struct proto *prot) 3797 { 3798 return 0; 3799 } 3800 3801 static inline void release_proto_idx(struct proto *prot) 3802 { 3803 } 3804 3805 #endif 3806 3807 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3808 { 3809 if (!twsk_prot) 3810 return; 3811 kfree(twsk_prot->twsk_slab_name); 3812 twsk_prot->twsk_slab_name = NULL; 3813 kmem_cache_destroy(twsk_prot->twsk_slab); 3814 twsk_prot->twsk_slab = NULL; 3815 } 3816 3817 static int tw_prot_init(const struct proto *prot) 3818 { 3819 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3820 3821 if (!twsk_prot) 3822 return 0; 3823 3824 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3825 prot->name); 3826 if (!twsk_prot->twsk_slab_name) 3827 return -ENOMEM; 3828 3829 twsk_prot->twsk_slab = 3830 kmem_cache_create(twsk_prot->twsk_slab_name, 3831 twsk_prot->twsk_obj_size, 0, 3832 SLAB_ACCOUNT | prot->slab_flags, 3833 NULL); 3834 if (!twsk_prot->twsk_slab) { 3835 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3836 prot->name); 3837 return -ENOMEM; 3838 } 3839 3840 return 0; 3841 } 3842 3843 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3844 { 3845 if (!rsk_prot) 3846 return; 3847 kfree(rsk_prot->slab_name); 3848 rsk_prot->slab_name = NULL; 3849 kmem_cache_destroy(rsk_prot->slab); 3850 rsk_prot->slab = NULL; 3851 } 3852 3853 static int req_prot_init(const struct proto *prot) 3854 { 3855 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3856 3857 if (!rsk_prot) 3858 return 0; 3859 3860 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3861 prot->name); 3862 if (!rsk_prot->slab_name) 3863 return -ENOMEM; 3864 3865 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3866 rsk_prot->obj_size, 0, 3867 SLAB_ACCOUNT | prot->slab_flags, 3868 NULL); 3869 3870 if (!rsk_prot->slab) { 3871 pr_crit("%s: Can't create request sock SLAB cache!\n", 3872 prot->name); 3873 return -ENOMEM; 3874 } 3875 return 0; 3876 } 3877 3878 int proto_register(struct proto *prot, int alloc_slab) 3879 { 3880 int ret = -ENOBUFS; 3881 3882 if (prot->memory_allocated && !prot->sysctl_mem) { 3883 pr_err("%s: missing sysctl_mem\n", prot->name); 3884 return -EINVAL; 3885 } 3886 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3887 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3888 return -EINVAL; 3889 } 3890 if (alloc_slab) { 3891 prot->slab = kmem_cache_create_usercopy(prot->name, 3892 prot->obj_size, 0, 3893 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3894 prot->slab_flags, 3895 prot->useroffset, prot->usersize, 3896 NULL); 3897 3898 if (prot->slab == NULL) { 3899 pr_crit("%s: Can't create sock SLAB cache!\n", 3900 prot->name); 3901 goto out; 3902 } 3903 3904 if (req_prot_init(prot)) 3905 goto out_free_request_sock_slab; 3906 3907 if (tw_prot_init(prot)) 3908 goto out_free_timewait_sock_slab; 3909 } 3910 3911 mutex_lock(&proto_list_mutex); 3912 ret = assign_proto_idx(prot); 3913 if (ret) { 3914 mutex_unlock(&proto_list_mutex); 3915 goto out_free_timewait_sock_slab; 3916 } 3917 list_add(&prot->node, &proto_list); 3918 mutex_unlock(&proto_list_mutex); 3919 return ret; 3920 3921 out_free_timewait_sock_slab: 3922 if (alloc_slab) 3923 tw_prot_cleanup(prot->twsk_prot); 3924 out_free_request_sock_slab: 3925 if (alloc_slab) { 3926 req_prot_cleanup(prot->rsk_prot); 3927 3928 kmem_cache_destroy(prot->slab); 3929 prot->slab = NULL; 3930 } 3931 out: 3932 return ret; 3933 } 3934 EXPORT_SYMBOL(proto_register); 3935 3936 void proto_unregister(struct proto *prot) 3937 { 3938 mutex_lock(&proto_list_mutex); 3939 release_proto_idx(prot); 3940 list_del(&prot->node); 3941 mutex_unlock(&proto_list_mutex); 3942 3943 kmem_cache_destroy(prot->slab); 3944 prot->slab = NULL; 3945 3946 req_prot_cleanup(prot->rsk_prot); 3947 tw_prot_cleanup(prot->twsk_prot); 3948 } 3949 EXPORT_SYMBOL(proto_unregister); 3950 3951 int sock_load_diag_module(int family, int protocol) 3952 { 3953 if (!protocol) { 3954 if (!sock_is_registered(family)) 3955 return -ENOENT; 3956 3957 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3958 NETLINK_SOCK_DIAG, family); 3959 } 3960 3961 #ifdef CONFIG_INET 3962 if (family == AF_INET && 3963 protocol != IPPROTO_RAW && 3964 protocol < MAX_INET_PROTOS && 3965 !rcu_access_pointer(inet_protos[protocol])) 3966 return -ENOENT; 3967 #endif 3968 3969 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3970 NETLINK_SOCK_DIAG, family, protocol); 3971 } 3972 EXPORT_SYMBOL(sock_load_diag_module); 3973 3974 #ifdef CONFIG_PROC_FS 3975 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3976 __acquires(proto_list_mutex) 3977 { 3978 mutex_lock(&proto_list_mutex); 3979 return seq_list_start_head(&proto_list, *pos); 3980 } 3981 3982 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3983 { 3984 return seq_list_next(v, &proto_list, pos); 3985 } 3986 3987 static void proto_seq_stop(struct seq_file *seq, void *v) 3988 __releases(proto_list_mutex) 3989 { 3990 mutex_unlock(&proto_list_mutex); 3991 } 3992 3993 static char proto_method_implemented(const void *method) 3994 { 3995 return method == NULL ? 'n' : 'y'; 3996 } 3997 static long sock_prot_memory_allocated(struct proto *proto) 3998 { 3999 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4000 } 4001 4002 static const char *sock_prot_memory_pressure(struct proto *proto) 4003 { 4004 return proto->memory_pressure != NULL ? 4005 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4006 } 4007 4008 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4009 { 4010 4011 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4012 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4013 proto->name, 4014 proto->obj_size, 4015 sock_prot_inuse_get(seq_file_net(seq), proto), 4016 sock_prot_memory_allocated(proto), 4017 sock_prot_memory_pressure(proto), 4018 proto->max_header, 4019 proto->slab == NULL ? "no" : "yes", 4020 module_name(proto->owner), 4021 proto_method_implemented(proto->close), 4022 proto_method_implemented(proto->connect), 4023 proto_method_implemented(proto->disconnect), 4024 proto_method_implemented(proto->accept), 4025 proto_method_implemented(proto->ioctl), 4026 proto_method_implemented(proto->init), 4027 proto_method_implemented(proto->destroy), 4028 proto_method_implemented(proto->shutdown), 4029 proto_method_implemented(proto->setsockopt), 4030 proto_method_implemented(proto->getsockopt), 4031 proto_method_implemented(proto->sendmsg), 4032 proto_method_implemented(proto->recvmsg), 4033 proto_method_implemented(proto->sendpage), 4034 proto_method_implemented(proto->bind), 4035 proto_method_implemented(proto->backlog_rcv), 4036 proto_method_implemented(proto->hash), 4037 proto_method_implemented(proto->unhash), 4038 proto_method_implemented(proto->get_port), 4039 proto_method_implemented(proto->enter_memory_pressure)); 4040 } 4041 4042 static int proto_seq_show(struct seq_file *seq, void *v) 4043 { 4044 if (v == &proto_list) 4045 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4046 "protocol", 4047 "size", 4048 "sockets", 4049 "memory", 4050 "press", 4051 "maxhdr", 4052 "slab", 4053 "module", 4054 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 4055 else 4056 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4057 return 0; 4058 } 4059 4060 static const struct seq_operations proto_seq_ops = { 4061 .start = proto_seq_start, 4062 .next = proto_seq_next, 4063 .stop = proto_seq_stop, 4064 .show = proto_seq_show, 4065 }; 4066 4067 static __net_init int proto_init_net(struct net *net) 4068 { 4069 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4070 sizeof(struct seq_net_private))) 4071 return -ENOMEM; 4072 4073 return 0; 4074 } 4075 4076 static __net_exit void proto_exit_net(struct net *net) 4077 { 4078 remove_proc_entry("protocols", net->proc_net); 4079 } 4080 4081 4082 static __net_initdata struct pernet_operations proto_net_ops = { 4083 .init = proto_init_net, 4084 .exit = proto_exit_net, 4085 }; 4086 4087 static int __init proto_init(void) 4088 { 4089 return register_pernet_subsys(&proto_net_ops); 4090 } 4091 4092 subsys_initcall(proto_init); 4093 4094 #endif /* PROC_FS */ 4095 4096 #ifdef CONFIG_NET_RX_BUSY_POLL 4097 bool sk_busy_loop_end(void *p, unsigned long start_time) 4098 { 4099 struct sock *sk = p; 4100 4101 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4102 sk_busy_loop_timeout(sk, start_time); 4103 } 4104 EXPORT_SYMBOL(sk_busy_loop_end); 4105 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4106 4107 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4108 { 4109 if (!sk->sk_prot->bind_add) 4110 return -EOPNOTSUPP; 4111 return sk->sk_prot->bind_add(sk, addr, addr_len); 4112 } 4113 EXPORT_SYMBOL(sock_bind_add); 4114