1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #include <linux/capability.h> 93 #include <linux/errno.h> 94 #include <linux/types.h> 95 #include <linux/socket.h> 96 #include <linux/in.h> 97 #include <linux/kernel.h> 98 #include <linux/module.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/sched.h> 102 #include <linux/timer.h> 103 #include <linux/string.h> 104 #include <linux/sockios.h> 105 #include <linux/net.h> 106 #include <linux/mm.h> 107 #include <linux/slab.h> 108 #include <linux/interrupt.h> 109 #include <linux/poll.h> 110 #include <linux/tcp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 114 #include <asm/uaccess.h> 115 #include <asm/system.h> 116 117 #include <linux/netdevice.h> 118 #include <net/protocol.h> 119 #include <linux/skbuff.h> 120 #include <net/net_namespace.h> 121 #include <net/request_sock.h> 122 #include <net/sock.h> 123 #include <net/xfrm.h> 124 #include <linux/ipsec.h> 125 126 #include <linux/filter.h> 127 128 #ifdef CONFIG_INET 129 #include <net/tcp.h> 130 #endif 131 132 /* 133 * Each address family might have different locking rules, so we have 134 * one slock key per address family: 135 */ 136 static struct lock_class_key af_family_keys[AF_MAX]; 137 static struct lock_class_key af_family_slock_keys[AF_MAX]; 138 139 #ifdef CONFIG_DEBUG_LOCK_ALLOC 140 /* 141 * Make lock validator output more readable. (we pre-construct these 142 * strings build-time, so that runtime initialization of socket 143 * locks is fast): 144 */ 145 static const char *af_family_key_strings[AF_MAX+1] = { 146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 153 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 157 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX" 158 }; 159 static const char *af_family_slock_key_strings[AF_MAX+1] = { 160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" , 168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 169 "slock-27" , "slock-28" , "slock-AF_CAN" , 170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 171 "slock-AF_RXRPC" , "slock-AF_MAX" 172 }; 173 static const char *af_family_clock_key_strings[AF_MAX+1] = { 174 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 175 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 176 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 177 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 178 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 179 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 180 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 181 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" , 182 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 183 "clock-27" , "clock-28" , "clock-AF_CAN" , 184 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 185 "clock-AF_RXRPC" , "clock-AF_MAX" 186 }; 187 #endif 188 189 /* 190 * sk_callback_lock locking rules are per-address-family, 191 * so split the lock classes by using a per-AF key: 192 */ 193 static struct lock_class_key af_callback_keys[AF_MAX]; 194 195 /* Take into consideration the size of the struct sk_buff overhead in the 196 * determination of these values, since that is non-constant across 197 * platforms. This makes socket queueing behavior and performance 198 * not depend upon such differences. 199 */ 200 #define _SK_MEM_PACKETS 256 201 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 202 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 203 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 204 205 /* Run time adjustable parameters. */ 206 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 207 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 208 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 209 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 210 211 /* Maximal space eaten by iovec or ancilliary data plus some space */ 212 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 213 214 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 215 { 216 struct timeval tv; 217 218 if (optlen < sizeof(tv)) 219 return -EINVAL; 220 if (copy_from_user(&tv, optval, sizeof(tv))) 221 return -EFAULT; 222 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 223 return -EDOM; 224 225 if (tv.tv_sec < 0) { 226 static int warned __read_mostly; 227 228 *timeo_p = 0; 229 if (warned < 10 && net_ratelimit()) { 230 warned++; 231 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " 232 "tries to set negative timeout\n", 233 current->comm, task_pid_nr(current)); 234 } 235 return 0; 236 } 237 *timeo_p = MAX_SCHEDULE_TIMEOUT; 238 if (tv.tv_sec == 0 && tv.tv_usec == 0) 239 return 0; 240 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 241 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 242 return 0; 243 } 244 245 static void sock_warn_obsolete_bsdism(const char *name) 246 { 247 static int warned; 248 static char warncomm[TASK_COMM_LEN]; 249 if (strcmp(warncomm, current->comm) && warned < 5) { 250 strcpy(warncomm, current->comm); 251 printk(KERN_WARNING "process `%s' is using obsolete " 252 "%s SO_BSDCOMPAT\n", warncomm, name); 253 warned++; 254 } 255 } 256 257 static void sock_disable_timestamp(struct sock *sk) 258 { 259 if (sock_flag(sk, SOCK_TIMESTAMP)) { 260 sock_reset_flag(sk, SOCK_TIMESTAMP); 261 net_disable_timestamp(); 262 } 263 } 264 265 266 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 267 { 268 int err = 0; 269 int skb_len; 270 271 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces 272 number of warnings when compiling with -W --ANK 273 */ 274 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 275 (unsigned)sk->sk_rcvbuf) { 276 err = -ENOMEM; 277 goto out; 278 } 279 280 err = sk_filter(sk, skb); 281 if (err) 282 goto out; 283 284 if (!sk_rmem_schedule(sk, skb->truesize)) { 285 err = -ENOBUFS; 286 goto out; 287 } 288 289 skb->dev = NULL; 290 skb_set_owner_r(skb, sk); 291 292 /* Cache the SKB length before we tack it onto the receive 293 * queue. Once it is added it no longer belongs to us and 294 * may be freed by other threads of control pulling packets 295 * from the queue. 296 */ 297 skb_len = skb->len; 298 299 skb_queue_tail(&sk->sk_receive_queue, skb); 300 301 if (!sock_flag(sk, SOCK_DEAD)) 302 sk->sk_data_ready(sk, skb_len); 303 out: 304 return err; 305 } 306 EXPORT_SYMBOL(sock_queue_rcv_skb); 307 308 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 309 { 310 int rc = NET_RX_SUCCESS; 311 312 if (sk_filter(sk, skb)) 313 goto discard_and_relse; 314 315 skb->dev = NULL; 316 317 if (nested) 318 bh_lock_sock_nested(sk); 319 else 320 bh_lock_sock(sk); 321 if (!sock_owned_by_user(sk)) { 322 /* 323 * trylock + unlock semantics: 324 */ 325 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 326 327 rc = sk->sk_backlog_rcv(sk, skb); 328 329 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 330 } else 331 sk_add_backlog(sk, skb); 332 bh_unlock_sock(sk); 333 out: 334 sock_put(sk); 335 return rc; 336 discard_and_relse: 337 kfree_skb(skb); 338 goto out; 339 } 340 EXPORT_SYMBOL(sk_receive_skb); 341 342 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 343 { 344 struct dst_entry *dst = sk->sk_dst_cache; 345 346 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 347 sk->sk_dst_cache = NULL; 348 dst_release(dst); 349 return NULL; 350 } 351 352 return dst; 353 } 354 EXPORT_SYMBOL(__sk_dst_check); 355 356 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 357 { 358 struct dst_entry *dst = sk_dst_get(sk); 359 360 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 361 sk_dst_reset(sk); 362 dst_release(dst); 363 return NULL; 364 } 365 366 return dst; 367 } 368 EXPORT_SYMBOL(sk_dst_check); 369 370 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) 371 { 372 int ret = -ENOPROTOOPT; 373 #ifdef CONFIG_NETDEVICES 374 struct net *net = sock_net(sk); 375 char devname[IFNAMSIZ]; 376 int index; 377 378 /* Sorry... */ 379 ret = -EPERM; 380 if (!capable(CAP_NET_RAW)) 381 goto out; 382 383 ret = -EINVAL; 384 if (optlen < 0) 385 goto out; 386 387 /* Bind this socket to a particular device like "eth0", 388 * as specified in the passed interface name. If the 389 * name is "" or the option length is zero the socket 390 * is not bound. 391 */ 392 if (optlen > IFNAMSIZ - 1) 393 optlen = IFNAMSIZ - 1; 394 memset(devname, 0, sizeof(devname)); 395 396 ret = -EFAULT; 397 if (copy_from_user(devname, optval, optlen)) 398 goto out; 399 400 if (devname[0] == '\0') { 401 index = 0; 402 } else { 403 struct net_device *dev = dev_get_by_name(net, devname); 404 405 ret = -ENODEV; 406 if (!dev) 407 goto out; 408 409 index = dev->ifindex; 410 dev_put(dev); 411 } 412 413 lock_sock(sk); 414 sk->sk_bound_dev_if = index; 415 sk_dst_reset(sk); 416 release_sock(sk); 417 418 ret = 0; 419 420 out: 421 #endif 422 423 return ret; 424 } 425 426 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 427 { 428 if (valbool) 429 sock_set_flag(sk, bit); 430 else 431 sock_reset_flag(sk, bit); 432 } 433 434 /* 435 * This is meant for all protocols to use and covers goings on 436 * at the socket level. Everything here is generic. 437 */ 438 439 int sock_setsockopt(struct socket *sock, int level, int optname, 440 char __user *optval, int optlen) 441 { 442 struct sock *sk=sock->sk; 443 int val; 444 int valbool; 445 struct linger ling; 446 int ret = 0; 447 448 /* 449 * Options without arguments 450 */ 451 452 if (optname == SO_BINDTODEVICE) 453 return sock_bindtodevice(sk, optval, optlen); 454 455 if (optlen < sizeof(int)) 456 return -EINVAL; 457 458 if (get_user(val, (int __user *)optval)) 459 return -EFAULT; 460 461 valbool = val?1:0; 462 463 lock_sock(sk); 464 465 switch(optname) { 466 case SO_DEBUG: 467 if (val && !capable(CAP_NET_ADMIN)) { 468 ret = -EACCES; 469 } else 470 sock_valbool_flag(sk, SOCK_DBG, valbool); 471 break; 472 case SO_REUSEADDR: 473 sk->sk_reuse = valbool; 474 break; 475 case SO_TYPE: 476 case SO_ERROR: 477 ret = -ENOPROTOOPT; 478 break; 479 case SO_DONTROUTE: 480 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 481 break; 482 case SO_BROADCAST: 483 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 484 break; 485 case SO_SNDBUF: 486 /* Don't error on this BSD doesn't and if you think 487 about it this is right. Otherwise apps have to 488 play 'guess the biggest size' games. RCVBUF/SNDBUF 489 are treated in BSD as hints */ 490 491 if (val > sysctl_wmem_max) 492 val = sysctl_wmem_max; 493 set_sndbuf: 494 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 495 if ((val * 2) < SOCK_MIN_SNDBUF) 496 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 497 else 498 sk->sk_sndbuf = val * 2; 499 500 /* 501 * Wake up sending tasks if we 502 * upped the value. 503 */ 504 sk->sk_write_space(sk); 505 break; 506 507 case SO_SNDBUFFORCE: 508 if (!capable(CAP_NET_ADMIN)) { 509 ret = -EPERM; 510 break; 511 } 512 goto set_sndbuf; 513 514 case SO_RCVBUF: 515 /* Don't error on this BSD doesn't and if you think 516 about it this is right. Otherwise apps have to 517 play 'guess the biggest size' games. RCVBUF/SNDBUF 518 are treated in BSD as hints */ 519 520 if (val > sysctl_rmem_max) 521 val = sysctl_rmem_max; 522 set_rcvbuf: 523 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 524 /* 525 * We double it on the way in to account for 526 * "struct sk_buff" etc. overhead. Applications 527 * assume that the SO_RCVBUF setting they make will 528 * allow that much actual data to be received on that 529 * socket. 530 * 531 * Applications are unaware that "struct sk_buff" and 532 * other overheads allocate from the receive buffer 533 * during socket buffer allocation. 534 * 535 * And after considering the possible alternatives, 536 * returning the value we actually used in getsockopt 537 * is the most desirable behavior. 538 */ 539 if ((val * 2) < SOCK_MIN_RCVBUF) 540 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 541 else 542 sk->sk_rcvbuf = val * 2; 543 break; 544 545 case SO_RCVBUFFORCE: 546 if (!capable(CAP_NET_ADMIN)) { 547 ret = -EPERM; 548 break; 549 } 550 goto set_rcvbuf; 551 552 case SO_KEEPALIVE: 553 #ifdef CONFIG_INET 554 if (sk->sk_protocol == IPPROTO_TCP) 555 tcp_set_keepalive(sk, valbool); 556 #endif 557 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 558 break; 559 560 case SO_OOBINLINE: 561 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 562 break; 563 564 case SO_NO_CHECK: 565 sk->sk_no_check = valbool; 566 break; 567 568 case SO_PRIORITY: 569 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 570 sk->sk_priority = val; 571 else 572 ret = -EPERM; 573 break; 574 575 case SO_LINGER: 576 if (optlen < sizeof(ling)) { 577 ret = -EINVAL; /* 1003.1g */ 578 break; 579 } 580 if (copy_from_user(&ling,optval,sizeof(ling))) { 581 ret = -EFAULT; 582 break; 583 } 584 if (!ling.l_onoff) 585 sock_reset_flag(sk, SOCK_LINGER); 586 else { 587 #if (BITS_PER_LONG == 32) 588 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 589 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 590 else 591 #endif 592 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 593 sock_set_flag(sk, SOCK_LINGER); 594 } 595 break; 596 597 case SO_BSDCOMPAT: 598 sock_warn_obsolete_bsdism("setsockopt"); 599 break; 600 601 case SO_PASSCRED: 602 if (valbool) 603 set_bit(SOCK_PASSCRED, &sock->flags); 604 else 605 clear_bit(SOCK_PASSCRED, &sock->flags); 606 break; 607 608 case SO_TIMESTAMP: 609 case SO_TIMESTAMPNS: 610 if (valbool) { 611 if (optname == SO_TIMESTAMP) 612 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 613 else 614 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 615 sock_set_flag(sk, SOCK_RCVTSTAMP); 616 sock_enable_timestamp(sk); 617 } else { 618 sock_reset_flag(sk, SOCK_RCVTSTAMP); 619 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 620 } 621 break; 622 623 case SO_RCVLOWAT: 624 if (val < 0) 625 val = INT_MAX; 626 sk->sk_rcvlowat = val ? : 1; 627 break; 628 629 case SO_RCVTIMEO: 630 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 631 break; 632 633 case SO_SNDTIMEO: 634 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 635 break; 636 637 case SO_ATTACH_FILTER: 638 ret = -EINVAL; 639 if (optlen == sizeof(struct sock_fprog)) { 640 struct sock_fprog fprog; 641 642 ret = -EFAULT; 643 if (copy_from_user(&fprog, optval, sizeof(fprog))) 644 break; 645 646 ret = sk_attach_filter(&fprog, sk); 647 } 648 break; 649 650 case SO_DETACH_FILTER: 651 ret = sk_detach_filter(sk); 652 break; 653 654 case SO_PASSSEC: 655 if (valbool) 656 set_bit(SOCK_PASSSEC, &sock->flags); 657 else 658 clear_bit(SOCK_PASSSEC, &sock->flags); 659 break; 660 case SO_MARK: 661 if (!capable(CAP_NET_ADMIN)) 662 ret = -EPERM; 663 else { 664 sk->sk_mark = val; 665 } 666 break; 667 668 /* We implement the SO_SNDLOWAT etc to 669 not be settable (1003.1g 5.3) */ 670 default: 671 ret = -ENOPROTOOPT; 672 break; 673 } 674 release_sock(sk); 675 return ret; 676 } 677 678 679 int sock_getsockopt(struct socket *sock, int level, int optname, 680 char __user *optval, int __user *optlen) 681 { 682 struct sock *sk = sock->sk; 683 684 union { 685 int val; 686 struct linger ling; 687 struct timeval tm; 688 } v; 689 690 unsigned int lv = sizeof(int); 691 int len; 692 693 if (get_user(len, optlen)) 694 return -EFAULT; 695 if (len < 0) 696 return -EINVAL; 697 698 switch(optname) { 699 case SO_DEBUG: 700 v.val = sock_flag(sk, SOCK_DBG); 701 break; 702 703 case SO_DONTROUTE: 704 v.val = sock_flag(sk, SOCK_LOCALROUTE); 705 break; 706 707 case SO_BROADCAST: 708 v.val = !!sock_flag(sk, SOCK_BROADCAST); 709 break; 710 711 case SO_SNDBUF: 712 v.val = sk->sk_sndbuf; 713 break; 714 715 case SO_RCVBUF: 716 v.val = sk->sk_rcvbuf; 717 break; 718 719 case SO_REUSEADDR: 720 v.val = sk->sk_reuse; 721 break; 722 723 case SO_KEEPALIVE: 724 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 725 break; 726 727 case SO_TYPE: 728 v.val = sk->sk_type; 729 break; 730 731 case SO_ERROR: 732 v.val = -sock_error(sk); 733 if (v.val==0) 734 v.val = xchg(&sk->sk_err_soft, 0); 735 break; 736 737 case SO_OOBINLINE: 738 v.val = !!sock_flag(sk, SOCK_URGINLINE); 739 break; 740 741 case SO_NO_CHECK: 742 v.val = sk->sk_no_check; 743 break; 744 745 case SO_PRIORITY: 746 v.val = sk->sk_priority; 747 break; 748 749 case SO_LINGER: 750 lv = sizeof(v.ling); 751 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 752 v.ling.l_linger = sk->sk_lingertime / HZ; 753 break; 754 755 case SO_BSDCOMPAT: 756 sock_warn_obsolete_bsdism("getsockopt"); 757 break; 758 759 case SO_TIMESTAMP: 760 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 761 !sock_flag(sk, SOCK_RCVTSTAMPNS); 762 break; 763 764 case SO_TIMESTAMPNS: 765 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 766 break; 767 768 case SO_RCVTIMEO: 769 lv=sizeof(struct timeval); 770 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 771 v.tm.tv_sec = 0; 772 v.tm.tv_usec = 0; 773 } else { 774 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 775 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 776 } 777 break; 778 779 case SO_SNDTIMEO: 780 lv=sizeof(struct timeval); 781 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 782 v.tm.tv_sec = 0; 783 v.tm.tv_usec = 0; 784 } else { 785 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 786 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 787 } 788 break; 789 790 case SO_RCVLOWAT: 791 v.val = sk->sk_rcvlowat; 792 break; 793 794 case SO_SNDLOWAT: 795 v.val=1; 796 break; 797 798 case SO_PASSCRED: 799 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 800 break; 801 802 case SO_PEERCRED: 803 if (len > sizeof(sk->sk_peercred)) 804 len = sizeof(sk->sk_peercred); 805 if (copy_to_user(optval, &sk->sk_peercred, len)) 806 return -EFAULT; 807 goto lenout; 808 809 case SO_PEERNAME: 810 { 811 char address[128]; 812 813 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 814 return -ENOTCONN; 815 if (lv < len) 816 return -EINVAL; 817 if (copy_to_user(optval, address, len)) 818 return -EFAULT; 819 goto lenout; 820 } 821 822 /* Dubious BSD thing... Probably nobody even uses it, but 823 * the UNIX standard wants it for whatever reason... -DaveM 824 */ 825 case SO_ACCEPTCONN: 826 v.val = sk->sk_state == TCP_LISTEN; 827 break; 828 829 case SO_PASSSEC: 830 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; 831 break; 832 833 case SO_PEERSEC: 834 return security_socket_getpeersec_stream(sock, optval, optlen, len); 835 836 case SO_MARK: 837 v.val = sk->sk_mark; 838 break; 839 840 default: 841 return -ENOPROTOOPT; 842 } 843 844 if (len > lv) 845 len = lv; 846 if (copy_to_user(optval, &v, len)) 847 return -EFAULT; 848 lenout: 849 if (put_user(len, optlen)) 850 return -EFAULT; 851 return 0; 852 } 853 854 /* 855 * Initialize an sk_lock. 856 * 857 * (We also register the sk_lock with the lock validator.) 858 */ 859 static inline void sock_lock_init(struct sock *sk) 860 { 861 sock_lock_init_class_and_name(sk, 862 af_family_slock_key_strings[sk->sk_family], 863 af_family_slock_keys + sk->sk_family, 864 af_family_key_strings[sk->sk_family], 865 af_family_keys + sk->sk_family); 866 } 867 868 static void sock_copy(struct sock *nsk, const struct sock *osk) 869 { 870 #ifdef CONFIG_SECURITY_NETWORK 871 void *sptr = nsk->sk_security; 872 #endif 873 874 memcpy(nsk, osk, osk->sk_prot->obj_size); 875 #ifdef CONFIG_SECURITY_NETWORK 876 nsk->sk_security = sptr; 877 security_sk_clone(osk, nsk); 878 #endif 879 } 880 881 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 882 int family) 883 { 884 struct sock *sk; 885 struct kmem_cache *slab; 886 887 slab = prot->slab; 888 if (slab != NULL) 889 sk = kmem_cache_alloc(slab, priority); 890 else 891 sk = kmalloc(prot->obj_size, priority); 892 893 if (sk != NULL) { 894 if (security_sk_alloc(sk, family, priority)) 895 goto out_free; 896 897 if (!try_module_get(prot->owner)) 898 goto out_free_sec; 899 } 900 901 return sk; 902 903 out_free_sec: 904 security_sk_free(sk); 905 out_free: 906 if (slab != NULL) 907 kmem_cache_free(slab, sk); 908 else 909 kfree(sk); 910 return NULL; 911 } 912 913 static void sk_prot_free(struct proto *prot, struct sock *sk) 914 { 915 struct kmem_cache *slab; 916 struct module *owner; 917 918 owner = prot->owner; 919 slab = prot->slab; 920 921 security_sk_free(sk); 922 if (slab != NULL) 923 kmem_cache_free(slab, sk); 924 else 925 kfree(sk); 926 module_put(owner); 927 } 928 929 /** 930 * sk_alloc - All socket objects are allocated here 931 * @net: the applicable net namespace 932 * @family: protocol family 933 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 934 * @prot: struct proto associated with this new sock instance 935 */ 936 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 937 struct proto *prot) 938 { 939 struct sock *sk; 940 941 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 942 if (sk) { 943 sk->sk_family = family; 944 /* 945 * See comment in struct sock definition to understand 946 * why we need sk_prot_creator -acme 947 */ 948 sk->sk_prot = sk->sk_prot_creator = prot; 949 sock_lock_init(sk); 950 sock_net_set(sk, get_net(net)); 951 } 952 953 return sk; 954 } 955 956 void sk_free(struct sock *sk) 957 { 958 struct sk_filter *filter; 959 960 if (sk->sk_destruct) 961 sk->sk_destruct(sk); 962 963 filter = rcu_dereference(sk->sk_filter); 964 if (filter) { 965 sk_filter_uncharge(sk, filter); 966 rcu_assign_pointer(sk->sk_filter, NULL); 967 } 968 969 sock_disable_timestamp(sk); 970 971 if (atomic_read(&sk->sk_omem_alloc)) 972 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 973 __func__, atomic_read(&sk->sk_omem_alloc)); 974 975 put_net(sock_net(sk)); 976 sk_prot_free(sk->sk_prot_creator, sk); 977 } 978 979 /* 980 * Last sock_put should drop referrence to sk->sk_net. It has already 981 * been dropped in sk_change_net. Taking referrence to stopping namespace 982 * is not an option. 983 * Take referrence to a socket to remove it from hash _alive_ and after that 984 * destroy it in the context of init_net. 985 */ 986 void sk_release_kernel(struct sock *sk) 987 { 988 if (sk == NULL || sk->sk_socket == NULL) 989 return; 990 991 sock_hold(sk); 992 sock_release(sk->sk_socket); 993 release_net(sock_net(sk)); 994 sock_net_set(sk, get_net(&init_net)); 995 sock_put(sk); 996 } 997 EXPORT_SYMBOL(sk_release_kernel); 998 999 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 1000 { 1001 struct sock *newsk; 1002 1003 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1004 if (newsk != NULL) { 1005 struct sk_filter *filter; 1006 1007 sock_copy(newsk, sk); 1008 1009 /* SANITY */ 1010 get_net(sock_net(newsk)); 1011 sk_node_init(&newsk->sk_node); 1012 sock_lock_init(newsk); 1013 bh_lock_sock(newsk); 1014 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1015 1016 atomic_set(&newsk->sk_rmem_alloc, 0); 1017 atomic_set(&newsk->sk_wmem_alloc, 0); 1018 atomic_set(&newsk->sk_omem_alloc, 0); 1019 skb_queue_head_init(&newsk->sk_receive_queue); 1020 skb_queue_head_init(&newsk->sk_write_queue); 1021 #ifdef CONFIG_NET_DMA 1022 skb_queue_head_init(&newsk->sk_async_wait_queue); 1023 #endif 1024 1025 rwlock_init(&newsk->sk_dst_lock); 1026 rwlock_init(&newsk->sk_callback_lock); 1027 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1028 af_callback_keys + newsk->sk_family, 1029 af_family_clock_key_strings[newsk->sk_family]); 1030 1031 newsk->sk_dst_cache = NULL; 1032 newsk->sk_wmem_queued = 0; 1033 newsk->sk_forward_alloc = 0; 1034 newsk->sk_send_head = NULL; 1035 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1036 1037 sock_reset_flag(newsk, SOCK_DONE); 1038 skb_queue_head_init(&newsk->sk_error_queue); 1039 1040 filter = newsk->sk_filter; 1041 if (filter != NULL) 1042 sk_filter_charge(newsk, filter); 1043 1044 if (unlikely(xfrm_sk_clone_policy(newsk))) { 1045 /* It is still raw copy of parent, so invalidate 1046 * destructor and make plain sk_free() */ 1047 newsk->sk_destruct = NULL; 1048 sk_free(newsk); 1049 newsk = NULL; 1050 goto out; 1051 } 1052 1053 newsk->sk_err = 0; 1054 newsk->sk_priority = 0; 1055 atomic_set(&newsk->sk_refcnt, 2); 1056 1057 /* 1058 * Increment the counter in the same struct proto as the master 1059 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1060 * is the same as sk->sk_prot->socks, as this field was copied 1061 * with memcpy). 1062 * 1063 * This _changes_ the previous behaviour, where 1064 * tcp_create_openreq_child always was incrementing the 1065 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1066 * to be taken into account in all callers. -acme 1067 */ 1068 sk_refcnt_debug_inc(newsk); 1069 sk_set_socket(newsk, NULL); 1070 newsk->sk_sleep = NULL; 1071 1072 if (newsk->sk_prot->sockets_allocated) 1073 atomic_inc(newsk->sk_prot->sockets_allocated); 1074 } 1075 out: 1076 return newsk; 1077 } 1078 1079 EXPORT_SYMBOL_GPL(sk_clone); 1080 1081 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1082 { 1083 __sk_dst_set(sk, dst); 1084 sk->sk_route_caps = dst->dev->features; 1085 if (sk->sk_route_caps & NETIF_F_GSO) 1086 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1087 if (sk_can_gso(sk)) { 1088 if (dst->header_len) { 1089 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1090 } else { 1091 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1092 sk->sk_gso_max_size = dst->dev->gso_max_size; 1093 } 1094 } 1095 } 1096 EXPORT_SYMBOL_GPL(sk_setup_caps); 1097 1098 void __init sk_init(void) 1099 { 1100 if (num_physpages <= 4096) { 1101 sysctl_wmem_max = 32767; 1102 sysctl_rmem_max = 32767; 1103 sysctl_wmem_default = 32767; 1104 sysctl_rmem_default = 32767; 1105 } else if (num_physpages >= 131072) { 1106 sysctl_wmem_max = 131071; 1107 sysctl_rmem_max = 131071; 1108 } 1109 } 1110 1111 /* 1112 * Simple resource managers for sockets. 1113 */ 1114 1115 1116 /* 1117 * Write buffer destructor automatically called from kfree_skb. 1118 */ 1119 void sock_wfree(struct sk_buff *skb) 1120 { 1121 struct sock *sk = skb->sk; 1122 1123 /* In case it might be waiting for more memory. */ 1124 atomic_sub(skb->truesize, &sk->sk_wmem_alloc); 1125 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) 1126 sk->sk_write_space(sk); 1127 sock_put(sk); 1128 } 1129 1130 /* 1131 * Read buffer destructor automatically called from kfree_skb. 1132 */ 1133 void sock_rfree(struct sk_buff *skb) 1134 { 1135 struct sock *sk = skb->sk; 1136 1137 skb_truesize_check(skb); 1138 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1139 sk_mem_uncharge(skb->sk, skb->truesize); 1140 } 1141 1142 1143 int sock_i_uid(struct sock *sk) 1144 { 1145 int uid; 1146 1147 read_lock(&sk->sk_callback_lock); 1148 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 1149 read_unlock(&sk->sk_callback_lock); 1150 return uid; 1151 } 1152 1153 unsigned long sock_i_ino(struct sock *sk) 1154 { 1155 unsigned long ino; 1156 1157 read_lock(&sk->sk_callback_lock); 1158 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1159 read_unlock(&sk->sk_callback_lock); 1160 return ino; 1161 } 1162 1163 /* 1164 * Allocate a skb from the socket's send buffer. 1165 */ 1166 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1167 gfp_t priority) 1168 { 1169 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1170 struct sk_buff * skb = alloc_skb(size, priority); 1171 if (skb) { 1172 skb_set_owner_w(skb, sk); 1173 return skb; 1174 } 1175 } 1176 return NULL; 1177 } 1178 1179 /* 1180 * Allocate a skb from the socket's receive buffer. 1181 */ 1182 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1183 gfp_t priority) 1184 { 1185 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1186 struct sk_buff *skb = alloc_skb(size, priority); 1187 if (skb) { 1188 skb_set_owner_r(skb, sk); 1189 return skb; 1190 } 1191 } 1192 return NULL; 1193 } 1194 1195 /* 1196 * Allocate a memory block from the socket's option memory buffer. 1197 */ 1198 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1199 { 1200 if ((unsigned)size <= sysctl_optmem_max && 1201 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1202 void *mem; 1203 /* First do the add, to avoid the race if kmalloc 1204 * might sleep. 1205 */ 1206 atomic_add(size, &sk->sk_omem_alloc); 1207 mem = kmalloc(size, priority); 1208 if (mem) 1209 return mem; 1210 atomic_sub(size, &sk->sk_omem_alloc); 1211 } 1212 return NULL; 1213 } 1214 1215 /* 1216 * Free an option memory block. 1217 */ 1218 void sock_kfree_s(struct sock *sk, void *mem, int size) 1219 { 1220 kfree(mem); 1221 atomic_sub(size, &sk->sk_omem_alloc); 1222 } 1223 1224 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1225 I think, these locks should be removed for datagram sockets. 1226 */ 1227 static long sock_wait_for_wmem(struct sock * sk, long timeo) 1228 { 1229 DEFINE_WAIT(wait); 1230 1231 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1232 for (;;) { 1233 if (!timeo) 1234 break; 1235 if (signal_pending(current)) 1236 break; 1237 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1238 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1239 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1240 break; 1241 if (sk->sk_shutdown & SEND_SHUTDOWN) 1242 break; 1243 if (sk->sk_err) 1244 break; 1245 timeo = schedule_timeout(timeo); 1246 } 1247 finish_wait(sk->sk_sleep, &wait); 1248 return timeo; 1249 } 1250 1251 1252 /* 1253 * Generic send/receive buffer handlers 1254 */ 1255 1256 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1257 unsigned long header_len, 1258 unsigned long data_len, 1259 int noblock, int *errcode) 1260 { 1261 struct sk_buff *skb; 1262 gfp_t gfp_mask; 1263 long timeo; 1264 int err; 1265 1266 gfp_mask = sk->sk_allocation; 1267 if (gfp_mask & __GFP_WAIT) 1268 gfp_mask |= __GFP_REPEAT; 1269 1270 timeo = sock_sndtimeo(sk, noblock); 1271 while (1) { 1272 err = sock_error(sk); 1273 if (err != 0) 1274 goto failure; 1275 1276 err = -EPIPE; 1277 if (sk->sk_shutdown & SEND_SHUTDOWN) 1278 goto failure; 1279 1280 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1281 skb = alloc_skb(header_len, gfp_mask); 1282 if (skb) { 1283 int npages; 1284 int i; 1285 1286 /* No pages, we're done... */ 1287 if (!data_len) 1288 break; 1289 1290 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1291 skb->truesize += data_len; 1292 skb_shinfo(skb)->nr_frags = npages; 1293 for (i = 0; i < npages; i++) { 1294 struct page *page; 1295 skb_frag_t *frag; 1296 1297 page = alloc_pages(sk->sk_allocation, 0); 1298 if (!page) { 1299 err = -ENOBUFS; 1300 skb_shinfo(skb)->nr_frags = i; 1301 kfree_skb(skb); 1302 goto failure; 1303 } 1304 1305 frag = &skb_shinfo(skb)->frags[i]; 1306 frag->page = page; 1307 frag->page_offset = 0; 1308 frag->size = (data_len >= PAGE_SIZE ? 1309 PAGE_SIZE : 1310 data_len); 1311 data_len -= PAGE_SIZE; 1312 } 1313 1314 /* Full success... */ 1315 break; 1316 } 1317 err = -ENOBUFS; 1318 goto failure; 1319 } 1320 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1322 err = -EAGAIN; 1323 if (!timeo) 1324 goto failure; 1325 if (signal_pending(current)) 1326 goto interrupted; 1327 timeo = sock_wait_for_wmem(sk, timeo); 1328 } 1329 1330 skb_set_owner_w(skb, sk); 1331 return skb; 1332 1333 interrupted: 1334 err = sock_intr_errno(timeo); 1335 failure: 1336 *errcode = err; 1337 return NULL; 1338 } 1339 1340 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1341 int noblock, int *errcode) 1342 { 1343 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1344 } 1345 1346 static void __lock_sock(struct sock *sk) 1347 { 1348 DEFINE_WAIT(wait); 1349 1350 for (;;) { 1351 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1352 TASK_UNINTERRUPTIBLE); 1353 spin_unlock_bh(&sk->sk_lock.slock); 1354 schedule(); 1355 spin_lock_bh(&sk->sk_lock.slock); 1356 if (!sock_owned_by_user(sk)) 1357 break; 1358 } 1359 finish_wait(&sk->sk_lock.wq, &wait); 1360 } 1361 1362 static void __release_sock(struct sock *sk) 1363 { 1364 struct sk_buff *skb = sk->sk_backlog.head; 1365 1366 do { 1367 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1368 bh_unlock_sock(sk); 1369 1370 do { 1371 struct sk_buff *next = skb->next; 1372 1373 skb->next = NULL; 1374 sk->sk_backlog_rcv(sk, skb); 1375 1376 /* 1377 * We are in process context here with softirqs 1378 * disabled, use cond_resched_softirq() to preempt. 1379 * This is safe to do because we've taken the backlog 1380 * queue private: 1381 */ 1382 cond_resched_softirq(); 1383 1384 skb = next; 1385 } while (skb != NULL); 1386 1387 bh_lock_sock(sk); 1388 } while ((skb = sk->sk_backlog.head) != NULL); 1389 } 1390 1391 /** 1392 * sk_wait_data - wait for data to arrive at sk_receive_queue 1393 * @sk: sock to wait on 1394 * @timeo: for how long 1395 * 1396 * Now socket state including sk->sk_err is changed only under lock, 1397 * hence we may omit checks after joining wait queue. 1398 * We check receive queue before schedule() only as optimization; 1399 * it is very likely that release_sock() added new data. 1400 */ 1401 int sk_wait_data(struct sock *sk, long *timeo) 1402 { 1403 int rc; 1404 DEFINE_WAIT(wait); 1405 1406 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1407 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1408 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1409 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1410 finish_wait(sk->sk_sleep, &wait); 1411 return rc; 1412 } 1413 1414 EXPORT_SYMBOL(sk_wait_data); 1415 1416 /** 1417 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1418 * @sk: socket 1419 * @size: memory size to allocate 1420 * @kind: allocation type 1421 * 1422 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1423 * rmem allocation. This function assumes that protocols which have 1424 * memory_pressure use sk_wmem_queued as write buffer accounting. 1425 */ 1426 int __sk_mem_schedule(struct sock *sk, int size, int kind) 1427 { 1428 struct proto *prot = sk->sk_prot; 1429 int amt = sk_mem_pages(size); 1430 int allocated; 1431 1432 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 1433 allocated = atomic_add_return(amt, prot->memory_allocated); 1434 1435 /* Under limit. */ 1436 if (allocated <= prot->sysctl_mem[0]) { 1437 if (prot->memory_pressure && *prot->memory_pressure) 1438 *prot->memory_pressure = 0; 1439 return 1; 1440 } 1441 1442 /* Under pressure. */ 1443 if (allocated > prot->sysctl_mem[1]) 1444 if (prot->enter_memory_pressure) 1445 prot->enter_memory_pressure(sk); 1446 1447 /* Over hard limit. */ 1448 if (allocated > prot->sysctl_mem[2]) 1449 goto suppress_allocation; 1450 1451 /* guarantee minimum buffer size under pressure */ 1452 if (kind == SK_MEM_RECV) { 1453 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 1454 return 1; 1455 } else { /* SK_MEM_SEND */ 1456 if (sk->sk_type == SOCK_STREAM) { 1457 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 1458 return 1; 1459 } else if (atomic_read(&sk->sk_wmem_alloc) < 1460 prot->sysctl_wmem[0]) 1461 return 1; 1462 } 1463 1464 if (prot->memory_pressure) { 1465 if (!*prot->memory_pressure || 1466 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) * 1467 sk_mem_pages(sk->sk_wmem_queued + 1468 atomic_read(&sk->sk_rmem_alloc) + 1469 sk->sk_forward_alloc)) 1470 return 1; 1471 } 1472 1473 suppress_allocation: 1474 1475 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 1476 sk_stream_moderate_sndbuf(sk); 1477 1478 /* Fail only if socket is _under_ its sndbuf. 1479 * In this case we cannot block, so that we have to fail. 1480 */ 1481 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 1482 return 1; 1483 } 1484 1485 /* Alas. Undo changes. */ 1486 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 1487 atomic_sub(amt, prot->memory_allocated); 1488 return 0; 1489 } 1490 1491 EXPORT_SYMBOL(__sk_mem_schedule); 1492 1493 /** 1494 * __sk_reclaim - reclaim memory_allocated 1495 * @sk: socket 1496 */ 1497 void __sk_mem_reclaim(struct sock *sk) 1498 { 1499 struct proto *prot = sk->sk_prot; 1500 1501 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 1502 prot->memory_allocated); 1503 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 1504 1505 if (prot->memory_pressure && *prot->memory_pressure && 1506 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) 1507 *prot->memory_pressure = 0; 1508 } 1509 1510 EXPORT_SYMBOL(__sk_mem_reclaim); 1511 1512 1513 /* 1514 * Set of default routines for initialising struct proto_ops when 1515 * the protocol does not support a particular function. In certain 1516 * cases where it makes no sense for a protocol to have a "do nothing" 1517 * function, some default processing is provided. 1518 */ 1519 1520 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1521 { 1522 return -EOPNOTSUPP; 1523 } 1524 1525 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1526 int len, int flags) 1527 { 1528 return -EOPNOTSUPP; 1529 } 1530 1531 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1532 { 1533 return -EOPNOTSUPP; 1534 } 1535 1536 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1537 { 1538 return -EOPNOTSUPP; 1539 } 1540 1541 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1542 int *len, int peer) 1543 { 1544 return -EOPNOTSUPP; 1545 } 1546 1547 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt) 1548 { 1549 return 0; 1550 } 1551 1552 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1553 { 1554 return -EOPNOTSUPP; 1555 } 1556 1557 int sock_no_listen(struct socket *sock, int backlog) 1558 { 1559 return -EOPNOTSUPP; 1560 } 1561 1562 int sock_no_shutdown(struct socket *sock, int how) 1563 { 1564 return -EOPNOTSUPP; 1565 } 1566 1567 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1568 char __user *optval, int optlen) 1569 { 1570 return -EOPNOTSUPP; 1571 } 1572 1573 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1574 char __user *optval, int __user *optlen) 1575 { 1576 return -EOPNOTSUPP; 1577 } 1578 1579 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1580 size_t len) 1581 { 1582 return -EOPNOTSUPP; 1583 } 1584 1585 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1586 size_t len, int flags) 1587 { 1588 return -EOPNOTSUPP; 1589 } 1590 1591 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1592 { 1593 /* Mirror missing mmap method error code */ 1594 return -ENODEV; 1595 } 1596 1597 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1598 { 1599 ssize_t res; 1600 struct msghdr msg = {.msg_flags = flags}; 1601 struct kvec iov; 1602 char *kaddr = kmap(page); 1603 iov.iov_base = kaddr + offset; 1604 iov.iov_len = size; 1605 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1606 kunmap(page); 1607 return res; 1608 } 1609 1610 /* 1611 * Default Socket Callbacks 1612 */ 1613 1614 static void sock_def_wakeup(struct sock *sk) 1615 { 1616 read_lock(&sk->sk_callback_lock); 1617 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1618 wake_up_interruptible_all(sk->sk_sleep); 1619 read_unlock(&sk->sk_callback_lock); 1620 } 1621 1622 static void sock_def_error_report(struct sock *sk) 1623 { 1624 read_lock(&sk->sk_callback_lock); 1625 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1626 wake_up_interruptible(sk->sk_sleep); 1627 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 1628 read_unlock(&sk->sk_callback_lock); 1629 } 1630 1631 static void sock_def_readable(struct sock *sk, int len) 1632 { 1633 read_lock(&sk->sk_callback_lock); 1634 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1635 wake_up_interruptible_sync(sk->sk_sleep); 1636 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 1637 read_unlock(&sk->sk_callback_lock); 1638 } 1639 1640 static void sock_def_write_space(struct sock *sk) 1641 { 1642 read_lock(&sk->sk_callback_lock); 1643 1644 /* Do not wake up a writer until he can make "significant" 1645 * progress. --DaveM 1646 */ 1647 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1648 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1649 wake_up_interruptible_sync(sk->sk_sleep); 1650 1651 /* Should agree with poll, otherwise some programs break */ 1652 if (sock_writeable(sk)) 1653 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 1654 } 1655 1656 read_unlock(&sk->sk_callback_lock); 1657 } 1658 1659 static void sock_def_destruct(struct sock *sk) 1660 { 1661 kfree(sk->sk_protinfo); 1662 } 1663 1664 void sk_send_sigurg(struct sock *sk) 1665 { 1666 if (sk->sk_socket && sk->sk_socket->file) 1667 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1668 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 1669 } 1670 1671 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1672 unsigned long expires) 1673 { 1674 if (!mod_timer(timer, expires)) 1675 sock_hold(sk); 1676 } 1677 1678 EXPORT_SYMBOL(sk_reset_timer); 1679 1680 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1681 { 1682 if (timer_pending(timer) && del_timer(timer)) 1683 __sock_put(sk); 1684 } 1685 1686 EXPORT_SYMBOL(sk_stop_timer); 1687 1688 void sock_init_data(struct socket *sock, struct sock *sk) 1689 { 1690 skb_queue_head_init(&sk->sk_receive_queue); 1691 skb_queue_head_init(&sk->sk_write_queue); 1692 skb_queue_head_init(&sk->sk_error_queue); 1693 #ifdef CONFIG_NET_DMA 1694 skb_queue_head_init(&sk->sk_async_wait_queue); 1695 #endif 1696 1697 sk->sk_send_head = NULL; 1698 1699 init_timer(&sk->sk_timer); 1700 1701 sk->sk_allocation = GFP_KERNEL; 1702 sk->sk_rcvbuf = sysctl_rmem_default; 1703 sk->sk_sndbuf = sysctl_wmem_default; 1704 sk->sk_state = TCP_CLOSE; 1705 sk_set_socket(sk, sock); 1706 1707 sock_set_flag(sk, SOCK_ZAPPED); 1708 1709 if (sock) { 1710 sk->sk_type = sock->type; 1711 sk->sk_sleep = &sock->wait; 1712 sock->sk = sk; 1713 } else 1714 sk->sk_sleep = NULL; 1715 1716 rwlock_init(&sk->sk_dst_lock); 1717 rwlock_init(&sk->sk_callback_lock); 1718 lockdep_set_class_and_name(&sk->sk_callback_lock, 1719 af_callback_keys + sk->sk_family, 1720 af_family_clock_key_strings[sk->sk_family]); 1721 1722 sk->sk_state_change = sock_def_wakeup; 1723 sk->sk_data_ready = sock_def_readable; 1724 sk->sk_write_space = sock_def_write_space; 1725 sk->sk_error_report = sock_def_error_report; 1726 sk->sk_destruct = sock_def_destruct; 1727 1728 sk->sk_sndmsg_page = NULL; 1729 sk->sk_sndmsg_off = 0; 1730 1731 sk->sk_peercred.pid = 0; 1732 sk->sk_peercred.uid = -1; 1733 sk->sk_peercred.gid = -1; 1734 sk->sk_write_pending = 0; 1735 sk->sk_rcvlowat = 1; 1736 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1737 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1738 1739 sk->sk_stamp = ktime_set(-1L, 0); 1740 1741 atomic_set(&sk->sk_refcnt, 1); 1742 atomic_set(&sk->sk_drops, 0); 1743 } 1744 1745 void lock_sock_nested(struct sock *sk, int subclass) 1746 { 1747 might_sleep(); 1748 spin_lock_bh(&sk->sk_lock.slock); 1749 if (sk->sk_lock.owned) 1750 __lock_sock(sk); 1751 sk->sk_lock.owned = 1; 1752 spin_unlock(&sk->sk_lock.slock); 1753 /* 1754 * The sk_lock has mutex_lock() semantics here: 1755 */ 1756 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 1757 local_bh_enable(); 1758 } 1759 1760 EXPORT_SYMBOL(lock_sock_nested); 1761 1762 void release_sock(struct sock *sk) 1763 { 1764 /* 1765 * The sk_lock has mutex_unlock() semantics: 1766 */ 1767 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1768 1769 spin_lock_bh(&sk->sk_lock.slock); 1770 if (sk->sk_backlog.tail) 1771 __release_sock(sk); 1772 sk->sk_lock.owned = 0; 1773 if (waitqueue_active(&sk->sk_lock.wq)) 1774 wake_up(&sk->sk_lock.wq); 1775 spin_unlock_bh(&sk->sk_lock.slock); 1776 } 1777 EXPORT_SYMBOL(release_sock); 1778 1779 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1780 { 1781 struct timeval tv; 1782 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1783 sock_enable_timestamp(sk); 1784 tv = ktime_to_timeval(sk->sk_stamp); 1785 if (tv.tv_sec == -1) 1786 return -ENOENT; 1787 if (tv.tv_sec == 0) { 1788 sk->sk_stamp = ktime_get_real(); 1789 tv = ktime_to_timeval(sk->sk_stamp); 1790 } 1791 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 1792 } 1793 EXPORT_SYMBOL(sock_get_timestamp); 1794 1795 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 1796 { 1797 struct timespec ts; 1798 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1799 sock_enable_timestamp(sk); 1800 ts = ktime_to_timespec(sk->sk_stamp); 1801 if (ts.tv_sec == -1) 1802 return -ENOENT; 1803 if (ts.tv_sec == 0) { 1804 sk->sk_stamp = ktime_get_real(); 1805 ts = ktime_to_timespec(sk->sk_stamp); 1806 } 1807 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 1808 } 1809 EXPORT_SYMBOL(sock_get_timestampns); 1810 1811 void sock_enable_timestamp(struct sock *sk) 1812 { 1813 if (!sock_flag(sk, SOCK_TIMESTAMP)) { 1814 sock_set_flag(sk, SOCK_TIMESTAMP); 1815 net_enable_timestamp(); 1816 } 1817 } 1818 1819 /* 1820 * Get a socket option on an socket. 1821 * 1822 * FIX: POSIX 1003.1g is very ambiguous here. It states that 1823 * asynchronous errors should be reported by getsockopt. We assume 1824 * this means if you specify SO_ERROR (otherwise whats the point of it). 1825 */ 1826 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1827 char __user *optval, int __user *optlen) 1828 { 1829 struct sock *sk = sock->sk; 1830 1831 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1832 } 1833 1834 EXPORT_SYMBOL(sock_common_getsockopt); 1835 1836 #ifdef CONFIG_COMPAT 1837 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 1838 char __user *optval, int __user *optlen) 1839 { 1840 struct sock *sk = sock->sk; 1841 1842 if (sk->sk_prot->compat_getsockopt != NULL) 1843 return sk->sk_prot->compat_getsockopt(sk, level, optname, 1844 optval, optlen); 1845 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1846 } 1847 EXPORT_SYMBOL(compat_sock_common_getsockopt); 1848 #endif 1849 1850 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1851 struct msghdr *msg, size_t size, int flags) 1852 { 1853 struct sock *sk = sock->sk; 1854 int addr_len = 0; 1855 int err; 1856 1857 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 1858 flags & ~MSG_DONTWAIT, &addr_len); 1859 if (err >= 0) 1860 msg->msg_namelen = addr_len; 1861 return err; 1862 } 1863 1864 EXPORT_SYMBOL(sock_common_recvmsg); 1865 1866 /* 1867 * Set socket options on an inet socket. 1868 */ 1869 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1870 char __user *optval, int optlen) 1871 { 1872 struct sock *sk = sock->sk; 1873 1874 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 1875 } 1876 1877 EXPORT_SYMBOL(sock_common_setsockopt); 1878 1879 #ifdef CONFIG_COMPAT 1880 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 1881 char __user *optval, int optlen) 1882 { 1883 struct sock *sk = sock->sk; 1884 1885 if (sk->sk_prot->compat_setsockopt != NULL) 1886 return sk->sk_prot->compat_setsockopt(sk, level, optname, 1887 optval, optlen); 1888 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 1889 } 1890 EXPORT_SYMBOL(compat_sock_common_setsockopt); 1891 #endif 1892 1893 void sk_common_release(struct sock *sk) 1894 { 1895 if (sk->sk_prot->destroy) 1896 sk->sk_prot->destroy(sk); 1897 1898 /* 1899 * Observation: when sock_common_release is called, processes have 1900 * no access to socket. But net still has. 1901 * Step one, detach it from networking: 1902 * 1903 * A. Remove from hash tables. 1904 */ 1905 1906 sk->sk_prot->unhash(sk); 1907 1908 /* 1909 * In this point socket cannot receive new packets, but it is possible 1910 * that some packets are in flight because some CPU runs receiver and 1911 * did hash table lookup before we unhashed socket. They will achieve 1912 * receive queue and will be purged by socket destructor. 1913 * 1914 * Also we still have packets pending on receive queue and probably, 1915 * our own packets waiting in device queues. sock_destroy will drain 1916 * receive queue, but transmitted packets will delay socket destruction 1917 * until the last reference will be released. 1918 */ 1919 1920 sock_orphan(sk); 1921 1922 xfrm_sk_free_policy(sk); 1923 1924 sk_refcnt_debug_release(sk); 1925 sock_put(sk); 1926 } 1927 1928 EXPORT_SYMBOL(sk_common_release); 1929 1930 static DEFINE_RWLOCK(proto_list_lock); 1931 static LIST_HEAD(proto_list); 1932 1933 #ifdef CONFIG_PROC_FS 1934 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1935 struct prot_inuse { 1936 int val[PROTO_INUSE_NR]; 1937 }; 1938 1939 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 1940 1941 #ifdef CONFIG_NET_NS 1942 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 1943 { 1944 int cpu = smp_processor_id(); 1945 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; 1946 } 1947 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 1948 1949 int sock_prot_inuse_get(struct net *net, struct proto *prot) 1950 { 1951 int cpu, idx = prot->inuse_idx; 1952 int res = 0; 1953 1954 for_each_possible_cpu(cpu) 1955 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 1956 1957 return res >= 0 ? res : 0; 1958 } 1959 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 1960 1961 static int sock_inuse_init_net(struct net *net) 1962 { 1963 net->core.inuse = alloc_percpu(struct prot_inuse); 1964 return net->core.inuse ? 0 : -ENOMEM; 1965 } 1966 1967 static void sock_inuse_exit_net(struct net *net) 1968 { 1969 free_percpu(net->core.inuse); 1970 } 1971 1972 static struct pernet_operations net_inuse_ops = { 1973 .init = sock_inuse_init_net, 1974 .exit = sock_inuse_exit_net, 1975 }; 1976 1977 static __init int net_inuse_init(void) 1978 { 1979 if (register_pernet_subsys(&net_inuse_ops)) 1980 panic("Cannot initialize net inuse counters"); 1981 1982 return 0; 1983 } 1984 1985 core_initcall(net_inuse_init); 1986 #else 1987 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 1988 1989 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 1990 { 1991 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; 1992 } 1993 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 1994 1995 int sock_prot_inuse_get(struct net *net, struct proto *prot) 1996 { 1997 int cpu, idx = prot->inuse_idx; 1998 int res = 0; 1999 2000 for_each_possible_cpu(cpu) 2001 res += per_cpu(prot_inuse, cpu).val[idx]; 2002 2003 return res >= 0 ? res : 0; 2004 } 2005 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2006 #endif 2007 2008 static void assign_proto_idx(struct proto *prot) 2009 { 2010 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2011 2012 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2013 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); 2014 return; 2015 } 2016 2017 set_bit(prot->inuse_idx, proto_inuse_idx); 2018 } 2019 2020 static void release_proto_idx(struct proto *prot) 2021 { 2022 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2023 clear_bit(prot->inuse_idx, proto_inuse_idx); 2024 } 2025 #else 2026 static inline void assign_proto_idx(struct proto *prot) 2027 { 2028 } 2029 2030 static inline void release_proto_idx(struct proto *prot) 2031 { 2032 } 2033 #endif 2034 2035 int proto_register(struct proto *prot, int alloc_slab) 2036 { 2037 char *request_sock_slab_name = NULL; 2038 char *timewait_sock_slab_name; 2039 2040 if (alloc_slab) { 2041 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2042 SLAB_HWCACHE_ALIGN, NULL); 2043 2044 if (prot->slab == NULL) { 2045 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 2046 prot->name); 2047 goto out; 2048 } 2049 2050 if (prot->rsk_prot != NULL) { 2051 static const char mask[] = "request_sock_%s"; 2052 2053 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2054 if (request_sock_slab_name == NULL) 2055 goto out_free_sock_slab; 2056 2057 sprintf(request_sock_slab_name, mask, prot->name); 2058 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name, 2059 prot->rsk_prot->obj_size, 0, 2060 SLAB_HWCACHE_ALIGN, NULL); 2061 2062 if (prot->rsk_prot->slab == NULL) { 2063 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 2064 prot->name); 2065 goto out_free_request_sock_slab_name; 2066 } 2067 } 2068 2069 if (prot->twsk_prot != NULL) { 2070 static const char mask[] = "tw_sock_%s"; 2071 2072 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2073 2074 if (timewait_sock_slab_name == NULL) 2075 goto out_free_request_sock_slab; 2076 2077 sprintf(timewait_sock_slab_name, mask, prot->name); 2078 prot->twsk_prot->twsk_slab = 2079 kmem_cache_create(timewait_sock_slab_name, 2080 prot->twsk_prot->twsk_obj_size, 2081 0, SLAB_HWCACHE_ALIGN, 2082 NULL); 2083 if (prot->twsk_prot->twsk_slab == NULL) 2084 goto out_free_timewait_sock_slab_name; 2085 } 2086 } 2087 2088 write_lock(&proto_list_lock); 2089 list_add(&prot->node, &proto_list); 2090 assign_proto_idx(prot); 2091 write_unlock(&proto_list_lock); 2092 return 0; 2093 2094 out_free_timewait_sock_slab_name: 2095 kfree(timewait_sock_slab_name); 2096 out_free_request_sock_slab: 2097 if (prot->rsk_prot && prot->rsk_prot->slab) { 2098 kmem_cache_destroy(prot->rsk_prot->slab); 2099 prot->rsk_prot->slab = NULL; 2100 } 2101 out_free_request_sock_slab_name: 2102 kfree(request_sock_slab_name); 2103 out_free_sock_slab: 2104 kmem_cache_destroy(prot->slab); 2105 prot->slab = NULL; 2106 out: 2107 return -ENOBUFS; 2108 } 2109 2110 EXPORT_SYMBOL(proto_register); 2111 2112 void proto_unregister(struct proto *prot) 2113 { 2114 write_lock(&proto_list_lock); 2115 release_proto_idx(prot); 2116 list_del(&prot->node); 2117 write_unlock(&proto_list_lock); 2118 2119 if (prot->slab != NULL) { 2120 kmem_cache_destroy(prot->slab); 2121 prot->slab = NULL; 2122 } 2123 2124 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 2125 const char *name = kmem_cache_name(prot->rsk_prot->slab); 2126 2127 kmem_cache_destroy(prot->rsk_prot->slab); 2128 kfree(name); 2129 prot->rsk_prot->slab = NULL; 2130 } 2131 2132 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2133 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab); 2134 2135 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2136 kfree(name); 2137 prot->twsk_prot->twsk_slab = NULL; 2138 } 2139 } 2140 2141 EXPORT_SYMBOL(proto_unregister); 2142 2143 #ifdef CONFIG_PROC_FS 2144 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2145 __acquires(proto_list_lock) 2146 { 2147 read_lock(&proto_list_lock); 2148 return seq_list_start_head(&proto_list, *pos); 2149 } 2150 2151 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2152 { 2153 return seq_list_next(v, &proto_list, pos); 2154 } 2155 2156 static void proto_seq_stop(struct seq_file *seq, void *v) 2157 __releases(proto_list_lock) 2158 { 2159 read_unlock(&proto_list_lock); 2160 } 2161 2162 static char proto_method_implemented(const void *method) 2163 { 2164 return method == NULL ? 'n' : 'y'; 2165 } 2166 2167 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2168 { 2169 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 2170 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2171 proto->name, 2172 proto->obj_size, 2173 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1, 2174 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 2175 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 2176 proto->max_header, 2177 proto->slab == NULL ? "no" : "yes", 2178 module_name(proto->owner), 2179 proto_method_implemented(proto->close), 2180 proto_method_implemented(proto->connect), 2181 proto_method_implemented(proto->disconnect), 2182 proto_method_implemented(proto->accept), 2183 proto_method_implemented(proto->ioctl), 2184 proto_method_implemented(proto->init), 2185 proto_method_implemented(proto->destroy), 2186 proto_method_implemented(proto->shutdown), 2187 proto_method_implemented(proto->setsockopt), 2188 proto_method_implemented(proto->getsockopt), 2189 proto_method_implemented(proto->sendmsg), 2190 proto_method_implemented(proto->recvmsg), 2191 proto_method_implemented(proto->sendpage), 2192 proto_method_implemented(proto->bind), 2193 proto_method_implemented(proto->backlog_rcv), 2194 proto_method_implemented(proto->hash), 2195 proto_method_implemented(proto->unhash), 2196 proto_method_implemented(proto->get_port), 2197 proto_method_implemented(proto->enter_memory_pressure)); 2198 } 2199 2200 static int proto_seq_show(struct seq_file *seq, void *v) 2201 { 2202 if (v == &proto_list) 2203 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2204 "protocol", 2205 "size", 2206 "sockets", 2207 "memory", 2208 "press", 2209 "maxhdr", 2210 "slab", 2211 "module", 2212 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2213 else 2214 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2215 return 0; 2216 } 2217 2218 static const struct seq_operations proto_seq_ops = { 2219 .start = proto_seq_start, 2220 .next = proto_seq_next, 2221 .stop = proto_seq_stop, 2222 .show = proto_seq_show, 2223 }; 2224 2225 static int proto_seq_open(struct inode *inode, struct file *file) 2226 { 2227 return seq_open(file, &proto_seq_ops); 2228 } 2229 2230 static const struct file_operations proto_seq_fops = { 2231 .owner = THIS_MODULE, 2232 .open = proto_seq_open, 2233 .read = seq_read, 2234 .llseek = seq_lseek, 2235 .release = seq_release, 2236 }; 2237 2238 static int __init proto_init(void) 2239 { 2240 /* register /proc/net/protocols */ 2241 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0; 2242 } 2243 2244 subsys_initcall(proto_init); 2245 2246 #endif /* PROC_FS */ 2247 2248 EXPORT_SYMBOL(sk_alloc); 2249 EXPORT_SYMBOL(sk_free); 2250 EXPORT_SYMBOL(sk_send_sigurg); 2251 EXPORT_SYMBOL(sock_alloc_send_skb); 2252 EXPORT_SYMBOL(sock_init_data); 2253 EXPORT_SYMBOL(sock_kfree_s); 2254 EXPORT_SYMBOL(sock_kmalloc); 2255 EXPORT_SYMBOL(sock_no_accept); 2256 EXPORT_SYMBOL(sock_no_bind); 2257 EXPORT_SYMBOL(sock_no_connect); 2258 EXPORT_SYMBOL(sock_no_getname); 2259 EXPORT_SYMBOL(sock_no_getsockopt); 2260 EXPORT_SYMBOL(sock_no_ioctl); 2261 EXPORT_SYMBOL(sock_no_listen); 2262 EXPORT_SYMBOL(sock_no_mmap); 2263 EXPORT_SYMBOL(sock_no_poll); 2264 EXPORT_SYMBOL(sock_no_recvmsg); 2265 EXPORT_SYMBOL(sock_no_sendmsg); 2266 EXPORT_SYMBOL(sock_no_sendpage); 2267 EXPORT_SYMBOL(sock_no_setsockopt); 2268 EXPORT_SYMBOL(sock_no_shutdown); 2269 EXPORT_SYMBOL(sock_no_socketpair); 2270 EXPORT_SYMBOL(sock_rfree); 2271 EXPORT_SYMBOL(sock_setsockopt); 2272 EXPORT_SYMBOL(sock_wfree); 2273 EXPORT_SYMBOL(sock_wmalloc); 2274 EXPORT_SYMBOL(sock_i_uid); 2275 EXPORT_SYMBOL(sock_i_ino); 2276 EXPORT_SYMBOL(sysctl_optmem_max); 2277