xref: /openbmc/linux/net/core/sock.c (revision 4bce6fce)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_key_slow_dec(&memalloc_socks);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 	 * it has rmem allocations there is a risk that the user of the
359 	 * socket cannot make forward progress due to exceeding the rmem
360 	 * limits. By rights, sk_clear_memalloc() should only be called
361 	 * on sockets being torn down but warn and reset the accounting if
362 	 * that assumption breaks.
363 	 */
364 	if (WARN_ON(sk->sk_forward_alloc))
365 		sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368 
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 	int ret;
372 	unsigned long pflags = current->flags;
373 
374 	/* these should have been dropped before queueing */
375 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376 
377 	current->flags |= PF_MEMALLOC;
378 	ret = sk->sk_backlog_rcv(sk, skb);
379 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384 
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 	struct timeval tv;
388 
389 	if (optlen < sizeof(tv))
390 		return -EINVAL;
391 	if (copy_from_user(&tv, optval, sizeof(tv)))
392 		return -EFAULT;
393 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 		return -EDOM;
395 
396 	if (tv.tv_sec < 0) {
397 		static int warned __read_mostly;
398 
399 		*timeo_p = 0;
400 		if (warned < 10 && net_ratelimit()) {
401 			warned++;
402 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 				__func__, current->comm, task_pid_nr(current));
404 		}
405 		return 0;
406 	}
407 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
408 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 		return 0;
410 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 	return 0;
413 }
414 
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 	static int warned;
418 	static char warncomm[TASK_COMM_LEN];
419 	if (strcmp(warncomm, current->comm) && warned < 5) {
420 		strcpy(warncomm,  current->comm);
421 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 			warncomm, name);
423 		warned++;
424 	}
425 }
426 
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 	if (sk->sk_flags & flags) {
432 		sk->sk_flags &= ~flags;
433 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 			net_disable_timestamp();
435 	}
436 }
437 
438 
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 	int err;
442 	unsigned long flags;
443 	struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 		atomic_inc(&sk->sk_drops);
447 		trace_sock_rcvqueue_full(sk, skb);
448 		return -ENOMEM;
449 	}
450 
451 	err = sk_filter(sk, skb);
452 	if (err)
453 		return err;
454 
455 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 		atomic_inc(&sk->sk_drops);
457 		return -ENOBUFS;
458 	}
459 
460 	skb->dev = NULL;
461 	skb_set_owner_r(skb, sk);
462 
463 	/* we escape from rcu protected region, make sure we dont leak
464 	 * a norefcounted dst
465 	 */
466 	skb_dst_force(skb);
467 
468 	spin_lock_irqsave(&list->lock, flags);
469 	sock_skb_set_dropcount(sk, skb);
470 	__skb_queue_tail(list, skb);
471 	spin_unlock_irqrestore(&list->lock, flags);
472 
473 	if (!sock_flag(sk, SOCK_DEAD))
474 		sk->sk_data_ready(sk);
475 	return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478 
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 	int rc = NET_RX_SUCCESS;
482 
483 	if (sk_filter(sk, skb))
484 		goto discard_and_relse;
485 
486 	skb->dev = NULL;
487 
488 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 		atomic_inc(&sk->sk_drops);
490 		goto discard_and_relse;
491 	}
492 	if (nested)
493 		bh_lock_sock_nested(sk);
494 	else
495 		bh_lock_sock(sk);
496 	if (!sock_owned_by_user(sk)) {
497 		/*
498 		 * trylock + unlock semantics:
499 		 */
500 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501 
502 		rc = sk_backlog_rcv(sk, skb);
503 
504 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 		bh_unlock_sock(sk);
507 		atomic_inc(&sk->sk_drops);
508 		goto discard_and_relse;
509 	}
510 
511 	bh_unlock_sock(sk);
512 out:
513 	sock_put(sk);
514 	return rc;
515 discard_and_relse:
516 	kfree_skb(skb);
517 	goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520 
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 	struct dst_entry *dst = __sk_dst_get(sk);
524 
525 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 		sk_tx_queue_clear(sk);
527 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 		dst_release(dst);
529 		return NULL;
530 	}
531 
532 	return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535 
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 	struct dst_entry *dst = sk_dst_get(sk);
539 
540 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 		sk_dst_reset(sk);
542 		dst_release(dst);
543 		return NULL;
544 	}
545 
546 	return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549 
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 				int optlen)
552 {
553 	int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 	struct net *net = sock_net(sk);
556 	char devname[IFNAMSIZ];
557 	int index;
558 
559 	/* Sorry... */
560 	ret = -EPERM;
561 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 		goto out;
563 
564 	ret = -EINVAL;
565 	if (optlen < 0)
566 		goto out;
567 
568 	/* Bind this socket to a particular device like "eth0",
569 	 * as specified in the passed interface name. If the
570 	 * name is "" or the option length is zero the socket
571 	 * is not bound.
572 	 */
573 	if (optlen > IFNAMSIZ - 1)
574 		optlen = IFNAMSIZ - 1;
575 	memset(devname, 0, sizeof(devname));
576 
577 	ret = -EFAULT;
578 	if (copy_from_user(devname, optval, optlen))
579 		goto out;
580 
581 	index = 0;
582 	if (devname[0] != '\0') {
583 		struct net_device *dev;
584 
585 		rcu_read_lock();
586 		dev = dev_get_by_name_rcu(net, devname);
587 		if (dev)
588 			index = dev->ifindex;
589 		rcu_read_unlock();
590 		ret = -ENODEV;
591 		if (!dev)
592 			goto out;
593 	}
594 
595 	lock_sock(sk);
596 	sk->sk_bound_dev_if = index;
597 	sk_dst_reset(sk);
598 	release_sock(sk);
599 
600 	ret = 0;
601 
602 out:
603 #endif
604 
605 	return ret;
606 }
607 
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 				int __user *optlen, int len)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 
616 	if (sk->sk_bound_dev_if == 0) {
617 		len = 0;
618 		goto zero;
619 	}
620 
621 	ret = -EINVAL;
622 	if (len < IFNAMSIZ)
623 		goto out;
624 
625 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 	if (ret)
627 		goto out;
628 
629 	len = strlen(devname) + 1;
630 
631 	ret = -EFAULT;
632 	if (copy_to_user(optval, devname, len))
633 		goto out;
634 
635 zero:
636 	ret = -EFAULT;
637 	if (put_user(len, optlen))
638 		goto out;
639 
640 	ret = 0;
641 
642 out:
643 #endif
644 
645 	return ret;
646 }
647 
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 	if (valbool)
651 		sock_set_flag(sk, bit);
652 	else
653 		sock_reset_flag(sk, bit);
654 }
655 
656 bool sk_mc_loop(struct sock *sk)
657 {
658 	if (dev_recursion_level())
659 		return false;
660 	if (!sk)
661 		return true;
662 	switch (sk->sk_family) {
663 	case AF_INET:
664 		return inet_sk(sk)->mc_loop;
665 #if IS_ENABLED(CONFIG_IPV6)
666 	case AF_INET6:
667 		return inet6_sk(sk)->mc_loop;
668 #endif
669 	}
670 	WARN_ON(1);
671 	return true;
672 }
673 EXPORT_SYMBOL(sk_mc_loop);
674 
675 /*
676  *	This is meant for all protocols to use and covers goings on
677  *	at the socket level. Everything here is generic.
678  */
679 
680 int sock_setsockopt(struct socket *sock, int level, int optname,
681 		    char __user *optval, unsigned int optlen)
682 {
683 	struct sock *sk = sock->sk;
684 	int val;
685 	int valbool;
686 	struct linger ling;
687 	int ret = 0;
688 
689 	/*
690 	 *	Options without arguments
691 	 */
692 
693 	if (optname == SO_BINDTODEVICE)
694 		return sock_setbindtodevice(sk, optval, optlen);
695 
696 	if (optlen < sizeof(int))
697 		return -EINVAL;
698 
699 	if (get_user(val, (int __user *)optval))
700 		return -EFAULT;
701 
702 	valbool = val ? 1 : 0;
703 
704 	lock_sock(sk);
705 
706 	switch (optname) {
707 	case SO_DEBUG:
708 		if (val && !capable(CAP_NET_ADMIN))
709 			ret = -EACCES;
710 		else
711 			sock_valbool_flag(sk, SOCK_DBG, valbool);
712 		break;
713 	case SO_REUSEADDR:
714 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 		break;
716 	case SO_REUSEPORT:
717 		sk->sk_reuseport = valbool;
718 		break;
719 	case SO_TYPE:
720 	case SO_PROTOCOL:
721 	case SO_DOMAIN:
722 	case SO_ERROR:
723 		ret = -ENOPROTOOPT;
724 		break;
725 	case SO_DONTROUTE:
726 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 		break;
728 	case SO_BROADCAST:
729 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 		break;
731 	case SO_SNDBUF:
732 		/* Don't error on this BSD doesn't and if you think
733 		 * about it this is right. Otherwise apps have to
734 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 		 * are treated in BSD as hints
736 		 */
737 		val = min_t(u32, val, sysctl_wmem_max);
738 set_sndbuf:
739 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
740 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
741 		/* Wake up sending tasks if we upped the value. */
742 		sk->sk_write_space(sk);
743 		break;
744 
745 	case SO_SNDBUFFORCE:
746 		if (!capable(CAP_NET_ADMIN)) {
747 			ret = -EPERM;
748 			break;
749 		}
750 		goto set_sndbuf;
751 
752 	case SO_RCVBUF:
753 		/* Don't error on this BSD doesn't and if you think
754 		 * about it this is right. Otherwise apps have to
755 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 		 * are treated in BSD as hints
757 		 */
758 		val = min_t(u32, val, sysctl_rmem_max);
759 set_rcvbuf:
760 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
761 		/*
762 		 * We double it on the way in to account for
763 		 * "struct sk_buff" etc. overhead.   Applications
764 		 * assume that the SO_RCVBUF setting they make will
765 		 * allow that much actual data to be received on that
766 		 * socket.
767 		 *
768 		 * Applications are unaware that "struct sk_buff" and
769 		 * other overheads allocate from the receive buffer
770 		 * during socket buffer allocation.
771 		 *
772 		 * And after considering the possible alternatives,
773 		 * returning the value we actually used in getsockopt
774 		 * is the most desirable behavior.
775 		 */
776 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
777 		break;
778 
779 	case SO_RCVBUFFORCE:
780 		if (!capable(CAP_NET_ADMIN)) {
781 			ret = -EPERM;
782 			break;
783 		}
784 		goto set_rcvbuf;
785 
786 	case SO_KEEPALIVE:
787 #ifdef CONFIG_INET
788 		if (sk->sk_protocol == IPPROTO_TCP &&
789 		    sk->sk_type == SOCK_STREAM)
790 			tcp_set_keepalive(sk, valbool);
791 #endif
792 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
793 		break;
794 
795 	case SO_OOBINLINE:
796 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
797 		break;
798 
799 	case SO_NO_CHECK:
800 		sk->sk_no_check_tx = valbool;
801 		break;
802 
803 	case SO_PRIORITY:
804 		if ((val >= 0 && val <= 6) ||
805 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
806 			sk->sk_priority = val;
807 		else
808 			ret = -EPERM;
809 		break;
810 
811 	case SO_LINGER:
812 		if (optlen < sizeof(ling)) {
813 			ret = -EINVAL;	/* 1003.1g */
814 			break;
815 		}
816 		if (copy_from_user(&ling, optval, sizeof(ling))) {
817 			ret = -EFAULT;
818 			break;
819 		}
820 		if (!ling.l_onoff)
821 			sock_reset_flag(sk, SOCK_LINGER);
822 		else {
823 #if (BITS_PER_LONG == 32)
824 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
825 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 			else
827 #endif
828 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
829 			sock_set_flag(sk, SOCK_LINGER);
830 		}
831 		break;
832 
833 	case SO_BSDCOMPAT:
834 		sock_warn_obsolete_bsdism("setsockopt");
835 		break;
836 
837 	case SO_PASSCRED:
838 		if (valbool)
839 			set_bit(SOCK_PASSCRED, &sock->flags);
840 		else
841 			clear_bit(SOCK_PASSCRED, &sock->flags);
842 		break;
843 
844 	case SO_TIMESTAMP:
845 	case SO_TIMESTAMPNS:
846 		if (valbool)  {
847 			if (optname == SO_TIMESTAMP)
848 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
849 			else
850 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
851 			sock_set_flag(sk, SOCK_RCVTSTAMP);
852 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
853 		} else {
854 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
855 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
856 		}
857 		break;
858 
859 	case SO_TIMESTAMPING:
860 		if (val & ~SOF_TIMESTAMPING_MASK) {
861 			ret = -EINVAL;
862 			break;
863 		}
864 
865 		if (val & SOF_TIMESTAMPING_OPT_ID &&
866 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
867 			if (sk->sk_protocol == IPPROTO_TCP) {
868 				if (sk->sk_state != TCP_ESTABLISHED) {
869 					ret = -EINVAL;
870 					break;
871 				}
872 				sk->sk_tskey = tcp_sk(sk)->snd_una;
873 			} else {
874 				sk->sk_tskey = 0;
875 			}
876 		}
877 		sk->sk_tsflags = val;
878 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
879 			sock_enable_timestamp(sk,
880 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
881 		else
882 			sock_disable_timestamp(sk,
883 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
884 		break;
885 
886 	case SO_RCVLOWAT:
887 		if (val < 0)
888 			val = INT_MAX;
889 		sk->sk_rcvlowat = val ? : 1;
890 		break;
891 
892 	case SO_RCVTIMEO:
893 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
894 		break;
895 
896 	case SO_SNDTIMEO:
897 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 		break;
899 
900 	case SO_ATTACH_FILTER:
901 		ret = -EINVAL;
902 		if (optlen == sizeof(struct sock_fprog)) {
903 			struct sock_fprog fprog;
904 
905 			ret = -EFAULT;
906 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 				break;
908 
909 			ret = sk_attach_filter(&fprog, sk);
910 		}
911 		break;
912 
913 	case SO_ATTACH_BPF:
914 		ret = -EINVAL;
915 		if (optlen == sizeof(u32)) {
916 			u32 ufd;
917 
918 			ret = -EFAULT;
919 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 				break;
921 
922 			ret = sk_attach_bpf(ufd, sk);
923 		}
924 		break;
925 
926 	case SO_DETACH_FILTER:
927 		ret = sk_detach_filter(sk);
928 		break;
929 
930 	case SO_LOCK_FILTER:
931 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 			ret = -EPERM;
933 		else
934 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
935 		break;
936 
937 	case SO_PASSSEC:
938 		if (valbool)
939 			set_bit(SOCK_PASSSEC, &sock->flags);
940 		else
941 			clear_bit(SOCK_PASSSEC, &sock->flags);
942 		break;
943 	case SO_MARK:
944 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
945 			ret = -EPERM;
946 		else
947 			sk->sk_mark = val;
948 		break;
949 
950 	case SO_RXQ_OVFL:
951 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
952 		break;
953 
954 	case SO_WIFI_STATUS:
955 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
956 		break;
957 
958 	case SO_PEEK_OFF:
959 		if (sock->ops->set_peek_off)
960 			ret = sock->ops->set_peek_off(sk, val);
961 		else
962 			ret = -EOPNOTSUPP;
963 		break;
964 
965 	case SO_NOFCS:
966 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
967 		break;
968 
969 	case SO_SELECT_ERR_QUEUE:
970 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
971 		break;
972 
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 	case SO_BUSY_POLL:
975 		/* allow unprivileged users to decrease the value */
976 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
977 			ret = -EPERM;
978 		else {
979 			if (val < 0)
980 				ret = -EINVAL;
981 			else
982 				sk->sk_ll_usec = val;
983 		}
984 		break;
985 #endif
986 
987 	case SO_MAX_PACING_RATE:
988 		sk->sk_max_pacing_rate = val;
989 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
990 					 sk->sk_max_pacing_rate);
991 		break;
992 
993 	default:
994 		ret = -ENOPROTOOPT;
995 		break;
996 	}
997 	release_sock(sk);
998 	return ret;
999 }
1000 EXPORT_SYMBOL(sock_setsockopt);
1001 
1002 
1003 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1004 			  struct ucred *ucred)
1005 {
1006 	ucred->pid = pid_vnr(pid);
1007 	ucred->uid = ucred->gid = -1;
1008 	if (cred) {
1009 		struct user_namespace *current_ns = current_user_ns();
1010 
1011 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1012 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1013 	}
1014 }
1015 
1016 int sock_getsockopt(struct socket *sock, int level, int optname,
1017 		    char __user *optval, int __user *optlen)
1018 {
1019 	struct sock *sk = sock->sk;
1020 
1021 	union {
1022 		int val;
1023 		struct linger ling;
1024 		struct timeval tm;
1025 	} v;
1026 
1027 	int lv = sizeof(int);
1028 	int len;
1029 
1030 	if (get_user(len, optlen))
1031 		return -EFAULT;
1032 	if (len < 0)
1033 		return -EINVAL;
1034 
1035 	memset(&v, 0, sizeof(v));
1036 
1037 	switch (optname) {
1038 	case SO_DEBUG:
1039 		v.val = sock_flag(sk, SOCK_DBG);
1040 		break;
1041 
1042 	case SO_DONTROUTE:
1043 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1044 		break;
1045 
1046 	case SO_BROADCAST:
1047 		v.val = sock_flag(sk, SOCK_BROADCAST);
1048 		break;
1049 
1050 	case SO_SNDBUF:
1051 		v.val = sk->sk_sndbuf;
1052 		break;
1053 
1054 	case SO_RCVBUF:
1055 		v.val = sk->sk_rcvbuf;
1056 		break;
1057 
1058 	case SO_REUSEADDR:
1059 		v.val = sk->sk_reuse;
1060 		break;
1061 
1062 	case SO_REUSEPORT:
1063 		v.val = sk->sk_reuseport;
1064 		break;
1065 
1066 	case SO_KEEPALIVE:
1067 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1068 		break;
1069 
1070 	case SO_TYPE:
1071 		v.val = sk->sk_type;
1072 		break;
1073 
1074 	case SO_PROTOCOL:
1075 		v.val = sk->sk_protocol;
1076 		break;
1077 
1078 	case SO_DOMAIN:
1079 		v.val = sk->sk_family;
1080 		break;
1081 
1082 	case SO_ERROR:
1083 		v.val = -sock_error(sk);
1084 		if (v.val == 0)
1085 			v.val = xchg(&sk->sk_err_soft, 0);
1086 		break;
1087 
1088 	case SO_OOBINLINE:
1089 		v.val = sock_flag(sk, SOCK_URGINLINE);
1090 		break;
1091 
1092 	case SO_NO_CHECK:
1093 		v.val = sk->sk_no_check_tx;
1094 		break;
1095 
1096 	case SO_PRIORITY:
1097 		v.val = sk->sk_priority;
1098 		break;
1099 
1100 	case SO_LINGER:
1101 		lv		= sizeof(v.ling);
1102 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1103 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1104 		break;
1105 
1106 	case SO_BSDCOMPAT:
1107 		sock_warn_obsolete_bsdism("getsockopt");
1108 		break;
1109 
1110 	case SO_TIMESTAMP:
1111 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1112 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 		break;
1114 
1115 	case SO_TIMESTAMPNS:
1116 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 		break;
1118 
1119 	case SO_TIMESTAMPING:
1120 		v.val = sk->sk_tsflags;
1121 		break;
1122 
1123 	case SO_RCVTIMEO:
1124 		lv = sizeof(struct timeval);
1125 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1126 			v.tm.tv_sec = 0;
1127 			v.tm.tv_usec = 0;
1128 		} else {
1129 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1130 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1131 		}
1132 		break;
1133 
1134 	case SO_SNDTIMEO:
1135 		lv = sizeof(struct timeval);
1136 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1137 			v.tm.tv_sec = 0;
1138 			v.tm.tv_usec = 0;
1139 		} else {
1140 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1141 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1142 		}
1143 		break;
1144 
1145 	case SO_RCVLOWAT:
1146 		v.val = sk->sk_rcvlowat;
1147 		break;
1148 
1149 	case SO_SNDLOWAT:
1150 		v.val = 1;
1151 		break;
1152 
1153 	case SO_PASSCRED:
1154 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1155 		break;
1156 
1157 	case SO_PEERCRED:
1158 	{
1159 		struct ucred peercred;
1160 		if (len > sizeof(peercred))
1161 			len = sizeof(peercred);
1162 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1163 		if (copy_to_user(optval, &peercred, len))
1164 			return -EFAULT;
1165 		goto lenout;
1166 	}
1167 
1168 	case SO_PEERNAME:
1169 	{
1170 		char address[128];
1171 
1172 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1173 			return -ENOTCONN;
1174 		if (lv < len)
1175 			return -EINVAL;
1176 		if (copy_to_user(optval, address, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	/* Dubious BSD thing... Probably nobody even uses it, but
1182 	 * the UNIX standard wants it for whatever reason... -DaveM
1183 	 */
1184 	case SO_ACCEPTCONN:
1185 		v.val = sk->sk_state == TCP_LISTEN;
1186 		break;
1187 
1188 	case SO_PASSSEC:
1189 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1190 		break;
1191 
1192 	case SO_PEERSEC:
1193 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1194 
1195 	case SO_MARK:
1196 		v.val = sk->sk_mark;
1197 		break;
1198 
1199 	case SO_RXQ_OVFL:
1200 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1201 		break;
1202 
1203 	case SO_WIFI_STATUS:
1204 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1205 		break;
1206 
1207 	case SO_PEEK_OFF:
1208 		if (!sock->ops->set_peek_off)
1209 			return -EOPNOTSUPP;
1210 
1211 		v.val = sk->sk_peek_off;
1212 		break;
1213 	case SO_NOFCS:
1214 		v.val = sock_flag(sk, SOCK_NOFCS);
1215 		break;
1216 
1217 	case SO_BINDTODEVICE:
1218 		return sock_getbindtodevice(sk, optval, optlen, len);
1219 
1220 	case SO_GET_FILTER:
1221 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1222 		if (len < 0)
1223 			return len;
1224 
1225 		goto lenout;
1226 
1227 	case SO_LOCK_FILTER:
1228 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1229 		break;
1230 
1231 	case SO_BPF_EXTENSIONS:
1232 		v.val = bpf_tell_extensions();
1233 		break;
1234 
1235 	case SO_SELECT_ERR_QUEUE:
1236 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1237 		break;
1238 
1239 #ifdef CONFIG_NET_RX_BUSY_POLL
1240 	case SO_BUSY_POLL:
1241 		v.val = sk->sk_ll_usec;
1242 		break;
1243 #endif
1244 
1245 	case SO_MAX_PACING_RATE:
1246 		v.val = sk->sk_max_pacing_rate;
1247 		break;
1248 
1249 	case SO_INCOMING_CPU:
1250 		v.val = sk->sk_incoming_cpu;
1251 		break;
1252 
1253 	default:
1254 		/* We implement the SO_SNDLOWAT etc to not be settable
1255 		 * (1003.1g 7).
1256 		 */
1257 		return -ENOPROTOOPT;
1258 	}
1259 
1260 	if (len > lv)
1261 		len = lv;
1262 	if (copy_to_user(optval, &v, len))
1263 		return -EFAULT;
1264 lenout:
1265 	if (put_user(len, optlen))
1266 		return -EFAULT;
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Initialize an sk_lock.
1272  *
1273  * (We also register the sk_lock with the lock validator.)
1274  */
1275 static inline void sock_lock_init(struct sock *sk)
1276 {
1277 	sock_lock_init_class_and_name(sk,
1278 			af_family_slock_key_strings[sk->sk_family],
1279 			af_family_slock_keys + sk->sk_family,
1280 			af_family_key_strings[sk->sk_family],
1281 			af_family_keys + sk->sk_family);
1282 }
1283 
1284 /*
1285  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1286  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1287  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1288  */
1289 static void sock_copy(struct sock *nsk, const struct sock *osk)
1290 {
1291 #ifdef CONFIG_SECURITY_NETWORK
1292 	void *sptr = nsk->sk_security;
1293 #endif
1294 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1295 
1296 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1297 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1298 
1299 #ifdef CONFIG_SECURITY_NETWORK
1300 	nsk->sk_security = sptr;
1301 	security_sk_clone(osk, nsk);
1302 #endif
1303 }
1304 
1305 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1306 {
1307 	unsigned long nulls1, nulls2;
1308 
1309 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1310 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1311 	if (nulls1 > nulls2)
1312 		swap(nulls1, nulls2);
1313 
1314 	if (nulls1 != 0)
1315 		memset((char *)sk, 0, nulls1);
1316 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1317 	       nulls2 - nulls1 - sizeof(void *));
1318 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1319 	       size - nulls2 - sizeof(void *));
1320 }
1321 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1322 
1323 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1324 		int family)
1325 {
1326 	struct sock *sk;
1327 	struct kmem_cache *slab;
1328 
1329 	slab = prot->slab;
1330 	if (slab != NULL) {
1331 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1332 		if (!sk)
1333 			return sk;
1334 		if (priority & __GFP_ZERO) {
1335 			if (prot->clear_sk)
1336 				prot->clear_sk(sk, prot->obj_size);
1337 			else
1338 				sk_prot_clear_nulls(sk, prot->obj_size);
1339 		}
1340 	} else
1341 		sk = kmalloc(prot->obj_size, priority);
1342 
1343 	if (sk != NULL) {
1344 		kmemcheck_annotate_bitfield(sk, flags);
1345 
1346 		if (security_sk_alloc(sk, family, priority))
1347 			goto out_free;
1348 
1349 		if (!try_module_get(prot->owner))
1350 			goto out_free_sec;
1351 		sk_tx_queue_clear(sk);
1352 	}
1353 
1354 	return sk;
1355 
1356 out_free_sec:
1357 	security_sk_free(sk);
1358 out_free:
1359 	if (slab != NULL)
1360 		kmem_cache_free(slab, sk);
1361 	else
1362 		kfree(sk);
1363 	return NULL;
1364 }
1365 
1366 static void sk_prot_free(struct proto *prot, struct sock *sk)
1367 {
1368 	struct kmem_cache *slab;
1369 	struct module *owner;
1370 
1371 	owner = prot->owner;
1372 	slab = prot->slab;
1373 
1374 	security_sk_free(sk);
1375 	if (slab != NULL)
1376 		kmem_cache_free(slab, sk);
1377 	else
1378 		kfree(sk);
1379 	module_put(owner);
1380 }
1381 
1382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1383 void sock_update_netprioidx(struct sock *sk)
1384 {
1385 	if (in_interrupt())
1386 		return;
1387 
1388 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1389 }
1390 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1391 #endif
1392 
1393 /**
1394  *	sk_alloc - All socket objects are allocated here
1395  *	@net: the applicable net namespace
1396  *	@family: protocol family
1397  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1398  *	@prot: struct proto associated with this new sock instance
1399  */
1400 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1401 		      struct proto *prot)
1402 {
1403 	struct sock *sk;
1404 
1405 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1406 	if (sk) {
1407 		sk->sk_family = family;
1408 		/*
1409 		 * See comment in struct sock definition to understand
1410 		 * why we need sk_prot_creator -acme
1411 		 */
1412 		sk->sk_prot = sk->sk_prot_creator = prot;
1413 		sock_lock_init(sk);
1414 		sock_net_set(sk, get_net(net));
1415 		atomic_set(&sk->sk_wmem_alloc, 1);
1416 
1417 		sock_update_classid(sk);
1418 		sock_update_netprioidx(sk);
1419 	}
1420 
1421 	return sk;
1422 }
1423 EXPORT_SYMBOL(sk_alloc);
1424 
1425 static void __sk_free(struct sock *sk)
1426 {
1427 	struct sk_filter *filter;
1428 
1429 	if (sk->sk_destruct)
1430 		sk->sk_destruct(sk);
1431 
1432 	filter = rcu_dereference_check(sk->sk_filter,
1433 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1434 	if (filter) {
1435 		sk_filter_uncharge(sk, filter);
1436 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1437 	}
1438 
1439 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1440 
1441 	if (atomic_read(&sk->sk_omem_alloc))
1442 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1443 			 __func__, atomic_read(&sk->sk_omem_alloc));
1444 
1445 	if (sk->sk_peer_cred)
1446 		put_cred(sk->sk_peer_cred);
1447 	put_pid(sk->sk_peer_pid);
1448 	put_net(sock_net(sk));
1449 	sk_prot_free(sk->sk_prot_creator, sk);
1450 }
1451 
1452 void sk_free(struct sock *sk)
1453 {
1454 	/*
1455 	 * We subtract one from sk_wmem_alloc and can know if
1456 	 * some packets are still in some tx queue.
1457 	 * If not null, sock_wfree() will call __sk_free(sk) later
1458 	 */
1459 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1460 		__sk_free(sk);
1461 }
1462 EXPORT_SYMBOL(sk_free);
1463 
1464 /*
1465  * Last sock_put should drop reference to sk->sk_net. It has already
1466  * been dropped in sk_change_net. Taking reference to stopping namespace
1467  * is not an option.
1468  * Take reference to a socket to remove it from hash _alive_ and after that
1469  * destroy it in the context of init_net.
1470  */
1471 void sk_release_kernel(struct sock *sk)
1472 {
1473 	if (sk == NULL || sk->sk_socket == NULL)
1474 		return;
1475 
1476 	sock_hold(sk);
1477 	sock_net_set(sk, get_net(&init_net));
1478 	sock_release(sk->sk_socket);
1479 	sock_put(sk);
1480 }
1481 EXPORT_SYMBOL(sk_release_kernel);
1482 
1483 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1484 {
1485 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1486 		sock_update_memcg(newsk);
1487 }
1488 
1489 /**
1490  *	sk_clone_lock - clone a socket, and lock its clone
1491  *	@sk: the socket to clone
1492  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1493  *
1494  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1495  */
1496 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1497 {
1498 	struct sock *newsk;
1499 	bool is_charged = true;
1500 
1501 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1502 	if (newsk != NULL) {
1503 		struct sk_filter *filter;
1504 
1505 		sock_copy(newsk, sk);
1506 
1507 		/* SANITY */
1508 		get_net(sock_net(newsk));
1509 		sk_node_init(&newsk->sk_node);
1510 		sock_lock_init(newsk);
1511 		bh_lock_sock(newsk);
1512 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1513 		newsk->sk_backlog.len = 0;
1514 
1515 		atomic_set(&newsk->sk_rmem_alloc, 0);
1516 		/*
1517 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1518 		 */
1519 		atomic_set(&newsk->sk_wmem_alloc, 1);
1520 		atomic_set(&newsk->sk_omem_alloc, 0);
1521 		skb_queue_head_init(&newsk->sk_receive_queue);
1522 		skb_queue_head_init(&newsk->sk_write_queue);
1523 
1524 		spin_lock_init(&newsk->sk_dst_lock);
1525 		rwlock_init(&newsk->sk_callback_lock);
1526 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1527 				af_callback_keys + newsk->sk_family,
1528 				af_family_clock_key_strings[newsk->sk_family]);
1529 
1530 		newsk->sk_dst_cache	= NULL;
1531 		newsk->sk_wmem_queued	= 0;
1532 		newsk->sk_forward_alloc = 0;
1533 		newsk->sk_send_head	= NULL;
1534 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1535 
1536 		sock_reset_flag(newsk, SOCK_DONE);
1537 		skb_queue_head_init(&newsk->sk_error_queue);
1538 
1539 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1540 		if (filter != NULL)
1541 			/* though it's an empty new sock, the charging may fail
1542 			 * if sysctl_optmem_max was changed between creation of
1543 			 * original socket and cloning
1544 			 */
1545 			is_charged = sk_filter_charge(newsk, filter);
1546 
1547 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1548 			/* It is still raw copy of parent, so invalidate
1549 			 * destructor and make plain sk_free() */
1550 			newsk->sk_destruct = NULL;
1551 			bh_unlock_sock(newsk);
1552 			sk_free(newsk);
1553 			newsk = NULL;
1554 			goto out;
1555 		}
1556 
1557 		newsk->sk_err	   = 0;
1558 		newsk->sk_priority = 0;
1559 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1560 		atomic64_set(&newsk->sk_cookie, 0);
1561 		/*
1562 		 * Before updating sk_refcnt, we must commit prior changes to memory
1563 		 * (Documentation/RCU/rculist_nulls.txt for details)
1564 		 */
1565 		smp_wmb();
1566 		atomic_set(&newsk->sk_refcnt, 2);
1567 
1568 		/*
1569 		 * Increment the counter in the same struct proto as the master
1570 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1571 		 * is the same as sk->sk_prot->socks, as this field was copied
1572 		 * with memcpy).
1573 		 *
1574 		 * This _changes_ the previous behaviour, where
1575 		 * tcp_create_openreq_child always was incrementing the
1576 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1577 		 * to be taken into account in all callers. -acme
1578 		 */
1579 		sk_refcnt_debug_inc(newsk);
1580 		sk_set_socket(newsk, NULL);
1581 		newsk->sk_wq = NULL;
1582 
1583 		sk_update_clone(sk, newsk);
1584 
1585 		if (newsk->sk_prot->sockets_allocated)
1586 			sk_sockets_allocated_inc(newsk);
1587 
1588 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1589 			net_enable_timestamp();
1590 	}
1591 out:
1592 	return newsk;
1593 }
1594 EXPORT_SYMBOL_GPL(sk_clone_lock);
1595 
1596 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1597 {
1598 	__sk_dst_set(sk, dst);
1599 	sk->sk_route_caps = dst->dev->features;
1600 	if (sk->sk_route_caps & NETIF_F_GSO)
1601 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1602 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1603 	if (sk_can_gso(sk)) {
1604 		if (dst->header_len) {
1605 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1606 		} else {
1607 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1608 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1609 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1610 		}
1611 	}
1612 }
1613 EXPORT_SYMBOL_GPL(sk_setup_caps);
1614 
1615 /*
1616  *	Simple resource managers for sockets.
1617  */
1618 
1619 
1620 /*
1621  * Write buffer destructor automatically called from kfree_skb.
1622  */
1623 void sock_wfree(struct sk_buff *skb)
1624 {
1625 	struct sock *sk = skb->sk;
1626 	unsigned int len = skb->truesize;
1627 
1628 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1629 		/*
1630 		 * Keep a reference on sk_wmem_alloc, this will be released
1631 		 * after sk_write_space() call
1632 		 */
1633 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1634 		sk->sk_write_space(sk);
1635 		len = 1;
1636 	}
1637 	/*
1638 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1639 	 * could not do because of in-flight packets
1640 	 */
1641 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1642 		__sk_free(sk);
1643 }
1644 EXPORT_SYMBOL(sock_wfree);
1645 
1646 void skb_orphan_partial(struct sk_buff *skb)
1647 {
1648 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1649 	 * so we do not completely orphan skb, but transfert all
1650 	 * accounted bytes but one, to avoid unexpected reorders.
1651 	 */
1652 	if (skb->destructor == sock_wfree
1653 #ifdef CONFIG_INET
1654 	    || skb->destructor == tcp_wfree
1655 #endif
1656 		) {
1657 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1658 		skb->truesize = 1;
1659 	} else {
1660 		skb_orphan(skb);
1661 	}
1662 }
1663 EXPORT_SYMBOL(skb_orphan_partial);
1664 
1665 /*
1666  * Read buffer destructor automatically called from kfree_skb.
1667  */
1668 void sock_rfree(struct sk_buff *skb)
1669 {
1670 	struct sock *sk = skb->sk;
1671 	unsigned int len = skb->truesize;
1672 
1673 	atomic_sub(len, &sk->sk_rmem_alloc);
1674 	sk_mem_uncharge(sk, len);
1675 }
1676 EXPORT_SYMBOL(sock_rfree);
1677 
1678 /*
1679  * Buffer destructor for skbs that are not used directly in read or write
1680  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1681  */
1682 void sock_efree(struct sk_buff *skb)
1683 {
1684 	sock_put(skb->sk);
1685 }
1686 EXPORT_SYMBOL(sock_efree);
1687 
1688 kuid_t sock_i_uid(struct sock *sk)
1689 {
1690 	kuid_t uid;
1691 
1692 	read_lock_bh(&sk->sk_callback_lock);
1693 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1694 	read_unlock_bh(&sk->sk_callback_lock);
1695 	return uid;
1696 }
1697 EXPORT_SYMBOL(sock_i_uid);
1698 
1699 unsigned long sock_i_ino(struct sock *sk)
1700 {
1701 	unsigned long ino;
1702 
1703 	read_lock_bh(&sk->sk_callback_lock);
1704 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1705 	read_unlock_bh(&sk->sk_callback_lock);
1706 	return ino;
1707 }
1708 EXPORT_SYMBOL(sock_i_ino);
1709 
1710 /*
1711  * Allocate a skb from the socket's send buffer.
1712  */
1713 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1714 			     gfp_t priority)
1715 {
1716 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1717 		struct sk_buff *skb = alloc_skb(size, priority);
1718 		if (skb) {
1719 			skb_set_owner_w(skb, sk);
1720 			return skb;
1721 		}
1722 	}
1723 	return NULL;
1724 }
1725 EXPORT_SYMBOL(sock_wmalloc);
1726 
1727 /*
1728  * Allocate a memory block from the socket's option memory buffer.
1729  */
1730 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1731 {
1732 	if ((unsigned int)size <= sysctl_optmem_max &&
1733 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1734 		void *mem;
1735 		/* First do the add, to avoid the race if kmalloc
1736 		 * might sleep.
1737 		 */
1738 		atomic_add(size, &sk->sk_omem_alloc);
1739 		mem = kmalloc(size, priority);
1740 		if (mem)
1741 			return mem;
1742 		atomic_sub(size, &sk->sk_omem_alloc);
1743 	}
1744 	return NULL;
1745 }
1746 EXPORT_SYMBOL(sock_kmalloc);
1747 
1748 /* Free an option memory block. Note, we actually want the inline
1749  * here as this allows gcc to detect the nullify and fold away the
1750  * condition entirely.
1751  */
1752 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1753 				  const bool nullify)
1754 {
1755 	if (WARN_ON_ONCE(!mem))
1756 		return;
1757 	if (nullify)
1758 		kzfree(mem);
1759 	else
1760 		kfree(mem);
1761 	atomic_sub(size, &sk->sk_omem_alloc);
1762 }
1763 
1764 void sock_kfree_s(struct sock *sk, void *mem, int size)
1765 {
1766 	__sock_kfree_s(sk, mem, size, false);
1767 }
1768 EXPORT_SYMBOL(sock_kfree_s);
1769 
1770 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1771 {
1772 	__sock_kfree_s(sk, mem, size, true);
1773 }
1774 EXPORT_SYMBOL(sock_kzfree_s);
1775 
1776 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1777    I think, these locks should be removed for datagram sockets.
1778  */
1779 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1780 {
1781 	DEFINE_WAIT(wait);
1782 
1783 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1784 	for (;;) {
1785 		if (!timeo)
1786 			break;
1787 		if (signal_pending(current))
1788 			break;
1789 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1790 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1791 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1792 			break;
1793 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1794 			break;
1795 		if (sk->sk_err)
1796 			break;
1797 		timeo = schedule_timeout(timeo);
1798 	}
1799 	finish_wait(sk_sleep(sk), &wait);
1800 	return timeo;
1801 }
1802 
1803 
1804 /*
1805  *	Generic send/receive buffer handlers
1806  */
1807 
1808 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1809 				     unsigned long data_len, int noblock,
1810 				     int *errcode, int max_page_order)
1811 {
1812 	struct sk_buff *skb;
1813 	long timeo;
1814 	int err;
1815 
1816 	timeo = sock_sndtimeo(sk, noblock);
1817 	for (;;) {
1818 		err = sock_error(sk);
1819 		if (err != 0)
1820 			goto failure;
1821 
1822 		err = -EPIPE;
1823 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1824 			goto failure;
1825 
1826 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1827 			break;
1828 
1829 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1830 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1831 		err = -EAGAIN;
1832 		if (!timeo)
1833 			goto failure;
1834 		if (signal_pending(current))
1835 			goto interrupted;
1836 		timeo = sock_wait_for_wmem(sk, timeo);
1837 	}
1838 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1839 				   errcode, sk->sk_allocation);
1840 	if (skb)
1841 		skb_set_owner_w(skb, sk);
1842 	return skb;
1843 
1844 interrupted:
1845 	err = sock_intr_errno(timeo);
1846 failure:
1847 	*errcode = err;
1848 	return NULL;
1849 }
1850 EXPORT_SYMBOL(sock_alloc_send_pskb);
1851 
1852 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1853 				    int noblock, int *errcode)
1854 {
1855 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1856 }
1857 EXPORT_SYMBOL(sock_alloc_send_skb);
1858 
1859 /* On 32bit arches, an skb frag is limited to 2^15 */
1860 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1861 
1862 /**
1863  * skb_page_frag_refill - check that a page_frag contains enough room
1864  * @sz: minimum size of the fragment we want to get
1865  * @pfrag: pointer to page_frag
1866  * @gfp: priority for memory allocation
1867  *
1868  * Note: While this allocator tries to use high order pages, there is
1869  * no guarantee that allocations succeed. Therefore, @sz MUST be
1870  * less or equal than PAGE_SIZE.
1871  */
1872 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1873 {
1874 	if (pfrag->page) {
1875 		if (atomic_read(&pfrag->page->_count) == 1) {
1876 			pfrag->offset = 0;
1877 			return true;
1878 		}
1879 		if (pfrag->offset + sz <= pfrag->size)
1880 			return true;
1881 		put_page(pfrag->page);
1882 	}
1883 
1884 	pfrag->offset = 0;
1885 	if (SKB_FRAG_PAGE_ORDER) {
1886 		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1887 					  __GFP_NOWARN | __GFP_NORETRY,
1888 					  SKB_FRAG_PAGE_ORDER);
1889 		if (likely(pfrag->page)) {
1890 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1891 			return true;
1892 		}
1893 	}
1894 	pfrag->page = alloc_page(gfp);
1895 	if (likely(pfrag->page)) {
1896 		pfrag->size = PAGE_SIZE;
1897 		return true;
1898 	}
1899 	return false;
1900 }
1901 EXPORT_SYMBOL(skb_page_frag_refill);
1902 
1903 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1904 {
1905 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1906 		return true;
1907 
1908 	sk_enter_memory_pressure(sk);
1909 	sk_stream_moderate_sndbuf(sk);
1910 	return false;
1911 }
1912 EXPORT_SYMBOL(sk_page_frag_refill);
1913 
1914 static void __lock_sock(struct sock *sk)
1915 	__releases(&sk->sk_lock.slock)
1916 	__acquires(&sk->sk_lock.slock)
1917 {
1918 	DEFINE_WAIT(wait);
1919 
1920 	for (;;) {
1921 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1922 					TASK_UNINTERRUPTIBLE);
1923 		spin_unlock_bh(&sk->sk_lock.slock);
1924 		schedule();
1925 		spin_lock_bh(&sk->sk_lock.slock);
1926 		if (!sock_owned_by_user(sk))
1927 			break;
1928 	}
1929 	finish_wait(&sk->sk_lock.wq, &wait);
1930 }
1931 
1932 static void __release_sock(struct sock *sk)
1933 	__releases(&sk->sk_lock.slock)
1934 	__acquires(&sk->sk_lock.slock)
1935 {
1936 	struct sk_buff *skb = sk->sk_backlog.head;
1937 
1938 	do {
1939 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1940 		bh_unlock_sock(sk);
1941 
1942 		do {
1943 			struct sk_buff *next = skb->next;
1944 
1945 			prefetch(next);
1946 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1947 			skb->next = NULL;
1948 			sk_backlog_rcv(sk, skb);
1949 
1950 			/*
1951 			 * We are in process context here with softirqs
1952 			 * disabled, use cond_resched_softirq() to preempt.
1953 			 * This is safe to do because we've taken the backlog
1954 			 * queue private:
1955 			 */
1956 			cond_resched_softirq();
1957 
1958 			skb = next;
1959 		} while (skb != NULL);
1960 
1961 		bh_lock_sock(sk);
1962 	} while ((skb = sk->sk_backlog.head) != NULL);
1963 
1964 	/*
1965 	 * Doing the zeroing here guarantee we can not loop forever
1966 	 * while a wild producer attempts to flood us.
1967 	 */
1968 	sk->sk_backlog.len = 0;
1969 }
1970 
1971 /**
1972  * sk_wait_data - wait for data to arrive at sk_receive_queue
1973  * @sk:    sock to wait on
1974  * @timeo: for how long
1975  *
1976  * Now socket state including sk->sk_err is changed only under lock,
1977  * hence we may omit checks after joining wait queue.
1978  * We check receive queue before schedule() only as optimization;
1979  * it is very likely that release_sock() added new data.
1980  */
1981 int sk_wait_data(struct sock *sk, long *timeo)
1982 {
1983 	int rc;
1984 	DEFINE_WAIT(wait);
1985 
1986 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1987 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1988 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1989 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1990 	finish_wait(sk_sleep(sk), &wait);
1991 	return rc;
1992 }
1993 EXPORT_SYMBOL(sk_wait_data);
1994 
1995 /**
1996  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1997  *	@sk: socket
1998  *	@size: memory size to allocate
1999  *	@kind: allocation type
2000  *
2001  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2002  *	rmem allocation. This function assumes that protocols which have
2003  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2004  */
2005 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2006 {
2007 	struct proto *prot = sk->sk_prot;
2008 	int amt = sk_mem_pages(size);
2009 	long allocated;
2010 	int parent_status = UNDER_LIMIT;
2011 
2012 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2013 
2014 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2015 
2016 	/* Under limit. */
2017 	if (parent_status == UNDER_LIMIT &&
2018 			allocated <= sk_prot_mem_limits(sk, 0)) {
2019 		sk_leave_memory_pressure(sk);
2020 		return 1;
2021 	}
2022 
2023 	/* Under pressure. (we or our parents) */
2024 	if ((parent_status > SOFT_LIMIT) ||
2025 			allocated > sk_prot_mem_limits(sk, 1))
2026 		sk_enter_memory_pressure(sk);
2027 
2028 	/* Over hard limit (we or our parents) */
2029 	if ((parent_status == OVER_LIMIT) ||
2030 			(allocated > sk_prot_mem_limits(sk, 2)))
2031 		goto suppress_allocation;
2032 
2033 	/* guarantee minimum buffer size under pressure */
2034 	if (kind == SK_MEM_RECV) {
2035 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2036 			return 1;
2037 
2038 	} else { /* SK_MEM_SEND */
2039 		if (sk->sk_type == SOCK_STREAM) {
2040 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2041 				return 1;
2042 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2043 			   prot->sysctl_wmem[0])
2044 				return 1;
2045 	}
2046 
2047 	if (sk_has_memory_pressure(sk)) {
2048 		int alloc;
2049 
2050 		if (!sk_under_memory_pressure(sk))
2051 			return 1;
2052 		alloc = sk_sockets_allocated_read_positive(sk);
2053 		if (sk_prot_mem_limits(sk, 2) > alloc *
2054 		    sk_mem_pages(sk->sk_wmem_queued +
2055 				 atomic_read(&sk->sk_rmem_alloc) +
2056 				 sk->sk_forward_alloc))
2057 			return 1;
2058 	}
2059 
2060 suppress_allocation:
2061 
2062 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2063 		sk_stream_moderate_sndbuf(sk);
2064 
2065 		/* Fail only if socket is _under_ its sndbuf.
2066 		 * In this case we cannot block, so that we have to fail.
2067 		 */
2068 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2069 			return 1;
2070 	}
2071 
2072 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2073 
2074 	/* Alas. Undo changes. */
2075 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2076 
2077 	sk_memory_allocated_sub(sk, amt);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(__sk_mem_schedule);
2082 
2083 /**
2084  *	__sk_reclaim - reclaim memory_allocated
2085  *	@sk: socket
2086  */
2087 void __sk_mem_reclaim(struct sock *sk)
2088 {
2089 	sk_memory_allocated_sub(sk,
2090 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2091 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2092 
2093 	if (sk_under_memory_pressure(sk) &&
2094 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2095 		sk_leave_memory_pressure(sk);
2096 }
2097 EXPORT_SYMBOL(__sk_mem_reclaim);
2098 
2099 
2100 /*
2101  * Set of default routines for initialising struct proto_ops when
2102  * the protocol does not support a particular function. In certain
2103  * cases where it makes no sense for a protocol to have a "do nothing"
2104  * function, some default processing is provided.
2105  */
2106 
2107 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2108 {
2109 	return -EOPNOTSUPP;
2110 }
2111 EXPORT_SYMBOL(sock_no_bind);
2112 
2113 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2114 		    int len, int flags)
2115 {
2116 	return -EOPNOTSUPP;
2117 }
2118 EXPORT_SYMBOL(sock_no_connect);
2119 
2120 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2121 {
2122 	return -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(sock_no_socketpair);
2125 
2126 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2127 {
2128 	return -EOPNOTSUPP;
2129 }
2130 EXPORT_SYMBOL(sock_no_accept);
2131 
2132 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2133 		    int *len, int peer)
2134 {
2135 	return -EOPNOTSUPP;
2136 }
2137 EXPORT_SYMBOL(sock_no_getname);
2138 
2139 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2140 {
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL(sock_no_poll);
2144 
2145 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2146 {
2147 	return -EOPNOTSUPP;
2148 }
2149 EXPORT_SYMBOL(sock_no_ioctl);
2150 
2151 int sock_no_listen(struct socket *sock, int backlog)
2152 {
2153 	return -EOPNOTSUPP;
2154 }
2155 EXPORT_SYMBOL(sock_no_listen);
2156 
2157 int sock_no_shutdown(struct socket *sock, int how)
2158 {
2159 	return -EOPNOTSUPP;
2160 }
2161 EXPORT_SYMBOL(sock_no_shutdown);
2162 
2163 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2164 		    char __user *optval, unsigned int optlen)
2165 {
2166 	return -EOPNOTSUPP;
2167 }
2168 EXPORT_SYMBOL(sock_no_setsockopt);
2169 
2170 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2171 		    char __user *optval, int __user *optlen)
2172 {
2173 	return -EOPNOTSUPP;
2174 }
2175 EXPORT_SYMBOL(sock_no_getsockopt);
2176 
2177 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2178 {
2179 	return -EOPNOTSUPP;
2180 }
2181 EXPORT_SYMBOL(sock_no_sendmsg);
2182 
2183 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2184 		    int flags)
2185 {
2186 	return -EOPNOTSUPP;
2187 }
2188 EXPORT_SYMBOL(sock_no_recvmsg);
2189 
2190 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2191 {
2192 	/* Mirror missing mmap method error code */
2193 	return -ENODEV;
2194 }
2195 EXPORT_SYMBOL(sock_no_mmap);
2196 
2197 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2198 {
2199 	ssize_t res;
2200 	struct msghdr msg = {.msg_flags = flags};
2201 	struct kvec iov;
2202 	char *kaddr = kmap(page);
2203 	iov.iov_base = kaddr + offset;
2204 	iov.iov_len = size;
2205 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2206 	kunmap(page);
2207 	return res;
2208 }
2209 EXPORT_SYMBOL(sock_no_sendpage);
2210 
2211 /*
2212  *	Default Socket Callbacks
2213  */
2214 
2215 static void sock_def_wakeup(struct sock *sk)
2216 {
2217 	struct socket_wq *wq;
2218 
2219 	rcu_read_lock();
2220 	wq = rcu_dereference(sk->sk_wq);
2221 	if (wq_has_sleeper(wq))
2222 		wake_up_interruptible_all(&wq->wait);
2223 	rcu_read_unlock();
2224 }
2225 
2226 static void sock_def_error_report(struct sock *sk)
2227 {
2228 	struct socket_wq *wq;
2229 
2230 	rcu_read_lock();
2231 	wq = rcu_dereference(sk->sk_wq);
2232 	if (wq_has_sleeper(wq))
2233 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2234 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2235 	rcu_read_unlock();
2236 }
2237 
2238 static void sock_def_readable(struct sock *sk)
2239 {
2240 	struct socket_wq *wq;
2241 
2242 	rcu_read_lock();
2243 	wq = rcu_dereference(sk->sk_wq);
2244 	if (wq_has_sleeper(wq))
2245 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2246 						POLLRDNORM | POLLRDBAND);
2247 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2248 	rcu_read_unlock();
2249 }
2250 
2251 static void sock_def_write_space(struct sock *sk)
2252 {
2253 	struct socket_wq *wq;
2254 
2255 	rcu_read_lock();
2256 
2257 	/* Do not wake up a writer until he can make "significant"
2258 	 * progress.  --DaveM
2259 	 */
2260 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2261 		wq = rcu_dereference(sk->sk_wq);
2262 		if (wq_has_sleeper(wq))
2263 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2264 						POLLWRNORM | POLLWRBAND);
2265 
2266 		/* Should agree with poll, otherwise some programs break */
2267 		if (sock_writeable(sk))
2268 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2269 	}
2270 
2271 	rcu_read_unlock();
2272 }
2273 
2274 static void sock_def_destruct(struct sock *sk)
2275 {
2276 	kfree(sk->sk_protinfo);
2277 }
2278 
2279 void sk_send_sigurg(struct sock *sk)
2280 {
2281 	if (sk->sk_socket && sk->sk_socket->file)
2282 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2283 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2284 }
2285 EXPORT_SYMBOL(sk_send_sigurg);
2286 
2287 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2288 		    unsigned long expires)
2289 {
2290 	if (!mod_timer(timer, expires))
2291 		sock_hold(sk);
2292 }
2293 EXPORT_SYMBOL(sk_reset_timer);
2294 
2295 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2296 {
2297 	if (del_timer(timer))
2298 		__sock_put(sk);
2299 }
2300 EXPORT_SYMBOL(sk_stop_timer);
2301 
2302 void sock_init_data(struct socket *sock, struct sock *sk)
2303 {
2304 	skb_queue_head_init(&sk->sk_receive_queue);
2305 	skb_queue_head_init(&sk->sk_write_queue);
2306 	skb_queue_head_init(&sk->sk_error_queue);
2307 
2308 	sk->sk_send_head	=	NULL;
2309 
2310 	init_timer(&sk->sk_timer);
2311 
2312 	sk->sk_allocation	=	GFP_KERNEL;
2313 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2314 	sk->sk_sndbuf		=	sysctl_wmem_default;
2315 	sk->sk_state		=	TCP_CLOSE;
2316 	sk_set_socket(sk, sock);
2317 
2318 	sock_set_flag(sk, SOCK_ZAPPED);
2319 
2320 	if (sock) {
2321 		sk->sk_type	=	sock->type;
2322 		sk->sk_wq	=	sock->wq;
2323 		sock->sk	=	sk;
2324 	} else
2325 		sk->sk_wq	=	NULL;
2326 
2327 	spin_lock_init(&sk->sk_dst_lock);
2328 	rwlock_init(&sk->sk_callback_lock);
2329 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2330 			af_callback_keys + sk->sk_family,
2331 			af_family_clock_key_strings[sk->sk_family]);
2332 
2333 	sk->sk_state_change	=	sock_def_wakeup;
2334 	sk->sk_data_ready	=	sock_def_readable;
2335 	sk->sk_write_space	=	sock_def_write_space;
2336 	sk->sk_error_report	=	sock_def_error_report;
2337 	sk->sk_destruct		=	sock_def_destruct;
2338 
2339 	sk->sk_frag.page	=	NULL;
2340 	sk->sk_frag.offset	=	0;
2341 	sk->sk_peek_off		=	-1;
2342 
2343 	sk->sk_peer_pid 	=	NULL;
2344 	sk->sk_peer_cred	=	NULL;
2345 	sk->sk_write_pending	=	0;
2346 	sk->sk_rcvlowat		=	1;
2347 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2348 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2349 
2350 	sk->sk_stamp = ktime_set(-1L, 0);
2351 
2352 #ifdef CONFIG_NET_RX_BUSY_POLL
2353 	sk->sk_napi_id		=	0;
2354 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2355 #endif
2356 
2357 	sk->sk_max_pacing_rate = ~0U;
2358 	sk->sk_pacing_rate = ~0U;
2359 	/*
2360 	 * Before updating sk_refcnt, we must commit prior changes to memory
2361 	 * (Documentation/RCU/rculist_nulls.txt for details)
2362 	 */
2363 	smp_wmb();
2364 	atomic_set(&sk->sk_refcnt, 1);
2365 	atomic_set(&sk->sk_drops, 0);
2366 }
2367 EXPORT_SYMBOL(sock_init_data);
2368 
2369 void lock_sock_nested(struct sock *sk, int subclass)
2370 {
2371 	might_sleep();
2372 	spin_lock_bh(&sk->sk_lock.slock);
2373 	if (sk->sk_lock.owned)
2374 		__lock_sock(sk);
2375 	sk->sk_lock.owned = 1;
2376 	spin_unlock(&sk->sk_lock.slock);
2377 	/*
2378 	 * The sk_lock has mutex_lock() semantics here:
2379 	 */
2380 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2381 	local_bh_enable();
2382 }
2383 EXPORT_SYMBOL(lock_sock_nested);
2384 
2385 void release_sock(struct sock *sk)
2386 {
2387 	/*
2388 	 * The sk_lock has mutex_unlock() semantics:
2389 	 */
2390 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2391 
2392 	spin_lock_bh(&sk->sk_lock.slock);
2393 	if (sk->sk_backlog.tail)
2394 		__release_sock(sk);
2395 
2396 	/* Warning : release_cb() might need to release sk ownership,
2397 	 * ie call sock_release_ownership(sk) before us.
2398 	 */
2399 	if (sk->sk_prot->release_cb)
2400 		sk->sk_prot->release_cb(sk);
2401 
2402 	sock_release_ownership(sk);
2403 	if (waitqueue_active(&sk->sk_lock.wq))
2404 		wake_up(&sk->sk_lock.wq);
2405 	spin_unlock_bh(&sk->sk_lock.slock);
2406 }
2407 EXPORT_SYMBOL(release_sock);
2408 
2409 /**
2410  * lock_sock_fast - fast version of lock_sock
2411  * @sk: socket
2412  *
2413  * This version should be used for very small section, where process wont block
2414  * return false if fast path is taken
2415  *   sk_lock.slock locked, owned = 0, BH disabled
2416  * return true if slow path is taken
2417  *   sk_lock.slock unlocked, owned = 1, BH enabled
2418  */
2419 bool lock_sock_fast(struct sock *sk)
2420 {
2421 	might_sleep();
2422 	spin_lock_bh(&sk->sk_lock.slock);
2423 
2424 	if (!sk->sk_lock.owned)
2425 		/*
2426 		 * Note : We must disable BH
2427 		 */
2428 		return false;
2429 
2430 	__lock_sock(sk);
2431 	sk->sk_lock.owned = 1;
2432 	spin_unlock(&sk->sk_lock.slock);
2433 	/*
2434 	 * The sk_lock has mutex_lock() semantics here:
2435 	 */
2436 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2437 	local_bh_enable();
2438 	return true;
2439 }
2440 EXPORT_SYMBOL(lock_sock_fast);
2441 
2442 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2443 {
2444 	struct timeval tv;
2445 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2446 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2447 	tv = ktime_to_timeval(sk->sk_stamp);
2448 	if (tv.tv_sec == -1)
2449 		return -ENOENT;
2450 	if (tv.tv_sec == 0) {
2451 		sk->sk_stamp = ktime_get_real();
2452 		tv = ktime_to_timeval(sk->sk_stamp);
2453 	}
2454 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2455 }
2456 EXPORT_SYMBOL(sock_get_timestamp);
2457 
2458 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2459 {
2460 	struct timespec ts;
2461 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2462 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2463 	ts = ktime_to_timespec(sk->sk_stamp);
2464 	if (ts.tv_sec == -1)
2465 		return -ENOENT;
2466 	if (ts.tv_sec == 0) {
2467 		sk->sk_stamp = ktime_get_real();
2468 		ts = ktime_to_timespec(sk->sk_stamp);
2469 	}
2470 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2471 }
2472 EXPORT_SYMBOL(sock_get_timestampns);
2473 
2474 void sock_enable_timestamp(struct sock *sk, int flag)
2475 {
2476 	if (!sock_flag(sk, flag)) {
2477 		unsigned long previous_flags = sk->sk_flags;
2478 
2479 		sock_set_flag(sk, flag);
2480 		/*
2481 		 * we just set one of the two flags which require net
2482 		 * time stamping, but time stamping might have been on
2483 		 * already because of the other one
2484 		 */
2485 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2486 			net_enable_timestamp();
2487 	}
2488 }
2489 
2490 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2491 		       int level, int type)
2492 {
2493 	struct sock_exterr_skb *serr;
2494 	struct sk_buff *skb;
2495 	int copied, err;
2496 
2497 	err = -EAGAIN;
2498 	skb = sock_dequeue_err_skb(sk);
2499 	if (skb == NULL)
2500 		goto out;
2501 
2502 	copied = skb->len;
2503 	if (copied > len) {
2504 		msg->msg_flags |= MSG_TRUNC;
2505 		copied = len;
2506 	}
2507 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2508 	if (err)
2509 		goto out_free_skb;
2510 
2511 	sock_recv_timestamp(msg, sk, skb);
2512 
2513 	serr = SKB_EXT_ERR(skb);
2514 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2515 
2516 	msg->msg_flags |= MSG_ERRQUEUE;
2517 	err = copied;
2518 
2519 out_free_skb:
2520 	kfree_skb(skb);
2521 out:
2522 	return err;
2523 }
2524 EXPORT_SYMBOL(sock_recv_errqueue);
2525 
2526 /*
2527  *	Get a socket option on an socket.
2528  *
2529  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2530  *	asynchronous errors should be reported by getsockopt. We assume
2531  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2532  */
2533 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2534 			   char __user *optval, int __user *optlen)
2535 {
2536 	struct sock *sk = sock->sk;
2537 
2538 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2539 }
2540 EXPORT_SYMBOL(sock_common_getsockopt);
2541 
2542 #ifdef CONFIG_COMPAT
2543 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2544 				  char __user *optval, int __user *optlen)
2545 {
2546 	struct sock *sk = sock->sk;
2547 
2548 	if (sk->sk_prot->compat_getsockopt != NULL)
2549 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2550 						      optval, optlen);
2551 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2552 }
2553 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2554 #endif
2555 
2556 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2557 			int flags)
2558 {
2559 	struct sock *sk = sock->sk;
2560 	int addr_len = 0;
2561 	int err;
2562 
2563 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2564 				   flags & ~MSG_DONTWAIT, &addr_len);
2565 	if (err >= 0)
2566 		msg->msg_namelen = addr_len;
2567 	return err;
2568 }
2569 EXPORT_SYMBOL(sock_common_recvmsg);
2570 
2571 /*
2572  *	Set socket options on an inet socket.
2573  */
2574 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2575 			   char __user *optval, unsigned int optlen)
2576 {
2577 	struct sock *sk = sock->sk;
2578 
2579 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2580 }
2581 EXPORT_SYMBOL(sock_common_setsockopt);
2582 
2583 #ifdef CONFIG_COMPAT
2584 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2585 				  char __user *optval, unsigned int optlen)
2586 {
2587 	struct sock *sk = sock->sk;
2588 
2589 	if (sk->sk_prot->compat_setsockopt != NULL)
2590 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2591 						      optval, optlen);
2592 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2593 }
2594 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2595 #endif
2596 
2597 void sk_common_release(struct sock *sk)
2598 {
2599 	if (sk->sk_prot->destroy)
2600 		sk->sk_prot->destroy(sk);
2601 
2602 	/*
2603 	 * Observation: when sock_common_release is called, processes have
2604 	 * no access to socket. But net still has.
2605 	 * Step one, detach it from networking:
2606 	 *
2607 	 * A. Remove from hash tables.
2608 	 */
2609 
2610 	sk->sk_prot->unhash(sk);
2611 
2612 	/*
2613 	 * In this point socket cannot receive new packets, but it is possible
2614 	 * that some packets are in flight because some CPU runs receiver and
2615 	 * did hash table lookup before we unhashed socket. They will achieve
2616 	 * receive queue and will be purged by socket destructor.
2617 	 *
2618 	 * Also we still have packets pending on receive queue and probably,
2619 	 * our own packets waiting in device queues. sock_destroy will drain
2620 	 * receive queue, but transmitted packets will delay socket destruction
2621 	 * until the last reference will be released.
2622 	 */
2623 
2624 	sock_orphan(sk);
2625 
2626 	xfrm_sk_free_policy(sk);
2627 
2628 	sk_refcnt_debug_release(sk);
2629 
2630 	if (sk->sk_frag.page) {
2631 		put_page(sk->sk_frag.page);
2632 		sk->sk_frag.page = NULL;
2633 	}
2634 
2635 	sock_put(sk);
2636 }
2637 EXPORT_SYMBOL(sk_common_release);
2638 
2639 #ifdef CONFIG_PROC_FS
2640 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2641 struct prot_inuse {
2642 	int val[PROTO_INUSE_NR];
2643 };
2644 
2645 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2646 
2647 #ifdef CONFIG_NET_NS
2648 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2649 {
2650 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2651 }
2652 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2653 
2654 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2655 {
2656 	int cpu, idx = prot->inuse_idx;
2657 	int res = 0;
2658 
2659 	for_each_possible_cpu(cpu)
2660 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2661 
2662 	return res >= 0 ? res : 0;
2663 }
2664 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2665 
2666 static int __net_init sock_inuse_init_net(struct net *net)
2667 {
2668 	net->core.inuse = alloc_percpu(struct prot_inuse);
2669 	return net->core.inuse ? 0 : -ENOMEM;
2670 }
2671 
2672 static void __net_exit sock_inuse_exit_net(struct net *net)
2673 {
2674 	free_percpu(net->core.inuse);
2675 }
2676 
2677 static struct pernet_operations net_inuse_ops = {
2678 	.init = sock_inuse_init_net,
2679 	.exit = sock_inuse_exit_net,
2680 };
2681 
2682 static __init int net_inuse_init(void)
2683 {
2684 	if (register_pernet_subsys(&net_inuse_ops))
2685 		panic("Cannot initialize net inuse counters");
2686 
2687 	return 0;
2688 }
2689 
2690 core_initcall(net_inuse_init);
2691 #else
2692 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2693 
2694 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2695 {
2696 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2697 }
2698 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2699 
2700 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2701 {
2702 	int cpu, idx = prot->inuse_idx;
2703 	int res = 0;
2704 
2705 	for_each_possible_cpu(cpu)
2706 		res += per_cpu(prot_inuse, cpu).val[idx];
2707 
2708 	return res >= 0 ? res : 0;
2709 }
2710 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2711 #endif
2712 
2713 static void assign_proto_idx(struct proto *prot)
2714 {
2715 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2716 
2717 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2718 		pr_err("PROTO_INUSE_NR exhausted\n");
2719 		return;
2720 	}
2721 
2722 	set_bit(prot->inuse_idx, proto_inuse_idx);
2723 }
2724 
2725 static void release_proto_idx(struct proto *prot)
2726 {
2727 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2728 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2729 }
2730 #else
2731 static inline void assign_proto_idx(struct proto *prot)
2732 {
2733 }
2734 
2735 static inline void release_proto_idx(struct proto *prot)
2736 {
2737 }
2738 #endif
2739 
2740 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2741 {
2742 	if (!rsk_prot)
2743 		return;
2744 	kfree(rsk_prot->slab_name);
2745 	rsk_prot->slab_name = NULL;
2746 	if (rsk_prot->slab) {
2747 		kmem_cache_destroy(rsk_prot->slab);
2748 		rsk_prot->slab = NULL;
2749 	}
2750 }
2751 
2752 static int req_prot_init(const struct proto *prot)
2753 {
2754 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2755 
2756 	if (!rsk_prot)
2757 		return 0;
2758 
2759 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2760 					prot->name);
2761 	if (!rsk_prot->slab_name)
2762 		return -ENOMEM;
2763 
2764 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2765 					   rsk_prot->obj_size, 0,
2766 					   0, NULL);
2767 
2768 	if (!rsk_prot->slab) {
2769 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2770 			prot->name);
2771 		return -ENOMEM;
2772 	}
2773 	return 0;
2774 }
2775 
2776 int proto_register(struct proto *prot, int alloc_slab)
2777 {
2778 	if (alloc_slab) {
2779 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2780 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2781 					NULL);
2782 
2783 		if (prot->slab == NULL) {
2784 			pr_crit("%s: Can't create sock SLAB cache!\n",
2785 				prot->name);
2786 			goto out;
2787 		}
2788 
2789 		if (req_prot_init(prot))
2790 			goto out_free_request_sock_slab;
2791 
2792 		if (prot->twsk_prot != NULL) {
2793 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2794 
2795 			if (prot->twsk_prot->twsk_slab_name == NULL)
2796 				goto out_free_request_sock_slab;
2797 
2798 			prot->twsk_prot->twsk_slab =
2799 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2800 						  prot->twsk_prot->twsk_obj_size,
2801 						  0,
2802 						  prot->slab_flags,
2803 						  NULL);
2804 			if (prot->twsk_prot->twsk_slab == NULL)
2805 				goto out_free_timewait_sock_slab_name;
2806 		}
2807 	}
2808 
2809 	mutex_lock(&proto_list_mutex);
2810 	list_add(&prot->node, &proto_list);
2811 	assign_proto_idx(prot);
2812 	mutex_unlock(&proto_list_mutex);
2813 	return 0;
2814 
2815 out_free_timewait_sock_slab_name:
2816 	kfree(prot->twsk_prot->twsk_slab_name);
2817 out_free_request_sock_slab:
2818 	req_prot_cleanup(prot->rsk_prot);
2819 
2820 	kmem_cache_destroy(prot->slab);
2821 	prot->slab = NULL;
2822 out:
2823 	return -ENOBUFS;
2824 }
2825 EXPORT_SYMBOL(proto_register);
2826 
2827 void proto_unregister(struct proto *prot)
2828 {
2829 	mutex_lock(&proto_list_mutex);
2830 	release_proto_idx(prot);
2831 	list_del(&prot->node);
2832 	mutex_unlock(&proto_list_mutex);
2833 
2834 	if (prot->slab != NULL) {
2835 		kmem_cache_destroy(prot->slab);
2836 		prot->slab = NULL;
2837 	}
2838 
2839 	req_prot_cleanup(prot->rsk_prot);
2840 
2841 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2842 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2843 		kfree(prot->twsk_prot->twsk_slab_name);
2844 		prot->twsk_prot->twsk_slab = NULL;
2845 	}
2846 }
2847 EXPORT_SYMBOL(proto_unregister);
2848 
2849 #ifdef CONFIG_PROC_FS
2850 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2851 	__acquires(proto_list_mutex)
2852 {
2853 	mutex_lock(&proto_list_mutex);
2854 	return seq_list_start_head(&proto_list, *pos);
2855 }
2856 
2857 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2858 {
2859 	return seq_list_next(v, &proto_list, pos);
2860 }
2861 
2862 static void proto_seq_stop(struct seq_file *seq, void *v)
2863 	__releases(proto_list_mutex)
2864 {
2865 	mutex_unlock(&proto_list_mutex);
2866 }
2867 
2868 static char proto_method_implemented(const void *method)
2869 {
2870 	return method == NULL ? 'n' : 'y';
2871 }
2872 static long sock_prot_memory_allocated(struct proto *proto)
2873 {
2874 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2875 }
2876 
2877 static char *sock_prot_memory_pressure(struct proto *proto)
2878 {
2879 	return proto->memory_pressure != NULL ?
2880 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2881 }
2882 
2883 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2884 {
2885 
2886 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2887 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2888 		   proto->name,
2889 		   proto->obj_size,
2890 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2891 		   sock_prot_memory_allocated(proto),
2892 		   sock_prot_memory_pressure(proto),
2893 		   proto->max_header,
2894 		   proto->slab == NULL ? "no" : "yes",
2895 		   module_name(proto->owner),
2896 		   proto_method_implemented(proto->close),
2897 		   proto_method_implemented(proto->connect),
2898 		   proto_method_implemented(proto->disconnect),
2899 		   proto_method_implemented(proto->accept),
2900 		   proto_method_implemented(proto->ioctl),
2901 		   proto_method_implemented(proto->init),
2902 		   proto_method_implemented(proto->destroy),
2903 		   proto_method_implemented(proto->shutdown),
2904 		   proto_method_implemented(proto->setsockopt),
2905 		   proto_method_implemented(proto->getsockopt),
2906 		   proto_method_implemented(proto->sendmsg),
2907 		   proto_method_implemented(proto->recvmsg),
2908 		   proto_method_implemented(proto->sendpage),
2909 		   proto_method_implemented(proto->bind),
2910 		   proto_method_implemented(proto->backlog_rcv),
2911 		   proto_method_implemented(proto->hash),
2912 		   proto_method_implemented(proto->unhash),
2913 		   proto_method_implemented(proto->get_port),
2914 		   proto_method_implemented(proto->enter_memory_pressure));
2915 }
2916 
2917 static int proto_seq_show(struct seq_file *seq, void *v)
2918 {
2919 	if (v == &proto_list)
2920 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2921 			   "protocol",
2922 			   "size",
2923 			   "sockets",
2924 			   "memory",
2925 			   "press",
2926 			   "maxhdr",
2927 			   "slab",
2928 			   "module",
2929 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2930 	else
2931 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2932 	return 0;
2933 }
2934 
2935 static const struct seq_operations proto_seq_ops = {
2936 	.start  = proto_seq_start,
2937 	.next   = proto_seq_next,
2938 	.stop   = proto_seq_stop,
2939 	.show   = proto_seq_show,
2940 };
2941 
2942 static int proto_seq_open(struct inode *inode, struct file *file)
2943 {
2944 	return seq_open_net(inode, file, &proto_seq_ops,
2945 			    sizeof(struct seq_net_private));
2946 }
2947 
2948 static const struct file_operations proto_seq_fops = {
2949 	.owner		= THIS_MODULE,
2950 	.open		= proto_seq_open,
2951 	.read		= seq_read,
2952 	.llseek		= seq_lseek,
2953 	.release	= seq_release_net,
2954 };
2955 
2956 static __net_init int proto_init_net(struct net *net)
2957 {
2958 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2959 		return -ENOMEM;
2960 
2961 	return 0;
2962 }
2963 
2964 static __net_exit void proto_exit_net(struct net *net)
2965 {
2966 	remove_proc_entry("protocols", net->proc_net);
2967 }
2968 
2969 
2970 static __net_initdata struct pernet_operations proto_net_ops = {
2971 	.init = proto_init_net,
2972 	.exit = proto_exit_net,
2973 };
2974 
2975 static int __init proto_init(void)
2976 {
2977 	return register_pernet_subsys(&proto_net_ops);
2978 }
2979 
2980 subsys_initcall(proto_init);
2981 
2982 #endif /* PROC_FS */
2983