1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 #include <linux/mroute.h> 118 #include <linux/mroute6.h> 119 #include <linux/icmpv6.h> 120 121 #include <linux/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 #include <net/bpf_sk_storage.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 #include <net/phonet/phonet.h> 145 146 #include <linux/ethtool.h> 147 148 #include "dev.h" 149 150 static DEFINE_MUTEX(proto_list_mutex); 151 static LIST_HEAD(proto_list); 152 153 static void sock_def_write_space_wfree(struct sock *sk); 154 static void sock_def_write_space(struct sock *sk); 155 156 /** 157 * sk_ns_capable - General socket capability test 158 * @sk: Socket to use a capability on or through 159 * @user_ns: The user namespace of the capability to use 160 * @cap: The capability to use 161 * 162 * Test to see if the opener of the socket had when the socket was 163 * created and the current process has the capability @cap in the user 164 * namespace @user_ns. 165 */ 166 bool sk_ns_capable(const struct sock *sk, 167 struct user_namespace *user_ns, int cap) 168 { 169 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 170 ns_capable(user_ns, cap); 171 } 172 EXPORT_SYMBOL(sk_ns_capable); 173 174 /** 175 * sk_capable - Socket global capability test 176 * @sk: Socket to use a capability on or through 177 * @cap: The global capability to use 178 * 179 * Test to see if the opener of the socket had when the socket was 180 * created and the current process has the capability @cap in all user 181 * namespaces. 182 */ 183 bool sk_capable(const struct sock *sk, int cap) 184 { 185 return sk_ns_capable(sk, &init_user_ns, cap); 186 } 187 EXPORT_SYMBOL(sk_capable); 188 189 /** 190 * sk_net_capable - Network namespace socket capability test 191 * @sk: Socket to use a capability on or through 192 * @cap: The capability to use 193 * 194 * Test to see if the opener of the socket had when the socket was created 195 * and the current process has the capability @cap over the network namespace 196 * the socket is a member of. 197 */ 198 bool sk_net_capable(const struct sock *sk, int cap) 199 { 200 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 201 } 202 EXPORT_SYMBOL(sk_net_capable); 203 204 /* 205 * Each address family might have different locking rules, so we have 206 * one slock key per address family and separate keys for internal and 207 * userspace sockets. 208 */ 209 static struct lock_class_key af_family_keys[AF_MAX]; 210 static struct lock_class_key af_family_kern_keys[AF_MAX]; 211 static struct lock_class_key af_family_slock_keys[AF_MAX]; 212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 213 214 /* 215 * Make lock validator output more readable. (we pre-construct these 216 * strings build-time, so that runtime initialization of socket 217 * locks is fast): 218 */ 219 220 #define _sock_locks(x) \ 221 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 222 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 223 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 224 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 225 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 226 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 227 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 228 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 229 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 230 x "27" , x "28" , x "AF_CAN" , \ 231 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 232 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 233 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 234 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 235 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 236 x "AF_MCTP" , \ 237 x "AF_MAX" 238 239 static const char *const af_family_key_strings[AF_MAX+1] = { 240 _sock_locks("sk_lock-") 241 }; 242 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("slock-") 244 }; 245 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("clock-") 247 }; 248 249 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 250 _sock_locks("k-sk_lock-") 251 }; 252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 253 _sock_locks("k-slock-") 254 }; 255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-clock-") 257 }; 258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 259 _sock_locks("rlock-") 260 }; 261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 262 _sock_locks("wlock-") 263 }; 264 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 265 _sock_locks("elock-") 266 }; 267 268 /* 269 * sk_callback_lock and sk queues locking rules are per-address-family, 270 * so split the lock classes by using a per-AF key: 271 */ 272 static struct lock_class_key af_callback_keys[AF_MAX]; 273 static struct lock_class_key af_rlock_keys[AF_MAX]; 274 static struct lock_class_key af_wlock_keys[AF_MAX]; 275 static struct lock_class_key af_elock_keys[AF_MAX]; 276 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 /* Maximal space eaten by iovec or ancillary data plus some space */ 287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 288 EXPORT_SYMBOL(sysctl_optmem_max); 289 290 int sysctl_tstamp_allow_data __read_mostly = 1; 291 292 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 293 EXPORT_SYMBOL_GPL(memalloc_socks_key); 294 295 /** 296 * sk_set_memalloc - sets %SOCK_MEMALLOC 297 * @sk: socket to set it on 298 * 299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 300 * It's the responsibility of the admin to adjust min_free_kbytes 301 * to meet the requirements 302 */ 303 void sk_set_memalloc(struct sock *sk) 304 { 305 sock_set_flag(sk, SOCK_MEMALLOC); 306 sk->sk_allocation |= __GFP_MEMALLOC; 307 static_branch_inc(&memalloc_socks_key); 308 } 309 EXPORT_SYMBOL_GPL(sk_set_memalloc); 310 311 void sk_clear_memalloc(struct sock *sk) 312 { 313 sock_reset_flag(sk, SOCK_MEMALLOC); 314 sk->sk_allocation &= ~__GFP_MEMALLOC; 315 static_branch_dec(&memalloc_socks_key); 316 317 /* 318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 319 * progress of swapping. SOCK_MEMALLOC may be cleared while 320 * it has rmem allocations due to the last swapfile being deactivated 321 * but there is a risk that the socket is unusable due to exceeding 322 * the rmem limits. Reclaim the reserves and obey rmem limits again. 323 */ 324 sk_mem_reclaim(sk); 325 } 326 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 327 328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 329 { 330 int ret; 331 unsigned int noreclaim_flag; 332 333 /* these should have been dropped before queueing */ 334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 335 336 noreclaim_flag = memalloc_noreclaim_save(); 337 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 338 tcp_v6_do_rcv, 339 tcp_v4_do_rcv, 340 sk, skb); 341 memalloc_noreclaim_restore(noreclaim_flag); 342 343 return ret; 344 } 345 EXPORT_SYMBOL(__sk_backlog_rcv); 346 347 void sk_error_report(struct sock *sk) 348 { 349 sk->sk_error_report(sk); 350 351 switch (sk->sk_family) { 352 case AF_INET: 353 fallthrough; 354 case AF_INET6: 355 trace_inet_sk_error_report(sk); 356 break; 357 default: 358 break; 359 } 360 } 361 EXPORT_SYMBOL(sk_error_report); 362 363 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 364 { 365 struct __kernel_sock_timeval tv; 366 367 if (timeo == MAX_SCHEDULE_TIMEOUT) { 368 tv.tv_sec = 0; 369 tv.tv_usec = 0; 370 } else { 371 tv.tv_sec = timeo / HZ; 372 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 373 } 374 375 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 376 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 377 *(struct old_timeval32 *)optval = tv32; 378 return sizeof(tv32); 379 } 380 381 if (old_timeval) { 382 struct __kernel_old_timeval old_tv; 383 old_tv.tv_sec = tv.tv_sec; 384 old_tv.tv_usec = tv.tv_usec; 385 *(struct __kernel_old_timeval *)optval = old_tv; 386 return sizeof(old_tv); 387 } 388 389 *(struct __kernel_sock_timeval *)optval = tv; 390 return sizeof(tv); 391 } 392 EXPORT_SYMBOL(sock_get_timeout); 393 394 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 395 sockptr_t optval, int optlen, bool old_timeval) 396 { 397 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 398 struct old_timeval32 tv32; 399 400 if (optlen < sizeof(tv32)) 401 return -EINVAL; 402 403 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 404 return -EFAULT; 405 tv->tv_sec = tv32.tv_sec; 406 tv->tv_usec = tv32.tv_usec; 407 } else if (old_timeval) { 408 struct __kernel_old_timeval old_tv; 409 410 if (optlen < sizeof(old_tv)) 411 return -EINVAL; 412 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 413 return -EFAULT; 414 tv->tv_sec = old_tv.tv_sec; 415 tv->tv_usec = old_tv.tv_usec; 416 } else { 417 if (optlen < sizeof(*tv)) 418 return -EINVAL; 419 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 420 return -EFAULT; 421 } 422 423 return 0; 424 } 425 EXPORT_SYMBOL(sock_copy_user_timeval); 426 427 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 428 bool old_timeval) 429 { 430 struct __kernel_sock_timeval tv; 431 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 432 433 if (err) 434 return err; 435 436 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 437 return -EDOM; 438 439 if (tv.tv_sec < 0) { 440 static int warned __read_mostly; 441 442 *timeo_p = 0; 443 if (warned < 10 && net_ratelimit()) { 444 warned++; 445 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 446 __func__, current->comm, task_pid_nr(current)); 447 } 448 return 0; 449 } 450 *timeo_p = MAX_SCHEDULE_TIMEOUT; 451 if (tv.tv_sec == 0 && tv.tv_usec == 0) 452 return 0; 453 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 454 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 455 return 0; 456 } 457 458 static bool sock_needs_netstamp(const struct sock *sk) 459 { 460 switch (sk->sk_family) { 461 case AF_UNSPEC: 462 case AF_UNIX: 463 return false; 464 default: 465 return true; 466 } 467 } 468 469 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 470 { 471 if (sk->sk_flags & flags) { 472 sk->sk_flags &= ~flags; 473 if (sock_needs_netstamp(sk) && 474 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 475 net_disable_timestamp(); 476 } 477 } 478 479 480 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 481 { 482 unsigned long flags; 483 struct sk_buff_head *list = &sk->sk_receive_queue; 484 485 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 486 atomic_inc(&sk->sk_drops); 487 trace_sock_rcvqueue_full(sk, skb); 488 return -ENOMEM; 489 } 490 491 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 492 atomic_inc(&sk->sk_drops); 493 return -ENOBUFS; 494 } 495 496 skb->dev = NULL; 497 skb_set_owner_r(skb, sk); 498 499 /* we escape from rcu protected region, make sure we dont leak 500 * a norefcounted dst 501 */ 502 skb_dst_force(skb); 503 504 spin_lock_irqsave(&list->lock, flags); 505 sock_skb_set_dropcount(sk, skb); 506 __skb_queue_tail(list, skb); 507 spin_unlock_irqrestore(&list->lock, flags); 508 509 if (!sock_flag(sk, SOCK_DEAD)) 510 sk->sk_data_ready(sk); 511 return 0; 512 } 513 EXPORT_SYMBOL(__sock_queue_rcv_skb); 514 515 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 516 enum skb_drop_reason *reason) 517 { 518 enum skb_drop_reason drop_reason; 519 int err; 520 521 err = sk_filter(sk, skb); 522 if (err) { 523 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 524 goto out; 525 } 526 err = __sock_queue_rcv_skb(sk, skb); 527 switch (err) { 528 case -ENOMEM: 529 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 530 break; 531 case -ENOBUFS: 532 drop_reason = SKB_DROP_REASON_PROTO_MEM; 533 break; 534 default: 535 drop_reason = SKB_NOT_DROPPED_YET; 536 break; 537 } 538 out: 539 if (reason) 540 *reason = drop_reason; 541 return err; 542 } 543 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 544 545 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 546 const int nested, unsigned int trim_cap, bool refcounted) 547 { 548 int rc = NET_RX_SUCCESS; 549 550 if (sk_filter_trim_cap(sk, skb, trim_cap)) 551 goto discard_and_relse; 552 553 skb->dev = NULL; 554 555 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 556 atomic_inc(&sk->sk_drops); 557 goto discard_and_relse; 558 } 559 if (nested) 560 bh_lock_sock_nested(sk); 561 else 562 bh_lock_sock(sk); 563 if (!sock_owned_by_user(sk)) { 564 /* 565 * trylock + unlock semantics: 566 */ 567 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 568 569 rc = sk_backlog_rcv(sk, skb); 570 571 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 572 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 573 bh_unlock_sock(sk); 574 atomic_inc(&sk->sk_drops); 575 goto discard_and_relse; 576 } 577 578 bh_unlock_sock(sk); 579 out: 580 if (refcounted) 581 sock_put(sk); 582 return rc; 583 discard_and_relse: 584 kfree_skb(skb); 585 goto out; 586 } 587 EXPORT_SYMBOL(__sk_receive_skb); 588 589 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 590 u32)); 591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 592 u32)); 593 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 594 { 595 struct dst_entry *dst = __sk_dst_get(sk); 596 597 if (dst && dst->obsolete && 598 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 599 dst, cookie) == NULL) { 600 sk_tx_queue_clear(sk); 601 sk->sk_dst_pending_confirm = 0; 602 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 603 dst_release(dst); 604 return NULL; 605 } 606 607 return dst; 608 } 609 EXPORT_SYMBOL(__sk_dst_check); 610 611 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 612 { 613 struct dst_entry *dst = sk_dst_get(sk); 614 615 if (dst && dst->obsolete && 616 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 617 dst, cookie) == NULL) { 618 sk_dst_reset(sk); 619 dst_release(dst); 620 return NULL; 621 } 622 623 return dst; 624 } 625 EXPORT_SYMBOL(sk_dst_check); 626 627 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 628 { 629 int ret = -ENOPROTOOPT; 630 #ifdef CONFIG_NETDEVICES 631 struct net *net = sock_net(sk); 632 633 /* Sorry... */ 634 ret = -EPERM; 635 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 636 goto out; 637 638 ret = -EINVAL; 639 if (ifindex < 0) 640 goto out; 641 642 /* Paired with all READ_ONCE() done locklessly. */ 643 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 644 645 if (sk->sk_prot->rehash) 646 sk->sk_prot->rehash(sk); 647 sk_dst_reset(sk); 648 649 ret = 0; 650 651 out: 652 #endif 653 654 return ret; 655 } 656 657 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 658 { 659 int ret; 660 661 if (lock_sk) 662 lock_sock(sk); 663 ret = sock_bindtoindex_locked(sk, ifindex); 664 if (lock_sk) 665 release_sock(sk); 666 667 return ret; 668 } 669 EXPORT_SYMBOL(sock_bindtoindex); 670 671 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 672 { 673 int ret = -ENOPROTOOPT; 674 #ifdef CONFIG_NETDEVICES 675 struct net *net = sock_net(sk); 676 char devname[IFNAMSIZ]; 677 int index; 678 679 ret = -EINVAL; 680 if (optlen < 0) 681 goto out; 682 683 /* Bind this socket to a particular device like "eth0", 684 * as specified in the passed interface name. If the 685 * name is "" or the option length is zero the socket 686 * is not bound. 687 */ 688 if (optlen > IFNAMSIZ - 1) 689 optlen = IFNAMSIZ - 1; 690 memset(devname, 0, sizeof(devname)); 691 692 ret = -EFAULT; 693 if (copy_from_sockptr(devname, optval, optlen)) 694 goto out; 695 696 index = 0; 697 if (devname[0] != '\0') { 698 struct net_device *dev; 699 700 rcu_read_lock(); 701 dev = dev_get_by_name_rcu(net, devname); 702 if (dev) 703 index = dev->ifindex; 704 rcu_read_unlock(); 705 ret = -ENODEV; 706 if (!dev) 707 goto out; 708 } 709 710 sockopt_lock_sock(sk); 711 ret = sock_bindtoindex_locked(sk, index); 712 sockopt_release_sock(sk); 713 out: 714 #endif 715 716 return ret; 717 } 718 719 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 720 sockptr_t optlen, int len) 721 { 722 int ret = -ENOPROTOOPT; 723 #ifdef CONFIG_NETDEVICES 724 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 725 struct net *net = sock_net(sk); 726 char devname[IFNAMSIZ]; 727 728 if (bound_dev_if == 0) { 729 len = 0; 730 goto zero; 731 } 732 733 ret = -EINVAL; 734 if (len < IFNAMSIZ) 735 goto out; 736 737 ret = netdev_get_name(net, devname, bound_dev_if); 738 if (ret) 739 goto out; 740 741 len = strlen(devname) + 1; 742 743 ret = -EFAULT; 744 if (copy_to_sockptr(optval, devname, len)) 745 goto out; 746 747 zero: 748 ret = -EFAULT; 749 if (copy_to_sockptr(optlen, &len, sizeof(int))) 750 goto out; 751 752 ret = 0; 753 754 out: 755 #endif 756 757 return ret; 758 } 759 760 bool sk_mc_loop(struct sock *sk) 761 { 762 if (dev_recursion_level()) 763 return false; 764 if (!sk) 765 return true; 766 switch (sk->sk_family) { 767 case AF_INET: 768 return inet_sk(sk)->mc_loop; 769 #if IS_ENABLED(CONFIG_IPV6) 770 case AF_INET6: 771 return inet6_sk(sk)->mc_loop; 772 #endif 773 } 774 WARN_ON_ONCE(1); 775 return true; 776 } 777 EXPORT_SYMBOL(sk_mc_loop); 778 779 void sock_set_reuseaddr(struct sock *sk) 780 { 781 lock_sock(sk); 782 sk->sk_reuse = SK_CAN_REUSE; 783 release_sock(sk); 784 } 785 EXPORT_SYMBOL(sock_set_reuseaddr); 786 787 void sock_set_reuseport(struct sock *sk) 788 { 789 lock_sock(sk); 790 sk->sk_reuseport = true; 791 release_sock(sk); 792 } 793 EXPORT_SYMBOL(sock_set_reuseport); 794 795 void sock_no_linger(struct sock *sk) 796 { 797 lock_sock(sk); 798 sk->sk_lingertime = 0; 799 sock_set_flag(sk, SOCK_LINGER); 800 release_sock(sk); 801 } 802 EXPORT_SYMBOL(sock_no_linger); 803 804 void sock_set_priority(struct sock *sk, u32 priority) 805 { 806 lock_sock(sk); 807 sk->sk_priority = priority; 808 release_sock(sk); 809 } 810 EXPORT_SYMBOL(sock_set_priority); 811 812 void sock_set_sndtimeo(struct sock *sk, s64 secs) 813 { 814 lock_sock(sk); 815 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 816 sk->sk_sndtimeo = secs * HZ; 817 else 818 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 819 release_sock(sk); 820 } 821 EXPORT_SYMBOL(sock_set_sndtimeo); 822 823 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 824 { 825 if (val) { 826 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 827 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 828 sock_set_flag(sk, SOCK_RCVTSTAMP); 829 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 830 } else { 831 sock_reset_flag(sk, SOCK_RCVTSTAMP); 832 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 833 } 834 } 835 836 void sock_enable_timestamps(struct sock *sk) 837 { 838 lock_sock(sk); 839 __sock_set_timestamps(sk, true, false, true); 840 release_sock(sk); 841 } 842 EXPORT_SYMBOL(sock_enable_timestamps); 843 844 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 845 { 846 switch (optname) { 847 case SO_TIMESTAMP_OLD: 848 __sock_set_timestamps(sk, valbool, false, false); 849 break; 850 case SO_TIMESTAMP_NEW: 851 __sock_set_timestamps(sk, valbool, true, false); 852 break; 853 case SO_TIMESTAMPNS_OLD: 854 __sock_set_timestamps(sk, valbool, false, true); 855 break; 856 case SO_TIMESTAMPNS_NEW: 857 __sock_set_timestamps(sk, valbool, true, true); 858 break; 859 } 860 } 861 862 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 863 { 864 struct net *net = sock_net(sk); 865 struct net_device *dev = NULL; 866 bool match = false; 867 int *vclock_index; 868 int i, num; 869 870 if (sk->sk_bound_dev_if) 871 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 872 873 if (!dev) { 874 pr_err("%s: sock not bind to device\n", __func__); 875 return -EOPNOTSUPP; 876 } 877 878 num = ethtool_get_phc_vclocks(dev, &vclock_index); 879 dev_put(dev); 880 881 for (i = 0; i < num; i++) { 882 if (*(vclock_index + i) == phc_index) { 883 match = true; 884 break; 885 } 886 } 887 888 if (num > 0) 889 kfree(vclock_index); 890 891 if (!match) 892 return -EINVAL; 893 894 sk->sk_bind_phc = phc_index; 895 896 return 0; 897 } 898 899 int sock_set_timestamping(struct sock *sk, int optname, 900 struct so_timestamping timestamping) 901 { 902 int val = timestamping.flags; 903 int ret; 904 905 if (val & ~SOF_TIMESTAMPING_MASK) 906 return -EINVAL; 907 908 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 909 !(val & SOF_TIMESTAMPING_OPT_ID)) 910 return -EINVAL; 911 912 if (val & SOF_TIMESTAMPING_OPT_ID && 913 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 914 if (sk_is_tcp(sk)) { 915 if ((1 << sk->sk_state) & 916 (TCPF_CLOSE | TCPF_LISTEN)) 917 return -EINVAL; 918 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 919 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 920 else 921 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 922 } else { 923 atomic_set(&sk->sk_tskey, 0); 924 } 925 } 926 927 if (val & SOF_TIMESTAMPING_OPT_STATS && 928 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 929 return -EINVAL; 930 931 if (val & SOF_TIMESTAMPING_BIND_PHC) { 932 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 933 if (ret) 934 return ret; 935 } 936 937 sk->sk_tsflags = val; 938 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 939 940 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 941 sock_enable_timestamp(sk, 942 SOCK_TIMESTAMPING_RX_SOFTWARE); 943 else 944 sock_disable_timestamp(sk, 945 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 946 return 0; 947 } 948 949 void sock_set_keepalive(struct sock *sk) 950 { 951 lock_sock(sk); 952 if (sk->sk_prot->keepalive) 953 sk->sk_prot->keepalive(sk, true); 954 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 955 release_sock(sk); 956 } 957 EXPORT_SYMBOL(sock_set_keepalive); 958 959 static void __sock_set_rcvbuf(struct sock *sk, int val) 960 { 961 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 962 * as a negative value. 963 */ 964 val = min_t(int, val, INT_MAX / 2); 965 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 966 967 /* We double it on the way in to account for "struct sk_buff" etc. 968 * overhead. Applications assume that the SO_RCVBUF setting they make 969 * will allow that much actual data to be received on that socket. 970 * 971 * Applications are unaware that "struct sk_buff" and other overheads 972 * allocate from the receive buffer during socket buffer allocation. 973 * 974 * And after considering the possible alternatives, returning the value 975 * we actually used in getsockopt is the most desirable behavior. 976 */ 977 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 978 } 979 980 void sock_set_rcvbuf(struct sock *sk, int val) 981 { 982 lock_sock(sk); 983 __sock_set_rcvbuf(sk, val); 984 release_sock(sk); 985 } 986 EXPORT_SYMBOL(sock_set_rcvbuf); 987 988 static void __sock_set_mark(struct sock *sk, u32 val) 989 { 990 if (val != sk->sk_mark) { 991 sk->sk_mark = val; 992 sk_dst_reset(sk); 993 } 994 } 995 996 void sock_set_mark(struct sock *sk, u32 val) 997 { 998 lock_sock(sk); 999 __sock_set_mark(sk, val); 1000 release_sock(sk); 1001 } 1002 EXPORT_SYMBOL(sock_set_mark); 1003 1004 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1005 { 1006 /* Round down bytes to multiple of pages */ 1007 bytes = round_down(bytes, PAGE_SIZE); 1008 1009 WARN_ON(bytes > sk->sk_reserved_mem); 1010 sk->sk_reserved_mem -= bytes; 1011 sk_mem_reclaim(sk); 1012 } 1013 1014 static int sock_reserve_memory(struct sock *sk, int bytes) 1015 { 1016 long allocated; 1017 bool charged; 1018 int pages; 1019 1020 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1021 return -EOPNOTSUPP; 1022 1023 if (!bytes) 1024 return 0; 1025 1026 pages = sk_mem_pages(bytes); 1027 1028 /* pre-charge to memcg */ 1029 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1030 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1031 if (!charged) 1032 return -ENOMEM; 1033 1034 /* pre-charge to forward_alloc */ 1035 sk_memory_allocated_add(sk, pages); 1036 allocated = sk_memory_allocated(sk); 1037 /* If the system goes into memory pressure with this 1038 * precharge, give up and return error. 1039 */ 1040 if (allocated > sk_prot_mem_limits(sk, 1)) { 1041 sk_memory_allocated_sub(sk, pages); 1042 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1043 return -ENOMEM; 1044 } 1045 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1046 1047 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1048 1049 return 0; 1050 } 1051 1052 void sockopt_lock_sock(struct sock *sk) 1053 { 1054 /* When current->bpf_ctx is set, the setsockopt is called from 1055 * a bpf prog. bpf has ensured the sk lock has been 1056 * acquired before calling setsockopt(). 1057 */ 1058 if (has_current_bpf_ctx()) 1059 return; 1060 1061 lock_sock(sk); 1062 } 1063 EXPORT_SYMBOL(sockopt_lock_sock); 1064 1065 void sockopt_release_sock(struct sock *sk) 1066 { 1067 if (has_current_bpf_ctx()) 1068 return; 1069 1070 release_sock(sk); 1071 } 1072 EXPORT_SYMBOL(sockopt_release_sock); 1073 1074 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1075 { 1076 return has_current_bpf_ctx() || ns_capable(ns, cap); 1077 } 1078 EXPORT_SYMBOL(sockopt_ns_capable); 1079 1080 bool sockopt_capable(int cap) 1081 { 1082 return has_current_bpf_ctx() || capable(cap); 1083 } 1084 EXPORT_SYMBOL(sockopt_capable); 1085 1086 /* 1087 * This is meant for all protocols to use and covers goings on 1088 * at the socket level. Everything here is generic. 1089 */ 1090 1091 int sk_setsockopt(struct sock *sk, int level, int optname, 1092 sockptr_t optval, unsigned int optlen) 1093 { 1094 struct so_timestamping timestamping; 1095 struct socket *sock = sk->sk_socket; 1096 struct sock_txtime sk_txtime; 1097 int val; 1098 int valbool; 1099 struct linger ling; 1100 int ret = 0; 1101 1102 /* 1103 * Options without arguments 1104 */ 1105 1106 if (optname == SO_BINDTODEVICE) 1107 return sock_setbindtodevice(sk, optval, optlen); 1108 1109 if (optlen < sizeof(int)) 1110 return -EINVAL; 1111 1112 if (copy_from_sockptr(&val, optval, sizeof(val))) 1113 return -EFAULT; 1114 1115 valbool = val ? 1 : 0; 1116 1117 sockopt_lock_sock(sk); 1118 1119 switch (optname) { 1120 case SO_DEBUG: 1121 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1122 ret = -EACCES; 1123 else 1124 sock_valbool_flag(sk, SOCK_DBG, valbool); 1125 break; 1126 case SO_REUSEADDR: 1127 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1128 break; 1129 case SO_REUSEPORT: 1130 sk->sk_reuseport = valbool; 1131 break; 1132 case SO_TYPE: 1133 case SO_PROTOCOL: 1134 case SO_DOMAIN: 1135 case SO_ERROR: 1136 ret = -ENOPROTOOPT; 1137 break; 1138 case SO_DONTROUTE: 1139 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1140 sk_dst_reset(sk); 1141 break; 1142 case SO_BROADCAST: 1143 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1144 break; 1145 case SO_SNDBUF: 1146 /* Don't error on this BSD doesn't and if you think 1147 * about it this is right. Otherwise apps have to 1148 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1149 * are treated in BSD as hints 1150 */ 1151 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1152 set_sndbuf: 1153 /* Ensure val * 2 fits into an int, to prevent max_t() 1154 * from treating it as a negative value. 1155 */ 1156 val = min_t(int, val, INT_MAX / 2); 1157 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1158 WRITE_ONCE(sk->sk_sndbuf, 1159 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1160 /* Wake up sending tasks if we upped the value. */ 1161 sk->sk_write_space(sk); 1162 break; 1163 1164 case SO_SNDBUFFORCE: 1165 if (!sockopt_capable(CAP_NET_ADMIN)) { 1166 ret = -EPERM; 1167 break; 1168 } 1169 1170 /* No negative values (to prevent underflow, as val will be 1171 * multiplied by 2). 1172 */ 1173 if (val < 0) 1174 val = 0; 1175 goto set_sndbuf; 1176 1177 case SO_RCVBUF: 1178 /* Don't error on this BSD doesn't and if you think 1179 * about it this is right. Otherwise apps have to 1180 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1181 * are treated in BSD as hints 1182 */ 1183 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1184 break; 1185 1186 case SO_RCVBUFFORCE: 1187 if (!sockopt_capable(CAP_NET_ADMIN)) { 1188 ret = -EPERM; 1189 break; 1190 } 1191 1192 /* No negative values (to prevent underflow, as val will be 1193 * multiplied by 2). 1194 */ 1195 __sock_set_rcvbuf(sk, max(val, 0)); 1196 break; 1197 1198 case SO_KEEPALIVE: 1199 if (sk->sk_prot->keepalive) 1200 sk->sk_prot->keepalive(sk, valbool); 1201 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1202 break; 1203 1204 case SO_OOBINLINE: 1205 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1206 break; 1207 1208 case SO_NO_CHECK: 1209 sk->sk_no_check_tx = valbool; 1210 break; 1211 1212 case SO_PRIORITY: 1213 if ((val >= 0 && val <= 6) || 1214 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1215 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1216 sk->sk_priority = val; 1217 else 1218 ret = -EPERM; 1219 break; 1220 1221 case SO_LINGER: 1222 if (optlen < sizeof(ling)) { 1223 ret = -EINVAL; /* 1003.1g */ 1224 break; 1225 } 1226 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1227 ret = -EFAULT; 1228 break; 1229 } 1230 if (!ling.l_onoff) 1231 sock_reset_flag(sk, SOCK_LINGER); 1232 else { 1233 #if (BITS_PER_LONG == 32) 1234 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1235 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1236 else 1237 #endif 1238 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1239 sock_set_flag(sk, SOCK_LINGER); 1240 } 1241 break; 1242 1243 case SO_BSDCOMPAT: 1244 break; 1245 1246 case SO_PASSCRED: 1247 if (valbool) 1248 set_bit(SOCK_PASSCRED, &sock->flags); 1249 else 1250 clear_bit(SOCK_PASSCRED, &sock->flags); 1251 break; 1252 1253 case SO_PASSPIDFD: 1254 if (valbool) 1255 set_bit(SOCK_PASSPIDFD, &sock->flags); 1256 else 1257 clear_bit(SOCK_PASSPIDFD, &sock->flags); 1258 break; 1259 1260 case SO_TIMESTAMP_OLD: 1261 case SO_TIMESTAMP_NEW: 1262 case SO_TIMESTAMPNS_OLD: 1263 case SO_TIMESTAMPNS_NEW: 1264 sock_set_timestamp(sk, optname, valbool); 1265 break; 1266 1267 case SO_TIMESTAMPING_NEW: 1268 case SO_TIMESTAMPING_OLD: 1269 if (optlen == sizeof(timestamping)) { 1270 if (copy_from_sockptr(×tamping, optval, 1271 sizeof(timestamping))) { 1272 ret = -EFAULT; 1273 break; 1274 } 1275 } else { 1276 memset(×tamping, 0, sizeof(timestamping)); 1277 timestamping.flags = val; 1278 } 1279 ret = sock_set_timestamping(sk, optname, timestamping); 1280 break; 1281 1282 case SO_RCVLOWAT: 1283 if (val < 0) 1284 val = INT_MAX; 1285 if (sock && sock->ops->set_rcvlowat) 1286 ret = sock->ops->set_rcvlowat(sk, val); 1287 else 1288 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1289 break; 1290 1291 case SO_RCVTIMEO_OLD: 1292 case SO_RCVTIMEO_NEW: 1293 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1294 optlen, optname == SO_RCVTIMEO_OLD); 1295 break; 1296 1297 case SO_SNDTIMEO_OLD: 1298 case SO_SNDTIMEO_NEW: 1299 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1300 optlen, optname == SO_SNDTIMEO_OLD); 1301 break; 1302 1303 case SO_ATTACH_FILTER: { 1304 struct sock_fprog fprog; 1305 1306 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1307 if (!ret) 1308 ret = sk_attach_filter(&fprog, sk); 1309 break; 1310 } 1311 case SO_ATTACH_BPF: 1312 ret = -EINVAL; 1313 if (optlen == sizeof(u32)) { 1314 u32 ufd; 1315 1316 ret = -EFAULT; 1317 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1318 break; 1319 1320 ret = sk_attach_bpf(ufd, sk); 1321 } 1322 break; 1323 1324 case SO_ATTACH_REUSEPORT_CBPF: { 1325 struct sock_fprog fprog; 1326 1327 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1328 if (!ret) 1329 ret = sk_reuseport_attach_filter(&fprog, sk); 1330 break; 1331 } 1332 case SO_ATTACH_REUSEPORT_EBPF: 1333 ret = -EINVAL; 1334 if (optlen == sizeof(u32)) { 1335 u32 ufd; 1336 1337 ret = -EFAULT; 1338 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1339 break; 1340 1341 ret = sk_reuseport_attach_bpf(ufd, sk); 1342 } 1343 break; 1344 1345 case SO_DETACH_REUSEPORT_BPF: 1346 ret = reuseport_detach_prog(sk); 1347 break; 1348 1349 case SO_DETACH_FILTER: 1350 ret = sk_detach_filter(sk); 1351 break; 1352 1353 case SO_LOCK_FILTER: 1354 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1355 ret = -EPERM; 1356 else 1357 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1358 break; 1359 1360 case SO_PASSSEC: 1361 if (valbool) 1362 set_bit(SOCK_PASSSEC, &sock->flags); 1363 else 1364 clear_bit(SOCK_PASSSEC, &sock->flags); 1365 break; 1366 case SO_MARK: 1367 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1368 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1369 ret = -EPERM; 1370 break; 1371 } 1372 1373 __sock_set_mark(sk, val); 1374 break; 1375 case SO_RCVMARK: 1376 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1377 break; 1378 1379 case SO_RXQ_OVFL: 1380 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1381 break; 1382 1383 case SO_WIFI_STATUS: 1384 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1385 break; 1386 1387 case SO_PEEK_OFF: 1388 if (sock->ops->set_peek_off) 1389 ret = sock->ops->set_peek_off(sk, val); 1390 else 1391 ret = -EOPNOTSUPP; 1392 break; 1393 1394 case SO_NOFCS: 1395 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1396 break; 1397 1398 case SO_SELECT_ERR_QUEUE: 1399 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1400 break; 1401 1402 #ifdef CONFIG_NET_RX_BUSY_POLL 1403 case SO_BUSY_POLL: 1404 if (val < 0) 1405 ret = -EINVAL; 1406 else 1407 WRITE_ONCE(sk->sk_ll_usec, val); 1408 break; 1409 case SO_PREFER_BUSY_POLL: 1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1411 ret = -EPERM; 1412 else 1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1414 break; 1415 case SO_BUSY_POLL_BUDGET: 1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1417 ret = -EPERM; 1418 } else { 1419 if (val < 0 || val > U16_MAX) 1420 ret = -EINVAL; 1421 else 1422 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1423 } 1424 break; 1425 #endif 1426 1427 case SO_MAX_PACING_RATE: 1428 { 1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1430 1431 if (sizeof(ulval) != sizeof(val) && 1432 optlen >= sizeof(ulval) && 1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1434 ret = -EFAULT; 1435 break; 1436 } 1437 if (ulval != ~0UL) 1438 cmpxchg(&sk->sk_pacing_status, 1439 SK_PACING_NONE, 1440 SK_PACING_NEEDED); 1441 sk->sk_max_pacing_rate = ulval; 1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1443 break; 1444 } 1445 case SO_INCOMING_CPU: 1446 reuseport_update_incoming_cpu(sk, val); 1447 break; 1448 1449 case SO_CNX_ADVICE: 1450 if (val == 1) 1451 dst_negative_advice(sk); 1452 break; 1453 1454 case SO_ZEROCOPY: 1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1456 if (!(sk_is_tcp(sk) || 1457 (sk->sk_type == SOCK_DGRAM && 1458 sk->sk_protocol == IPPROTO_UDP))) 1459 ret = -EOPNOTSUPP; 1460 } else if (sk->sk_family != PF_RDS) { 1461 ret = -EOPNOTSUPP; 1462 } 1463 if (!ret) { 1464 if (val < 0 || val > 1) 1465 ret = -EINVAL; 1466 else 1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1468 } 1469 break; 1470 1471 case SO_TXTIME: 1472 if (optlen != sizeof(struct sock_txtime)) { 1473 ret = -EINVAL; 1474 break; 1475 } else if (copy_from_sockptr(&sk_txtime, optval, 1476 sizeof(struct sock_txtime))) { 1477 ret = -EFAULT; 1478 break; 1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1480 ret = -EINVAL; 1481 break; 1482 } 1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1484 * scheduler has enough safe guards. 1485 */ 1486 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1488 ret = -EPERM; 1489 break; 1490 } 1491 sock_valbool_flag(sk, SOCK_TXTIME, true); 1492 sk->sk_clockid = sk_txtime.clockid; 1493 sk->sk_txtime_deadline_mode = 1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1495 sk->sk_txtime_report_errors = 1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1497 break; 1498 1499 case SO_BINDTOIFINDEX: 1500 ret = sock_bindtoindex_locked(sk, val); 1501 break; 1502 1503 case SO_BUF_LOCK: 1504 if (val & ~SOCK_BUF_LOCK_MASK) { 1505 ret = -EINVAL; 1506 break; 1507 } 1508 sk->sk_userlocks = val | (sk->sk_userlocks & 1509 ~SOCK_BUF_LOCK_MASK); 1510 break; 1511 1512 case SO_RESERVE_MEM: 1513 { 1514 int delta; 1515 1516 if (val < 0) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 1521 delta = val - sk->sk_reserved_mem; 1522 if (delta < 0) 1523 sock_release_reserved_memory(sk, -delta); 1524 else 1525 ret = sock_reserve_memory(sk, delta); 1526 break; 1527 } 1528 1529 case SO_TXREHASH: 1530 if (val < -1 || val > 1) { 1531 ret = -EINVAL; 1532 break; 1533 } 1534 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1537 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1538 break; 1539 1540 default: 1541 ret = -ENOPROTOOPT; 1542 break; 1543 } 1544 sockopt_release_sock(sk); 1545 return ret; 1546 } 1547 1548 int sock_setsockopt(struct socket *sock, int level, int optname, 1549 sockptr_t optval, unsigned int optlen) 1550 { 1551 return sk_setsockopt(sock->sk, level, optname, 1552 optval, optlen); 1553 } 1554 EXPORT_SYMBOL(sock_setsockopt); 1555 1556 static const struct cred *sk_get_peer_cred(struct sock *sk) 1557 { 1558 const struct cred *cred; 1559 1560 spin_lock(&sk->sk_peer_lock); 1561 cred = get_cred(sk->sk_peer_cred); 1562 spin_unlock(&sk->sk_peer_lock); 1563 1564 return cred; 1565 } 1566 1567 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1568 struct ucred *ucred) 1569 { 1570 ucred->pid = pid_vnr(pid); 1571 ucred->uid = ucred->gid = -1; 1572 if (cred) { 1573 struct user_namespace *current_ns = current_user_ns(); 1574 1575 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1576 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1577 } 1578 } 1579 1580 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1581 { 1582 struct user_namespace *user_ns = current_user_ns(); 1583 int i; 1584 1585 for (i = 0; i < src->ngroups; i++) { 1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1587 1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1589 return -EFAULT; 1590 } 1591 1592 return 0; 1593 } 1594 1595 int sk_getsockopt(struct sock *sk, int level, int optname, 1596 sockptr_t optval, sockptr_t optlen) 1597 { 1598 struct socket *sock = sk->sk_socket; 1599 1600 union { 1601 int val; 1602 u64 val64; 1603 unsigned long ulval; 1604 struct linger ling; 1605 struct old_timeval32 tm32; 1606 struct __kernel_old_timeval tm; 1607 struct __kernel_sock_timeval stm; 1608 struct sock_txtime txtime; 1609 struct so_timestamping timestamping; 1610 } v; 1611 1612 int lv = sizeof(int); 1613 int len; 1614 1615 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1616 return -EFAULT; 1617 if (len < 0) 1618 return -EINVAL; 1619 1620 memset(&v, 0, sizeof(v)); 1621 1622 switch (optname) { 1623 case SO_DEBUG: 1624 v.val = sock_flag(sk, SOCK_DBG); 1625 break; 1626 1627 case SO_DONTROUTE: 1628 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1629 break; 1630 1631 case SO_BROADCAST: 1632 v.val = sock_flag(sk, SOCK_BROADCAST); 1633 break; 1634 1635 case SO_SNDBUF: 1636 v.val = sk->sk_sndbuf; 1637 break; 1638 1639 case SO_RCVBUF: 1640 v.val = sk->sk_rcvbuf; 1641 break; 1642 1643 case SO_REUSEADDR: 1644 v.val = sk->sk_reuse; 1645 break; 1646 1647 case SO_REUSEPORT: 1648 v.val = sk->sk_reuseport; 1649 break; 1650 1651 case SO_KEEPALIVE: 1652 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1653 break; 1654 1655 case SO_TYPE: 1656 v.val = sk->sk_type; 1657 break; 1658 1659 case SO_PROTOCOL: 1660 v.val = sk->sk_protocol; 1661 break; 1662 1663 case SO_DOMAIN: 1664 v.val = sk->sk_family; 1665 break; 1666 1667 case SO_ERROR: 1668 v.val = -sock_error(sk); 1669 if (v.val == 0) 1670 v.val = xchg(&sk->sk_err_soft, 0); 1671 break; 1672 1673 case SO_OOBINLINE: 1674 v.val = sock_flag(sk, SOCK_URGINLINE); 1675 break; 1676 1677 case SO_NO_CHECK: 1678 v.val = sk->sk_no_check_tx; 1679 break; 1680 1681 case SO_PRIORITY: 1682 v.val = sk->sk_priority; 1683 break; 1684 1685 case SO_LINGER: 1686 lv = sizeof(v.ling); 1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1688 v.ling.l_linger = sk->sk_lingertime / HZ; 1689 break; 1690 1691 case SO_BSDCOMPAT: 1692 break; 1693 1694 case SO_TIMESTAMP_OLD: 1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1696 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1697 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1698 break; 1699 1700 case SO_TIMESTAMPNS_OLD: 1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1702 break; 1703 1704 case SO_TIMESTAMP_NEW: 1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1706 break; 1707 1708 case SO_TIMESTAMPNS_NEW: 1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1710 break; 1711 1712 case SO_TIMESTAMPING_OLD: 1713 lv = sizeof(v.timestamping); 1714 v.timestamping.flags = sk->sk_tsflags; 1715 v.timestamping.bind_phc = sk->sk_bind_phc; 1716 break; 1717 1718 case SO_RCVTIMEO_OLD: 1719 case SO_RCVTIMEO_NEW: 1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1721 break; 1722 1723 case SO_SNDTIMEO_OLD: 1724 case SO_SNDTIMEO_NEW: 1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1726 break; 1727 1728 case SO_RCVLOWAT: 1729 v.val = sk->sk_rcvlowat; 1730 break; 1731 1732 case SO_SNDLOWAT: 1733 v.val = 1; 1734 break; 1735 1736 case SO_PASSCRED: 1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1738 break; 1739 1740 case SO_PASSPIDFD: 1741 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1742 break; 1743 1744 case SO_PEERCRED: 1745 { 1746 struct ucred peercred; 1747 if (len > sizeof(peercred)) 1748 len = sizeof(peercred); 1749 1750 spin_lock(&sk->sk_peer_lock); 1751 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1752 spin_unlock(&sk->sk_peer_lock); 1753 1754 if (copy_to_sockptr(optval, &peercred, len)) 1755 return -EFAULT; 1756 goto lenout; 1757 } 1758 1759 case SO_PEERPIDFD: 1760 { 1761 struct pid *peer_pid; 1762 struct file *pidfd_file = NULL; 1763 int pidfd; 1764 1765 if (len > sizeof(pidfd)) 1766 len = sizeof(pidfd); 1767 1768 spin_lock(&sk->sk_peer_lock); 1769 peer_pid = get_pid(sk->sk_peer_pid); 1770 spin_unlock(&sk->sk_peer_lock); 1771 1772 if (!peer_pid) 1773 return -ESRCH; 1774 1775 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1776 put_pid(peer_pid); 1777 if (pidfd < 0) 1778 return pidfd; 1779 1780 if (copy_to_sockptr(optval, &pidfd, len) || 1781 copy_to_sockptr(optlen, &len, sizeof(int))) { 1782 put_unused_fd(pidfd); 1783 fput(pidfd_file); 1784 1785 return -EFAULT; 1786 } 1787 1788 fd_install(pidfd, pidfd_file); 1789 return 0; 1790 } 1791 1792 case SO_PEERGROUPS: 1793 { 1794 const struct cred *cred; 1795 int ret, n; 1796 1797 cred = sk_get_peer_cred(sk); 1798 if (!cred) 1799 return -ENODATA; 1800 1801 n = cred->group_info->ngroups; 1802 if (len < n * sizeof(gid_t)) { 1803 len = n * sizeof(gid_t); 1804 put_cred(cred); 1805 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1806 } 1807 len = n * sizeof(gid_t); 1808 1809 ret = groups_to_user(optval, cred->group_info); 1810 put_cred(cred); 1811 if (ret) 1812 return ret; 1813 goto lenout; 1814 } 1815 1816 case SO_PEERNAME: 1817 { 1818 char address[128]; 1819 1820 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1821 if (lv < 0) 1822 return -ENOTCONN; 1823 if (lv < len) 1824 return -EINVAL; 1825 if (copy_to_sockptr(optval, address, len)) 1826 return -EFAULT; 1827 goto lenout; 1828 } 1829 1830 /* Dubious BSD thing... Probably nobody even uses it, but 1831 * the UNIX standard wants it for whatever reason... -DaveM 1832 */ 1833 case SO_ACCEPTCONN: 1834 v.val = sk->sk_state == TCP_LISTEN; 1835 break; 1836 1837 case SO_PASSSEC: 1838 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1839 break; 1840 1841 case SO_PEERSEC: 1842 return security_socket_getpeersec_stream(sock, 1843 optval, optlen, len); 1844 1845 case SO_MARK: 1846 v.val = sk->sk_mark; 1847 break; 1848 1849 case SO_RCVMARK: 1850 v.val = sock_flag(sk, SOCK_RCVMARK); 1851 break; 1852 1853 case SO_RXQ_OVFL: 1854 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1855 break; 1856 1857 case SO_WIFI_STATUS: 1858 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1859 break; 1860 1861 case SO_PEEK_OFF: 1862 if (!sock->ops->set_peek_off) 1863 return -EOPNOTSUPP; 1864 1865 v.val = sk->sk_peek_off; 1866 break; 1867 case SO_NOFCS: 1868 v.val = sock_flag(sk, SOCK_NOFCS); 1869 break; 1870 1871 case SO_BINDTODEVICE: 1872 return sock_getbindtodevice(sk, optval, optlen, len); 1873 1874 case SO_GET_FILTER: 1875 len = sk_get_filter(sk, optval, len); 1876 if (len < 0) 1877 return len; 1878 1879 goto lenout; 1880 1881 case SO_LOCK_FILTER: 1882 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1883 break; 1884 1885 case SO_BPF_EXTENSIONS: 1886 v.val = bpf_tell_extensions(); 1887 break; 1888 1889 case SO_SELECT_ERR_QUEUE: 1890 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1891 break; 1892 1893 #ifdef CONFIG_NET_RX_BUSY_POLL 1894 case SO_BUSY_POLL: 1895 v.val = sk->sk_ll_usec; 1896 break; 1897 case SO_PREFER_BUSY_POLL: 1898 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1899 break; 1900 #endif 1901 1902 case SO_MAX_PACING_RATE: 1903 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1904 lv = sizeof(v.ulval); 1905 v.ulval = sk->sk_max_pacing_rate; 1906 } else { 1907 /* 32bit version */ 1908 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1909 } 1910 break; 1911 1912 case SO_INCOMING_CPU: 1913 v.val = READ_ONCE(sk->sk_incoming_cpu); 1914 break; 1915 1916 case SO_MEMINFO: 1917 { 1918 u32 meminfo[SK_MEMINFO_VARS]; 1919 1920 sk_get_meminfo(sk, meminfo); 1921 1922 len = min_t(unsigned int, len, sizeof(meminfo)); 1923 if (copy_to_sockptr(optval, &meminfo, len)) 1924 return -EFAULT; 1925 1926 goto lenout; 1927 } 1928 1929 #ifdef CONFIG_NET_RX_BUSY_POLL 1930 case SO_INCOMING_NAPI_ID: 1931 v.val = READ_ONCE(sk->sk_napi_id); 1932 1933 /* aggregate non-NAPI IDs down to 0 */ 1934 if (v.val < MIN_NAPI_ID) 1935 v.val = 0; 1936 1937 break; 1938 #endif 1939 1940 case SO_COOKIE: 1941 lv = sizeof(u64); 1942 if (len < lv) 1943 return -EINVAL; 1944 v.val64 = sock_gen_cookie(sk); 1945 break; 1946 1947 case SO_ZEROCOPY: 1948 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1949 break; 1950 1951 case SO_TXTIME: 1952 lv = sizeof(v.txtime); 1953 v.txtime.clockid = sk->sk_clockid; 1954 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1955 SOF_TXTIME_DEADLINE_MODE : 0; 1956 v.txtime.flags |= sk->sk_txtime_report_errors ? 1957 SOF_TXTIME_REPORT_ERRORS : 0; 1958 break; 1959 1960 case SO_BINDTOIFINDEX: 1961 v.val = READ_ONCE(sk->sk_bound_dev_if); 1962 break; 1963 1964 case SO_NETNS_COOKIE: 1965 lv = sizeof(u64); 1966 if (len != lv) 1967 return -EINVAL; 1968 v.val64 = sock_net(sk)->net_cookie; 1969 break; 1970 1971 case SO_BUF_LOCK: 1972 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1973 break; 1974 1975 case SO_RESERVE_MEM: 1976 v.val = sk->sk_reserved_mem; 1977 break; 1978 1979 case SO_TXREHASH: 1980 v.val = sk->sk_txrehash; 1981 break; 1982 1983 default: 1984 /* We implement the SO_SNDLOWAT etc to not be settable 1985 * (1003.1g 7). 1986 */ 1987 return -ENOPROTOOPT; 1988 } 1989 1990 if (len > lv) 1991 len = lv; 1992 if (copy_to_sockptr(optval, &v, len)) 1993 return -EFAULT; 1994 lenout: 1995 if (copy_to_sockptr(optlen, &len, sizeof(int))) 1996 return -EFAULT; 1997 return 0; 1998 } 1999 2000 int sock_getsockopt(struct socket *sock, int level, int optname, 2001 char __user *optval, int __user *optlen) 2002 { 2003 return sk_getsockopt(sock->sk, level, optname, 2004 USER_SOCKPTR(optval), 2005 USER_SOCKPTR(optlen)); 2006 } 2007 2008 /* 2009 * Initialize an sk_lock. 2010 * 2011 * (We also register the sk_lock with the lock validator.) 2012 */ 2013 static inline void sock_lock_init(struct sock *sk) 2014 { 2015 if (sk->sk_kern_sock) 2016 sock_lock_init_class_and_name( 2017 sk, 2018 af_family_kern_slock_key_strings[sk->sk_family], 2019 af_family_kern_slock_keys + sk->sk_family, 2020 af_family_kern_key_strings[sk->sk_family], 2021 af_family_kern_keys + sk->sk_family); 2022 else 2023 sock_lock_init_class_and_name( 2024 sk, 2025 af_family_slock_key_strings[sk->sk_family], 2026 af_family_slock_keys + sk->sk_family, 2027 af_family_key_strings[sk->sk_family], 2028 af_family_keys + sk->sk_family); 2029 } 2030 2031 /* 2032 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2033 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2034 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2035 */ 2036 static void sock_copy(struct sock *nsk, const struct sock *osk) 2037 { 2038 const struct proto *prot = READ_ONCE(osk->sk_prot); 2039 #ifdef CONFIG_SECURITY_NETWORK 2040 void *sptr = nsk->sk_security; 2041 #endif 2042 2043 /* If we move sk_tx_queue_mapping out of the private section, 2044 * we must check if sk_tx_queue_clear() is called after 2045 * sock_copy() in sk_clone_lock(). 2046 */ 2047 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2048 offsetof(struct sock, sk_dontcopy_begin) || 2049 offsetof(struct sock, sk_tx_queue_mapping) >= 2050 offsetof(struct sock, sk_dontcopy_end)); 2051 2052 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2053 2054 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2055 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2056 2057 #ifdef CONFIG_SECURITY_NETWORK 2058 nsk->sk_security = sptr; 2059 security_sk_clone(osk, nsk); 2060 #endif 2061 } 2062 2063 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2064 int family) 2065 { 2066 struct sock *sk; 2067 struct kmem_cache *slab; 2068 2069 slab = prot->slab; 2070 if (slab != NULL) { 2071 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2072 if (!sk) 2073 return sk; 2074 if (want_init_on_alloc(priority)) 2075 sk_prot_clear_nulls(sk, prot->obj_size); 2076 } else 2077 sk = kmalloc(prot->obj_size, priority); 2078 2079 if (sk != NULL) { 2080 if (security_sk_alloc(sk, family, priority)) 2081 goto out_free; 2082 2083 if (!try_module_get(prot->owner)) 2084 goto out_free_sec; 2085 } 2086 2087 return sk; 2088 2089 out_free_sec: 2090 security_sk_free(sk); 2091 out_free: 2092 if (slab != NULL) 2093 kmem_cache_free(slab, sk); 2094 else 2095 kfree(sk); 2096 return NULL; 2097 } 2098 2099 static void sk_prot_free(struct proto *prot, struct sock *sk) 2100 { 2101 struct kmem_cache *slab; 2102 struct module *owner; 2103 2104 owner = prot->owner; 2105 slab = prot->slab; 2106 2107 cgroup_sk_free(&sk->sk_cgrp_data); 2108 mem_cgroup_sk_free(sk); 2109 security_sk_free(sk); 2110 if (slab != NULL) 2111 kmem_cache_free(slab, sk); 2112 else 2113 kfree(sk); 2114 module_put(owner); 2115 } 2116 2117 /** 2118 * sk_alloc - All socket objects are allocated here 2119 * @net: the applicable net namespace 2120 * @family: protocol family 2121 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2122 * @prot: struct proto associated with this new sock instance 2123 * @kern: is this to be a kernel socket? 2124 */ 2125 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2126 struct proto *prot, int kern) 2127 { 2128 struct sock *sk; 2129 2130 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2131 if (sk) { 2132 sk->sk_family = family; 2133 /* 2134 * See comment in struct sock definition to understand 2135 * why we need sk_prot_creator -acme 2136 */ 2137 sk->sk_prot = sk->sk_prot_creator = prot; 2138 sk->sk_kern_sock = kern; 2139 sock_lock_init(sk); 2140 sk->sk_net_refcnt = kern ? 0 : 1; 2141 if (likely(sk->sk_net_refcnt)) { 2142 get_net_track(net, &sk->ns_tracker, priority); 2143 sock_inuse_add(net, 1); 2144 } else { 2145 __netns_tracker_alloc(net, &sk->ns_tracker, 2146 false, priority); 2147 } 2148 2149 sock_net_set(sk, net); 2150 refcount_set(&sk->sk_wmem_alloc, 1); 2151 2152 mem_cgroup_sk_alloc(sk); 2153 cgroup_sk_alloc(&sk->sk_cgrp_data); 2154 sock_update_classid(&sk->sk_cgrp_data); 2155 sock_update_netprioidx(&sk->sk_cgrp_data); 2156 sk_tx_queue_clear(sk); 2157 } 2158 2159 return sk; 2160 } 2161 EXPORT_SYMBOL(sk_alloc); 2162 2163 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2164 * grace period. This is the case for UDP sockets and TCP listeners. 2165 */ 2166 static void __sk_destruct(struct rcu_head *head) 2167 { 2168 struct sock *sk = container_of(head, struct sock, sk_rcu); 2169 struct sk_filter *filter; 2170 2171 if (sk->sk_destruct) 2172 sk->sk_destruct(sk); 2173 2174 filter = rcu_dereference_check(sk->sk_filter, 2175 refcount_read(&sk->sk_wmem_alloc) == 0); 2176 if (filter) { 2177 sk_filter_uncharge(sk, filter); 2178 RCU_INIT_POINTER(sk->sk_filter, NULL); 2179 } 2180 2181 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2182 2183 #ifdef CONFIG_BPF_SYSCALL 2184 bpf_sk_storage_free(sk); 2185 #endif 2186 2187 if (atomic_read(&sk->sk_omem_alloc)) 2188 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2189 __func__, atomic_read(&sk->sk_omem_alloc)); 2190 2191 if (sk->sk_frag.page) { 2192 put_page(sk->sk_frag.page); 2193 sk->sk_frag.page = NULL; 2194 } 2195 2196 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2197 put_cred(sk->sk_peer_cred); 2198 put_pid(sk->sk_peer_pid); 2199 2200 if (likely(sk->sk_net_refcnt)) 2201 put_net_track(sock_net(sk), &sk->ns_tracker); 2202 else 2203 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2204 2205 sk_prot_free(sk->sk_prot_creator, sk); 2206 } 2207 2208 void sk_destruct(struct sock *sk) 2209 { 2210 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2211 2212 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2213 reuseport_detach_sock(sk); 2214 use_call_rcu = true; 2215 } 2216 2217 if (use_call_rcu) 2218 call_rcu(&sk->sk_rcu, __sk_destruct); 2219 else 2220 __sk_destruct(&sk->sk_rcu); 2221 } 2222 2223 static void __sk_free(struct sock *sk) 2224 { 2225 if (likely(sk->sk_net_refcnt)) 2226 sock_inuse_add(sock_net(sk), -1); 2227 2228 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2229 sock_diag_broadcast_destroy(sk); 2230 else 2231 sk_destruct(sk); 2232 } 2233 2234 void sk_free(struct sock *sk) 2235 { 2236 /* 2237 * We subtract one from sk_wmem_alloc and can know if 2238 * some packets are still in some tx queue. 2239 * If not null, sock_wfree() will call __sk_free(sk) later 2240 */ 2241 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2242 __sk_free(sk); 2243 } 2244 EXPORT_SYMBOL(sk_free); 2245 2246 static void sk_init_common(struct sock *sk) 2247 { 2248 skb_queue_head_init(&sk->sk_receive_queue); 2249 skb_queue_head_init(&sk->sk_write_queue); 2250 skb_queue_head_init(&sk->sk_error_queue); 2251 2252 rwlock_init(&sk->sk_callback_lock); 2253 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2254 af_rlock_keys + sk->sk_family, 2255 af_family_rlock_key_strings[sk->sk_family]); 2256 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2257 af_wlock_keys + sk->sk_family, 2258 af_family_wlock_key_strings[sk->sk_family]); 2259 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2260 af_elock_keys + sk->sk_family, 2261 af_family_elock_key_strings[sk->sk_family]); 2262 lockdep_set_class_and_name(&sk->sk_callback_lock, 2263 af_callback_keys + sk->sk_family, 2264 af_family_clock_key_strings[sk->sk_family]); 2265 } 2266 2267 /** 2268 * sk_clone_lock - clone a socket, and lock its clone 2269 * @sk: the socket to clone 2270 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2271 * 2272 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2273 */ 2274 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2275 { 2276 struct proto *prot = READ_ONCE(sk->sk_prot); 2277 struct sk_filter *filter; 2278 bool is_charged = true; 2279 struct sock *newsk; 2280 2281 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2282 if (!newsk) 2283 goto out; 2284 2285 sock_copy(newsk, sk); 2286 2287 newsk->sk_prot_creator = prot; 2288 2289 /* SANITY */ 2290 if (likely(newsk->sk_net_refcnt)) { 2291 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2292 sock_inuse_add(sock_net(newsk), 1); 2293 } else { 2294 /* Kernel sockets are not elevating the struct net refcount. 2295 * Instead, use a tracker to more easily detect if a layer 2296 * is not properly dismantling its kernel sockets at netns 2297 * destroy time. 2298 */ 2299 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2300 false, priority); 2301 } 2302 sk_node_init(&newsk->sk_node); 2303 sock_lock_init(newsk); 2304 bh_lock_sock(newsk); 2305 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2306 newsk->sk_backlog.len = 0; 2307 2308 atomic_set(&newsk->sk_rmem_alloc, 0); 2309 2310 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2311 refcount_set(&newsk->sk_wmem_alloc, 1); 2312 2313 atomic_set(&newsk->sk_omem_alloc, 0); 2314 sk_init_common(newsk); 2315 2316 newsk->sk_dst_cache = NULL; 2317 newsk->sk_dst_pending_confirm = 0; 2318 newsk->sk_wmem_queued = 0; 2319 newsk->sk_forward_alloc = 0; 2320 newsk->sk_reserved_mem = 0; 2321 atomic_set(&newsk->sk_drops, 0); 2322 newsk->sk_send_head = NULL; 2323 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2324 atomic_set(&newsk->sk_zckey, 0); 2325 2326 sock_reset_flag(newsk, SOCK_DONE); 2327 2328 /* sk->sk_memcg will be populated at accept() time */ 2329 newsk->sk_memcg = NULL; 2330 2331 cgroup_sk_clone(&newsk->sk_cgrp_data); 2332 2333 rcu_read_lock(); 2334 filter = rcu_dereference(sk->sk_filter); 2335 if (filter != NULL) 2336 /* though it's an empty new sock, the charging may fail 2337 * if sysctl_optmem_max was changed between creation of 2338 * original socket and cloning 2339 */ 2340 is_charged = sk_filter_charge(newsk, filter); 2341 RCU_INIT_POINTER(newsk->sk_filter, filter); 2342 rcu_read_unlock(); 2343 2344 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2345 /* We need to make sure that we don't uncharge the new 2346 * socket if we couldn't charge it in the first place 2347 * as otherwise we uncharge the parent's filter. 2348 */ 2349 if (!is_charged) 2350 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2351 sk_free_unlock_clone(newsk); 2352 newsk = NULL; 2353 goto out; 2354 } 2355 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2356 2357 if (bpf_sk_storage_clone(sk, newsk)) { 2358 sk_free_unlock_clone(newsk); 2359 newsk = NULL; 2360 goto out; 2361 } 2362 2363 /* Clear sk_user_data if parent had the pointer tagged 2364 * as not suitable for copying when cloning. 2365 */ 2366 if (sk_user_data_is_nocopy(newsk)) 2367 newsk->sk_user_data = NULL; 2368 2369 newsk->sk_err = 0; 2370 newsk->sk_err_soft = 0; 2371 newsk->sk_priority = 0; 2372 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2373 2374 /* Before updating sk_refcnt, we must commit prior changes to memory 2375 * (Documentation/RCU/rculist_nulls.rst for details) 2376 */ 2377 smp_wmb(); 2378 refcount_set(&newsk->sk_refcnt, 2); 2379 2380 sk_set_socket(newsk, NULL); 2381 sk_tx_queue_clear(newsk); 2382 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2383 2384 if (newsk->sk_prot->sockets_allocated) 2385 sk_sockets_allocated_inc(newsk); 2386 2387 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2388 net_enable_timestamp(); 2389 out: 2390 return newsk; 2391 } 2392 EXPORT_SYMBOL_GPL(sk_clone_lock); 2393 2394 void sk_free_unlock_clone(struct sock *sk) 2395 { 2396 /* It is still raw copy of parent, so invalidate 2397 * destructor and make plain sk_free() */ 2398 sk->sk_destruct = NULL; 2399 bh_unlock_sock(sk); 2400 sk_free(sk); 2401 } 2402 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2403 2404 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2405 { 2406 bool is_ipv6 = false; 2407 u32 max_size; 2408 2409 #if IS_ENABLED(CONFIG_IPV6) 2410 is_ipv6 = (sk->sk_family == AF_INET6 && 2411 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2412 #endif 2413 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2414 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2415 READ_ONCE(dst->dev->gso_ipv4_max_size); 2416 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2417 max_size = GSO_LEGACY_MAX_SIZE; 2418 2419 return max_size - (MAX_TCP_HEADER + 1); 2420 } 2421 2422 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2423 { 2424 u32 max_segs = 1; 2425 2426 sk->sk_route_caps = dst->dev->features; 2427 if (sk_is_tcp(sk)) 2428 sk->sk_route_caps |= NETIF_F_GSO; 2429 if (sk->sk_route_caps & NETIF_F_GSO) 2430 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2431 if (unlikely(sk->sk_gso_disabled)) 2432 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2433 if (sk_can_gso(sk)) { 2434 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2435 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2436 } else { 2437 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2438 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2439 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2440 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2441 } 2442 } 2443 sk->sk_gso_max_segs = max_segs; 2444 sk_dst_set(sk, dst); 2445 } 2446 EXPORT_SYMBOL_GPL(sk_setup_caps); 2447 2448 /* 2449 * Simple resource managers for sockets. 2450 */ 2451 2452 2453 /* 2454 * Write buffer destructor automatically called from kfree_skb. 2455 */ 2456 void sock_wfree(struct sk_buff *skb) 2457 { 2458 struct sock *sk = skb->sk; 2459 unsigned int len = skb->truesize; 2460 bool free; 2461 2462 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2463 if (sock_flag(sk, SOCK_RCU_FREE) && 2464 sk->sk_write_space == sock_def_write_space) { 2465 rcu_read_lock(); 2466 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2467 sock_def_write_space_wfree(sk); 2468 rcu_read_unlock(); 2469 if (unlikely(free)) 2470 __sk_free(sk); 2471 return; 2472 } 2473 2474 /* 2475 * Keep a reference on sk_wmem_alloc, this will be released 2476 * after sk_write_space() call 2477 */ 2478 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2479 sk->sk_write_space(sk); 2480 len = 1; 2481 } 2482 /* 2483 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2484 * could not do because of in-flight packets 2485 */ 2486 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2487 __sk_free(sk); 2488 } 2489 EXPORT_SYMBOL(sock_wfree); 2490 2491 /* This variant of sock_wfree() is used by TCP, 2492 * since it sets SOCK_USE_WRITE_QUEUE. 2493 */ 2494 void __sock_wfree(struct sk_buff *skb) 2495 { 2496 struct sock *sk = skb->sk; 2497 2498 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2499 __sk_free(sk); 2500 } 2501 2502 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2503 { 2504 skb_orphan(skb); 2505 skb->sk = sk; 2506 #ifdef CONFIG_INET 2507 if (unlikely(!sk_fullsock(sk))) { 2508 skb->destructor = sock_edemux; 2509 sock_hold(sk); 2510 return; 2511 } 2512 #endif 2513 skb->destructor = sock_wfree; 2514 skb_set_hash_from_sk(skb, sk); 2515 /* 2516 * We used to take a refcount on sk, but following operation 2517 * is enough to guarantee sk_free() wont free this sock until 2518 * all in-flight packets are completed 2519 */ 2520 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2521 } 2522 EXPORT_SYMBOL(skb_set_owner_w); 2523 2524 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2525 { 2526 #ifdef CONFIG_TLS_DEVICE 2527 /* Drivers depend on in-order delivery for crypto offload, 2528 * partial orphan breaks out-of-order-OK logic. 2529 */ 2530 if (skb->decrypted) 2531 return false; 2532 #endif 2533 return (skb->destructor == sock_wfree || 2534 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2535 } 2536 2537 /* This helper is used by netem, as it can hold packets in its 2538 * delay queue. We want to allow the owner socket to send more 2539 * packets, as if they were already TX completed by a typical driver. 2540 * But we also want to keep skb->sk set because some packet schedulers 2541 * rely on it (sch_fq for example). 2542 */ 2543 void skb_orphan_partial(struct sk_buff *skb) 2544 { 2545 if (skb_is_tcp_pure_ack(skb)) 2546 return; 2547 2548 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2549 return; 2550 2551 skb_orphan(skb); 2552 } 2553 EXPORT_SYMBOL(skb_orphan_partial); 2554 2555 /* 2556 * Read buffer destructor automatically called from kfree_skb. 2557 */ 2558 void sock_rfree(struct sk_buff *skb) 2559 { 2560 struct sock *sk = skb->sk; 2561 unsigned int len = skb->truesize; 2562 2563 atomic_sub(len, &sk->sk_rmem_alloc); 2564 sk_mem_uncharge(sk, len); 2565 } 2566 EXPORT_SYMBOL(sock_rfree); 2567 2568 /* 2569 * Buffer destructor for skbs that are not used directly in read or write 2570 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2571 */ 2572 void sock_efree(struct sk_buff *skb) 2573 { 2574 sock_put(skb->sk); 2575 } 2576 EXPORT_SYMBOL(sock_efree); 2577 2578 /* Buffer destructor for prefetch/receive path where reference count may 2579 * not be held, e.g. for listen sockets. 2580 */ 2581 #ifdef CONFIG_INET 2582 void sock_pfree(struct sk_buff *skb) 2583 { 2584 if (sk_is_refcounted(skb->sk)) 2585 sock_gen_put(skb->sk); 2586 } 2587 EXPORT_SYMBOL(sock_pfree); 2588 #endif /* CONFIG_INET */ 2589 2590 kuid_t sock_i_uid(struct sock *sk) 2591 { 2592 kuid_t uid; 2593 2594 read_lock_bh(&sk->sk_callback_lock); 2595 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2596 read_unlock_bh(&sk->sk_callback_lock); 2597 return uid; 2598 } 2599 EXPORT_SYMBOL(sock_i_uid); 2600 2601 unsigned long __sock_i_ino(struct sock *sk) 2602 { 2603 unsigned long ino; 2604 2605 read_lock(&sk->sk_callback_lock); 2606 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2607 read_unlock(&sk->sk_callback_lock); 2608 return ino; 2609 } 2610 EXPORT_SYMBOL(__sock_i_ino); 2611 2612 unsigned long sock_i_ino(struct sock *sk) 2613 { 2614 unsigned long ino; 2615 2616 local_bh_disable(); 2617 ino = __sock_i_ino(sk); 2618 local_bh_enable(); 2619 return ino; 2620 } 2621 EXPORT_SYMBOL(sock_i_ino); 2622 2623 /* 2624 * Allocate a skb from the socket's send buffer. 2625 */ 2626 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2627 gfp_t priority) 2628 { 2629 if (force || 2630 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2631 struct sk_buff *skb = alloc_skb(size, priority); 2632 2633 if (skb) { 2634 skb_set_owner_w(skb, sk); 2635 return skb; 2636 } 2637 } 2638 return NULL; 2639 } 2640 EXPORT_SYMBOL(sock_wmalloc); 2641 2642 static void sock_ofree(struct sk_buff *skb) 2643 { 2644 struct sock *sk = skb->sk; 2645 2646 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2647 } 2648 2649 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2650 gfp_t priority) 2651 { 2652 struct sk_buff *skb; 2653 2654 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2655 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2656 READ_ONCE(sysctl_optmem_max)) 2657 return NULL; 2658 2659 skb = alloc_skb(size, priority); 2660 if (!skb) 2661 return NULL; 2662 2663 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2664 skb->sk = sk; 2665 skb->destructor = sock_ofree; 2666 return skb; 2667 } 2668 2669 /* 2670 * Allocate a memory block from the socket's option memory buffer. 2671 */ 2672 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2673 { 2674 int optmem_max = READ_ONCE(sysctl_optmem_max); 2675 2676 if ((unsigned int)size <= optmem_max && 2677 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2678 void *mem; 2679 /* First do the add, to avoid the race if kmalloc 2680 * might sleep. 2681 */ 2682 atomic_add(size, &sk->sk_omem_alloc); 2683 mem = kmalloc(size, priority); 2684 if (mem) 2685 return mem; 2686 atomic_sub(size, &sk->sk_omem_alloc); 2687 } 2688 return NULL; 2689 } 2690 EXPORT_SYMBOL(sock_kmalloc); 2691 2692 /* Free an option memory block. Note, we actually want the inline 2693 * here as this allows gcc to detect the nullify and fold away the 2694 * condition entirely. 2695 */ 2696 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2697 const bool nullify) 2698 { 2699 if (WARN_ON_ONCE(!mem)) 2700 return; 2701 if (nullify) 2702 kfree_sensitive(mem); 2703 else 2704 kfree(mem); 2705 atomic_sub(size, &sk->sk_omem_alloc); 2706 } 2707 2708 void sock_kfree_s(struct sock *sk, void *mem, int size) 2709 { 2710 __sock_kfree_s(sk, mem, size, false); 2711 } 2712 EXPORT_SYMBOL(sock_kfree_s); 2713 2714 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2715 { 2716 __sock_kfree_s(sk, mem, size, true); 2717 } 2718 EXPORT_SYMBOL(sock_kzfree_s); 2719 2720 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2721 I think, these locks should be removed for datagram sockets. 2722 */ 2723 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2724 { 2725 DEFINE_WAIT(wait); 2726 2727 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2728 for (;;) { 2729 if (!timeo) 2730 break; 2731 if (signal_pending(current)) 2732 break; 2733 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2734 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2735 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2736 break; 2737 if (sk->sk_shutdown & SEND_SHUTDOWN) 2738 break; 2739 if (sk->sk_err) 2740 break; 2741 timeo = schedule_timeout(timeo); 2742 } 2743 finish_wait(sk_sleep(sk), &wait); 2744 return timeo; 2745 } 2746 2747 2748 /* 2749 * Generic send/receive buffer handlers 2750 */ 2751 2752 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2753 unsigned long data_len, int noblock, 2754 int *errcode, int max_page_order) 2755 { 2756 struct sk_buff *skb; 2757 long timeo; 2758 int err; 2759 2760 timeo = sock_sndtimeo(sk, noblock); 2761 for (;;) { 2762 err = sock_error(sk); 2763 if (err != 0) 2764 goto failure; 2765 2766 err = -EPIPE; 2767 if (sk->sk_shutdown & SEND_SHUTDOWN) 2768 goto failure; 2769 2770 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2771 break; 2772 2773 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2774 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2775 err = -EAGAIN; 2776 if (!timeo) 2777 goto failure; 2778 if (signal_pending(current)) 2779 goto interrupted; 2780 timeo = sock_wait_for_wmem(sk, timeo); 2781 } 2782 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2783 errcode, sk->sk_allocation); 2784 if (skb) 2785 skb_set_owner_w(skb, sk); 2786 return skb; 2787 2788 interrupted: 2789 err = sock_intr_errno(timeo); 2790 failure: 2791 *errcode = err; 2792 return NULL; 2793 } 2794 EXPORT_SYMBOL(sock_alloc_send_pskb); 2795 2796 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2797 struct sockcm_cookie *sockc) 2798 { 2799 u32 tsflags; 2800 2801 switch (cmsg->cmsg_type) { 2802 case SO_MARK: 2803 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2804 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2805 return -EPERM; 2806 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2807 return -EINVAL; 2808 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2809 break; 2810 case SO_TIMESTAMPING_OLD: 2811 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2812 return -EINVAL; 2813 2814 tsflags = *(u32 *)CMSG_DATA(cmsg); 2815 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2816 return -EINVAL; 2817 2818 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2819 sockc->tsflags |= tsflags; 2820 break; 2821 case SCM_TXTIME: 2822 if (!sock_flag(sk, SOCK_TXTIME)) 2823 return -EINVAL; 2824 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2825 return -EINVAL; 2826 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2827 break; 2828 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2829 case SCM_RIGHTS: 2830 case SCM_CREDENTIALS: 2831 break; 2832 default: 2833 return -EINVAL; 2834 } 2835 return 0; 2836 } 2837 EXPORT_SYMBOL(__sock_cmsg_send); 2838 2839 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2840 struct sockcm_cookie *sockc) 2841 { 2842 struct cmsghdr *cmsg; 2843 int ret; 2844 2845 for_each_cmsghdr(cmsg, msg) { 2846 if (!CMSG_OK(msg, cmsg)) 2847 return -EINVAL; 2848 if (cmsg->cmsg_level != SOL_SOCKET) 2849 continue; 2850 ret = __sock_cmsg_send(sk, cmsg, sockc); 2851 if (ret) 2852 return ret; 2853 } 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(sock_cmsg_send); 2857 2858 static void sk_enter_memory_pressure(struct sock *sk) 2859 { 2860 if (!sk->sk_prot->enter_memory_pressure) 2861 return; 2862 2863 sk->sk_prot->enter_memory_pressure(sk); 2864 } 2865 2866 static void sk_leave_memory_pressure(struct sock *sk) 2867 { 2868 if (sk->sk_prot->leave_memory_pressure) { 2869 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2870 tcp_leave_memory_pressure, sk); 2871 } else { 2872 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2873 2874 if (memory_pressure && READ_ONCE(*memory_pressure)) 2875 WRITE_ONCE(*memory_pressure, 0); 2876 } 2877 } 2878 2879 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2880 2881 /** 2882 * skb_page_frag_refill - check that a page_frag contains enough room 2883 * @sz: minimum size of the fragment we want to get 2884 * @pfrag: pointer to page_frag 2885 * @gfp: priority for memory allocation 2886 * 2887 * Note: While this allocator tries to use high order pages, there is 2888 * no guarantee that allocations succeed. Therefore, @sz MUST be 2889 * less or equal than PAGE_SIZE. 2890 */ 2891 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2892 { 2893 if (pfrag->page) { 2894 if (page_ref_count(pfrag->page) == 1) { 2895 pfrag->offset = 0; 2896 return true; 2897 } 2898 if (pfrag->offset + sz <= pfrag->size) 2899 return true; 2900 put_page(pfrag->page); 2901 } 2902 2903 pfrag->offset = 0; 2904 if (SKB_FRAG_PAGE_ORDER && 2905 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2906 /* Avoid direct reclaim but allow kswapd to wake */ 2907 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2908 __GFP_COMP | __GFP_NOWARN | 2909 __GFP_NORETRY, 2910 SKB_FRAG_PAGE_ORDER); 2911 if (likely(pfrag->page)) { 2912 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2913 return true; 2914 } 2915 } 2916 pfrag->page = alloc_page(gfp); 2917 if (likely(pfrag->page)) { 2918 pfrag->size = PAGE_SIZE; 2919 return true; 2920 } 2921 return false; 2922 } 2923 EXPORT_SYMBOL(skb_page_frag_refill); 2924 2925 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2926 { 2927 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2928 return true; 2929 2930 sk_enter_memory_pressure(sk); 2931 sk_stream_moderate_sndbuf(sk); 2932 return false; 2933 } 2934 EXPORT_SYMBOL(sk_page_frag_refill); 2935 2936 void __lock_sock(struct sock *sk) 2937 __releases(&sk->sk_lock.slock) 2938 __acquires(&sk->sk_lock.slock) 2939 { 2940 DEFINE_WAIT(wait); 2941 2942 for (;;) { 2943 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2944 TASK_UNINTERRUPTIBLE); 2945 spin_unlock_bh(&sk->sk_lock.slock); 2946 schedule(); 2947 spin_lock_bh(&sk->sk_lock.slock); 2948 if (!sock_owned_by_user(sk)) 2949 break; 2950 } 2951 finish_wait(&sk->sk_lock.wq, &wait); 2952 } 2953 2954 void __release_sock(struct sock *sk) 2955 __releases(&sk->sk_lock.slock) 2956 __acquires(&sk->sk_lock.slock) 2957 { 2958 struct sk_buff *skb, *next; 2959 2960 while ((skb = sk->sk_backlog.head) != NULL) { 2961 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2962 2963 spin_unlock_bh(&sk->sk_lock.slock); 2964 2965 do { 2966 next = skb->next; 2967 prefetch(next); 2968 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2969 skb_mark_not_on_list(skb); 2970 sk_backlog_rcv(sk, skb); 2971 2972 cond_resched(); 2973 2974 skb = next; 2975 } while (skb != NULL); 2976 2977 spin_lock_bh(&sk->sk_lock.slock); 2978 } 2979 2980 /* 2981 * Doing the zeroing here guarantee we can not loop forever 2982 * while a wild producer attempts to flood us. 2983 */ 2984 sk->sk_backlog.len = 0; 2985 } 2986 2987 void __sk_flush_backlog(struct sock *sk) 2988 { 2989 spin_lock_bh(&sk->sk_lock.slock); 2990 __release_sock(sk); 2991 spin_unlock_bh(&sk->sk_lock.slock); 2992 } 2993 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2994 2995 /** 2996 * sk_wait_data - wait for data to arrive at sk_receive_queue 2997 * @sk: sock to wait on 2998 * @timeo: for how long 2999 * @skb: last skb seen on sk_receive_queue 3000 * 3001 * Now socket state including sk->sk_err is changed only under lock, 3002 * hence we may omit checks after joining wait queue. 3003 * We check receive queue before schedule() only as optimization; 3004 * it is very likely that release_sock() added new data. 3005 */ 3006 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3007 { 3008 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3009 int rc; 3010 3011 add_wait_queue(sk_sleep(sk), &wait); 3012 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3013 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3014 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3015 remove_wait_queue(sk_sleep(sk), &wait); 3016 return rc; 3017 } 3018 EXPORT_SYMBOL(sk_wait_data); 3019 3020 /** 3021 * __sk_mem_raise_allocated - increase memory_allocated 3022 * @sk: socket 3023 * @size: memory size to allocate 3024 * @amt: pages to allocate 3025 * @kind: allocation type 3026 * 3027 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 3028 */ 3029 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3030 { 3031 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 3032 struct proto *prot = sk->sk_prot; 3033 bool charged = true; 3034 long allocated; 3035 3036 sk_memory_allocated_add(sk, amt); 3037 allocated = sk_memory_allocated(sk); 3038 if (memcg_charge && 3039 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3040 gfp_memcg_charge()))) 3041 goto suppress_allocation; 3042 3043 /* Under limit. */ 3044 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3045 sk_leave_memory_pressure(sk); 3046 return 1; 3047 } 3048 3049 /* Under pressure. */ 3050 if (allocated > sk_prot_mem_limits(sk, 1)) 3051 sk_enter_memory_pressure(sk); 3052 3053 /* Over hard limit. */ 3054 if (allocated > sk_prot_mem_limits(sk, 2)) 3055 goto suppress_allocation; 3056 3057 /* guarantee minimum buffer size under pressure */ 3058 if (kind == SK_MEM_RECV) { 3059 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3060 return 1; 3061 3062 } else { /* SK_MEM_SEND */ 3063 int wmem0 = sk_get_wmem0(sk, prot); 3064 3065 if (sk->sk_type == SOCK_STREAM) { 3066 if (sk->sk_wmem_queued < wmem0) 3067 return 1; 3068 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3069 return 1; 3070 } 3071 } 3072 3073 if (sk_has_memory_pressure(sk)) { 3074 u64 alloc; 3075 3076 if (!sk_under_memory_pressure(sk)) 3077 return 1; 3078 alloc = sk_sockets_allocated_read_positive(sk); 3079 if (sk_prot_mem_limits(sk, 2) > alloc * 3080 sk_mem_pages(sk->sk_wmem_queued + 3081 atomic_read(&sk->sk_rmem_alloc) + 3082 sk->sk_forward_alloc)) 3083 return 1; 3084 } 3085 3086 suppress_allocation: 3087 3088 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3089 sk_stream_moderate_sndbuf(sk); 3090 3091 /* Fail only if socket is _under_ its sndbuf. 3092 * In this case we cannot block, so that we have to fail. 3093 */ 3094 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3095 /* Force charge with __GFP_NOFAIL */ 3096 if (memcg_charge && !charged) { 3097 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3098 gfp_memcg_charge() | __GFP_NOFAIL); 3099 } 3100 return 1; 3101 } 3102 } 3103 3104 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3105 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3106 3107 sk_memory_allocated_sub(sk, amt); 3108 3109 if (memcg_charge && charged) 3110 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3111 3112 return 0; 3113 } 3114 3115 /** 3116 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3117 * @sk: socket 3118 * @size: memory size to allocate 3119 * @kind: allocation type 3120 * 3121 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3122 * rmem allocation. This function assumes that protocols which have 3123 * memory_pressure use sk_wmem_queued as write buffer accounting. 3124 */ 3125 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3126 { 3127 int ret, amt = sk_mem_pages(size); 3128 3129 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3130 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3131 if (!ret) 3132 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3133 return ret; 3134 } 3135 EXPORT_SYMBOL(__sk_mem_schedule); 3136 3137 /** 3138 * __sk_mem_reduce_allocated - reclaim memory_allocated 3139 * @sk: socket 3140 * @amount: number of quanta 3141 * 3142 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3143 */ 3144 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3145 { 3146 sk_memory_allocated_sub(sk, amount); 3147 3148 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3149 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3150 3151 if (sk_under_memory_pressure(sk) && 3152 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3153 sk_leave_memory_pressure(sk); 3154 } 3155 3156 /** 3157 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3158 * @sk: socket 3159 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3160 */ 3161 void __sk_mem_reclaim(struct sock *sk, int amount) 3162 { 3163 amount >>= PAGE_SHIFT; 3164 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3165 __sk_mem_reduce_allocated(sk, amount); 3166 } 3167 EXPORT_SYMBOL(__sk_mem_reclaim); 3168 3169 int sk_set_peek_off(struct sock *sk, int val) 3170 { 3171 sk->sk_peek_off = val; 3172 return 0; 3173 } 3174 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3175 3176 /* 3177 * Set of default routines for initialising struct proto_ops when 3178 * the protocol does not support a particular function. In certain 3179 * cases where it makes no sense for a protocol to have a "do nothing" 3180 * function, some default processing is provided. 3181 */ 3182 3183 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3184 { 3185 return -EOPNOTSUPP; 3186 } 3187 EXPORT_SYMBOL(sock_no_bind); 3188 3189 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3190 int len, int flags) 3191 { 3192 return -EOPNOTSUPP; 3193 } 3194 EXPORT_SYMBOL(sock_no_connect); 3195 3196 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3197 { 3198 return -EOPNOTSUPP; 3199 } 3200 EXPORT_SYMBOL(sock_no_socketpair); 3201 3202 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3203 bool kern) 3204 { 3205 return -EOPNOTSUPP; 3206 } 3207 EXPORT_SYMBOL(sock_no_accept); 3208 3209 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3210 int peer) 3211 { 3212 return -EOPNOTSUPP; 3213 } 3214 EXPORT_SYMBOL(sock_no_getname); 3215 3216 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3217 { 3218 return -EOPNOTSUPP; 3219 } 3220 EXPORT_SYMBOL(sock_no_ioctl); 3221 3222 int sock_no_listen(struct socket *sock, int backlog) 3223 { 3224 return -EOPNOTSUPP; 3225 } 3226 EXPORT_SYMBOL(sock_no_listen); 3227 3228 int sock_no_shutdown(struct socket *sock, int how) 3229 { 3230 return -EOPNOTSUPP; 3231 } 3232 EXPORT_SYMBOL(sock_no_shutdown); 3233 3234 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3235 { 3236 return -EOPNOTSUPP; 3237 } 3238 EXPORT_SYMBOL(sock_no_sendmsg); 3239 3240 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3241 { 3242 return -EOPNOTSUPP; 3243 } 3244 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3245 3246 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3247 int flags) 3248 { 3249 return -EOPNOTSUPP; 3250 } 3251 EXPORT_SYMBOL(sock_no_recvmsg); 3252 3253 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3254 { 3255 /* Mirror missing mmap method error code */ 3256 return -ENODEV; 3257 } 3258 EXPORT_SYMBOL(sock_no_mmap); 3259 3260 /* 3261 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3262 * various sock-based usage counts. 3263 */ 3264 void __receive_sock(struct file *file) 3265 { 3266 struct socket *sock; 3267 3268 sock = sock_from_file(file); 3269 if (sock) { 3270 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3271 sock_update_classid(&sock->sk->sk_cgrp_data); 3272 } 3273 } 3274 3275 /* 3276 * Default Socket Callbacks 3277 */ 3278 3279 static void sock_def_wakeup(struct sock *sk) 3280 { 3281 struct socket_wq *wq; 3282 3283 rcu_read_lock(); 3284 wq = rcu_dereference(sk->sk_wq); 3285 if (skwq_has_sleeper(wq)) 3286 wake_up_interruptible_all(&wq->wait); 3287 rcu_read_unlock(); 3288 } 3289 3290 static void sock_def_error_report(struct sock *sk) 3291 { 3292 struct socket_wq *wq; 3293 3294 rcu_read_lock(); 3295 wq = rcu_dereference(sk->sk_wq); 3296 if (skwq_has_sleeper(wq)) 3297 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3298 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3299 rcu_read_unlock(); 3300 } 3301 3302 void sock_def_readable(struct sock *sk) 3303 { 3304 struct socket_wq *wq; 3305 3306 trace_sk_data_ready(sk); 3307 3308 rcu_read_lock(); 3309 wq = rcu_dereference(sk->sk_wq); 3310 if (skwq_has_sleeper(wq)) 3311 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3312 EPOLLRDNORM | EPOLLRDBAND); 3313 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3314 rcu_read_unlock(); 3315 } 3316 3317 static void sock_def_write_space(struct sock *sk) 3318 { 3319 struct socket_wq *wq; 3320 3321 rcu_read_lock(); 3322 3323 /* Do not wake up a writer until he can make "significant" 3324 * progress. --DaveM 3325 */ 3326 if (sock_writeable(sk)) { 3327 wq = rcu_dereference(sk->sk_wq); 3328 if (skwq_has_sleeper(wq)) 3329 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3330 EPOLLWRNORM | EPOLLWRBAND); 3331 3332 /* Should agree with poll, otherwise some programs break */ 3333 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3334 } 3335 3336 rcu_read_unlock(); 3337 } 3338 3339 /* An optimised version of sock_def_write_space(), should only be called 3340 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3341 * ->sk_wmem_alloc. 3342 */ 3343 static void sock_def_write_space_wfree(struct sock *sk) 3344 { 3345 /* Do not wake up a writer until he can make "significant" 3346 * progress. --DaveM 3347 */ 3348 if (sock_writeable(sk)) { 3349 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3350 3351 /* rely on refcount_sub from sock_wfree() */ 3352 smp_mb__after_atomic(); 3353 if (wq && waitqueue_active(&wq->wait)) 3354 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3355 EPOLLWRNORM | EPOLLWRBAND); 3356 3357 /* Should agree with poll, otherwise some programs break */ 3358 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3359 } 3360 } 3361 3362 static void sock_def_destruct(struct sock *sk) 3363 { 3364 } 3365 3366 void sk_send_sigurg(struct sock *sk) 3367 { 3368 if (sk->sk_socket && sk->sk_socket->file) 3369 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3370 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3371 } 3372 EXPORT_SYMBOL(sk_send_sigurg); 3373 3374 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3375 unsigned long expires) 3376 { 3377 if (!mod_timer(timer, expires)) 3378 sock_hold(sk); 3379 } 3380 EXPORT_SYMBOL(sk_reset_timer); 3381 3382 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3383 { 3384 if (del_timer(timer)) 3385 __sock_put(sk); 3386 } 3387 EXPORT_SYMBOL(sk_stop_timer); 3388 3389 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3390 { 3391 if (del_timer_sync(timer)) 3392 __sock_put(sk); 3393 } 3394 EXPORT_SYMBOL(sk_stop_timer_sync); 3395 3396 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3397 { 3398 sk_init_common(sk); 3399 sk->sk_send_head = NULL; 3400 3401 timer_setup(&sk->sk_timer, NULL, 0); 3402 3403 sk->sk_allocation = GFP_KERNEL; 3404 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3405 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3406 sk->sk_state = TCP_CLOSE; 3407 sk->sk_use_task_frag = true; 3408 sk_set_socket(sk, sock); 3409 3410 sock_set_flag(sk, SOCK_ZAPPED); 3411 3412 if (sock) { 3413 sk->sk_type = sock->type; 3414 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3415 sock->sk = sk; 3416 } else { 3417 RCU_INIT_POINTER(sk->sk_wq, NULL); 3418 } 3419 sk->sk_uid = uid; 3420 3421 rwlock_init(&sk->sk_callback_lock); 3422 if (sk->sk_kern_sock) 3423 lockdep_set_class_and_name( 3424 &sk->sk_callback_lock, 3425 af_kern_callback_keys + sk->sk_family, 3426 af_family_kern_clock_key_strings[sk->sk_family]); 3427 else 3428 lockdep_set_class_and_name( 3429 &sk->sk_callback_lock, 3430 af_callback_keys + sk->sk_family, 3431 af_family_clock_key_strings[sk->sk_family]); 3432 3433 sk->sk_state_change = sock_def_wakeup; 3434 sk->sk_data_ready = sock_def_readable; 3435 sk->sk_write_space = sock_def_write_space; 3436 sk->sk_error_report = sock_def_error_report; 3437 sk->sk_destruct = sock_def_destruct; 3438 3439 sk->sk_frag.page = NULL; 3440 sk->sk_frag.offset = 0; 3441 sk->sk_peek_off = -1; 3442 3443 sk->sk_peer_pid = NULL; 3444 sk->sk_peer_cred = NULL; 3445 spin_lock_init(&sk->sk_peer_lock); 3446 3447 sk->sk_write_pending = 0; 3448 sk->sk_rcvlowat = 1; 3449 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3450 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3451 3452 sk->sk_stamp = SK_DEFAULT_STAMP; 3453 #if BITS_PER_LONG==32 3454 seqlock_init(&sk->sk_stamp_seq); 3455 #endif 3456 atomic_set(&sk->sk_zckey, 0); 3457 3458 #ifdef CONFIG_NET_RX_BUSY_POLL 3459 sk->sk_napi_id = 0; 3460 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3461 #endif 3462 3463 sk->sk_max_pacing_rate = ~0UL; 3464 sk->sk_pacing_rate = ~0UL; 3465 WRITE_ONCE(sk->sk_pacing_shift, 10); 3466 sk->sk_incoming_cpu = -1; 3467 3468 sk_rx_queue_clear(sk); 3469 /* 3470 * Before updating sk_refcnt, we must commit prior changes to memory 3471 * (Documentation/RCU/rculist_nulls.rst for details) 3472 */ 3473 smp_wmb(); 3474 refcount_set(&sk->sk_refcnt, 1); 3475 atomic_set(&sk->sk_drops, 0); 3476 } 3477 EXPORT_SYMBOL(sock_init_data_uid); 3478 3479 void sock_init_data(struct socket *sock, struct sock *sk) 3480 { 3481 kuid_t uid = sock ? 3482 SOCK_INODE(sock)->i_uid : 3483 make_kuid(sock_net(sk)->user_ns, 0); 3484 3485 sock_init_data_uid(sock, sk, uid); 3486 } 3487 EXPORT_SYMBOL(sock_init_data); 3488 3489 void lock_sock_nested(struct sock *sk, int subclass) 3490 { 3491 /* The sk_lock has mutex_lock() semantics here. */ 3492 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3493 3494 might_sleep(); 3495 spin_lock_bh(&sk->sk_lock.slock); 3496 if (sock_owned_by_user_nocheck(sk)) 3497 __lock_sock(sk); 3498 sk->sk_lock.owned = 1; 3499 spin_unlock_bh(&sk->sk_lock.slock); 3500 } 3501 EXPORT_SYMBOL(lock_sock_nested); 3502 3503 void release_sock(struct sock *sk) 3504 { 3505 spin_lock_bh(&sk->sk_lock.slock); 3506 if (sk->sk_backlog.tail) 3507 __release_sock(sk); 3508 3509 /* Warning : release_cb() might need to release sk ownership, 3510 * ie call sock_release_ownership(sk) before us. 3511 */ 3512 if (sk->sk_prot->release_cb) 3513 sk->sk_prot->release_cb(sk); 3514 3515 sock_release_ownership(sk); 3516 if (waitqueue_active(&sk->sk_lock.wq)) 3517 wake_up(&sk->sk_lock.wq); 3518 spin_unlock_bh(&sk->sk_lock.slock); 3519 } 3520 EXPORT_SYMBOL(release_sock); 3521 3522 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3523 { 3524 might_sleep(); 3525 spin_lock_bh(&sk->sk_lock.slock); 3526 3527 if (!sock_owned_by_user_nocheck(sk)) { 3528 /* 3529 * Fast path return with bottom halves disabled and 3530 * sock::sk_lock.slock held. 3531 * 3532 * The 'mutex' is not contended and holding 3533 * sock::sk_lock.slock prevents all other lockers to 3534 * proceed so the corresponding unlock_sock_fast() can 3535 * avoid the slow path of release_sock() completely and 3536 * just release slock. 3537 * 3538 * From a semantical POV this is equivalent to 'acquiring' 3539 * the 'mutex', hence the corresponding lockdep 3540 * mutex_release() has to happen in the fast path of 3541 * unlock_sock_fast(). 3542 */ 3543 return false; 3544 } 3545 3546 __lock_sock(sk); 3547 sk->sk_lock.owned = 1; 3548 __acquire(&sk->sk_lock.slock); 3549 spin_unlock_bh(&sk->sk_lock.slock); 3550 return true; 3551 } 3552 EXPORT_SYMBOL(__lock_sock_fast); 3553 3554 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3555 bool timeval, bool time32) 3556 { 3557 struct sock *sk = sock->sk; 3558 struct timespec64 ts; 3559 3560 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3561 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3562 if (ts.tv_sec == -1) 3563 return -ENOENT; 3564 if (ts.tv_sec == 0) { 3565 ktime_t kt = ktime_get_real(); 3566 sock_write_timestamp(sk, kt); 3567 ts = ktime_to_timespec64(kt); 3568 } 3569 3570 if (timeval) 3571 ts.tv_nsec /= 1000; 3572 3573 #ifdef CONFIG_COMPAT_32BIT_TIME 3574 if (time32) 3575 return put_old_timespec32(&ts, userstamp); 3576 #endif 3577 #ifdef CONFIG_SPARC64 3578 /* beware of padding in sparc64 timeval */ 3579 if (timeval && !in_compat_syscall()) { 3580 struct __kernel_old_timeval __user tv = { 3581 .tv_sec = ts.tv_sec, 3582 .tv_usec = ts.tv_nsec, 3583 }; 3584 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3585 return -EFAULT; 3586 return 0; 3587 } 3588 #endif 3589 return put_timespec64(&ts, userstamp); 3590 } 3591 EXPORT_SYMBOL(sock_gettstamp); 3592 3593 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3594 { 3595 if (!sock_flag(sk, flag)) { 3596 unsigned long previous_flags = sk->sk_flags; 3597 3598 sock_set_flag(sk, flag); 3599 /* 3600 * we just set one of the two flags which require net 3601 * time stamping, but time stamping might have been on 3602 * already because of the other one 3603 */ 3604 if (sock_needs_netstamp(sk) && 3605 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3606 net_enable_timestamp(); 3607 } 3608 } 3609 3610 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3611 int level, int type) 3612 { 3613 struct sock_exterr_skb *serr; 3614 struct sk_buff *skb; 3615 int copied, err; 3616 3617 err = -EAGAIN; 3618 skb = sock_dequeue_err_skb(sk); 3619 if (skb == NULL) 3620 goto out; 3621 3622 copied = skb->len; 3623 if (copied > len) { 3624 msg->msg_flags |= MSG_TRUNC; 3625 copied = len; 3626 } 3627 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3628 if (err) 3629 goto out_free_skb; 3630 3631 sock_recv_timestamp(msg, sk, skb); 3632 3633 serr = SKB_EXT_ERR(skb); 3634 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3635 3636 msg->msg_flags |= MSG_ERRQUEUE; 3637 err = copied; 3638 3639 out_free_skb: 3640 kfree_skb(skb); 3641 out: 3642 return err; 3643 } 3644 EXPORT_SYMBOL(sock_recv_errqueue); 3645 3646 /* 3647 * Get a socket option on an socket. 3648 * 3649 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3650 * asynchronous errors should be reported by getsockopt. We assume 3651 * this means if you specify SO_ERROR (otherwise whats the point of it). 3652 */ 3653 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3654 char __user *optval, int __user *optlen) 3655 { 3656 struct sock *sk = sock->sk; 3657 3658 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3659 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3660 } 3661 EXPORT_SYMBOL(sock_common_getsockopt); 3662 3663 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3664 int flags) 3665 { 3666 struct sock *sk = sock->sk; 3667 int addr_len = 0; 3668 int err; 3669 3670 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3671 if (err >= 0) 3672 msg->msg_namelen = addr_len; 3673 return err; 3674 } 3675 EXPORT_SYMBOL(sock_common_recvmsg); 3676 3677 /* 3678 * Set socket options on an inet socket. 3679 */ 3680 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3681 sockptr_t optval, unsigned int optlen) 3682 { 3683 struct sock *sk = sock->sk; 3684 3685 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3686 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3687 } 3688 EXPORT_SYMBOL(sock_common_setsockopt); 3689 3690 void sk_common_release(struct sock *sk) 3691 { 3692 if (sk->sk_prot->destroy) 3693 sk->sk_prot->destroy(sk); 3694 3695 /* 3696 * Observation: when sk_common_release is called, processes have 3697 * no access to socket. But net still has. 3698 * Step one, detach it from networking: 3699 * 3700 * A. Remove from hash tables. 3701 */ 3702 3703 sk->sk_prot->unhash(sk); 3704 3705 /* 3706 * In this point socket cannot receive new packets, but it is possible 3707 * that some packets are in flight because some CPU runs receiver and 3708 * did hash table lookup before we unhashed socket. They will achieve 3709 * receive queue and will be purged by socket destructor. 3710 * 3711 * Also we still have packets pending on receive queue and probably, 3712 * our own packets waiting in device queues. sock_destroy will drain 3713 * receive queue, but transmitted packets will delay socket destruction 3714 * until the last reference will be released. 3715 */ 3716 3717 sock_orphan(sk); 3718 3719 xfrm_sk_free_policy(sk); 3720 3721 sock_put(sk); 3722 } 3723 EXPORT_SYMBOL(sk_common_release); 3724 3725 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3726 { 3727 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3728 3729 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3730 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3731 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3732 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3733 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3734 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3735 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3736 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3737 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3738 } 3739 3740 #ifdef CONFIG_PROC_FS 3741 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3742 3743 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3744 { 3745 int cpu, idx = prot->inuse_idx; 3746 int res = 0; 3747 3748 for_each_possible_cpu(cpu) 3749 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3750 3751 return res >= 0 ? res : 0; 3752 } 3753 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3754 3755 int sock_inuse_get(struct net *net) 3756 { 3757 int cpu, res = 0; 3758 3759 for_each_possible_cpu(cpu) 3760 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3761 3762 return res; 3763 } 3764 3765 EXPORT_SYMBOL_GPL(sock_inuse_get); 3766 3767 static int __net_init sock_inuse_init_net(struct net *net) 3768 { 3769 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3770 if (net->core.prot_inuse == NULL) 3771 return -ENOMEM; 3772 return 0; 3773 } 3774 3775 static void __net_exit sock_inuse_exit_net(struct net *net) 3776 { 3777 free_percpu(net->core.prot_inuse); 3778 } 3779 3780 static struct pernet_operations net_inuse_ops = { 3781 .init = sock_inuse_init_net, 3782 .exit = sock_inuse_exit_net, 3783 }; 3784 3785 static __init int net_inuse_init(void) 3786 { 3787 if (register_pernet_subsys(&net_inuse_ops)) 3788 panic("Cannot initialize net inuse counters"); 3789 3790 return 0; 3791 } 3792 3793 core_initcall(net_inuse_init); 3794 3795 static int assign_proto_idx(struct proto *prot) 3796 { 3797 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3798 3799 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3800 pr_err("PROTO_INUSE_NR exhausted\n"); 3801 return -ENOSPC; 3802 } 3803 3804 set_bit(prot->inuse_idx, proto_inuse_idx); 3805 return 0; 3806 } 3807 3808 static void release_proto_idx(struct proto *prot) 3809 { 3810 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3811 clear_bit(prot->inuse_idx, proto_inuse_idx); 3812 } 3813 #else 3814 static inline int assign_proto_idx(struct proto *prot) 3815 { 3816 return 0; 3817 } 3818 3819 static inline void release_proto_idx(struct proto *prot) 3820 { 3821 } 3822 3823 #endif 3824 3825 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3826 { 3827 if (!twsk_prot) 3828 return; 3829 kfree(twsk_prot->twsk_slab_name); 3830 twsk_prot->twsk_slab_name = NULL; 3831 kmem_cache_destroy(twsk_prot->twsk_slab); 3832 twsk_prot->twsk_slab = NULL; 3833 } 3834 3835 static int tw_prot_init(const struct proto *prot) 3836 { 3837 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3838 3839 if (!twsk_prot) 3840 return 0; 3841 3842 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3843 prot->name); 3844 if (!twsk_prot->twsk_slab_name) 3845 return -ENOMEM; 3846 3847 twsk_prot->twsk_slab = 3848 kmem_cache_create(twsk_prot->twsk_slab_name, 3849 twsk_prot->twsk_obj_size, 0, 3850 SLAB_ACCOUNT | prot->slab_flags, 3851 NULL); 3852 if (!twsk_prot->twsk_slab) { 3853 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3854 prot->name); 3855 return -ENOMEM; 3856 } 3857 3858 return 0; 3859 } 3860 3861 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3862 { 3863 if (!rsk_prot) 3864 return; 3865 kfree(rsk_prot->slab_name); 3866 rsk_prot->slab_name = NULL; 3867 kmem_cache_destroy(rsk_prot->slab); 3868 rsk_prot->slab = NULL; 3869 } 3870 3871 static int req_prot_init(const struct proto *prot) 3872 { 3873 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3874 3875 if (!rsk_prot) 3876 return 0; 3877 3878 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3879 prot->name); 3880 if (!rsk_prot->slab_name) 3881 return -ENOMEM; 3882 3883 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3884 rsk_prot->obj_size, 0, 3885 SLAB_ACCOUNT | prot->slab_flags, 3886 NULL); 3887 3888 if (!rsk_prot->slab) { 3889 pr_crit("%s: Can't create request sock SLAB cache!\n", 3890 prot->name); 3891 return -ENOMEM; 3892 } 3893 return 0; 3894 } 3895 3896 int proto_register(struct proto *prot, int alloc_slab) 3897 { 3898 int ret = -ENOBUFS; 3899 3900 if (prot->memory_allocated && !prot->sysctl_mem) { 3901 pr_err("%s: missing sysctl_mem\n", prot->name); 3902 return -EINVAL; 3903 } 3904 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3905 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3906 return -EINVAL; 3907 } 3908 if (alloc_slab) { 3909 prot->slab = kmem_cache_create_usercopy(prot->name, 3910 prot->obj_size, 0, 3911 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3912 prot->slab_flags, 3913 prot->useroffset, prot->usersize, 3914 NULL); 3915 3916 if (prot->slab == NULL) { 3917 pr_crit("%s: Can't create sock SLAB cache!\n", 3918 prot->name); 3919 goto out; 3920 } 3921 3922 if (req_prot_init(prot)) 3923 goto out_free_request_sock_slab; 3924 3925 if (tw_prot_init(prot)) 3926 goto out_free_timewait_sock_slab; 3927 } 3928 3929 mutex_lock(&proto_list_mutex); 3930 ret = assign_proto_idx(prot); 3931 if (ret) { 3932 mutex_unlock(&proto_list_mutex); 3933 goto out_free_timewait_sock_slab; 3934 } 3935 list_add(&prot->node, &proto_list); 3936 mutex_unlock(&proto_list_mutex); 3937 return ret; 3938 3939 out_free_timewait_sock_slab: 3940 if (alloc_slab) 3941 tw_prot_cleanup(prot->twsk_prot); 3942 out_free_request_sock_slab: 3943 if (alloc_slab) { 3944 req_prot_cleanup(prot->rsk_prot); 3945 3946 kmem_cache_destroy(prot->slab); 3947 prot->slab = NULL; 3948 } 3949 out: 3950 return ret; 3951 } 3952 EXPORT_SYMBOL(proto_register); 3953 3954 void proto_unregister(struct proto *prot) 3955 { 3956 mutex_lock(&proto_list_mutex); 3957 release_proto_idx(prot); 3958 list_del(&prot->node); 3959 mutex_unlock(&proto_list_mutex); 3960 3961 kmem_cache_destroy(prot->slab); 3962 prot->slab = NULL; 3963 3964 req_prot_cleanup(prot->rsk_prot); 3965 tw_prot_cleanup(prot->twsk_prot); 3966 } 3967 EXPORT_SYMBOL(proto_unregister); 3968 3969 int sock_load_diag_module(int family, int protocol) 3970 { 3971 if (!protocol) { 3972 if (!sock_is_registered(family)) 3973 return -ENOENT; 3974 3975 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3976 NETLINK_SOCK_DIAG, family); 3977 } 3978 3979 #ifdef CONFIG_INET 3980 if (family == AF_INET && 3981 protocol != IPPROTO_RAW && 3982 protocol < MAX_INET_PROTOS && 3983 !rcu_access_pointer(inet_protos[protocol])) 3984 return -ENOENT; 3985 #endif 3986 3987 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3988 NETLINK_SOCK_DIAG, family, protocol); 3989 } 3990 EXPORT_SYMBOL(sock_load_diag_module); 3991 3992 #ifdef CONFIG_PROC_FS 3993 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3994 __acquires(proto_list_mutex) 3995 { 3996 mutex_lock(&proto_list_mutex); 3997 return seq_list_start_head(&proto_list, *pos); 3998 } 3999 4000 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4001 { 4002 return seq_list_next(v, &proto_list, pos); 4003 } 4004 4005 static void proto_seq_stop(struct seq_file *seq, void *v) 4006 __releases(proto_list_mutex) 4007 { 4008 mutex_unlock(&proto_list_mutex); 4009 } 4010 4011 static char proto_method_implemented(const void *method) 4012 { 4013 return method == NULL ? 'n' : 'y'; 4014 } 4015 static long sock_prot_memory_allocated(struct proto *proto) 4016 { 4017 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4018 } 4019 4020 static const char *sock_prot_memory_pressure(struct proto *proto) 4021 { 4022 return proto->memory_pressure != NULL ? 4023 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4024 } 4025 4026 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4027 { 4028 4029 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4030 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4031 proto->name, 4032 proto->obj_size, 4033 sock_prot_inuse_get(seq_file_net(seq), proto), 4034 sock_prot_memory_allocated(proto), 4035 sock_prot_memory_pressure(proto), 4036 proto->max_header, 4037 proto->slab == NULL ? "no" : "yes", 4038 module_name(proto->owner), 4039 proto_method_implemented(proto->close), 4040 proto_method_implemented(proto->connect), 4041 proto_method_implemented(proto->disconnect), 4042 proto_method_implemented(proto->accept), 4043 proto_method_implemented(proto->ioctl), 4044 proto_method_implemented(proto->init), 4045 proto_method_implemented(proto->destroy), 4046 proto_method_implemented(proto->shutdown), 4047 proto_method_implemented(proto->setsockopt), 4048 proto_method_implemented(proto->getsockopt), 4049 proto_method_implemented(proto->sendmsg), 4050 proto_method_implemented(proto->recvmsg), 4051 proto_method_implemented(proto->bind), 4052 proto_method_implemented(proto->backlog_rcv), 4053 proto_method_implemented(proto->hash), 4054 proto_method_implemented(proto->unhash), 4055 proto_method_implemented(proto->get_port), 4056 proto_method_implemented(proto->enter_memory_pressure)); 4057 } 4058 4059 static int proto_seq_show(struct seq_file *seq, void *v) 4060 { 4061 if (v == &proto_list) 4062 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4063 "protocol", 4064 "size", 4065 "sockets", 4066 "memory", 4067 "press", 4068 "maxhdr", 4069 "slab", 4070 "module", 4071 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4072 else 4073 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4074 return 0; 4075 } 4076 4077 static const struct seq_operations proto_seq_ops = { 4078 .start = proto_seq_start, 4079 .next = proto_seq_next, 4080 .stop = proto_seq_stop, 4081 .show = proto_seq_show, 4082 }; 4083 4084 static __net_init int proto_init_net(struct net *net) 4085 { 4086 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4087 sizeof(struct seq_net_private))) 4088 return -ENOMEM; 4089 4090 return 0; 4091 } 4092 4093 static __net_exit void proto_exit_net(struct net *net) 4094 { 4095 remove_proc_entry("protocols", net->proc_net); 4096 } 4097 4098 4099 static __net_initdata struct pernet_operations proto_net_ops = { 4100 .init = proto_init_net, 4101 .exit = proto_exit_net, 4102 }; 4103 4104 static int __init proto_init(void) 4105 { 4106 return register_pernet_subsys(&proto_net_ops); 4107 } 4108 4109 subsys_initcall(proto_init); 4110 4111 #endif /* PROC_FS */ 4112 4113 #ifdef CONFIG_NET_RX_BUSY_POLL 4114 bool sk_busy_loop_end(void *p, unsigned long start_time) 4115 { 4116 struct sock *sk = p; 4117 4118 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4119 sk_busy_loop_timeout(sk, start_time); 4120 } 4121 EXPORT_SYMBOL(sk_busy_loop_end); 4122 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4123 4124 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4125 { 4126 if (!sk->sk_prot->bind_add) 4127 return -EOPNOTSUPP; 4128 return sk->sk_prot->bind_add(sk, addr, addr_len); 4129 } 4130 EXPORT_SYMBOL(sock_bind_add); 4131 4132 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4133 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4134 void __user *arg, void *karg, size_t size) 4135 { 4136 int ret; 4137 4138 if (copy_from_user(karg, arg, size)) 4139 return -EFAULT; 4140 4141 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4142 if (ret) 4143 return ret; 4144 4145 if (copy_to_user(arg, karg, size)) 4146 return -EFAULT; 4147 4148 return 0; 4149 } 4150 EXPORT_SYMBOL(sock_ioctl_inout); 4151 4152 /* This is the most common ioctl prep function, where the result (4 bytes) is 4153 * copied back to userspace if the ioctl() returns successfully. No input is 4154 * copied from userspace as input argument. 4155 */ 4156 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4157 { 4158 int ret, karg = 0; 4159 4160 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4161 if (ret) 4162 return ret; 4163 4164 return put_user(karg, (int __user *)arg); 4165 } 4166 4167 /* A wrapper around sock ioctls, which copies the data from userspace 4168 * (depending on the protocol/ioctl), and copies back the result to userspace. 4169 * The main motivation for this function is to pass kernel memory to the 4170 * protocol ioctl callbacks, instead of userspace memory. 4171 */ 4172 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4173 { 4174 int rc = 1; 4175 4176 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4177 rc = ipmr_sk_ioctl(sk, cmd, arg); 4178 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4179 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4180 else if (sk_is_phonet(sk)) 4181 rc = phonet_sk_ioctl(sk, cmd, arg); 4182 4183 /* If ioctl was processed, returns its value */ 4184 if (rc <= 0) 4185 return rc; 4186 4187 /* Otherwise call the default handler */ 4188 return sock_ioctl_out(sk, cmd, arg); 4189 } 4190 EXPORT_SYMBOL(sk_ioctl); 4191