1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 #include <linux/mroute.h> 118 #include <linux/mroute6.h> 119 #include <linux/icmpv6.h> 120 121 #include <linux/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 #include <net/bpf_sk_storage.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 #include <net/phonet/phonet.h> 145 146 #include <linux/ethtool.h> 147 148 #include "dev.h" 149 150 static DEFINE_MUTEX(proto_list_mutex); 151 static LIST_HEAD(proto_list); 152 153 static void sock_def_write_space_wfree(struct sock *sk); 154 static void sock_def_write_space(struct sock *sk); 155 156 /** 157 * sk_ns_capable - General socket capability test 158 * @sk: Socket to use a capability on or through 159 * @user_ns: The user namespace of the capability to use 160 * @cap: The capability to use 161 * 162 * Test to see if the opener of the socket had when the socket was 163 * created and the current process has the capability @cap in the user 164 * namespace @user_ns. 165 */ 166 bool sk_ns_capable(const struct sock *sk, 167 struct user_namespace *user_ns, int cap) 168 { 169 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 170 ns_capable(user_ns, cap); 171 } 172 EXPORT_SYMBOL(sk_ns_capable); 173 174 /** 175 * sk_capable - Socket global capability test 176 * @sk: Socket to use a capability on or through 177 * @cap: The global capability to use 178 * 179 * Test to see if the opener of the socket had when the socket was 180 * created and the current process has the capability @cap in all user 181 * namespaces. 182 */ 183 bool sk_capable(const struct sock *sk, int cap) 184 { 185 return sk_ns_capable(sk, &init_user_ns, cap); 186 } 187 EXPORT_SYMBOL(sk_capable); 188 189 /** 190 * sk_net_capable - Network namespace socket capability test 191 * @sk: Socket to use a capability on or through 192 * @cap: The capability to use 193 * 194 * Test to see if the opener of the socket had when the socket was created 195 * and the current process has the capability @cap over the network namespace 196 * the socket is a member of. 197 */ 198 bool sk_net_capable(const struct sock *sk, int cap) 199 { 200 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 201 } 202 EXPORT_SYMBOL(sk_net_capable); 203 204 /* 205 * Each address family might have different locking rules, so we have 206 * one slock key per address family and separate keys for internal and 207 * userspace sockets. 208 */ 209 static struct lock_class_key af_family_keys[AF_MAX]; 210 static struct lock_class_key af_family_kern_keys[AF_MAX]; 211 static struct lock_class_key af_family_slock_keys[AF_MAX]; 212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 213 214 /* 215 * Make lock validator output more readable. (we pre-construct these 216 * strings build-time, so that runtime initialization of socket 217 * locks is fast): 218 */ 219 220 #define _sock_locks(x) \ 221 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 222 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 223 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 224 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 225 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 226 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 227 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 228 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 229 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 230 x "27" , x "28" , x "AF_CAN" , \ 231 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 232 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 233 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 234 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 235 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 236 x "AF_MCTP" , \ 237 x "AF_MAX" 238 239 static const char *const af_family_key_strings[AF_MAX+1] = { 240 _sock_locks("sk_lock-") 241 }; 242 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("slock-") 244 }; 245 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("clock-") 247 }; 248 249 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 250 _sock_locks("k-sk_lock-") 251 }; 252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 253 _sock_locks("k-slock-") 254 }; 255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-clock-") 257 }; 258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 259 _sock_locks("rlock-") 260 }; 261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 262 _sock_locks("wlock-") 263 }; 264 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 265 _sock_locks("elock-") 266 }; 267 268 /* 269 * sk_callback_lock and sk queues locking rules are per-address-family, 270 * so split the lock classes by using a per-AF key: 271 */ 272 static struct lock_class_key af_callback_keys[AF_MAX]; 273 static struct lock_class_key af_rlock_keys[AF_MAX]; 274 static struct lock_class_key af_wlock_keys[AF_MAX]; 275 static struct lock_class_key af_elock_keys[AF_MAX]; 276 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 /* Maximal space eaten by iovec or ancillary data plus some space */ 287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 288 EXPORT_SYMBOL(sysctl_optmem_max); 289 290 int sysctl_tstamp_allow_data __read_mostly = 1; 291 292 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 293 EXPORT_SYMBOL_GPL(memalloc_socks_key); 294 295 /** 296 * sk_set_memalloc - sets %SOCK_MEMALLOC 297 * @sk: socket to set it on 298 * 299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 300 * It's the responsibility of the admin to adjust min_free_kbytes 301 * to meet the requirements 302 */ 303 void sk_set_memalloc(struct sock *sk) 304 { 305 sock_set_flag(sk, SOCK_MEMALLOC); 306 sk->sk_allocation |= __GFP_MEMALLOC; 307 static_branch_inc(&memalloc_socks_key); 308 } 309 EXPORT_SYMBOL_GPL(sk_set_memalloc); 310 311 void sk_clear_memalloc(struct sock *sk) 312 { 313 sock_reset_flag(sk, SOCK_MEMALLOC); 314 sk->sk_allocation &= ~__GFP_MEMALLOC; 315 static_branch_dec(&memalloc_socks_key); 316 317 /* 318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 319 * progress of swapping. SOCK_MEMALLOC may be cleared while 320 * it has rmem allocations due to the last swapfile being deactivated 321 * but there is a risk that the socket is unusable due to exceeding 322 * the rmem limits. Reclaim the reserves and obey rmem limits again. 323 */ 324 sk_mem_reclaim(sk); 325 } 326 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 327 328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 329 { 330 int ret; 331 unsigned int noreclaim_flag; 332 333 /* these should have been dropped before queueing */ 334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 335 336 noreclaim_flag = memalloc_noreclaim_save(); 337 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 338 tcp_v6_do_rcv, 339 tcp_v4_do_rcv, 340 sk, skb); 341 memalloc_noreclaim_restore(noreclaim_flag); 342 343 return ret; 344 } 345 EXPORT_SYMBOL(__sk_backlog_rcv); 346 347 void sk_error_report(struct sock *sk) 348 { 349 sk->sk_error_report(sk); 350 351 switch (sk->sk_family) { 352 case AF_INET: 353 fallthrough; 354 case AF_INET6: 355 trace_inet_sk_error_report(sk); 356 break; 357 default: 358 break; 359 } 360 } 361 EXPORT_SYMBOL(sk_error_report); 362 363 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 364 { 365 struct __kernel_sock_timeval tv; 366 367 if (timeo == MAX_SCHEDULE_TIMEOUT) { 368 tv.tv_sec = 0; 369 tv.tv_usec = 0; 370 } else { 371 tv.tv_sec = timeo / HZ; 372 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 373 } 374 375 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 376 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 377 *(struct old_timeval32 *)optval = tv32; 378 return sizeof(tv32); 379 } 380 381 if (old_timeval) { 382 struct __kernel_old_timeval old_tv; 383 old_tv.tv_sec = tv.tv_sec; 384 old_tv.tv_usec = tv.tv_usec; 385 *(struct __kernel_old_timeval *)optval = old_tv; 386 return sizeof(old_tv); 387 } 388 389 *(struct __kernel_sock_timeval *)optval = tv; 390 return sizeof(tv); 391 } 392 EXPORT_SYMBOL(sock_get_timeout); 393 394 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 395 sockptr_t optval, int optlen, bool old_timeval) 396 { 397 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 398 struct old_timeval32 tv32; 399 400 if (optlen < sizeof(tv32)) 401 return -EINVAL; 402 403 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 404 return -EFAULT; 405 tv->tv_sec = tv32.tv_sec; 406 tv->tv_usec = tv32.tv_usec; 407 } else if (old_timeval) { 408 struct __kernel_old_timeval old_tv; 409 410 if (optlen < sizeof(old_tv)) 411 return -EINVAL; 412 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 413 return -EFAULT; 414 tv->tv_sec = old_tv.tv_sec; 415 tv->tv_usec = old_tv.tv_usec; 416 } else { 417 if (optlen < sizeof(*tv)) 418 return -EINVAL; 419 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 420 return -EFAULT; 421 } 422 423 return 0; 424 } 425 EXPORT_SYMBOL(sock_copy_user_timeval); 426 427 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 428 bool old_timeval) 429 { 430 struct __kernel_sock_timeval tv; 431 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 432 long val; 433 434 if (err) 435 return err; 436 437 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 438 return -EDOM; 439 440 if (tv.tv_sec < 0) { 441 static int warned __read_mostly; 442 443 WRITE_ONCE(*timeo_p, 0); 444 if (warned < 10 && net_ratelimit()) { 445 warned++; 446 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 447 __func__, current->comm, task_pid_nr(current)); 448 } 449 return 0; 450 } 451 val = MAX_SCHEDULE_TIMEOUT; 452 if ((tv.tv_sec || tv.tv_usec) && 453 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 454 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 455 USEC_PER_SEC / HZ); 456 WRITE_ONCE(*timeo_p, val); 457 return 0; 458 } 459 460 static bool sock_needs_netstamp(const struct sock *sk) 461 { 462 switch (sk->sk_family) { 463 case AF_UNSPEC: 464 case AF_UNIX: 465 return false; 466 default: 467 return true; 468 } 469 } 470 471 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 472 { 473 if (sk->sk_flags & flags) { 474 sk->sk_flags &= ~flags; 475 if (sock_needs_netstamp(sk) && 476 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 477 net_disable_timestamp(); 478 } 479 } 480 481 482 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 483 { 484 unsigned long flags; 485 struct sk_buff_head *list = &sk->sk_receive_queue; 486 487 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 488 atomic_inc(&sk->sk_drops); 489 trace_sock_rcvqueue_full(sk, skb); 490 return -ENOMEM; 491 } 492 493 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 494 atomic_inc(&sk->sk_drops); 495 return -ENOBUFS; 496 } 497 498 skb->dev = NULL; 499 skb_set_owner_r(skb, sk); 500 501 /* we escape from rcu protected region, make sure we dont leak 502 * a norefcounted dst 503 */ 504 skb_dst_force(skb); 505 506 spin_lock_irqsave(&list->lock, flags); 507 sock_skb_set_dropcount(sk, skb); 508 __skb_queue_tail(list, skb); 509 spin_unlock_irqrestore(&list->lock, flags); 510 511 if (!sock_flag(sk, SOCK_DEAD)) 512 sk->sk_data_ready(sk); 513 return 0; 514 } 515 EXPORT_SYMBOL(__sock_queue_rcv_skb); 516 517 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 518 enum skb_drop_reason *reason) 519 { 520 enum skb_drop_reason drop_reason; 521 int err; 522 523 err = sk_filter(sk, skb); 524 if (err) { 525 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 526 goto out; 527 } 528 err = __sock_queue_rcv_skb(sk, skb); 529 switch (err) { 530 case -ENOMEM: 531 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 532 break; 533 case -ENOBUFS: 534 drop_reason = SKB_DROP_REASON_PROTO_MEM; 535 break; 536 default: 537 drop_reason = SKB_NOT_DROPPED_YET; 538 break; 539 } 540 out: 541 if (reason) 542 *reason = drop_reason; 543 return err; 544 } 545 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 546 547 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 548 const int nested, unsigned int trim_cap, bool refcounted) 549 { 550 int rc = NET_RX_SUCCESS; 551 552 if (sk_filter_trim_cap(sk, skb, trim_cap)) 553 goto discard_and_relse; 554 555 skb->dev = NULL; 556 557 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 558 atomic_inc(&sk->sk_drops); 559 goto discard_and_relse; 560 } 561 if (nested) 562 bh_lock_sock_nested(sk); 563 else 564 bh_lock_sock(sk); 565 if (!sock_owned_by_user(sk)) { 566 /* 567 * trylock + unlock semantics: 568 */ 569 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 570 571 rc = sk_backlog_rcv(sk, skb); 572 573 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 574 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 575 bh_unlock_sock(sk); 576 atomic_inc(&sk->sk_drops); 577 goto discard_and_relse; 578 } 579 580 bh_unlock_sock(sk); 581 out: 582 if (refcounted) 583 sock_put(sk); 584 return rc; 585 discard_and_relse: 586 kfree_skb(skb); 587 goto out; 588 } 589 EXPORT_SYMBOL(__sk_receive_skb); 590 591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 592 u32)); 593 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 594 u32)); 595 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 596 { 597 struct dst_entry *dst = __sk_dst_get(sk); 598 599 if (dst && dst->obsolete && 600 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 601 dst, cookie) == NULL) { 602 sk_tx_queue_clear(sk); 603 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 604 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 605 dst_release(dst); 606 return NULL; 607 } 608 609 return dst; 610 } 611 EXPORT_SYMBOL(__sk_dst_check); 612 613 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 614 { 615 struct dst_entry *dst = sk_dst_get(sk); 616 617 if (dst && dst->obsolete && 618 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 619 dst, cookie) == NULL) { 620 sk_dst_reset(sk); 621 dst_release(dst); 622 return NULL; 623 } 624 625 return dst; 626 } 627 EXPORT_SYMBOL(sk_dst_check); 628 629 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 630 { 631 int ret = -ENOPROTOOPT; 632 #ifdef CONFIG_NETDEVICES 633 struct net *net = sock_net(sk); 634 635 /* Sorry... */ 636 ret = -EPERM; 637 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 638 goto out; 639 640 ret = -EINVAL; 641 if (ifindex < 0) 642 goto out; 643 644 /* Paired with all READ_ONCE() done locklessly. */ 645 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 646 647 if (sk->sk_prot->rehash) 648 sk->sk_prot->rehash(sk); 649 sk_dst_reset(sk); 650 651 ret = 0; 652 653 out: 654 #endif 655 656 return ret; 657 } 658 659 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 660 { 661 int ret; 662 663 if (lock_sk) 664 lock_sock(sk); 665 ret = sock_bindtoindex_locked(sk, ifindex); 666 if (lock_sk) 667 release_sock(sk); 668 669 return ret; 670 } 671 EXPORT_SYMBOL(sock_bindtoindex); 672 673 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 674 { 675 int ret = -ENOPROTOOPT; 676 #ifdef CONFIG_NETDEVICES 677 struct net *net = sock_net(sk); 678 char devname[IFNAMSIZ]; 679 int index; 680 681 ret = -EINVAL; 682 if (optlen < 0) 683 goto out; 684 685 /* Bind this socket to a particular device like "eth0", 686 * as specified in the passed interface name. If the 687 * name is "" or the option length is zero the socket 688 * is not bound. 689 */ 690 if (optlen > IFNAMSIZ - 1) 691 optlen = IFNAMSIZ - 1; 692 memset(devname, 0, sizeof(devname)); 693 694 ret = -EFAULT; 695 if (copy_from_sockptr(devname, optval, optlen)) 696 goto out; 697 698 index = 0; 699 if (devname[0] != '\0') { 700 struct net_device *dev; 701 702 rcu_read_lock(); 703 dev = dev_get_by_name_rcu(net, devname); 704 if (dev) 705 index = dev->ifindex; 706 rcu_read_unlock(); 707 ret = -ENODEV; 708 if (!dev) 709 goto out; 710 } 711 712 sockopt_lock_sock(sk); 713 ret = sock_bindtoindex_locked(sk, index); 714 sockopt_release_sock(sk); 715 out: 716 #endif 717 718 return ret; 719 } 720 721 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 722 sockptr_t optlen, int len) 723 { 724 int ret = -ENOPROTOOPT; 725 #ifdef CONFIG_NETDEVICES 726 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 727 struct net *net = sock_net(sk); 728 char devname[IFNAMSIZ]; 729 730 if (bound_dev_if == 0) { 731 len = 0; 732 goto zero; 733 } 734 735 ret = -EINVAL; 736 if (len < IFNAMSIZ) 737 goto out; 738 739 ret = netdev_get_name(net, devname, bound_dev_if); 740 if (ret) 741 goto out; 742 743 len = strlen(devname) + 1; 744 745 ret = -EFAULT; 746 if (copy_to_sockptr(optval, devname, len)) 747 goto out; 748 749 zero: 750 ret = -EFAULT; 751 if (copy_to_sockptr(optlen, &len, sizeof(int))) 752 goto out; 753 754 ret = 0; 755 756 out: 757 #endif 758 759 return ret; 760 } 761 762 bool sk_mc_loop(struct sock *sk) 763 { 764 if (dev_recursion_level()) 765 return false; 766 if (!sk) 767 return true; 768 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 769 switch (READ_ONCE(sk->sk_family)) { 770 case AF_INET: 771 return inet_test_bit(MC_LOOP, sk); 772 #if IS_ENABLED(CONFIG_IPV6) 773 case AF_INET6: 774 return inet6_sk(sk)->mc_loop; 775 #endif 776 } 777 WARN_ON_ONCE(1); 778 return true; 779 } 780 EXPORT_SYMBOL(sk_mc_loop); 781 782 void sock_set_reuseaddr(struct sock *sk) 783 { 784 lock_sock(sk); 785 sk->sk_reuse = SK_CAN_REUSE; 786 release_sock(sk); 787 } 788 EXPORT_SYMBOL(sock_set_reuseaddr); 789 790 void sock_set_reuseport(struct sock *sk) 791 { 792 lock_sock(sk); 793 sk->sk_reuseport = true; 794 release_sock(sk); 795 } 796 EXPORT_SYMBOL(sock_set_reuseport); 797 798 void sock_no_linger(struct sock *sk) 799 { 800 lock_sock(sk); 801 WRITE_ONCE(sk->sk_lingertime, 0); 802 sock_set_flag(sk, SOCK_LINGER); 803 release_sock(sk); 804 } 805 EXPORT_SYMBOL(sock_no_linger); 806 807 void sock_set_priority(struct sock *sk, u32 priority) 808 { 809 lock_sock(sk); 810 WRITE_ONCE(sk->sk_priority, priority); 811 release_sock(sk); 812 } 813 EXPORT_SYMBOL(sock_set_priority); 814 815 void sock_set_sndtimeo(struct sock *sk, s64 secs) 816 { 817 lock_sock(sk); 818 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 819 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 820 else 821 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 822 release_sock(sk); 823 } 824 EXPORT_SYMBOL(sock_set_sndtimeo); 825 826 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 827 { 828 if (val) { 829 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 830 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 831 sock_set_flag(sk, SOCK_RCVTSTAMP); 832 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 833 } else { 834 sock_reset_flag(sk, SOCK_RCVTSTAMP); 835 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 836 } 837 } 838 839 void sock_enable_timestamps(struct sock *sk) 840 { 841 lock_sock(sk); 842 __sock_set_timestamps(sk, true, false, true); 843 release_sock(sk); 844 } 845 EXPORT_SYMBOL(sock_enable_timestamps); 846 847 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 848 { 849 switch (optname) { 850 case SO_TIMESTAMP_OLD: 851 __sock_set_timestamps(sk, valbool, false, false); 852 break; 853 case SO_TIMESTAMP_NEW: 854 __sock_set_timestamps(sk, valbool, true, false); 855 break; 856 case SO_TIMESTAMPNS_OLD: 857 __sock_set_timestamps(sk, valbool, false, true); 858 break; 859 case SO_TIMESTAMPNS_NEW: 860 __sock_set_timestamps(sk, valbool, true, true); 861 break; 862 } 863 } 864 865 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 866 { 867 struct net *net = sock_net(sk); 868 struct net_device *dev = NULL; 869 bool match = false; 870 int *vclock_index; 871 int i, num; 872 873 if (sk->sk_bound_dev_if) 874 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 875 876 if (!dev) { 877 pr_err("%s: sock not bind to device\n", __func__); 878 return -EOPNOTSUPP; 879 } 880 881 num = ethtool_get_phc_vclocks(dev, &vclock_index); 882 dev_put(dev); 883 884 for (i = 0; i < num; i++) { 885 if (*(vclock_index + i) == phc_index) { 886 match = true; 887 break; 888 } 889 } 890 891 if (num > 0) 892 kfree(vclock_index); 893 894 if (!match) 895 return -EINVAL; 896 897 WRITE_ONCE(sk->sk_bind_phc, phc_index); 898 899 return 0; 900 } 901 902 int sock_set_timestamping(struct sock *sk, int optname, 903 struct so_timestamping timestamping) 904 { 905 int val = timestamping.flags; 906 int ret; 907 908 if (val & ~SOF_TIMESTAMPING_MASK) 909 return -EINVAL; 910 911 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 912 !(val & SOF_TIMESTAMPING_OPT_ID)) 913 return -EINVAL; 914 915 if (val & SOF_TIMESTAMPING_OPT_ID && 916 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 917 if (sk_is_tcp(sk)) { 918 if ((1 << sk->sk_state) & 919 (TCPF_CLOSE | TCPF_LISTEN)) 920 return -EINVAL; 921 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 922 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 923 else 924 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 925 } else { 926 atomic_set(&sk->sk_tskey, 0); 927 } 928 } 929 930 if (val & SOF_TIMESTAMPING_OPT_STATS && 931 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 932 return -EINVAL; 933 934 if (val & SOF_TIMESTAMPING_BIND_PHC) { 935 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 936 if (ret) 937 return ret; 938 } 939 940 WRITE_ONCE(sk->sk_tsflags, val); 941 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 942 943 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 944 sock_enable_timestamp(sk, 945 SOCK_TIMESTAMPING_RX_SOFTWARE); 946 else 947 sock_disable_timestamp(sk, 948 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 949 return 0; 950 } 951 952 void sock_set_keepalive(struct sock *sk) 953 { 954 lock_sock(sk); 955 if (sk->sk_prot->keepalive) 956 sk->sk_prot->keepalive(sk, true); 957 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 958 release_sock(sk); 959 } 960 EXPORT_SYMBOL(sock_set_keepalive); 961 962 static void __sock_set_rcvbuf(struct sock *sk, int val) 963 { 964 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 965 * as a negative value. 966 */ 967 val = min_t(int, val, INT_MAX / 2); 968 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 969 970 /* We double it on the way in to account for "struct sk_buff" etc. 971 * overhead. Applications assume that the SO_RCVBUF setting they make 972 * will allow that much actual data to be received on that socket. 973 * 974 * Applications are unaware that "struct sk_buff" and other overheads 975 * allocate from the receive buffer during socket buffer allocation. 976 * 977 * And after considering the possible alternatives, returning the value 978 * we actually used in getsockopt is the most desirable behavior. 979 */ 980 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 981 } 982 983 void sock_set_rcvbuf(struct sock *sk, int val) 984 { 985 lock_sock(sk); 986 __sock_set_rcvbuf(sk, val); 987 release_sock(sk); 988 } 989 EXPORT_SYMBOL(sock_set_rcvbuf); 990 991 static void __sock_set_mark(struct sock *sk, u32 val) 992 { 993 if (val != sk->sk_mark) { 994 WRITE_ONCE(sk->sk_mark, val); 995 sk_dst_reset(sk); 996 } 997 } 998 999 void sock_set_mark(struct sock *sk, u32 val) 1000 { 1001 lock_sock(sk); 1002 __sock_set_mark(sk, val); 1003 release_sock(sk); 1004 } 1005 EXPORT_SYMBOL(sock_set_mark); 1006 1007 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1008 { 1009 /* Round down bytes to multiple of pages */ 1010 bytes = round_down(bytes, PAGE_SIZE); 1011 1012 WARN_ON(bytes > sk->sk_reserved_mem); 1013 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1014 sk_mem_reclaim(sk); 1015 } 1016 1017 static int sock_reserve_memory(struct sock *sk, int bytes) 1018 { 1019 long allocated; 1020 bool charged; 1021 int pages; 1022 1023 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1024 return -EOPNOTSUPP; 1025 1026 if (!bytes) 1027 return 0; 1028 1029 pages = sk_mem_pages(bytes); 1030 1031 /* pre-charge to memcg */ 1032 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1033 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1034 if (!charged) 1035 return -ENOMEM; 1036 1037 /* pre-charge to forward_alloc */ 1038 sk_memory_allocated_add(sk, pages); 1039 allocated = sk_memory_allocated(sk); 1040 /* If the system goes into memory pressure with this 1041 * precharge, give up and return error. 1042 */ 1043 if (allocated > sk_prot_mem_limits(sk, 1)) { 1044 sk_memory_allocated_sub(sk, pages); 1045 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1046 return -ENOMEM; 1047 } 1048 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1049 1050 WRITE_ONCE(sk->sk_reserved_mem, 1051 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1052 1053 return 0; 1054 } 1055 1056 void sockopt_lock_sock(struct sock *sk) 1057 { 1058 /* When current->bpf_ctx is set, the setsockopt is called from 1059 * a bpf prog. bpf has ensured the sk lock has been 1060 * acquired before calling setsockopt(). 1061 */ 1062 if (has_current_bpf_ctx()) 1063 return; 1064 1065 lock_sock(sk); 1066 } 1067 EXPORT_SYMBOL(sockopt_lock_sock); 1068 1069 void sockopt_release_sock(struct sock *sk) 1070 { 1071 if (has_current_bpf_ctx()) 1072 return; 1073 1074 release_sock(sk); 1075 } 1076 EXPORT_SYMBOL(sockopt_release_sock); 1077 1078 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1079 { 1080 return has_current_bpf_ctx() || ns_capable(ns, cap); 1081 } 1082 EXPORT_SYMBOL(sockopt_ns_capable); 1083 1084 bool sockopt_capable(int cap) 1085 { 1086 return has_current_bpf_ctx() || capable(cap); 1087 } 1088 EXPORT_SYMBOL(sockopt_capable); 1089 1090 /* 1091 * This is meant for all protocols to use and covers goings on 1092 * at the socket level. Everything here is generic. 1093 */ 1094 1095 int sk_setsockopt(struct sock *sk, int level, int optname, 1096 sockptr_t optval, unsigned int optlen) 1097 { 1098 struct so_timestamping timestamping; 1099 struct socket *sock = sk->sk_socket; 1100 struct sock_txtime sk_txtime; 1101 int val; 1102 int valbool; 1103 struct linger ling; 1104 int ret = 0; 1105 1106 /* 1107 * Options without arguments 1108 */ 1109 1110 if (optname == SO_BINDTODEVICE) 1111 return sock_setbindtodevice(sk, optval, optlen); 1112 1113 if (optlen < sizeof(int)) 1114 return -EINVAL; 1115 1116 if (copy_from_sockptr(&val, optval, sizeof(val))) 1117 return -EFAULT; 1118 1119 valbool = val ? 1 : 0; 1120 1121 sockopt_lock_sock(sk); 1122 1123 switch (optname) { 1124 case SO_DEBUG: 1125 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1126 ret = -EACCES; 1127 else 1128 sock_valbool_flag(sk, SOCK_DBG, valbool); 1129 break; 1130 case SO_REUSEADDR: 1131 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1132 break; 1133 case SO_REUSEPORT: 1134 sk->sk_reuseport = valbool; 1135 break; 1136 case SO_TYPE: 1137 case SO_PROTOCOL: 1138 case SO_DOMAIN: 1139 case SO_ERROR: 1140 ret = -ENOPROTOOPT; 1141 break; 1142 case SO_DONTROUTE: 1143 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1144 sk_dst_reset(sk); 1145 break; 1146 case SO_BROADCAST: 1147 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1148 break; 1149 case SO_SNDBUF: 1150 /* Don't error on this BSD doesn't and if you think 1151 * about it this is right. Otherwise apps have to 1152 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1153 * are treated in BSD as hints 1154 */ 1155 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1156 set_sndbuf: 1157 /* Ensure val * 2 fits into an int, to prevent max_t() 1158 * from treating it as a negative value. 1159 */ 1160 val = min_t(int, val, INT_MAX / 2); 1161 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1162 WRITE_ONCE(sk->sk_sndbuf, 1163 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1164 /* Wake up sending tasks if we upped the value. */ 1165 sk->sk_write_space(sk); 1166 break; 1167 1168 case SO_SNDBUFFORCE: 1169 if (!sockopt_capable(CAP_NET_ADMIN)) { 1170 ret = -EPERM; 1171 break; 1172 } 1173 1174 /* No negative values (to prevent underflow, as val will be 1175 * multiplied by 2). 1176 */ 1177 if (val < 0) 1178 val = 0; 1179 goto set_sndbuf; 1180 1181 case SO_RCVBUF: 1182 /* Don't error on this BSD doesn't and if you think 1183 * about it this is right. Otherwise apps have to 1184 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1185 * are treated in BSD as hints 1186 */ 1187 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1188 break; 1189 1190 case SO_RCVBUFFORCE: 1191 if (!sockopt_capable(CAP_NET_ADMIN)) { 1192 ret = -EPERM; 1193 break; 1194 } 1195 1196 /* No negative values (to prevent underflow, as val will be 1197 * multiplied by 2). 1198 */ 1199 __sock_set_rcvbuf(sk, max(val, 0)); 1200 break; 1201 1202 case SO_KEEPALIVE: 1203 if (sk->sk_prot->keepalive) 1204 sk->sk_prot->keepalive(sk, valbool); 1205 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1206 break; 1207 1208 case SO_OOBINLINE: 1209 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1210 break; 1211 1212 case SO_NO_CHECK: 1213 sk->sk_no_check_tx = valbool; 1214 break; 1215 1216 case SO_PRIORITY: 1217 if ((val >= 0 && val <= 6) || 1218 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1219 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1220 WRITE_ONCE(sk->sk_priority, val); 1221 else 1222 ret = -EPERM; 1223 break; 1224 1225 case SO_LINGER: 1226 if (optlen < sizeof(ling)) { 1227 ret = -EINVAL; /* 1003.1g */ 1228 break; 1229 } 1230 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1231 ret = -EFAULT; 1232 break; 1233 } 1234 if (!ling.l_onoff) { 1235 sock_reset_flag(sk, SOCK_LINGER); 1236 } else { 1237 unsigned long t_sec = ling.l_linger; 1238 1239 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1240 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1241 else 1242 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1243 sock_set_flag(sk, SOCK_LINGER); 1244 } 1245 break; 1246 1247 case SO_BSDCOMPAT: 1248 break; 1249 1250 case SO_PASSCRED: 1251 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1252 break; 1253 1254 case SO_PASSPIDFD: 1255 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1256 break; 1257 1258 case SO_TIMESTAMP_OLD: 1259 case SO_TIMESTAMP_NEW: 1260 case SO_TIMESTAMPNS_OLD: 1261 case SO_TIMESTAMPNS_NEW: 1262 sock_set_timestamp(sk, optname, valbool); 1263 break; 1264 1265 case SO_TIMESTAMPING_NEW: 1266 case SO_TIMESTAMPING_OLD: 1267 if (optlen == sizeof(timestamping)) { 1268 if (copy_from_sockptr(×tamping, optval, 1269 sizeof(timestamping))) { 1270 ret = -EFAULT; 1271 break; 1272 } 1273 } else { 1274 memset(×tamping, 0, sizeof(timestamping)); 1275 timestamping.flags = val; 1276 } 1277 ret = sock_set_timestamping(sk, optname, timestamping); 1278 break; 1279 1280 case SO_RCVLOWAT: 1281 { 1282 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1283 1284 if (val < 0) 1285 val = INT_MAX; 1286 if (sock) 1287 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1288 if (set_rcvlowat) 1289 ret = set_rcvlowat(sk, val); 1290 else 1291 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1292 break; 1293 } 1294 case SO_RCVTIMEO_OLD: 1295 case SO_RCVTIMEO_NEW: 1296 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1297 optlen, optname == SO_RCVTIMEO_OLD); 1298 break; 1299 1300 case SO_SNDTIMEO_OLD: 1301 case SO_SNDTIMEO_NEW: 1302 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1303 optlen, optname == SO_SNDTIMEO_OLD); 1304 break; 1305 1306 case SO_ATTACH_FILTER: { 1307 struct sock_fprog fprog; 1308 1309 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1310 if (!ret) 1311 ret = sk_attach_filter(&fprog, sk); 1312 break; 1313 } 1314 case SO_ATTACH_BPF: 1315 ret = -EINVAL; 1316 if (optlen == sizeof(u32)) { 1317 u32 ufd; 1318 1319 ret = -EFAULT; 1320 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1321 break; 1322 1323 ret = sk_attach_bpf(ufd, sk); 1324 } 1325 break; 1326 1327 case SO_ATTACH_REUSEPORT_CBPF: { 1328 struct sock_fprog fprog; 1329 1330 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1331 if (!ret) 1332 ret = sk_reuseport_attach_filter(&fprog, sk); 1333 break; 1334 } 1335 case SO_ATTACH_REUSEPORT_EBPF: 1336 ret = -EINVAL; 1337 if (optlen == sizeof(u32)) { 1338 u32 ufd; 1339 1340 ret = -EFAULT; 1341 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1342 break; 1343 1344 ret = sk_reuseport_attach_bpf(ufd, sk); 1345 } 1346 break; 1347 1348 case SO_DETACH_REUSEPORT_BPF: 1349 ret = reuseport_detach_prog(sk); 1350 break; 1351 1352 case SO_DETACH_FILTER: 1353 ret = sk_detach_filter(sk); 1354 break; 1355 1356 case SO_LOCK_FILTER: 1357 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1358 ret = -EPERM; 1359 else 1360 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1361 break; 1362 1363 case SO_PASSSEC: 1364 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1365 break; 1366 case SO_MARK: 1367 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1368 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1369 ret = -EPERM; 1370 break; 1371 } 1372 1373 __sock_set_mark(sk, val); 1374 break; 1375 case SO_RCVMARK: 1376 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1377 break; 1378 1379 case SO_RXQ_OVFL: 1380 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1381 break; 1382 1383 case SO_WIFI_STATUS: 1384 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1385 break; 1386 1387 case SO_PEEK_OFF: 1388 { 1389 int (*set_peek_off)(struct sock *sk, int val); 1390 1391 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1392 if (set_peek_off) 1393 ret = set_peek_off(sk, val); 1394 else 1395 ret = -EOPNOTSUPP; 1396 break; 1397 } 1398 1399 case SO_NOFCS: 1400 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1401 break; 1402 1403 case SO_SELECT_ERR_QUEUE: 1404 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1405 break; 1406 1407 #ifdef CONFIG_NET_RX_BUSY_POLL 1408 case SO_BUSY_POLL: 1409 if (val < 0) 1410 ret = -EINVAL; 1411 else 1412 WRITE_ONCE(sk->sk_ll_usec, val); 1413 break; 1414 case SO_PREFER_BUSY_POLL: 1415 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1416 ret = -EPERM; 1417 else 1418 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1419 break; 1420 case SO_BUSY_POLL_BUDGET: 1421 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1422 ret = -EPERM; 1423 } else { 1424 if (val < 0 || val > U16_MAX) 1425 ret = -EINVAL; 1426 else 1427 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1428 } 1429 break; 1430 #endif 1431 1432 case SO_MAX_PACING_RATE: 1433 { 1434 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1435 1436 if (sizeof(ulval) != sizeof(val) && 1437 optlen >= sizeof(ulval) && 1438 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1439 ret = -EFAULT; 1440 break; 1441 } 1442 if (ulval != ~0UL) 1443 cmpxchg(&sk->sk_pacing_status, 1444 SK_PACING_NONE, 1445 SK_PACING_NEEDED); 1446 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1447 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1448 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1449 break; 1450 } 1451 case SO_INCOMING_CPU: 1452 reuseport_update_incoming_cpu(sk, val); 1453 break; 1454 1455 case SO_CNX_ADVICE: 1456 if (val == 1) 1457 dst_negative_advice(sk); 1458 break; 1459 1460 case SO_ZEROCOPY: 1461 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1462 if (!(sk_is_tcp(sk) || 1463 (sk->sk_type == SOCK_DGRAM && 1464 sk->sk_protocol == IPPROTO_UDP))) 1465 ret = -EOPNOTSUPP; 1466 } else if (sk->sk_family != PF_RDS) { 1467 ret = -EOPNOTSUPP; 1468 } 1469 if (!ret) { 1470 if (val < 0 || val > 1) 1471 ret = -EINVAL; 1472 else 1473 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1474 } 1475 break; 1476 1477 case SO_TXTIME: 1478 if (optlen != sizeof(struct sock_txtime)) { 1479 ret = -EINVAL; 1480 break; 1481 } else if (copy_from_sockptr(&sk_txtime, optval, 1482 sizeof(struct sock_txtime))) { 1483 ret = -EFAULT; 1484 break; 1485 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1486 ret = -EINVAL; 1487 break; 1488 } 1489 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1490 * scheduler has enough safe guards. 1491 */ 1492 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1493 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1494 ret = -EPERM; 1495 break; 1496 } 1497 sock_valbool_flag(sk, SOCK_TXTIME, true); 1498 sk->sk_clockid = sk_txtime.clockid; 1499 sk->sk_txtime_deadline_mode = 1500 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1501 sk->sk_txtime_report_errors = 1502 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1503 break; 1504 1505 case SO_BINDTOIFINDEX: 1506 ret = sock_bindtoindex_locked(sk, val); 1507 break; 1508 1509 case SO_BUF_LOCK: 1510 if (val & ~SOCK_BUF_LOCK_MASK) { 1511 ret = -EINVAL; 1512 break; 1513 } 1514 sk->sk_userlocks = val | (sk->sk_userlocks & 1515 ~SOCK_BUF_LOCK_MASK); 1516 break; 1517 1518 case SO_RESERVE_MEM: 1519 { 1520 int delta; 1521 1522 if (val < 0) { 1523 ret = -EINVAL; 1524 break; 1525 } 1526 1527 delta = val - sk->sk_reserved_mem; 1528 if (delta < 0) 1529 sock_release_reserved_memory(sk, -delta); 1530 else 1531 ret = sock_reserve_memory(sk, delta); 1532 break; 1533 } 1534 1535 case SO_TXREHASH: 1536 if (val < -1 || val > 1) { 1537 ret = -EINVAL; 1538 break; 1539 } 1540 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1541 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1542 /* Paired with READ_ONCE() in tcp_rtx_synack() 1543 * and sk_getsockopt(). 1544 */ 1545 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1546 break; 1547 1548 default: 1549 ret = -ENOPROTOOPT; 1550 break; 1551 } 1552 sockopt_release_sock(sk); 1553 return ret; 1554 } 1555 1556 int sock_setsockopt(struct socket *sock, int level, int optname, 1557 sockptr_t optval, unsigned int optlen) 1558 { 1559 return sk_setsockopt(sock->sk, level, optname, 1560 optval, optlen); 1561 } 1562 EXPORT_SYMBOL(sock_setsockopt); 1563 1564 static const struct cred *sk_get_peer_cred(struct sock *sk) 1565 { 1566 const struct cred *cred; 1567 1568 spin_lock(&sk->sk_peer_lock); 1569 cred = get_cred(sk->sk_peer_cred); 1570 spin_unlock(&sk->sk_peer_lock); 1571 1572 return cred; 1573 } 1574 1575 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1576 struct ucred *ucred) 1577 { 1578 ucred->pid = pid_vnr(pid); 1579 ucred->uid = ucred->gid = -1; 1580 if (cred) { 1581 struct user_namespace *current_ns = current_user_ns(); 1582 1583 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1584 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1585 } 1586 } 1587 1588 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1589 { 1590 struct user_namespace *user_ns = current_user_ns(); 1591 int i; 1592 1593 for (i = 0; i < src->ngroups; i++) { 1594 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1595 1596 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1597 return -EFAULT; 1598 } 1599 1600 return 0; 1601 } 1602 1603 int sk_getsockopt(struct sock *sk, int level, int optname, 1604 sockptr_t optval, sockptr_t optlen) 1605 { 1606 struct socket *sock = sk->sk_socket; 1607 1608 union { 1609 int val; 1610 u64 val64; 1611 unsigned long ulval; 1612 struct linger ling; 1613 struct old_timeval32 tm32; 1614 struct __kernel_old_timeval tm; 1615 struct __kernel_sock_timeval stm; 1616 struct sock_txtime txtime; 1617 struct so_timestamping timestamping; 1618 } v; 1619 1620 int lv = sizeof(int); 1621 int len; 1622 1623 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1624 return -EFAULT; 1625 if (len < 0) 1626 return -EINVAL; 1627 1628 memset(&v, 0, sizeof(v)); 1629 1630 switch (optname) { 1631 case SO_DEBUG: 1632 v.val = sock_flag(sk, SOCK_DBG); 1633 break; 1634 1635 case SO_DONTROUTE: 1636 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1637 break; 1638 1639 case SO_BROADCAST: 1640 v.val = sock_flag(sk, SOCK_BROADCAST); 1641 break; 1642 1643 case SO_SNDBUF: 1644 v.val = READ_ONCE(sk->sk_sndbuf); 1645 break; 1646 1647 case SO_RCVBUF: 1648 v.val = READ_ONCE(sk->sk_rcvbuf); 1649 break; 1650 1651 case SO_REUSEADDR: 1652 v.val = sk->sk_reuse; 1653 break; 1654 1655 case SO_REUSEPORT: 1656 v.val = sk->sk_reuseport; 1657 break; 1658 1659 case SO_KEEPALIVE: 1660 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1661 break; 1662 1663 case SO_TYPE: 1664 v.val = sk->sk_type; 1665 break; 1666 1667 case SO_PROTOCOL: 1668 v.val = sk->sk_protocol; 1669 break; 1670 1671 case SO_DOMAIN: 1672 v.val = sk->sk_family; 1673 break; 1674 1675 case SO_ERROR: 1676 v.val = -sock_error(sk); 1677 if (v.val == 0) 1678 v.val = xchg(&sk->sk_err_soft, 0); 1679 break; 1680 1681 case SO_OOBINLINE: 1682 v.val = sock_flag(sk, SOCK_URGINLINE); 1683 break; 1684 1685 case SO_NO_CHECK: 1686 v.val = sk->sk_no_check_tx; 1687 break; 1688 1689 case SO_PRIORITY: 1690 v.val = READ_ONCE(sk->sk_priority); 1691 break; 1692 1693 case SO_LINGER: 1694 lv = sizeof(v.ling); 1695 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1696 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1697 break; 1698 1699 case SO_BSDCOMPAT: 1700 break; 1701 1702 case SO_TIMESTAMP_OLD: 1703 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1704 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1705 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1706 break; 1707 1708 case SO_TIMESTAMPNS_OLD: 1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1710 break; 1711 1712 case SO_TIMESTAMP_NEW: 1713 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1714 break; 1715 1716 case SO_TIMESTAMPNS_NEW: 1717 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1718 break; 1719 1720 case SO_TIMESTAMPING_OLD: 1721 case SO_TIMESTAMPING_NEW: 1722 lv = sizeof(v.timestamping); 1723 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1724 * returning the flags when they were set through the same option. 1725 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1726 */ 1727 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1728 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1729 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1730 } 1731 break; 1732 1733 case SO_RCVTIMEO_OLD: 1734 case SO_RCVTIMEO_NEW: 1735 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1736 SO_RCVTIMEO_OLD == optname); 1737 break; 1738 1739 case SO_SNDTIMEO_OLD: 1740 case SO_SNDTIMEO_NEW: 1741 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1742 SO_SNDTIMEO_OLD == optname); 1743 break; 1744 1745 case SO_RCVLOWAT: 1746 v.val = READ_ONCE(sk->sk_rcvlowat); 1747 break; 1748 1749 case SO_SNDLOWAT: 1750 v.val = 1; 1751 break; 1752 1753 case SO_PASSCRED: 1754 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1755 break; 1756 1757 case SO_PASSPIDFD: 1758 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1759 break; 1760 1761 case SO_PEERCRED: 1762 { 1763 struct ucred peercred; 1764 if (len > sizeof(peercred)) 1765 len = sizeof(peercred); 1766 1767 spin_lock(&sk->sk_peer_lock); 1768 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1769 spin_unlock(&sk->sk_peer_lock); 1770 1771 if (copy_to_sockptr(optval, &peercred, len)) 1772 return -EFAULT; 1773 goto lenout; 1774 } 1775 1776 case SO_PEERPIDFD: 1777 { 1778 struct pid *peer_pid; 1779 struct file *pidfd_file = NULL; 1780 int pidfd; 1781 1782 if (len > sizeof(pidfd)) 1783 len = sizeof(pidfd); 1784 1785 spin_lock(&sk->sk_peer_lock); 1786 peer_pid = get_pid(sk->sk_peer_pid); 1787 spin_unlock(&sk->sk_peer_lock); 1788 1789 if (!peer_pid) 1790 return -ENODATA; 1791 1792 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1793 put_pid(peer_pid); 1794 if (pidfd < 0) 1795 return pidfd; 1796 1797 if (copy_to_sockptr(optval, &pidfd, len) || 1798 copy_to_sockptr(optlen, &len, sizeof(int))) { 1799 put_unused_fd(pidfd); 1800 fput(pidfd_file); 1801 1802 return -EFAULT; 1803 } 1804 1805 fd_install(pidfd, pidfd_file); 1806 return 0; 1807 } 1808 1809 case SO_PEERGROUPS: 1810 { 1811 const struct cred *cred; 1812 int ret, n; 1813 1814 cred = sk_get_peer_cred(sk); 1815 if (!cred) 1816 return -ENODATA; 1817 1818 n = cred->group_info->ngroups; 1819 if (len < n * sizeof(gid_t)) { 1820 len = n * sizeof(gid_t); 1821 put_cred(cred); 1822 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1823 } 1824 len = n * sizeof(gid_t); 1825 1826 ret = groups_to_user(optval, cred->group_info); 1827 put_cred(cred); 1828 if (ret) 1829 return ret; 1830 goto lenout; 1831 } 1832 1833 case SO_PEERNAME: 1834 { 1835 struct sockaddr_storage address; 1836 1837 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1838 if (lv < 0) 1839 return -ENOTCONN; 1840 if (lv < len) 1841 return -EINVAL; 1842 if (copy_to_sockptr(optval, &address, len)) 1843 return -EFAULT; 1844 goto lenout; 1845 } 1846 1847 /* Dubious BSD thing... Probably nobody even uses it, but 1848 * the UNIX standard wants it for whatever reason... -DaveM 1849 */ 1850 case SO_ACCEPTCONN: 1851 v.val = sk->sk_state == TCP_LISTEN; 1852 break; 1853 1854 case SO_PASSSEC: 1855 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1856 break; 1857 1858 case SO_PEERSEC: 1859 return security_socket_getpeersec_stream(sock, 1860 optval, optlen, len); 1861 1862 case SO_MARK: 1863 v.val = READ_ONCE(sk->sk_mark); 1864 break; 1865 1866 case SO_RCVMARK: 1867 v.val = sock_flag(sk, SOCK_RCVMARK); 1868 break; 1869 1870 case SO_RXQ_OVFL: 1871 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1872 break; 1873 1874 case SO_WIFI_STATUS: 1875 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1876 break; 1877 1878 case SO_PEEK_OFF: 1879 if (!READ_ONCE(sock->ops)->set_peek_off) 1880 return -EOPNOTSUPP; 1881 1882 v.val = READ_ONCE(sk->sk_peek_off); 1883 break; 1884 case SO_NOFCS: 1885 v.val = sock_flag(sk, SOCK_NOFCS); 1886 break; 1887 1888 case SO_BINDTODEVICE: 1889 return sock_getbindtodevice(sk, optval, optlen, len); 1890 1891 case SO_GET_FILTER: 1892 len = sk_get_filter(sk, optval, len); 1893 if (len < 0) 1894 return len; 1895 1896 goto lenout; 1897 1898 case SO_LOCK_FILTER: 1899 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1900 break; 1901 1902 case SO_BPF_EXTENSIONS: 1903 v.val = bpf_tell_extensions(); 1904 break; 1905 1906 case SO_SELECT_ERR_QUEUE: 1907 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1908 break; 1909 1910 #ifdef CONFIG_NET_RX_BUSY_POLL 1911 case SO_BUSY_POLL: 1912 v.val = READ_ONCE(sk->sk_ll_usec); 1913 break; 1914 case SO_PREFER_BUSY_POLL: 1915 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1916 break; 1917 #endif 1918 1919 case SO_MAX_PACING_RATE: 1920 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1921 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1922 lv = sizeof(v.ulval); 1923 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1924 } else { 1925 /* 32bit version */ 1926 v.val = min_t(unsigned long, ~0U, 1927 READ_ONCE(sk->sk_max_pacing_rate)); 1928 } 1929 break; 1930 1931 case SO_INCOMING_CPU: 1932 v.val = READ_ONCE(sk->sk_incoming_cpu); 1933 break; 1934 1935 case SO_MEMINFO: 1936 { 1937 u32 meminfo[SK_MEMINFO_VARS]; 1938 1939 sk_get_meminfo(sk, meminfo); 1940 1941 len = min_t(unsigned int, len, sizeof(meminfo)); 1942 if (copy_to_sockptr(optval, &meminfo, len)) 1943 return -EFAULT; 1944 1945 goto lenout; 1946 } 1947 1948 #ifdef CONFIG_NET_RX_BUSY_POLL 1949 case SO_INCOMING_NAPI_ID: 1950 v.val = READ_ONCE(sk->sk_napi_id); 1951 1952 /* aggregate non-NAPI IDs down to 0 */ 1953 if (v.val < MIN_NAPI_ID) 1954 v.val = 0; 1955 1956 break; 1957 #endif 1958 1959 case SO_COOKIE: 1960 lv = sizeof(u64); 1961 if (len < lv) 1962 return -EINVAL; 1963 v.val64 = sock_gen_cookie(sk); 1964 break; 1965 1966 case SO_ZEROCOPY: 1967 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1968 break; 1969 1970 case SO_TXTIME: 1971 lv = sizeof(v.txtime); 1972 v.txtime.clockid = sk->sk_clockid; 1973 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1974 SOF_TXTIME_DEADLINE_MODE : 0; 1975 v.txtime.flags |= sk->sk_txtime_report_errors ? 1976 SOF_TXTIME_REPORT_ERRORS : 0; 1977 break; 1978 1979 case SO_BINDTOIFINDEX: 1980 v.val = READ_ONCE(sk->sk_bound_dev_if); 1981 break; 1982 1983 case SO_NETNS_COOKIE: 1984 lv = sizeof(u64); 1985 if (len != lv) 1986 return -EINVAL; 1987 v.val64 = sock_net(sk)->net_cookie; 1988 break; 1989 1990 case SO_BUF_LOCK: 1991 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1992 break; 1993 1994 case SO_RESERVE_MEM: 1995 v.val = READ_ONCE(sk->sk_reserved_mem); 1996 break; 1997 1998 case SO_TXREHASH: 1999 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 2000 v.val = READ_ONCE(sk->sk_txrehash); 2001 break; 2002 2003 default: 2004 /* We implement the SO_SNDLOWAT etc to not be settable 2005 * (1003.1g 7). 2006 */ 2007 return -ENOPROTOOPT; 2008 } 2009 2010 if (len > lv) 2011 len = lv; 2012 if (copy_to_sockptr(optval, &v, len)) 2013 return -EFAULT; 2014 lenout: 2015 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2016 return -EFAULT; 2017 return 0; 2018 } 2019 2020 int sock_getsockopt(struct socket *sock, int level, int optname, 2021 char __user *optval, int __user *optlen) 2022 { 2023 return sk_getsockopt(sock->sk, level, optname, 2024 USER_SOCKPTR(optval), 2025 USER_SOCKPTR(optlen)); 2026 } 2027 2028 /* 2029 * Initialize an sk_lock. 2030 * 2031 * (We also register the sk_lock with the lock validator.) 2032 */ 2033 static inline void sock_lock_init(struct sock *sk) 2034 { 2035 if (sk->sk_kern_sock) 2036 sock_lock_init_class_and_name( 2037 sk, 2038 af_family_kern_slock_key_strings[sk->sk_family], 2039 af_family_kern_slock_keys + sk->sk_family, 2040 af_family_kern_key_strings[sk->sk_family], 2041 af_family_kern_keys + sk->sk_family); 2042 else 2043 sock_lock_init_class_and_name( 2044 sk, 2045 af_family_slock_key_strings[sk->sk_family], 2046 af_family_slock_keys + sk->sk_family, 2047 af_family_key_strings[sk->sk_family], 2048 af_family_keys + sk->sk_family); 2049 } 2050 2051 /* 2052 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2053 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2054 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2055 */ 2056 static void sock_copy(struct sock *nsk, const struct sock *osk) 2057 { 2058 const struct proto *prot = READ_ONCE(osk->sk_prot); 2059 #ifdef CONFIG_SECURITY_NETWORK 2060 void *sptr = nsk->sk_security; 2061 #endif 2062 2063 /* If we move sk_tx_queue_mapping out of the private section, 2064 * we must check if sk_tx_queue_clear() is called after 2065 * sock_copy() in sk_clone_lock(). 2066 */ 2067 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2068 offsetof(struct sock, sk_dontcopy_begin) || 2069 offsetof(struct sock, sk_tx_queue_mapping) >= 2070 offsetof(struct sock, sk_dontcopy_end)); 2071 2072 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2073 2074 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2075 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2076 2077 #ifdef CONFIG_SECURITY_NETWORK 2078 nsk->sk_security = sptr; 2079 security_sk_clone(osk, nsk); 2080 #endif 2081 } 2082 2083 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2084 int family) 2085 { 2086 struct sock *sk; 2087 struct kmem_cache *slab; 2088 2089 slab = prot->slab; 2090 if (slab != NULL) { 2091 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2092 if (!sk) 2093 return sk; 2094 if (want_init_on_alloc(priority)) 2095 sk_prot_clear_nulls(sk, prot->obj_size); 2096 } else 2097 sk = kmalloc(prot->obj_size, priority); 2098 2099 if (sk != NULL) { 2100 if (security_sk_alloc(sk, family, priority)) 2101 goto out_free; 2102 2103 if (!try_module_get(prot->owner)) 2104 goto out_free_sec; 2105 } 2106 2107 return sk; 2108 2109 out_free_sec: 2110 security_sk_free(sk); 2111 out_free: 2112 if (slab != NULL) 2113 kmem_cache_free(slab, sk); 2114 else 2115 kfree(sk); 2116 return NULL; 2117 } 2118 2119 static void sk_prot_free(struct proto *prot, struct sock *sk) 2120 { 2121 struct kmem_cache *slab; 2122 struct module *owner; 2123 2124 owner = prot->owner; 2125 slab = prot->slab; 2126 2127 cgroup_sk_free(&sk->sk_cgrp_data); 2128 mem_cgroup_sk_free(sk); 2129 security_sk_free(sk); 2130 if (slab != NULL) 2131 kmem_cache_free(slab, sk); 2132 else 2133 kfree(sk); 2134 module_put(owner); 2135 } 2136 2137 /** 2138 * sk_alloc - All socket objects are allocated here 2139 * @net: the applicable net namespace 2140 * @family: protocol family 2141 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2142 * @prot: struct proto associated with this new sock instance 2143 * @kern: is this to be a kernel socket? 2144 */ 2145 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2146 struct proto *prot, int kern) 2147 { 2148 struct sock *sk; 2149 2150 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2151 if (sk) { 2152 sk->sk_family = family; 2153 /* 2154 * See comment in struct sock definition to understand 2155 * why we need sk_prot_creator -acme 2156 */ 2157 sk->sk_prot = sk->sk_prot_creator = prot; 2158 sk->sk_kern_sock = kern; 2159 sock_lock_init(sk); 2160 sk->sk_net_refcnt = kern ? 0 : 1; 2161 if (likely(sk->sk_net_refcnt)) { 2162 get_net_track(net, &sk->ns_tracker, priority); 2163 sock_inuse_add(net, 1); 2164 } else { 2165 __netns_tracker_alloc(net, &sk->ns_tracker, 2166 false, priority); 2167 } 2168 2169 sock_net_set(sk, net); 2170 refcount_set(&sk->sk_wmem_alloc, 1); 2171 2172 mem_cgroup_sk_alloc(sk); 2173 cgroup_sk_alloc(&sk->sk_cgrp_data); 2174 sock_update_classid(&sk->sk_cgrp_data); 2175 sock_update_netprioidx(&sk->sk_cgrp_data); 2176 sk_tx_queue_clear(sk); 2177 } 2178 2179 return sk; 2180 } 2181 EXPORT_SYMBOL(sk_alloc); 2182 2183 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2184 * grace period. This is the case for UDP sockets and TCP listeners. 2185 */ 2186 static void __sk_destruct(struct rcu_head *head) 2187 { 2188 struct sock *sk = container_of(head, struct sock, sk_rcu); 2189 struct sk_filter *filter; 2190 2191 if (sk->sk_destruct) 2192 sk->sk_destruct(sk); 2193 2194 filter = rcu_dereference_check(sk->sk_filter, 2195 refcount_read(&sk->sk_wmem_alloc) == 0); 2196 if (filter) { 2197 sk_filter_uncharge(sk, filter); 2198 RCU_INIT_POINTER(sk->sk_filter, NULL); 2199 } 2200 2201 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2202 2203 #ifdef CONFIG_BPF_SYSCALL 2204 bpf_sk_storage_free(sk); 2205 #endif 2206 2207 if (atomic_read(&sk->sk_omem_alloc)) 2208 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2209 __func__, atomic_read(&sk->sk_omem_alloc)); 2210 2211 if (sk->sk_frag.page) { 2212 put_page(sk->sk_frag.page); 2213 sk->sk_frag.page = NULL; 2214 } 2215 2216 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2217 put_cred(sk->sk_peer_cred); 2218 put_pid(sk->sk_peer_pid); 2219 2220 if (likely(sk->sk_net_refcnt)) 2221 put_net_track(sock_net(sk), &sk->ns_tracker); 2222 else 2223 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2224 2225 sk_prot_free(sk->sk_prot_creator, sk); 2226 } 2227 2228 void sk_destruct(struct sock *sk) 2229 { 2230 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2231 2232 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2233 reuseport_detach_sock(sk); 2234 use_call_rcu = true; 2235 } 2236 2237 if (use_call_rcu) 2238 call_rcu(&sk->sk_rcu, __sk_destruct); 2239 else 2240 __sk_destruct(&sk->sk_rcu); 2241 } 2242 2243 static void __sk_free(struct sock *sk) 2244 { 2245 if (likely(sk->sk_net_refcnt)) 2246 sock_inuse_add(sock_net(sk), -1); 2247 2248 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2249 sock_diag_broadcast_destroy(sk); 2250 else 2251 sk_destruct(sk); 2252 } 2253 2254 void sk_free(struct sock *sk) 2255 { 2256 /* 2257 * We subtract one from sk_wmem_alloc and can know if 2258 * some packets are still in some tx queue. 2259 * If not null, sock_wfree() will call __sk_free(sk) later 2260 */ 2261 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2262 __sk_free(sk); 2263 } 2264 EXPORT_SYMBOL(sk_free); 2265 2266 static void sk_init_common(struct sock *sk) 2267 { 2268 skb_queue_head_init(&sk->sk_receive_queue); 2269 skb_queue_head_init(&sk->sk_write_queue); 2270 skb_queue_head_init(&sk->sk_error_queue); 2271 2272 rwlock_init(&sk->sk_callback_lock); 2273 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2274 af_rlock_keys + sk->sk_family, 2275 af_family_rlock_key_strings[sk->sk_family]); 2276 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2277 af_wlock_keys + sk->sk_family, 2278 af_family_wlock_key_strings[sk->sk_family]); 2279 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2280 af_elock_keys + sk->sk_family, 2281 af_family_elock_key_strings[sk->sk_family]); 2282 lockdep_set_class_and_name(&sk->sk_callback_lock, 2283 af_callback_keys + sk->sk_family, 2284 af_family_clock_key_strings[sk->sk_family]); 2285 } 2286 2287 /** 2288 * sk_clone_lock - clone a socket, and lock its clone 2289 * @sk: the socket to clone 2290 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2291 * 2292 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2293 */ 2294 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2295 { 2296 struct proto *prot = READ_ONCE(sk->sk_prot); 2297 struct sk_filter *filter; 2298 bool is_charged = true; 2299 struct sock *newsk; 2300 2301 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2302 if (!newsk) 2303 goto out; 2304 2305 sock_copy(newsk, sk); 2306 2307 newsk->sk_prot_creator = prot; 2308 2309 /* SANITY */ 2310 if (likely(newsk->sk_net_refcnt)) { 2311 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2312 sock_inuse_add(sock_net(newsk), 1); 2313 } else { 2314 /* Kernel sockets are not elevating the struct net refcount. 2315 * Instead, use a tracker to more easily detect if a layer 2316 * is not properly dismantling its kernel sockets at netns 2317 * destroy time. 2318 */ 2319 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2320 false, priority); 2321 } 2322 sk_node_init(&newsk->sk_node); 2323 sock_lock_init(newsk); 2324 bh_lock_sock(newsk); 2325 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2326 newsk->sk_backlog.len = 0; 2327 2328 atomic_set(&newsk->sk_rmem_alloc, 0); 2329 2330 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2331 refcount_set(&newsk->sk_wmem_alloc, 1); 2332 2333 atomic_set(&newsk->sk_omem_alloc, 0); 2334 sk_init_common(newsk); 2335 2336 newsk->sk_dst_cache = NULL; 2337 newsk->sk_dst_pending_confirm = 0; 2338 newsk->sk_wmem_queued = 0; 2339 newsk->sk_forward_alloc = 0; 2340 newsk->sk_reserved_mem = 0; 2341 atomic_set(&newsk->sk_drops, 0); 2342 newsk->sk_send_head = NULL; 2343 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2344 atomic_set(&newsk->sk_zckey, 0); 2345 2346 sock_reset_flag(newsk, SOCK_DONE); 2347 2348 /* sk->sk_memcg will be populated at accept() time */ 2349 newsk->sk_memcg = NULL; 2350 2351 cgroup_sk_clone(&newsk->sk_cgrp_data); 2352 2353 rcu_read_lock(); 2354 filter = rcu_dereference(sk->sk_filter); 2355 if (filter != NULL) 2356 /* though it's an empty new sock, the charging may fail 2357 * if sysctl_optmem_max was changed between creation of 2358 * original socket and cloning 2359 */ 2360 is_charged = sk_filter_charge(newsk, filter); 2361 RCU_INIT_POINTER(newsk->sk_filter, filter); 2362 rcu_read_unlock(); 2363 2364 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2365 /* We need to make sure that we don't uncharge the new 2366 * socket if we couldn't charge it in the first place 2367 * as otherwise we uncharge the parent's filter. 2368 */ 2369 if (!is_charged) 2370 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2371 sk_free_unlock_clone(newsk); 2372 newsk = NULL; 2373 goto out; 2374 } 2375 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2376 2377 if (bpf_sk_storage_clone(sk, newsk)) { 2378 sk_free_unlock_clone(newsk); 2379 newsk = NULL; 2380 goto out; 2381 } 2382 2383 /* Clear sk_user_data if parent had the pointer tagged 2384 * as not suitable for copying when cloning. 2385 */ 2386 if (sk_user_data_is_nocopy(newsk)) 2387 newsk->sk_user_data = NULL; 2388 2389 newsk->sk_err = 0; 2390 newsk->sk_err_soft = 0; 2391 newsk->sk_priority = 0; 2392 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2393 2394 /* Before updating sk_refcnt, we must commit prior changes to memory 2395 * (Documentation/RCU/rculist_nulls.rst for details) 2396 */ 2397 smp_wmb(); 2398 refcount_set(&newsk->sk_refcnt, 2); 2399 2400 sk_set_socket(newsk, NULL); 2401 sk_tx_queue_clear(newsk); 2402 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2403 2404 if (newsk->sk_prot->sockets_allocated) 2405 sk_sockets_allocated_inc(newsk); 2406 2407 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2408 net_enable_timestamp(); 2409 out: 2410 return newsk; 2411 } 2412 EXPORT_SYMBOL_GPL(sk_clone_lock); 2413 2414 void sk_free_unlock_clone(struct sock *sk) 2415 { 2416 /* It is still raw copy of parent, so invalidate 2417 * destructor and make plain sk_free() */ 2418 sk->sk_destruct = NULL; 2419 bh_unlock_sock(sk); 2420 sk_free(sk); 2421 } 2422 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2423 2424 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2425 { 2426 bool is_ipv6 = false; 2427 u32 max_size; 2428 2429 #if IS_ENABLED(CONFIG_IPV6) 2430 is_ipv6 = (sk->sk_family == AF_INET6 && 2431 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2432 #endif 2433 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2434 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2435 READ_ONCE(dst->dev->gso_ipv4_max_size); 2436 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2437 max_size = GSO_LEGACY_MAX_SIZE; 2438 2439 return max_size - (MAX_TCP_HEADER + 1); 2440 } 2441 2442 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2443 { 2444 u32 max_segs = 1; 2445 2446 sk->sk_route_caps = dst->dev->features; 2447 if (sk_is_tcp(sk)) 2448 sk->sk_route_caps |= NETIF_F_GSO; 2449 if (sk->sk_route_caps & NETIF_F_GSO) 2450 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2451 if (unlikely(sk->sk_gso_disabled)) 2452 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2453 if (sk_can_gso(sk)) { 2454 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2455 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2456 } else { 2457 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2458 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2459 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2460 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2461 } 2462 } 2463 sk->sk_gso_max_segs = max_segs; 2464 sk_dst_set(sk, dst); 2465 } 2466 EXPORT_SYMBOL_GPL(sk_setup_caps); 2467 2468 /* 2469 * Simple resource managers for sockets. 2470 */ 2471 2472 2473 /* 2474 * Write buffer destructor automatically called from kfree_skb. 2475 */ 2476 void sock_wfree(struct sk_buff *skb) 2477 { 2478 struct sock *sk = skb->sk; 2479 unsigned int len = skb->truesize; 2480 bool free; 2481 2482 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2483 if (sock_flag(sk, SOCK_RCU_FREE) && 2484 sk->sk_write_space == sock_def_write_space) { 2485 rcu_read_lock(); 2486 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2487 sock_def_write_space_wfree(sk); 2488 rcu_read_unlock(); 2489 if (unlikely(free)) 2490 __sk_free(sk); 2491 return; 2492 } 2493 2494 /* 2495 * Keep a reference on sk_wmem_alloc, this will be released 2496 * after sk_write_space() call 2497 */ 2498 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2499 sk->sk_write_space(sk); 2500 len = 1; 2501 } 2502 /* 2503 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2504 * could not do because of in-flight packets 2505 */ 2506 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2507 __sk_free(sk); 2508 } 2509 EXPORT_SYMBOL(sock_wfree); 2510 2511 /* This variant of sock_wfree() is used by TCP, 2512 * since it sets SOCK_USE_WRITE_QUEUE. 2513 */ 2514 void __sock_wfree(struct sk_buff *skb) 2515 { 2516 struct sock *sk = skb->sk; 2517 2518 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2519 __sk_free(sk); 2520 } 2521 2522 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2523 { 2524 skb_orphan(skb); 2525 skb->sk = sk; 2526 #ifdef CONFIG_INET 2527 if (unlikely(!sk_fullsock(sk))) { 2528 skb->destructor = sock_edemux; 2529 sock_hold(sk); 2530 return; 2531 } 2532 #endif 2533 skb->destructor = sock_wfree; 2534 skb_set_hash_from_sk(skb, sk); 2535 /* 2536 * We used to take a refcount on sk, but following operation 2537 * is enough to guarantee sk_free() wont free this sock until 2538 * all in-flight packets are completed 2539 */ 2540 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2541 } 2542 EXPORT_SYMBOL(skb_set_owner_w); 2543 2544 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2545 { 2546 #ifdef CONFIG_TLS_DEVICE 2547 /* Drivers depend on in-order delivery for crypto offload, 2548 * partial orphan breaks out-of-order-OK logic. 2549 */ 2550 if (skb->decrypted) 2551 return false; 2552 #endif 2553 return (skb->destructor == sock_wfree || 2554 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2555 } 2556 2557 /* This helper is used by netem, as it can hold packets in its 2558 * delay queue. We want to allow the owner socket to send more 2559 * packets, as if they were already TX completed by a typical driver. 2560 * But we also want to keep skb->sk set because some packet schedulers 2561 * rely on it (sch_fq for example). 2562 */ 2563 void skb_orphan_partial(struct sk_buff *skb) 2564 { 2565 if (skb_is_tcp_pure_ack(skb)) 2566 return; 2567 2568 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2569 return; 2570 2571 skb_orphan(skb); 2572 } 2573 EXPORT_SYMBOL(skb_orphan_partial); 2574 2575 /* 2576 * Read buffer destructor automatically called from kfree_skb. 2577 */ 2578 void sock_rfree(struct sk_buff *skb) 2579 { 2580 struct sock *sk = skb->sk; 2581 unsigned int len = skb->truesize; 2582 2583 atomic_sub(len, &sk->sk_rmem_alloc); 2584 sk_mem_uncharge(sk, len); 2585 } 2586 EXPORT_SYMBOL(sock_rfree); 2587 2588 /* 2589 * Buffer destructor for skbs that are not used directly in read or write 2590 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2591 */ 2592 void sock_efree(struct sk_buff *skb) 2593 { 2594 sock_put(skb->sk); 2595 } 2596 EXPORT_SYMBOL(sock_efree); 2597 2598 /* Buffer destructor for prefetch/receive path where reference count may 2599 * not be held, e.g. for listen sockets. 2600 */ 2601 #ifdef CONFIG_INET 2602 void sock_pfree(struct sk_buff *skb) 2603 { 2604 if (sk_is_refcounted(skb->sk)) 2605 sock_gen_put(skb->sk); 2606 } 2607 EXPORT_SYMBOL(sock_pfree); 2608 #endif /* CONFIG_INET */ 2609 2610 kuid_t sock_i_uid(struct sock *sk) 2611 { 2612 kuid_t uid; 2613 2614 read_lock_bh(&sk->sk_callback_lock); 2615 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2616 read_unlock_bh(&sk->sk_callback_lock); 2617 return uid; 2618 } 2619 EXPORT_SYMBOL(sock_i_uid); 2620 2621 unsigned long __sock_i_ino(struct sock *sk) 2622 { 2623 unsigned long ino; 2624 2625 read_lock(&sk->sk_callback_lock); 2626 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2627 read_unlock(&sk->sk_callback_lock); 2628 return ino; 2629 } 2630 EXPORT_SYMBOL(__sock_i_ino); 2631 2632 unsigned long sock_i_ino(struct sock *sk) 2633 { 2634 unsigned long ino; 2635 2636 local_bh_disable(); 2637 ino = __sock_i_ino(sk); 2638 local_bh_enable(); 2639 return ino; 2640 } 2641 EXPORT_SYMBOL(sock_i_ino); 2642 2643 /* 2644 * Allocate a skb from the socket's send buffer. 2645 */ 2646 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2647 gfp_t priority) 2648 { 2649 if (force || 2650 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2651 struct sk_buff *skb = alloc_skb(size, priority); 2652 2653 if (skb) { 2654 skb_set_owner_w(skb, sk); 2655 return skb; 2656 } 2657 } 2658 return NULL; 2659 } 2660 EXPORT_SYMBOL(sock_wmalloc); 2661 2662 static void sock_ofree(struct sk_buff *skb) 2663 { 2664 struct sock *sk = skb->sk; 2665 2666 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2667 } 2668 2669 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2670 gfp_t priority) 2671 { 2672 struct sk_buff *skb; 2673 2674 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2675 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2676 READ_ONCE(sysctl_optmem_max)) 2677 return NULL; 2678 2679 skb = alloc_skb(size, priority); 2680 if (!skb) 2681 return NULL; 2682 2683 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2684 skb->sk = sk; 2685 skb->destructor = sock_ofree; 2686 return skb; 2687 } 2688 2689 /* 2690 * Allocate a memory block from the socket's option memory buffer. 2691 */ 2692 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2693 { 2694 int optmem_max = READ_ONCE(sysctl_optmem_max); 2695 2696 if ((unsigned int)size <= optmem_max && 2697 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2698 void *mem; 2699 /* First do the add, to avoid the race if kmalloc 2700 * might sleep. 2701 */ 2702 atomic_add(size, &sk->sk_omem_alloc); 2703 mem = kmalloc(size, priority); 2704 if (mem) 2705 return mem; 2706 atomic_sub(size, &sk->sk_omem_alloc); 2707 } 2708 return NULL; 2709 } 2710 EXPORT_SYMBOL(sock_kmalloc); 2711 2712 /* Free an option memory block. Note, we actually want the inline 2713 * here as this allows gcc to detect the nullify and fold away the 2714 * condition entirely. 2715 */ 2716 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2717 const bool nullify) 2718 { 2719 if (WARN_ON_ONCE(!mem)) 2720 return; 2721 if (nullify) 2722 kfree_sensitive(mem); 2723 else 2724 kfree(mem); 2725 atomic_sub(size, &sk->sk_omem_alloc); 2726 } 2727 2728 void sock_kfree_s(struct sock *sk, void *mem, int size) 2729 { 2730 __sock_kfree_s(sk, mem, size, false); 2731 } 2732 EXPORT_SYMBOL(sock_kfree_s); 2733 2734 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2735 { 2736 __sock_kfree_s(sk, mem, size, true); 2737 } 2738 EXPORT_SYMBOL(sock_kzfree_s); 2739 2740 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2741 I think, these locks should be removed for datagram sockets. 2742 */ 2743 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2744 { 2745 DEFINE_WAIT(wait); 2746 2747 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2748 for (;;) { 2749 if (!timeo) 2750 break; 2751 if (signal_pending(current)) 2752 break; 2753 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2754 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2755 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2756 break; 2757 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2758 break; 2759 if (READ_ONCE(sk->sk_err)) 2760 break; 2761 timeo = schedule_timeout(timeo); 2762 } 2763 finish_wait(sk_sleep(sk), &wait); 2764 return timeo; 2765 } 2766 2767 2768 /* 2769 * Generic send/receive buffer handlers 2770 */ 2771 2772 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2773 unsigned long data_len, int noblock, 2774 int *errcode, int max_page_order) 2775 { 2776 struct sk_buff *skb; 2777 long timeo; 2778 int err; 2779 2780 timeo = sock_sndtimeo(sk, noblock); 2781 for (;;) { 2782 err = sock_error(sk); 2783 if (err != 0) 2784 goto failure; 2785 2786 err = -EPIPE; 2787 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2788 goto failure; 2789 2790 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2791 break; 2792 2793 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2794 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2795 err = -EAGAIN; 2796 if (!timeo) 2797 goto failure; 2798 if (signal_pending(current)) 2799 goto interrupted; 2800 timeo = sock_wait_for_wmem(sk, timeo); 2801 } 2802 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2803 errcode, sk->sk_allocation); 2804 if (skb) 2805 skb_set_owner_w(skb, sk); 2806 return skb; 2807 2808 interrupted: 2809 err = sock_intr_errno(timeo); 2810 failure: 2811 *errcode = err; 2812 return NULL; 2813 } 2814 EXPORT_SYMBOL(sock_alloc_send_pskb); 2815 2816 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2817 struct sockcm_cookie *sockc) 2818 { 2819 u32 tsflags; 2820 2821 switch (cmsg->cmsg_type) { 2822 case SO_MARK: 2823 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2824 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2825 return -EPERM; 2826 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2827 return -EINVAL; 2828 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2829 break; 2830 case SO_TIMESTAMPING_OLD: 2831 case SO_TIMESTAMPING_NEW: 2832 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2833 return -EINVAL; 2834 2835 tsflags = *(u32 *)CMSG_DATA(cmsg); 2836 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2837 return -EINVAL; 2838 2839 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2840 sockc->tsflags |= tsflags; 2841 break; 2842 case SCM_TXTIME: 2843 if (!sock_flag(sk, SOCK_TXTIME)) 2844 return -EINVAL; 2845 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2846 return -EINVAL; 2847 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2848 break; 2849 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2850 case SCM_RIGHTS: 2851 case SCM_CREDENTIALS: 2852 break; 2853 default: 2854 return -EINVAL; 2855 } 2856 return 0; 2857 } 2858 EXPORT_SYMBOL(__sock_cmsg_send); 2859 2860 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2861 struct sockcm_cookie *sockc) 2862 { 2863 struct cmsghdr *cmsg; 2864 int ret; 2865 2866 for_each_cmsghdr(cmsg, msg) { 2867 if (!CMSG_OK(msg, cmsg)) 2868 return -EINVAL; 2869 if (cmsg->cmsg_level != SOL_SOCKET) 2870 continue; 2871 ret = __sock_cmsg_send(sk, cmsg, sockc); 2872 if (ret) 2873 return ret; 2874 } 2875 return 0; 2876 } 2877 EXPORT_SYMBOL(sock_cmsg_send); 2878 2879 static void sk_enter_memory_pressure(struct sock *sk) 2880 { 2881 if (!sk->sk_prot->enter_memory_pressure) 2882 return; 2883 2884 sk->sk_prot->enter_memory_pressure(sk); 2885 } 2886 2887 static void sk_leave_memory_pressure(struct sock *sk) 2888 { 2889 if (sk->sk_prot->leave_memory_pressure) { 2890 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2891 tcp_leave_memory_pressure, sk); 2892 } else { 2893 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2894 2895 if (memory_pressure && READ_ONCE(*memory_pressure)) 2896 WRITE_ONCE(*memory_pressure, 0); 2897 } 2898 } 2899 2900 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2901 2902 /** 2903 * skb_page_frag_refill - check that a page_frag contains enough room 2904 * @sz: minimum size of the fragment we want to get 2905 * @pfrag: pointer to page_frag 2906 * @gfp: priority for memory allocation 2907 * 2908 * Note: While this allocator tries to use high order pages, there is 2909 * no guarantee that allocations succeed. Therefore, @sz MUST be 2910 * less or equal than PAGE_SIZE. 2911 */ 2912 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2913 { 2914 if (pfrag->page) { 2915 if (page_ref_count(pfrag->page) == 1) { 2916 pfrag->offset = 0; 2917 return true; 2918 } 2919 if (pfrag->offset + sz <= pfrag->size) 2920 return true; 2921 put_page(pfrag->page); 2922 } 2923 2924 pfrag->offset = 0; 2925 if (SKB_FRAG_PAGE_ORDER && 2926 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2927 /* Avoid direct reclaim but allow kswapd to wake */ 2928 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2929 __GFP_COMP | __GFP_NOWARN | 2930 __GFP_NORETRY, 2931 SKB_FRAG_PAGE_ORDER); 2932 if (likely(pfrag->page)) { 2933 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2934 return true; 2935 } 2936 } 2937 pfrag->page = alloc_page(gfp); 2938 if (likely(pfrag->page)) { 2939 pfrag->size = PAGE_SIZE; 2940 return true; 2941 } 2942 return false; 2943 } 2944 EXPORT_SYMBOL(skb_page_frag_refill); 2945 2946 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2947 { 2948 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2949 return true; 2950 2951 sk_enter_memory_pressure(sk); 2952 sk_stream_moderate_sndbuf(sk); 2953 return false; 2954 } 2955 EXPORT_SYMBOL(sk_page_frag_refill); 2956 2957 void __lock_sock(struct sock *sk) 2958 __releases(&sk->sk_lock.slock) 2959 __acquires(&sk->sk_lock.slock) 2960 { 2961 DEFINE_WAIT(wait); 2962 2963 for (;;) { 2964 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2965 TASK_UNINTERRUPTIBLE); 2966 spin_unlock_bh(&sk->sk_lock.slock); 2967 schedule(); 2968 spin_lock_bh(&sk->sk_lock.slock); 2969 if (!sock_owned_by_user(sk)) 2970 break; 2971 } 2972 finish_wait(&sk->sk_lock.wq, &wait); 2973 } 2974 2975 void __release_sock(struct sock *sk) 2976 __releases(&sk->sk_lock.slock) 2977 __acquires(&sk->sk_lock.slock) 2978 { 2979 struct sk_buff *skb, *next; 2980 2981 while ((skb = sk->sk_backlog.head) != NULL) { 2982 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2983 2984 spin_unlock_bh(&sk->sk_lock.slock); 2985 2986 do { 2987 next = skb->next; 2988 prefetch(next); 2989 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2990 skb_mark_not_on_list(skb); 2991 sk_backlog_rcv(sk, skb); 2992 2993 cond_resched(); 2994 2995 skb = next; 2996 } while (skb != NULL); 2997 2998 spin_lock_bh(&sk->sk_lock.slock); 2999 } 3000 3001 /* 3002 * Doing the zeroing here guarantee we can not loop forever 3003 * while a wild producer attempts to flood us. 3004 */ 3005 sk->sk_backlog.len = 0; 3006 } 3007 3008 void __sk_flush_backlog(struct sock *sk) 3009 { 3010 spin_lock_bh(&sk->sk_lock.slock); 3011 __release_sock(sk); 3012 spin_unlock_bh(&sk->sk_lock.slock); 3013 } 3014 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3015 3016 /** 3017 * sk_wait_data - wait for data to arrive at sk_receive_queue 3018 * @sk: sock to wait on 3019 * @timeo: for how long 3020 * @skb: last skb seen on sk_receive_queue 3021 * 3022 * Now socket state including sk->sk_err is changed only under lock, 3023 * hence we may omit checks after joining wait queue. 3024 * We check receive queue before schedule() only as optimization; 3025 * it is very likely that release_sock() added new data. 3026 */ 3027 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3028 { 3029 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3030 int rc; 3031 3032 add_wait_queue(sk_sleep(sk), &wait); 3033 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3034 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3035 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3036 remove_wait_queue(sk_sleep(sk), &wait); 3037 return rc; 3038 } 3039 EXPORT_SYMBOL(sk_wait_data); 3040 3041 /** 3042 * __sk_mem_raise_allocated - increase memory_allocated 3043 * @sk: socket 3044 * @size: memory size to allocate 3045 * @amt: pages to allocate 3046 * @kind: allocation type 3047 * 3048 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 3049 */ 3050 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3051 { 3052 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 3053 struct proto *prot = sk->sk_prot; 3054 bool charged = true; 3055 long allocated; 3056 3057 sk_memory_allocated_add(sk, amt); 3058 allocated = sk_memory_allocated(sk); 3059 if (memcg_charge && 3060 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3061 gfp_memcg_charge()))) 3062 goto suppress_allocation; 3063 3064 /* Under limit. */ 3065 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3066 sk_leave_memory_pressure(sk); 3067 return 1; 3068 } 3069 3070 /* Under pressure. */ 3071 if (allocated > sk_prot_mem_limits(sk, 1)) 3072 sk_enter_memory_pressure(sk); 3073 3074 /* Over hard limit. */ 3075 if (allocated > sk_prot_mem_limits(sk, 2)) 3076 goto suppress_allocation; 3077 3078 /* guarantee minimum buffer size under pressure */ 3079 if (kind == SK_MEM_RECV) { 3080 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3081 return 1; 3082 3083 } else { /* SK_MEM_SEND */ 3084 int wmem0 = sk_get_wmem0(sk, prot); 3085 3086 if (sk->sk_type == SOCK_STREAM) { 3087 if (sk->sk_wmem_queued < wmem0) 3088 return 1; 3089 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3090 return 1; 3091 } 3092 } 3093 3094 if (sk_has_memory_pressure(sk)) { 3095 u64 alloc; 3096 3097 if (!sk_under_memory_pressure(sk)) 3098 return 1; 3099 alloc = sk_sockets_allocated_read_positive(sk); 3100 if (sk_prot_mem_limits(sk, 2) > alloc * 3101 sk_mem_pages(sk->sk_wmem_queued + 3102 atomic_read(&sk->sk_rmem_alloc) + 3103 sk->sk_forward_alloc)) 3104 return 1; 3105 } 3106 3107 suppress_allocation: 3108 3109 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3110 sk_stream_moderate_sndbuf(sk); 3111 3112 /* Fail only if socket is _under_ its sndbuf. 3113 * In this case we cannot block, so that we have to fail. 3114 */ 3115 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3116 /* Force charge with __GFP_NOFAIL */ 3117 if (memcg_charge && !charged) { 3118 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3119 gfp_memcg_charge() | __GFP_NOFAIL); 3120 } 3121 return 1; 3122 } 3123 } 3124 3125 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3126 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3127 3128 sk_memory_allocated_sub(sk, amt); 3129 3130 if (memcg_charge && charged) 3131 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3132 3133 return 0; 3134 } 3135 3136 /** 3137 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3138 * @sk: socket 3139 * @size: memory size to allocate 3140 * @kind: allocation type 3141 * 3142 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3143 * rmem allocation. This function assumes that protocols which have 3144 * memory_pressure use sk_wmem_queued as write buffer accounting. 3145 */ 3146 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3147 { 3148 int ret, amt = sk_mem_pages(size); 3149 3150 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3151 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3152 if (!ret) 3153 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3154 return ret; 3155 } 3156 EXPORT_SYMBOL(__sk_mem_schedule); 3157 3158 /** 3159 * __sk_mem_reduce_allocated - reclaim memory_allocated 3160 * @sk: socket 3161 * @amount: number of quanta 3162 * 3163 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3164 */ 3165 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3166 { 3167 sk_memory_allocated_sub(sk, amount); 3168 3169 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3170 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3171 3172 if (sk_under_global_memory_pressure(sk) && 3173 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3174 sk_leave_memory_pressure(sk); 3175 } 3176 3177 /** 3178 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3179 * @sk: socket 3180 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3181 */ 3182 void __sk_mem_reclaim(struct sock *sk, int amount) 3183 { 3184 amount >>= PAGE_SHIFT; 3185 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3186 __sk_mem_reduce_allocated(sk, amount); 3187 } 3188 EXPORT_SYMBOL(__sk_mem_reclaim); 3189 3190 int sk_set_peek_off(struct sock *sk, int val) 3191 { 3192 WRITE_ONCE(sk->sk_peek_off, val); 3193 return 0; 3194 } 3195 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3196 3197 /* 3198 * Set of default routines for initialising struct proto_ops when 3199 * the protocol does not support a particular function. In certain 3200 * cases where it makes no sense for a protocol to have a "do nothing" 3201 * function, some default processing is provided. 3202 */ 3203 3204 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3205 { 3206 return -EOPNOTSUPP; 3207 } 3208 EXPORT_SYMBOL(sock_no_bind); 3209 3210 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3211 int len, int flags) 3212 { 3213 return -EOPNOTSUPP; 3214 } 3215 EXPORT_SYMBOL(sock_no_connect); 3216 3217 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3218 { 3219 return -EOPNOTSUPP; 3220 } 3221 EXPORT_SYMBOL(sock_no_socketpair); 3222 3223 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3224 bool kern) 3225 { 3226 return -EOPNOTSUPP; 3227 } 3228 EXPORT_SYMBOL(sock_no_accept); 3229 3230 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3231 int peer) 3232 { 3233 return -EOPNOTSUPP; 3234 } 3235 EXPORT_SYMBOL(sock_no_getname); 3236 3237 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3238 { 3239 return -EOPNOTSUPP; 3240 } 3241 EXPORT_SYMBOL(sock_no_ioctl); 3242 3243 int sock_no_listen(struct socket *sock, int backlog) 3244 { 3245 return -EOPNOTSUPP; 3246 } 3247 EXPORT_SYMBOL(sock_no_listen); 3248 3249 int sock_no_shutdown(struct socket *sock, int how) 3250 { 3251 return -EOPNOTSUPP; 3252 } 3253 EXPORT_SYMBOL(sock_no_shutdown); 3254 3255 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3256 { 3257 return -EOPNOTSUPP; 3258 } 3259 EXPORT_SYMBOL(sock_no_sendmsg); 3260 3261 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3262 { 3263 return -EOPNOTSUPP; 3264 } 3265 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3266 3267 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3268 int flags) 3269 { 3270 return -EOPNOTSUPP; 3271 } 3272 EXPORT_SYMBOL(sock_no_recvmsg); 3273 3274 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3275 { 3276 /* Mirror missing mmap method error code */ 3277 return -ENODEV; 3278 } 3279 EXPORT_SYMBOL(sock_no_mmap); 3280 3281 /* 3282 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3283 * various sock-based usage counts. 3284 */ 3285 void __receive_sock(struct file *file) 3286 { 3287 struct socket *sock; 3288 3289 sock = sock_from_file(file); 3290 if (sock) { 3291 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3292 sock_update_classid(&sock->sk->sk_cgrp_data); 3293 } 3294 } 3295 3296 /* 3297 * Default Socket Callbacks 3298 */ 3299 3300 static void sock_def_wakeup(struct sock *sk) 3301 { 3302 struct socket_wq *wq; 3303 3304 rcu_read_lock(); 3305 wq = rcu_dereference(sk->sk_wq); 3306 if (skwq_has_sleeper(wq)) 3307 wake_up_interruptible_all(&wq->wait); 3308 rcu_read_unlock(); 3309 } 3310 3311 static void sock_def_error_report(struct sock *sk) 3312 { 3313 struct socket_wq *wq; 3314 3315 rcu_read_lock(); 3316 wq = rcu_dereference(sk->sk_wq); 3317 if (skwq_has_sleeper(wq)) 3318 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3319 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3320 rcu_read_unlock(); 3321 } 3322 3323 void sock_def_readable(struct sock *sk) 3324 { 3325 struct socket_wq *wq; 3326 3327 trace_sk_data_ready(sk); 3328 3329 rcu_read_lock(); 3330 wq = rcu_dereference(sk->sk_wq); 3331 if (skwq_has_sleeper(wq)) 3332 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3333 EPOLLRDNORM | EPOLLRDBAND); 3334 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3335 rcu_read_unlock(); 3336 } 3337 3338 static void sock_def_write_space(struct sock *sk) 3339 { 3340 struct socket_wq *wq; 3341 3342 rcu_read_lock(); 3343 3344 /* Do not wake up a writer until he can make "significant" 3345 * progress. --DaveM 3346 */ 3347 if (sock_writeable(sk)) { 3348 wq = rcu_dereference(sk->sk_wq); 3349 if (skwq_has_sleeper(wq)) 3350 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3351 EPOLLWRNORM | EPOLLWRBAND); 3352 3353 /* Should agree with poll, otherwise some programs break */ 3354 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3355 } 3356 3357 rcu_read_unlock(); 3358 } 3359 3360 /* An optimised version of sock_def_write_space(), should only be called 3361 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3362 * ->sk_wmem_alloc. 3363 */ 3364 static void sock_def_write_space_wfree(struct sock *sk) 3365 { 3366 /* Do not wake up a writer until he can make "significant" 3367 * progress. --DaveM 3368 */ 3369 if (sock_writeable(sk)) { 3370 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3371 3372 /* rely on refcount_sub from sock_wfree() */ 3373 smp_mb__after_atomic(); 3374 if (wq && waitqueue_active(&wq->wait)) 3375 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3376 EPOLLWRNORM | EPOLLWRBAND); 3377 3378 /* Should agree with poll, otherwise some programs break */ 3379 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3380 } 3381 } 3382 3383 static void sock_def_destruct(struct sock *sk) 3384 { 3385 } 3386 3387 void sk_send_sigurg(struct sock *sk) 3388 { 3389 if (sk->sk_socket && sk->sk_socket->file) 3390 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3391 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3392 } 3393 EXPORT_SYMBOL(sk_send_sigurg); 3394 3395 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3396 unsigned long expires) 3397 { 3398 if (!mod_timer(timer, expires)) 3399 sock_hold(sk); 3400 } 3401 EXPORT_SYMBOL(sk_reset_timer); 3402 3403 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3404 { 3405 if (del_timer(timer)) 3406 __sock_put(sk); 3407 } 3408 EXPORT_SYMBOL(sk_stop_timer); 3409 3410 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3411 { 3412 if (del_timer_sync(timer)) 3413 __sock_put(sk); 3414 } 3415 EXPORT_SYMBOL(sk_stop_timer_sync); 3416 3417 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3418 { 3419 sk_init_common(sk); 3420 sk->sk_send_head = NULL; 3421 3422 timer_setup(&sk->sk_timer, NULL, 0); 3423 3424 sk->sk_allocation = GFP_KERNEL; 3425 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3426 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3427 sk->sk_state = TCP_CLOSE; 3428 sk->sk_use_task_frag = true; 3429 sk_set_socket(sk, sock); 3430 3431 sock_set_flag(sk, SOCK_ZAPPED); 3432 3433 if (sock) { 3434 sk->sk_type = sock->type; 3435 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3436 sock->sk = sk; 3437 } else { 3438 RCU_INIT_POINTER(sk->sk_wq, NULL); 3439 } 3440 sk->sk_uid = uid; 3441 3442 rwlock_init(&sk->sk_callback_lock); 3443 if (sk->sk_kern_sock) 3444 lockdep_set_class_and_name( 3445 &sk->sk_callback_lock, 3446 af_kern_callback_keys + sk->sk_family, 3447 af_family_kern_clock_key_strings[sk->sk_family]); 3448 else 3449 lockdep_set_class_and_name( 3450 &sk->sk_callback_lock, 3451 af_callback_keys + sk->sk_family, 3452 af_family_clock_key_strings[sk->sk_family]); 3453 3454 sk->sk_state_change = sock_def_wakeup; 3455 sk->sk_data_ready = sock_def_readable; 3456 sk->sk_write_space = sock_def_write_space; 3457 sk->sk_error_report = sock_def_error_report; 3458 sk->sk_destruct = sock_def_destruct; 3459 3460 sk->sk_frag.page = NULL; 3461 sk->sk_frag.offset = 0; 3462 sk->sk_peek_off = -1; 3463 3464 sk->sk_peer_pid = NULL; 3465 sk->sk_peer_cred = NULL; 3466 spin_lock_init(&sk->sk_peer_lock); 3467 3468 sk->sk_write_pending = 0; 3469 sk->sk_rcvlowat = 1; 3470 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3471 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3472 3473 sk->sk_stamp = SK_DEFAULT_STAMP; 3474 #if BITS_PER_LONG==32 3475 seqlock_init(&sk->sk_stamp_seq); 3476 #endif 3477 atomic_set(&sk->sk_zckey, 0); 3478 3479 #ifdef CONFIG_NET_RX_BUSY_POLL 3480 sk->sk_napi_id = 0; 3481 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3482 #endif 3483 3484 sk->sk_max_pacing_rate = ~0UL; 3485 sk->sk_pacing_rate = ~0UL; 3486 WRITE_ONCE(sk->sk_pacing_shift, 10); 3487 sk->sk_incoming_cpu = -1; 3488 3489 sk_rx_queue_clear(sk); 3490 /* 3491 * Before updating sk_refcnt, we must commit prior changes to memory 3492 * (Documentation/RCU/rculist_nulls.rst for details) 3493 */ 3494 smp_wmb(); 3495 refcount_set(&sk->sk_refcnt, 1); 3496 atomic_set(&sk->sk_drops, 0); 3497 } 3498 EXPORT_SYMBOL(sock_init_data_uid); 3499 3500 void sock_init_data(struct socket *sock, struct sock *sk) 3501 { 3502 kuid_t uid = sock ? 3503 SOCK_INODE(sock)->i_uid : 3504 make_kuid(sock_net(sk)->user_ns, 0); 3505 3506 sock_init_data_uid(sock, sk, uid); 3507 } 3508 EXPORT_SYMBOL(sock_init_data); 3509 3510 void lock_sock_nested(struct sock *sk, int subclass) 3511 { 3512 /* The sk_lock has mutex_lock() semantics here. */ 3513 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3514 3515 might_sleep(); 3516 spin_lock_bh(&sk->sk_lock.slock); 3517 if (sock_owned_by_user_nocheck(sk)) 3518 __lock_sock(sk); 3519 sk->sk_lock.owned = 1; 3520 spin_unlock_bh(&sk->sk_lock.slock); 3521 } 3522 EXPORT_SYMBOL(lock_sock_nested); 3523 3524 void release_sock(struct sock *sk) 3525 { 3526 spin_lock_bh(&sk->sk_lock.slock); 3527 if (sk->sk_backlog.tail) 3528 __release_sock(sk); 3529 3530 /* Warning : release_cb() might need to release sk ownership, 3531 * ie call sock_release_ownership(sk) before us. 3532 */ 3533 if (sk->sk_prot->release_cb) 3534 sk->sk_prot->release_cb(sk); 3535 3536 sock_release_ownership(sk); 3537 if (waitqueue_active(&sk->sk_lock.wq)) 3538 wake_up(&sk->sk_lock.wq); 3539 spin_unlock_bh(&sk->sk_lock.slock); 3540 } 3541 EXPORT_SYMBOL(release_sock); 3542 3543 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3544 { 3545 might_sleep(); 3546 spin_lock_bh(&sk->sk_lock.slock); 3547 3548 if (!sock_owned_by_user_nocheck(sk)) { 3549 /* 3550 * Fast path return with bottom halves disabled and 3551 * sock::sk_lock.slock held. 3552 * 3553 * The 'mutex' is not contended and holding 3554 * sock::sk_lock.slock prevents all other lockers to 3555 * proceed so the corresponding unlock_sock_fast() can 3556 * avoid the slow path of release_sock() completely and 3557 * just release slock. 3558 * 3559 * From a semantical POV this is equivalent to 'acquiring' 3560 * the 'mutex', hence the corresponding lockdep 3561 * mutex_release() has to happen in the fast path of 3562 * unlock_sock_fast(). 3563 */ 3564 return false; 3565 } 3566 3567 __lock_sock(sk); 3568 sk->sk_lock.owned = 1; 3569 __acquire(&sk->sk_lock.slock); 3570 spin_unlock_bh(&sk->sk_lock.slock); 3571 return true; 3572 } 3573 EXPORT_SYMBOL(__lock_sock_fast); 3574 3575 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3576 bool timeval, bool time32) 3577 { 3578 struct sock *sk = sock->sk; 3579 struct timespec64 ts; 3580 3581 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3582 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3583 if (ts.tv_sec == -1) 3584 return -ENOENT; 3585 if (ts.tv_sec == 0) { 3586 ktime_t kt = ktime_get_real(); 3587 sock_write_timestamp(sk, kt); 3588 ts = ktime_to_timespec64(kt); 3589 } 3590 3591 if (timeval) 3592 ts.tv_nsec /= 1000; 3593 3594 #ifdef CONFIG_COMPAT_32BIT_TIME 3595 if (time32) 3596 return put_old_timespec32(&ts, userstamp); 3597 #endif 3598 #ifdef CONFIG_SPARC64 3599 /* beware of padding in sparc64 timeval */ 3600 if (timeval && !in_compat_syscall()) { 3601 struct __kernel_old_timeval __user tv = { 3602 .tv_sec = ts.tv_sec, 3603 .tv_usec = ts.tv_nsec, 3604 }; 3605 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3606 return -EFAULT; 3607 return 0; 3608 } 3609 #endif 3610 return put_timespec64(&ts, userstamp); 3611 } 3612 EXPORT_SYMBOL(sock_gettstamp); 3613 3614 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3615 { 3616 if (!sock_flag(sk, flag)) { 3617 unsigned long previous_flags = sk->sk_flags; 3618 3619 sock_set_flag(sk, flag); 3620 /* 3621 * we just set one of the two flags which require net 3622 * time stamping, but time stamping might have been on 3623 * already because of the other one 3624 */ 3625 if (sock_needs_netstamp(sk) && 3626 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3627 net_enable_timestamp(); 3628 } 3629 } 3630 3631 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3632 int level, int type) 3633 { 3634 struct sock_exterr_skb *serr; 3635 struct sk_buff *skb; 3636 int copied, err; 3637 3638 err = -EAGAIN; 3639 skb = sock_dequeue_err_skb(sk); 3640 if (skb == NULL) 3641 goto out; 3642 3643 copied = skb->len; 3644 if (copied > len) { 3645 msg->msg_flags |= MSG_TRUNC; 3646 copied = len; 3647 } 3648 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3649 if (err) 3650 goto out_free_skb; 3651 3652 sock_recv_timestamp(msg, sk, skb); 3653 3654 serr = SKB_EXT_ERR(skb); 3655 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3656 3657 msg->msg_flags |= MSG_ERRQUEUE; 3658 err = copied; 3659 3660 out_free_skb: 3661 kfree_skb(skb); 3662 out: 3663 return err; 3664 } 3665 EXPORT_SYMBOL(sock_recv_errqueue); 3666 3667 /* 3668 * Get a socket option on an socket. 3669 * 3670 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3671 * asynchronous errors should be reported by getsockopt. We assume 3672 * this means if you specify SO_ERROR (otherwise whats the point of it). 3673 */ 3674 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3675 char __user *optval, int __user *optlen) 3676 { 3677 struct sock *sk = sock->sk; 3678 3679 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3680 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3681 } 3682 EXPORT_SYMBOL(sock_common_getsockopt); 3683 3684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3685 int flags) 3686 { 3687 struct sock *sk = sock->sk; 3688 int addr_len = 0; 3689 int err; 3690 3691 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3692 if (err >= 0) 3693 msg->msg_namelen = addr_len; 3694 return err; 3695 } 3696 EXPORT_SYMBOL(sock_common_recvmsg); 3697 3698 /* 3699 * Set socket options on an inet socket. 3700 */ 3701 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3702 sockptr_t optval, unsigned int optlen) 3703 { 3704 struct sock *sk = sock->sk; 3705 3706 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3707 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3708 } 3709 EXPORT_SYMBOL(sock_common_setsockopt); 3710 3711 void sk_common_release(struct sock *sk) 3712 { 3713 if (sk->sk_prot->destroy) 3714 sk->sk_prot->destroy(sk); 3715 3716 /* 3717 * Observation: when sk_common_release is called, processes have 3718 * no access to socket. But net still has. 3719 * Step one, detach it from networking: 3720 * 3721 * A. Remove from hash tables. 3722 */ 3723 3724 sk->sk_prot->unhash(sk); 3725 3726 /* 3727 * In this point socket cannot receive new packets, but it is possible 3728 * that some packets are in flight because some CPU runs receiver and 3729 * did hash table lookup before we unhashed socket. They will achieve 3730 * receive queue and will be purged by socket destructor. 3731 * 3732 * Also we still have packets pending on receive queue and probably, 3733 * our own packets waiting in device queues. sock_destroy will drain 3734 * receive queue, but transmitted packets will delay socket destruction 3735 * until the last reference will be released. 3736 */ 3737 3738 sock_orphan(sk); 3739 3740 xfrm_sk_free_policy(sk); 3741 3742 sock_put(sk); 3743 } 3744 EXPORT_SYMBOL(sk_common_release); 3745 3746 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3747 { 3748 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3749 3750 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3751 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3752 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3753 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3754 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3755 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3756 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3757 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3758 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3759 } 3760 3761 #ifdef CONFIG_PROC_FS 3762 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3763 3764 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3765 { 3766 int cpu, idx = prot->inuse_idx; 3767 int res = 0; 3768 3769 for_each_possible_cpu(cpu) 3770 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3771 3772 return res >= 0 ? res : 0; 3773 } 3774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3775 3776 int sock_inuse_get(struct net *net) 3777 { 3778 int cpu, res = 0; 3779 3780 for_each_possible_cpu(cpu) 3781 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3782 3783 return res; 3784 } 3785 3786 EXPORT_SYMBOL_GPL(sock_inuse_get); 3787 3788 static int __net_init sock_inuse_init_net(struct net *net) 3789 { 3790 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3791 if (net->core.prot_inuse == NULL) 3792 return -ENOMEM; 3793 return 0; 3794 } 3795 3796 static void __net_exit sock_inuse_exit_net(struct net *net) 3797 { 3798 free_percpu(net->core.prot_inuse); 3799 } 3800 3801 static struct pernet_operations net_inuse_ops = { 3802 .init = sock_inuse_init_net, 3803 .exit = sock_inuse_exit_net, 3804 }; 3805 3806 static __init int net_inuse_init(void) 3807 { 3808 if (register_pernet_subsys(&net_inuse_ops)) 3809 panic("Cannot initialize net inuse counters"); 3810 3811 return 0; 3812 } 3813 3814 core_initcall(net_inuse_init); 3815 3816 static int assign_proto_idx(struct proto *prot) 3817 { 3818 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3819 3820 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3821 pr_err("PROTO_INUSE_NR exhausted\n"); 3822 return -ENOSPC; 3823 } 3824 3825 set_bit(prot->inuse_idx, proto_inuse_idx); 3826 return 0; 3827 } 3828 3829 static void release_proto_idx(struct proto *prot) 3830 { 3831 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3832 clear_bit(prot->inuse_idx, proto_inuse_idx); 3833 } 3834 #else 3835 static inline int assign_proto_idx(struct proto *prot) 3836 { 3837 return 0; 3838 } 3839 3840 static inline void release_proto_idx(struct proto *prot) 3841 { 3842 } 3843 3844 #endif 3845 3846 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3847 { 3848 if (!twsk_prot) 3849 return; 3850 kfree(twsk_prot->twsk_slab_name); 3851 twsk_prot->twsk_slab_name = NULL; 3852 kmem_cache_destroy(twsk_prot->twsk_slab); 3853 twsk_prot->twsk_slab = NULL; 3854 } 3855 3856 static int tw_prot_init(const struct proto *prot) 3857 { 3858 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3859 3860 if (!twsk_prot) 3861 return 0; 3862 3863 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3864 prot->name); 3865 if (!twsk_prot->twsk_slab_name) 3866 return -ENOMEM; 3867 3868 twsk_prot->twsk_slab = 3869 kmem_cache_create(twsk_prot->twsk_slab_name, 3870 twsk_prot->twsk_obj_size, 0, 3871 SLAB_ACCOUNT | prot->slab_flags, 3872 NULL); 3873 if (!twsk_prot->twsk_slab) { 3874 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3875 prot->name); 3876 return -ENOMEM; 3877 } 3878 3879 return 0; 3880 } 3881 3882 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3883 { 3884 if (!rsk_prot) 3885 return; 3886 kfree(rsk_prot->slab_name); 3887 rsk_prot->slab_name = NULL; 3888 kmem_cache_destroy(rsk_prot->slab); 3889 rsk_prot->slab = NULL; 3890 } 3891 3892 static int req_prot_init(const struct proto *prot) 3893 { 3894 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3895 3896 if (!rsk_prot) 3897 return 0; 3898 3899 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3900 prot->name); 3901 if (!rsk_prot->slab_name) 3902 return -ENOMEM; 3903 3904 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3905 rsk_prot->obj_size, 0, 3906 SLAB_ACCOUNT | prot->slab_flags, 3907 NULL); 3908 3909 if (!rsk_prot->slab) { 3910 pr_crit("%s: Can't create request sock SLAB cache!\n", 3911 prot->name); 3912 return -ENOMEM; 3913 } 3914 return 0; 3915 } 3916 3917 int proto_register(struct proto *prot, int alloc_slab) 3918 { 3919 int ret = -ENOBUFS; 3920 3921 if (prot->memory_allocated && !prot->sysctl_mem) { 3922 pr_err("%s: missing sysctl_mem\n", prot->name); 3923 return -EINVAL; 3924 } 3925 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3926 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3927 return -EINVAL; 3928 } 3929 if (alloc_slab) { 3930 prot->slab = kmem_cache_create_usercopy(prot->name, 3931 prot->obj_size, 0, 3932 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3933 prot->slab_flags, 3934 prot->useroffset, prot->usersize, 3935 NULL); 3936 3937 if (prot->slab == NULL) { 3938 pr_crit("%s: Can't create sock SLAB cache!\n", 3939 prot->name); 3940 goto out; 3941 } 3942 3943 if (req_prot_init(prot)) 3944 goto out_free_request_sock_slab; 3945 3946 if (tw_prot_init(prot)) 3947 goto out_free_timewait_sock_slab; 3948 } 3949 3950 mutex_lock(&proto_list_mutex); 3951 ret = assign_proto_idx(prot); 3952 if (ret) { 3953 mutex_unlock(&proto_list_mutex); 3954 goto out_free_timewait_sock_slab; 3955 } 3956 list_add(&prot->node, &proto_list); 3957 mutex_unlock(&proto_list_mutex); 3958 return ret; 3959 3960 out_free_timewait_sock_slab: 3961 if (alloc_slab) 3962 tw_prot_cleanup(prot->twsk_prot); 3963 out_free_request_sock_slab: 3964 if (alloc_slab) { 3965 req_prot_cleanup(prot->rsk_prot); 3966 3967 kmem_cache_destroy(prot->slab); 3968 prot->slab = NULL; 3969 } 3970 out: 3971 return ret; 3972 } 3973 EXPORT_SYMBOL(proto_register); 3974 3975 void proto_unregister(struct proto *prot) 3976 { 3977 mutex_lock(&proto_list_mutex); 3978 release_proto_idx(prot); 3979 list_del(&prot->node); 3980 mutex_unlock(&proto_list_mutex); 3981 3982 kmem_cache_destroy(prot->slab); 3983 prot->slab = NULL; 3984 3985 req_prot_cleanup(prot->rsk_prot); 3986 tw_prot_cleanup(prot->twsk_prot); 3987 } 3988 EXPORT_SYMBOL(proto_unregister); 3989 3990 int sock_load_diag_module(int family, int protocol) 3991 { 3992 if (!protocol) { 3993 if (!sock_is_registered(family)) 3994 return -ENOENT; 3995 3996 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3997 NETLINK_SOCK_DIAG, family); 3998 } 3999 4000 #ifdef CONFIG_INET 4001 if (family == AF_INET && 4002 protocol != IPPROTO_RAW && 4003 protocol < MAX_INET_PROTOS && 4004 !rcu_access_pointer(inet_protos[protocol])) 4005 return -ENOENT; 4006 #endif 4007 4008 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4009 NETLINK_SOCK_DIAG, family, protocol); 4010 } 4011 EXPORT_SYMBOL(sock_load_diag_module); 4012 4013 #ifdef CONFIG_PROC_FS 4014 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4015 __acquires(proto_list_mutex) 4016 { 4017 mutex_lock(&proto_list_mutex); 4018 return seq_list_start_head(&proto_list, *pos); 4019 } 4020 4021 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4022 { 4023 return seq_list_next(v, &proto_list, pos); 4024 } 4025 4026 static void proto_seq_stop(struct seq_file *seq, void *v) 4027 __releases(proto_list_mutex) 4028 { 4029 mutex_unlock(&proto_list_mutex); 4030 } 4031 4032 static char proto_method_implemented(const void *method) 4033 { 4034 return method == NULL ? 'n' : 'y'; 4035 } 4036 static long sock_prot_memory_allocated(struct proto *proto) 4037 { 4038 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4039 } 4040 4041 static const char *sock_prot_memory_pressure(struct proto *proto) 4042 { 4043 return proto->memory_pressure != NULL ? 4044 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4045 } 4046 4047 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4048 { 4049 4050 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4051 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4052 proto->name, 4053 proto->obj_size, 4054 sock_prot_inuse_get(seq_file_net(seq), proto), 4055 sock_prot_memory_allocated(proto), 4056 sock_prot_memory_pressure(proto), 4057 proto->max_header, 4058 proto->slab == NULL ? "no" : "yes", 4059 module_name(proto->owner), 4060 proto_method_implemented(proto->close), 4061 proto_method_implemented(proto->connect), 4062 proto_method_implemented(proto->disconnect), 4063 proto_method_implemented(proto->accept), 4064 proto_method_implemented(proto->ioctl), 4065 proto_method_implemented(proto->init), 4066 proto_method_implemented(proto->destroy), 4067 proto_method_implemented(proto->shutdown), 4068 proto_method_implemented(proto->setsockopt), 4069 proto_method_implemented(proto->getsockopt), 4070 proto_method_implemented(proto->sendmsg), 4071 proto_method_implemented(proto->recvmsg), 4072 proto_method_implemented(proto->bind), 4073 proto_method_implemented(proto->backlog_rcv), 4074 proto_method_implemented(proto->hash), 4075 proto_method_implemented(proto->unhash), 4076 proto_method_implemented(proto->get_port), 4077 proto_method_implemented(proto->enter_memory_pressure)); 4078 } 4079 4080 static int proto_seq_show(struct seq_file *seq, void *v) 4081 { 4082 if (v == &proto_list) 4083 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4084 "protocol", 4085 "size", 4086 "sockets", 4087 "memory", 4088 "press", 4089 "maxhdr", 4090 "slab", 4091 "module", 4092 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4093 else 4094 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4095 return 0; 4096 } 4097 4098 static const struct seq_operations proto_seq_ops = { 4099 .start = proto_seq_start, 4100 .next = proto_seq_next, 4101 .stop = proto_seq_stop, 4102 .show = proto_seq_show, 4103 }; 4104 4105 static __net_init int proto_init_net(struct net *net) 4106 { 4107 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4108 sizeof(struct seq_net_private))) 4109 return -ENOMEM; 4110 4111 return 0; 4112 } 4113 4114 static __net_exit void proto_exit_net(struct net *net) 4115 { 4116 remove_proc_entry("protocols", net->proc_net); 4117 } 4118 4119 4120 static __net_initdata struct pernet_operations proto_net_ops = { 4121 .init = proto_init_net, 4122 .exit = proto_exit_net, 4123 }; 4124 4125 static int __init proto_init(void) 4126 { 4127 return register_pernet_subsys(&proto_net_ops); 4128 } 4129 4130 subsys_initcall(proto_init); 4131 4132 #endif /* PROC_FS */ 4133 4134 #ifdef CONFIG_NET_RX_BUSY_POLL 4135 bool sk_busy_loop_end(void *p, unsigned long start_time) 4136 { 4137 struct sock *sk = p; 4138 4139 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4140 sk_busy_loop_timeout(sk, start_time); 4141 } 4142 EXPORT_SYMBOL(sk_busy_loop_end); 4143 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4144 4145 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4146 { 4147 if (!sk->sk_prot->bind_add) 4148 return -EOPNOTSUPP; 4149 return sk->sk_prot->bind_add(sk, addr, addr_len); 4150 } 4151 EXPORT_SYMBOL(sock_bind_add); 4152 4153 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4154 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4155 void __user *arg, void *karg, size_t size) 4156 { 4157 int ret; 4158 4159 if (copy_from_user(karg, arg, size)) 4160 return -EFAULT; 4161 4162 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4163 if (ret) 4164 return ret; 4165 4166 if (copy_to_user(arg, karg, size)) 4167 return -EFAULT; 4168 4169 return 0; 4170 } 4171 EXPORT_SYMBOL(sock_ioctl_inout); 4172 4173 /* This is the most common ioctl prep function, where the result (4 bytes) is 4174 * copied back to userspace if the ioctl() returns successfully. No input is 4175 * copied from userspace as input argument. 4176 */ 4177 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4178 { 4179 int ret, karg = 0; 4180 4181 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4182 if (ret) 4183 return ret; 4184 4185 return put_user(karg, (int __user *)arg); 4186 } 4187 4188 /* A wrapper around sock ioctls, which copies the data from userspace 4189 * (depending on the protocol/ioctl), and copies back the result to userspace. 4190 * The main motivation for this function is to pass kernel memory to the 4191 * protocol ioctl callbacks, instead of userspace memory. 4192 */ 4193 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4194 { 4195 int rc = 1; 4196 4197 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4198 rc = ipmr_sk_ioctl(sk, cmd, arg); 4199 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4200 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4201 else if (sk_is_phonet(sk)) 4202 rc = phonet_sk_ioctl(sk, cmd, arg); 4203 4204 /* If ioctl was processed, returns its value */ 4205 if (rc <= 0) 4206 return rc; 4207 4208 /* Otherwise call the default handler */ 4209 return sock_ioctl_out(sk, cmd, arg); 4210 } 4211 EXPORT_SYMBOL(sk_ioctl); 4212