xref: /openbmc/linux/net/core/sock.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 #include <linux/mroute.h>
118 #include <linux/mroute6.h>
119 #include <linux/icmpv6.h>
120 
121 #include <linux/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 #include <net/bpf_sk_storage.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 #include <net/phonet/phonet.h>
145 
146 #include <linux/ethtool.h>
147 
148 #include "dev.h"
149 
150 static DEFINE_MUTEX(proto_list_mutex);
151 static LIST_HEAD(proto_list);
152 
153 static void sock_def_write_space_wfree(struct sock *sk);
154 static void sock_def_write_space(struct sock *sk);
155 
156 /**
157  * sk_ns_capable - General socket capability test
158  * @sk: Socket to use a capability on or through
159  * @user_ns: The user namespace of the capability to use
160  * @cap: The capability to use
161  *
162  * Test to see if the opener of the socket had when the socket was
163  * created and the current process has the capability @cap in the user
164  * namespace @user_ns.
165  */
166 bool sk_ns_capable(const struct sock *sk,
167 		   struct user_namespace *user_ns, int cap)
168 {
169 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
170 		ns_capable(user_ns, cap);
171 }
172 EXPORT_SYMBOL(sk_ns_capable);
173 
174 /**
175  * sk_capable - Socket global capability test
176  * @sk: Socket to use a capability on or through
177  * @cap: The global capability to use
178  *
179  * Test to see if the opener of the socket had when the socket was
180  * created and the current process has the capability @cap in all user
181  * namespaces.
182  */
183 bool sk_capable(const struct sock *sk, int cap)
184 {
185 	return sk_ns_capable(sk, &init_user_ns, cap);
186 }
187 EXPORT_SYMBOL(sk_capable);
188 
189 /**
190  * sk_net_capable - Network namespace socket capability test
191  * @sk: Socket to use a capability on or through
192  * @cap: The capability to use
193  *
194  * Test to see if the opener of the socket had when the socket was created
195  * and the current process has the capability @cap over the network namespace
196  * the socket is a member of.
197  */
198 bool sk_net_capable(const struct sock *sk, int cap)
199 {
200 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
201 }
202 EXPORT_SYMBOL(sk_net_capable);
203 
204 /*
205  * Each address family might have different locking rules, so we have
206  * one slock key per address family and separate keys for internal and
207  * userspace sockets.
208  */
209 static struct lock_class_key af_family_keys[AF_MAX];
210 static struct lock_class_key af_family_kern_keys[AF_MAX];
211 static struct lock_class_key af_family_slock_keys[AF_MAX];
212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
213 
214 /*
215  * Make lock validator output more readable. (we pre-construct these
216  * strings build-time, so that runtime initialization of socket
217  * locks is fast):
218  */
219 
220 #define _sock_locks(x)						  \
221   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
222   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
223   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
224   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
225   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
226   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
227   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
228   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
229   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
230   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
231   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
232   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
233   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
234   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
235   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
236   x "AF_MCTP"  , \
237   x "AF_MAX"
238 
239 static const char *const af_family_key_strings[AF_MAX+1] = {
240 	_sock_locks("sk_lock-")
241 };
242 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("slock-")
244 };
245 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("clock-")
247 };
248 
249 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
250 	_sock_locks("k-sk_lock-")
251 };
252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
253 	_sock_locks("k-slock-")
254 };
255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
256 	_sock_locks("k-clock-")
257 };
258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
259 	_sock_locks("rlock-")
260 };
261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
262 	_sock_locks("wlock-")
263 };
264 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
265 	_sock_locks("elock-")
266 };
267 
268 /*
269  * sk_callback_lock and sk queues locking rules are per-address-family,
270  * so split the lock classes by using a per-AF key:
271  */
272 static struct lock_class_key af_callback_keys[AF_MAX];
273 static struct lock_class_key af_rlock_keys[AF_MAX];
274 static struct lock_class_key af_wlock_keys[AF_MAX];
275 static struct lock_class_key af_elock_keys[AF_MAX];
276 static struct lock_class_key af_kern_callback_keys[AF_MAX];
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
293 EXPORT_SYMBOL_GPL(memalloc_socks_key);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_branch_inc(&memalloc_socks_key);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_branch_dec(&memalloc_socks_key);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned int noreclaim_flag;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	noreclaim_flag = memalloc_noreclaim_save();
337 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
338 				 tcp_v6_do_rcv,
339 				 tcp_v4_do_rcv,
340 				 sk, skb);
341 	memalloc_noreclaim_restore(noreclaim_flag);
342 
343 	return ret;
344 }
345 EXPORT_SYMBOL(__sk_backlog_rcv);
346 
347 void sk_error_report(struct sock *sk)
348 {
349 	sk->sk_error_report(sk);
350 
351 	switch (sk->sk_family) {
352 	case AF_INET:
353 		fallthrough;
354 	case AF_INET6:
355 		trace_inet_sk_error_report(sk);
356 		break;
357 	default:
358 		break;
359 	}
360 }
361 EXPORT_SYMBOL(sk_error_report);
362 
363 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
364 {
365 	struct __kernel_sock_timeval tv;
366 
367 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
368 		tv.tv_sec = 0;
369 		tv.tv_usec = 0;
370 	} else {
371 		tv.tv_sec = timeo / HZ;
372 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
373 	}
374 
375 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
376 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
377 		*(struct old_timeval32 *)optval = tv32;
378 		return sizeof(tv32);
379 	}
380 
381 	if (old_timeval) {
382 		struct __kernel_old_timeval old_tv;
383 		old_tv.tv_sec = tv.tv_sec;
384 		old_tv.tv_usec = tv.tv_usec;
385 		*(struct __kernel_old_timeval *)optval = old_tv;
386 		return sizeof(old_tv);
387 	}
388 
389 	*(struct __kernel_sock_timeval *)optval = tv;
390 	return sizeof(tv);
391 }
392 EXPORT_SYMBOL(sock_get_timeout);
393 
394 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
395 			   sockptr_t optval, int optlen, bool old_timeval)
396 {
397 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
398 		struct old_timeval32 tv32;
399 
400 		if (optlen < sizeof(tv32))
401 			return -EINVAL;
402 
403 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
404 			return -EFAULT;
405 		tv->tv_sec = tv32.tv_sec;
406 		tv->tv_usec = tv32.tv_usec;
407 	} else if (old_timeval) {
408 		struct __kernel_old_timeval old_tv;
409 
410 		if (optlen < sizeof(old_tv))
411 			return -EINVAL;
412 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
413 			return -EFAULT;
414 		tv->tv_sec = old_tv.tv_sec;
415 		tv->tv_usec = old_tv.tv_usec;
416 	} else {
417 		if (optlen < sizeof(*tv))
418 			return -EINVAL;
419 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
420 			return -EFAULT;
421 	}
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(sock_copy_user_timeval);
426 
427 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
428 			    bool old_timeval)
429 {
430 	struct __kernel_sock_timeval tv;
431 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
432 	long val;
433 
434 	if (err)
435 		return err;
436 
437 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
438 		return -EDOM;
439 
440 	if (tv.tv_sec < 0) {
441 		static int warned __read_mostly;
442 
443 		WRITE_ONCE(*timeo_p, 0);
444 		if (warned < 10 && net_ratelimit()) {
445 			warned++;
446 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
447 				__func__, current->comm, task_pid_nr(current));
448 		}
449 		return 0;
450 	}
451 	val = MAX_SCHEDULE_TIMEOUT;
452 	if ((tv.tv_sec || tv.tv_usec) &&
453 	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
454 		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
455 						    USEC_PER_SEC / HZ);
456 	WRITE_ONCE(*timeo_p, val);
457 	return 0;
458 }
459 
460 static bool sock_needs_netstamp(const struct sock *sk)
461 {
462 	switch (sk->sk_family) {
463 	case AF_UNSPEC:
464 	case AF_UNIX:
465 		return false;
466 	default:
467 		return true;
468 	}
469 }
470 
471 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
472 {
473 	if (sk->sk_flags & flags) {
474 		sk->sk_flags &= ~flags;
475 		if (sock_needs_netstamp(sk) &&
476 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
477 			net_disable_timestamp();
478 	}
479 }
480 
481 
482 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
483 {
484 	unsigned long flags;
485 	struct sk_buff_head *list = &sk->sk_receive_queue;
486 
487 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
488 		atomic_inc(&sk->sk_drops);
489 		trace_sock_rcvqueue_full(sk, skb);
490 		return -ENOMEM;
491 	}
492 
493 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
494 		atomic_inc(&sk->sk_drops);
495 		return -ENOBUFS;
496 	}
497 
498 	skb->dev = NULL;
499 	skb_set_owner_r(skb, sk);
500 
501 	/* we escape from rcu protected region, make sure we dont leak
502 	 * a norefcounted dst
503 	 */
504 	skb_dst_force(skb);
505 
506 	spin_lock_irqsave(&list->lock, flags);
507 	sock_skb_set_dropcount(sk, skb);
508 	__skb_queue_tail(list, skb);
509 	spin_unlock_irqrestore(&list->lock, flags);
510 
511 	if (!sock_flag(sk, SOCK_DEAD))
512 		sk->sk_data_ready(sk);
513 	return 0;
514 }
515 EXPORT_SYMBOL(__sock_queue_rcv_skb);
516 
517 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
518 			      enum skb_drop_reason *reason)
519 {
520 	enum skb_drop_reason drop_reason;
521 	int err;
522 
523 	err = sk_filter(sk, skb);
524 	if (err) {
525 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
526 		goto out;
527 	}
528 	err = __sock_queue_rcv_skb(sk, skb);
529 	switch (err) {
530 	case -ENOMEM:
531 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
532 		break;
533 	case -ENOBUFS:
534 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
535 		break;
536 	default:
537 		drop_reason = SKB_NOT_DROPPED_YET;
538 		break;
539 	}
540 out:
541 	if (reason)
542 		*reason = drop_reason;
543 	return err;
544 }
545 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
546 
547 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
548 		     const int nested, unsigned int trim_cap, bool refcounted)
549 {
550 	int rc = NET_RX_SUCCESS;
551 
552 	if (sk_filter_trim_cap(sk, skb, trim_cap))
553 		goto discard_and_relse;
554 
555 	skb->dev = NULL;
556 
557 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
558 		atomic_inc(&sk->sk_drops);
559 		goto discard_and_relse;
560 	}
561 	if (nested)
562 		bh_lock_sock_nested(sk);
563 	else
564 		bh_lock_sock(sk);
565 	if (!sock_owned_by_user(sk)) {
566 		/*
567 		 * trylock + unlock semantics:
568 		 */
569 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
570 
571 		rc = sk_backlog_rcv(sk, skb);
572 
573 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
574 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
575 		bh_unlock_sock(sk);
576 		atomic_inc(&sk->sk_drops);
577 		goto discard_and_relse;
578 	}
579 
580 	bh_unlock_sock(sk);
581 out:
582 	if (refcounted)
583 		sock_put(sk);
584 	return rc;
585 discard_and_relse:
586 	kfree_skb(skb);
587 	goto out;
588 }
589 EXPORT_SYMBOL(__sk_receive_skb);
590 
591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
592 							  u32));
593 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
594 							   u32));
595 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
596 {
597 	struct dst_entry *dst = __sk_dst_get(sk);
598 
599 	if (dst && dst->obsolete &&
600 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
601 			       dst, cookie) == NULL) {
602 		sk_tx_queue_clear(sk);
603 		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
604 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
605 		dst_release(dst);
606 		return NULL;
607 	}
608 
609 	return dst;
610 }
611 EXPORT_SYMBOL(__sk_dst_check);
612 
613 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
614 {
615 	struct dst_entry *dst = sk_dst_get(sk);
616 
617 	if (dst && dst->obsolete &&
618 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
619 			       dst, cookie) == NULL) {
620 		sk_dst_reset(sk);
621 		dst_release(dst);
622 		return NULL;
623 	}
624 
625 	return dst;
626 }
627 EXPORT_SYMBOL(sk_dst_check);
628 
629 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
630 {
631 	int ret = -ENOPROTOOPT;
632 #ifdef CONFIG_NETDEVICES
633 	struct net *net = sock_net(sk);
634 
635 	/* Sorry... */
636 	ret = -EPERM;
637 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
638 		goto out;
639 
640 	ret = -EINVAL;
641 	if (ifindex < 0)
642 		goto out;
643 
644 	/* Paired with all READ_ONCE() done locklessly. */
645 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
646 
647 	if (sk->sk_prot->rehash)
648 		sk->sk_prot->rehash(sk);
649 	sk_dst_reset(sk);
650 
651 	ret = 0;
652 
653 out:
654 #endif
655 
656 	return ret;
657 }
658 
659 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
660 {
661 	int ret;
662 
663 	if (lock_sk)
664 		lock_sock(sk);
665 	ret = sock_bindtoindex_locked(sk, ifindex);
666 	if (lock_sk)
667 		release_sock(sk);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(sock_bindtoindex);
672 
673 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
674 {
675 	int ret = -ENOPROTOOPT;
676 #ifdef CONFIG_NETDEVICES
677 	struct net *net = sock_net(sk);
678 	char devname[IFNAMSIZ];
679 	int index;
680 
681 	ret = -EINVAL;
682 	if (optlen < 0)
683 		goto out;
684 
685 	/* Bind this socket to a particular device like "eth0",
686 	 * as specified in the passed interface name. If the
687 	 * name is "" or the option length is zero the socket
688 	 * is not bound.
689 	 */
690 	if (optlen > IFNAMSIZ - 1)
691 		optlen = IFNAMSIZ - 1;
692 	memset(devname, 0, sizeof(devname));
693 
694 	ret = -EFAULT;
695 	if (copy_from_sockptr(devname, optval, optlen))
696 		goto out;
697 
698 	index = 0;
699 	if (devname[0] != '\0') {
700 		struct net_device *dev;
701 
702 		rcu_read_lock();
703 		dev = dev_get_by_name_rcu(net, devname);
704 		if (dev)
705 			index = dev->ifindex;
706 		rcu_read_unlock();
707 		ret = -ENODEV;
708 		if (!dev)
709 			goto out;
710 	}
711 
712 	sockopt_lock_sock(sk);
713 	ret = sock_bindtoindex_locked(sk, index);
714 	sockopt_release_sock(sk);
715 out:
716 #endif
717 
718 	return ret;
719 }
720 
721 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
722 				sockptr_t optlen, int len)
723 {
724 	int ret = -ENOPROTOOPT;
725 #ifdef CONFIG_NETDEVICES
726 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
727 	struct net *net = sock_net(sk);
728 	char devname[IFNAMSIZ];
729 
730 	if (bound_dev_if == 0) {
731 		len = 0;
732 		goto zero;
733 	}
734 
735 	ret = -EINVAL;
736 	if (len < IFNAMSIZ)
737 		goto out;
738 
739 	ret = netdev_get_name(net, devname, bound_dev_if);
740 	if (ret)
741 		goto out;
742 
743 	len = strlen(devname) + 1;
744 
745 	ret = -EFAULT;
746 	if (copy_to_sockptr(optval, devname, len))
747 		goto out;
748 
749 zero:
750 	ret = -EFAULT;
751 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
752 		goto out;
753 
754 	ret = 0;
755 
756 out:
757 #endif
758 
759 	return ret;
760 }
761 
762 bool sk_mc_loop(struct sock *sk)
763 {
764 	if (dev_recursion_level())
765 		return false;
766 	if (!sk)
767 		return true;
768 	/* IPV6_ADDRFORM can change sk->sk_family under us. */
769 	switch (READ_ONCE(sk->sk_family)) {
770 	case AF_INET:
771 		return inet_test_bit(MC_LOOP, sk);
772 #if IS_ENABLED(CONFIG_IPV6)
773 	case AF_INET6:
774 		return inet6_sk(sk)->mc_loop;
775 #endif
776 	}
777 	WARN_ON_ONCE(1);
778 	return true;
779 }
780 EXPORT_SYMBOL(sk_mc_loop);
781 
782 void sock_set_reuseaddr(struct sock *sk)
783 {
784 	lock_sock(sk);
785 	sk->sk_reuse = SK_CAN_REUSE;
786 	release_sock(sk);
787 }
788 EXPORT_SYMBOL(sock_set_reuseaddr);
789 
790 void sock_set_reuseport(struct sock *sk)
791 {
792 	lock_sock(sk);
793 	sk->sk_reuseport = true;
794 	release_sock(sk);
795 }
796 EXPORT_SYMBOL(sock_set_reuseport);
797 
798 void sock_no_linger(struct sock *sk)
799 {
800 	lock_sock(sk);
801 	WRITE_ONCE(sk->sk_lingertime, 0);
802 	sock_set_flag(sk, SOCK_LINGER);
803 	release_sock(sk);
804 }
805 EXPORT_SYMBOL(sock_no_linger);
806 
807 void sock_set_priority(struct sock *sk, u32 priority)
808 {
809 	lock_sock(sk);
810 	WRITE_ONCE(sk->sk_priority, priority);
811 	release_sock(sk);
812 }
813 EXPORT_SYMBOL(sock_set_priority);
814 
815 void sock_set_sndtimeo(struct sock *sk, s64 secs)
816 {
817 	lock_sock(sk);
818 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
819 		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
820 	else
821 		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
822 	release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_sndtimeo);
825 
826 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
827 {
828 	if (val)  {
829 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
830 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
831 		sock_set_flag(sk, SOCK_RCVTSTAMP);
832 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
833 	} else {
834 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
835 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
836 	}
837 }
838 
839 void sock_enable_timestamps(struct sock *sk)
840 {
841 	lock_sock(sk);
842 	__sock_set_timestamps(sk, true, false, true);
843 	release_sock(sk);
844 }
845 EXPORT_SYMBOL(sock_enable_timestamps);
846 
847 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
848 {
849 	switch (optname) {
850 	case SO_TIMESTAMP_OLD:
851 		__sock_set_timestamps(sk, valbool, false, false);
852 		break;
853 	case SO_TIMESTAMP_NEW:
854 		__sock_set_timestamps(sk, valbool, true, false);
855 		break;
856 	case SO_TIMESTAMPNS_OLD:
857 		__sock_set_timestamps(sk, valbool, false, true);
858 		break;
859 	case SO_TIMESTAMPNS_NEW:
860 		__sock_set_timestamps(sk, valbool, true, true);
861 		break;
862 	}
863 }
864 
865 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
866 {
867 	struct net *net = sock_net(sk);
868 	struct net_device *dev = NULL;
869 	bool match = false;
870 	int *vclock_index;
871 	int i, num;
872 
873 	if (sk->sk_bound_dev_if)
874 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
875 
876 	if (!dev) {
877 		pr_err("%s: sock not bind to device\n", __func__);
878 		return -EOPNOTSUPP;
879 	}
880 
881 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
882 	dev_put(dev);
883 
884 	for (i = 0; i < num; i++) {
885 		if (*(vclock_index + i) == phc_index) {
886 			match = true;
887 			break;
888 		}
889 	}
890 
891 	if (num > 0)
892 		kfree(vclock_index);
893 
894 	if (!match)
895 		return -EINVAL;
896 
897 	WRITE_ONCE(sk->sk_bind_phc, phc_index);
898 
899 	return 0;
900 }
901 
902 int sock_set_timestamping(struct sock *sk, int optname,
903 			  struct so_timestamping timestamping)
904 {
905 	int val = timestamping.flags;
906 	int ret;
907 
908 	if (val & ~SOF_TIMESTAMPING_MASK)
909 		return -EINVAL;
910 
911 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
912 	    !(val & SOF_TIMESTAMPING_OPT_ID))
913 		return -EINVAL;
914 
915 	if (val & SOF_TIMESTAMPING_OPT_ID &&
916 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
917 		if (sk_is_tcp(sk)) {
918 			if ((1 << sk->sk_state) &
919 			    (TCPF_CLOSE | TCPF_LISTEN))
920 				return -EINVAL;
921 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
922 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
923 			else
924 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
925 		} else {
926 			atomic_set(&sk->sk_tskey, 0);
927 		}
928 	}
929 
930 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
931 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
932 		return -EINVAL;
933 
934 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
935 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
936 		if (ret)
937 			return ret;
938 	}
939 
940 	WRITE_ONCE(sk->sk_tsflags, val);
941 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
942 
943 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
944 		sock_enable_timestamp(sk,
945 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
946 	else
947 		sock_disable_timestamp(sk,
948 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
949 	return 0;
950 }
951 
952 void sock_set_keepalive(struct sock *sk)
953 {
954 	lock_sock(sk);
955 	if (sk->sk_prot->keepalive)
956 		sk->sk_prot->keepalive(sk, true);
957 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
958 	release_sock(sk);
959 }
960 EXPORT_SYMBOL(sock_set_keepalive);
961 
962 static void __sock_set_rcvbuf(struct sock *sk, int val)
963 {
964 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
965 	 * as a negative value.
966 	 */
967 	val = min_t(int, val, INT_MAX / 2);
968 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
969 
970 	/* We double it on the way in to account for "struct sk_buff" etc.
971 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
972 	 * will allow that much actual data to be received on that socket.
973 	 *
974 	 * Applications are unaware that "struct sk_buff" and other overheads
975 	 * allocate from the receive buffer during socket buffer allocation.
976 	 *
977 	 * And after considering the possible alternatives, returning the value
978 	 * we actually used in getsockopt is the most desirable behavior.
979 	 */
980 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
981 }
982 
983 void sock_set_rcvbuf(struct sock *sk, int val)
984 {
985 	lock_sock(sk);
986 	__sock_set_rcvbuf(sk, val);
987 	release_sock(sk);
988 }
989 EXPORT_SYMBOL(sock_set_rcvbuf);
990 
991 static void __sock_set_mark(struct sock *sk, u32 val)
992 {
993 	if (val != sk->sk_mark) {
994 		WRITE_ONCE(sk->sk_mark, val);
995 		sk_dst_reset(sk);
996 	}
997 }
998 
999 void sock_set_mark(struct sock *sk, u32 val)
1000 {
1001 	lock_sock(sk);
1002 	__sock_set_mark(sk, val);
1003 	release_sock(sk);
1004 }
1005 EXPORT_SYMBOL(sock_set_mark);
1006 
1007 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1008 {
1009 	/* Round down bytes to multiple of pages */
1010 	bytes = round_down(bytes, PAGE_SIZE);
1011 
1012 	WARN_ON(bytes > sk->sk_reserved_mem);
1013 	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1014 	sk_mem_reclaim(sk);
1015 }
1016 
1017 static int sock_reserve_memory(struct sock *sk, int bytes)
1018 {
1019 	long allocated;
1020 	bool charged;
1021 	int pages;
1022 
1023 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1024 		return -EOPNOTSUPP;
1025 
1026 	if (!bytes)
1027 		return 0;
1028 
1029 	pages = sk_mem_pages(bytes);
1030 
1031 	/* pre-charge to memcg */
1032 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1033 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1034 	if (!charged)
1035 		return -ENOMEM;
1036 
1037 	/* pre-charge to forward_alloc */
1038 	sk_memory_allocated_add(sk, pages);
1039 	allocated = sk_memory_allocated(sk);
1040 	/* If the system goes into memory pressure with this
1041 	 * precharge, give up and return error.
1042 	 */
1043 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1044 		sk_memory_allocated_sub(sk, pages);
1045 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1046 		return -ENOMEM;
1047 	}
1048 	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1049 
1050 	WRITE_ONCE(sk->sk_reserved_mem,
1051 		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1052 
1053 	return 0;
1054 }
1055 
1056 void sockopt_lock_sock(struct sock *sk)
1057 {
1058 	/* When current->bpf_ctx is set, the setsockopt is called from
1059 	 * a bpf prog.  bpf has ensured the sk lock has been
1060 	 * acquired before calling setsockopt().
1061 	 */
1062 	if (has_current_bpf_ctx())
1063 		return;
1064 
1065 	lock_sock(sk);
1066 }
1067 EXPORT_SYMBOL(sockopt_lock_sock);
1068 
1069 void sockopt_release_sock(struct sock *sk)
1070 {
1071 	if (has_current_bpf_ctx())
1072 		return;
1073 
1074 	release_sock(sk);
1075 }
1076 EXPORT_SYMBOL(sockopt_release_sock);
1077 
1078 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1079 {
1080 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1081 }
1082 EXPORT_SYMBOL(sockopt_ns_capable);
1083 
1084 bool sockopt_capable(int cap)
1085 {
1086 	return has_current_bpf_ctx() || capable(cap);
1087 }
1088 EXPORT_SYMBOL(sockopt_capable);
1089 
1090 /*
1091  *	This is meant for all protocols to use and covers goings on
1092  *	at the socket level. Everything here is generic.
1093  */
1094 
1095 int sk_setsockopt(struct sock *sk, int level, int optname,
1096 		  sockptr_t optval, unsigned int optlen)
1097 {
1098 	struct so_timestamping timestamping;
1099 	struct socket *sock = sk->sk_socket;
1100 	struct sock_txtime sk_txtime;
1101 	int val;
1102 	int valbool;
1103 	struct linger ling;
1104 	int ret = 0;
1105 
1106 	/*
1107 	 *	Options without arguments
1108 	 */
1109 
1110 	if (optname == SO_BINDTODEVICE)
1111 		return sock_setbindtodevice(sk, optval, optlen);
1112 
1113 	if (optlen < sizeof(int))
1114 		return -EINVAL;
1115 
1116 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1117 		return -EFAULT;
1118 
1119 	valbool = val ? 1 : 0;
1120 
1121 	sockopt_lock_sock(sk);
1122 
1123 	switch (optname) {
1124 	case SO_DEBUG:
1125 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1126 			ret = -EACCES;
1127 		else
1128 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1129 		break;
1130 	case SO_REUSEADDR:
1131 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1132 		break;
1133 	case SO_REUSEPORT:
1134 		sk->sk_reuseport = valbool;
1135 		break;
1136 	case SO_TYPE:
1137 	case SO_PROTOCOL:
1138 	case SO_DOMAIN:
1139 	case SO_ERROR:
1140 		ret = -ENOPROTOOPT;
1141 		break;
1142 	case SO_DONTROUTE:
1143 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1144 		sk_dst_reset(sk);
1145 		break;
1146 	case SO_BROADCAST:
1147 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1148 		break;
1149 	case SO_SNDBUF:
1150 		/* Don't error on this BSD doesn't and if you think
1151 		 * about it this is right. Otherwise apps have to
1152 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1153 		 * are treated in BSD as hints
1154 		 */
1155 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1156 set_sndbuf:
1157 		/* Ensure val * 2 fits into an int, to prevent max_t()
1158 		 * from treating it as a negative value.
1159 		 */
1160 		val = min_t(int, val, INT_MAX / 2);
1161 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1162 		WRITE_ONCE(sk->sk_sndbuf,
1163 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1164 		/* Wake up sending tasks if we upped the value. */
1165 		sk->sk_write_space(sk);
1166 		break;
1167 
1168 	case SO_SNDBUFFORCE:
1169 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1170 			ret = -EPERM;
1171 			break;
1172 		}
1173 
1174 		/* No negative values (to prevent underflow, as val will be
1175 		 * multiplied by 2).
1176 		 */
1177 		if (val < 0)
1178 			val = 0;
1179 		goto set_sndbuf;
1180 
1181 	case SO_RCVBUF:
1182 		/* Don't error on this BSD doesn't and if you think
1183 		 * about it this is right. Otherwise apps have to
1184 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1185 		 * are treated in BSD as hints
1186 		 */
1187 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1188 		break;
1189 
1190 	case SO_RCVBUFFORCE:
1191 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1192 			ret = -EPERM;
1193 			break;
1194 		}
1195 
1196 		/* No negative values (to prevent underflow, as val will be
1197 		 * multiplied by 2).
1198 		 */
1199 		__sock_set_rcvbuf(sk, max(val, 0));
1200 		break;
1201 
1202 	case SO_KEEPALIVE:
1203 		if (sk->sk_prot->keepalive)
1204 			sk->sk_prot->keepalive(sk, valbool);
1205 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1206 		break;
1207 
1208 	case SO_OOBINLINE:
1209 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1210 		break;
1211 
1212 	case SO_NO_CHECK:
1213 		sk->sk_no_check_tx = valbool;
1214 		break;
1215 
1216 	case SO_PRIORITY:
1217 		if ((val >= 0 && val <= 6) ||
1218 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1219 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1220 			WRITE_ONCE(sk->sk_priority, val);
1221 		else
1222 			ret = -EPERM;
1223 		break;
1224 
1225 	case SO_LINGER:
1226 		if (optlen < sizeof(ling)) {
1227 			ret = -EINVAL;	/* 1003.1g */
1228 			break;
1229 		}
1230 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1231 			ret = -EFAULT;
1232 			break;
1233 		}
1234 		if (!ling.l_onoff) {
1235 			sock_reset_flag(sk, SOCK_LINGER);
1236 		} else {
1237 			unsigned long t_sec = ling.l_linger;
1238 
1239 			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1240 				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1241 			else
1242 				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1243 			sock_set_flag(sk, SOCK_LINGER);
1244 		}
1245 		break;
1246 
1247 	case SO_BSDCOMPAT:
1248 		break;
1249 
1250 	case SO_PASSCRED:
1251 		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1252 		break;
1253 
1254 	case SO_PASSPIDFD:
1255 		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1256 		break;
1257 
1258 	case SO_TIMESTAMP_OLD:
1259 	case SO_TIMESTAMP_NEW:
1260 	case SO_TIMESTAMPNS_OLD:
1261 	case SO_TIMESTAMPNS_NEW:
1262 		sock_set_timestamp(sk, optname, valbool);
1263 		break;
1264 
1265 	case SO_TIMESTAMPING_NEW:
1266 	case SO_TIMESTAMPING_OLD:
1267 		if (optlen == sizeof(timestamping)) {
1268 			if (copy_from_sockptr(&timestamping, optval,
1269 					      sizeof(timestamping))) {
1270 				ret = -EFAULT;
1271 				break;
1272 			}
1273 		} else {
1274 			memset(&timestamping, 0, sizeof(timestamping));
1275 			timestamping.flags = val;
1276 		}
1277 		ret = sock_set_timestamping(sk, optname, timestamping);
1278 		break;
1279 
1280 	case SO_RCVLOWAT:
1281 		{
1282 		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1283 
1284 		if (val < 0)
1285 			val = INT_MAX;
1286 		if (sock)
1287 			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1288 		if (set_rcvlowat)
1289 			ret = set_rcvlowat(sk, val);
1290 		else
1291 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1292 		break;
1293 		}
1294 	case SO_RCVTIMEO_OLD:
1295 	case SO_RCVTIMEO_NEW:
1296 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1297 				       optlen, optname == SO_RCVTIMEO_OLD);
1298 		break;
1299 
1300 	case SO_SNDTIMEO_OLD:
1301 	case SO_SNDTIMEO_NEW:
1302 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1303 				       optlen, optname == SO_SNDTIMEO_OLD);
1304 		break;
1305 
1306 	case SO_ATTACH_FILTER: {
1307 		struct sock_fprog fprog;
1308 
1309 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1310 		if (!ret)
1311 			ret = sk_attach_filter(&fprog, sk);
1312 		break;
1313 	}
1314 	case SO_ATTACH_BPF:
1315 		ret = -EINVAL;
1316 		if (optlen == sizeof(u32)) {
1317 			u32 ufd;
1318 
1319 			ret = -EFAULT;
1320 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1321 				break;
1322 
1323 			ret = sk_attach_bpf(ufd, sk);
1324 		}
1325 		break;
1326 
1327 	case SO_ATTACH_REUSEPORT_CBPF: {
1328 		struct sock_fprog fprog;
1329 
1330 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1331 		if (!ret)
1332 			ret = sk_reuseport_attach_filter(&fprog, sk);
1333 		break;
1334 	}
1335 	case SO_ATTACH_REUSEPORT_EBPF:
1336 		ret = -EINVAL;
1337 		if (optlen == sizeof(u32)) {
1338 			u32 ufd;
1339 
1340 			ret = -EFAULT;
1341 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1342 				break;
1343 
1344 			ret = sk_reuseport_attach_bpf(ufd, sk);
1345 		}
1346 		break;
1347 
1348 	case SO_DETACH_REUSEPORT_BPF:
1349 		ret = reuseport_detach_prog(sk);
1350 		break;
1351 
1352 	case SO_DETACH_FILTER:
1353 		ret = sk_detach_filter(sk);
1354 		break;
1355 
1356 	case SO_LOCK_FILTER:
1357 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1358 			ret = -EPERM;
1359 		else
1360 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1361 		break;
1362 
1363 	case SO_PASSSEC:
1364 		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1365 		break;
1366 	case SO_MARK:
1367 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1368 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1369 			ret = -EPERM;
1370 			break;
1371 		}
1372 
1373 		__sock_set_mark(sk, val);
1374 		break;
1375 	case SO_RCVMARK:
1376 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1377 		break;
1378 
1379 	case SO_RXQ_OVFL:
1380 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1381 		break;
1382 
1383 	case SO_WIFI_STATUS:
1384 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1385 		break;
1386 
1387 	case SO_PEEK_OFF:
1388 		{
1389 		int (*set_peek_off)(struct sock *sk, int val);
1390 
1391 		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1392 		if (set_peek_off)
1393 			ret = set_peek_off(sk, val);
1394 		else
1395 			ret = -EOPNOTSUPP;
1396 		break;
1397 		}
1398 
1399 	case SO_NOFCS:
1400 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1401 		break;
1402 
1403 	case SO_SELECT_ERR_QUEUE:
1404 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1405 		break;
1406 
1407 #ifdef CONFIG_NET_RX_BUSY_POLL
1408 	case SO_BUSY_POLL:
1409 		if (val < 0)
1410 			ret = -EINVAL;
1411 		else
1412 			WRITE_ONCE(sk->sk_ll_usec, val);
1413 		break;
1414 	case SO_PREFER_BUSY_POLL:
1415 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1416 			ret = -EPERM;
1417 		else
1418 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1419 		break;
1420 	case SO_BUSY_POLL_BUDGET:
1421 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1422 			ret = -EPERM;
1423 		} else {
1424 			if (val < 0 || val > U16_MAX)
1425 				ret = -EINVAL;
1426 			else
1427 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1428 		}
1429 		break;
1430 #endif
1431 
1432 	case SO_MAX_PACING_RATE:
1433 		{
1434 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1435 
1436 		if (sizeof(ulval) != sizeof(val) &&
1437 		    optlen >= sizeof(ulval) &&
1438 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1439 			ret = -EFAULT;
1440 			break;
1441 		}
1442 		if (ulval != ~0UL)
1443 			cmpxchg(&sk->sk_pacing_status,
1444 				SK_PACING_NONE,
1445 				SK_PACING_NEEDED);
1446 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1447 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1448 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1449 		break;
1450 		}
1451 	case SO_INCOMING_CPU:
1452 		reuseport_update_incoming_cpu(sk, val);
1453 		break;
1454 
1455 	case SO_CNX_ADVICE:
1456 		if (val == 1)
1457 			dst_negative_advice(sk);
1458 		break;
1459 
1460 	case SO_ZEROCOPY:
1461 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1462 			if (!(sk_is_tcp(sk) ||
1463 			      (sk->sk_type == SOCK_DGRAM &&
1464 			       sk->sk_protocol == IPPROTO_UDP)))
1465 				ret = -EOPNOTSUPP;
1466 		} else if (sk->sk_family != PF_RDS) {
1467 			ret = -EOPNOTSUPP;
1468 		}
1469 		if (!ret) {
1470 			if (val < 0 || val > 1)
1471 				ret = -EINVAL;
1472 			else
1473 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1474 		}
1475 		break;
1476 
1477 	case SO_TXTIME:
1478 		if (optlen != sizeof(struct sock_txtime)) {
1479 			ret = -EINVAL;
1480 			break;
1481 		} else if (copy_from_sockptr(&sk_txtime, optval,
1482 			   sizeof(struct sock_txtime))) {
1483 			ret = -EFAULT;
1484 			break;
1485 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1486 			ret = -EINVAL;
1487 			break;
1488 		}
1489 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1490 		 * scheduler has enough safe guards.
1491 		 */
1492 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1493 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1494 			ret = -EPERM;
1495 			break;
1496 		}
1497 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1498 		sk->sk_clockid = sk_txtime.clockid;
1499 		sk->sk_txtime_deadline_mode =
1500 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1501 		sk->sk_txtime_report_errors =
1502 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1503 		break;
1504 
1505 	case SO_BINDTOIFINDEX:
1506 		ret = sock_bindtoindex_locked(sk, val);
1507 		break;
1508 
1509 	case SO_BUF_LOCK:
1510 		if (val & ~SOCK_BUF_LOCK_MASK) {
1511 			ret = -EINVAL;
1512 			break;
1513 		}
1514 		sk->sk_userlocks = val | (sk->sk_userlocks &
1515 					  ~SOCK_BUF_LOCK_MASK);
1516 		break;
1517 
1518 	case SO_RESERVE_MEM:
1519 	{
1520 		int delta;
1521 
1522 		if (val < 0) {
1523 			ret = -EINVAL;
1524 			break;
1525 		}
1526 
1527 		delta = val - sk->sk_reserved_mem;
1528 		if (delta < 0)
1529 			sock_release_reserved_memory(sk, -delta);
1530 		else
1531 			ret = sock_reserve_memory(sk, delta);
1532 		break;
1533 	}
1534 
1535 	case SO_TXREHASH:
1536 		if (val < -1 || val > 1) {
1537 			ret = -EINVAL;
1538 			break;
1539 		}
1540 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1541 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1542 		/* Paired with READ_ONCE() in tcp_rtx_synack()
1543 		 * and sk_getsockopt().
1544 		 */
1545 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1546 		break;
1547 
1548 	default:
1549 		ret = -ENOPROTOOPT;
1550 		break;
1551 	}
1552 	sockopt_release_sock(sk);
1553 	return ret;
1554 }
1555 
1556 int sock_setsockopt(struct socket *sock, int level, int optname,
1557 		    sockptr_t optval, unsigned int optlen)
1558 {
1559 	return sk_setsockopt(sock->sk, level, optname,
1560 			     optval, optlen);
1561 }
1562 EXPORT_SYMBOL(sock_setsockopt);
1563 
1564 static const struct cred *sk_get_peer_cred(struct sock *sk)
1565 {
1566 	const struct cred *cred;
1567 
1568 	spin_lock(&sk->sk_peer_lock);
1569 	cred = get_cred(sk->sk_peer_cred);
1570 	spin_unlock(&sk->sk_peer_lock);
1571 
1572 	return cred;
1573 }
1574 
1575 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1576 			  struct ucred *ucred)
1577 {
1578 	ucred->pid = pid_vnr(pid);
1579 	ucred->uid = ucred->gid = -1;
1580 	if (cred) {
1581 		struct user_namespace *current_ns = current_user_ns();
1582 
1583 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1584 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1585 	}
1586 }
1587 
1588 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1589 {
1590 	struct user_namespace *user_ns = current_user_ns();
1591 	int i;
1592 
1593 	for (i = 0; i < src->ngroups; i++) {
1594 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1595 
1596 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1597 			return -EFAULT;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 int sk_getsockopt(struct sock *sk, int level, int optname,
1604 		  sockptr_t optval, sockptr_t optlen)
1605 {
1606 	struct socket *sock = sk->sk_socket;
1607 
1608 	union {
1609 		int val;
1610 		u64 val64;
1611 		unsigned long ulval;
1612 		struct linger ling;
1613 		struct old_timeval32 tm32;
1614 		struct __kernel_old_timeval tm;
1615 		struct  __kernel_sock_timeval stm;
1616 		struct sock_txtime txtime;
1617 		struct so_timestamping timestamping;
1618 	} v;
1619 
1620 	int lv = sizeof(int);
1621 	int len;
1622 
1623 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1624 		return -EFAULT;
1625 	if (len < 0)
1626 		return -EINVAL;
1627 
1628 	memset(&v, 0, sizeof(v));
1629 
1630 	switch (optname) {
1631 	case SO_DEBUG:
1632 		v.val = sock_flag(sk, SOCK_DBG);
1633 		break;
1634 
1635 	case SO_DONTROUTE:
1636 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1637 		break;
1638 
1639 	case SO_BROADCAST:
1640 		v.val = sock_flag(sk, SOCK_BROADCAST);
1641 		break;
1642 
1643 	case SO_SNDBUF:
1644 		v.val = READ_ONCE(sk->sk_sndbuf);
1645 		break;
1646 
1647 	case SO_RCVBUF:
1648 		v.val = READ_ONCE(sk->sk_rcvbuf);
1649 		break;
1650 
1651 	case SO_REUSEADDR:
1652 		v.val = sk->sk_reuse;
1653 		break;
1654 
1655 	case SO_REUSEPORT:
1656 		v.val = sk->sk_reuseport;
1657 		break;
1658 
1659 	case SO_KEEPALIVE:
1660 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1661 		break;
1662 
1663 	case SO_TYPE:
1664 		v.val = sk->sk_type;
1665 		break;
1666 
1667 	case SO_PROTOCOL:
1668 		v.val = sk->sk_protocol;
1669 		break;
1670 
1671 	case SO_DOMAIN:
1672 		v.val = sk->sk_family;
1673 		break;
1674 
1675 	case SO_ERROR:
1676 		v.val = -sock_error(sk);
1677 		if (v.val == 0)
1678 			v.val = xchg(&sk->sk_err_soft, 0);
1679 		break;
1680 
1681 	case SO_OOBINLINE:
1682 		v.val = sock_flag(sk, SOCK_URGINLINE);
1683 		break;
1684 
1685 	case SO_NO_CHECK:
1686 		v.val = sk->sk_no_check_tx;
1687 		break;
1688 
1689 	case SO_PRIORITY:
1690 		v.val = READ_ONCE(sk->sk_priority);
1691 		break;
1692 
1693 	case SO_LINGER:
1694 		lv		= sizeof(v.ling);
1695 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1696 		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1697 		break;
1698 
1699 	case SO_BSDCOMPAT:
1700 		break;
1701 
1702 	case SO_TIMESTAMP_OLD:
1703 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1704 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1705 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1706 		break;
1707 
1708 	case SO_TIMESTAMPNS_OLD:
1709 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1710 		break;
1711 
1712 	case SO_TIMESTAMP_NEW:
1713 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1714 		break;
1715 
1716 	case SO_TIMESTAMPNS_NEW:
1717 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1718 		break;
1719 
1720 	case SO_TIMESTAMPING_OLD:
1721 	case SO_TIMESTAMPING_NEW:
1722 		lv = sizeof(v.timestamping);
1723 		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1724 		 * returning the flags when they were set through the same option.
1725 		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1726 		 */
1727 		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1728 			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1729 			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1730 		}
1731 		break;
1732 
1733 	case SO_RCVTIMEO_OLD:
1734 	case SO_RCVTIMEO_NEW:
1735 		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1736 				      SO_RCVTIMEO_OLD == optname);
1737 		break;
1738 
1739 	case SO_SNDTIMEO_OLD:
1740 	case SO_SNDTIMEO_NEW:
1741 		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1742 				      SO_SNDTIMEO_OLD == optname);
1743 		break;
1744 
1745 	case SO_RCVLOWAT:
1746 		v.val = READ_ONCE(sk->sk_rcvlowat);
1747 		break;
1748 
1749 	case SO_SNDLOWAT:
1750 		v.val = 1;
1751 		break;
1752 
1753 	case SO_PASSCRED:
1754 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1755 		break;
1756 
1757 	case SO_PASSPIDFD:
1758 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1759 		break;
1760 
1761 	case SO_PEERCRED:
1762 	{
1763 		struct ucred peercred;
1764 		if (len > sizeof(peercred))
1765 			len = sizeof(peercred);
1766 
1767 		spin_lock(&sk->sk_peer_lock);
1768 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1769 		spin_unlock(&sk->sk_peer_lock);
1770 
1771 		if (copy_to_sockptr(optval, &peercred, len))
1772 			return -EFAULT;
1773 		goto lenout;
1774 	}
1775 
1776 	case SO_PEERPIDFD:
1777 	{
1778 		struct pid *peer_pid;
1779 		struct file *pidfd_file = NULL;
1780 		int pidfd;
1781 
1782 		if (len > sizeof(pidfd))
1783 			len = sizeof(pidfd);
1784 
1785 		spin_lock(&sk->sk_peer_lock);
1786 		peer_pid = get_pid(sk->sk_peer_pid);
1787 		spin_unlock(&sk->sk_peer_lock);
1788 
1789 		if (!peer_pid)
1790 			return -ENODATA;
1791 
1792 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1793 		put_pid(peer_pid);
1794 		if (pidfd < 0)
1795 			return pidfd;
1796 
1797 		if (copy_to_sockptr(optval, &pidfd, len) ||
1798 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1799 			put_unused_fd(pidfd);
1800 			fput(pidfd_file);
1801 
1802 			return -EFAULT;
1803 		}
1804 
1805 		fd_install(pidfd, pidfd_file);
1806 		return 0;
1807 	}
1808 
1809 	case SO_PEERGROUPS:
1810 	{
1811 		const struct cred *cred;
1812 		int ret, n;
1813 
1814 		cred = sk_get_peer_cred(sk);
1815 		if (!cred)
1816 			return -ENODATA;
1817 
1818 		n = cred->group_info->ngroups;
1819 		if (len < n * sizeof(gid_t)) {
1820 			len = n * sizeof(gid_t);
1821 			put_cred(cred);
1822 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1823 		}
1824 		len = n * sizeof(gid_t);
1825 
1826 		ret = groups_to_user(optval, cred->group_info);
1827 		put_cred(cred);
1828 		if (ret)
1829 			return ret;
1830 		goto lenout;
1831 	}
1832 
1833 	case SO_PEERNAME:
1834 	{
1835 		struct sockaddr_storage address;
1836 
1837 		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1838 		if (lv < 0)
1839 			return -ENOTCONN;
1840 		if (lv < len)
1841 			return -EINVAL;
1842 		if (copy_to_sockptr(optval, &address, len))
1843 			return -EFAULT;
1844 		goto lenout;
1845 	}
1846 
1847 	/* Dubious BSD thing... Probably nobody even uses it, but
1848 	 * the UNIX standard wants it for whatever reason... -DaveM
1849 	 */
1850 	case SO_ACCEPTCONN:
1851 		v.val = sk->sk_state == TCP_LISTEN;
1852 		break;
1853 
1854 	case SO_PASSSEC:
1855 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1856 		break;
1857 
1858 	case SO_PEERSEC:
1859 		return security_socket_getpeersec_stream(sock,
1860 							 optval, optlen, len);
1861 
1862 	case SO_MARK:
1863 		v.val = READ_ONCE(sk->sk_mark);
1864 		break;
1865 
1866 	case SO_RCVMARK:
1867 		v.val = sock_flag(sk, SOCK_RCVMARK);
1868 		break;
1869 
1870 	case SO_RXQ_OVFL:
1871 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1872 		break;
1873 
1874 	case SO_WIFI_STATUS:
1875 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1876 		break;
1877 
1878 	case SO_PEEK_OFF:
1879 		if (!READ_ONCE(sock->ops)->set_peek_off)
1880 			return -EOPNOTSUPP;
1881 
1882 		v.val = READ_ONCE(sk->sk_peek_off);
1883 		break;
1884 	case SO_NOFCS:
1885 		v.val = sock_flag(sk, SOCK_NOFCS);
1886 		break;
1887 
1888 	case SO_BINDTODEVICE:
1889 		return sock_getbindtodevice(sk, optval, optlen, len);
1890 
1891 	case SO_GET_FILTER:
1892 		len = sk_get_filter(sk, optval, len);
1893 		if (len < 0)
1894 			return len;
1895 
1896 		goto lenout;
1897 
1898 	case SO_LOCK_FILTER:
1899 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1900 		break;
1901 
1902 	case SO_BPF_EXTENSIONS:
1903 		v.val = bpf_tell_extensions();
1904 		break;
1905 
1906 	case SO_SELECT_ERR_QUEUE:
1907 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1908 		break;
1909 
1910 #ifdef CONFIG_NET_RX_BUSY_POLL
1911 	case SO_BUSY_POLL:
1912 		v.val = READ_ONCE(sk->sk_ll_usec);
1913 		break;
1914 	case SO_PREFER_BUSY_POLL:
1915 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1916 		break;
1917 #endif
1918 
1919 	case SO_MAX_PACING_RATE:
1920 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1921 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1922 			lv = sizeof(v.ulval);
1923 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1924 		} else {
1925 			/* 32bit version */
1926 			v.val = min_t(unsigned long, ~0U,
1927 				      READ_ONCE(sk->sk_max_pacing_rate));
1928 		}
1929 		break;
1930 
1931 	case SO_INCOMING_CPU:
1932 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1933 		break;
1934 
1935 	case SO_MEMINFO:
1936 	{
1937 		u32 meminfo[SK_MEMINFO_VARS];
1938 
1939 		sk_get_meminfo(sk, meminfo);
1940 
1941 		len = min_t(unsigned int, len, sizeof(meminfo));
1942 		if (copy_to_sockptr(optval, &meminfo, len))
1943 			return -EFAULT;
1944 
1945 		goto lenout;
1946 	}
1947 
1948 #ifdef CONFIG_NET_RX_BUSY_POLL
1949 	case SO_INCOMING_NAPI_ID:
1950 		v.val = READ_ONCE(sk->sk_napi_id);
1951 
1952 		/* aggregate non-NAPI IDs down to 0 */
1953 		if (v.val < MIN_NAPI_ID)
1954 			v.val = 0;
1955 
1956 		break;
1957 #endif
1958 
1959 	case SO_COOKIE:
1960 		lv = sizeof(u64);
1961 		if (len < lv)
1962 			return -EINVAL;
1963 		v.val64 = sock_gen_cookie(sk);
1964 		break;
1965 
1966 	case SO_ZEROCOPY:
1967 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1968 		break;
1969 
1970 	case SO_TXTIME:
1971 		lv = sizeof(v.txtime);
1972 		v.txtime.clockid = sk->sk_clockid;
1973 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1974 				  SOF_TXTIME_DEADLINE_MODE : 0;
1975 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1976 				  SOF_TXTIME_REPORT_ERRORS : 0;
1977 		break;
1978 
1979 	case SO_BINDTOIFINDEX:
1980 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1981 		break;
1982 
1983 	case SO_NETNS_COOKIE:
1984 		lv = sizeof(u64);
1985 		if (len != lv)
1986 			return -EINVAL;
1987 		v.val64 = sock_net(sk)->net_cookie;
1988 		break;
1989 
1990 	case SO_BUF_LOCK:
1991 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1992 		break;
1993 
1994 	case SO_RESERVE_MEM:
1995 		v.val = READ_ONCE(sk->sk_reserved_mem);
1996 		break;
1997 
1998 	case SO_TXREHASH:
1999 		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2000 		v.val = READ_ONCE(sk->sk_txrehash);
2001 		break;
2002 
2003 	default:
2004 		/* We implement the SO_SNDLOWAT etc to not be settable
2005 		 * (1003.1g 7).
2006 		 */
2007 		return -ENOPROTOOPT;
2008 	}
2009 
2010 	if (len > lv)
2011 		len = lv;
2012 	if (copy_to_sockptr(optval, &v, len))
2013 		return -EFAULT;
2014 lenout:
2015 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2016 		return -EFAULT;
2017 	return 0;
2018 }
2019 
2020 int sock_getsockopt(struct socket *sock, int level, int optname,
2021 		    char __user *optval, int __user *optlen)
2022 {
2023 	return sk_getsockopt(sock->sk, level, optname,
2024 			     USER_SOCKPTR(optval),
2025 			     USER_SOCKPTR(optlen));
2026 }
2027 
2028 /*
2029  * Initialize an sk_lock.
2030  *
2031  * (We also register the sk_lock with the lock validator.)
2032  */
2033 static inline void sock_lock_init(struct sock *sk)
2034 {
2035 	if (sk->sk_kern_sock)
2036 		sock_lock_init_class_and_name(
2037 			sk,
2038 			af_family_kern_slock_key_strings[sk->sk_family],
2039 			af_family_kern_slock_keys + sk->sk_family,
2040 			af_family_kern_key_strings[sk->sk_family],
2041 			af_family_kern_keys + sk->sk_family);
2042 	else
2043 		sock_lock_init_class_and_name(
2044 			sk,
2045 			af_family_slock_key_strings[sk->sk_family],
2046 			af_family_slock_keys + sk->sk_family,
2047 			af_family_key_strings[sk->sk_family],
2048 			af_family_keys + sk->sk_family);
2049 }
2050 
2051 /*
2052  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2053  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2054  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2055  */
2056 static void sock_copy(struct sock *nsk, const struct sock *osk)
2057 {
2058 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2059 #ifdef CONFIG_SECURITY_NETWORK
2060 	void *sptr = nsk->sk_security;
2061 #endif
2062 
2063 	/* If we move sk_tx_queue_mapping out of the private section,
2064 	 * we must check if sk_tx_queue_clear() is called after
2065 	 * sock_copy() in sk_clone_lock().
2066 	 */
2067 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2068 		     offsetof(struct sock, sk_dontcopy_begin) ||
2069 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2070 		     offsetof(struct sock, sk_dontcopy_end));
2071 
2072 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2073 
2074 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2075 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2076 
2077 #ifdef CONFIG_SECURITY_NETWORK
2078 	nsk->sk_security = sptr;
2079 	security_sk_clone(osk, nsk);
2080 #endif
2081 }
2082 
2083 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2084 		int family)
2085 {
2086 	struct sock *sk;
2087 	struct kmem_cache *slab;
2088 
2089 	slab = prot->slab;
2090 	if (slab != NULL) {
2091 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2092 		if (!sk)
2093 			return sk;
2094 		if (want_init_on_alloc(priority))
2095 			sk_prot_clear_nulls(sk, prot->obj_size);
2096 	} else
2097 		sk = kmalloc(prot->obj_size, priority);
2098 
2099 	if (sk != NULL) {
2100 		if (security_sk_alloc(sk, family, priority))
2101 			goto out_free;
2102 
2103 		if (!try_module_get(prot->owner))
2104 			goto out_free_sec;
2105 	}
2106 
2107 	return sk;
2108 
2109 out_free_sec:
2110 	security_sk_free(sk);
2111 out_free:
2112 	if (slab != NULL)
2113 		kmem_cache_free(slab, sk);
2114 	else
2115 		kfree(sk);
2116 	return NULL;
2117 }
2118 
2119 static void sk_prot_free(struct proto *prot, struct sock *sk)
2120 {
2121 	struct kmem_cache *slab;
2122 	struct module *owner;
2123 
2124 	owner = prot->owner;
2125 	slab = prot->slab;
2126 
2127 	cgroup_sk_free(&sk->sk_cgrp_data);
2128 	mem_cgroup_sk_free(sk);
2129 	security_sk_free(sk);
2130 	if (slab != NULL)
2131 		kmem_cache_free(slab, sk);
2132 	else
2133 		kfree(sk);
2134 	module_put(owner);
2135 }
2136 
2137 /**
2138  *	sk_alloc - All socket objects are allocated here
2139  *	@net: the applicable net namespace
2140  *	@family: protocol family
2141  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2142  *	@prot: struct proto associated with this new sock instance
2143  *	@kern: is this to be a kernel socket?
2144  */
2145 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2146 		      struct proto *prot, int kern)
2147 {
2148 	struct sock *sk;
2149 
2150 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2151 	if (sk) {
2152 		sk->sk_family = family;
2153 		/*
2154 		 * See comment in struct sock definition to understand
2155 		 * why we need sk_prot_creator -acme
2156 		 */
2157 		sk->sk_prot = sk->sk_prot_creator = prot;
2158 		sk->sk_kern_sock = kern;
2159 		sock_lock_init(sk);
2160 		sk->sk_net_refcnt = kern ? 0 : 1;
2161 		if (likely(sk->sk_net_refcnt)) {
2162 			get_net_track(net, &sk->ns_tracker, priority);
2163 			sock_inuse_add(net, 1);
2164 		} else {
2165 			__netns_tracker_alloc(net, &sk->ns_tracker,
2166 					      false, priority);
2167 		}
2168 
2169 		sock_net_set(sk, net);
2170 		refcount_set(&sk->sk_wmem_alloc, 1);
2171 
2172 		mem_cgroup_sk_alloc(sk);
2173 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2174 		sock_update_classid(&sk->sk_cgrp_data);
2175 		sock_update_netprioidx(&sk->sk_cgrp_data);
2176 		sk_tx_queue_clear(sk);
2177 	}
2178 
2179 	return sk;
2180 }
2181 EXPORT_SYMBOL(sk_alloc);
2182 
2183 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2184  * grace period. This is the case for UDP sockets and TCP listeners.
2185  */
2186 static void __sk_destruct(struct rcu_head *head)
2187 {
2188 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2189 	struct sk_filter *filter;
2190 
2191 	if (sk->sk_destruct)
2192 		sk->sk_destruct(sk);
2193 
2194 	filter = rcu_dereference_check(sk->sk_filter,
2195 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2196 	if (filter) {
2197 		sk_filter_uncharge(sk, filter);
2198 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2199 	}
2200 
2201 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2202 
2203 #ifdef CONFIG_BPF_SYSCALL
2204 	bpf_sk_storage_free(sk);
2205 #endif
2206 
2207 	if (atomic_read(&sk->sk_omem_alloc))
2208 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2209 			 __func__, atomic_read(&sk->sk_omem_alloc));
2210 
2211 	if (sk->sk_frag.page) {
2212 		put_page(sk->sk_frag.page);
2213 		sk->sk_frag.page = NULL;
2214 	}
2215 
2216 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2217 	put_cred(sk->sk_peer_cred);
2218 	put_pid(sk->sk_peer_pid);
2219 
2220 	if (likely(sk->sk_net_refcnt))
2221 		put_net_track(sock_net(sk), &sk->ns_tracker);
2222 	else
2223 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2224 
2225 	sk_prot_free(sk->sk_prot_creator, sk);
2226 }
2227 
2228 void sk_destruct(struct sock *sk)
2229 {
2230 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2231 
2232 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2233 		reuseport_detach_sock(sk);
2234 		use_call_rcu = true;
2235 	}
2236 
2237 	if (use_call_rcu)
2238 		call_rcu(&sk->sk_rcu, __sk_destruct);
2239 	else
2240 		__sk_destruct(&sk->sk_rcu);
2241 }
2242 
2243 static void __sk_free(struct sock *sk)
2244 {
2245 	if (likely(sk->sk_net_refcnt))
2246 		sock_inuse_add(sock_net(sk), -1);
2247 
2248 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2249 		sock_diag_broadcast_destroy(sk);
2250 	else
2251 		sk_destruct(sk);
2252 }
2253 
2254 void sk_free(struct sock *sk)
2255 {
2256 	/*
2257 	 * We subtract one from sk_wmem_alloc and can know if
2258 	 * some packets are still in some tx queue.
2259 	 * If not null, sock_wfree() will call __sk_free(sk) later
2260 	 */
2261 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2262 		__sk_free(sk);
2263 }
2264 EXPORT_SYMBOL(sk_free);
2265 
2266 static void sk_init_common(struct sock *sk)
2267 {
2268 	skb_queue_head_init(&sk->sk_receive_queue);
2269 	skb_queue_head_init(&sk->sk_write_queue);
2270 	skb_queue_head_init(&sk->sk_error_queue);
2271 
2272 	rwlock_init(&sk->sk_callback_lock);
2273 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2274 			af_rlock_keys + sk->sk_family,
2275 			af_family_rlock_key_strings[sk->sk_family]);
2276 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2277 			af_wlock_keys + sk->sk_family,
2278 			af_family_wlock_key_strings[sk->sk_family]);
2279 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2280 			af_elock_keys + sk->sk_family,
2281 			af_family_elock_key_strings[sk->sk_family]);
2282 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2283 			af_callback_keys + sk->sk_family,
2284 			af_family_clock_key_strings[sk->sk_family]);
2285 }
2286 
2287 /**
2288  *	sk_clone_lock - clone a socket, and lock its clone
2289  *	@sk: the socket to clone
2290  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2291  *
2292  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2293  */
2294 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2295 {
2296 	struct proto *prot = READ_ONCE(sk->sk_prot);
2297 	struct sk_filter *filter;
2298 	bool is_charged = true;
2299 	struct sock *newsk;
2300 
2301 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2302 	if (!newsk)
2303 		goto out;
2304 
2305 	sock_copy(newsk, sk);
2306 
2307 	newsk->sk_prot_creator = prot;
2308 
2309 	/* SANITY */
2310 	if (likely(newsk->sk_net_refcnt)) {
2311 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2312 		sock_inuse_add(sock_net(newsk), 1);
2313 	} else {
2314 		/* Kernel sockets are not elevating the struct net refcount.
2315 		 * Instead, use a tracker to more easily detect if a layer
2316 		 * is not properly dismantling its kernel sockets at netns
2317 		 * destroy time.
2318 		 */
2319 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2320 				      false, priority);
2321 	}
2322 	sk_node_init(&newsk->sk_node);
2323 	sock_lock_init(newsk);
2324 	bh_lock_sock(newsk);
2325 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2326 	newsk->sk_backlog.len = 0;
2327 
2328 	atomic_set(&newsk->sk_rmem_alloc, 0);
2329 
2330 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2331 	refcount_set(&newsk->sk_wmem_alloc, 1);
2332 
2333 	atomic_set(&newsk->sk_omem_alloc, 0);
2334 	sk_init_common(newsk);
2335 
2336 	newsk->sk_dst_cache	= NULL;
2337 	newsk->sk_dst_pending_confirm = 0;
2338 	newsk->sk_wmem_queued	= 0;
2339 	newsk->sk_forward_alloc = 0;
2340 	newsk->sk_reserved_mem  = 0;
2341 	atomic_set(&newsk->sk_drops, 0);
2342 	newsk->sk_send_head	= NULL;
2343 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2344 	atomic_set(&newsk->sk_zckey, 0);
2345 
2346 	sock_reset_flag(newsk, SOCK_DONE);
2347 
2348 	/* sk->sk_memcg will be populated at accept() time */
2349 	newsk->sk_memcg = NULL;
2350 
2351 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2352 
2353 	rcu_read_lock();
2354 	filter = rcu_dereference(sk->sk_filter);
2355 	if (filter != NULL)
2356 		/* though it's an empty new sock, the charging may fail
2357 		 * if sysctl_optmem_max was changed between creation of
2358 		 * original socket and cloning
2359 		 */
2360 		is_charged = sk_filter_charge(newsk, filter);
2361 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2362 	rcu_read_unlock();
2363 
2364 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2365 		/* We need to make sure that we don't uncharge the new
2366 		 * socket if we couldn't charge it in the first place
2367 		 * as otherwise we uncharge the parent's filter.
2368 		 */
2369 		if (!is_charged)
2370 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2371 		sk_free_unlock_clone(newsk);
2372 		newsk = NULL;
2373 		goto out;
2374 	}
2375 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2376 
2377 	if (bpf_sk_storage_clone(sk, newsk)) {
2378 		sk_free_unlock_clone(newsk);
2379 		newsk = NULL;
2380 		goto out;
2381 	}
2382 
2383 	/* Clear sk_user_data if parent had the pointer tagged
2384 	 * as not suitable for copying when cloning.
2385 	 */
2386 	if (sk_user_data_is_nocopy(newsk))
2387 		newsk->sk_user_data = NULL;
2388 
2389 	newsk->sk_err	   = 0;
2390 	newsk->sk_err_soft = 0;
2391 	newsk->sk_priority = 0;
2392 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2393 
2394 	/* Before updating sk_refcnt, we must commit prior changes to memory
2395 	 * (Documentation/RCU/rculist_nulls.rst for details)
2396 	 */
2397 	smp_wmb();
2398 	refcount_set(&newsk->sk_refcnt, 2);
2399 
2400 	sk_set_socket(newsk, NULL);
2401 	sk_tx_queue_clear(newsk);
2402 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2403 
2404 	if (newsk->sk_prot->sockets_allocated)
2405 		sk_sockets_allocated_inc(newsk);
2406 
2407 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2408 		net_enable_timestamp();
2409 out:
2410 	return newsk;
2411 }
2412 EXPORT_SYMBOL_GPL(sk_clone_lock);
2413 
2414 void sk_free_unlock_clone(struct sock *sk)
2415 {
2416 	/* It is still raw copy of parent, so invalidate
2417 	 * destructor and make plain sk_free() */
2418 	sk->sk_destruct = NULL;
2419 	bh_unlock_sock(sk);
2420 	sk_free(sk);
2421 }
2422 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2423 
2424 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2425 {
2426 	bool is_ipv6 = false;
2427 	u32 max_size;
2428 
2429 #if IS_ENABLED(CONFIG_IPV6)
2430 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2431 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2432 #endif
2433 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2434 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2435 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2436 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2437 		max_size = GSO_LEGACY_MAX_SIZE;
2438 
2439 	return max_size - (MAX_TCP_HEADER + 1);
2440 }
2441 
2442 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2443 {
2444 	u32 max_segs = 1;
2445 
2446 	sk->sk_route_caps = dst->dev->features;
2447 	if (sk_is_tcp(sk))
2448 		sk->sk_route_caps |= NETIF_F_GSO;
2449 	if (sk->sk_route_caps & NETIF_F_GSO)
2450 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2451 	if (unlikely(sk->sk_gso_disabled))
2452 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2453 	if (sk_can_gso(sk)) {
2454 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2455 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2456 		} else {
2457 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2458 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2459 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2460 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2461 		}
2462 	}
2463 	sk->sk_gso_max_segs = max_segs;
2464 	sk_dst_set(sk, dst);
2465 }
2466 EXPORT_SYMBOL_GPL(sk_setup_caps);
2467 
2468 /*
2469  *	Simple resource managers for sockets.
2470  */
2471 
2472 
2473 /*
2474  * Write buffer destructor automatically called from kfree_skb.
2475  */
2476 void sock_wfree(struct sk_buff *skb)
2477 {
2478 	struct sock *sk = skb->sk;
2479 	unsigned int len = skb->truesize;
2480 	bool free;
2481 
2482 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2483 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2484 		    sk->sk_write_space == sock_def_write_space) {
2485 			rcu_read_lock();
2486 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2487 			sock_def_write_space_wfree(sk);
2488 			rcu_read_unlock();
2489 			if (unlikely(free))
2490 				__sk_free(sk);
2491 			return;
2492 		}
2493 
2494 		/*
2495 		 * Keep a reference on sk_wmem_alloc, this will be released
2496 		 * after sk_write_space() call
2497 		 */
2498 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2499 		sk->sk_write_space(sk);
2500 		len = 1;
2501 	}
2502 	/*
2503 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2504 	 * could not do because of in-flight packets
2505 	 */
2506 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2507 		__sk_free(sk);
2508 }
2509 EXPORT_SYMBOL(sock_wfree);
2510 
2511 /* This variant of sock_wfree() is used by TCP,
2512  * since it sets SOCK_USE_WRITE_QUEUE.
2513  */
2514 void __sock_wfree(struct sk_buff *skb)
2515 {
2516 	struct sock *sk = skb->sk;
2517 
2518 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2519 		__sk_free(sk);
2520 }
2521 
2522 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2523 {
2524 	skb_orphan(skb);
2525 	skb->sk = sk;
2526 #ifdef CONFIG_INET
2527 	if (unlikely(!sk_fullsock(sk))) {
2528 		skb->destructor = sock_edemux;
2529 		sock_hold(sk);
2530 		return;
2531 	}
2532 #endif
2533 	skb->destructor = sock_wfree;
2534 	skb_set_hash_from_sk(skb, sk);
2535 	/*
2536 	 * We used to take a refcount on sk, but following operation
2537 	 * is enough to guarantee sk_free() wont free this sock until
2538 	 * all in-flight packets are completed
2539 	 */
2540 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2541 }
2542 EXPORT_SYMBOL(skb_set_owner_w);
2543 
2544 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2545 {
2546 #ifdef CONFIG_TLS_DEVICE
2547 	/* Drivers depend on in-order delivery for crypto offload,
2548 	 * partial orphan breaks out-of-order-OK logic.
2549 	 */
2550 	if (skb->decrypted)
2551 		return false;
2552 #endif
2553 	return (skb->destructor == sock_wfree ||
2554 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2555 }
2556 
2557 /* This helper is used by netem, as it can hold packets in its
2558  * delay queue. We want to allow the owner socket to send more
2559  * packets, as if they were already TX completed by a typical driver.
2560  * But we also want to keep skb->sk set because some packet schedulers
2561  * rely on it (sch_fq for example).
2562  */
2563 void skb_orphan_partial(struct sk_buff *skb)
2564 {
2565 	if (skb_is_tcp_pure_ack(skb))
2566 		return;
2567 
2568 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2569 		return;
2570 
2571 	skb_orphan(skb);
2572 }
2573 EXPORT_SYMBOL(skb_orphan_partial);
2574 
2575 /*
2576  * Read buffer destructor automatically called from kfree_skb.
2577  */
2578 void sock_rfree(struct sk_buff *skb)
2579 {
2580 	struct sock *sk = skb->sk;
2581 	unsigned int len = skb->truesize;
2582 
2583 	atomic_sub(len, &sk->sk_rmem_alloc);
2584 	sk_mem_uncharge(sk, len);
2585 }
2586 EXPORT_SYMBOL(sock_rfree);
2587 
2588 /*
2589  * Buffer destructor for skbs that are not used directly in read or write
2590  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2591  */
2592 void sock_efree(struct sk_buff *skb)
2593 {
2594 	sock_put(skb->sk);
2595 }
2596 EXPORT_SYMBOL(sock_efree);
2597 
2598 /* Buffer destructor for prefetch/receive path where reference count may
2599  * not be held, e.g. for listen sockets.
2600  */
2601 #ifdef CONFIG_INET
2602 void sock_pfree(struct sk_buff *skb)
2603 {
2604 	if (sk_is_refcounted(skb->sk))
2605 		sock_gen_put(skb->sk);
2606 }
2607 EXPORT_SYMBOL(sock_pfree);
2608 #endif /* CONFIG_INET */
2609 
2610 kuid_t sock_i_uid(struct sock *sk)
2611 {
2612 	kuid_t uid;
2613 
2614 	read_lock_bh(&sk->sk_callback_lock);
2615 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2616 	read_unlock_bh(&sk->sk_callback_lock);
2617 	return uid;
2618 }
2619 EXPORT_SYMBOL(sock_i_uid);
2620 
2621 unsigned long __sock_i_ino(struct sock *sk)
2622 {
2623 	unsigned long ino;
2624 
2625 	read_lock(&sk->sk_callback_lock);
2626 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2627 	read_unlock(&sk->sk_callback_lock);
2628 	return ino;
2629 }
2630 EXPORT_SYMBOL(__sock_i_ino);
2631 
2632 unsigned long sock_i_ino(struct sock *sk)
2633 {
2634 	unsigned long ino;
2635 
2636 	local_bh_disable();
2637 	ino = __sock_i_ino(sk);
2638 	local_bh_enable();
2639 	return ino;
2640 }
2641 EXPORT_SYMBOL(sock_i_ino);
2642 
2643 /*
2644  * Allocate a skb from the socket's send buffer.
2645  */
2646 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2647 			     gfp_t priority)
2648 {
2649 	if (force ||
2650 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2651 		struct sk_buff *skb = alloc_skb(size, priority);
2652 
2653 		if (skb) {
2654 			skb_set_owner_w(skb, sk);
2655 			return skb;
2656 		}
2657 	}
2658 	return NULL;
2659 }
2660 EXPORT_SYMBOL(sock_wmalloc);
2661 
2662 static void sock_ofree(struct sk_buff *skb)
2663 {
2664 	struct sock *sk = skb->sk;
2665 
2666 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2667 }
2668 
2669 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2670 			     gfp_t priority)
2671 {
2672 	struct sk_buff *skb;
2673 
2674 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2675 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2676 	    READ_ONCE(sysctl_optmem_max))
2677 		return NULL;
2678 
2679 	skb = alloc_skb(size, priority);
2680 	if (!skb)
2681 		return NULL;
2682 
2683 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2684 	skb->sk = sk;
2685 	skb->destructor = sock_ofree;
2686 	return skb;
2687 }
2688 
2689 /*
2690  * Allocate a memory block from the socket's option memory buffer.
2691  */
2692 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2693 {
2694 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2695 
2696 	if ((unsigned int)size <= optmem_max &&
2697 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2698 		void *mem;
2699 		/* First do the add, to avoid the race if kmalloc
2700 		 * might sleep.
2701 		 */
2702 		atomic_add(size, &sk->sk_omem_alloc);
2703 		mem = kmalloc(size, priority);
2704 		if (mem)
2705 			return mem;
2706 		atomic_sub(size, &sk->sk_omem_alloc);
2707 	}
2708 	return NULL;
2709 }
2710 EXPORT_SYMBOL(sock_kmalloc);
2711 
2712 /* Free an option memory block. Note, we actually want the inline
2713  * here as this allows gcc to detect the nullify and fold away the
2714  * condition entirely.
2715  */
2716 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2717 				  const bool nullify)
2718 {
2719 	if (WARN_ON_ONCE(!mem))
2720 		return;
2721 	if (nullify)
2722 		kfree_sensitive(mem);
2723 	else
2724 		kfree(mem);
2725 	atomic_sub(size, &sk->sk_omem_alloc);
2726 }
2727 
2728 void sock_kfree_s(struct sock *sk, void *mem, int size)
2729 {
2730 	__sock_kfree_s(sk, mem, size, false);
2731 }
2732 EXPORT_SYMBOL(sock_kfree_s);
2733 
2734 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2735 {
2736 	__sock_kfree_s(sk, mem, size, true);
2737 }
2738 EXPORT_SYMBOL(sock_kzfree_s);
2739 
2740 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2741    I think, these locks should be removed for datagram sockets.
2742  */
2743 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2744 {
2745 	DEFINE_WAIT(wait);
2746 
2747 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2748 	for (;;) {
2749 		if (!timeo)
2750 			break;
2751 		if (signal_pending(current))
2752 			break;
2753 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2754 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2755 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2756 			break;
2757 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2758 			break;
2759 		if (READ_ONCE(sk->sk_err))
2760 			break;
2761 		timeo = schedule_timeout(timeo);
2762 	}
2763 	finish_wait(sk_sleep(sk), &wait);
2764 	return timeo;
2765 }
2766 
2767 
2768 /*
2769  *	Generic send/receive buffer handlers
2770  */
2771 
2772 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2773 				     unsigned long data_len, int noblock,
2774 				     int *errcode, int max_page_order)
2775 {
2776 	struct sk_buff *skb;
2777 	long timeo;
2778 	int err;
2779 
2780 	timeo = sock_sndtimeo(sk, noblock);
2781 	for (;;) {
2782 		err = sock_error(sk);
2783 		if (err != 0)
2784 			goto failure;
2785 
2786 		err = -EPIPE;
2787 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2788 			goto failure;
2789 
2790 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2791 			break;
2792 
2793 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2794 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2795 		err = -EAGAIN;
2796 		if (!timeo)
2797 			goto failure;
2798 		if (signal_pending(current))
2799 			goto interrupted;
2800 		timeo = sock_wait_for_wmem(sk, timeo);
2801 	}
2802 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2803 				   errcode, sk->sk_allocation);
2804 	if (skb)
2805 		skb_set_owner_w(skb, sk);
2806 	return skb;
2807 
2808 interrupted:
2809 	err = sock_intr_errno(timeo);
2810 failure:
2811 	*errcode = err;
2812 	return NULL;
2813 }
2814 EXPORT_SYMBOL(sock_alloc_send_pskb);
2815 
2816 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2817 		     struct sockcm_cookie *sockc)
2818 {
2819 	u32 tsflags;
2820 
2821 	switch (cmsg->cmsg_type) {
2822 	case SO_MARK:
2823 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2824 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2825 			return -EPERM;
2826 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2827 			return -EINVAL;
2828 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2829 		break;
2830 	case SO_TIMESTAMPING_OLD:
2831 	case SO_TIMESTAMPING_NEW:
2832 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2833 			return -EINVAL;
2834 
2835 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2836 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2837 			return -EINVAL;
2838 
2839 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2840 		sockc->tsflags |= tsflags;
2841 		break;
2842 	case SCM_TXTIME:
2843 		if (!sock_flag(sk, SOCK_TXTIME))
2844 			return -EINVAL;
2845 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2846 			return -EINVAL;
2847 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2848 		break;
2849 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2850 	case SCM_RIGHTS:
2851 	case SCM_CREDENTIALS:
2852 		break;
2853 	default:
2854 		return -EINVAL;
2855 	}
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(__sock_cmsg_send);
2859 
2860 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2861 		   struct sockcm_cookie *sockc)
2862 {
2863 	struct cmsghdr *cmsg;
2864 	int ret;
2865 
2866 	for_each_cmsghdr(cmsg, msg) {
2867 		if (!CMSG_OK(msg, cmsg))
2868 			return -EINVAL;
2869 		if (cmsg->cmsg_level != SOL_SOCKET)
2870 			continue;
2871 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2872 		if (ret)
2873 			return ret;
2874 	}
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL(sock_cmsg_send);
2878 
2879 static void sk_enter_memory_pressure(struct sock *sk)
2880 {
2881 	if (!sk->sk_prot->enter_memory_pressure)
2882 		return;
2883 
2884 	sk->sk_prot->enter_memory_pressure(sk);
2885 }
2886 
2887 static void sk_leave_memory_pressure(struct sock *sk)
2888 {
2889 	if (sk->sk_prot->leave_memory_pressure) {
2890 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2891 				     tcp_leave_memory_pressure, sk);
2892 	} else {
2893 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2894 
2895 		if (memory_pressure && READ_ONCE(*memory_pressure))
2896 			WRITE_ONCE(*memory_pressure, 0);
2897 	}
2898 }
2899 
2900 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2901 
2902 /**
2903  * skb_page_frag_refill - check that a page_frag contains enough room
2904  * @sz: minimum size of the fragment we want to get
2905  * @pfrag: pointer to page_frag
2906  * @gfp: priority for memory allocation
2907  *
2908  * Note: While this allocator tries to use high order pages, there is
2909  * no guarantee that allocations succeed. Therefore, @sz MUST be
2910  * less or equal than PAGE_SIZE.
2911  */
2912 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2913 {
2914 	if (pfrag->page) {
2915 		if (page_ref_count(pfrag->page) == 1) {
2916 			pfrag->offset = 0;
2917 			return true;
2918 		}
2919 		if (pfrag->offset + sz <= pfrag->size)
2920 			return true;
2921 		put_page(pfrag->page);
2922 	}
2923 
2924 	pfrag->offset = 0;
2925 	if (SKB_FRAG_PAGE_ORDER &&
2926 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2927 		/* Avoid direct reclaim but allow kswapd to wake */
2928 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2929 					  __GFP_COMP | __GFP_NOWARN |
2930 					  __GFP_NORETRY,
2931 					  SKB_FRAG_PAGE_ORDER);
2932 		if (likely(pfrag->page)) {
2933 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2934 			return true;
2935 		}
2936 	}
2937 	pfrag->page = alloc_page(gfp);
2938 	if (likely(pfrag->page)) {
2939 		pfrag->size = PAGE_SIZE;
2940 		return true;
2941 	}
2942 	return false;
2943 }
2944 EXPORT_SYMBOL(skb_page_frag_refill);
2945 
2946 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2947 {
2948 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2949 		return true;
2950 
2951 	sk_enter_memory_pressure(sk);
2952 	sk_stream_moderate_sndbuf(sk);
2953 	return false;
2954 }
2955 EXPORT_SYMBOL(sk_page_frag_refill);
2956 
2957 void __lock_sock(struct sock *sk)
2958 	__releases(&sk->sk_lock.slock)
2959 	__acquires(&sk->sk_lock.slock)
2960 {
2961 	DEFINE_WAIT(wait);
2962 
2963 	for (;;) {
2964 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2965 					TASK_UNINTERRUPTIBLE);
2966 		spin_unlock_bh(&sk->sk_lock.slock);
2967 		schedule();
2968 		spin_lock_bh(&sk->sk_lock.slock);
2969 		if (!sock_owned_by_user(sk))
2970 			break;
2971 	}
2972 	finish_wait(&sk->sk_lock.wq, &wait);
2973 }
2974 
2975 void __release_sock(struct sock *sk)
2976 	__releases(&sk->sk_lock.slock)
2977 	__acquires(&sk->sk_lock.slock)
2978 {
2979 	struct sk_buff *skb, *next;
2980 
2981 	while ((skb = sk->sk_backlog.head) != NULL) {
2982 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2983 
2984 		spin_unlock_bh(&sk->sk_lock.slock);
2985 
2986 		do {
2987 			next = skb->next;
2988 			prefetch(next);
2989 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2990 			skb_mark_not_on_list(skb);
2991 			sk_backlog_rcv(sk, skb);
2992 
2993 			cond_resched();
2994 
2995 			skb = next;
2996 		} while (skb != NULL);
2997 
2998 		spin_lock_bh(&sk->sk_lock.slock);
2999 	}
3000 
3001 	/*
3002 	 * Doing the zeroing here guarantee we can not loop forever
3003 	 * while a wild producer attempts to flood us.
3004 	 */
3005 	sk->sk_backlog.len = 0;
3006 }
3007 
3008 void __sk_flush_backlog(struct sock *sk)
3009 {
3010 	spin_lock_bh(&sk->sk_lock.slock);
3011 	__release_sock(sk);
3012 	spin_unlock_bh(&sk->sk_lock.slock);
3013 }
3014 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3015 
3016 /**
3017  * sk_wait_data - wait for data to arrive at sk_receive_queue
3018  * @sk:    sock to wait on
3019  * @timeo: for how long
3020  * @skb:   last skb seen on sk_receive_queue
3021  *
3022  * Now socket state including sk->sk_err is changed only under lock,
3023  * hence we may omit checks after joining wait queue.
3024  * We check receive queue before schedule() only as optimization;
3025  * it is very likely that release_sock() added new data.
3026  */
3027 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3028 {
3029 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3030 	int rc;
3031 
3032 	add_wait_queue(sk_sleep(sk), &wait);
3033 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3034 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3035 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3036 	remove_wait_queue(sk_sleep(sk), &wait);
3037 	return rc;
3038 }
3039 EXPORT_SYMBOL(sk_wait_data);
3040 
3041 /**
3042  *	__sk_mem_raise_allocated - increase memory_allocated
3043  *	@sk: socket
3044  *	@size: memory size to allocate
3045  *	@amt: pages to allocate
3046  *	@kind: allocation type
3047  *
3048  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3049  */
3050 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3051 {
3052 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3053 	struct proto *prot = sk->sk_prot;
3054 	bool charged = true;
3055 	long allocated;
3056 
3057 	sk_memory_allocated_add(sk, amt);
3058 	allocated = sk_memory_allocated(sk);
3059 	if (memcg_charge &&
3060 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3061 						gfp_memcg_charge())))
3062 		goto suppress_allocation;
3063 
3064 	/* Under limit. */
3065 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3066 		sk_leave_memory_pressure(sk);
3067 		return 1;
3068 	}
3069 
3070 	/* Under pressure. */
3071 	if (allocated > sk_prot_mem_limits(sk, 1))
3072 		sk_enter_memory_pressure(sk);
3073 
3074 	/* Over hard limit. */
3075 	if (allocated > sk_prot_mem_limits(sk, 2))
3076 		goto suppress_allocation;
3077 
3078 	/* guarantee minimum buffer size under pressure */
3079 	if (kind == SK_MEM_RECV) {
3080 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3081 			return 1;
3082 
3083 	} else { /* SK_MEM_SEND */
3084 		int wmem0 = sk_get_wmem0(sk, prot);
3085 
3086 		if (sk->sk_type == SOCK_STREAM) {
3087 			if (sk->sk_wmem_queued < wmem0)
3088 				return 1;
3089 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3090 				return 1;
3091 		}
3092 	}
3093 
3094 	if (sk_has_memory_pressure(sk)) {
3095 		u64 alloc;
3096 
3097 		if (!sk_under_memory_pressure(sk))
3098 			return 1;
3099 		alloc = sk_sockets_allocated_read_positive(sk);
3100 		if (sk_prot_mem_limits(sk, 2) > alloc *
3101 		    sk_mem_pages(sk->sk_wmem_queued +
3102 				 atomic_read(&sk->sk_rmem_alloc) +
3103 				 sk->sk_forward_alloc))
3104 			return 1;
3105 	}
3106 
3107 suppress_allocation:
3108 
3109 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3110 		sk_stream_moderate_sndbuf(sk);
3111 
3112 		/* Fail only if socket is _under_ its sndbuf.
3113 		 * In this case we cannot block, so that we have to fail.
3114 		 */
3115 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3116 			/* Force charge with __GFP_NOFAIL */
3117 			if (memcg_charge && !charged) {
3118 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3119 					gfp_memcg_charge() | __GFP_NOFAIL);
3120 			}
3121 			return 1;
3122 		}
3123 	}
3124 
3125 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3126 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3127 
3128 	sk_memory_allocated_sub(sk, amt);
3129 
3130 	if (memcg_charge && charged)
3131 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3132 
3133 	return 0;
3134 }
3135 
3136 /**
3137  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3138  *	@sk: socket
3139  *	@size: memory size to allocate
3140  *	@kind: allocation type
3141  *
3142  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3143  *	rmem allocation. This function assumes that protocols which have
3144  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3145  */
3146 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3147 {
3148 	int ret, amt = sk_mem_pages(size);
3149 
3150 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3151 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3152 	if (!ret)
3153 		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3154 	return ret;
3155 }
3156 EXPORT_SYMBOL(__sk_mem_schedule);
3157 
3158 /**
3159  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3160  *	@sk: socket
3161  *	@amount: number of quanta
3162  *
3163  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3164  */
3165 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3166 {
3167 	sk_memory_allocated_sub(sk, amount);
3168 
3169 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3170 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3171 
3172 	if (sk_under_global_memory_pressure(sk) &&
3173 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3174 		sk_leave_memory_pressure(sk);
3175 }
3176 
3177 /**
3178  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3179  *	@sk: socket
3180  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3181  */
3182 void __sk_mem_reclaim(struct sock *sk, int amount)
3183 {
3184 	amount >>= PAGE_SHIFT;
3185 	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3186 	__sk_mem_reduce_allocated(sk, amount);
3187 }
3188 EXPORT_SYMBOL(__sk_mem_reclaim);
3189 
3190 int sk_set_peek_off(struct sock *sk, int val)
3191 {
3192 	WRITE_ONCE(sk->sk_peek_off, val);
3193 	return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3196 
3197 /*
3198  * Set of default routines for initialising struct proto_ops when
3199  * the protocol does not support a particular function. In certain
3200  * cases where it makes no sense for a protocol to have a "do nothing"
3201  * function, some default processing is provided.
3202  */
3203 
3204 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3205 {
3206 	return -EOPNOTSUPP;
3207 }
3208 EXPORT_SYMBOL(sock_no_bind);
3209 
3210 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3211 		    int len, int flags)
3212 {
3213 	return -EOPNOTSUPP;
3214 }
3215 EXPORT_SYMBOL(sock_no_connect);
3216 
3217 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3218 {
3219 	return -EOPNOTSUPP;
3220 }
3221 EXPORT_SYMBOL(sock_no_socketpair);
3222 
3223 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3224 		   bool kern)
3225 {
3226 	return -EOPNOTSUPP;
3227 }
3228 EXPORT_SYMBOL(sock_no_accept);
3229 
3230 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3231 		    int peer)
3232 {
3233 	return -EOPNOTSUPP;
3234 }
3235 EXPORT_SYMBOL(sock_no_getname);
3236 
3237 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3238 {
3239 	return -EOPNOTSUPP;
3240 }
3241 EXPORT_SYMBOL(sock_no_ioctl);
3242 
3243 int sock_no_listen(struct socket *sock, int backlog)
3244 {
3245 	return -EOPNOTSUPP;
3246 }
3247 EXPORT_SYMBOL(sock_no_listen);
3248 
3249 int sock_no_shutdown(struct socket *sock, int how)
3250 {
3251 	return -EOPNOTSUPP;
3252 }
3253 EXPORT_SYMBOL(sock_no_shutdown);
3254 
3255 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3256 {
3257 	return -EOPNOTSUPP;
3258 }
3259 EXPORT_SYMBOL(sock_no_sendmsg);
3260 
3261 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3262 {
3263 	return -EOPNOTSUPP;
3264 }
3265 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3266 
3267 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3268 		    int flags)
3269 {
3270 	return -EOPNOTSUPP;
3271 }
3272 EXPORT_SYMBOL(sock_no_recvmsg);
3273 
3274 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3275 {
3276 	/* Mirror missing mmap method error code */
3277 	return -ENODEV;
3278 }
3279 EXPORT_SYMBOL(sock_no_mmap);
3280 
3281 /*
3282  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3283  * various sock-based usage counts.
3284  */
3285 void __receive_sock(struct file *file)
3286 {
3287 	struct socket *sock;
3288 
3289 	sock = sock_from_file(file);
3290 	if (sock) {
3291 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3292 		sock_update_classid(&sock->sk->sk_cgrp_data);
3293 	}
3294 }
3295 
3296 /*
3297  *	Default Socket Callbacks
3298  */
3299 
3300 static void sock_def_wakeup(struct sock *sk)
3301 {
3302 	struct socket_wq *wq;
3303 
3304 	rcu_read_lock();
3305 	wq = rcu_dereference(sk->sk_wq);
3306 	if (skwq_has_sleeper(wq))
3307 		wake_up_interruptible_all(&wq->wait);
3308 	rcu_read_unlock();
3309 }
3310 
3311 static void sock_def_error_report(struct sock *sk)
3312 {
3313 	struct socket_wq *wq;
3314 
3315 	rcu_read_lock();
3316 	wq = rcu_dereference(sk->sk_wq);
3317 	if (skwq_has_sleeper(wq))
3318 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3319 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3320 	rcu_read_unlock();
3321 }
3322 
3323 void sock_def_readable(struct sock *sk)
3324 {
3325 	struct socket_wq *wq;
3326 
3327 	trace_sk_data_ready(sk);
3328 
3329 	rcu_read_lock();
3330 	wq = rcu_dereference(sk->sk_wq);
3331 	if (skwq_has_sleeper(wq))
3332 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3333 						EPOLLRDNORM | EPOLLRDBAND);
3334 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3335 	rcu_read_unlock();
3336 }
3337 
3338 static void sock_def_write_space(struct sock *sk)
3339 {
3340 	struct socket_wq *wq;
3341 
3342 	rcu_read_lock();
3343 
3344 	/* Do not wake up a writer until he can make "significant"
3345 	 * progress.  --DaveM
3346 	 */
3347 	if (sock_writeable(sk)) {
3348 		wq = rcu_dereference(sk->sk_wq);
3349 		if (skwq_has_sleeper(wq))
3350 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3351 						EPOLLWRNORM | EPOLLWRBAND);
3352 
3353 		/* Should agree with poll, otherwise some programs break */
3354 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3355 	}
3356 
3357 	rcu_read_unlock();
3358 }
3359 
3360 /* An optimised version of sock_def_write_space(), should only be called
3361  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3362  * ->sk_wmem_alloc.
3363  */
3364 static void sock_def_write_space_wfree(struct sock *sk)
3365 {
3366 	/* Do not wake up a writer until he can make "significant"
3367 	 * progress.  --DaveM
3368 	 */
3369 	if (sock_writeable(sk)) {
3370 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3371 
3372 		/* rely on refcount_sub from sock_wfree() */
3373 		smp_mb__after_atomic();
3374 		if (wq && waitqueue_active(&wq->wait))
3375 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3376 						EPOLLWRNORM | EPOLLWRBAND);
3377 
3378 		/* Should agree with poll, otherwise some programs break */
3379 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3380 	}
3381 }
3382 
3383 static void sock_def_destruct(struct sock *sk)
3384 {
3385 }
3386 
3387 void sk_send_sigurg(struct sock *sk)
3388 {
3389 	if (sk->sk_socket && sk->sk_socket->file)
3390 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3391 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3392 }
3393 EXPORT_SYMBOL(sk_send_sigurg);
3394 
3395 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3396 		    unsigned long expires)
3397 {
3398 	if (!mod_timer(timer, expires))
3399 		sock_hold(sk);
3400 }
3401 EXPORT_SYMBOL(sk_reset_timer);
3402 
3403 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3404 {
3405 	if (del_timer(timer))
3406 		__sock_put(sk);
3407 }
3408 EXPORT_SYMBOL(sk_stop_timer);
3409 
3410 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3411 {
3412 	if (del_timer_sync(timer))
3413 		__sock_put(sk);
3414 }
3415 EXPORT_SYMBOL(sk_stop_timer_sync);
3416 
3417 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3418 {
3419 	sk_init_common(sk);
3420 	sk->sk_send_head	=	NULL;
3421 
3422 	timer_setup(&sk->sk_timer, NULL, 0);
3423 
3424 	sk->sk_allocation	=	GFP_KERNEL;
3425 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3426 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3427 	sk->sk_state		=	TCP_CLOSE;
3428 	sk->sk_use_task_frag	=	true;
3429 	sk_set_socket(sk, sock);
3430 
3431 	sock_set_flag(sk, SOCK_ZAPPED);
3432 
3433 	if (sock) {
3434 		sk->sk_type	=	sock->type;
3435 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3436 		sock->sk	=	sk;
3437 	} else {
3438 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3439 	}
3440 	sk->sk_uid	=	uid;
3441 
3442 	rwlock_init(&sk->sk_callback_lock);
3443 	if (sk->sk_kern_sock)
3444 		lockdep_set_class_and_name(
3445 			&sk->sk_callback_lock,
3446 			af_kern_callback_keys + sk->sk_family,
3447 			af_family_kern_clock_key_strings[sk->sk_family]);
3448 	else
3449 		lockdep_set_class_and_name(
3450 			&sk->sk_callback_lock,
3451 			af_callback_keys + sk->sk_family,
3452 			af_family_clock_key_strings[sk->sk_family]);
3453 
3454 	sk->sk_state_change	=	sock_def_wakeup;
3455 	sk->sk_data_ready	=	sock_def_readable;
3456 	sk->sk_write_space	=	sock_def_write_space;
3457 	sk->sk_error_report	=	sock_def_error_report;
3458 	sk->sk_destruct		=	sock_def_destruct;
3459 
3460 	sk->sk_frag.page	=	NULL;
3461 	sk->sk_frag.offset	=	0;
3462 	sk->sk_peek_off		=	-1;
3463 
3464 	sk->sk_peer_pid 	=	NULL;
3465 	sk->sk_peer_cred	=	NULL;
3466 	spin_lock_init(&sk->sk_peer_lock);
3467 
3468 	sk->sk_write_pending	=	0;
3469 	sk->sk_rcvlowat		=	1;
3470 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3471 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3472 
3473 	sk->sk_stamp = SK_DEFAULT_STAMP;
3474 #if BITS_PER_LONG==32
3475 	seqlock_init(&sk->sk_stamp_seq);
3476 #endif
3477 	atomic_set(&sk->sk_zckey, 0);
3478 
3479 #ifdef CONFIG_NET_RX_BUSY_POLL
3480 	sk->sk_napi_id		=	0;
3481 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3482 #endif
3483 
3484 	sk->sk_max_pacing_rate = ~0UL;
3485 	sk->sk_pacing_rate = ~0UL;
3486 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3487 	sk->sk_incoming_cpu = -1;
3488 
3489 	sk_rx_queue_clear(sk);
3490 	/*
3491 	 * Before updating sk_refcnt, we must commit prior changes to memory
3492 	 * (Documentation/RCU/rculist_nulls.rst for details)
3493 	 */
3494 	smp_wmb();
3495 	refcount_set(&sk->sk_refcnt, 1);
3496 	atomic_set(&sk->sk_drops, 0);
3497 }
3498 EXPORT_SYMBOL(sock_init_data_uid);
3499 
3500 void sock_init_data(struct socket *sock, struct sock *sk)
3501 {
3502 	kuid_t uid = sock ?
3503 		SOCK_INODE(sock)->i_uid :
3504 		make_kuid(sock_net(sk)->user_ns, 0);
3505 
3506 	sock_init_data_uid(sock, sk, uid);
3507 }
3508 EXPORT_SYMBOL(sock_init_data);
3509 
3510 void lock_sock_nested(struct sock *sk, int subclass)
3511 {
3512 	/* The sk_lock has mutex_lock() semantics here. */
3513 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3514 
3515 	might_sleep();
3516 	spin_lock_bh(&sk->sk_lock.slock);
3517 	if (sock_owned_by_user_nocheck(sk))
3518 		__lock_sock(sk);
3519 	sk->sk_lock.owned = 1;
3520 	spin_unlock_bh(&sk->sk_lock.slock);
3521 }
3522 EXPORT_SYMBOL(lock_sock_nested);
3523 
3524 void release_sock(struct sock *sk)
3525 {
3526 	spin_lock_bh(&sk->sk_lock.slock);
3527 	if (sk->sk_backlog.tail)
3528 		__release_sock(sk);
3529 
3530 	/* Warning : release_cb() might need to release sk ownership,
3531 	 * ie call sock_release_ownership(sk) before us.
3532 	 */
3533 	if (sk->sk_prot->release_cb)
3534 		sk->sk_prot->release_cb(sk);
3535 
3536 	sock_release_ownership(sk);
3537 	if (waitqueue_active(&sk->sk_lock.wq))
3538 		wake_up(&sk->sk_lock.wq);
3539 	spin_unlock_bh(&sk->sk_lock.slock);
3540 }
3541 EXPORT_SYMBOL(release_sock);
3542 
3543 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3544 {
3545 	might_sleep();
3546 	spin_lock_bh(&sk->sk_lock.slock);
3547 
3548 	if (!sock_owned_by_user_nocheck(sk)) {
3549 		/*
3550 		 * Fast path return with bottom halves disabled and
3551 		 * sock::sk_lock.slock held.
3552 		 *
3553 		 * The 'mutex' is not contended and holding
3554 		 * sock::sk_lock.slock prevents all other lockers to
3555 		 * proceed so the corresponding unlock_sock_fast() can
3556 		 * avoid the slow path of release_sock() completely and
3557 		 * just release slock.
3558 		 *
3559 		 * From a semantical POV this is equivalent to 'acquiring'
3560 		 * the 'mutex', hence the corresponding lockdep
3561 		 * mutex_release() has to happen in the fast path of
3562 		 * unlock_sock_fast().
3563 		 */
3564 		return false;
3565 	}
3566 
3567 	__lock_sock(sk);
3568 	sk->sk_lock.owned = 1;
3569 	__acquire(&sk->sk_lock.slock);
3570 	spin_unlock_bh(&sk->sk_lock.slock);
3571 	return true;
3572 }
3573 EXPORT_SYMBOL(__lock_sock_fast);
3574 
3575 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3576 		   bool timeval, bool time32)
3577 {
3578 	struct sock *sk = sock->sk;
3579 	struct timespec64 ts;
3580 
3581 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3582 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3583 	if (ts.tv_sec == -1)
3584 		return -ENOENT;
3585 	if (ts.tv_sec == 0) {
3586 		ktime_t kt = ktime_get_real();
3587 		sock_write_timestamp(sk, kt);
3588 		ts = ktime_to_timespec64(kt);
3589 	}
3590 
3591 	if (timeval)
3592 		ts.tv_nsec /= 1000;
3593 
3594 #ifdef CONFIG_COMPAT_32BIT_TIME
3595 	if (time32)
3596 		return put_old_timespec32(&ts, userstamp);
3597 #endif
3598 #ifdef CONFIG_SPARC64
3599 	/* beware of padding in sparc64 timeval */
3600 	if (timeval && !in_compat_syscall()) {
3601 		struct __kernel_old_timeval __user tv = {
3602 			.tv_sec = ts.tv_sec,
3603 			.tv_usec = ts.tv_nsec,
3604 		};
3605 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3606 			return -EFAULT;
3607 		return 0;
3608 	}
3609 #endif
3610 	return put_timespec64(&ts, userstamp);
3611 }
3612 EXPORT_SYMBOL(sock_gettstamp);
3613 
3614 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3615 {
3616 	if (!sock_flag(sk, flag)) {
3617 		unsigned long previous_flags = sk->sk_flags;
3618 
3619 		sock_set_flag(sk, flag);
3620 		/*
3621 		 * we just set one of the two flags which require net
3622 		 * time stamping, but time stamping might have been on
3623 		 * already because of the other one
3624 		 */
3625 		if (sock_needs_netstamp(sk) &&
3626 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3627 			net_enable_timestamp();
3628 	}
3629 }
3630 
3631 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3632 		       int level, int type)
3633 {
3634 	struct sock_exterr_skb *serr;
3635 	struct sk_buff *skb;
3636 	int copied, err;
3637 
3638 	err = -EAGAIN;
3639 	skb = sock_dequeue_err_skb(sk);
3640 	if (skb == NULL)
3641 		goto out;
3642 
3643 	copied = skb->len;
3644 	if (copied > len) {
3645 		msg->msg_flags |= MSG_TRUNC;
3646 		copied = len;
3647 	}
3648 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3649 	if (err)
3650 		goto out_free_skb;
3651 
3652 	sock_recv_timestamp(msg, sk, skb);
3653 
3654 	serr = SKB_EXT_ERR(skb);
3655 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3656 
3657 	msg->msg_flags |= MSG_ERRQUEUE;
3658 	err = copied;
3659 
3660 out_free_skb:
3661 	kfree_skb(skb);
3662 out:
3663 	return err;
3664 }
3665 EXPORT_SYMBOL(sock_recv_errqueue);
3666 
3667 /*
3668  *	Get a socket option on an socket.
3669  *
3670  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3671  *	asynchronous errors should be reported by getsockopt. We assume
3672  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3673  */
3674 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3675 			   char __user *optval, int __user *optlen)
3676 {
3677 	struct sock *sk = sock->sk;
3678 
3679 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3680 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3681 }
3682 EXPORT_SYMBOL(sock_common_getsockopt);
3683 
3684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3685 			int flags)
3686 {
3687 	struct sock *sk = sock->sk;
3688 	int addr_len = 0;
3689 	int err;
3690 
3691 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3692 	if (err >= 0)
3693 		msg->msg_namelen = addr_len;
3694 	return err;
3695 }
3696 EXPORT_SYMBOL(sock_common_recvmsg);
3697 
3698 /*
3699  *	Set socket options on an inet socket.
3700  */
3701 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3702 			   sockptr_t optval, unsigned int optlen)
3703 {
3704 	struct sock *sk = sock->sk;
3705 
3706 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3707 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3708 }
3709 EXPORT_SYMBOL(sock_common_setsockopt);
3710 
3711 void sk_common_release(struct sock *sk)
3712 {
3713 	if (sk->sk_prot->destroy)
3714 		sk->sk_prot->destroy(sk);
3715 
3716 	/*
3717 	 * Observation: when sk_common_release is called, processes have
3718 	 * no access to socket. But net still has.
3719 	 * Step one, detach it from networking:
3720 	 *
3721 	 * A. Remove from hash tables.
3722 	 */
3723 
3724 	sk->sk_prot->unhash(sk);
3725 
3726 	/*
3727 	 * In this point socket cannot receive new packets, but it is possible
3728 	 * that some packets are in flight because some CPU runs receiver and
3729 	 * did hash table lookup before we unhashed socket. They will achieve
3730 	 * receive queue and will be purged by socket destructor.
3731 	 *
3732 	 * Also we still have packets pending on receive queue and probably,
3733 	 * our own packets waiting in device queues. sock_destroy will drain
3734 	 * receive queue, but transmitted packets will delay socket destruction
3735 	 * until the last reference will be released.
3736 	 */
3737 
3738 	sock_orphan(sk);
3739 
3740 	xfrm_sk_free_policy(sk);
3741 
3742 	sock_put(sk);
3743 }
3744 EXPORT_SYMBOL(sk_common_release);
3745 
3746 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3747 {
3748 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3749 
3750 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3751 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3752 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3753 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3754 	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3755 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3756 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3757 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3758 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3759 }
3760 
3761 #ifdef CONFIG_PROC_FS
3762 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3763 
3764 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3765 {
3766 	int cpu, idx = prot->inuse_idx;
3767 	int res = 0;
3768 
3769 	for_each_possible_cpu(cpu)
3770 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3771 
3772 	return res >= 0 ? res : 0;
3773 }
3774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3775 
3776 int sock_inuse_get(struct net *net)
3777 {
3778 	int cpu, res = 0;
3779 
3780 	for_each_possible_cpu(cpu)
3781 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3782 
3783 	return res;
3784 }
3785 
3786 EXPORT_SYMBOL_GPL(sock_inuse_get);
3787 
3788 static int __net_init sock_inuse_init_net(struct net *net)
3789 {
3790 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3791 	if (net->core.prot_inuse == NULL)
3792 		return -ENOMEM;
3793 	return 0;
3794 }
3795 
3796 static void __net_exit sock_inuse_exit_net(struct net *net)
3797 {
3798 	free_percpu(net->core.prot_inuse);
3799 }
3800 
3801 static struct pernet_operations net_inuse_ops = {
3802 	.init = sock_inuse_init_net,
3803 	.exit = sock_inuse_exit_net,
3804 };
3805 
3806 static __init int net_inuse_init(void)
3807 {
3808 	if (register_pernet_subsys(&net_inuse_ops))
3809 		panic("Cannot initialize net inuse counters");
3810 
3811 	return 0;
3812 }
3813 
3814 core_initcall(net_inuse_init);
3815 
3816 static int assign_proto_idx(struct proto *prot)
3817 {
3818 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3819 
3820 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3821 		pr_err("PROTO_INUSE_NR exhausted\n");
3822 		return -ENOSPC;
3823 	}
3824 
3825 	set_bit(prot->inuse_idx, proto_inuse_idx);
3826 	return 0;
3827 }
3828 
3829 static void release_proto_idx(struct proto *prot)
3830 {
3831 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3832 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3833 }
3834 #else
3835 static inline int assign_proto_idx(struct proto *prot)
3836 {
3837 	return 0;
3838 }
3839 
3840 static inline void release_proto_idx(struct proto *prot)
3841 {
3842 }
3843 
3844 #endif
3845 
3846 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3847 {
3848 	if (!twsk_prot)
3849 		return;
3850 	kfree(twsk_prot->twsk_slab_name);
3851 	twsk_prot->twsk_slab_name = NULL;
3852 	kmem_cache_destroy(twsk_prot->twsk_slab);
3853 	twsk_prot->twsk_slab = NULL;
3854 }
3855 
3856 static int tw_prot_init(const struct proto *prot)
3857 {
3858 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3859 
3860 	if (!twsk_prot)
3861 		return 0;
3862 
3863 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3864 					      prot->name);
3865 	if (!twsk_prot->twsk_slab_name)
3866 		return -ENOMEM;
3867 
3868 	twsk_prot->twsk_slab =
3869 		kmem_cache_create(twsk_prot->twsk_slab_name,
3870 				  twsk_prot->twsk_obj_size, 0,
3871 				  SLAB_ACCOUNT | prot->slab_flags,
3872 				  NULL);
3873 	if (!twsk_prot->twsk_slab) {
3874 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3875 			prot->name);
3876 		return -ENOMEM;
3877 	}
3878 
3879 	return 0;
3880 }
3881 
3882 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3883 {
3884 	if (!rsk_prot)
3885 		return;
3886 	kfree(rsk_prot->slab_name);
3887 	rsk_prot->slab_name = NULL;
3888 	kmem_cache_destroy(rsk_prot->slab);
3889 	rsk_prot->slab = NULL;
3890 }
3891 
3892 static int req_prot_init(const struct proto *prot)
3893 {
3894 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3895 
3896 	if (!rsk_prot)
3897 		return 0;
3898 
3899 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3900 					prot->name);
3901 	if (!rsk_prot->slab_name)
3902 		return -ENOMEM;
3903 
3904 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3905 					   rsk_prot->obj_size, 0,
3906 					   SLAB_ACCOUNT | prot->slab_flags,
3907 					   NULL);
3908 
3909 	if (!rsk_prot->slab) {
3910 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3911 			prot->name);
3912 		return -ENOMEM;
3913 	}
3914 	return 0;
3915 }
3916 
3917 int proto_register(struct proto *prot, int alloc_slab)
3918 {
3919 	int ret = -ENOBUFS;
3920 
3921 	if (prot->memory_allocated && !prot->sysctl_mem) {
3922 		pr_err("%s: missing sysctl_mem\n", prot->name);
3923 		return -EINVAL;
3924 	}
3925 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3926 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3927 		return -EINVAL;
3928 	}
3929 	if (alloc_slab) {
3930 		prot->slab = kmem_cache_create_usercopy(prot->name,
3931 					prot->obj_size, 0,
3932 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3933 					prot->slab_flags,
3934 					prot->useroffset, prot->usersize,
3935 					NULL);
3936 
3937 		if (prot->slab == NULL) {
3938 			pr_crit("%s: Can't create sock SLAB cache!\n",
3939 				prot->name);
3940 			goto out;
3941 		}
3942 
3943 		if (req_prot_init(prot))
3944 			goto out_free_request_sock_slab;
3945 
3946 		if (tw_prot_init(prot))
3947 			goto out_free_timewait_sock_slab;
3948 	}
3949 
3950 	mutex_lock(&proto_list_mutex);
3951 	ret = assign_proto_idx(prot);
3952 	if (ret) {
3953 		mutex_unlock(&proto_list_mutex);
3954 		goto out_free_timewait_sock_slab;
3955 	}
3956 	list_add(&prot->node, &proto_list);
3957 	mutex_unlock(&proto_list_mutex);
3958 	return ret;
3959 
3960 out_free_timewait_sock_slab:
3961 	if (alloc_slab)
3962 		tw_prot_cleanup(prot->twsk_prot);
3963 out_free_request_sock_slab:
3964 	if (alloc_slab) {
3965 		req_prot_cleanup(prot->rsk_prot);
3966 
3967 		kmem_cache_destroy(prot->slab);
3968 		prot->slab = NULL;
3969 	}
3970 out:
3971 	return ret;
3972 }
3973 EXPORT_SYMBOL(proto_register);
3974 
3975 void proto_unregister(struct proto *prot)
3976 {
3977 	mutex_lock(&proto_list_mutex);
3978 	release_proto_idx(prot);
3979 	list_del(&prot->node);
3980 	mutex_unlock(&proto_list_mutex);
3981 
3982 	kmem_cache_destroy(prot->slab);
3983 	prot->slab = NULL;
3984 
3985 	req_prot_cleanup(prot->rsk_prot);
3986 	tw_prot_cleanup(prot->twsk_prot);
3987 }
3988 EXPORT_SYMBOL(proto_unregister);
3989 
3990 int sock_load_diag_module(int family, int protocol)
3991 {
3992 	if (!protocol) {
3993 		if (!sock_is_registered(family))
3994 			return -ENOENT;
3995 
3996 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3997 				      NETLINK_SOCK_DIAG, family);
3998 	}
3999 
4000 #ifdef CONFIG_INET
4001 	if (family == AF_INET &&
4002 	    protocol != IPPROTO_RAW &&
4003 	    protocol < MAX_INET_PROTOS &&
4004 	    !rcu_access_pointer(inet_protos[protocol]))
4005 		return -ENOENT;
4006 #endif
4007 
4008 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4009 			      NETLINK_SOCK_DIAG, family, protocol);
4010 }
4011 EXPORT_SYMBOL(sock_load_diag_module);
4012 
4013 #ifdef CONFIG_PROC_FS
4014 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4015 	__acquires(proto_list_mutex)
4016 {
4017 	mutex_lock(&proto_list_mutex);
4018 	return seq_list_start_head(&proto_list, *pos);
4019 }
4020 
4021 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4022 {
4023 	return seq_list_next(v, &proto_list, pos);
4024 }
4025 
4026 static void proto_seq_stop(struct seq_file *seq, void *v)
4027 	__releases(proto_list_mutex)
4028 {
4029 	mutex_unlock(&proto_list_mutex);
4030 }
4031 
4032 static char proto_method_implemented(const void *method)
4033 {
4034 	return method == NULL ? 'n' : 'y';
4035 }
4036 static long sock_prot_memory_allocated(struct proto *proto)
4037 {
4038 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4039 }
4040 
4041 static const char *sock_prot_memory_pressure(struct proto *proto)
4042 {
4043 	return proto->memory_pressure != NULL ?
4044 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4045 }
4046 
4047 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4048 {
4049 
4050 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4051 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4052 		   proto->name,
4053 		   proto->obj_size,
4054 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4055 		   sock_prot_memory_allocated(proto),
4056 		   sock_prot_memory_pressure(proto),
4057 		   proto->max_header,
4058 		   proto->slab == NULL ? "no" : "yes",
4059 		   module_name(proto->owner),
4060 		   proto_method_implemented(proto->close),
4061 		   proto_method_implemented(proto->connect),
4062 		   proto_method_implemented(proto->disconnect),
4063 		   proto_method_implemented(proto->accept),
4064 		   proto_method_implemented(proto->ioctl),
4065 		   proto_method_implemented(proto->init),
4066 		   proto_method_implemented(proto->destroy),
4067 		   proto_method_implemented(proto->shutdown),
4068 		   proto_method_implemented(proto->setsockopt),
4069 		   proto_method_implemented(proto->getsockopt),
4070 		   proto_method_implemented(proto->sendmsg),
4071 		   proto_method_implemented(proto->recvmsg),
4072 		   proto_method_implemented(proto->bind),
4073 		   proto_method_implemented(proto->backlog_rcv),
4074 		   proto_method_implemented(proto->hash),
4075 		   proto_method_implemented(proto->unhash),
4076 		   proto_method_implemented(proto->get_port),
4077 		   proto_method_implemented(proto->enter_memory_pressure));
4078 }
4079 
4080 static int proto_seq_show(struct seq_file *seq, void *v)
4081 {
4082 	if (v == &proto_list)
4083 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4084 			   "protocol",
4085 			   "size",
4086 			   "sockets",
4087 			   "memory",
4088 			   "press",
4089 			   "maxhdr",
4090 			   "slab",
4091 			   "module",
4092 			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4093 	else
4094 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4095 	return 0;
4096 }
4097 
4098 static const struct seq_operations proto_seq_ops = {
4099 	.start  = proto_seq_start,
4100 	.next   = proto_seq_next,
4101 	.stop   = proto_seq_stop,
4102 	.show   = proto_seq_show,
4103 };
4104 
4105 static __net_init int proto_init_net(struct net *net)
4106 {
4107 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4108 			sizeof(struct seq_net_private)))
4109 		return -ENOMEM;
4110 
4111 	return 0;
4112 }
4113 
4114 static __net_exit void proto_exit_net(struct net *net)
4115 {
4116 	remove_proc_entry("protocols", net->proc_net);
4117 }
4118 
4119 
4120 static __net_initdata struct pernet_operations proto_net_ops = {
4121 	.init = proto_init_net,
4122 	.exit = proto_exit_net,
4123 };
4124 
4125 static int __init proto_init(void)
4126 {
4127 	return register_pernet_subsys(&proto_net_ops);
4128 }
4129 
4130 subsys_initcall(proto_init);
4131 
4132 #endif /* PROC_FS */
4133 
4134 #ifdef CONFIG_NET_RX_BUSY_POLL
4135 bool sk_busy_loop_end(void *p, unsigned long start_time)
4136 {
4137 	struct sock *sk = p;
4138 
4139 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4140 	       sk_busy_loop_timeout(sk, start_time);
4141 }
4142 EXPORT_SYMBOL(sk_busy_loop_end);
4143 #endif /* CONFIG_NET_RX_BUSY_POLL */
4144 
4145 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4146 {
4147 	if (!sk->sk_prot->bind_add)
4148 		return -EOPNOTSUPP;
4149 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4150 }
4151 EXPORT_SYMBOL(sock_bind_add);
4152 
4153 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4154 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4155 		     void __user *arg, void *karg, size_t size)
4156 {
4157 	int ret;
4158 
4159 	if (copy_from_user(karg, arg, size))
4160 		return -EFAULT;
4161 
4162 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4163 	if (ret)
4164 		return ret;
4165 
4166 	if (copy_to_user(arg, karg, size))
4167 		return -EFAULT;
4168 
4169 	return 0;
4170 }
4171 EXPORT_SYMBOL(sock_ioctl_inout);
4172 
4173 /* This is the most common ioctl prep function, where the result (4 bytes) is
4174  * copied back to userspace if the ioctl() returns successfully. No input is
4175  * copied from userspace as input argument.
4176  */
4177 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4178 {
4179 	int ret, karg = 0;
4180 
4181 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4182 	if (ret)
4183 		return ret;
4184 
4185 	return put_user(karg, (int __user *)arg);
4186 }
4187 
4188 /* A wrapper around sock ioctls, which copies the data from userspace
4189  * (depending on the protocol/ioctl), and copies back the result to userspace.
4190  * The main motivation for this function is to pass kernel memory to the
4191  * protocol ioctl callbacks, instead of userspace memory.
4192  */
4193 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4194 {
4195 	int rc = 1;
4196 
4197 	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4198 		rc = ipmr_sk_ioctl(sk, cmd, arg);
4199 	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4200 		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4201 	else if (sk_is_phonet(sk))
4202 		rc = phonet_sk_ioctl(sk, cmd, arg);
4203 
4204 	/* If ioctl was processed, returns its value */
4205 	if (rc <= 0)
4206 		return rc;
4207 
4208 	/* Otherwise call the default handler */
4209 	return sock_ioctl_out(sk, cmd, arg);
4210 }
4211 EXPORT_SYMBOL(sk_ioctl);
4212