1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 int size; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 size = sizeof(old_tv); 358 } else { 359 *(struct __kernel_sock_timeval *)optval = tv; 360 size = sizeof(tv); 361 } 362 363 return size; 364 } 365 366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 367 { 368 struct __kernel_sock_timeval tv; 369 370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 371 struct old_timeval32 tv32; 372 373 if (optlen < sizeof(tv32)) 374 return -EINVAL; 375 376 if (copy_from_user(&tv32, optval, sizeof(tv32))) 377 return -EFAULT; 378 tv.tv_sec = tv32.tv_sec; 379 tv.tv_usec = tv32.tv_usec; 380 } else if (old_timeval) { 381 struct __kernel_old_timeval old_tv; 382 383 if (optlen < sizeof(old_tv)) 384 return -EINVAL; 385 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 386 return -EFAULT; 387 tv.tv_sec = old_tv.tv_sec; 388 tv.tv_usec = old_tv.tv_usec; 389 } else { 390 if (optlen < sizeof(tv)) 391 return -EINVAL; 392 if (copy_from_user(&tv, optval, sizeof(tv))) 393 return -EFAULT; 394 } 395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 396 return -EDOM; 397 398 if (tv.tv_sec < 0) { 399 static int warned __read_mostly; 400 401 *timeo_p = 0; 402 if (warned < 10 && net_ratelimit()) { 403 warned++; 404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 405 __func__, current->comm, task_pid_nr(current)); 406 } 407 return 0; 408 } 409 *timeo_p = MAX_SCHEDULE_TIMEOUT; 410 if (tv.tv_sec == 0 && tv.tv_usec == 0) 411 return 0; 412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 414 return 0; 415 } 416 417 static void sock_warn_obsolete_bsdism(const char *name) 418 { 419 static int warned; 420 static char warncomm[TASK_COMM_LEN]; 421 if (strcmp(warncomm, current->comm) && warned < 5) { 422 strcpy(warncomm, current->comm); 423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 424 warncomm, name); 425 warned++; 426 } 427 } 428 429 static bool sock_needs_netstamp(const struct sock *sk) 430 { 431 switch (sk->sk_family) { 432 case AF_UNSPEC: 433 case AF_UNIX: 434 return false; 435 default: 436 return true; 437 } 438 } 439 440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 441 { 442 if (sk->sk_flags & flags) { 443 sk->sk_flags &= ~flags; 444 if (sock_needs_netstamp(sk) && 445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 446 net_disable_timestamp(); 447 } 448 } 449 450 451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 452 { 453 unsigned long flags; 454 struct sk_buff_head *list = &sk->sk_receive_queue; 455 456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 457 atomic_inc(&sk->sk_drops); 458 trace_sock_rcvqueue_full(sk, skb); 459 return -ENOMEM; 460 } 461 462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 463 atomic_inc(&sk->sk_drops); 464 return -ENOBUFS; 465 } 466 467 skb->dev = NULL; 468 skb_set_owner_r(skb, sk); 469 470 /* we escape from rcu protected region, make sure we dont leak 471 * a norefcounted dst 472 */ 473 skb_dst_force(skb); 474 475 spin_lock_irqsave(&list->lock, flags); 476 sock_skb_set_dropcount(sk, skb); 477 __skb_queue_tail(list, skb); 478 spin_unlock_irqrestore(&list->lock, flags); 479 480 if (!sock_flag(sk, SOCK_DEAD)) 481 sk->sk_data_ready(sk); 482 return 0; 483 } 484 EXPORT_SYMBOL(__sock_queue_rcv_skb); 485 486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 int err; 489 490 err = sk_filter(sk, skb); 491 if (err) 492 return err; 493 494 return __sock_queue_rcv_skb(sk, skb); 495 } 496 EXPORT_SYMBOL(sock_queue_rcv_skb); 497 498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 499 const int nested, unsigned int trim_cap, bool refcounted) 500 { 501 int rc = NET_RX_SUCCESS; 502 503 if (sk_filter_trim_cap(sk, skb, trim_cap)) 504 goto discard_and_relse; 505 506 skb->dev = NULL; 507 508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 509 atomic_inc(&sk->sk_drops); 510 goto discard_and_relse; 511 } 512 if (nested) 513 bh_lock_sock_nested(sk); 514 else 515 bh_lock_sock(sk); 516 if (!sock_owned_by_user(sk)) { 517 /* 518 * trylock + unlock semantics: 519 */ 520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 521 522 rc = sk_backlog_rcv(sk, skb); 523 524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 526 bh_unlock_sock(sk); 527 atomic_inc(&sk->sk_drops); 528 goto discard_and_relse; 529 } 530 531 bh_unlock_sock(sk); 532 out: 533 if (refcounted) 534 sock_put(sk); 535 return rc; 536 discard_and_relse: 537 kfree_skb(skb); 538 goto out; 539 } 540 EXPORT_SYMBOL(__sk_receive_skb); 541 542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 543 { 544 struct dst_entry *dst = __sk_dst_get(sk); 545 546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 547 sk_tx_queue_clear(sk); 548 sk->sk_dst_pending_confirm = 0; 549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(__sk_dst_check); 557 558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 559 { 560 struct dst_entry *dst = sk_dst_get(sk); 561 562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 563 sk_dst_reset(sk); 564 dst_release(dst); 565 return NULL; 566 } 567 568 return dst; 569 } 570 EXPORT_SYMBOL(sk_dst_check); 571 572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 573 { 574 int ret = -ENOPROTOOPT; 575 #ifdef CONFIG_NETDEVICES 576 struct net *net = sock_net(sk); 577 578 /* Sorry... */ 579 ret = -EPERM; 580 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 581 goto out; 582 583 ret = -EINVAL; 584 if (ifindex < 0) 585 goto out; 586 587 sk->sk_bound_dev_if = ifindex; 588 if (sk->sk_prot->rehash) 589 sk->sk_prot->rehash(sk); 590 sk_dst_reset(sk); 591 592 ret = 0; 593 594 out: 595 #endif 596 597 return ret; 598 } 599 600 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 601 int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_user(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 lock_sock(sk); 641 ret = sock_setbindtodevice_locked(sk, index); 642 release_sock(sk); 643 644 out: 645 #endif 646 647 return ret; 648 } 649 650 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 651 int __user *optlen, int len) 652 { 653 int ret = -ENOPROTOOPT; 654 #ifdef CONFIG_NETDEVICES 655 struct net *net = sock_net(sk); 656 char devname[IFNAMSIZ]; 657 658 if (sk->sk_bound_dev_if == 0) { 659 len = 0; 660 goto zero; 661 } 662 663 ret = -EINVAL; 664 if (len < IFNAMSIZ) 665 goto out; 666 667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 668 if (ret) 669 goto out; 670 671 len = strlen(devname) + 1; 672 673 ret = -EFAULT; 674 if (copy_to_user(optval, devname, len)) 675 goto out; 676 677 zero: 678 ret = -EFAULT; 679 if (put_user(len, optlen)) 680 goto out; 681 682 ret = 0; 683 684 out: 685 #endif 686 687 return ret; 688 } 689 690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 691 { 692 if (valbool) 693 sock_set_flag(sk, bit); 694 else 695 sock_reset_flag(sk, bit); 696 } 697 698 bool sk_mc_loop(struct sock *sk) 699 { 700 if (dev_recursion_level()) 701 return false; 702 if (!sk) 703 return true; 704 switch (sk->sk_family) { 705 case AF_INET: 706 return inet_sk(sk)->mc_loop; 707 #if IS_ENABLED(CONFIG_IPV6) 708 case AF_INET6: 709 return inet6_sk(sk)->mc_loop; 710 #endif 711 } 712 WARN_ON(1); 713 return true; 714 } 715 EXPORT_SYMBOL(sk_mc_loop); 716 717 /* 718 * This is meant for all protocols to use and covers goings on 719 * at the socket level. Everything here is generic. 720 */ 721 722 int sock_setsockopt(struct socket *sock, int level, int optname, 723 char __user *optval, unsigned int optlen) 724 { 725 struct sock_txtime sk_txtime; 726 struct sock *sk = sock->sk; 727 int val; 728 int valbool; 729 struct linger ling; 730 int ret = 0; 731 732 /* 733 * Options without arguments 734 */ 735 736 if (optname == SO_BINDTODEVICE) 737 return sock_setbindtodevice(sk, optval, optlen); 738 739 if (optlen < sizeof(int)) 740 return -EINVAL; 741 742 if (get_user(val, (int __user *)optval)) 743 return -EFAULT; 744 745 valbool = val ? 1 : 0; 746 747 lock_sock(sk); 748 749 switch (optname) { 750 case SO_DEBUG: 751 if (val && !capable(CAP_NET_ADMIN)) 752 ret = -EACCES; 753 else 754 sock_valbool_flag(sk, SOCK_DBG, valbool); 755 break; 756 case SO_REUSEADDR: 757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 758 break; 759 case SO_REUSEPORT: 760 sk->sk_reuseport = valbool; 761 break; 762 case SO_TYPE: 763 case SO_PROTOCOL: 764 case SO_DOMAIN: 765 case SO_ERROR: 766 ret = -ENOPROTOOPT; 767 break; 768 case SO_DONTROUTE: 769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 770 sk_dst_reset(sk); 771 break; 772 case SO_BROADCAST: 773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 774 break; 775 case SO_SNDBUF: 776 /* Don't error on this BSD doesn't and if you think 777 * about it this is right. Otherwise apps have to 778 * play 'guess the biggest size' games. RCVBUF/SNDBUF 779 * are treated in BSD as hints 780 */ 781 val = min_t(u32, val, sysctl_wmem_max); 782 set_sndbuf: 783 /* Ensure val * 2 fits into an int, to prevent max_t() 784 * from treating it as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 789 /* Wake up sending tasks if we upped the value. */ 790 sk->sk_write_space(sk); 791 break; 792 793 case SO_SNDBUFFORCE: 794 if (!capable(CAP_NET_ADMIN)) { 795 ret = -EPERM; 796 break; 797 } 798 799 /* No negative values (to prevent underflow, as val will be 800 * multiplied by 2). 801 */ 802 if (val < 0) 803 val = 0; 804 goto set_sndbuf; 805 806 case SO_RCVBUF: 807 /* Don't error on this BSD doesn't and if you think 808 * about it this is right. Otherwise apps have to 809 * play 'guess the biggest size' games. RCVBUF/SNDBUF 810 * are treated in BSD as hints 811 */ 812 val = min_t(u32, val, sysctl_rmem_max); 813 set_rcvbuf: 814 /* Ensure val * 2 fits into an int, to prevent max_t() 815 * from treating it as a negative value. 816 */ 817 val = min_t(int, val, INT_MAX / 2); 818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 819 /* 820 * We double it on the way in to account for 821 * "struct sk_buff" etc. overhead. Applications 822 * assume that the SO_RCVBUF setting they make will 823 * allow that much actual data to be received on that 824 * socket. 825 * 826 * Applications are unaware that "struct sk_buff" and 827 * other overheads allocate from the receive buffer 828 * during socket buffer allocation. 829 * 830 * And after considering the possible alternatives, 831 * returning the value we actually used in getsockopt 832 * is the most desirable behavior. 833 */ 834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 sk->sk_rcvlowat = val ? : 1; 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 sk->sk_incoming_cpu = val; 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = sk->sk_incoming_cpu; 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 #ifdef CONFIG_SECURITY_NETWORK 1576 void *sptr = nsk->sk_security; 1577 #endif 1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1579 1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1582 1583 #ifdef CONFIG_SECURITY_NETWORK 1584 nsk->sk_security = sptr; 1585 security_sk_clone(osk, nsk); 1586 #endif 1587 } 1588 1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1590 int family) 1591 { 1592 struct sock *sk; 1593 struct kmem_cache *slab; 1594 1595 slab = prot->slab; 1596 if (slab != NULL) { 1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1598 if (!sk) 1599 return sk; 1600 if (want_init_on_alloc(priority)) 1601 sk_prot_clear_nulls(sk, prot->obj_size); 1602 } else 1603 sk = kmalloc(prot->obj_size, priority); 1604 1605 if (sk != NULL) { 1606 if (security_sk_alloc(sk, family, priority)) 1607 goto out_free; 1608 1609 if (!try_module_get(prot->owner)) 1610 goto out_free_sec; 1611 sk_tx_queue_clear(sk); 1612 } 1613 1614 return sk; 1615 1616 out_free_sec: 1617 security_sk_free(sk); 1618 out_free: 1619 if (slab != NULL) 1620 kmem_cache_free(slab, sk); 1621 else 1622 kfree(sk); 1623 return NULL; 1624 } 1625 1626 static void sk_prot_free(struct proto *prot, struct sock *sk) 1627 { 1628 struct kmem_cache *slab; 1629 struct module *owner; 1630 1631 owner = prot->owner; 1632 slab = prot->slab; 1633 1634 cgroup_sk_free(&sk->sk_cgrp_data); 1635 mem_cgroup_sk_free(sk); 1636 security_sk_free(sk); 1637 if (slab != NULL) 1638 kmem_cache_free(slab, sk); 1639 else 1640 kfree(sk); 1641 module_put(owner); 1642 } 1643 1644 /** 1645 * sk_alloc - All socket objects are allocated here 1646 * @net: the applicable net namespace 1647 * @family: protocol family 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * @prot: struct proto associated with this new sock instance 1650 * @kern: is this to be a kernel socket? 1651 */ 1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1653 struct proto *prot, int kern) 1654 { 1655 struct sock *sk; 1656 1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1658 if (sk) { 1659 sk->sk_family = family; 1660 /* 1661 * See comment in struct sock definition to understand 1662 * why we need sk_prot_creator -acme 1663 */ 1664 sk->sk_prot = sk->sk_prot_creator = prot; 1665 sk->sk_kern_sock = kern; 1666 sock_lock_init(sk); 1667 sk->sk_net_refcnt = kern ? 0 : 1; 1668 if (likely(sk->sk_net_refcnt)) { 1669 get_net(net); 1670 sock_inuse_add(net, 1); 1671 } 1672 1673 sock_net_set(sk, net); 1674 refcount_set(&sk->sk_wmem_alloc, 1); 1675 1676 mem_cgroup_sk_alloc(sk); 1677 cgroup_sk_alloc(&sk->sk_cgrp_data); 1678 sock_update_classid(&sk->sk_cgrp_data); 1679 sock_update_netprioidx(&sk->sk_cgrp_data); 1680 } 1681 1682 return sk; 1683 } 1684 EXPORT_SYMBOL(sk_alloc); 1685 1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1687 * grace period. This is the case for UDP sockets and TCP listeners. 1688 */ 1689 static void __sk_destruct(struct rcu_head *head) 1690 { 1691 struct sock *sk = container_of(head, struct sock, sk_rcu); 1692 struct sk_filter *filter; 1693 1694 if (sk->sk_destruct) 1695 sk->sk_destruct(sk); 1696 1697 filter = rcu_dereference_check(sk->sk_filter, 1698 refcount_read(&sk->sk_wmem_alloc) == 0); 1699 if (filter) { 1700 sk_filter_uncharge(sk, filter); 1701 RCU_INIT_POINTER(sk->sk_filter, NULL); 1702 } 1703 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1704 reuseport_detach_sock(sk); 1705 1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1707 1708 #ifdef CONFIG_BPF_SYSCALL 1709 bpf_sk_storage_free(sk); 1710 #endif 1711 1712 if (atomic_read(&sk->sk_omem_alloc)) 1713 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1714 __func__, atomic_read(&sk->sk_omem_alloc)); 1715 1716 if (sk->sk_frag.page) { 1717 put_page(sk->sk_frag.page); 1718 sk->sk_frag.page = NULL; 1719 } 1720 1721 if (sk->sk_peer_cred) 1722 put_cred(sk->sk_peer_cred); 1723 put_pid(sk->sk_peer_pid); 1724 if (likely(sk->sk_net_refcnt)) 1725 put_net(sock_net(sk)); 1726 sk_prot_free(sk->sk_prot_creator, sk); 1727 } 1728 1729 void sk_destruct(struct sock *sk) 1730 { 1731 if (sock_flag(sk, SOCK_RCU_FREE)) 1732 call_rcu(&sk->sk_rcu, __sk_destruct); 1733 else 1734 __sk_destruct(&sk->sk_rcu); 1735 } 1736 1737 static void __sk_free(struct sock *sk) 1738 { 1739 if (likely(sk->sk_net_refcnt)) 1740 sock_inuse_add(sock_net(sk), -1); 1741 1742 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1743 sock_diag_broadcast_destroy(sk); 1744 else 1745 sk_destruct(sk); 1746 } 1747 1748 void sk_free(struct sock *sk) 1749 { 1750 /* 1751 * We subtract one from sk_wmem_alloc and can know if 1752 * some packets are still in some tx queue. 1753 * If not null, sock_wfree() will call __sk_free(sk) later 1754 */ 1755 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1756 __sk_free(sk); 1757 } 1758 EXPORT_SYMBOL(sk_free); 1759 1760 static void sk_init_common(struct sock *sk) 1761 { 1762 skb_queue_head_init(&sk->sk_receive_queue); 1763 skb_queue_head_init(&sk->sk_write_queue); 1764 skb_queue_head_init(&sk->sk_error_queue); 1765 1766 rwlock_init(&sk->sk_callback_lock); 1767 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1768 af_rlock_keys + sk->sk_family, 1769 af_family_rlock_key_strings[sk->sk_family]); 1770 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1771 af_wlock_keys + sk->sk_family, 1772 af_family_wlock_key_strings[sk->sk_family]); 1773 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1774 af_elock_keys + sk->sk_family, 1775 af_family_elock_key_strings[sk->sk_family]); 1776 lockdep_set_class_and_name(&sk->sk_callback_lock, 1777 af_callback_keys + sk->sk_family, 1778 af_family_clock_key_strings[sk->sk_family]); 1779 } 1780 1781 /** 1782 * sk_clone_lock - clone a socket, and lock its clone 1783 * @sk: the socket to clone 1784 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1785 * 1786 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1787 */ 1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1789 { 1790 struct sock *newsk; 1791 bool is_charged = true; 1792 1793 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1794 if (newsk != NULL) { 1795 struct sk_filter *filter; 1796 1797 sock_copy(newsk, sk); 1798 1799 newsk->sk_prot_creator = sk->sk_prot; 1800 1801 /* SANITY */ 1802 if (likely(newsk->sk_net_refcnt)) 1803 get_net(sock_net(newsk)); 1804 sk_node_init(&newsk->sk_node); 1805 sock_lock_init(newsk); 1806 bh_lock_sock(newsk); 1807 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1808 newsk->sk_backlog.len = 0; 1809 1810 atomic_set(&newsk->sk_rmem_alloc, 0); 1811 /* 1812 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1813 */ 1814 refcount_set(&newsk->sk_wmem_alloc, 1); 1815 atomic_set(&newsk->sk_omem_alloc, 0); 1816 sk_init_common(newsk); 1817 1818 newsk->sk_dst_cache = NULL; 1819 newsk->sk_dst_pending_confirm = 0; 1820 newsk->sk_wmem_queued = 0; 1821 newsk->sk_forward_alloc = 0; 1822 atomic_set(&newsk->sk_drops, 0); 1823 newsk->sk_send_head = NULL; 1824 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1825 atomic_set(&newsk->sk_zckey, 0); 1826 1827 sock_reset_flag(newsk, SOCK_DONE); 1828 mem_cgroup_sk_alloc(newsk); 1829 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1830 1831 rcu_read_lock(); 1832 filter = rcu_dereference(sk->sk_filter); 1833 if (filter != NULL) 1834 /* though it's an empty new sock, the charging may fail 1835 * if sysctl_optmem_max was changed between creation of 1836 * original socket and cloning 1837 */ 1838 is_charged = sk_filter_charge(newsk, filter); 1839 RCU_INIT_POINTER(newsk->sk_filter, filter); 1840 rcu_read_unlock(); 1841 1842 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1843 /* We need to make sure that we don't uncharge the new 1844 * socket if we couldn't charge it in the first place 1845 * as otherwise we uncharge the parent's filter. 1846 */ 1847 if (!is_charged) 1848 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1849 sk_free_unlock_clone(newsk); 1850 newsk = NULL; 1851 goto out; 1852 } 1853 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1854 1855 if (bpf_sk_storage_clone(sk, newsk)) { 1856 sk_free_unlock_clone(newsk); 1857 newsk = NULL; 1858 goto out; 1859 } 1860 1861 newsk->sk_err = 0; 1862 newsk->sk_err_soft = 0; 1863 newsk->sk_priority = 0; 1864 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1865 if (likely(newsk->sk_net_refcnt)) 1866 sock_inuse_add(sock_net(newsk), 1); 1867 1868 /* 1869 * Before updating sk_refcnt, we must commit prior changes to memory 1870 * (Documentation/RCU/rculist_nulls.txt for details) 1871 */ 1872 smp_wmb(); 1873 refcount_set(&newsk->sk_refcnt, 2); 1874 1875 /* 1876 * Increment the counter in the same struct proto as the master 1877 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1878 * is the same as sk->sk_prot->socks, as this field was copied 1879 * with memcpy). 1880 * 1881 * This _changes_ the previous behaviour, where 1882 * tcp_create_openreq_child always was incrementing the 1883 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1884 * to be taken into account in all callers. -acme 1885 */ 1886 sk_refcnt_debug_inc(newsk); 1887 sk_set_socket(newsk, NULL); 1888 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1889 1890 if (newsk->sk_prot->sockets_allocated) 1891 sk_sockets_allocated_inc(newsk); 1892 1893 if (sock_needs_netstamp(sk) && 1894 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1895 net_enable_timestamp(); 1896 } 1897 out: 1898 return newsk; 1899 } 1900 EXPORT_SYMBOL_GPL(sk_clone_lock); 1901 1902 void sk_free_unlock_clone(struct sock *sk) 1903 { 1904 /* It is still raw copy of parent, so invalidate 1905 * destructor and make plain sk_free() */ 1906 sk->sk_destruct = NULL; 1907 bh_unlock_sock(sk); 1908 sk_free(sk); 1909 } 1910 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1911 1912 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1913 { 1914 u32 max_segs = 1; 1915 1916 sk_dst_set(sk, dst); 1917 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1918 if (sk->sk_route_caps & NETIF_F_GSO) 1919 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1920 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1921 if (sk_can_gso(sk)) { 1922 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1923 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1924 } else { 1925 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1926 sk->sk_gso_max_size = dst->dev->gso_max_size; 1927 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1928 } 1929 } 1930 sk->sk_gso_max_segs = max_segs; 1931 } 1932 EXPORT_SYMBOL_GPL(sk_setup_caps); 1933 1934 /* 1935 * Simple resource managers for sockets. 1936 */ 1937 1938 1939 /* 1940 * Write buffer destructor automatically called from kfree_skb. 1941 */ 1942 void sock_wfree(struct sk_buff *skb) 1943 { 1944 struct sock *sk = skb->sk; 1945 unsigned int len = skb->truesize; 1946 1947 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1948 /* 1949 * Keep a reference on sk_wmem_alloc, this will be released 1950 * after sk_write_space() call 1951 */ 1952 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1953 sk->sk_write_space(sk); 1954 len = 1; 1955 } 1956 /* 1957 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1958 * could not do because of in-flight packets 1959 */ 1960 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1961 __sk_free(sk); 1962 } 1963 EXPORT_SYMBOL(sock_wfree); 1964 1965 /* This variant of sock_wfree() is used by TCP, 1966 * since it sets SOCK_USE_WRITE_QUEUE. 1967 */ 1968 void __sock_wfree(struct sk_buff *skb) 1969 { 1970 struct sock *sk = skb->sk; 1971 1972 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1973 __sk_free(sk); 1974 } 1975 1976 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1977 { 1978 skb_orphan(skb); 1979 skb->sk = sk; 1980 #ifdef CONFIG_INET 1981 if (unlikely(!sk_fullsock(sk))) { 1982 skb->destructor = sock_edemux; 1983 sock_hold(sk); 1984 return; 1985 } 1986 #endif 1987 skb->destructor = sock_wfree; 1988 skb_set_hash_from_sk(skb, sk); 1989 /* 1990 * We used to take a refcount on sk, but following operation 1991 * is enough to guarantee sk_free() wont free this sock until 1992 * all in-flight packets are completed 1993 */ 1994 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1995 } 1996 EXPORT_SYMBOL(skb_set_owner_w); 1997 1998 static bool can_skb_orphan_partial(const struct sk_buff *skb) 1999 { 2000 #ifdef CONFIG_TLS_DEVICE 2001 /* Drivers depend on in-order delivery for crypto offload, 2002 * partial orphan breaks out-of-order-OK logic. 2003 */ 2004 if (skb->decrypted) 2005 return false; 2006 #endif 2007 return (skb->destructor == sock_wfree || 2008 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2009 } 2010 2011 /* This helper is used by netem, as it can hold packets in its 2012 * delay queue. We want to allow the owner socket to send more 2013 * packets, as if they were already TX completed by a typical driver. 2014 * But we also want to keep skb->sk set because some packet schedulers 2015 * rely on it (sch_fq for example). 2016 */ 2017 void skb_orphan_partial(struct sk_buff *skb) 2018 { 2019 if (skb_is_tcp_pure_ack(skb)) 2020 return; 2021 2022 if (can_skb_orphan_partial(skb)) { 2023 struct sock *sk = skb->sk; 2024 2025 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2026 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2027 skb->destructor = sock_efree; 2028 } 2029 } else { 2030 skb_orphan(skb); 2031 } 2032 } 2033 EXPORT_SYMBOL(skb_orphan_partial); 2034 2035 /* 2036 * Read buffer destructor automatically called from kfree_skb. 2037 */ 2038 void sock_rfree(struct sk_buff *skb) 2039 { 2040 struct sock *sk = skb->sk; 2041 unsigned int len = skb->truesize; 2042 2043 atomic_sub(len, &sk->sk_rmem_alloc); 2044 sk_mem_uncharge(sk, len); 2045 } 2046 EXPORT_SYMBOL(sock_rfree); 2047 2048 /* 2049 * Buffer destructor for skbs that are not used directly in read or write 2050 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2051 */ 2052 void sock_efree(struct sk_buff *skb) 2053 { 2054 sock_put(skb->sk); 2055 } 2056 EXPORT_SYMBOL(sock_efree); 2057 2058 kuid_t sock_i_uid(struct sock *sk) 2059 { 2060 kuid_t uid; 2061 2062 read_lock_bh(&sk->sk_callback_lock); 2063 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2064 read_unlock_bh(&sk->sk_callback_lock); 2065 return uid; 2066 } 2067 EXPORT_SYMBOL(sock_i_uid); 2068 2069 unsigned long sock_i_ino(struct sock *sk) 2070 { 2071 unsigned long ino; 2072 2073 read_lock_bh(&sk->sk_callback_lock); 2074 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2075 read_unlock_bh(&sk->sk_callback_lock); 2076 return ino; 2077 } 2078 EXPORT_SYMBOL(sock_i_ino); 2079 2080 /* 2081 * Allocate a skb from the socket's send buffer. 2082 */ 2083 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2084 gfp_t priority) 2085 { 2086 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2087 struct sk_buff *skb = alloc_skb(size, priority); 2088 if (skb) { 2089 skb_set_owner_w(skb, sk); 2090 return skb; 2091 } 2092 } 2093 return NULL; 2094 } 2095 EXPORT_SYMBOL(sock_wmalloc); 2096 2097 static void sock_ofree(struct sk_buff *skb) 2098 { 2099 struct sock *sk = skb->sk; 2100 2101 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2102 } 2103 2104 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2105 gfp_t priority) 2106 { 2107 struct sk_buff *skb; 2108 2109 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2110 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2111 sysctl_optmem_max) 2112 return NULL; 2113 2114 skb = alloc_skb(size, priority); 2115 if (!skb) 2116 return NULL; 2117 2118 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2119 skb->sk = sk; 2120 skb->destructor = sock_ofree; 2121 return skb; 2122 } 2123 2124 /* 2125 * Allocate a memory block from the socket's option memory buffer. 2126 */ 2127 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2128 { 2129 if ((unsigned int)size <= sysctl_optmem_max && 2130 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2131 void *mem; 2132 /* First do the add, to avoid the race if kmalloc 2133 * might sleep. 2134 */ 2135 atomic_add(size, &sk->sk_omem_alloc); 2136 mem = kmalloc(size, priority); 2137 if (mem) 2138 return mem; 2139 atomic_sub(size, &sk->sk_omem_alloc); 2140 } 2141 return NULL; 2142 } 2143 EXPORT_SYMBOL(sock_kmalloc); 2144 2145 /* Free an option memory block. Note, we actually want the inline 2146 * here as this allows gcc to detect the nullify and fold away the 2147 * condition entirely. 2148 */ 2149 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2150 const bool nullify) 2151 { 2152 if (WARN_ON_ONCE(!mem)) 2153 return; 2154 if (nullify) 2155 kzfree(mem); 2156 else 2157 kfree(mem); 2158 atomic_sub(size, &sk->sk_omem_alloc); 2159 } 2160 2161 void sock_kfree_s(struct sock *sk, void *mem, int size) 2162 { 2163 __sock_kfree_s(sk, mem, size, false); 2164 } 2165 EXPORT_SYMBOL(sock_kfree_s); 2166 2167 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2168 { 2169 __sock_kfree_s(sk, mem, size, true); 2170 } 2171 EXPORT_SYMBOL(sock_kzfree_s); 2172 2173 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2174 I think, these locks should be removed for datagram sockets. 2175 */ 2176 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2177 { 2178 DEFINE_WAIT(wait); 2179 2180 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2181 for (;;) { 2182 if (!timeo) 2183 break; 2184 if (signal_pending(current)) 2185 break; 2186 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2187 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2188 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2189 break; 2190 if (sk->sk_shutdown & SEND_SHUTDOWN) 2191 break; 2192 if (sk->sk_err) 2193 break; 2194 timeo = schedule_timeout(timeo); 2195 } 2196 finish_wait(sk_sleep(sk), &wait); 2197 return timeo; 2198 } 2199 2200 2201 /* 2202 * Generic send/receive buffer handlers 2203 */ 2204 2205 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2206 unsigned long data_len, int noblock, 2207 int *errcode, int max_page_order) 2208 { 2209 struct sk_buff *skb; 2210 long timeo; 2211 int err; 2212 2213 timeo = sock_sndtimeo(sk, noblock); 2214 for (;;) { 2215 err = sock_error(sk); 2216 if (err != 0) 2217 goto failure; 2218 2219 err = -EPIPE; 2220 if (sk->sk_shutdown & SEND_SHUTDOWN) 2221 goto failure; 2222 2223 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2224 break; 2225 2226 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2227 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2228 err = -EAGAIN; 2229 if (!timeo) 2230 goto failure; 2231 if (signal_pending(current)) 2232 goto interrupted; 2233 timeo = sock_wait_for_wmem(sk, timeo); 2234 } 2235 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2236 errcode, sk->sk_allocation); 2237 if (skb) 2238 skb_set_owner_w(skb, sk); 2239 return skb; 2240 2241 interrupted: 2242 err = sock_intr_errno(timeo); 2243 failure: 2244 *errcode = err; 2245 return NULL; 2246 } 2247 EXPORT_SYMBOL(sock_alloc_send_pskb); 2248 2249 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2250 int noblock, int *errcode) 2251 { 2252 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2253 } 2254 EXPORT_SYMBOL(sock_alloc_send_skb); 2255 2256 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2257 struct sockcm_cookie *sockc) 2258 { 2259 u32 tsflags; 2260 2261 switch (cmsg->cmsg_type) { 2262 case SO_MARK: 2263 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2264 return -EPERM; 2265 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2266 return -EINVAL; 2267 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2268 break; 2269 case SO_TIMESTAMPING_OLD: 2270 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2271 return -EINVAL; 2272 2273 tsflags = *(u32 *)CMSG_DATA(cmsg); 2274 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2275 return -EINVAL; 2276 2277 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2278 sockc->tsflags |= tsflags; 2279 break; 2280 case SCM_TXTIME: 2281 if (!sock_flag(sk, SOCK_TXTIME)) 2282 return -EINVAL; 2283 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2284 return -EINVAL; 2285 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2286 break; 2287 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2288 case SCM_RIGHTS: 2289 case SCM_CREDENTIALS: 2290 break; 2291 default: 2292 return -EINVAL; 2293 } 2294 return 0; 2295 } 2296 EXPORT_SYMBOL(__sock_cmsg_send); 2297 2298 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2299 struct sockcm_cookie *sockc) 2300 { 2301 struct cmsghdr *cmsg; 2302 int ret; 2303 2304 for_each_cmsghdr(cmsg, msg) { 2305 if (!CMSG_OK(msg, cmsg)) 2306 return -EINVAL; 2307 if (cmsg->cmsg_level != SOL_SOCKET) 2308 continue; 2309 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2310 if (ret) 2311 return ret; 2312 } 2313 return 0; 2314 } 2315 EXPORT_SYMBOL(sock_cmsg_send); 2316 2317 static void sk_enter_memory_pressure(struct sock *sk) 2318 { 2319 if (!sk->sk_prot->enter_memory_pressure) 2320 return; 2321 2322 sk->sk_prot->enter_memory_pressure(sk); 2323 } 2324 2325 static void sk_leave_memory_pressure(struct sock *sk) 2326 { 2327 if (sk->sk_prot->leave_memory_pressure) { 2328 sk->sk_prot->leave_memory_pressure(sk); 2329 } else { 2330 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2331 2332 if (memory_pressure && *memory_pressure) 2333 *memory_pressure = 0; 2334 } 2335 } 2336 2337 /* On 32bit arches, an skb frag is limited to 2^15 */ 2338 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2339 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2340 2341 /** 2342 * skb_page_frag_refill - check that a page_frag contains enough room 2343 * @sz: minimum size of the fragment we want to get 2344 * @pfrag: pointer to page_frag 2345 * @gfp: priority for memory allocation 2346 * 2347 * Note: While this allocator tries to use high order pages, there is 2348 * no guarantee that allocations succeed. Therefore, @sz MUST be 2349 * less or equal than PAGE_SIZE. 2350 */ 2351 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2352 { 2353 if (pfrag->page) { 2354 if (page_ref_count(pfrag->page) == 1) { 2355 pfrag->offset = 0; 2356 return true; 2357 } 2358 if (pfrag->offset + sz <= pfrag->size) 2359 return true; 2360 put_page(pfrag->page); 2361 } 2362 2363 pfrag->offset = 0; 2364 if (SKB_FRAG_PAGE_ORDER && 2365 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2366 /* Avoid direct reclaim but allow kswapd to wake */ 2367 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2368 __GFP_COMP | __GFP_NOWARN | 2369 __GFP_NORETRY, 2370 SKB_FRAG_PAGE_ORDER); 2371 if (likely(pfrag->page)) { 2372 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2373 return true; 2374 } 2375 } 2376 pfrag->page = alloc_page(gfp); 2377 if (likely(pfrag->page)) { 2378 pfrag->size = PAGE_SIZE; 2379 return true; 2380 } 2381 return false; 2382 } 2383 EXPORT_SYMBOL(skb_page_frag_refill); 2384 2385 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2386 { 2387 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2388 return true; 2389 2390 sk_enter_memory_pressure(sk); 2391 sk_stream_moderate_sndbuf(sk); 2392 return false; 2393 } 2394 EXPORT_SYMBOL(sk_page_frag_refill); 2395 2396 static void __lock_sock(struct sock *sk) 2397 __releases(&sk->sk_lock.slock) 2398 __acquires(&sk->sk_lock.slock) 2399 { 2400 DEFINE_WAIT(wait); 2401 2402 for (;;) { 2403 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2404 TASK_UNINTERRUPTIBLE); 2405 spin_unlock_bh(&sk->sk_lock.slock); 2406 schedule(); 2407 spin_lock_bh(&sk->sk_lock.slock); 2408 if (!sock_owned_by_user(sk)) 2409 break; 2410 } 2411 finish_wait(&sk->sk_lock.wq, &wait); 2412 } 2413 2414 void __release_sock(struct sock *sk) 2415 __releases(&sk->sk_lock.slock) 2416 __acquires(&sk->sk_lock.slock) 2417 { 2418 struct sk_buff *skb, *next; 2419 2420 while ((skb = sk->sk_backlog.head) != NULL) { 2421 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2422 2423 spin_unlock_bh(&sk->sk_lock.slock); 2424 2425 do { 2426 next = skb->next; 2427 prefetch(next); 2428 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2429 skb_mark_not_on_list(skb); 2430 sk_backlog_rcv(sk, skb); 2431 2432 cond_resched(); 2433 2434 skb = next; 2435 } while (skb != NULL); 2436 2437 spin_lock_bh(&sk->sk_lock.slock); 2438 } 2439 2440 /* 2441 * Doing the zeroing here guarantee we can not loop forever 2442 * while a wild producer attempts to flood us. 2443 */ 2444 sk->sk_backlog.len = 0; 2445 } 2446 2447 void __sk_flush_backlog(struct sock *sk) 2448 { 2449 spin_lock_bh(&sk->sk_lock.slock); 2450 __release_sock(sk); 2451 spin_unlock_bh(&sk->sk_lock.slock); 2452 } 2453 2454 /** 2455 * sk_wait_data - wait for data to arrive at sk_receive_queue 2456 * @sk: sock to wait on 2457 * @timeo: for how long 2458 * @skb: last skb seen on sk_receive_queue 2459 * 2460 * Now socket state including sk->sk_err is changed only under lock, 2461 * hence we may omit checks after joining wait queue. 2462 * We check receive queue before schedule() only as optimization; 2463 * it is very likely that release_sock() added new data. 2464 */ 2465 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2466 { 2467 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2468 int rc; 2469 2470 add_wait_queue(sk_sleep(sk), &wait); 2471 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2472 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2473 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2474 remove_wait_queue(sk_sleep(sk), &wait); 2475 return rc; 2476 } 2477 EXPORT_SYMBOL(sk_wait_data); 2478 2479 /** 2480 * __sk_mem_raise_allocated - increase memory_allocated 2481 * @sk: socket 2482 * @size: memory size to allocate 2483 * @amt: pages to allocate 2484 * @kind: allocation type 2485 * 2486 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2487 */ 2488 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2489 { 2490 struct proto *prot = sk->sk_prot; 2491 long allocated = sk_memory_allocated_add(sk, amt); 2492 bool charged = true; 2493 2494 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2495 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2496 goto suppress_allocation; 2497 2498 /* Under limit. */ 2499 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2500 sk_leave_memory_pressure(sk); 2501 return 1; 2502 } 2503 2504 /* Under pressure. */ 2505 if (allocated > sk_prot_mem_limits(sk, 1)) 2506 sk_enter_memory_pressure(sk); 2507 2508 /* Over hard limit. */ 2509 if (allocated > sk_prot_mem_limits(sk, 2)) 2510 goto suppress_allocation; 2511 2512 /* guarantee minimum buffer size under pressure */ 2513 if (kind == SK_MEM_RECV) { 2514 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2515 return 1; 2516 2517 } else { /* SK_MEM_SEND */ 2518 int wmem0 = sk_get_wmem0(sk, prot); 2519 2520 if (sk->sk_type == SOCK_STREAM) { 2521 if (sk->sk_wmem_queued < wmem0) 2522 return 1; 2523 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2524 return 1; 2525 } 2526 } 2527 2528 if (sk_has_memory_pressure(sk)) { 2529 u64 alloc; 2530 2531 if (!sk_under_memory_pressure(sk)) 2532 return 1; 2533 alloc = sk_sockets_allocated_read_positive(sk); 2534 if (sk_prot_mem_limits(sk, 2) > alloc * 2535 sk_mem_pages(sk->sk_wmem_queued + 2536 atomic_read(&sk->sk_rmem_alloc) + 2537 sk->sk_forward_alloc)) 2538 return 1; 2539 } 2540 2541 suppress_allocation: 2542 2543 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2544 sk_stream_moderate_sndbuf(sk); 2545 2546 /* Fail only if socket is _under_ its sndbuf. 2547 * In this case we cannot block, so that we have to fail. 2548 */ 2549 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2550 return 1; 2551 } 2552 2553 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2554 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2555 2556 sk_memory_allocated_sub(sk, amt); 2557 2558 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2559 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2560 2561 return 0; 2562 } 2563 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2564 2565 /** 2566 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2567 * @sk: socket 2568 * @size: memory size to allocate 2569 * @kind: allocation type 2570 * 2571 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2572 * rmem allocation. This function assumes that protocols which have 2573 * memory_pressure use sk_wmem_queued as write buffer accounting. 2574 */ 2575 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2576 { 2577 int ret, amt = sk_mem_pages(size); 2578 2579 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2580 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2581 if (!ret) 2582 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2583 return ret; 2584 } 2585 EXPORT_SYMBOL(__sk_mem_schedule); 2586 2587 /** 2588 * __sk_mem_reduce_allocated - reclaim memory_allocated 2589 * @sk: socket 2590 * @amount: number of quanta 2591 * 2592 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2593 */ 2594 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2595 { 2596 sk_memory_allocated_sub(sk, amount); 2597 2598 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2599 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2600 2601 if (sk_under_memory_pressure(sk) && 2602 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2603 sk_leave_memory_pressure(sk); 2604 } 2605 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2606 2607 /** 2608 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2609 * @sk: socket 2610 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2611 */ 2612 void __sk_mem_reclaim(struct sock *sk, int amount) 2613 { 2614 amount >>= SK_MEM_QUANTUM_SHIFT; 2615 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2616 __sk_mem_reduce_allocated(sk, amount); 2617 } 2618 EXPORT_SYMBOL(__sk_mem_reclaim); 2619 2620 int sk_set_peek_off(struct sock *sk, int val) 2621 { 2622 sk->sk_peek_off = val; 2623 return 0; 2624 } 2625 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2626 2627 /* 2628 * Set of default routines for initialising struct proto_ops when 2629 * the protocol does not support a particular function. In certain 2630 * cases where it makes no sense for a protocol to have a "do nothing" 2631 * function, some default processing is provided. 2632 */ 2633 2634 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2635 { 2636 return -EOPNOTSUPP; 2637 } 2638 EXPORT_SYMBOL(sock_no_bind); 2639 2640 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2641 int len, int flags) 2642 { 2643 return -EOPNOTSUPP; 2644 } 2645 EXPORT_SYMBOL(sock_no_connect); 2646 2647 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2648 { 2649 return -EOPNOTSUPP; 2650 } 2651 EXPORT_SYMBOL(sock_no_socketpair); 2652 2653 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2654 bool kern) 2655 { 2656 return -EOPNOTSUPP; 2657 } 2658 EXPORT_SYMBOL(sock_no_accept); 2659 2660 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2661 int peer) 2662 { 2663 return -EOPNOTSUPP; 2664 } 2665 EXPORT_SYMBOL(sock_no_getname); 2666 2667 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2668 { 2669 return -EOPNOTSUPP; 2670 } 2671 EXPORT_SYMBOL(sock_no_ioctl); 2672 2673 int sock_no_listen(struct socket *sock, int backlog) 2674 { 2675 return -EOPNOTSUPP; 2676 } 2677 EXPORT_SYMBOL(sock_no_listen); 2678 2679 int sock_no_shutdown(struct socket *sock, int how) 2680 { 2681 return -EOPNOTSUPP; 2682 } 2683 EXPORT_SYMBOL(sock_no_shutdown); 2684 2685 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2686 char __user *optval, unsigned int optlen) 2687 { 2688 return -EOPNOTSUPP; 2689 } 2690 EXPORT_SYMBOL(sock_no_setsockopt); 2691 2692 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2693 char __user *optval, int __user *optlen) 2694 { 2695 return -EOPNOTSUPP; 2696 } 2697 EXPORT_SYMBOL(sock_no_getsockopt); 2698 2699 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2700 { 2701 return -EOPNOTSUPP; 2702 } 2703 EXPORT_SYMBOL(sock_no_sendmsg); 2704 2705 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2706 { 2707 return -EOPNOTSUPP; 2708 } 2709 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2710 2711 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2712 int flags) 2713 { 2714 return -EOPNOTSUPP; 2715 } 2716 EXPORT_SYMBOL(sock_no_recvmsg); 2717 2718 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2719 { 2720 /* Mirror missing mmap method error code */ 2721 return -ENODEV; 2722 } 2723 EXPORT_SYMBOL(sock_no_mmap); 2724 2725 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2726 { 2727 ssize_t res; 2728 struct msghdr msg = {.msg_flags = flags}; 2729 struct kvec iov; 2730 char *kaddr = kmap(page); 2731 iov.iov_base = kaddr + offset; 2732 iov.iov_len = size; 2733 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2734 kunmap(page); 2735 return res; 2736 } 2737 EXPORT_SYMBOL(sock_no_sendpage); 2738 2739 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2740 int offset, size_t size, int flags) 2741 { 2742 ssize_t res; 2743 struct msghdr msg = {.msg_flags = flags}; 2744 struct kvec iov; 2745 char *kaddr = kmap(page); 2746 2747 iov.iov_base = kaddr + offset; 2748 iov.iov_len = size; 2749 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2750 kunmap(page); 2751 return res; 2752 } 2753 EXPORT_SYMBOL(sock_no_sendpage_locked); 2754 2755 /* 2756 * Default Socket Callbacks 2757 */ 2758 2759 static void sock_def_wakeup(struct sock *sk) 2760 { 2761 struct socket_wq *wq; 2762 2763 rcu_read_lock(); 2764 wq = rcu_dereference(sk->sk_wq); 2765 if (skwq_has_sleeper(wq)) 2766 wake_up_interruptible_all(&wq->wait); 2767 rcu_read_unlock(); 2768 } 2769 2770 static void sock_def_error_report(struct sock *sk) 2771 { 2772 struct socket_wq *wq; 2773 2774 rcu_read_lock(); 2775 wq = rcu_dereference(sk->sk_wq); 2776 if (skwq_has_sleeper(wq)) 2777 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2778 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2779 rcu_read_unlock(); 2780 } 2781 2782 static void sock_def_readable(struct sock *sk) 2783 { 2784 struct socket_wq *wq; 2785 2786 rcu_read_lock(); 2787 wq = rcu_dereference(sk->sk_wq); 2788 if (skwq_has_sleeper(wq)) 2789 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2790 EPOLLRDNORM | EPOLLRDBAND); 2791 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2792 rcu_read_unlock(); 2793 } 2794 2795 static void sock_def_write_space(struct sock *sk) 2796 { 2797 struct socket_wq *wq; 2798 2799 rcu_read_lock(); 2800 2801 /* Do not wake up a writer until he can make "significant" 2802 * progress. --DaveM 2803 */ 2804 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2805 wq = rcu_dereference(sk->sk_wq); 2806 if (skwq_has_sleeper(wq)) 2807 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2808 EPOLLWRNORM | EPOLLWRBAND); 2809 2810 /* Should agree with poll, otherwise some programs break */ 2811 if (sock_writeable(sk)) 2812 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2813 } 2814 2815 rcu_read_unlock(); 2816 } 2817 2818 static void sock_def_destruct(struct sock *sk) 2819 { 2820 } 2821 2822 void sk_send_sigurg(struct sock *sk) 2823 { 2824 if (sk->sk_socket && sk->sk_socket->file) 2825 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2826 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2827 } 2828 EXPORT_SYMBOL(sk_send_sigurg); 2829 2830 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2831 unsigned long expires) 2832 { 2833 if (!mod_timer(timer, expires)) 2834 sock_hold(sk); 2835 } 2836 EXPORT_SYMBOL(sk_reset_timer); 2837 2838 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2839 { 2840 if (del_timer(timer)) 2841 __sock_put(sk); 2842 } 2843 EXPORT_SYMBOL(sk_stop_timer); 2844 2845 void sock_init_data(struct socket *sock, struct sock *sk) 2846 { 2847 sk_init_common(sk); 2848 sk->sk_send_head = NULL; 2849 2850 timer_setup(&sk->sk_timer, NULL, 0); 2851 2852 sk->sk_allocation = GFP_KERNEL; 2853 sk->sk_rcvbuf = sysctl_rmem_default; 2854 sk->sk_sndbuf = sysctl_wmem_default; 2855 sk->sk_state = TCP_CLOSE; 2856 sk_set_socket(sk, sock); 2857 2858 sock_set_flag(sk, SOCK_ZAPPED); 2859 2860 if (sock) { 2861 sk->sk_type = sock->type; 2862 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2863 sock->sk = sk; 2864 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2865 } else { 2866 RCU_INIT_POINTER(sk->sk_wq, NULL); 2867 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2868 } 2869 2870 rwlock_init(&sk->sk_callback_lock); 2871 if (sk->sk_kern_sock) 2872 lockdep_set_class_and_name( 2873 &sk->sk_callback_lock, 2874 af_kern_callback_keys + sk->sk_family, 2875 af_family_kern_clock_key_strings[sk->sk_family]); 2876 else 2877 lockdep_set_class_and_name( 2878 &sk->sk_callback_lock, 2879 af_callback_keys + sk->sk_family, 2880 af_family_clock_key_strings[sk->sk_family]); 2881 2882 sk->sk_state_change = sock_def_wakeup; 2883 sk->sk_data_ready = sock_def_readable; 2884 sk->sk_write_space = sock_def_write_space; 2885 sk->sk_error_report = sock_def_error_report; 2886 sk->sk_destruct = sock_def_destruct; 2887 2888 sk->sk_frag.page = NULL; 2889 sk->sk_frag.offset = 0; 2890 sk->sk_peek_off = -1; 2891 2892 sk->sk_peer_pid = NULL; 2893 sk->sk_peer_cred = NULL; 2894 sk->sk_write_pending = 0; 2895 sk->sk_rcvlowat = 1; 2896 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2897 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2898 2899 sk->sk_stamp = SK_DEFAULT_STAMP; 2900 #if BITS_PER_LONG==32 2901 seqlock_init(&sk->sk_stamp_seq); 2902 #endif 2903 atomic_set(&sk->sk_zckey, 0); 2904 2905 #ifdef CONFIG_NET_RX_BUSY_POLL 2906 sk->sk_napi_id = 0; 2907 sk->sk_ll_usec = sysctl_net_busy_read; 2908 #endif 2909 2910 sk->sk_max_pacing_rate = ~0UL; 2911 sk->sk_pacing_rate = ~0UL; 2912 sk->sk_pacing_shift = 10; 2913 sk->sk_incoming_cpu = -1; 2914 2915 sk_rx_queue_clear(sk); 2916 /* 2917 * Before updating sk_refcnt, we must commit prior changes to memory 2918 * (Documentation/RCU/rculist_nulls.txt for details) 2919 */ 2920 smp_wmb(); 2921 refcount_set(&sk->sk_refcnt, 1); 2922 atomic_set(&sk->sk_drops, 0); 2923 } 2924 EXPORT_SYMBOL(sock_init_data); 2925 2926 void lock_sock_nested(struct sock *sk, int subclass) 2927 { 2928 might_sleep(); 2929 spin_lock_bh(&sk->sk_lock.slock); 2930 if (sk->sk_lock.owned) 2931 __lock_sock(sk); 2932 sk->sk_lock.owned = 1; 2933 spin_unlock(&sk->sk_lock.slock); 2934 /* 2935 * The sk_lock has mutex_lock() semantics here: 2936 */ 2937 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2938 local_bh_enable(); 2939 } 2940 EXPORT_SYMBOL(lock_sock_nested); 2941 2942 void release_sock(struct sock *sk) 2943 { 2944 spin_lock_bh(&sk->sk_lock.slock); 2945 if (sk->sk_backlog.tail) 2946 __release_sock(sk); 2947 2948 /* Warning : release_cb() might need to release sk ownership, 2949 * ie call sock_release_ownership(sk) before us. 2950 */ 2951 if (sk->sk_prot->release_cb) 2952 sk->sk_prot->release_cb(sk); 2953 2954 sock_release_ownership(sk); 2955 if (waitqueue_active(&sk->sk_lock.wq)) 2956 wake_up(&sk->sk_lock.wq); 2957 spin_unlock_bh(&sk->sk_lock.slock); 2958 } 2959 EXPORT_SYMBOL(release_sock); 2960 2961 /** 2962 * lock_sock_fast - fast version of lock_sock 2963 * @sk: socket 2964 * 2965 * This version should be used for very small section, where process wont block 2966 * return false if fast path is taken: 2967 * 2968 * sk_lock.slock locked, owned = 0, BH disabled 2969 * 2970 * return true if slow path is taken: 2971 * 2972 * sk_lock.slock unlocked, owned = 1, BH enabled 2973 */ 2974 bool lock_sock_fast(struct sock *sk) 2975 { 2976 might_sleep(); 2977 spin_lock_bh(&sk->sk_lock.slock); 2978 2979 if (!sk->sk_lock.owned) 2980 /* 2981 * Note : We must disable BH 2982 */ 2983 return false; 2984 2985 __lock_sock(sk); 2986 sk->sk_lock.owned = 1; 2987 spin_unlock(&sk->sk_lock.slock); 2988 /* 2989 * The sk_lock has mutex_lock() semantics here: 2990 */ 2991 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2992 local_bh_enable(); 2993 return true; 2994 } 2995 EXPORT_SYMBOL(lock_sock_fast); 2996 2997 int sock_gettstamp(struct socket *sock, void __user *userstamp, 2998 bool timeval, bool time32) 2999 { 3000 struct sock *sk = sock->sk; 3001 struct timespec64 ts; 3002 3003 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3004 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3005 if (ts.tv_sec == -1) 3006 return -ENOENT; 3007 if (ts.tv_sec == 0) { 3008 ktime_t kt = ktime_get_real(); 3009 sock_write_timestamp(sk, kt);; 3010 ts = ktime_to_timespec64(kt); 3011 } 3012 3013 if (timeval) 3014 ts.tv_nsec /= 1000; 3015 3016 #ifdef CONFIG_COMPAT_32BIT_TIME 3017 if (time32) 3018 return put_old_timespec32(&ts, userstamp); 3019 #endif 3020 #ifdef CONFIG_SPARC64 3021 /* beware of padding in sparc64 timeval */ 3022 if (timeval && !in_compat_syscall()) { 3023 struct __kernel_old_timeval __user tv = { 3024 .tv_sec = ts.tv_sec, 3025 .tv_usec = ts.tv_nsec, 3026 }; 3027 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3028 return -EFAULT; 3029 return 0; 3030 } 3031 #endif 3032 return put_timespec64(&ts, userstamp); 3033 } 3034 EXPORT_SYMBOL(sock_gettstamp); 3035 3036 void sock_enable_timestamp(struct sock *sk, int flag) 3037 { 3038 if (!sock_flag(sk, flag)) { 3039 unsigned long previous_flags = sk->sk_flags; 3040 3041 sock_set_flag(sk, flag); 3042 /* 3043 * we just set one of the two flags which require net 3044 * time stamping, but time stamping might have been on 3045 * already because of the other one 3046 */ 3047 if (sock_needs_netstamp(sk) && 3048 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3049 net_enable_timestamp(); 3050 } 3051 } 3052 3053 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3054 int level, int type) 3055 { 3056 struct sock_exterr_skb *serr; 3057 struct sk_buff *skb; 3058 int copied, err; 3059 3060 err = -EAGAIN; 3061 skb = sock_dequeue_err_skb(sk); 3062 if (skb == NULL) 3063 goto out; 3064 3065 copied = skb->len; 3066 if (copied > len) { 3067 msg->msg_flags |= MSG_TRUNC; 3068 copied = len; 3069 } 3070 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3071 if (err) 3072 goto out_free_skb; 3073 3074 sock_recv_timestamp(msg, sk, skb); 3075 3076 serr = SKB_EXT_ERR(skb); 3077 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3078 3079 msg->msg_flags |= MSG_ERRQUEUE; 3080 err = copied; 3081 3082 out_free_skb: 3083 kfree_skb(skb); 3084 out: 3085 return err; 3086 } 3087 EXPORT_SYMBOL(sock_recv_errqueue); 3088 3089 /* 3090 * Get a socket option on an socket. 3091 * 3092 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3093 * asynchronous errors should be reported by getsockopt. We assume 3094 * this means if you specify SO_ERROR (otherwise whats the point of it). 3095 */ 3096 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3097 char __user *optval, int __user *optlen) 3098 { 3099 struct sock *sk = sock->sk; 3100 3101 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3102 } 3103 EXPORT_SYMBOL(sock_common_getsockopt); 3104 3105 #ifdef CONFIG_COMPAT 3106 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3107 char __user *optval, int __user *optlen) 3108 { 3109 struct sock *sk = sock->sk; 3110 3111 if (sk->sk_prot->compat_getsockopt != NULL) 3112 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3113 optval, optlen); 3114 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3115 } 3116 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3117 #endif 3118 3119 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3120 int flags) 3121 { 3122 struct sock *sk = sock->sk; 3123 int addr_len = 0; 3124 int err; 3125 3126 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3127 flags & ~MSG_DONTWAIT, &addr_len); 3128 if (err >= 0) 3129 msg->msg_namelen = addr_len; 3130 return err; 3131 } 3132 EXPORT_SYMBOL(sock_common_recvmsg); 3133 3134 /* 3135 * Set socket options on an inet socket. 3136 */ 3137 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3138 char __user *optval, unsigned int optlen) 3139 { 3140 struct sock *sk = sock->sk; 3141 3142 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3143 } 3144 EXPORT_SYMBOL(sock_common_setsockopt); 3145 3146 #ifdef CONFIG_COMPAT 3147 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3148 char __user *optval, unsigned int optlen) 3149 { 3150 struct sock *sk = sock->sk; 3151 3152 if (sk->sk_prot->compat_setsockopt != NULL) 3153 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3154 optval, optlen); 3155 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3156 } 3157 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3158 #endif 3159 3160 void sk_common_release(struct sock *sk) 3161 { 3162 if (sk->sk_prot->destroy) 3163 sk->sk_prot->destroy(sk); 3164 3165 /* 3166 * Observation: when sock_common_release is called, processes have 3167 * no access to socket. But net still has. 3168 * Step one, detach it from networking: 3169 * 3170 * A. Remove from hash tables. 3171 */ 3172 3173 sk->sk_prot->unhash(sk); 3174 3175 /* 3176 * In this point socket cannot receive new packets, but it is possible 3177 * that some packets are in flight because some CPU runs receiver and 3178 * did hash table lookup before we unhashed socket. They will achieve 3179 * receive queue and will be purged by socket destructor. 3180 * 3181 * Also we still have packets pending on receive queue and probably, 3182 * our own packets waiting in device queues. sock_destroy will drain 3183 * receive queue, but transmitted packets will delay socket destruction 3184 * until the last reference will be released. 3185 */ 3186 3187 sock_orphan(sk); 3188 3189 xfrm_sk_free_policy(sk); 3190 3191 sk_refcnt_debug_release(sk); 3192 3193 sock_put(sk); 3194 } 3195 EXPORT_SYMBOL(sk_common_release); 3196 3197 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3198 { 3199 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3200 3201 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3202 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3203 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3204 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3205 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3206 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3207 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3208 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3209 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3210 } 3211 3212 #ifdef CONFIG_PROC_FS 3213 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3214 struct prot_inuse { 3215 int val[PROTO_INUSE_NR]; 3216 }; 3217 3218 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3219 3220 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3221 { 3222 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3223 } 3224 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3225 3226 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3227 { 3228 int cpu, idx = prot->inuse_idx; 3229 int res = 0; 3230 3231 for_each_possible_cpu(cpu) 3232 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3233 3234 return res >= 0 ? res : 0; 3235 } 3236 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3237 3238 static void sock_inuse_add(struct net *net, int val) 3239 { 3240 this_cpu_add(*net->core.sock_inuse, val); 3241 } 3242 3243 int sock_inuse_get(struct net *net) 3244 { 3245 int cpu, res = 0; 3246 3247 for_each_possible_cpu(cpu) 3248 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3249 3250 return res; 3251 } 3252 3253 EXPORT_SYMBOL_GPL(sock_inuse_get); 3254 3255 static int __net_init sock_inuse_init_net(struct net *net) 3256 { 3257 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3258 if (net->core.prot_inuse == NULL) 3259 return -ENOMEM; 3260 3261 net->core.sock_inuse = alloc_percpu(int); 3262 if (net->core.sock_inuse == NULL) 3263 goto out; 3264 3265 return 0; 3266 3267 out: 3268 free_percpu(net->core.prot_inuse); 3269 return -ENOMEM; 3270 } 3271 3272 static void __net_exit sock_inuse_exit_net(struct net *net) 3273 { 3274 free_percpu(net->core.prot_inuse); 3275 free_percpu(net->core.sock_inuse); 3276 } 3277 3278 static struct pernet_operations net_inuse_ops = { 3279 .init = sock_inuse_init_net, 3280 .exit = sock_inuse_exit_net, 3281 }; 3282 3283 static __init int net_inuse_init(void) 3284 { 3285 if (register_pernet_subsys(&net_inuse_ops)) 3286 panic("Cannot initialize net inuse counters"); 3287 3288 return 0; 3289 } 3290 3291 core_initcall(net_inuse_init); 3292 3293 static int assign_proto_idx(struct proto *prot) 3294 { 3295 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3296 3297 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3298 pr_err("PROTO_INUSE_NR exhausted\n"); 3299 return -ENOSPC; 3300 } 3301 3302 set_bit(prot->inuse_idx, proto_inuse_idx); 3303 return 0; 3304 } 3305 3306 static void release_proto_idx(struct proto *prot) 3307 { 3308 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3309 clear_bit(prot->inuse_idx, proto_inuse_idx); 3310 } 3311 #else 3312 static inline int assign_proto_idx(struct proto *prot) 3313 { 3314 return 0; 3315 } 3316 3317 static inline void release_proto_idx(struct proto *prot) 3318 { 3319 } 3320 3321 static void sock_inuse_add(struct net *net, int val) 3322 { 3323 } 3324 #endif 3325 3326 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3327 { 3328 if (!rsk_prot) 3329 return; 3330 kfree(rsk_prot->slab_name); 3331 rsk_prot->slab_name = NULL; 3332 kmem_cache_destroy(rsk_prot->slab); 3333 rsk_prot->slab = NULL; 3334 } 3335 3336 static int req_prot_init(const struct proto *prot) 3337 { 3338 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3339 3340 if (!rsk_prot) 3341 return 0; 3342 3343 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3344 prot->name); 3345 if (!rsk_prot->slab_name) 3346 return -ENOMEM; 3347 3348 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3349 rsk_prot->obj_size, 0, 3350 SLAB_ACCOUNT | prot->slab_flags, 3351 NULL); 3352 3353 if (!rsk_prot->slab) { 3354 pr_crit("%s: Can't create request sock SLAB cache!\n", 3355 prot->name); 3356 return -ENOMEM; 3357 } 3358 return 0; 3359 } 3360 3361 int proto_register(struct proto *prot, int alloc_slab) 3362 { 3363 int ret = -ENOBUFS; 3364 3365 if (alloc_slab) { 3366 prot->slab = kmem_cache_create_usercopy(prot->name, 3367 prot->obj_size, 0, 3368 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3369 prot->slab_flags, 3370 prot->useroffset, prot->usersize, 3371 NULL); 3372 3373 if (prot->slab == NULL) { 3374 pr_crit("%s: Can't create sock SLAB cache!\n", 3375 prot->name); 3376 goto out; 3377 } 3378 3379 if (req_prot_init(prot)) 3380 goto out_free_request_sock_slab; 3381 3382 if (prot->twsk_prot != NULL) { 3383 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3384 3385 if (prot->twsk_prot->twsk_slab_name == NULL) 3386 goto out_free_request_sock_slab; 3387 3388 prot->twsk_prot->twsk_slab = 3389 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3390 prot->twsk_prot->twsk_obj_size, 3391 0, 3392 SLAB_ACCOUNT | 3393 prot->slab_flags, 3394 NULL); 3395 if (prot->twsk_prot->twsk_slab == NULL) 3396 goto out_free_timewait_sock_slab_name; 3397 } 3398 } 3399 3400 mutex_lock(&proto_list_mutex); 3401 ret = assign_proto_idx(prot); 3402 if (ret) { 3403 mutex_unlock(&proto_list_mutex); 3404 goto out_free_timewait_sock_slab_name; 3405 } 3406 list_add(&prot->node, &proto_list); 3407 mutex_unlock(&proto_list_mutex); 3408 return ret; 3409 3410 out_free_timewait_sock_slab_name: 3411 if (alloc_slab && prot->twsk_prot) 3412 kfree(prot->twsk_prot->twsk_slab_name); 3413 out_free_request_sock_slab: 3414 if (alloc_slab) { 3415 req_prot_cleanup(prot->rsk_prot); 3416 3417 kmem_cache_destroy(prot->slab); 3418 prot->slab = NULL; 3419 } 3420 out: 3421 return ret; 3422 } 3423 EXPORT_SYMBOL(proto_register); 3424 3425 void proto_unregister(struct proto *prot) 3426 { 3427 mutex_lock(&proto_list_mutex); 3428 release_proto_idx(prot); 3429 list_del(&prot->node); 3430 mutex_unlock(&proto_list_mutex); 3431 3432 kmem_cache_destroy(prot->slab); 3433 prot->slab = NULL; 3434 3435 req_prot_cleanup(prot->rsk_prot); 3436 3437 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3438 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3439 kfree(prot->twsk_prot->twsk_slab_name); 3440 prot->twsk_prot->twsk_slab = NULL; 3441 } 3442 } 3443 EXPORT_SYMBOL(proto_unregister); 3444 3445 int sock_load_diag_module(int family, int protocol) 3446 { 3447 if (!protocol) { 3448 if (!sock_is_registered(family)) 3449 return -ENOENT; 3450 3451 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3452 NETLINK_SOCK_DIAG, family); 3453 } 3454 3455 #ifdef CONFIG_INET 3456 if (family == AF_INET && 3457 protocol != IPPROTO_RAW && 3458 !rcu_access_pointer(inet_protos[protocol])) 3459 return -ENOENT; 3460 #endif 3461 3462 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3463 NETLINK_SOCK_DIAG, family, protocol); 3464 } 3465 EXPORT_SYMBOL(sock_load_diag_module); 3466 3467 #ifdef CONFIG_PROC_FS 3468 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3469 __acquires(proto_list_mutex) 3470 { 3471 mutex_lock(&proto_list_mutex); 3472 return seq_list_start_head(&proto_list, *pos); 3473 } 3474 3475 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3476 { 3477 return seq_list_next(v, &proto_list, pos); 3478 } 3479 3480 static void proto_seq_stop(struct seq_file *seq, void *v) 3481 __releases(proto_list_mutex) 3482 { 3483 mutex_unlock(&proto_list_mutex); 3484 } 3485 3486 static char proto_method_implemented(const void *method) 3487 { 3488 return method == NULL ? 'n' : 'y'; 3489 } 3490 static long sock_prot_memory_allocated(struct proto *proto) 3491 { 3492 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3493 } 3494 3495 static char *sock_prot_memory_pressure(struct proto *proto) 3496 { 3497 return proto->memory_pressure != NULL ? 3498 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3499 } 3500 3501 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3502 { 3503 3504 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3505 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3506 proto->name, 3507 proto->obj_size, 3508 sock_prot_inuse_get(seq_file_net(seq), proto), 3509 sock_prot_memory_allocated(proto), 3510 sock_prot_memory_pressure(proto), 3511 proto->max_header, 3512 proto->slab == NULL ? "no" : "yes", 3513 module_name(proto->owner), 3514 proto_method_implemented(proto->close), 3515 proto_method_implemented(proto->connect), 3516 proto_method_implemented(proto->disconnect), 3517 proto_method_implemented(proto->accept), 3518 proto_method_implemented(proto->ioctl), 3519 proto_method_implemented(proto->init), 3520 proto_method_implemented(proto->destroy), 3521 proto_method_implemented(proto->shutdown), 3522 proto_method_implemented(proto->setsockopt), 3523 proto_method_implemented(proto->getsockopt), 3524 proto_method_implemented(proto->sendmsg), 3525 proto_method_implemented(proto->recvmsg), 3526 proto_method_implemented(proto->sendpage), 3527 proto_method_implemented(proto->bind), 3528 proto_method_implemented(proto->backlog_rcv), 3529 proto_method_implemented(proto->hash), 3530 proto_method_implemented(proto->unhash), 3531 proto_method_implemented(proto->get_port), 3532 proto_method_implemented(proto->enter_memory_pressure)); 3533 } 3534 3535 static int proto_seq_show(struct seq_file *seq, void *v) 3536 { 3537 if (v == &proto_list) 3538 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3539 "protocol", 3540 "size", 3541 "sockets", 3542 "memory", 3543 "press", 3544 "maxhdr", 3545 "slab", 3546 "module", 3547 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3548 else 3549 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3550 return 0; 3551 } 3552 3553 static const struct seq_operations proto_seq_ops = { 3554 .start = proto_seq_start, 3555 .next = proto_seq_next, 3556 .stop = proto_seq_stop, 3557 .show = proto_seq_show, 3558 }; 3559 3560 static __net_init int proto_init_net(struct net *net) 3561 { 3562 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3563 sizeof(struct seq_net_private))) 3564 return -ENOMEM; 3565 3566 return 0; 3567 } 3568 3569 static __net_exit void proto_exit_net(struct net *net) 3570 { 3571 remove_proc_entry("protocols", net->proc_net); 3572 } 3573 3574 3575 static __net_initdata struct pernet_operations proto_net_ops = { 3576 .init = proto_init_net, 3577 .exit = proto_exit_net, 3578 }; 3579 3580 static int __init proto_init(void) 3581 { 3582 return register_pernet_subsys(&proto_net_ops); 3583 } 3584 3585 subsys_initcall(proto_init); 3586 3587 #endif /* PROC_FS */ 3588 3589 #ifdef CONFIG_NET_RX_BUSY_POLL 3590 bool sk_busy_loop_end(void *p, unsigned long start_time) 3591 { 3592 struct sock *sk = p; 3593 3594 return !skb_queue_empty(&sk->sk_receive_queue) || 3595 sk_busy_loop_timeout(sk, start_time); 3596 } 3597 EXPORT_SYMBOL(sk_busy_loop_end); 3598 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3599