1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 static DEFINE_MUTEX(proto_list_mutex); 143 static LIST_HEAD(proto_list); 144 145 static void sock_inuse_add(struct net *net, int val); 146 147 /** 148 * sk_ns_capable - General socket capability test 149 * @sk: Socket to use a capability on or through 150 * @user_ns: The user namespace of the capability to use 151 * @cap: The capability to use 152 * 153 * Test to see if the opener of the socket had when the socket was 154 * created and the current process has the capability @cap in the user 155 * namespace @user_ns. 156 */ 157 bool sk_ns_capable(const struct sock *sk, 158 struct user_namespace *user_ns, int cap) 159 { 160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 161 ns_capable(user_ns, cap); 162 } 163 EXPORT_SYMBOL(sk_ns_capable); 164 165 /** 166 * sk_capable - Socket global capability test 167 * @sk: Socket to use a capability on or through 168 * @cap: The global capability to use 169 * 170 * Test to see if the opener of the socket had when the socket was 171 * created and the current process has the capability @cap in all user 172 * namespaces. 173 */ 174 bool sk_capable(const struct sock *sk, int cap) 175 { 176 return sk_ns_capable(sk, &init_user_ns, cap); 177 } 178 EXPORT_SYMBOL(sk_capable); 179 180 /** 181 * sk_net_capable - Network namespace socket capability test 182 * @sk: Socket to use a capability on or through 183 * @cap: The capability to use 184 * 185 * Test to see if the opener of the socket had when the socket was created 186 * and the current process has the capability @cap over the network namespace 187 * the socket is a member of. 188 */ 189 bool sk_net_capable(const struct sock *sk, int cap) 190 { 191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 192 } 193 EXPORT_SYMBOL(sk_net_capable); 194 195 /* 196 * Each address family might have different locking rules, so we have 197 * one slock key per address family and separate keys for internal and 198 * userspace sockets. 199 */ 200 static struct lock_class_key af_family_keys[AF_MAX]; 201 static struct lock_class_key af_family_kern_keys[AF_MAX]; 202 static struct lock_class_key af_family_slock_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 211 #define _sock_locks(x) \ 212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 221 x "27" , x "28" , x "AF_CAN" , \ 222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 227 x "AF_MAX" 228 229 static const char *const af_family_key_strings[AF_MAX+1] = { 230 _sock_locks("sk_lock-") 231 }; 232 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 233 _sock_locks("slock-") 234 }; 235 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 236 _sock_locks("clock-") 237 }; 238 239 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 240 _sock_locks("k-sk_lock-") 241 }; 242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("k-slock-") 244 }; 245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-clock-") 247 }; 248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 249 _sock_locks("rlock-") 250 }; 251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 252 _sock_locks("wlock-") 253 }; 254 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 255 _sock_locks("elock-") 256 }; 257 258 /* 259 * sk_callback_lock and sk queues locking rules are per-address-family, 260 * so split the lock classes by using a per-AF key: 261 */ 262 static struct lock_class_key af_callback_keys[AF_MAX]; 263 static struct lock_class_key af_rlock_keys[AF_MAX]; 264 static struct lock_class_key af_wlock_keys[AF_MAX]; 265 static struct lock_class_key af_elock_keys[AF_MAX]; 266 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 267 268 /* Run time adjustable parameters. */ 269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 270 EXPORT_SYMBOL(sysctl_wmem_max); 271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 272 EXPORT_SYMBOL(sysctl_rmem_max); 273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 275 276 /* Maximal space eaten by iovec or ancillary data plus some space */ 277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 278 EXPORT_SYMBOL(sysctl_optmem_max); 279 280 int sysctl_tstamp_allow_data __read_mostly = 1; 281 282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 283 EXPORT_SYMBOL_GPL(memalloc_socks_key); 284 285 /** 286 * sk_set_memalloc - sets %SOCK_MEMALLOC 287 * @sk: socket to set it on 288 * 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 290 * It's the responsibility of the admin to adjust min_free_kbytes 291 * to meet the requirements 292 */ 293 void sk_set_memalloc(struct sock *sk) 294 { 295 sock_set_flag(sk, SOCK_MEMALLOC); 296 sk->sk_allocation |= __GFP_MEMALLOC; 297 static_branch_inc(&memalloc_socks_key); 298 } 299 EXPORT_SYMBOL_GPL(sk_set_memalloc); 300 301 void sk_clear_memalloc(struct sock *sk) 302 { 303 sock_reset_flag(sk, SOCK_MEMALLOC); 304 sk->sk_allocation &= ~__GFP_MEMALLOC; 305 static_branch_dec(&memalloc_socks_key); 306 307 /* 308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 309 * progress of swapping. SOCK_MEMALLOC may be cleared while 310 * it has rmem allocations due to the last swapfile being deactivated 311 * but there is a risk that the socket is unusable due to exceeding 312 * the rmem limits. Reclaim the reserves and obey rmem limits again. 313 */ 314 sk_mem_reclaim(sk); 315 } 316 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 317 318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 319 { 320 int ret; 321 unsigned int noreclaim_flag; 322 323 /* these should have been dropped before queueing */ 324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 325 326 noreclaim_flag = memalloc_noreclaim_save(); 327 ret = sk->sk_backlog_rcv(sk, skb); 328 memalloc_noreclaim_restore(noreclaim_flag); 329 330 return ret; 331 } 332 EXPORT_SYMBOL(__sk_backlog_rcv); 333 334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 335 { 336 struct __kernel_sock_timeval tv; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 return sizeof(old_tv); 358 } 359 360 *(struct __kernel_sock_timeval *)optval = tv; 361 return sizeof(tv); 362 } 363 364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 365 bool old_timeval) 366 { 367 struct __kernel_sock_timeval tv; 368 369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 370 struct old_timeval32 tv32; 371 372 if (optlen < sizeof(tv32)) 373 return -EINVAL; 374 375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 376 return -EFAULT; 377 tv.tv_sec = tv32.tv_sec; 378 tv.tv_usec = tv32.tv_usec; 379 } else if (old_timeval) { 380 struct __kernel_old_timeval old_tv; 381 382 if (optlen < sizeof(old_tv)) 383 return -EINVAL; 384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 385 return -EFAULT; 386 tv.tv_sec = old_tv.tv_sec; 387 tv.tv_usec = old_tv.tv_usec; 388 } else { 389 if (optlen < sizeof(tv)) 390 return -EINVAL; 391 if (copy_from_sockptr(&tv, optval, sizeof(tv))) 392 return -EFAULT; 393 } 394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 395 return -EDOM; 396 397 if (tv.tv_sec < 0) { 398 static int warned __read_mostly; 399 400 *timeo_p = 0; 401 if (warned < 10 && net_ratelimit()) { 402 warned++; 403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 404 __func__, current->comm, task_pid_nr(current)); 405 } 406 return 0; 407 } 408 *timeo_p = MAX_SCHEDULE_TIMEOUT; 409 if (tv.tv_sec == 0 && tv.tv_usec == 0) 410 return 0; 411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 413 return 0; 414 } 415 416 static bool sock_needs_netstamp(const struct sock *sk) 417 { 418 switch (sk->sk_family) { 419 case AF_UNSPEC: 420 case AF_UNIX: 421 return false; 422 default: 423 return true; 424 } 425 } 426 427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 428 { 429 if (sk->sk_flags & flags) { 430 sk->sk_flags &= ~flags; 431 if (sock_needs_netstamp(sk) && 432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 433 net_disable_timestamp(); 434 } 435 } 436 437 438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 439 { 440 unsigned long flags; 441 struct sk_buff_head *list = &sk->sk_receive_queue; 442 443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 444 atomic_inc(&sk->sk_drops); 445 trace_sock_rcvqueue_full(sk, skb); 446 return -ENOMEM; 447 } 448 449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 450 atomic_inc(&sk->sk_drops); 451 return -ENOBUFS; 452 } 453 454 skb->dev = NULL; 455 skb_set_owner_r(skb, sk); 456 457 /* we escape from rcu protected region, make sure we dont leak 458 * a norefcounted dst 459 */ 460 skb_dst_force(skb); 461 462 spin_lock_irqsave(&list->lock, flags); 463 sock_skb_set_dropcount(sk, skb); 464 __skb_queue_tail(list, skb); 465 spin_unlock_irqrestore(&list->lock, flags); 466 467 if (!sock_flag(sk, SOCK_DEAD)) 468 sk->sk_data_ready(sk); 469 return 0; 470 } 471 EXPORT_SYMBOL(__sock_queue_rcv_skb); 472 473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 474 { 475 int err; 476 477 err = sk_filter(sk, skb); 478 if (err) 479 return err; 480 481 return __sock_queue_rcv_skb(sk, skb); 482 } 483 EXPORT_SYMBOL(sock_queue_rcv_skb); 484 485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 486 const int nested, unsigned int trim_cap, bool refcounted) 487 { 488 int rc = NET_RX_SUCCESS; 489 490 if (sk_filter_trim_cap(sk, skb, trim_cap)) 491 goto discard_and_relse; 492 493 skb->dev = NULL; 494 495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 496 atomic_inc(&sk->sk_drops); 497 goto discard_and_relse; 498 } 499 if (nested) 500 bh_lock_sock_nested(sk); 501 else 502 bh_lock_sock(sk); 503 if (!sock_owned_by_user(sk)) { 504 /* 505 * trylock + unlock semantics: 506 */ 507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 508 509 rc = sk_backlog_rcv(sk, skb); 510 511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 513 bh_unlock_sock(sk); 514 atomic_inc(&sk->sk_drops); 515 goto discard_and_relse; 516 } 517 518 bh_unlock_sock(sk); 519 out: 520 if (refcounted) 521 sock_put(sk); 522 return rc; 523 discard_and_relse: 524 kfree_skb(skb); 525 goto out; 526 } 527 EXPORT_SYMBOL(__sk_receive_skb); 528 529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 530 { 531 struct dst_entry *dst = __sk_dst_get(sk); 532 533 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 534 sk_tx_queue_clear(sk); 535 sk->sk_dst_pending_confirm = 0; 536 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 537 dst_release(dst); 538 return NULL; 539 } 540 541 return dst; 542 } 543 EXPORT_SYMBOL(__sk_dst_check); 544 545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 546 { 547 struct dst_entry *dst = sk_dst_get(sk); 548 549 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 550 sk_dst_reset(sk); 551 dst_release(dst); 552 return NULL; 553 } 554 555 return dst; 556 } 557 EXPORT_SYMBOL(sk_dst_check); 558 559 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 560 { 561 int ret = -ENOPROTOOPT; 562 #ifdef CONFIG_NETDEVICES 563 struct net *net = sock_net(sk); 564 565 /* Sorry... */ 566 ret = -EPERM; 567 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 568 goto out; 569 570 ret = -EINVAL; 571 if (ifindex < 0) 572 goto out; 573 574 sk->sk_bound_dev_if = ifindex; 575 if (sk->sk_prot->rehash) 576 sk->sk_prot->rehash(sk); 577 sk_dst_reset(sk); 578 579 ret = 0; 580 581 out: 582 #endif 583 584 return ret; 585 } 586 587 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 588 { 589 int ret; 590 591 if (lock_sk) 592 lock_sock(sk); 593 ret = sock_bindtoindex_locked(sk, ifindex); 594 if (lock_sk) 595 release_sock(sk); 596 597 return ret; 598 } 599 EXPORT_SYMBOL(sock_bindtoindex); 600 601 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_sockptr(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 return sock_bindtoindex(sk, index, true); 641 out: 642 #endif 643 644 return ret; 645 } 646 647 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 648 int __user *optlen, int len) 649 { 650 int ret = -ENOPROTOOPT; 651 #ifdef CONFIG_NETDEVICES 652 struct net *net = sock_net(sk); 653 char devname[IFNAMSIZ]; 654 655 if (sk->sk_bound_dev_if == 0) { 656 len = 0; 657 goto zero; 658 } 659 660 ret = -EINVAL; 661 if (len < IFNAMSIZ) 662 goto out; 663 664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 665 if (ret) 666 goto out; 667 668 len = strlen(devname) + 1; 669 670 ret = -EFAULT; 671 if (copy_to_user(optval, devname, len)) 672 goto out; 673 674 zero: 675 ret = -EFAULT; 676 if (put_user(len, optlen)) 677 goto out; 678 679 ret = 0; 680 681 out: 682 #endif 683 684 return ret; 685 } 686 687 bool sk_mc_loop(struct sock *sk) 688 { 689 if (dev_recursion_level()) 690 return false; 691 if (!sk) 692 return true; 693 switch (sk->sk_family) { 694 case AF_INET: 695 return inet_sk(sk)->mc_loop; 696 #if IS_ENABLED(CONFIG_IPV6) 697 case AF_INET6: 698 return inet6_sk(sk)->mc_loop; 699 #endif 700 } 701 WARN_ON_ONCE(1); 702 return true; 703 } 704 EXPORT_SYMBOL(sk_mc_loop); 705 706 void sock_set_reuseaddr(struct sock *sk) 707 { 708 lock_sock(sk); 709 sk->sk_reuse = SK_CAN_REUSE; 710 release_sock(sk); 711 } 712 EXPORT_SYMBOL(sock_set_reuseaddr); 713 714 void sock_set_reuseport(struct sock *sk) 715 { 716 lock_sock(sk); 717 sk->sk_reuseport = true; 718 release_sock(sk); 719 } 720 EXPORT_SYMBOL(sock_set_reuseport); 721 722 void sock_no_linger(struct sock *sk) 723 { 724 lock_sock(sk); 725 sk->sk_lingertime = 0; 726 sock_set_flag(sk, SOCK_LINGER); 727 release_sock(sk); 728 } 729 EXPORT_SYMBOL(sock_no_linger); 730 731 void sock_set_priority(struct sock *sk, u32 priority) 732 { 733 lock_sock(sk); 734 sk->sk_priority = priority; 735 release_sock(sk); 736 } 737 EXPORT_SYMBOL(sock_set_priority); 738 739 void sock_set_sndtimeo(struct sock *sk, s64 secs) 740 { 741 lock_sock(sk); 742 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 743 sk->sk_sndtimeo = secs * HZ; 744 else 745 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 746 release_sock(sk); 747 } 748 EXPORT_SYMBOL(sock_set_sndtimeo); 749 750 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 751 { 752 if (val) { 753 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 754 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 755 sock_set_flag(sk, SOCK_RCVTSTAMP); 756 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 757 } else { 758 sock_reset_flag(sk, SOCK_RCVTSTAMP); 759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 760 } 761 } 762 763 void sock_enable_timestamps(struct sock *sk) 764 { 765 lock_sock(sk); 766 __sock_set_timestamps(sk, true, false, true); 767 release_sock(sk); 768 } 769 EXPORT_SYMBOL(sock_enable_timestamps); 770 771 void sock_set_keepalive(struct sock *sk) 772 { 773 lock_sock(sk); 774 if (sk->sk_prot->keepalive) 775 sk->sk_prot->keepalive(sk, true); 776 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 777 release_sock(sk); 778 } 779 EXPORT_SYMBOL(sock_set_keepalive); 780 781 static void __sock_set_rcvbuf(struct sock *sk, int val) 782 { 783 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 784 * as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 788 789 /* We double it on the way in to account for "struct sk_buff" etc. 790 * overhead. Applications assume that the SO_RCVBUF setting they make 791 * will allow that much actual data to be received on that socket. 792 * 793 * Applications are unaware that "struct sk_buff" and other overheads 794 * allocate from the receive buffer during socket buffer allocation. 795 * 796 * And after considering the possible alternatives, returning the value 797 * we actually used in getsockopt is the most desirable behavior. 798 */ 799 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 800 } 801 802 void sock_set_rcvbuf(struct sock *sk, int val) 803 { 804 lock_sock(sk); 805 __sock_set_rcvbuf(sk, val); 806 release_sock(sk); 807 } 808 EXPORT_SYMBOL(sock_set_rcvbuf); 809 810 void sock_set_mark(struct sock *sk, u32 val) 811 { 812 lock_sock(sk); 813 sk->sk_mark = val; 814 release_sock(sk); 815 } 816 EXPORT_SYMBOL(sock_set_mark); 817 818 /* 819 * This is meant for all protocols to use and covers goings on 820 * at the socket level. Everything here is generic. 821 */ 822 823 int sock_setsockopt(struct socket *sock, int level, int optname, 824 sockptr_t optval, unsigned int optlen) 825 { 826 struct sock_txtime sk_txtime; 827 struct sock *sk = sock->sk; 828 int val; 829 int valbool; 830 struct linger ling; 831 int ret = 0; 832 833 /* 834 * Options without arguments 835 */ 836 837 if (optname == SO_BINDTODEVICE) 838 return sock_setbindtodevice(sk, optval, optlen); 839 840 if (optlen < sizeof(int)) 841 return -EINVAL; 842 843 if (copy_from_sockptr(&val, optval, sizeof(val))) 844 return -EFAULT; 845 846 valbool = val ? 1 : 0; 847 848 lock_sock(sk); 849 850 switch (optname) { 851 case SO_DEBUG: 852 if (val && !capable(CAP_NET_ADMIN)) 853 ret = -EACCES; 854 else 855 sock_valbool_flag(sk, SOCK_DBG, valbool); 856 break; 857 case SO_REUSEADDR: 858 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 859 break; 860 case SO_REUSEPORT: 861 sk->sk_reuseport = valbool; 862 break; 863 case SO_TYPE: 864 case SO_PROTOCOL: 865 case SO_DOMAIN: 866 case SO_ERROR: 867 ret = -ENOPROTOOPT; 868 break; 869 case SO_DONTROUTE: 870 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 871 sk_dst_reset(sk); 872 break; 873 case SO_BROADCAST: 874 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 875 break; 876 case SO_SNDBUF: 877 /* Don't error on this BSD doesn't and if you think 878 * about it this is right. Otherwise apps have to 879 * play 'guess the biggest size' games. RCVBUF/SNDBUF 880 * are treated in BSD as hints 881 */ 882 val = min_t(u32, val, sysctl_wmem_max); 883 set_sndbuf: 884 /* Ensure val * 2 fits into an int, to prevent max_t() 885 * from treating it as a negative value. 886 */ 887 val = min_t(int, val, INT_MAX / 2); 888 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 889 WRITE_ONCE(sk->sk_sndbuf, 890 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 891 /* Wake up sending tasks if we upped the value. */ 892 sk->sk_write_space(sk); 893 break; 894 895 case SO_SNDBUFFORCE: 896 if (!capable(CAP_NET_ADMIN)) { 897 ret = -EPERM; 898 break; 899 } 900 901 /* No negative values (to prevent underflow, as val will be 902 * multiplied by 2). 903 */ 904 if (val < 0) 905 val = 0; 906 goto set_sndbuf; 907 908 case SO_RCVBUF: 909 /* Don't error on this BSD doesn't and if you think 910 * about it this is right. Otherwise apps have to 911 * play 'guess the biggest size' games. RCVBUF/SNDBUF 912 * are treated in BSD as hints 913 */ 914 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 915 break; 916 917 case SO_RCVBUFFORCE: 918 if (!capable(CAP_NET_ADMIN)) { 919 ret = -EPERM; 920 break; 921 } 922 923 /* No negative values (to prevent underflow, as val will be 924 * multiplied by 2). 925 */ 926 __sock_set_rcvbuf(sk, max(val, 0)); 927 break; 928 929 case SO_KEEPALIVE: 930 if (sk->sk_prot->keepalive) 931 sk->sk_prot->keepalive(sk, valbool); 932 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 933 break; 934 935 case SO_OOBINLINE: 936 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 937 break; 938 939 case SO_NO_CHECK: 940 sk->sk_no_check_tx = valbool; 941 break; 942 943 case SO_PRIORITY: 944 if ((val >= 0 && val <= 6) || 945 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 946 sk->sk_priority = val; 947 else 948 ret = -EPERM; 949 break; 950 951 case SO_LINGER: 952 if (optlen < sizeof(ling)) { 953 ret = -EINVAL; /* 1003.1g */ 954 break; 955 } 956 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 957 ret = -EFAULT; 958 break; 959 } 960 if (!ling.l_onoff) 961 sock_reset_flag(sk, SOCK_LINGER); 962 else { 963 #if (BITS_PER_LONG == 32) 964 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 965 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 966 else 967 #endif 968 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 969 sock_set_flag(sk, SOCK_LINGER); 970 } 971 break; 972 973 case SO_BSDCOMPAT: 974 break; 975 976 case SO_PASSCRED: 977 if (valbool) 978 set_bit(SOCK_PASSCRED, &sock->flags); 979 else 980 clear_bit(SOCK_PASSCRED, &sock->flags); 981 break; 982 983 case SO_TIMESTAMP_OLD: 984 __sock_set_timestamps(sk, valbool, false, false); 985 break; 986 case SO_TIMESTAMP_NEW: 987 __sock_set_timestamps(sk, valbool, true, false); 988 break; 989 case SO_TIMESTAMPNS_OLD: 990 __sock_set_timestamps(sk, valbool, false, true); 991 break; 992 case SO_TIMESTAMPNS_NEW: 993 __sock_set_timestamps(sk, valbool, true, true); 994 break; 995 case SO_TIMESTAMPING_NEW: 996 case SO_TIMESTAMPING_OLD: 997 if (val & ~SOF_TIMESTAMPING_MASK) { 998 ret = -EINVAL; 999 break; 1000 } 1001 1002 if (val & SOF_TIMESTAMPING_OPT_ID && 1003 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 1004 if (sk->sk_protocol == IPPROTO_TCP && 1005 sk->sk_type == SOCK_STREAM) { 1006 if ((1 << sk->sk_state) & 1007 (TCPF_CLOSE | TCPF_LISTEN)) { 1008 ret = -EINVAL; 1009 break; 1010 } 1011 sk->sk_tskey = tcp_sk(sk)->snd_una; 1012 } else { 1013 sk->sk_tskey = 0; 1014 } 1015 } 1016 1017 if (val & SOF_TIMESTAMPING_OPT_STATS && 1018 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 1019 ret = -EINVAL; 1020 break; 1021 } 1022 1023 sk->sk_tsflags = val; 1024 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 1025 1026 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 1027 sock_enable_timestamp(sk, 1028 SOCK_TIMESTAMPING_RX_SOFTWARE); 1029 else 1030 sock_disable_timestamp(sk, 1031 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 1032 break; 1033 1034 case SO_RCVLOWAT: 1035 if (val < 0) 1036 val = INT_MAX; 1037 if (sock->ops->set_rcvlowat) 1038 ret = sock->ops->set_rcvlowat(sk, val); 1039 else 1040 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1041 break; 1042 1043 case SO_RCVTIMEO_OLD: 1044 case SO_RCVTIMEO_NEW: 1045 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1046 optlen, optname == SO_RCVTIMEO_OLD); 1047 break; 1048 1049 case SO_SNDTIMEO_OLD: 1050 case SO_SNDTIMEO_NEW: 1051 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1052 optlen, optname == SO_SNDTIMEO_OLD); 1053 break; 1054 1055 case SO_ATTACH_FILTER: { 1056 struct sock_fprog fprog; 1057 1058 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1059 if (!ret) 1060 ret = sk_attach_filter(&fprog, sk); 1061 break; 1062 } 1063 case SO_ATTACH_BPF: 1064 ret = -EINVAL; 1065 if (optlen == sizeof(u32)) { 1066 u32 ufd; 1067 1068 ret = -EFAULT; 1069 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1070 break; 1071 1072 ret = sk_attach_bpf(ufd, sk); 1073 } 1074 break; 1075 1076 case SO_ATTACH_REUSEPORT_CBPF: { 1077 struct sock_fprog fprog; 1078 1079 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1080 if (!ret) 1081 ret = sk_reuseport_attach_filter(&fprog, sk); 1082 break; 1083 } 1084 case SO_ATTACH_REUSEPORT_EBPF: 1085 ret = -EINVAL; 1086 if (optlen == sizeof(u32)) { 1087 u32 ufd; 1088 1089 ret = -EFAULT; 1090 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1091 break; 1092 1093 ret = sk_reuseport_attach_bpf(ufd, sk); 1094 } 1095 break; 1096 1097 case SO_DETACH_REUSEPORT_BPF: 1098 ret = reuseport_detach_prog(sk); 1099 break; 1100 1101 case SO_DETACH_FILTER: 1102 ret = sk_detach_filter(sk); 1103 break; 1104 1105 case SO_LOCK_FILTER: 1106 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1107 ret = -EPERM; 1108 else 1109 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1110 break; 1111 1112 case SO_PASSSEC: 1113 if (valbool) 1114 set_bit(SOCK_PASSSEC, &sock->flags); 1115 else 1116 clear_bit(SOCK_PASSSEC, &sock->flags); 1117 break; 1118 case SO_MARK: 1119 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1120 ret = -EPERM; 1121 } else if (val != sk->sk_mark) { 1122 sk->sk_mark = val; 1123 sk_dst_reset(sk); 1124 } 1125 break; 1126 1127 case SO_RXQ_OVFL: 1128 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1129 break; 1130 1131 case SO_WIFI_STATUS: 1132 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1133 break; 1134 1135 case SO_PEEK_OFF: 1136 if (sock->ops->set_peek_off) 1137 ret = sock->ops->set_peek_off(sk, val); 1138 else 1139 ret = -EOPNOTSUPP; 1140 break; 1141 1142 case SO_NOFCS: 1143 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1144 break; 1145 1146 case SO_SELECT_ERR_QUEUE: 1147 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1148 break; 1149 1150 #ifdef CONFIG_NET_RX_BUSY_POLL 1151 case SO_BUSY_POLL: 1152 /* allow unprivileged users to decrease the value */ 1153 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1154 ret = -EPERM; 1155 else { 1156 if (val < 0) 1157 ret = -EINVAL; 1158 else 1159 sk->sk_ll_usec = val; 1160 } 1161 break; 1162 case SO_PREFER_BUSY_POLL: 1163 if (valbool && !capable(CAP_NET_ADMIN)) 1164 ret = -EPERM; 1165 else 1166 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1167 break; 1168 case SO_BUSY_POLL_BUDGET: 1169 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1170 ret = -EPERM; 1171 } else { 1172 if (val < 0 || val > U16_MAX) 1173 ret = -EINVAL; 1174 else 1175 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1176 } 1177 break; 1178 #endif 1179 1180 case SO_MAX_PACING_RATE: 1181 { 1182 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1183 1184 if (sizeof(ulval) != sizeof(val) && 1185 optlen >= sizeof(ulval) && 1186 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1187 ret = -EFAULT; 1188 break; 1189 } 1190 if (ulval != ~0UL) 1191 cmpxchg(&sk->sk_pacing_status, 1192 SK_PACING_NONE, 1193 SK_PACING_NEEDED); 1194 sk->sk_max_pacing_rate = ulval; 1195 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1196 break; 1197 } 1198 case SO_INCOMING_CPU: 1199 WRITE_ONCE(sk->sk_incoming_cpu, val); 1200 break; 1201 1202 case SO_CNX_ADVICE: 1203 if (val == 1) 1204 dst_negative_advice(sk); 1205 break; 1206 1207 case SO_ZEROCOPY: 1208 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1209 if (!((sk->sk_type == SOCK_STREAM && 1210 sk->sk_protocol == IPPROTO_TCP) || 1211 (sk->sk_type == SOCK_DGRAM && 1212 sk->sk_protocol == IPPROTO_UDP))) 1213 ret = -ENOTSUPP; 1214 } else if (sk->sk_family != PF_RDS) { 1215 ret = -ENOTSUPP; 1216 } 1217 if (!ret) { 1218 if (val < 0 || val > 1) 1219 ret = -EINVAL; 1220 else 1221 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1222 } 1223 break; 1224 1225 case SO_TXTIME: 1226 if (optlen != sizeof(struct sock_txtime)) { 1227 ret = -EINVAL; 1228 break; 1229 } else if (copy_from_sockptr(&sk_txtime, optval, 1230 sizeof(struct sock_txtime))) { 1231 ret = -EFAULT; 1232 break; 1233 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1234 ret = -EINVAL; 1235 break; 1236 } 1237 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1238 * scheduler has enough safe guards. 1239 */ 1240 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1241 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1242 ret = -EPERM; 1243 break; 1244 } 1245 sock_valbool_flag(sk, SOCK_TXTIME, true); 1246 sk->sk_clockid = sk_txtime.clockid; 1247 sk->sk_txtime_deadline_mode = 1248 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1249 sk->sk_txtime_report_errors = 1250 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1251 break; 1252 1253 case SO_BINDTOIFINDEX: 1254 ret = sock_bindtoindex_locked(sk, val); 1255 break; 1256 1257 default: 1258 ret = -ENOPROTOOPT; 1259 break; 1260 } 1261 release_sock(sk); 1262 return ret; 1263 } 1264 EXPORT_SYMBOL(sock_setsockopt); 1265 1266 1267 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1268 struct ucred *ucred) 1269 { 1270 ucred->pid = pid_vnr(pid); 1271 ucred->uid = ucred->gid = -1; 1272 if (cred) { 1273 struct user_namespace *current_ns = current_user_ns(); 1274 1275 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1276 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1277 } 1278 } 1279 1280 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1281 { 1282 struct user_namespace *user_ns = current_user_ns(); 1283 int i; 1284 1285 for (i = 0; i < src->ngroups; i++) 1286 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1287 return -EFAULT; 1288 1289 return 0; 1290 } 1291 1292 int sock_getsockopt(struct socket *sock, int level, int optname, 1293 char __user *optval, int __user *optlen) 1294 { 1295 struct sock *sk = sock->sk; 1296 1297 union { 1298 int val; 1299 u64 val64; 1300 unsigned long ulval; 1301 struct linger ling; 1302 struct old_timeval32 tm32; 1303 struct __kernel_old_timeval tm; 1304 struct __kernel_sock_timeval stm; 1305 struct sock_txtime txtime; 1306 } v; 1307 1308 int lv = sizeof(int); 1309 int len; 1310 1311 if (get_user(len, optlen)) 1312 return -EFAULT; 1313 if (len < 0) 1314 return -EINVAL; 1315 1316 memset(&v, 0, sizeof(v)); 1317 1318 switch (optname) { 1319 case SO_DEBUG: 1320 v.val = sock_flag(sk, SOCK_DBG); 1321 break; 1322 1323 case SO_DONTROUTE: 1324 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1325 break; 1326 1327 case SO_BROADCAST: 1328 v.val = sock_flag(sk, SOCK_BROADCAST); 1329 break; 1330 1331 case SO_SNDBUF: 1332 v.val = sk->sk_sndbuf; 1333 break; 1334 1335 case SO_RCVBUF: 1336 v.val = sk->sk_rcvbuf; 1337 break; 1338 1339 case SO_REUSEADDR: 1340 v.val = sk->sk_reuse; 1341 break; 1342 1343 case SO_REUSEPORT: 1344 v.val = sk->sk_reuseport; 1345 break; 1346 1347 case SO_KEEPALIVE: 1348 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1349 break; 1350 1351 case SO_TYPE: 1352 v.val = sk->sk_type; 1353 break; 1354 1355 case SO_PROTOCOL: 1356 v.val = sk->sk_protocol; 1357 break; 1358 1359 case SO_DOMAIN: 1360 v.val = sk->sk_family; 1361 break; 1362 1363 case SO_ERROR: 1364 v.val = -sock_error(sk); 1365 if (v.val == 0) 1366 v.val = xchg(&sk->sk_err_soft, 0); 1367 break; 1368 1369 case SO_OOBINLINE: 1370 v.val = sock_flag(sk, SOCK_URGINLINE); 1371 break; 1372 1373 case SO_NO_CHECK: 1374 v.val = sk->sk_no_check_tx; 1375 break; 1376 1377 case SO_PRIORITY: 1378 v.val = sk->sk_priority; 1379 break; 1380 1381 case SO_LINGER: 1382 lv = sizeof(v.ling); 1383 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1384 v.ling.l_linger = sk->sk_lingertime / HZ; 1385 break; 1386 1387 case SO_BSDCOMPAT: 1388 break; 1389 1390 case SO_TIMESTAMP_OLD: 1391 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1392 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1393 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1394 break; 1395 1396 case SO_TIMESTAMPNS_OLD: 1397 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1398 break; 1399 1400 case SO_TIMESTAMP_NEW: 1401 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1402 break; 1403 1404 case SO_TIMESTAMPNS_NEW: 1405 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1406 break; 1407 1408 case SO_TIMESTAMPING_OLD: 1409 v.val = sk->sk_tsflags; 1410 break; 1411 1412 case SO_RCVTIMEO_OLD: 1413 case SO_RCVTIMEO_NEW: 1414 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1415 break; 1416 1417 case SO_SNDTIMEO_OLD: 1418 case SO_SNDTIMEO_NEW: 1419 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1420 break; 1421 1422 case SO_RCVLOWAT: 1423 v.val = sk->sk_rcvlowat; 1424 break; 1425 1426 case SO_SNDLOWAT: 1427 v.val = 1; 1428 break; 1429 1430 case SO_PASSCRED: 1431 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1432 break; 1433 1434 case SO_PEERCRED: 1435 { 1436 struct ucred peercred; 1437 if (len > sizeof(peercred)) 1438 len = sizeof(peercred); 1439 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1440 if (copy_to_user(optval, &peercred, len)) 1441 return -EFAULT; 1442 goto lenout; 1443 } 1444 1445 case SO_PEERGROUPS: 1446 { 1447 int ret, n; 1448 1449 if (!sk->sk_peer_cred) 1450 return -ENODATA; 1451 1452 n = sk->sk_peer_cred->group_info->ngroups; 1453 if (len < n * sizeof(gid_t)) { 1454 len = n * sizeof(gid_t); 1455 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1456 } 1457 len = n * sizeof(gid_t); 1458 1459 ret = groups_to_user((gid_t __user *)optval, 1460 sk->sk_peer_cred->group_info); 1461 if (ret) 1462 return ret; 1463 goto lenout; 1464 } 1465 1466 case SO_PEERNAME: 1467 { 1468 char address[128]; 1469 1470 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1471 if (lv < 0) 1472 return -ENOTCONN; 1473 if (lv < len) 1474 return -EINVAL; 1475 if (copy_to_user(optval, address, len)) 1476 return -EFAULT; 1477 goto lenout; 1478 } 1479 1480 /* Dubious BSD thing... Probably nobody even uses it, but 1481 * the UNIX standard wants it for whatever reason... -DaveM 1482 */ 1483 case SO_ACCEPTCONN: 1484 v.val = sk->sk_state == TCP_LISTEN; 1485 break; 1486 1487 case SO_PASSSEC: 1488 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1489 break; 1490 1491 case SO_PEERSEC: 1492 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1493 1494 case SO_MARK: 1495 v.val = sk->sk_mark; 1496 break; 1497 1498 case SO_RXQ_OVFL: 1499 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1500 break; 1501 1502 case SO_WIFI_STATUS: 1503 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1504 break; 1505 1506 case SO_PEEK_OFF: 1507 if (!sock->ops->set_peek_off) 1508 return -EOPNOTSUPP; 1509 1510 v.val = sk->sk_peek_off; 1511 break; 1512 case SO_NOFCS: 1513 v.val = sock_flag(sk, SOCK_NOFCS); 1514 break; 1515 1516 case SO_BINDTODEVICE: 1517 return sock_getbindtodevice(sk, optval, optlen, len); 1518 1519 case SO_GET_FILTER: 1520 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1521 if (len < 0) 1522 return len; 1523 1524 goto lenout; 1525 1526 case SO_LOCK_FILTER: 1527 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1528 break; 1529 1530 case SO_BPF_EXTENSIONS: 1531 v.val = bpf_tell_extensions(); 1532 break; 1533 1534 case SO_SELECT_ERR_QUEUE: 1535 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1536 break; 1537 1538 #ifdef CONFIG_NET_RX_BUSY_POLL 1539 case SO_BUSY_POLL: 1540 v.val = sk->sk_ll_usec; 1541 break; 1542 case SO_PREFER_BUSY_POLL: 1543 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1544 break; 1545 #endif 1546 1547 case SO_MAX_PACING_RATE: 1548 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1549 lv = sizeof(v.ulval); 1550 v.ulval = sk->sk_max_pacing_rate; 1551 } else { 1552 /* 32bit version */ 1553 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1554 } 1555 break; 1556 1557 case SO_INCOMING_CPU: 1558 v.val = READ_ONCE(sk->sk_incoming_cpu); 1559 break; 1560 1561 case SO_MEMINFO: 1562 { 1563 u32 meminfo[SK_MEMINFO_VARS]; 1564 1565 sk_get_meminfo(sk, meminfo); 1566 1567 len = min_t(unsigned int, len, sizeof(meminfo)); 1568 if (copy_to_user(optval, &meminfo, len)) 1569 return -EFAULT; 1570 1571 goto lenout; 1572 } 1573 1574 #ifdef CONFIG_NET_RX_BUSY_POLL 1575 case SO_INCOMING_NAPI_ID: 1576 v.val = READ_ONCE(sk->sk_napi_id); 1577 1578 /* aggregate non-NAPI IDs down to 0 */ 1579 if (v.val < MIN_NAPI_ID) 1580 v.val = 0; 1581 1582 break; 1583 #endif 1584 1585 case SO_COOKIE: 1586 lv = sizeof(u64); 1587 if (len < lv) 1588 return -EINVAL; 1589 v.val64 = sock_gen_cookie(sk); 1590 break; 1591 1592 case SO_ZEROCOPY: 1593 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1594 break; 1595 1596 case SO_TXTIME: 1597 lv = sizeof(v.txtime); 1598 v.txtime.clockid = sk->sk_clockid; 1599 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1600 SOF_TXTIME_DEADLINE_MODE : 0; 1601 v.txtime.flags |= sk->sk_txtime_report_errors ? 1602 SOF_TXTIME_REPORT_ERRORS : 0; 1603 break; 1604 1605 case SO_BINDTOIFINDEX: 1606 v.val = sk->sk_bound_dev_if; 1607 break; 1608 1609 default: 1610 /* We implement the SO_SNDLOWAT etc to not be settable 1611 * (1003.1g 7). 1612 */ 1613 return -ENOPROTOOPT; 1614 } 1615 1616 if (len > lv) 1617 len = lv; 1618 if (copy_to_user(optval, &v, len)) 1619 return -EFAULT; 1620 lenout: 1621 if (put_user(len, optlen)) 1622 return -EFAULT; 1623 return 0; 1624 } 1625 1626 /* 1627 * Initialize an sk_lock. 1628 * 1629 * (We also register the sk_lock with the lock validator.) 1630 */ 1631 static inline void sock_lock_init(struct sock *sk) 1632 { 1633 if (sk->sk_kern_sock) 1634 sock_lock_init_class_and_name( 1635 sk, 1636 af_family_kern_slock_key_strings[sk->sk_family], 1637 af_family_kern_slock_keys + sk->sk_family, 1638 af_family_kern_key_strings[sk->sk_family], 1639 af_family_kern_keys + sk->sk_family); 1640 else 1641 sock_lock_init_class_and_name( 1642 sk, 1643 af_family_slock_key_strings[sk->sk_family], 1644 af_family_slock_keys + sk->sk_family, 1645 af_family_key_strings[sk->sk_family], 1646 af_family_keys + sk->sk_family); 1647 } 1648 1649 /* 1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1651 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1653 */ 1654 static void sock_copy(struct sock *nsk, const struct sock *osk) 1655 { 1656 const struct proto *prot = READ_ONCE(osk->sk_prot); 1657 #ifdef CONFIG_SECURITY_NETWORK 1658 void *sptr = nsk->sk_security; 1659 #endif 1660 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1661 1662 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1663 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1664 1665 #ifdef CONFIG_SECURITY_NETWORK 1666 nsk->sk_security = sptr; 1667 security_sk_clone(osk, nsk); 1668 #endif 1669 } 1670 1671 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1672 int family) 1673 { 1674 struct sock *sk; 1675 struct kmem_cache *slab; 1676 1677 slab = prot->slab; 1678 if (slab != NULL) { 1679 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1680 if (!sk) 1681 return sk; 1682 if (want_init_on_alloc(priority)) 1683 sk_prot_clear_nulls(sk, prot->obj_size); 1684 } else 1685 sk = kmalloc(prot->obj_size, priority); 1686 1687 if (sk != NULL) { 1688 if (security_sk_alloc(sk, family, priority)) 1689 goto out_free; 1690 1691 if (!try_module_get(prot->owner)) 1692 goto out_free_sec; 1693 sk_tx_queue_clear(sk); 1694 } 1695 1696 return sk; 1697 1698 out_free_sec: 1699 security_sk_free(sk); 1700 out_free: 1701 if (slab != NULL) 1702 kmem_cache_free(slab, sk); 1703 else 1704 kfree(sk); 1705 return NULL; 1706 } 1707 1708 static void sk_prot_free(struct proto *prot, struct sock *sk) 1709 { 1710 struct kmem_cache *slab; 1711 struct module *owner; 1712 1713 owner = prot->owner; 1714 slab = prot->slab; 1715 1716 cgroup_sk_free(&sk->sk_cgrp_data); 1717 mem_cgroup_sk_free(sk); 1718 security_sk_free(sk); 1719 if (slab != NULL) 1720 kmem_cache_free(slab, sk); 1721 else 1722 kfree(sk); 1723 module_put(owner); 1724 } 1725 1726 /** 1727 * sk_alloc - All socket objects are allocated here 1728 * @net: the applicable net namespace 1729 * @family: protocol family 1730 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1731 * @prot: struct proto associated with this new sock instance 1732 * @kern: is this to be a kernel socket? 1733 */ 1734 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1735 struct proto *prot, int kern) 1736 { 1737 struct sock *sk; 1738 1739 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1740 if (sk) { 1741 sk->sk_family = family; 1742 /* 1743 * See comment in struct sock definition to understand 1744 * why we need sk_prot_creator -acme 1745 */ 1746 sk->sk_prot = sk->sk_prot_creator = prot; 1747 sk->sk_kern_sock = kern; 1748 sock_lock_init(sk); 1749 sk->sk_net_refcnt = kern ? 0 : 1; 1750 if (likely(sk->sk_net_refcnt)) { 1751 get_net(net); 1752 sock_inuse_add(net, 1); 1753 } 1754 1755 sock_net_set(sk, net); 1756 refcount_set(&sk->sk_wmem_alloc, 1); 1757 1758 mem_cgroup_sk_alloc(sk); 1759 cgroup_sk_alloc(&sk->sk_cgrp_data); 1760 sock_update_classid(&sk->sk_cgrp_data); 1761 sock_update_netprioidx(&sk->sk_cgrp_data); 1762 sk_tx_queue_clear(sk); 1763 } 1764 1765 return sk; 1766 } 1767 EXPORT_SYMBOL(sk_alloc); 1768 1769 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1770 * grace period. This is the case for UDP sockets and TCP listeners. 1771 */ 1772 static void __sk_destruct(struct rcu_head *head) 1773 { 1774 struct sock *sk = container_of(head, struct sock, sk_rcu); 1775 struct sk_filter *filter; 1776 1777 if (sk->sk_destruct) 1778 sk->sk_destruct(sk); 1779 1780 filter = rcu_dereference_check(sk->sk_filter, 1781 refcount_read(&sk->sk_wmem_alloc) == 0); 1782 if (filter) { 1783 sk_filter_uncharge(sk, filter); 1784 RCU_INIT_POINTER(sk->sk_filter, NULL); 1785 } 1786 1787 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1788 1789 #ifdef CONFIG_BPF_SYSCALL 1790 bpf_sk_storage_free(sk); 1791 #endif 1792 1793 if (atomic_read(&sk->sk_omem_alloc)) 1794 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1795 __func__, atomic_read(&sk->sk_omem_alloc)); 1796 1797 if (sk->sk_frag.page) { 1798 put_page(sk->sk_frag.page); 1799 sk->sk_frag.page = NULL; 1800 } 1801 1802 if (sk->sk_peer_cred) 1803 put_cred(sk->sk_peer_cred); 1804 put_pid(sk->sk_peer_pid); 1805 if (likely(sk->sk_net_refcnt)) 1806 put_net(sock_net(sk)); 1807 sk_prot_free(sk->sk_prot_creator, sk); 1808 } 1809 1810 void sk_destruct(struct sock *sk) 1811 { 1812 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1813 1814 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1815 reuseport_detach_sock(sk); 1816 use_call_rcu = true; 1817 } 1818 1819 if (use_call_rcu) 1820 call_rcu(&sk->sk_rcu, __sk_destruct); 1821 else 1822 __sk_destruct(&sk->sk_rcu); 1823 } 1824 1825 static void __sk_free(struct sock *sk) 1826 { 1827 if (likely(sk->sk_net_refcnt)) 1828 sock_inuse_add(sock_net(sk), -1); 1829 1830 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1831 sock_diag_broadcast_destroy(sk); 1832 else 1833 sk_destruct(sk); 1834 } 1835 1836 void sk_free(struct sock *sk) 1837 { 1838 /* 1839 * We subtract one from sk_wmem_alloc and can know if 1840 * some packets are still in some tx queue. 1841 * If not null, sock_wfree() will call __sk_free(sk) later 1842 */ 1843 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1844 __sk_free(sk); 1845 } 1846 EXPORT_SYMBOL(sk_free); 1847 1848 static void sk_init_common(struct sock *sk) 1849 { 1850 skb_queue_head_init(&sk->sk_receive_queue); 1851 skb_queue_head_init(&sk->sk_write_queue); 1852 skb_queue_head_init(&sk->sk_error_queue); 1853 1854 rwlock_init(&sk->sk_callback_lock); 1855 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1856 af_rlock_keys + sk->sk_family, 1857 af_family_rlock_key_strings[sk->sk_family]); 1858 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1859 af_wlock_keys + sk->sk_family, 1860 af_family_wlock_key_strings[sk->sk_family]); 1861 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1862 af_elock_keys + sk->sk_family, 1863 af_family_elock_key_strings[sk->sk_family]); 1864 lockdep_set_class_and_name(&sk->sk_callback_lock, 1865 af_callback_keys + sk->sk_family, 1866 af_family_clock_key_strings[sk->sk_family]); 1867 } 1868 1869 /** 1870 * sk_clone_lock - clone a socket, and lock its clone 1871 * @sk: the socket to clone 1872 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1873 * 1874 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1875 */ 1876 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1877 { 1878 struct proto *prot = READ_ONCE(sk->sk_prot); 1879 struct sock *newsk; 1880 bool is_charged = true; 1881 1882 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 1883 if (newsk != NULL) { 1884 struct sk_filter *filter; 1885 1886 sock_copy(newsk, sk); 1887 1888 newsk->sk_prot_creator = prot; 1889 1890 /* SANITY */ 1891 if (likely(newsk->sk_net_refcnt)) 1892 get_net(sock_net(newsk)); 1893 sk_node_init(&newsk->sk_node); 1894 sock_lock_init(newsk); 1895 bh_lock_sock(newsk); 1896 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1897 newsk->sk_backlog.len = 0; 1898 1899 atomic_set(&newsk->sk_rmem_alloc, 0); 1900 /* 1901 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1902 */ 1903 refcount_set(&newsk->sk_wmem_alloc, 1); 1904 atomic_set(&newsk->sk_omem_alloc, 0); 1905 sk_init_common(newsk); 1906 1907 newsk->sk_dst_cache = NULL; 1908 newsk->sk_dst_pending_confirm = 0; 1909 newsk->sk_wmem_queued = 0; 1910 newsk->sk_forward_alloc = 0; 1911 atomic_set(&newsk->sk_drops, 0); 1912 newsk->sk_send_head = NULL; 1913 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1914 atomic_set(&newsk->sk_zckey, 0); 1915 1916 sock_reset_flag(newsk, SOCK_DONE); 1917 1918 /* sk->sk_memcg will be populated at accept() time */ 1919 newsk->sk_memcg = NULL; 1920 1921 cgroup_sk_clone(&newsk->sk_cgrp_data); 1922 1923 rcu_read_lock(); 1924 filter = rcu_dereference(sk->sk_filter); 1925 if (filter != NULL) 1926 /* though it's an empty new sock, the charging may fail 1927 * if sysctl_optmem_max was changed between creation of 1928 * original socket and cloning 1929 */ 1930 is_charged = sk_filter_charge(newsk, filter); 1931 RCU_INIT_POINTER(newsk->sk_filter, filter); 1932 rcu_read_unlock(); 1933 1934 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1935 /* We need to make sure that we don't uncharge the new 1936 * socket if we couldn't charge it in the first place 1937 * as otherwise we uncharge the parent's filter. 1938 */ 1939 if (!is_charged) 1940 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1941 sk_free_unlock_clone(newsk); 1942 newsk = NULL; 1943 goto out; 1944 } 1945 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1946 1947 if (bpf_sk_storage_clone(sk, newsk)) { 1948 sk_free_unlock_clone(newsk); 1949 newsk = NULL; 1950 goto out; 1951 } 1952 1953 /* Clear sk_user_data if parent had the pointer tagged 1954 * as not suitable for copying when cloning. 1955 */ 1956 if (sk_user_data_is_nocopy(newsk)) 1957 newsk->sk_user_data = NULL; 1958 1959 newsk->sk_err = 0; 1960 newsk->sk_err_soft = 0; 1961 newsk->sk_priority = 0; 1962 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1963 if (likely(newsk->sk_net_refcnt)) 1964 sock_inuse_add(sock_net(newsk), 1); 1965 1966 /* 1967 * Before updating sk_refcnt, we must commit prior changes to memory 1968 * (Documentation/RCU/rculist_nulls.rst for details) 1969 */ 1970 smp_wmb(); 1971 refcount_set(&newsk->sk_refcnt, 2); 1972 1973 /* 1974 * Increment the counter in the same struct proto as the master 1975 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1976 * is the same as sk->sk_prot->socks, as this field was copied 1977 * with memcpy). 1978 * 1979 * This _changes_ the previous behaviour, where 1980 * tcp_create_openreq_child always was incrementing the 1981 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1982 * to be taken into account in all callers. -acme 1983 */ 1984 sk_refcnt_debug_inc(newsk); 1985 sk_set_socket(newsk, NULL); 1986 sk_tx_queue_clear(newsk); 1987 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1988 1989 if (newsk->sk_prot->sockets_allocated) 1990 sk_sockets_allocated_inc(newsk); 1991 1992 if (sock_needs_netstamp(sk) && 1993 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1994 net_enable_timestamp(); 1995 } 1996 out: 1997 return newsk; 1998 } 1999 EXPORT_SYMBOL_GPL(sk_clone_lock); 2000 2001 void sk_free_unlock_clone(struct sock *sk) 2002 { 2003 /* It is still raw copy of parent, so invalidate 2004 * destructor and make plain sk_free() */ 2005 sk->sk_destruct = NULL; 2006 bh_unlock_sock(sk); 2007 sk_free(sk); 2008 } 2009 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2010 2011 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2012 { 2013 u32 max_segs = 1; 2014 2015 sk_dst_set(sk, dst); 2016 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 2017 if (sk->sk_route_caps & NETIF_F_GSO) 2018 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2019 sk->sk_route_caps &= ~sk->sk_route_nocaps; 2020 if (sk_can_gso(sk)) { 2021 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2022 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2023 } else { 2024 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2025 sk->sk_gso_max_size = dst->dev->gso_max_size; 2026 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 2027 } 2028 } 2029 sk->sk_gso_max_segs = max_segs; 2030 } 2031 EXPORT_SYMBOL_GPL(sk_setup_caps); 2032 2033 /* 2034 * Simple resource managers for sockets. 2035 */ 2036 2037 2038 /* 2039 * Write buffer destructor automatically called from kfree_skb. 2040 */ 2041 void sock_wfree(struct sk_buff *skb) 2042 { 2043 struct sock *sk = skb->sk; 2044 unsigned int len = skb->truesize; 2045 2046 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2047 /* 2048 * Keep a reference on sk_wmem_alloc, this will be released 2049 * after sk_write_space() call 2050 */ 2051 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2052 sk->sk_write_space(sk); 2053 len = 1; 2054 } 2055 /* 2056 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2057 * could not do because of in-flight packets 2058 */ 2059 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2060 __sk_free(sk); 2061 } 2062 EXPORT_SYMBOL(sock_wfree); 2063 2064 /* This variant of sock_wfree() is used by TCP, 2065 * since it sets SOCK_USE_WRITE_QUEUE. 2066 */ 2067 void __sock_wfree(struct sk_buff *skb) 2068 { 2069 struct sock *sk = skb->sk; 2070 2071 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2072 __sk_free(sk); 2073 } 2074 2075 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2076 { 2077 skb_orphan(skb); 2078 skb->sk = sk; 2079 #ifdef CONFIG_INET 2080 if (unlikely(!sk_fullsock(sk))) { 2081 skb->destructor = sock_edemux; 2082 sock_hold(sk); 2083 return; 2084 } 2085 #endif 2086 skb->destructor = sock_wfree; 2087 skb_set_hash_from_sk(skb, sk); 2088 /* 2089 * We used to take a refcount on sk, but following operation 2090 * is enough to guarantee sk_free() wont free this sock until 2091 * all in-flight packets are completed 2092 */ 2093 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2094 } 2095 EXPORT_SYMBOL(skb_set_owner_w); 2096 2097 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2098 { 2099 #ifdef CONFIG_TLS_DEVICE 2100 /* Drivers depend on in-order delivery for crypto offload, 2101 * partial orphan breaks out-of-order-OK logic. 2102 */ 2103 if (skb->decrypted) 2104 return false; 2105 #endif 2106 return (skb->destructor == sock_wfree || 2107 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2108 } 2109 2110 /* This helper is used by netem, as it can hold packets in its 2111 * delay queue. We want to allow the owner socket to send more 2112 * packets, as if they were already TX completed by a typical driver. 2113 * But we also want to keep skb->sk set because some packet schedulers 2114 * rely on it (sch_fq for example). 2115 */ 2116 void skb_orphan_partial(struct sk_buff *skb) 2117 { 2118 if (skb_is_tcp_pure_ack(skb)) 2119 return; 2120 2121 if (can_skb_orphan_partial(skb)) { 2122 struct sock *sk = skb->sk; 2123 2124 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2125 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2126 skb->destructor = sock_efree; 2127 } 2128 } else { 2129 skb_orphan(skb); 2130 } 2131 } 2132 EXPORT_SYMBOL(skb_orphan_partial); 2133 2134 /* 2135 * Read buffer destructor automatically called from kfree_skb. 2136 */ 2137 void sock_rfree(struct sk_buff *skb) 2138 { 2139 struct sock *sk = skb->sk; 2140 unsigned int len = skb->truesize; 2141 2142 atomic_sub(len, &sk->sk_rmem_alloc); 2143 sk_mem_uncharge(sk, len); 2144 } 2145 EXPORT_SYMBOL(sock_rfree); 2146 2147 /* 2148 * Buffer destructor for skbs that are not used directly in read or write 2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2150 */ 2151 void sock_efree(struct sk_buff *skb) 2152 { 2153 sock_put(skb->sk); 2154 } 2155 EXPORT_SYMBOL(sock_efree); 2156 2157 /* Buffer destructor for prefetch/receive path where reference count may 2158 * not be held, e.g. for listen sockets. 2159 */ 2160 #ifdef CONFIG_INET 2161 void sock_pfree(struct sk_buff *skb) 2162 { 2163 if (sk_is_refcounted(skb->sk)) 2164 sock_gen_put(skb->sk); 2165 } 2166 EXPORT_SYMBOL(sock_pfree); 2167 #endif /* CONFIG_INET */ 2168 2169 kuid_t sock_i_uid(struct sock *sk) 2170 { 2171 kuid_t uid; 2172 2173 read_lock_bh(&sk->sk_callback_lock); 2174 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2175 read_unlock_bh(&sk->sk_callback_lock); 2176 return uid; 2177 } 2178 EXPORT_SYMBOL(sock_i_uid); 2179 2180 unsigned long sock_i_ino(struct sock *sk) 2181 { 2182 unsigned long ino; 2183 2184 read_lock_bh(&sk->sk_callback_lock); 2185 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2186 read_unlock_bh(&sk->sk_callback_lock); 2187 return ino; 2188 } 2189 EXPORT_SYMBOL(sock_i_ino); 2190 2191 /* 2192 * Allocate a skb from the socket's send buffer. 2193 */ 2194 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2195 gfp_t priority) 2196 { 2197 if (force || 2198 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2199 struct sk_buff *skb = alloc_skb(size, priority); 2200 2201 if (skb) { 2202 skb_set_owner_w(skb, sk); 2203 return skb; 2204 } 2205 } 2206 return NULL; 2207 } 2208 EXPORT_SYMBOL(sock_wmalloc); 2209 2210 static void sock_ofree(struct sk_buff *skb) 2211 { 2212 struct sock *sk = skb->sk; 2213 2214 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2215 } 2216 2217 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2218 gfp_t priority) 2219 { 2220 struct sk_buff *skb; 2221 2222 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2223 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2224 sysctl_optmem_max) 2225 return NULL; 2226 2227 skb = alloc_skb(size, priority); 2228 if (!skb) 2229 return NULL; 2230 2231 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2232 skb->sk = sk; 2233 skb->destructor = sock_ofree; 2234 return skb; 2235 } 2236 2237 /* 2238 * Allocate a memory block from the socket's option memory buffer. 2239 */ 2240 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2241 { 2242 if ((unsigned int)size <= sysctl_optmem_max && 2243 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2244 void *mem; 2245 /* First do the add, to avoid the race if kmalloc 2246 * might sleep. 2247 */ 2248 atomic_add(size, &sk->sk_omem_alloc); 2249 mem = kmalloc(size, priority); 2250 if (mem) 2251 return mem; 2252 atomic_sub(size, &sk->sk_omem_alloc); 2253 } 2254 return NULL; 2255 } 2256 EXPORT_SYMBOL(sock_kmalloc); 2257 2258 /* Free an option memory block. Note, we actually want the inline 2259 * here as this allows gcc to detect the nullify and fold away the 2260 * condition entirely. 2261 */ 2262 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2263 const bool nullify) 2264 { 2265 if (WARN_ON_ONCE(!mem)) 2266 return; 2267 if (nullify) 2268 kfree_sensitive(mem); 2269 else 2270 kfree(mem); 2271 atomic_sub(size, &sk->sk_omem_alloc); 2272 } 2273 2274 void sock_kfree_s(struct sock *sk, void *mem, int size) 2275 { 2276 __sock_kfree_s(sk, mem, size, false); 2277 } 2278 EXPORT_SYMBOL(sock_kfree_s); 2279 2280 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2281 { 2282 __sock_kfree_s(sk, mem, size, true); 2283 } 2284 EXPORT_SYMBOL(sock_kzfree_s); 2285 2286 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2287 I think, these locks should be removed for datagram sockets. 2288 */ 2289 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2290 { 2291 DEFINE_WAIT(wait); 2292 2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2294 for (;;) { 2295 if (!timeo) 2296 break; 2297 if (signal_pending(current)) 2298 break; 2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2302 break; 2303 if (sk->sk_shutdown & SEND_SHUTDOWN) 2304 break; 2305 if (sk->sk_err) 2306 break; 2307 timeo = schedule_timeout(timeo); 2308 } 2309 finish_wait(sk_sleep(sk), &wait); 2310 return timeo; 2311 } 2312 2313 2314 /* 2315 * Generic send/receive buffer handlers 2316 */ 2317 2318 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2319 unsigned long data_len, int noblock, 2320 int *errcode, int max_page_order) 2321 { 2322 struct sk_buff *skb; 2323 long timeo; 2324 int err; 2325 2326 timeo = sock_sndtimeo(sk, noblock); 2327 for (;;) { 2328 err = sock_error(sk); 2329 if (err != 0) 2330 goto failure; 2331 2332 err = -EPIPE; 2333 if (sk->sk_shutdown & SEND_SHUTDOWN) 2334 goto failure; 2335 2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2337 break; 2338 2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2341 err = -EAGAIN; 2342 if (!timeo) 2343 goto failure; 2344 if (signal_pending(current)) 2345 goto interrupted; 2346 timeo = sock_wait_for_wmem(sk, timeo); 2347 } 2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2349 errcode, sk->sk_allocation); 2350 if (skb) 2351 skb_set_owner_w(skb, sk); 2352 return skb; 2353 2354 interrupted: 2355 err = sock_intr_errno(timeo); 2356 failure: 2357 *errcode = err; 2358 return NULL; 2359 } 2360 EXPORT_SYMBOL(sock_alloc_send_pskb); 2361 2362 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2363 int noblock, int *errcode) 2364 { 2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2366 } 2367 EXPORT_SYMBOL(sock_alloc_send_skb); 2368 2369 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2370 struct sockcm_cookie *sockc) 2371 { 2372 u32 tsflags; 2373 2374 switch (cmsg->cmsg_type) { 2375 case SO_MARK: 2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2377 return -EPERM; 2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2379 return -EINVAL; 2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2381 break; 2382 case SO_TIMESTAMPING_OLD: 2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2384 return -EINVAL; 2385 2386 tsflags = *(u32 *)CMSG_DATA(cmsg); 2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2388 return -EINVAL; 2389 2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2391 sockc->tsflags |= tsflags; 2392 break; 2393 case SCM_TXTIME: 2394 if (!sock_flag(sk, SOCK_TXTIME)) 2395 return -EINVAL; 2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2397 return -EINVAL; 2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2399 break; 2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2401 case SCM_RIGHTS: 2402 case SCM_CREDENTIALS: 2403 break; 2404 default: 2405 return -EINVAL; 2406 } 2407 return 0; 2408 } 2409 EXPORT_SYMBOL(__sock_cmsg_send); 2410 2411 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2412 struct sockcm_cookie *sockc) 2413 { 2414 struct cmsghdr *cmsg; 2415 int ret; 2416 2417 for_each_cmsghdr(cmsg, msg) { 2418 if (!CMSG_OK(msg, cmsg)) 2419 return -EINVAL; 2420 if (cmsg->cmsg_level != SOL_SOCKET) 2421 continue; 2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2423 if (ret) 2424 return ret; 2425 } 2426 return 0; 2427 } 2428 EXPORT_SYMBOL(sock_cmsg_send); 2429 2430 static void sk_enter_memory_pressure(struct sock *sk) 2431 { 2432 if (!sk->sk_prot->enter_memory_pressure) 2433 return; 2434 2435 sk->sk_prot->enter_memory_pressure(sk); 2436 } 2437 2438 static void sk_leave_memory_pressure(struct sock *sk) 2439 { 2440 if (sk->sk_prot->leave_memory_pressure) { 2441 sk->sk_prot->leave_memory_pressure(sk); 2442 } else { 2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2444 2445 if (memory_pressure && READ_ONCE(*memory_pressure)) 2446 WRITE_ONCE(*memory_pressure, 0); 2447 } 2448 } 2449 2450 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2451 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2452 2453 /** 2454 * skb_page_frag_refill - check that a page_frag contains enough room 2455 * @sz: minimum size of the fragment we want to get 2456 * @pfrag: pointer to page_frag 2457 * @gfp: priority for memory allocation 2458 * 2459 * Note: While this allocator tries to use high order pages, there is 2460 * no guarantee that allocations succeed. Therefore, @sz MUST be 2461 * less or equal than PAGE_SIZE. 2462 */ 2463 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2464 { 2465 if (pfrag->page) { 2466 if (page_ref_count(pfrag->page) == 1) { 2467 pfrag->offset = 0; 2468 return true; 2469 } 2470 if (pfrag->offset + sz <= pfrag->size) 2471 return true; 2472 put_page(pfrag->page); 2473 } 2474 2475 pfrag->offset = 0; 2476 if (SKB_FRAG_PAGE_ORDER && 2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2478 /* Avoid direct reclaim but allow kswapd to wake */ 2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2480 __GFP_COMP | __GFP_NOWARN | 2481 __GFP_NORETRY, 2482 SKB_FRAG_PAGE_ORDER); 2483 if (likely(pfrag->page)) { 2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2485 return true; 2486 } 2487 } 2488 pfrag->page = alloc_page(gfp); 2489 if (likely(pfrag->page)) { 2490 pfrag->size = PAGE_SIZE; 2491 return true; 2492 } 2493 return false; 2494 } 2495 EXPORT_SYMBOL(skb_page_frag_refill); 2496 2497 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2498 { 2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2500 return true; 2501 2502 sk_enter_memory_pressure(sk); 2503 sk_stream_moderate_sndbuf(sk); 2504 return false; 2505 } 2506 EXPORT_SYMBOL(sk_page_frag_refill); 2507 2508 void __lock_sock(struct sock *sk) 2509 __releases(&sk->sk_lock.slock) 2510 __acquires(&sk->sk_lock.slock) 2511 { 2512 DEFINE_WAIT(wait); 2513 2514 for (;;) { 2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2516 TASK_UNINTERRUPTIBLE); 2517 spin_unlock_bh(&sk->sk_lock.slock); 2518 schedule(); 2519 spin_lock_bh(&sk->sk_lock.slock); 2520 if (!sock_owned_by_user(sk)) 2521 break; 2522 } 2523 finish_wait(&sk->sk_lock.wq, &wait); 2524 } 2525 2526 void __release_sock(struct sock *sk) 2527 __releases(&sk->sk_lock.slock) 2528 __acquires(&sk->sk_lock.slock) 2529 { 2530 struct sk_buff *skb, *next; 2531 2532 while ((skb = sk->sk_backlog.head) != NULL) { 2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2534 2535 spin_unlock_bh(&sk->sk_lock.slock); 2536 2537 do { 2538 next = skb->next; 2539 prefetch(next); 2540 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2541 skb_mark_not_on_list(skb); 2542 sk_backlog_rcv(sk, skb); 2543 2544 cond_resched(); 2545 2546 skb = next; 2547 } while (skb != NULL); 2548 2549 spin_lock_bh(&sk->sk_lock.slock); 2550 } 2551 2552 /* 2553 * Doing the zeroing here guarantee we can not loop forever 2554 * while a wild producer attempts to flood us. 2555 */ 2556 sk->sk_backlog.len = 0; 2557 } 2558 2559 void __sk_flush_backlog(struct sock *sk) 2560 { 2561 spin_lock_bh(&sk->sk_lock.slock); 2562 __release_sock(sk); 2563 spin_unlock_bh(&sk->sk_lock.slock); 2564 } 2565 2566 /** 2567 * sk_wait_data - wait for data to arrive at sk_receive_queue 2568 * @sk: sock to wait on 2569 * @timeo: for how long 2570 * @skb: last skb seen on sk_receive_queue 2571 * 2572 * Now socket state including sk->sk_err is changed only under lock, 2573 * hence we may omit checks after joining wait queue. 2574 * We check receive queue before schedule() only as optimization; 2575 * it is very likely that release_sock() added new data. 2576 */ 2577 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2578 { 2579 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2580 int rc; 2581 2582 add_wait_queue(sk_sleep(sk), &wait); 2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2586 remove_wait_queue(sk_sleep(sk), &wait); 2587 return rc; 2588 } 2589 EXPORT_SYMBOL(sk_wait_data); 2590 2591 /** 2592 * __sk_mem_raise_allocated - increase memory_allocated 2593 * @sk: socket 2594 * @size: memory size to allocate 2595 * @amt: pages to allocate 2596 * @kind: allocation type 2597 * 2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2599 */ 2600 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2601 { 2602 struct proto *prot = sk->sk_prot; 2603 long allocated = sk_memory_allocated_add(sk, amt); 2604 bool charged = true; 2605 2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2608 goto suppress_allocation; 2609 2610 /* Under limit. */ 2611 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2612 sk_leave_memory_pressure(sk); 2613 return 1; 2614 } 2615 2616 /* Under pressure. */ 2617 if (allocated > sk_prot_mem_limits(sk, 1)) 2618 sk_enter_memory_pressure(sk); 2619 2620 /* Over hard limit. */ 2621 if (allocated > sk_prot_mem_limits(sk, 2)) 2622 goto suppress_allocation; 2623 2624 /* guarantee minimum buffer size under pressure */ 2625 if (kind == SK_MEM_RECV) { 2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2627 return 1; 2628 2629 } else { /* SK_MEM_SEND */ 2630 int wmem0 = sk_get_wmem0(sk, prot); 2631 2632 if (sk->sk_type == SOCK_STREAM) { 2633 if (sk->sk_wmem_queued < wmem0) 2634 return 1; 2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2636 return 1; 2637 } 2638 } 2639 2640 if (sk_has_memory_pressure(sk)) { 2641 u64 alloc; 2642 2643 if (!sk_under_memory_pressure(sk)) 2644 return 1; 2645 alloc = sk_sockets_allocated_read_positive(sk); 2646 if (sk_prot_mem_limits(sk, 2) > alloc * 2647 sk_mem_pages(sk->sk_wmem_queued + 2648 atomic_read(&sk->sk_rmem_alloc) + 2649 sk->sk_forward_alloc)) 2650 return 1; 2651 } 2652 2653 suppress_allocation: 2654 2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2656 sk_stream_moderate_sndbuf(sk); 2657 2658 /* Fail only if socket is _under_ its sndbuf. 2659 * In this case we cannot block, so that we have to fail. 2660 */ 2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2662 return 1; 2663 } 2664 2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2667 2668 sk_memory_allocated_sub(sk, amt); 2669 2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2676 2677 /** 2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2679 * @sk: socket 2680 * @size: memory size to allocate 2681 * @kind: allocation type 2682 * 2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2684 * rmem allocation. This function assumes that protocols which have 2685 * memory_pressure use sk_wmem_queued as write buffer accounting. 2686 */ 2687 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2688 { 2689 int ret, amt = sk_mem_pages(size); 2690 2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2693 if (!ret) 2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2695 return ret; 2696 } 2697 EXPORT_SYMBOL(__sk_mem_schedule); 2698 2699 /** 2700 * __sk_mem_reduce_allocated - reclaim memory_allocated 2701 * @sk: socket 2702 * @amount: number of quanta 2703 * 2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2705 */ 2706 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2707 { 2708 sk_memory_allocated_sub(sk, amount); 2709 2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2712 2713 if (sk_under_memory_pressure(sk) && 2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2715 sk_leave_memory_pressure(sk); 2716 } 2717 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2718 2719 /** 2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2721 * @sk: socket 2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2723 */ 2724 void __sk_mem_reclaim(struct sock *sk, int amount) 2725 { 2726 amount >>= SK_MEM_QUANTUM_SHIFT; 2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2728 __sk_mem_reduce_allocated(sk, amount); 2729 } 2730 EXPORT_SYMBOL(__sk_mem_reclaim); 2731 2732 int sk_set_peek_off(struct sock *sk, int val) 2733 { 2734 sk->sk_peek_off = val; 2735 return 0; 2736 } 2737 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2738 2739 /* 2740 * Set of default routines for initialising struct proto_ops when 2741 * the protocol does not support a particular function. In certain 2742 * cases where it makes no sense for a protocol to have a "do nothing" 2743 * function, some default processing is provided. 2744 */ 2745 2746 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2747 { 2748 return -EOPNOTSUPP; 2749 } 2750 EXPORT_SYMBOL(sock_no_bind); 2751 2752 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2753 int len, int flags) 2754 { 2755 return -EOPNOTSUPP; 2756 } 2757 EXPORT_SYMBOL(sock_no_connect); 2758 2759 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2760 { 2761 return -EOPNOTSUPP; 2762 } 2763 EXPORT_SYMBOL(sock_no_socketpair); 2764 2765 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2766 bool kern) 2767 { 2768 return -EOPNOTSUPP; 2769 } 2770 EXPORT_SYMBOL(sock_no_accept); 2771 2772 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2773 int peer) 2774 { 2775 return -EOPNOTSUPP; 2776 } 2777 EXPORT_SYMBOL(sock_no_getname); 2778 2779 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2780 { 2781 return -EOPNOTSUPP; 2782 } 2783 EXPORT_SYMBOL(sock_no_ioctl); 2784 2785 int sock_no_listen(struct socket *sock, int backlog) 2786 { 2787 return -EOPNOTSUPP; 2788 } 2789 EXPORT_SYMBOL(sock_no_listen); 2790 2791 int sock_no_shutdown(struct socket *sock, int how) 2792 { 2793 return -EOPNOTSUPP; 2794 } 2795 EXPORT_SYMBOL(sock_no_shutdown); 2796 2797 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2798 { 2799 return -EOPNOTSUPP; 2800 } 2801 EXPORT_SYMBOL(sock_no_sendmsg); 2802 2803 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2804 { 2805 return -EOPNOTSUPP; 2806 } 2807 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2808 2809 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2810 int flags) 2811 { 2812 return -EOPNOTSUPP; 2813 } 2814 EXPORT_SYMBOL(sock_no_recvmsg); 2815 2816 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2817 { 2818 /* Mirror missing mmap method error code */ 2819 return -ENODEV; 2820 } 2821 EXPORT_SYMBOL(sock_no_mmap); 2822 2823 /* 2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the 2825 * various sock-based usage counts. 2826 */ 2827 void __receive_sock(struct file *file) 2828 { 2829 struct socket *sock; 2830 2831 sock = sock_from_file(file); 2832 if (sock) { 2833 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 2834 sock_update_classid(&sock->sk->sk_cgrp_data); 2835 } 2836 } 2837 2838 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2839 { 2840 ssize_t res; 2841 struct msghdr msg = {.msg_flags = flags}; 2842 struct kvec iov; 2843 char *kaddr = kmap(page); 2844 iov.iov_base = kaddr + offset; 2845 iov.iov_len = size; 2846 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2847 kunmap(page); 2848 return res; 2849 } 2850 EXPORT_SYMBOL(sock_no_sendpage); 2851 2852 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2853 int offset, size_t size, int flags) 2854 { 2855 ssize_t res; 2856 struct msghdr msg = {.msg_flags = flags}; 2857 struct kvec iov; 2858 char *kaddr = kmap(page); 2859 2860 iov.iov_base = kaddr + offset; 2861 iov.iov_len = size; 2862 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2863 kunmap(page); 2864 return res; 2865 } 2866 EXPORT_SYMBOL(sock_no_sendpage_locked); 2867 2868 /* 2869 * Default Socket Callbacks 2870 */ 2871 2872 static void sock_def_wakeup(struct sock *sk) 2873 { 2874 struct socket_wq *wq; 2875 2876 rcu_read_lock(); 2877 wq = rcu_dereference(sk->sk_wq); 2878 if (skwq_has_sleeper(wq)) 2879 wake_up_interruptible_all(&wq->wait); 2880 rcu_read_unlock(); 2881 } 2882 2883 static void sock_def_error_report(struct sock *sk) 2884 { 2885 struct socket_wq *wq; 2886 2887 rcu_read_lock(); 2888 wq = rcu_dereference(sk->sk_wq); 2889 if (skwq_has_sleeper(wq)) 2890 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2891 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2892 rcu_read_unlock(); 2893 } 2894 2895 void sock_def_readable(struct sock *sk) 2896 { 2897 struct socket_wq *wq; 2898 2899 rcu_read_lock(); 2900 wq = rcu_dereference(sk->sk_wq); 2901 if (skwq_has_sleeper(wq)) 2902 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2903 EPOLLRDNORM | EPOLLRDBAND); 2904 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2905 rcu_read_unlock(); 2906 } 2907 2908 static void sock_def_write_space(struct sock *sk) 2909 { 2910 struct socket_wq *wq; 2911 2912 rcu_read_lock(); 2913 2914 /* Do not wake up a writer until he can make "significant" 2915 * progress. --DaveM 2916 */ 2917 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2918 wq = rcu_dereference(sk->sk_wq); 2919 if (skwq_has_sleeper(wq)) 2920 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2921 EPOLLWRNORM | EPOLLWRBAND); 2922 2923 /* Should agree with poll, otherwise some programs break */ 2924 if (sock_writeable(sk)) 2925 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2926 } 2927 2928 rcu_read_unlock(); 2929 } 2930 2931 static void sock_def_destruct(struct sock *sk) 2932 { 2933 } 2934 2935 void sk_send_sigurg(struct sock *sk) 2936 { 2937 if (sk->sk_socket && sk->sk_socket->file) 2938 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2939 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2940 } 2941 EXPORT_SYMBOL(sk_send_sigurg); 2942 2943 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2944 unsigned long expires) 2945 { 2946 if (!mod_timer(timer, expires)) 2947 sock_hold(sk); 2948 } 2949 EXPORT_SYMBOL(sk_reset_timer); 2950 2951 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2952 { 2953 if (del_timer(timer)) 2954 __sock_put(sk); 2955 } 2956 EXPORT_SYMBOL(sk_stop_timer); 2957 2958 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 2959 { 2960 if (del_timer_sync(timer)) 2961 __sock_put(sk); 2962 } 2963 EXPORT_SYMBOL(sk_stop_timer_sync); 2964 2965 void sock_init_data(struct socket *sock, struct sock *sk) 2966 { 2967 sk_init_common(sk); 2968 sk->sk_send_head = NULL; 2969 2970 timer_setup(&sk->sk_timer, NULL, 0); 2971 2972 sk->sk_allocation = GFP_KERNEL; 2973 sk->sk_rcvbuf = sysctl_rmem_default; 2974 sk->sk_sndbuf = sysctl_wmem_default; 2975 sk->sk_state = TCP_CLOSE; 2976 sk_set_socket(sk, sock); 2977 2978 sock_set_flag(sk, SOCK_ZAPPED); 2979 2980 if (sock) { 2981 sk->sk_type = sock->type; 2982 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2983 sock->sk = sk; 2984 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2985 } else { 2986 RCU_INIT_POINTER(sk->sk_wq, NULL); 2987 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2988 } 2989 2990 rwlock_init(&sk->sk_callback_lock); 2991 if (sk->sk_kern_sock) 2992 lockdep_set_class_and_name( 2993 &sk->sk_callback_lock, 2994 af_kern_callback_keys + sk->sk_family, 2995 af_family_kern_clock_key_strings[sk->sk_family]); 2996 else 2997 lockdep_set_class_and_name( 2998 &sk->sk_callback_lock, 2999 af_callback_keys + sk->sk_family, 3000 af_family_clock_key_strings[sk->sk_family]); 3001 3002 sk->sk_state_change = sock_def_wakeup; 3003 sk->sk_data_ready = sock_def_readable; 3004 sk->sk_write_space = sock_def_write_space; 3005 sk->sk_error_report = sock_def_error_report; 3006 sk->sk_destruct = sock_def_destruct; 3007 3008 sk->sk_frag.page = NULL; 3009 sk->sk_frag.offset = 0; 3010 sk->sk_peek_off = -1; 3011 3012 sk->sk_peer_pid = NULL; 3013 sk->sk_peer_cred = NULL; 3014 sk->sk_write_pending = 0; 3015 sk->sk_rcvlowat = 1; 3016 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3017 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3018 3019 sk->sk_stamp = SK_DEFAULT_STAMP; 3020 #if BITS_PER_LONG==32 3021 seqlock_init(&sk->sk_stamp_seq); 3022 #endif 3023 atomic_set(&sk->sk_zckey, 0); 3024 3025 #ifdef CONFIG_NET_RX_BUSY_POLL 3026 sk->sk_napi_id = 0; 3027 sk->sk_ll_usec = sysctl_net_busy_read; 3028 #endif 3029 3030 sk->sk_max_pacing_rate = ~0UL; 3031 sk->sk_pacing_rate = ~0UL; 3032 WRITE_ONCE(sk->sk_pacing_shift, 10); 3033 sk->sk_incoming_cpu = -1; 3034 3035 sk_rx_queue_clear(sk); 3036 /* 3037 * Before updating sk_refcnt, we must commit prior changes to memory 3038 * (Documentation/RCU/rculist_nulls.rst for details) 3039 */ 3040 smp_wmb(); 3041 refcount_set(&sk->sk_refcnt, 1); 3042 atomic_set(&sk->sk_drops, 0); 3043 } 3044 EXPORT_SYMBOL(sock_init_data); 3045 3046 void lock_sock_nested(struct sock *sk, int subclass) 3047 { 3048 might_sleep(); 3049 spin_lock_bh(&sk->sk_lock.slock); 3050 if (sk->sk_lock.owned) 3051 __lock_sock(sk); 3052 sk->sk_lock.owned = 1; 3053 spin_unlock(&sk->sk_lock.slock); 3054 /* 3055 * The sk_lock has mutex_lock() semantics here: 3056 */ 3057 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3058 local_bh_enable(); 3059 } 3060 EXPORT_SYMBOL(lock_sock_nested); 3061 3062 void release_sock(struct sock *sk) 3063 { 3064 spin_lock_bh(&sk->sk_lock.slock); 3065 if (sk->sk_backlog.tail) 3066 __release_sock(sk); 3067 3068 /* Warning : release_cb() might need to release sk ownership, 3069 * ie call sock_release_ownership(sk) before us. 3070 */ 3071 if (sk->sk_prot->release_cb) 3072 sk->sk_prot->release_cb(sk); 3073 3074 sock_release_ownership(sk); 3075 if (waitqueue_active(&sk->sk_lock.wq)) 3076 wake_up(&sk->sk_lock.wq); 3077 spin_unlock_bh(&sk->sk_lock.slock); 3078 } 3079 EXPORT_SYMBOL(release_sock); 3080 3081 /** 3082 * lock_sock_fast - fast version of lock_sock 3083 * @sk: socket 3084 * 3085 * This version should be used for very small section, where process wont block 3086 * return false if fast path is taken: 3087 * 3088 * sk_lock.slock locked, owned = 0, BH disabled 3089 * 3090 * return true if slow path is taken: 3091 * 3092 * sk_lock.slock unlocked, owned = 1, BH enabled 3093 */ 3094 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3095 { 3096 might_sleep(); 3097 spin_lock_bh(&sk->sk_lock.slock); 3098 3099 if (!sk->sk_lock.owned) 3100 /* 3101 * Note : We must disable BH 3102 */ 3103 return false; 3104 3105 __lock_sock(sk); 3106 sk->sk_lock.owned = 1; 3107 spin_unlock(&sk->sk_lock.slock); 3108 /* 3109 * The sk_lock has mutex_lock() semantics here: 3110 */ 3111 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3112 __acquire(&sk->sk_lock.slock); 3113 local_bh_enable(); 3114 return true; 3115 } 3116 EXPORT_SYMBOL(lock_sock_fast); 3117 3118 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3119 bool timeval, bool time32) 3120 { 3121 struct sock *sk = sock->sk; 3122 struct timespec64 ts; 3123 3124 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3125 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3126 if (ts.tv_sec == -1) 3127 return -ENOENT; 3128 if (ts.tv_sec == 0) { 3129 ktime_t kt = ktime_get_real(); 3130 sock_write_timestamp(sk, kt); 3131 ts = ktime_to_timespec64(kt); 3132 } 3133 3134 if (timeval) 3135 ts.tv_nsec /= 1000; 3136 3137 #ifdef CONFIG_COMPAT_32BIT_TIME 3138 if (time32) 3139 return put_old_timespec32(&ts, userstamp); 3140 #endif 3141 #ifdef CONFIG_SPARC64 3142 /* beware of padding in sparc64 timeval */ 3143 if (timeval && !in_compat_syscall()) { 3144 struct __kernel_old_timeval __user tv = { 3145 .tv_sec = ts.tv_sec, 3146 .tv_usec = ts.tv_nsec, 3147 }; 3148 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3149 return -EFAULT; 3150 return 0; 3151 } 3152 #endif 3153 return put_timespec64(&ts, userstamp); 3154 } 3155 EXPORT_SYMBOL(sock_gettstamp); 3156 3157 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3158 { 3159 if (!sock_flag(sk, flag)) { 3160 unsigned long previous_flags = sk->sk_flags; 3161 3162 sock_set_flag(sk, flag); 3163 /* 3164 * we just set one of the two flags which require net 3165 * time stamping, but time stamping might have been on 3166 * already because of the other one 3167 */ 3168 if (sock_needs_netstamp(sk) && 3169 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3170 net_enable_timestamp(); 3171 } 3172 } 3173 3174 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3175 int level, int type) 3176 { 3177 struct sock_exterr_skb *serr; 3178 struct sk_buff *skb; 3179 int copied, err; 3180 3181 err = -EAGAIN; 3182 skb = sock_dequeue_err_skb(sk); 3183 if (skb == NULL) 3184 goto out; 3185 3186 copied = skb->len; 3187 if (copied > len) { 3188 msg->msg_flags |= MSG_TRUNC; 3189 copied = len; 3190 } 3191 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3192 if (err) 3193 goto out_free_skb; 3194 3195 sock_recv_timestamp(msg, sk, skb); 3196 3197 serr = SKB_EXT_ERR(skb); 3198 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3199 3200 msg->msg_flags |= MSG_ERRQUEUE; 3201 err = copied; 3202 3203 out_free_skb: 3204 kfree_skb(skb); 3205 out: 3206 return err; 3207 } 3208 EXPORT_SYMBOL(sock_recv_errqueue); 3209 3210 /* 3211 * Get a socket option on an socket. 3212 * 3213 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3214 * asynchronous errors should be reported by getsockopt. We assume 3215 * this means if you specify SO_ERROR (otherwise whats the point of it). 3216 */ 3217 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3218 char __user *optval, int __user *optlen) 3219 { 3220 struct sock *sk = sock->sk; 3221 3222 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3223 } 3224 EXPORT_SYMBOL(sock_common_getsockopt); 3225 3226 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3227 int flags) 3228 { 3229 struct sock *sk = sock->sk; 3230 int addr_len = 0; 3231 int err; 3232 3233 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3234 flags & ~MSG_DONTWAIT, &addr_len); 3235 if (err >= 0) 3236 msg->msg_namelen = addr_len; 3237 return err; 3238 } 3239 EXPORT_SYMBOL(sock_common_recvmsg); 3240 3241 /* 3242 * Set socket options on an inet socket. 3243 */ 3244 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3245 sockptr_t optval, unsigned int optlen) 3246 { 3247 struct sock *sk = sock->sk; 3248 3249 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3250 } 3251 EXPORT_SYMBOL(sock_common_setsockopt); 3252 3253 void sk_common_release(struct sock *sk) 3254 { 3255 if (sk->sk_prot->destroy) 3256 sk->sk_prot->destroy(sk); 3257 3258 /* 3259 * Observation: when sk_common_release is called, processes have 3260 * no access to socket. But net still has. 3261 * Step one, detach it from networking: 3262 * 3263 * A. Remove from hash tables. 3264 */ 3265 3266 sk->sk_prot->unhash(sk); 3267 3268 /* 3269 * In this point socket cannot receive new packets, but it is possible 3270 * that some packets are in flight because some CPU runs receiver and 3271 * did hash table lookup before we unhashed socket. They will achieve 3272 * receive queue and will be purged by socket destructor. 3273 * 3274 * Also we still have packets pending on receive queue and probably, 3275 * our own packets waiting in device queues. sock_destroy will drain 3276 * receive queue, but transmitted packets will delay socket destruction 3277 * until the last reference will be released. 3278 */ 3279 3280 sock_orphan(sk); 3281 3282 xfrm_sk_free_policy(sk); 3283 3284 sk_refcnt_debug_release(sk); 3285 3286 sock_put(sk); 3287 } 3288 EXPORT_SYMBOL(sk_common_release); 3289 3290 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3291 { 3292 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3293 3294 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3295 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3296 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3297 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3298 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3299 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3300 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3301 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3302 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3303 } 3304 3305 #ifdef CONFIG_PROC_FS 3306 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3307 struct prot_inuse { 3308 int val[PROTO_INUSE_NR]; 3309 }; 3310 3311 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3312 3313 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3314 { 3315 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3316 } 3317 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3318 3319 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3320 { 3321 int cpu, idx = prot->inuse_idx; 3322 int res = 0; 3323 3324 for_each_possible_cpu(cpu) 3325 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3326 3327 return res >= 0 ? res : 0; 3328 } 3329 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3330 3331 static void sock_inuse_add(struct net *net, int val) 3332 { 3333 this_cpu_add(*net->core.sock_inuse, val); 3334 } 3335 3336 int sock_inuse_get(struct net *net) 3337 { 3338 int cpu, res = 0; 3339 3340 for_each_possible_cpu(cpu) 3341 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3342 3343 return res; 3344 } 3345 3346 EXPORT_SYMBOL_GPL(sock_inuse_get); 3347 3348 static int __net_init sock_inuse_init_net(struct net *net) 3349 { 3350 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3351 if (net->core.prot_inuse == NULL) 3352 return -ENOMEM; 3353 3354 net->core.sock_inuse = alloc_percpu(int); 3355 if (net->core.sock_inuse == NULL) 3356 goto out; 3357 3358 return 0; 3359 3360 out: 3361 free_percpu(net->core.prot_inuse); 3362 return -ENOMEM; 3363 } 3364 3365 static void __net_exit sock_inuse_exit_net(struct net *net) 3366 { 3367 free_percpu(net->core.prot_inuse); 3368 free_percpu(net->core.sock_inuse); 3369 } 3370 3371 static struct pernet_operations net_inuse_ops = { 3372 .init = sock_inuse_init_net, 3373 .exit = sock_inuse_exit_net, 3374 }; 3375 3376 static __init int net_inuse_init(void) 3377 { 3378 if (register_pernet_subsys(&net_inuse_ops)) 3379 panic("Cannot initialize net inuse counters"); 3380 3381 return 0; 3382 } 3383 3384 core_initcall(net_inuse_init); 3385 3386 static int assign_proto_idx(struct proto *prot) 3387 { 3388 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3389 3390 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3391 pr_err("PROTO_INUSE_NR exhausted\n"); 3392 return -ENOSPC; 3393 } 3394 3395 set_bit(prot->inuse_idx, proto_inuse_idx); 3396 return 0; 3397 } 3398 3399 static void release_proto_idx(struct proto *prot) 3400 { 3401 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3402 clear_bit(prot->inuse_idx, proto_inuse_idx); 3403 } 3404 #else 3405 static inline int assign_proto_idx(struct proto *prot) 3406 { 3407 return 0; 3408 } 3409 3410 static inline void release_proto_idx(struct proto *prot) 3411 { 3412 } 3413 3414 static void sock_inuse_add(struct net *net, int val) 3415 { 3416 } 3417 #endif 3418 3419 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3420 { 3421 if (!twsk_prot) 3422 return; 3423 kfree(twsk_prot->twsk_slab_name); 3424 twsk_prot->twsk_slab_name = NULL; 3425 kmem_cache_destroy(twsk_prot->twsk_slab); 3426 twsk_prot->twsk_slab = NULL; 3427 } 3428 3429 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3430 { 3431 if (!rsk_prot) 3432 return; 3433 kfree(rsk_prot->slab_name); 3434 rsk_prot->slab_name = NULL; 3435 kmem_cache_destroy(rsk_prot->slab); 3436 rsk_prot->slab = NULL; 3437 } 3438 3439 static int req_prot_init(const struct proto *prot) 3440 { 3441 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3442 3443 if (!rsk_prot) 3444 return 0; 3445 3446 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3447 prot->name); 3448 if (!rsk_prot->slab_name) 3449 return -ENOMEM; 3450 3451 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3452 rsk_prot->obj_size, 0, 3453 SLAB_ACCOUNT | prot->slab_flags, 3454 NULL); 3455 3456 if (!rsk_prot->slab) { 3457 pr_crit("%s: Can't create request sock SLAB cache!\n", 3458 prot->name); 3459 return -ENOMEM; 3460 } 3461 return 0; 3462 } 3463 3464 int proto_register(struct proto *prot, int alloc_slab) 3465 { 3466 int ret = -ENOBUFS; 3467 3468 if (alloc_slab) { 3469 prot->slab = kmem_cache_create_usercopy(prot->name, 3470 prot->obj_size, 0, 3471 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3472 prot->slab_flags, 3473 prot->useroffset, prot->usersize, 3474 NULL); 3475 3476 if (prot->slab == NULL) { 3477 pr_crit("%s: Can't create sock SLAB cache!\n", 3478 prot->name); 3479 goto out; 3480 } 3481 3482 if (req_prot_init(prot)) 3483 goto out_free_request_sock_slab; 3484 3485 if (prot->twsk_prot != NULL) { 3486 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3487 3488 if (prot->twsk_prot->twsk_slab_name == NULL) 3489 goto out_free_request_sock_slab; 3490 3491 prot->twsk_prot->twsk_slab = 3492 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3493 prot->twsk_prot->twsk_obj_size, 3494 0, 3495 SLAB_ACCOUNT | 3496 prot->slab_flags, 3497 NULL); 3498 if (prot->twsk_prot->twsk_slab == NULL) 3499 goto out_free_timewait_sock_slab; 3500 } 3501 } 3502 3503 mutex_lock(&proto_list_mutex); 3504 ret = assign_proto_idx(prot); 3505 if (ret) { 3506 mutex_unlock(&proto_list_mutex); 3507 goto out_free_timewait_sock_slab; 3508 } 3509 list_add(&prot->node, &proto_list); 3510 mutex_unlock(&proto_list_mutex); 3511 return ret; 3512 3513 out_free_timewait_sock_slab: 3514 if (alloc_slab && prot->twsk_prot) 3515 tw_prot_cleanup(prot->twsk_prot); 3516 out_free_request_sock_slab: 3517 if (alloc_slab) { 3518 req_prot_cleanup(prot->rsk_prot); 3519 3520 kmem_cache_destroy(prot->slab); 3521 prot->slab = NULL; 3522 } 3523 out: 3524 return ret; 3525 } 3526 EXPORT_SYMBOL(proto_register); 3527 3528 void proto_unregister(struct proto *prot) 3529 { 3530 mutex_lock(&proto_list_mutex); 3531 release_proto_idx(prot); 3532 list_del(&prot->node); 3533 mutex_unlock(&proto_list_mutex); 3534 3535 kmem_cache_destroy(prot->slab); 3536 prot->slab = NULL; 3537 3538 req_prot_cleanup(prot->rsk_prot); 3539 tw_prot_cleanup(prot->twsk_prot); 3540 } 3541 EXPORT_SYMBOL(proto_unregister); 3542 3543 int sock_load_diag_module(int family, int protocol) 3544 { 3545 if (!protocol) { 3546 if (!sock_is_registered(family)) 3547 return -ENOENT; 3548 3549 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3550 NETLINK_SOCK_DIAG, family); 3551 } 3552 3553 #ifdef CONFIG_INET 3554 if (family == AF_INET && 3555 protocol != IPPROTO_RAW && 3556 protocol < MAX_INET_PROTOS && 3557 !rcu_access_pointer(inet_protos[protocol])) 3558 return -ENOENT; 3559 #endif 3560 3561 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3562 NETLINK_SOCK_DIAG, family, protocol); 3563 } 3564 EXPORT_SYMBOL(sock_load_diag_module); 3565 3566 #ifdef CONFIG_PROC_FS 3567 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3568 __acquires(proto_list_mutex) 3569 { 3570 mutex_lock(&proto_list_mutex); 3571 return seq_list_start_head(&proto_list, *pos); 3572 } 3573 3574 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3575 { 3576 return seq_list_next(v, &proto_list, pos); 3577 } 3578 3579 static void proto_seq_stop(struct seq_file *seq, void *v) 3580 __releases(proto_list_mutex) 3581 { 3582 mutex_unlock(&proto_list_mutex); 3583 } 3584 3585 static char proto_method_implemented(const void *method) 3586 { 3587 return method == NULL ? 'n' : 'y'; 3588 } 3589 static long sock_prot_memory_allocated(struct proto *proto) 3590 { 3591 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3592 } 3593 3594 static const char *sock_prot_memory_pressure(struct proto *proto) 3595 { 3596 return proto->memory_pressure != NULL ? 3597 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3598 } 3599 3600 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3601 { 3602 3603 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3604 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3605 proto->name, 3606 proto->obj_size, 3607 sock_prot_inuse_get(seq_file_net(seq), proto), 3608 sock_prot_memory_allocated(proto), 3609 sock_prot_memory_pressure(proto), 3610 proto->max_header, 3611 proto->slab == NULL ? "no" : "yes", 3612 module_name(proto->owner), 3613 proto_method_implemented(proto->close), 3614 proto_method_implemented(proto->connect), 3615 proto_method_implemented(proto->disconnect), 3616 proto_method_implemented(proto->accept), 3617 proto_method_implemented(proto->ioctl), 3618 proto_method_implemented(proto->init), 3619 proto_method_implemented(proto->destroy), 3620 proto_method_implemented(proto->shutdown), 3621 proto_method_implemented(proto->setsockopt), 3622 proto_method_implemented(proto->getsockopt), 3623 proto_method_implemented(proto->sendmsg), 3624 proto_method_implemented(proto->recvmsg), 3625 proto_method_implemented(proto->sendpage), 3626 proto_method_implemented(proto->bind), 3627 proto_method_implemented(proto->backlog_rcv), 3628 proto_method_implemented(proto->hash), 3629 proto_method_implemented(proto->unhash), 3630 proto_method_implemented(proto->get_port), 3631 proto_method_implemented(proto->enter_memory_pressure)); 3632 } 3633 3634 static int proto_seq_show(struct seq_file *seq, void *v) 3635 { 3636 if (v == &proto_list) 3637 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3638 "protocol", 3639 "size", 3640 "sockets", 3641 "memory", 3642 "press", 3643 "maxhdr", 3644 "slab", 3645 "module", 3646 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3647 else 3648 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3649 return 0; 3650 } 3651 3652 static const struct seq_operations proto_seq_ops = { 3653 .start = proto_seq_start, 3654 .next = proto_seq_next, 3655 .stop = proto_seq_stop, 3656 .show = proto_seq_show, 3657 }; 3658 3659 static __net_init int proto_init_net(struct net *net) 3660 { 3661 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3662 sizeof(struct seq_net_private))) 3663 return -ENOMEM; 3664 3665 return 0; 3666 } 3667 3668 static __net_exit void proto_exit_net(struct net *net) 3669 { 3670 remove_proc_entry("protocols", net->proc_net); 3671 } 3672 3673 3674 static __net_initdata struct pernet_operations proto_net_ops = { 3675 .init = proto_init_net, 3676 .exit = proto_exit_net, 3677 }; 3678 3679 static int __init proto_init(void) 3680 { 3681 return register_pernet_subsys(&proto_net_ops); 3682 } 3683 3684 subsys_initcall(proto_init); 3685 3686 #endif /* PROC_FS */ 3687 3688 #ifdef CONFIG_NET_RX_BUSY_POLL 3689 bool sk_busy_loop_end(void *p, unsigned long start_time) 3690 { 3691 struct sock *sk = p; 3692 3693 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3694 sk_busy_loop_timeout(sk, start_time); 3695 } 3696 EXPORT_SYMBOL(sk_busy_loop_end); 3697 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3698 3699 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3700 { 3701 if (!sk->sk_prot->bind_add) 3702 return -EOPNOTSUPP; 3703 return sk->sk_prot->bind_add(sk, addr, addr_len); 3704 } 3705 EXPORT_SYMBOL(sock_bind_add); 3706