1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 #include <net/bpf_sk_storage.h> 140 141 #include <trace/events/sock.h> 142 143 #include <net/tcp.h> 144 #include <net/busy_poll.h> 145 #include <net/phonet/phonet.h> 146 147 #include <linux/ethtool.h> 148 149 #include "dev.h" 150 151 static DEFINE_MUTEX(proto_list_mutex); 152 static LIST_HEAD(proto_list); 153 154 static void sock_def_write_space_wfree(struct sock *sk); 155 static void sock_def_write_space(struct sock *sk); 156 157 /** 158 * sk_ns_capable - General socket capability test 159 * @sk: Socket to use a capability on or through 160 * @user_ns: The user namespace of the capability to use 161 * @cap: The capability to use 162 * 163 * Test to see if the opener of the socket had when the socket was 164 * created and the current process has the capability @cap in the user 165 * namespace @user_ns. 166 */ 167 bool sk_ns_capable(const struct sock *sk, 168 struct user_namespace *user_ns, int cap) 169 { 170 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 171 ns_capable(user_ns, cap); 172 } 173 EXPORT_SYMBOL(sk_ns_capable); 174 175 /** 176 * sk_capable - Socket global capability test 177 * @sk: Socket to use a capability on or through 178 * @cap: The global capability to use 179 * 180 * Test to see if the opener of the socket had when the socket was 181 * created and the current process has the capability @cap in all user 182 * namespaces. 183 */ 184 bool sk_capable(const struct sock *sk, int cap) 185 { 186 return sk_ns_capable(sk, &init_user_ns, cap); 187 } 188 EXPORT_SYMBOL(sk_capable); 189 190 /** 191 * sk_net_capable - Network namespace socket capability test 192 * @sk: Socket to use a capability on or through 193 * @cap: The capability to use 194 * 195 * Test to see if the opener of the socket had when the socket was created 196 * and the current process has the capability @cap over the network namespace 197 * the socket is a member of. 198 */ 199 bool sk_net_capable(const struct sock *sk, int cap) 200 { 201 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 202 } 203 EXPORT_SYMBOL(sk_net_capable); 204 205 /* 206 * Each address family might have different locking rules, so we have 207 * one slock key per address family and separate keys for internal and 208 * userspace sockets. 209 */ 210 static struct lock_class_key af_family_keys[AF_MAX]; 211 static struct lock_class_key af_family_kern_keys[AF_MAX]; 212 static struct lock_class_key af_family_slock_keys[AF_MAX]; 213 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 214 215 /* 216 * Make lock validator output more readable. (we pre-construct these 217 * strings build-time, so that runtime initialization of socket 218 * locks is fast): 219 */ 220 221 #define _sock_locks(x) \ 222 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 223 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 224 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 225 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 226 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 227 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 228 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 229 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 230 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 231 x "27" , x "28" , x "AF_CAN" , \ 232 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 233 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 234 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 235 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 236 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 237 x "AF_MCTP" , \ 238 x "AF_MAX" 239 240 static const char *const af_family_key_strings[AF_MAX+1] = { 241 _sock_locks("sk_lock-") 242 }; 243 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 244 _sock_locks("slock-") 245 }; 246 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 247 _sock_locks("clock-") 248 }; 249 250 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 251 _sock_locks("k-sk_lock-") 252 }; 253 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 254 _sock_locks("k-slock-") 255 }; 256 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 257 _sock_locks("k-clock-") 258 }; 259 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 260 _sock_locks("rlock-") 261 }; 262 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 263 _sock_locks("wlock-") 264 }; 265 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 266 _sock_locks("elock-") 267 }; 268 269 /* 270 * sk_callback_lock and sk queues locking rules are per-address-family, 271 * so split the lock classes by using a per-AF key: 272 */ 273 static struct lock_class_key af_callback_keys[AF_MAX]; 274 static struct lock_class_key af_rlock_keys[AF_MAX]; 275 static struct lock_class_key af_wlock_keys[AF_MAX]; 276 static struct lock_class_key af_elock_keys[AF_MAX]; 277 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 278 279 /* Run time adjustable parameters. */ 280 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 281 EXPORT_SYMBOL(sysctl_wmem_max); 282 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 283 EXPORT_SYMBOL(sysctl_rmem_max); 284 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 285 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 286 int sysctl_mem_pcpu_rsv __read_mostly = SK_MEMORY_PCPU_RESERVE; 287 288 /* Maximal space eaten by iovec or ancillary data plus some space */ 289 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 290 EXPORT_SYMBOL(sysctl_optmem_max); 291 292 int sysctl_tstamp_allow_data __read_mostly = 1; 293 294 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 295 EXPORT_SYMBOL_GPL(memalloc_socks_key); 296 297 /** 298 * sk_set_memalloc - sets %SOCK_MEMALLOC 299 * @sk: socket to set it on 300 * 301 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 302 * It's the responsibility of the admin to adjust min_free_kbytes 303 * to meet the requirements 304 */ 305 void sk_set_memalloc(struct sock *sk) 306 { 307 sock_set_flag(sk, SOCK_MEMALLOC); 308 sk->sk_allocation |= __GFP_MEMALLOC; 309 static_branch_inc(&memalloc_socks_key); 310 } 311 EXPORT_SYMBOL_GPL(sk_set_memalloc); 312 313 void sk_clear_memalloc(struct sock *sk) 314 { 315 sock_reset_flag(sk, SOCK_MEMALLOC); 316 sk->sk_allocation &= ~__GFP_MEMALLOC; 317 static_branch_dec(&memalloc_socks_key); 318 319 /* 320 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 321 * progress of swapping. SOCK_MEMALLOC may be cleared while 322 * it has rmem allocations due to the last swapfile being deactivated 323 * but there is a risk that the socket is unusable due to exceeding 324 * the rmem limits. Reclaim the reserves and obey rmem limits again. 325 */ 326 sk_mem_reclaim(sk); 327 } 328 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 329 330 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 331 { 332 int ret; 333 unsigned int noreclaim_flag; 334 335 /* these should have been dropped before queueing */ 336 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 337 338 noreclaim_flag = memalloc_noreclaim_save(); 339 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 340 tcp_v6_do_rcv, 341 tcp_v4_do_rcv, 342 sk, skb); 343 memalloc_noreclaim_restore(noreclaim_flag); 344 345 return ret; 346 } 347 EXPORT_SYMBOL(__sk_backlog_rcv); 348 349 void sk_error_report(struct sock *sk) 350 { 351 sk->sk_error_report(sk); 352 353 switch (sk->sk_family) { 354 case AF_INET: 355 fallthrough; 356 case AF_INET6: 357 trace_inet_sk_error_report(sk); 358 break; 359 default: 360 break; 361 } 362 } 363 EXPORT_SYMBOL(sk_error_report); 364 365 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 366 { 367 struct __kernel_sock_timeval tv; 368 369 if (timeo == MAX_SCHEDULE_TIMEOUT) { 370 tv.tv_sec = 0; 371 tv.tv_usec = 0; 372 } else { 373 tv.tv_sec = timeo / HZ; 374 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 375 } 376 377 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 378 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 379 *(struct old_timeval32 *)optval = tv32; 380 return sizeof(tv32); 381 } 382 383 if (old_timeval) { 384 struct __kernel_old_timeval old_tv; 385 old_tv.tv_sec = tv.tv_sec; 386 old_tv.tv_usec = tv.tv_usec; 387 *(struct __kernel_old_timeval *)optval = old_tv; 388 return sizeof(old_tv); 389 } 390 391 *(struct __kernel_sock_timeval *)optval = tv; 392 return sizeof(tv); 393 } 394 EXPORT_SYMBOL(sock_get_timeout); 395 396 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 397 sockptr_t optval, int optlen, bool old_timeval) 398 { 399 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 400 struct old_timeval32 tv32; 401 402 if (optlen < sizeof(tv32)) 403 return -EINVAL; 404 405 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 406 return -EFAULT; 407 tv->tv_sec = tv32.tv_sec; 408 tv->tv_usec = tv32.tv_usec; 409 } else if (old_timeval) { 410 struct __kernel_old_timeval old_tv; 411 412 if (optlen < sizeof(old_tv)) 413 return -EINVAL; 414 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 415 return -EFAULT; 416 tv->tv_sec = old_tv.tv_sec; 417 tv->tv_usec = old_tv.tv_usec; 418 } else { 419 if (optlen < sizeof(*tv)) 420 return -EINVAL; 421 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 422 return -EFAULT; 423 } 424 425 return 0; 426 } 427 EXPORT_SYMBOL(sock_copy_user_timeval); 428 429 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 430 bool old_timeval) 431 { 432 struct __kernel_sock_timeval tv; 433 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 434 long val; 435 436 if (err) 437 return err; 438 439 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 440 return -EDOM; 441 442 if (tv.tv_sec < 0) { 443 static int warned __read_mostly; 444 445 WRITE_ONCE(*timeo_p, 0); 446 if (warned < 10 && net_ratelimit()) { 447 warned++; 448 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 449 __func__, current->comm, task_pid_nr(current)); 450 } 451 return 0; 452 } 453 val = MAX_SCHEDULE_TIMEOUT; 454 if ((tv.tv_sec || tv.tv_usec) && 455 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 456 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 457 USEC_PER_SEC / HZ); 458 WRITE_ONCE(*timeo_p, val); 459 return 0; 460 } 461 462 static bool sock_needs_netstamp(const struct sock *sk) 463 { 464 switch (sk->sk_family) { 465 case AF_UNSPEC: 466 case AF_UNIX: 467 return false; 468 default: 469 return true; 470 } 471 } 472 473 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 474 { 475 if (sk->sk_flags & flags) { 476 sk->sk_flags &= ~flags; 477 if (sock_needs_netstamp(sk) && 478 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 479 net_disable_timestamp(); 480 } 481 } 482 483 484 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 485 { 486 unsigned long flags; 487 struct sk_buff_head *list = &sk->sk_receive_queue; 488 489 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { 490 atomic_inc(&sk->sk_drops); 491 trace_sock_rcvqueue_full(sk, skb); 492 return -ENOMEM; 493 } 494 495 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 496 atomic_inc(&sk->sk_drops); 497 return -ENOBUFS; 498 } 499 500 skb->dev = NULL; 501 skb_set_owner_r(skb, sk); 502 503 /* we escape from rcu protected region, make sure we dont leak 504 * a norefcounted dst 505 */ 506 skb_dst_force(skb); 507 508 spin_lock_irqsave(&list->lock, flags); 509 sock_skb_set_dropcount(sk, skb); 510 __skb_queue_tail(list, skb); 511 spin_unlock_irqrestore(&list->lock, flags); 512 513 if (!sock_flag(sk, SOCK_DEAD)) 514 sk->sk_data_ready(sk); 515 return 0; 516 } 517 EXPORT_SYMBOL(__sock_queue_rcv_skb); 518 519 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 520 enum skb_drop_reason *reason) 521 { 522 enum skb_drop_reason drop_reason; 523 int err; 524 525 err = sk_filter(sk, skb); 526 if (err) { 527 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 528 goto out; 529 } 530 err = __sock_queue_rcv_skb(sk, skb); 531 switch (err) { 532 case -ENOMEM: 533 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 534 break; 535 case -ENOBUFS: 536 drop_reason = SKB_DROP_REASON_PROTO_MEM; 537 break; 538 default: 539 drop_reason = SKB_NOT_DROPPED_YET; 540 break; 541 } 542 out: 543 if (reason) 544 *reason = drop_reason; 545 return err; 546 } 547 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 548 549 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 550 const int nested, unsigned int trim_cap, bool refcounted) 551 { 552 int rc = NET_RX_SUCCESS; 553 554 if (sk_filter_trim_cap(sk, skb, trim_cap)) 555 goto discard_and_relse; 556 557 skb->dev = NULL; 558 559 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { 560 atomic_inc(&sk->sk_drops); 561 goto discard_and_relse; 562 } 563 if (nested) 564 bh_lock_sock_nested(sk); 565 else 566 bh_lock_sock(sk); 567 if (!sock_owned_by_user(sk)) { 568 /* 569 * trylock + unlock semantics: 570 */ 571 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 572 573 rc = sk_backlog_rcv(sk, skb); 574 575 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 576 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 577 bh_unlock_sock(sk); 578 atomic_inc(&sk->sk_drops); 579 goto discard_and_relse; 580 } 581 582 bh_unlock_sock(sk); 583 out: 584 if (refcounted) 585 sock_put(sk); 586 return rc; 587 discard_and_relse: 588 kfree_skb(skb); 589 goto out; 590 } 591 EXPORT_SYMBOL(__sk_receive_skb); 592 593 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 594 u32)); 595 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 596 u32)); 597 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 598 { 599 struct dst_entry *dst = __sk_dst_get(sk); 600 601 if (dst && dst->obsolete && 602 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 603 dst, cookie) == NULL) { 604 sk_tx_queue_clear(sk); 605 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 606 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 607 dst_release(dst); 608 return NULL; 609 } 610 611 return dst; 612 } 613 EXPORT_SYMBOL(__sk_dst_check); 614 615 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 616 { 617 struct dst_entry *dst = sk_dst_get(sk); 618 619 if (dst && dst->obsolete && 620 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 621 dst, cookie) == NULL) { 622 sk_dst_reset(sk); 623 dst_release(dst); 624 return NULL; 625 } 626 627 return dst; 628 } 629 EXPORT_SYMBOL(sk_dst_check); 630 631 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 632 { 633 int ret = -ENOPROTOOPT; 634 #ifdef CONFIG_NETDEVICES 635 struct net *net = sock_net(sk); 636 637 /* Sorry... */ 638 ret = -EPERM; 639 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 640 goto out; 641 642 ret = -EINVAL; 643 if (ifindex < 0) 644 goto out; 645 646 /* Paired with all READ_ONCE() done locklessly. */ 647 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 648 649 if (sk->sk_prot->rehash) 650 sk->sk_prot->rehash(sk); 651 sk_dst_reset(sk); 652 653 ret = 0; 654 655 out: 656 #endif 657 658 return ret; 659 } 660 661 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 662 { 663 int ret; 664 665 if (lock_sk) 666 lock_sock(sk); 667 ret = sock_bindtoindex_locked(sk, ifindex); 668 if (lock_sk) 669 release_sock(sk); 670 671 return ret; 672 } 673 EXPORT_SYMBOL(sock_bindtoindex); 674 675 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 676 { 677 int ret = -ENOPROTOOPT; 678 #ifdef CONFIG_NETDEVICES 679 struct net *net = sock_net(sk); 680 char devname[IFNAMSIZ]; 681 int index; 682 683 ret = -EINVAL; 684 if (optlen < 0) 685 goto out; 686 687 /* Bind this socket to a particular device like "eth0", 688 * as specified in the passed interface name. If the 689 * name is "" or the option length is zero the socket 690 * is not bound. 691 */ 692 if (optlen > IFNAMSIZ - 1) 693 optlen = IFNAMSIZ - 1; 694 memset(devname, 0, sizeof(devname)); 695 696 ret = -EFAULT; 697 if (copy_from_sockptr(devname, optval, optlen)) 698 goto out; 699 700 index = 0; 701 if (devname[0] != '\0') { 702 struct net_device *dev; 703 704 rcu_read_lock(); 705 dev = dev_get_by_name_rcu(net, devname); 706 if (dev) 707 index = dev->ifindex; 708 rcu_read_unlock(); 709 ret = -ENODEV; 710 if (!dev) 711 goto out; 712 } 713 714 sockopt_lock_sock(sk); 715 ret = sock_bindtoindex_locked(sk, index); 716 sockopt_release_sock(sk); 717 out: 718 #endif 719 720 return ret; 721 } 722 723 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 724 sockptr_t optlen, int len) 725 { 726 int ret = -ENOPROTOOPT; 727 #ifdef CONFIG_NETDEVICES 728 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 729 struct net *net = sock_net(sk); 730 char devname[IFNAMSIZ]; 731 732 if (bound_dev_if == 0) { 733 len = 0; 734 goto zero; 735 } 736 737 ret = -EINVAL; 738 if (len < IFNAMSIZ) 739 goto out; 740 741 ret = netdev_get_name(net, devname, bound_dev_if); 742 if (ret) 743 goto out; 744 745 len = strlen(devname) + 1; 746 747 ret = -EFAULT; 748 if (copy_to_sockptr(optval, devname, len)) 749 goto out; 750 751 zero: 752 ret = -EFAULT; 753 if (copy_to_sockptr(optlen, &len, sizeof(int))) 754 goto out; 755 756 ret = 0; 757 758 out: 759 #endif 760 761 return ret; 762 } 763 764 bool sk_mc_loop(struct sock *sk) 765 { 766 if (dev_recursion_level()) 767 return false; 768 if (!sk) 769 return true; 770 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 771 switch (READ_ONCE(sk->sk_family)) { 772 case AF_INET: 773 return inet_test_bit(MC_LOOP, sk); 774 #if IS_ENABLED(CONFIG_IPV6) 775 case AF_INET6: 776 return inet6_sk(sk)->mc_loop; 777 #endif 778 } 779 WARN_ON_ONCE(1); 780 return true; 781 } 782 EXPORT_SYMBOL(sk_mc_loop); 783 784 void sock_set_reuseaddr(struct sock *sk) 785 { 786 lock_sock(sk); 787 sk->sk_reuse = SK_CAN_REUSE; 788 release_sock(sk); 789 } 790 EXPORT_SYMBOL(sock_set_reuseaddr); 791 792 void sock_set_reuseport(struct sock *sk) 793 { 794 lock_sock(sk); 795 sk->sk_reuseport = true; 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_set_reuseport); 799 800 void sock_no_linger(struct sock *sk) 801 { 802 lock_sock(sk); 803 WRITE_ONCE(sk->sk_lingertime, 0); 804 sock_set_flag(sk, SOCK_LINGER); 805 release_sock(sk); 806 } 807 EXPORT_SYMBOL(sock_no_linger); 808 809 void sock_set_priority(struct sock *sk, u32 priority) 810 { 811 lock_sock(sk); 812 WRITE_ONCE(sk->sk_priority, priority); 813 release_sock(sk); 814 } 815 EXPORT_SYMBOL(sock_set_priority); 816 817 void sock_set_sndtimeo(struct sock *sk, s64 secs) 818 { 819 lock_sock(sk); 820 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 821 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 822 else 823 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 824 release_sock(sk); 825 } 826 EXPORT_SYMBOL(sock_set_sndtimeo); 827 828 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 829 { 830 if (val) { 831 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 832 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 833 sock_set_flag(sk, SOCK_RCVTSTAMP); 834 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 835 } else { 836 sock_reset_flag(sk, SOCK_RCVTSTAMP); 837 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 838 } 839 } 840 841 void sock_enable_timestamps(struct sock *sk) 842 { 843 lock_sock(sk); 844 __sock_set_timestamps(sk, true, false, true); 845 release_sock(sk); 846 } 847 EXPORT_SYMBOL(sock_enable_timestamps); 848 849 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 850 { 851 switch (optname) { 852 case SO_TIMESTAMP_OLD: 853 __sock_set_timestamps(sk, valbool, false, false); 854 break; 855 case SO_TIMESTAMP_NEW: 856 __sock_set_timestamps(sk, valbool, true, false); 857 break; 858 case SO_TIMESTAMPNS_OLD: 859 __sock_set_timestamps(sk, valbool, false, true); 860 break; 861 case SO_TIMESTAMPNS_NEW: 862 __sock_set_timestamps(sk, valbool, true, true); 863 break; 864 } 865 } 866 867 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 868 { 869 struct net *net = sock_net(sk); 870 struct net_device *dev = NULL; 871 bool match = false; 872 int *vclock_index; 873 int i, num; 874 875 if (sk->sk_bound_dev_if) 876 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 877 878 if (!dev) { 879 pr_err("%s: sock not bind to device\n", __func__); 880 return -EOPNOTSUPP; 881 } 882 883 num = ethtool_get_phc_vclocks(dev, &vclock_index); 884 dev_put(dev); 885 886 for (i = 0; i < num; i++) { 887 if (*(vclock_index + i) == phc_index) { 888 match = true; 889 break; 890 } 891 } 892 893 if (num > 0) 894 kfree(vclock_index); 895 896 if (!match) 897 return -EINVAL; 898 899 WRITE_ONCE(sk->sk_bind_phc, phc_index); 900 901 return 0; 902 } 903 904 int sock_set_timestamping(struct sock *sk, int optname, 905 struct so_timestamping timestamping) 906 { 907 int val = timestamping.flags; 908 int ret; 909 910 if (val & ~SOF_TIMESTAMPING_MASK) 911 return -EINVAL; 912 913 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 914 !(val & SOF_TIMESTAMPING_OPT_ID)) 915 return -EINVAL; 916 917 if (val & SOF_TIMESTAMPING_OPT_ID && 918 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 919 if (sk_is_tcp(sk)) { 920 if ((1 << sk->sk_state) & 921 (TCPF_CLOSE | TCPF_LISTEN)) 922 return -EINVAL; 923 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 924 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 925 else 926 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 927 } else { 928 atomic_set(&sk->sk_tskey, 0); 929 } 930 } 931 932 if (val & SOF_TIMESTAMPING_OPT_STATS && 933 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 934 return -EINVAL; 935 936 if (val & SOF_TIMESTAMPING_BIND_PHC) { 937 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 938 if (ret) 939 return ret; 940 } 941 942 WRITE_ONCE(sk->sk_tsflags, val); 943 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 944 945 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 946 sock_enable_timestamp(sk, 947 SOCK_TIMESTAMPING_RX_SOFTWARE); 948 else 949 sock_disable_timestamp(sk, 950 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 951 return 0; 952 } 953 954 void sock_set_keepalive(struct sock *sk) 955 { 956 lock_sock(sk); 957 if (sk->sk_prot->keepalive) 958 sk->sk_prot->keepalive(sk, true); 959 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 960 release_sock(sk); 961 } 962 EXPORT_SYMBOL(sock_set_keepalive); 963 964 static void __sock_set_rcvbuf(struct sock *sk, int val) 965 { 966 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 967 * as a negative value. 968 */ 969 val = min_t(int, val, INT_MAX / 2); 970 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 971 972 /* We double it on the way in to account for "struct sk_buff" etc. 973 * overhead. Applications assume that the SO_RCVBUF setting they make 974 * will allow that much actual data to be received on that socket. 975 * 976 * Applications are unaware that "struct sk_buff" and other overheads 977 * allocate from the receive buffer during socket buffer allocation. 978 * 979 * And after considering the possible alternatives, returning the value 980 * we actually used in getsockopt is the most desirable behavior. 981 */ 982 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 983 } 984 985 void sock_set_rcvbuf(struct sock *sk, int val) 986 { 987 lock_sock(sk); 988 __sock_set_rcvbuf(sk, val); 989 release_sock(sk); 990 } 991 EXPORT_SYMBOL(sock_set_rcvbuf); 992 993 static void __sock_set_mark(struct sock *sk, u32 val) 994 { 995 if (val != sk->sk_mark) { 996 WRITE_ONCE(sk->sk_mark, val); 997 sk_dst_reset(sk); 998 } 999 } 1000 1001 void sock_set_mark(struct sock *sk, u32 val) 1002 { 1003 lock_sock(sk); 1004 __sock_set_mark(sk, val); 1005 release_sock(sk); 1006 } 1007 EXPORT_SYMBOL(sock_set_mark); 1008 1009 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1010 { 1011 /* Round down bytes to multiple of pages */ 1012 bytes = round_down(bytes, PAGE_SIZE); 1013 1014 WARN_ON(bytes > sk->sk_reserved_mem); 1015 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1016 sk_mem_reclaim(sk); 1017 } 1018 1019 static int sock_reserve_memory(struct sock *sk, int bytes) 1020 { 1021 long allocated; 1022 bool charged; 1023 int pages; 1024 1025 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1026 return -EOPNOTSUPP; 1027 1028 if (!bytes) 1029 return 0; 1030 1031 pages = sk_mem_pages(bytes); 1032 1033 /* pre-charge to memcg */ 1034 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1035 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1036 if (!charged) 1037 return -ENOMEM; 1038 1039 /* pre-charge to forward_alloc */ 1040 sk_memory_allocated_add(sk, pages); 1041 allocated = sk_memory_allocated(sk); 1042 /* If the system goes into memory pressure with this 1043 * precharge, give up and return error. 1044 */ 1045 if (allocated > sk_prot_mem_limits(sk, 1)) { 1046 sk_memory_allocated_sub(sk, pages); 1047 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1048 return -ENOMEM; 1049 } 1050 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1051 1052 WRITE_ONCE(sk->sk_reserved_mem, 1053 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1054 1055 return 0; 1056 } 1057 1058 void sockopt_lock_sock(struct sock *sk) 1059 { 1060 /* When current->bpf_ctx is set, the setsockopt is called from 1061 * a bpf prog. bpf has ensured the sk lock has been 1062 * acquired before calling setsockopt(). 1063 */ 1064 if (has_current_bpf_ctx()) 1065 return; 1066 1067 lock_sock(sk); 1068 } 1069 EXPORT_SYMBOL(sockopt_lock_sock); 1070 1071 void sockopt_release_sock(struct sock *sk) 1072 { 1073 if (has_current_bpf_ctx()) 1074 return; 1075 1076 release_sock(sk); 1077 } 1078 EXPORT_SYMBOL(sockopt_release_sock); 1079 1080 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1081 { 1082 return has_current_bpf_ctx() || ns_capable(ns, cap); 1083 } 1084 EXPORT_SYMBOL(sockopt_ns_capable); 1085 1086 bool sockopt_capable(int cap) 1087 { 1088 return has_current_bpf_ctx() || capable(cap); 1089 } 1090 EXPORT_SYMBOL(sockopt_capable); 1091 1092 /* 1093 * This is meant for all protocols to use and covers goings on 1094 * at the socket level. Everything here is generic. 1095 */ 1096 1097 int sk_setsockopt(struct sock *sk, int level, int optname, 1098 sockptr_t optval, unsigned int optlen) 1099 { 1100 struct so_timestamping timestamping; 1101 struct socket *sock = sk->sk_socket; 1102 struct sock_txtime sk_txtime; 1103 int val; 1104 int valbool; 1105 struct linger ling; 1106 int ret = 0; 1107 1108 /* 1109 * Options without arguments 1110 */ 1111 1112 if (optname == SO_BINDTODEVICE) 1113 return sock_setbindtodevice(sk, optval, optlen); 1114 1115 if (optlen < sizeof(int)) 1116 return -EINVAL; 1117 1118 if (copy_from_sockptr(&val, optval, sizeof(val))) 1119 return -EFAULT; 1120 1121 valbool = val ? 1 : 0; 1122 1123 sockopt_lock_sock(sk); 1124 1125 switch (optname) { 1126 case SO_DEBUG: 1127 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1128 ret = -EACCES; 1129 else 1130 sock_valbool_flag(sk, SOCK_DBG, valbool); 1131 break; 1132 case SO_REUSEADDR: 1133 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1134 break; 1135 case SO_REUSEPORT: 1136 sk->sk_reuseport = valbool; 1137 break; 1138 case SO_TYPE: 1139 case SO_PROTOCOL: 1140 case SO_DOMAIN: 1141 case SO_ERROR: 1142 ret = -ENOPROTOOPT; 1143 break; 1144 case SO_DONTROUTE: 1145 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1146 sk_dst_reset(sk); 1147 break; 1148 case SO_BROADCAST: 1149 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1150 break; 1151 case SO_SNDBUF: 1152 /* Don't error on this BSD doesn't and if you think 1153 * about it this is right. Otherwise apps have to 1154 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1155 * are treated in BSD as hints 1156 */ 1157 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1158 set_sndbuf: 1159 /* Ensure val * 2 fits into an int, to prevent max_t() 1160 * from treating it as a negative value. 1161 */ 1162 val = min_t(int, val, INT_MAX / 2); 1163 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1164 WRITE_ONCE(sk->sk_sndbuf, 1165 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1166 /* Wake up sending tasks if we upped the value. */ 1167 sk->sk_write_space(sk); 1168 break; 1169 1170 case SO_SNDBUFFORCE: 1171 if (!sockopt_capable(CAP_NET_ADMIN)) { 1172 ret = -EPERM; 1173 break; 1174 } 1175 1176 /* No negative values (to prevent underflow, as val will be 1177 * multiplied by 2). 1178 */ 1179 if (val < 0) 1180 val = 0; 1181 goto set_sndbuf; 1182 1183 case SO_RCVBUF: 1184 /* Don't error on this BSD doesn't and if you think 1185 * about it this is right. Otherwise apps have to 1186 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1187 * are treated in BSD as hints 1188 */ 1189 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1190 break; 1191 1192 case SO_RCVBUFFORCE: 1193 if (!sockopt_capable(CAP_NET_ADMIN)) { 1194 ret = -EPERM; 1195 break; 1196 } 1197 1198 /* No negative values (to prevent underflow, as val will be 1199 * multiplied by 2). 1200 */ 1201 __sock_set_rcvbuf(sk, max(val, 0)); 1202 break; 1203 1204 case SO_KEEPALIVE: 1205 if (sk->sk_prot->keepalive) 1206 sk->sk_prot->keepalive(sk, valbool); 1207 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1208 break; 1209 1210 case SO_OOBINLINE: 1211 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1212 break; 1213 1214 case SO_NO_CHECK: 1215 sk->sk_no_check_tx = valbool; 1216 break; 1217 1218 case SO_PRIORITY: 1219 if ((val >= 0 && val <= 6) || 1220 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1221 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1222 WRITE_ONCE(sk->sk_priority, val); 1223 else 1224 ret = -EPERM; 1225 break; 1226 1227 case SO_LINGER: 1228 if (optlen < sizeof(ling)) { 1229 ret = -EINVAL; /* 1003.1g */ 1230 break; 1231 } 1232 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1233 ret = -EFAULT; 1234 break; 1235 } 1236 if (!ling.l_onoff) { 1237 sock_reset_flag(sk, SOCK_LINGER); 1238 } else { 1239 unsigned long t_sec = ling.l_linger; 1240 1241 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1242 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1243 else 1244 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1245 sock_set_flag(sk, SOCK_LINGER); 1246 } 1247 break; 1248 1249 case SO_BSDCOMPAT: 1250 break; 1251 1252 case SO_PASSCRED: 1253 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1254 break; 1255 1256 case SO_PASSPIDFD: 1257 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1258 break; 1259 1260 case SO_TIMESTAMP_OLD: 1261 case SO_TIMESTAMP_NEW: 1262 case SO_TIMESTAMPNS_OLD: 1263 case SO_TIMESTAMPNS_NEW: 1264 sock_set_timestamp(sk, optname, valbool); 1265 break; 1266 1267 case SO_TIMESTAMPING_NEW: 1268 case SO_TIMESTAMPING_OLD: 1269 if (optlen == sizeof(timestamping)) { 1270 if (copy_from_sockptr(×tamping, optval, 1271 sizeof(timestamping))) { 1272 ret = -EFAULT; 1273 break; 1274 } 1275 } else { 1276 memset(×tamping, 0, sizeof(timestamping)); 1277 timestamping.flags = val; 1278 } 1279 ret = sock_set_timestamping(sk, optname, timestamping); 1280 break; 1281 1282 case SO_RCVLOWAT: 1283 { 1284 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1285 1286 if (val < 0) 1287 val = INT_MAX; 1288 if (sock) 1289 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1290 if (set_rcvlowat) 1291 ret = set_rcvlowat(sk, val); 1292 else 1293 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1294 break; 1295 } 1296 case SO_RCVTIMEO_OLD: 1297 case SO_RCVTIMEO_NEW: 1298 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1299 optlen, optname == SO_RCVTIMEO_OLD); 1300 break; 1301 1302 case SO_SNDTIMEO_OLD: 1303 case SO_SNDTIMEO_NEW: 1304 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1305 optlen, optname == SO_SNDTIMEO_OLD); 1306 break; 1307 1308 case SO_ATTACH_FILTER: { 1309 struct sock_fprog fprog; 1310 1311 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1312 if (!ret) 1313 ret = sk_attach_filter(&fprog, sk); 1314 break; 1315 } 1316 case SO_ATTACH_BPF: 1317 ret = -EINVAL; 1318 if (optlen == sizeof(u32)) { 1319 u32 ufd; 1320 1321 ret = -EFAULT; 1322 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1323 break; 1324 1325 ret = sk_attach_bpf(ufd, sk); 1326 } 1327 break; 1328 1329 case SO_ATTACH_REUSEPORT_CBPF: { 1330 struct sock_fprog fprog; 1331 1332 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1333 if (!ret) 1334 ret = sk_reuseport_attach_filter(&fprog, sk); 1335 break; 1336 } 1337 case SO_ATTACH_REUSEPORT_EBPF: 1338 ret = -EINVAL; 1339 if (optlen == sizeof(u32)) { 1340 u32 ufd; 1341 1342 ret = -EFAULT; 1343 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1344 break; 1345 1346 ret = sk_reuseport_attach_bpf(ufd, sk); 1347 } 1348 break; 1349 1350 case SO_DETACH_REUSEPORT_BPF: 1351 ret = reuseport_detach_prog(sk); 1352 break; 1353 1354 case SO_DETACH_FILTER: 1355 ret = sk_detach_filter(sk); 1356 break; 1357 1358 case SO_LOCK_FILTER: 1359 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1360 ret = -EPERM; 1361 else 1362 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1363 break; 1364 1365 case SO_PASSSEC: 1366 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1367 break; 1368 case SO_MARK: 1369 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1370 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1371 ret = -EPERM; 1372 break; 1373 } 1374 1375 __sock_set_mark(sk, val); 1376 break; 1377 case SO_RCVMARK: 1378 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1379 break; 1380 1381 case SO_RXQ_OVFL: 1382 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1383 break; 1384 1385 case SO_WIFI_STATUS: 1386 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1387 break; 1388 1389 case SO_PEEK_OFF: 1390 { 1391 int (*set_peek_off)(struct sock *sk, int val); 1392 1393 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1394 if (set_peek_off) 1395 ret = set_peek_off(sk, val); 1396 else 1397 ret = -EOPNOTSUPP; 1398 break; 1399 } 1400 1401 case SO_NOFCS: 1402 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1403 break; 1404 1405 case SO_SELECT_ERR_QUEUE: 1406 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1407 break; 1408 1409 #ifdef CONFIG_NET_RX_BUSY_POLL 1410 case SO_BUSY_POLL: 1411 if (val < 0) 1412 ret = -EINVAL; 1413 else 1414 WRITE_ONCE(sk->sk_ll_usec, val); 1415 break; 1416 case SO_PREFER_BUSY_POLL: 1417 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1418 ret = -EPERM; 1419 else 1420 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1421 break; 1422 case SO_BUSY_POLL_BUDGET: 1423 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1424 ret = -EPERM; 1425 } else { 1426 if (val < 0 || val > U16_MAX) 1427 ret = -EINVAL; 1428 else 1429 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1430 } 1431 break; 1432 #endif 1433 1434 case SO_MAX_PACING_RATE: 1435 { 1436 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1437 1438 if (sizeof(ulval) != sizeof(val) && 1439 optlen >= sizeof(ulval) && 1440 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1441 ret = -EFAULT; 1442 break; 1443 } 1444 if (ulval != ~0UL) 1445 cmpxchg(&sk->sk_pacing_status, 1446 SK_PACING_NONE, 1447 SK_PACING_NEEDED); 1448 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1449 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1450 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1451 break; 1452 } 1453 case SO_INCOMING_CPU: 1454 reuseport_update_incoming_cpu(sk, val); 1455 break; 1456 1457 case SO_CNX_ADVICE: 1458 if (val == 1) 1459 dst_negative_advice(sk); 1460 break; 1461 1462 case SO_ZEROCOPY: 1463 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1464 if (!(sk_is_tcp(sk) || 1465 (sk->sk_type == SOCK_DGRAM && 1466 sk->sk_protocol == IPPROTO_UDP))) 1467 ret = -EOPNOTSUPP; 1468 } else if (sk->sk_family != PF_RDS) { 1469 ret = -EOPNOTSUPP; 1470 } 1471 if (!ret) { 1472 if (val < 0 || val > 1) 1473 ret = -EINVAL; 1474 else 1475 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1476 } 1477 break; 1478 1479 case SO_TXTIME: 1480 if (optlen != sizeof(struct sock_txtime)) { 1481 ret = -EINVAL; 1482 break; 1483 } else if (copy_from_sockptr(&sk_txtime, optval, 1484 sizeof(struct sock_txtime))) { 1485 ret = -EFAULT; 1486 break; 1487 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1488 ret = -EINVAL; 1489 break; 1490 } 1491 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1492 * scheduler has enough safe guards. 1493 */ 1494 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1495 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1496 ret = -EPERM; 1497 break; 1498 } 1499 sock_valbool_flag(sk, SOCK_TXTIME, true); 1500 sk->sk_clockid = sk_txtime.clockid; 1501 sk->sk_txtime_deadline_mode = 1502 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1503 sk->sk_txtime_report_errors = 1504 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1505 break; 1506 1507 case SO_BINDTOIFINDEX: 1508 ret = sock_bindtoindex_locked(sk, val); 1509 break; 1510 1511 case SO_BUF_LOCK: 1512 if (val & ~SOCK_BUF_LOCK_MASK) { 1513 ret = -EINVAL; 1514 break; 1515 } 1516 sk->sk_userlocks = val | (sk->sk_userlocks & 1517 ~SOCK_BUF_LOCK_MASK); 1518 break; 1519 1520 case SO_RESERVE_MEM: 1521 { 1522 int delta; 1523 1524 if (val < 0) { 1525 ret = -EINVAL; 1526 break; 1527 } 1528 1529 delta = val - sk->sk_reserved_mem; 1530 if (delta < 0) 1531 sock_release_reserved_memory(sk, -delta); 1532 else 1533 ret = sock_reserve_memory(sk, delta); 1534 break; 1535 } 1536 1537 case SO_TXREHASH: 1538 if (val < -1 || val > 1) { 1539 ret = -EINVAL; 1540 break; 1541 } 1542 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1543 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1544 /* Paired with READ_ONCE() in tcp_rtx_synack() 1545 * and sk_getsockopt(). 1546 */ 1547 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1548 break; 1549 1550 default: 1551 ret = -ENOPROTOOPT; 1552 break; 1553 } 1554 sockopt_release_sock(sk); 1555 return ret; 1556 } 1557 1558 int sock_setsockopt(struct socket *sock, int level, int optname, 1559 sockptr_t optval, unsigned int optlen) 1560 { 1561 return sk_setsockopt(sock->sk, level, optname, 1562 optval, optlen); 1563 } 1564 EXPORT_SYMBOL(sock_setsockopt); 1565 1566 static const struct cred *sk_get_peer_cred(struct sock *sk) 1567 { 1568 const struct cred *cred; 1569 1570 spin_lock(&sk->sk_peer_lock); 1571 cred = get_cred(sk->sk_peer_cred); 1572 spin_unlock(&sk->sk_peer_lock); 1573 1574 return cred; 1575 } 1576 1577 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1578 struct ucred *ucred) 1579 { 1580 ucred->pid = pid_vnr(pid); 1581 ucred->uid = ucred->gid = -1; 1582 if (cred) { 1583 struct user_namespace *current_ns = current_user_ns(); 1584 1585 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1586 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1587 } 1588 } 1589 1590 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1591 { 1592 struct user_namespace *user_ns = current_user_ns(); 1593 int i; 1594 1595 for (i = 0; i < src->ngroups; i++) { 1596 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1597 1598 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1599 return -EFAULT; 1600 } 1601 1602 return 0; 1603 } 1604 1605 int sk_getsockopt(struct sock *sk, int level, int optname, 1606 sockptr_t optval, sockptr_t optlen) 1607 { 1608 struct socket *sock = sk->sk_socket; 1609 1610 union { 1611 int val; 1612 u64 val64; 1613 unsigned long ulval; 1614 struct linger ling; 1615 struct old_timeval32 tm32; 1616 struct __kernel_old_timeval tm; 1617 struct __kernel_sock_timeval stm; 1618 struct sock_txtime txtime; 1619 struct so_timestamping timestamping; 1620 } v; 1621 1622 int lv = sizeof(int); 1623 int len; 1624 1625 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1626 return -EFAULT; 1627 if (len < 0) 1628 return -EINVAL; 1629 1630 memset(&v, 0, sizeof(v)); 1631 1632 switch (optname) { 1633 case SO_DEBUG: 1634 v.val = sock_flag(sk, SOCK_DBG); 1635 break; 1636 1637 case SO_DONTROUTE: 1638 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1639 break; 1640 1641 case SO_BROADCAST: 1642 v.val = sock_flag(sk, SOCK_BROADCAST); 1643 break; 1644 1645 case SO_SNDBUF: 1646 v.val = READ_ONCE(sk->sk_sndbuf); 1647 break; 1648 1649 case SO_RCVBUF: 1650 v.val = READ_ONCE(sk->sk_rcvbuf); 1651 break; 1652 1653 case SO_REUSEADDR: 1654 v.val = sk->sk_reuse; 1655 break; 1656 1657 case SO_REUSEPORT: 1658 v.val = sk->sk_reuseport; 1659 break; 1660 1661 case SO_KEEPALIVE: 1662 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1663 break; 1664 1665 case SO_TYPE: 1666 v.val = sk->sk_type; 1667 break; 1668 1669 case SO_PROTOCOL: 1670 v.val = sk->sk_protocol; 1671 break; 1672 1673 case SO_DOMAIN: 1674 v.val = sk->sk_family; 1675 break; 1676 1677 case SO_ERROR: 1678 v.val = -sock_error(sk); 1679 if (v.val == 0) 1680 v.val = xchg(&sk->sk_err_soft, 0); 1681 break; 1682 1683 case SO_OOBINLINE: 1684 v.val = sock_flag(sk, SOCK_URGINLINE); 1685 break; 1686 1687 case SO_NO_CHECK: 1688 v.val = sk->sk_no_check_tx; 1689 break; 1690 1691 case SO_PRIORITY: 1692 v.val = READ_ONCE(sk->sk_priority); 1693 break; 1694 1695 case SO_LINGER: 1696 lv = sizeof(v.ling); 1697 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1698 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1699 break; 1700 1701 case SO_BSDCOMPAT: 1702 break; 1703 1704 case SO_TIMESTAMP_OLD: 1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1706 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1707 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1708 break; 1709 1710 case SO_TIMESTAMPNS_OLD: 1711 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1712 break; 1713 1714 case SO_TIMESTAMP_NEW: 1715 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1716 break; 1717 1718 case SO_TIMESTAMPNS_NEW: 1719 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1720 break; 1721 1722 case SO_TIMESTAMPING_OLD: 1723 case SO_TIMESTAMPING_NEW: 1724 lv = sizeof(v.timestamping); 1725 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1726 * returning the flags when they were set through the same option. 1727 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1728 */ 1729 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1730 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1731 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1732 } 1733 break; 1734 1735 case SO_RCVTIMEO_OLD: 1736 case SO_RCVTIMEO_NEW: 1737 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1738 SO_RCVTIMEO_OLD == optname); 1739 break; 1740 1741 case SO_SNDTIMEO_OLD: 1742 case SO_SNDTIMEO_NEW: 1743 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1744 SO_SNDTIMEO_OLD == optname); 1745 break; 1746 1747 case SO_RCVLOWAT: 1748 v.val = READ_ONCE(sk->sk_rcvlowat); 1749 break; 1750 1751 case SO_SNDLOWAT: 1752 v.val = 1; 1753 break; 1754 1755 case SO_PASSCRED: 1756 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1757 break; 1758 1759 case SO_PASSPIDFD: 1760 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1761 break; 1762 1763 case SO_PEERCRED: 1764 { 1765 struct ucred peercred; 1766 if (len > sizeof(peercred)) 1767 len = sizeof(peercred); 1768 1769 spin_lock(&sk->sk_peer_lock); 1770 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1771 spin_unlock(&sk->sk_peer_lock); 1772 1773 if (copy_to_sockptr(optval, &peercred, len)) 1774 return -EFAULT; 1775 goto lenout; 1776 } 1777 1778 case SO_PEERPIDFD: 1779 { 1780 struct pid *peer_pid; 1781 struct file *pidfd_file = NULL; 1782 int pidfd; 1783 1784 if (len > sizeof(pidfd)) 1785 len = sizeof(pidfd); 1786 1787 spin_lock(&sk->sk_peer_lock); 1788 peer_pid = get_pid(sk->sk_peer_pid); 1789 spin_unlock(&sk->sk_peer_lock); 1790 1791 if (!peer_pid) 1792 return -ENODATA; 1793 1794 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1795 put_pid(peer_pid); 1796 if (pidfd < 0) 1797 return pidfd; 1798 1799 if (copy_to_sockptr(optval, &pidfd, len) || 1800 copy_to_sockptr(optlen, &len, sizeof(int))) { 1801 put_unused_fd(pidfd); 1802 fput(pidfd_file); 1803 1804 return -EFAULT; 1805 } 1806 1807 fd_install(pidfd, pidfd_file); 1808 return 0; 1809 } 1810 1811 case SO_PEERGROUPS: 1812 { 1813 const struct cred *cred; 1814 int ret, n; 1815 1816 cred = sk_get_peer_cred(sk); 1817 if (!cred) 1818 return -ENODATA; 1819 1820 n = cred->group_info->ngroups; 1821 if (len < n * sizeof(gid_t)) { 1822 len = n * sizeof(gid_t); 1823 put_cred(cred); 1824 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1825 } 1826 len = n * sizeof(gid_t); 1827 1828 ret = groups_to_user(optval, cred->group_info); 1829 put_cred(cred); 1830 if (ret) 1831 return ret; 1832 goto lenout; 1833 } 1834 1835 case SO_PEERNAME: 1836 { 1837 struct sockaddr_storage address; 1838 1839 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1840 if (lv < 0) 1841 return -ENOTCONN; 1842 if (lv < len) 1843 return -EINVAL; 1844 if (copy_to_sockptr(optval, &address, len)) 1845 return -EFAULT; 1846 goto lenout; 1847 } 1848 1849 /* Dubious BSD thing... Probably nobody even uses it, but 1850 * the UNIX standard wants it for whatever reason... -DaveM 1851 */ 1852 case SO_ACCEPTCONN: 1853 v.val = sk->sk_state == TCP_LISTEN; 1854 break; 1855 1856 case SO_PASSSEC: 1857 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1858 break; 1859 1860 case SO_PEERSEC: 1861 return security_socket_getpeersec_stream(sock, 1862 optval, optlen, len); 1863 1864 case SO_MARK: 1865 v.val = READ_ONCE(sk->sk_mark); 1866 break; 1867 1868 case SO_RCVMARK: 1869 v.val = sock_flag(sk, SOCK_RCVMARK); 1870 break; 1871 1872 case SO_RXQ_OVFL: 1873 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1874 break; 1875 1876 case SO_WIFI_STATUS: 1877 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1878 break; 1879 1880 case SO_PEEK_OFF: 1881 if (!READ_ONCE(sock->ops)->set_peek_off) 1882 return -EOPNOTSUPP; 1883 1884 v.val = READ_ONCE(sk->sk_peek_off); 1885 break; 1886 case SO_NOFCS: 1887 v.val = sock_flag(sk, SOCK_NOFCS); 1888 break; 1889 1890 case SO_BINDTODEVICE: 1891 return sock_getbindtodevice(sk, optval, optlen, len); 1892 1893 case SO_GET_FILTER: 1894 len = sk_get_filter(sk, optval, len); 1895 if (len < 0) 1896 return len; 1897 1898 goto lenout; 1899 1900 case SO_LOCK_FILTER: 1901 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1902 break; 1903 1904 case SO_BPF_EXTENSIONS: 1905 v.val = bpf_tell_extensions(); 1906 break; 1907 1908 case SO_SELECT_ERR_QUEUE: 1909 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1910 break; 1911 1912 #ifdef CONFIG_NET_RX_BUSY_POLL 1913 case SO_BUSY_POLL: 1914 v.val = READ_ONCE(sk->sk_ll_usec); 1915 break; 1916 case SO_PREFER_BUSY_POLL: 1917 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1918 break; 1919 #endif 1920 1921 case SO_MAX_PACING_RATE: 1922 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1923 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1924 lv = sizeof(v.ulval); 1925 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1926 } else { 1927 /* 32bit version */ 1928 v.val = min_t(unsigned long, ~0U, 1929 READ_ONCE(sk->sk_max_pacing_rate)); 1930 } 1931 break; 1932 1933 case SO_INCOMING_CPU: 1934 v.val = READ_ONCE(sk->sk_incoming_cpu); 1935 break; 1936 1937 case SO_MEMINFO: 1938 { 1939 u32 meminfo[SK_MEMINFO_VARS]; 1940 1941 sk_get_meminfo(sk, meminfo); 1942 1943 len = min_t(unsigned int, len, sizeof(meminfo)); 1944 if (copy_to_sockptr(optval, &meminfo, len)) 1945 return -EFAULT; 1946 1947 goto lenout; 1948 } 1949 1950 #ifdef CONFIG_NET_RX_BUSY_POLL 1951 case SO_INCOMING_NAPI_ID: 1952 v.val = READ_ONCE(sk->sk_napi_id); 1953 1954 /* aggregate non-NAPI IDs down to 0 */ 1955 if (v.val < MIN_NAPI_ID) 1956 v.val = 0; 1957 1958 break; 1959 #endif 1960 1961 case SO_COOKIE: 1962 lv = sizeof(u64); 1963 if (len < lv) 1964 return -EINVAL; 1965 v.val64 = sock_gen_cookie(sk); 1966 break; 1967 1968 case SO_ZEROCOPY: 1969 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1970 break; 1971 1972 case SO_TXTIME: 1973 lv = sizeof(v.txtime); 1974 v.txtime.clockid = sk->sk_clockid; 1975 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1976 SOF_TXTIME_DEADLINE_MODE : 0; 1977 v.txtime.flags |= sk->sk_txtime_report_errors ? 1978 SOF_TXTIME_REPORT_ERRORS : 0; 1979 break; 1980 1981 case SO_BINDTOIFINDEX: 1982 v.val = READ_ONCE(sk->sk_bound_dev_if); 1983 break; 1984 1985 case SO_NETNS_COOKIE: 1986 lv = sizeof(u64); 1987 if (len != lv) 1988 return -EINVAL; 1989 v.val64 = sock_net(sk)->net_cookie; 1990 break; 1991 1992 case SO_BUF_LOCK: 1993 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1994 break; 1995 1996 case SO_RESERVE_MEM: 1997 v.val = READ_ONCE(sk->sk_reserved_mem); 1998 break; 1999 2000 case SO_TXREHASH: 2001 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 2002 v.val = READ_ONCE(sk->sk_txrehash); 2003 break; 2004 2005 default: 2006 /* We implement the SO_SNDLOWAT etc to not be settable 2007 * (1003.1g 7). 2008 */ 2009 return -ENOPROTOOPT; 2010 } 2011 2012 if (len > lv) 2013 len = lv; 2014 if (copy_to_sockptr(optval, &v, len)) 2015 return -EFAULT; 2016 lenout: 2017 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2018 return -EFAULT; 2019 return 0; 2020 } 2021 2022 /* 2023 * Initialize an sk_lock. 2024 * 2025 * (We also register the sk_lock with the lock validator.) 2026 */ 2027 static inline void sock_lock_init(struct sock *sk) 2028 { 2029 if (sk->sk_kern_sock) 2030 sock_lock_init_class_and_name( 2031 sk, 2032 af_family_kern_slock_key_strings[sk->sk_family], 2033 af_family_kern_slock_keys + sk->sk_family, 2034 af_family_kern_key_strings[sk->sk_family], 2035 af_family_kern_keys + sk->sk_family); 2036 else 2037 sock_lock_init_class_and_name( 2038 sk, 2039 af_family_slock_key_strings[sk->sk_family], 2040 af_family_slock_keys + sk->sk_family, 2041 af_family_key_strings[sk->sk_family], 2042 af_family_keys + sk->sk_family); 2043 } 2044 2045 /* 2046 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2047 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2048 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2049 */ 2050 static void sock_copy(struct sock *nsk, const struct sock *osk) 2051 { 2052 const struct proto *prot = READ_ONCE(osk->sk_prot); 2053 #ifdef CONFIG_SECURITY_NETWORK 2054 void *sptr = nsk->sk_security; 2055 #endif 2056 2057 /* If we move sk_tx_queue_mapping out of the private section, 2058 * we must check if sk_tx_queue_clear() is called after 2059 * sock_copy() in sk_clone_lock(). 2060 */ 2061 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2062 offsetof(struct sock, sk_dontcopy_begin) || 2063 offsetof(struct sock, sk_tx_queue_mapping) >= 2064 offsetof(struct sock, sk_dontcopy_end)); 2065 2066 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2067 2068 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2069 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2070 2071 #ifdef CONFIG_SECURITY_NETWORK 2072 nsk->sk_security = sptr; 2073 security_sk_clone(osk, nsk); 2074 #endif 2075 } 2076 2077 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2078 int family) 2079 { 2080 struct sock *sk; 2081 struct kmem_cache *slab; 2082 2083 slab = prot->slab; 2084 if (slab != NULL) { 2085 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2086 if (!sk) 2087 return sk; 2088 if (want_init_on_alloc(priority)) 2089 sk_prot_clear_nulls(sk, prot->obj_size); 2090 } else 2091 sk = kmalloc(prot->obj_size, priority); 2092 2093 if (sk != NULL) { 2094 if (security_sk_alloc(sk, family, priority)) 2095 goto out_free; 2096 2097 if (!try_module_get(prot->owner)) 2098 goto out_free_sec; 2099 } 2100 2101 return sk; 2102 2103 out_free_sec: 2104 security_sk_free(sk); 2105 out_free: 2106 if (slab != NULL) 2107 kmem_cache_free(slab, sk); 2108 else 2109 kfree(sk); 2110 return NULL; 2111 } 2112 2113 static void sk_prot_free(struct proto *prot, struct sock *sk) 2114 { 2115 struct kmem_cache *slab; 2116 struct module *owner; 2117 2118 owner = prot->owner; 2119 slab = prot->slab; 2120 2121 cgroup_sk_free(&sk->sk_cgrp_data); 2122 mem_cgroup_sk_free(sk); 2123 security_sk_free(sk); 2124 if (slab != NULL) 2125 kmem_cache_free(slab, sk); 2126 else 2127 kfree(sk); 2128 module_put(owner); 2129 } 2130 2131 /** 2132 * sk_alloc - All socket objects are allocated here 2133 * @net: the applicable net namespace 2134 * @family: protocol family 2135 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2136 * @prot: struct proto associated with this new sock instance 2137 * @kern: is this to be a kernel socket? 2138 */ 2139 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2140 struct proto *prot, int kern) 2141 { 2142 struct sock *sk; 2143 2144 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2145 if (sk) { 2146 sk->sk_family = family; 2147 /* 2148 * See comment in struct sock definition to understand 2149 * why we need sk_prot_creator -acme 2150 */ 2151 sk->sk_prot = sk->sk_prot_creator = prot; 2152 sk->sk_kern_sock = kern; 2153 sock_lock_init(sk); 2154 sk->sk_net_refcnt = kern ? 0 : 1; 2155 if (likely(sk->sk_net_refcnt)) { 2156 get_net_track(net, &sk->ns_tracker, priority); 2157 sock_inuse_add(net, 1); 2158 } else { 2159 __netns_tracker_alloc(net, &sk->ns_tracker, 2160 false, priority); 2161 } 2162 2163 sock_net_set(sk, net); 2164 refcount_set(&sk->sk_wmem_alloc, 1); 2165 2166 mem_cgroup_sk_alloc(sk); 2167 cgroup_sk_alloc(&sk->sk_cgrp_data); 2168 sock_update_classid(&sk->sk_cgrp_data); 2169 sock_update_netprioidx(&sk->sk_cgrp_data); 2170 sk_tx_queue_clear(sk); 2171 } 2172 2173 return sk; 2174 } 2175 EXPORT_SYMBOL(sk_alloc); 2176 2177 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2178 * grace period. This is the case for UDP sockets and TCP listeners. 2179 */ 2180 static void __sk_destruct(struct rcu_head *head) 2181 { 2182 struct sock *sk = container_of(head, struct sock, sk_rcu); 2183 struct sk_filter *filter; 2184 2185 if (sk->sk_destruct) 2186 sk->sk_destruct(sk); 2187 2188 filter = rcu_dereference_check(sk->sk_filter, 2189 refcount_read(&sk->sk_wmem_alloc) == 0); 2190 if (filter) { 2191 sk_filter_uncharge(sk, filter); 2192 RCU_INIT_POINTER(sk->sk_filter, NULL); 2193 } 2194 2195 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2196 2197 #ifdef CONFIG_BPF_SYSCALL 2198 bpf_sk_storage_free(sk); 2199 #endif 2200 2201 if (atomic_read(&sk->sk_omem_alloc)) 2202 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2203 __func__, atomic_read(&sk->sk_omem_alloc)); 2204 2205 if (sk->sk_frag.page) { 2206 put_page(sk->sk_frag.page); 2207 sk->sk_frag.page = NULL; 2208 } 2209 2210 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2211 put_cred(sk->sk_peer_cred); 2212 put_pid(sk->sk_peer_pid); 2213 2214 if (likely(sk->sk_net_refcnt)) 2215 put_net_track(sock_net(sk), &sk->ns_tracker); 2216 else 2217 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2218 2219 sk_prot_free(sk->sk_prot_creator, sk); 2220 } 2221 2222 void sk_destruct(struct sock *sk) 2223 { 2224 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2225 2226 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2227 reuseport_detach_sock(sk); 2228 use_call_rcu = true; 2229 } 2230 2231 if (use_call_rcu) 2232 call_rcu(&sk->sk_rcu, __sk_destruct); 2233 else 2234 __sk_destruct(&sk->sk_rcu); 2235 } 2236 2237 static void __sk_free(struct sock *sk) 2238 { 2239 if (likely(sk->sk_net_refcnt)) 2240 sock_inuse_add(sock_net(sk), -1); 2241 2242 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2243 sock_diag_broadcast_destroy(sk); 2244 else 2245 sk_destruct(sk); 2246 } 2247 2248 void sk_free(struct sock *sk) 2249 { 2250 /* 2251 * We subtract one from sk_wmem_alloc and can know if 2252 * some packets are still in some tx queue. 2253 * If not null, sock_wfree() will call __sk_free(sk) later 2254 */ 2255 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2256 __sk_free(sk); 2257 } 2258 EXPORT_SYMBOL(sk_free); 2259 2260 static void sk_init_common(struct sock *sk) 2261 { 2262 skb_queue_head_init(&sk->sk_receive_queue); 2263 skb_queue_head_init(&sk->sk_write_queue); 2264 skb_queue_head_init(&sk->sk_error_queue); 2265 2266 rwlock_init(&sk->sk_callback_lock); 2267 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2268 af_rlock_keys + sk->sk_family, 2269 af_family_rlock_key_strings[sk->sk_family]); 2270 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2271 af_wlock_keys + sk->sk_family, 2272 af_family_wlock_key_strings[sk->sk_family]); 2273 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2274 af_elock_keys + sk->sk_family, 2275 af_family_elock_key_strings[sk->sk_family]); 2276 lockdep_set_class_and_name(&sk->sk_callback_lock, 2277 af_callback_keys + sk->sk_family, 2278 af_family_clock_key_strings[sk->sk_family]); 2279 } 2280 2281 /** 2282 * sk_clone_lock - clone a socket, and lock its clone 2283 * @sk: the socket to clone 2284 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2285 * 2286 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2287 */ 2288 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2289 { 2290 struct proto *prot = READ_ONCE(sk->sk_prot); 2291 struct sk_filter *filter; 2292 bool is_charged = true; 2293 struct sock *newsk; 2294 2295 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2296 if (!newsk) 2297 goto out; 2298 2299 sock_copy(newsk, sk); 2300 2301 newsk->sk_prot_creator = prot; 2302 2303 /* SANITY */ 2304 if (likely(newsk->sk_net_refcnt)) { 2305 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2306 sock_inuse_add(sock_net(newsk), 1); 2307 } else { 2308 /* Kernel sockets are not elevating the struct net refcount. 2309 * Instead, use a tracker to more easily detect if a layer 2310 * is not properly dismantling its kernel sockets at netns 2311 * destroy time. 2312 */ 2313 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2314 false, priority); 2315 } 2316 sk_node_init(&newsk->sk_node); 2317 sock_lock_init(newsk); 2318 bh_lock_sock(newsk); 2319 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2320 newsk->sk_backlog.len = 0; 2321 2322 atomic_set(&newsk->sk_rmem_alloc, 0); 2323 2324 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2325 refcount_set(&newsk->sk_wmem_alloc, 1); 2326 2327 atomic_set(&newsk->sk_omem_alloc, 0); 2328 sk_init_common(newsk); 2329 2330 newsk->sk_dst_cache = NULL; 2331 newsk->sk_dst_pending_confirm = 0; 2332 newsk->sk_wmem_queued = 0; 2333 newsk->sk_forward_alloc = 0; 2334 newsk->sk_reserved_mem = 0; 2335 atomic_set(&newsk->sk_drops, 0); 2336 newsk->sk_send_head = NULL; 2337 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2338 atomic_set(&newsk->sk_zckey, 0); 2339 2340 sock_reset_flag(newsk, SOCK_DONE); 2341 2342 /* sk->sk_memcg will be populated at accept() time */ 2343 newsk->sk_memcg = NULL; 2344 2345 cgroup_sk_clone(&newsk->sk_cgrp_data); 2346 2347 rcu_read_lock(); 2348 filter = rcu_dereference(sk->sk_filter); 2349 if (filter != NULL) 2350 /* though it's an empty new sock, the charging may fail 2351 * if sysctl_optmem_max was changed between creation of 2352 * original socket and cloning 2353 */ 2354 is_charged = sk_filter_charge(newsk, filter); 2355 RCU_INIT_POINTER(newsk->sk_filter, filter); 2356 rcu_read_unlock(); 2357 2358 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2359 /* We need to make sure that we don't uncharge the new 2360 * socket if we couldn't charge it in the first place 2361 * as otherwise we uncharge the parent's filter. 2362 */ 2363 if (!is_charged) 2364 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2365 sk_free_unlock_clone(newsk); 2366 newsk = NULL; 2367 goto out; 2368 } 2369 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2370 2371 if (bpf_sk_storage_clone(sk, newsk)) { 2372 sk_free_unlock_clone(newsk); 2373 newsk = NULL; 2374 goto out; 2375 } 2376 2377 /* Clear sk_user_data if parent had the pointer tagged 2378 * as not suitable for copying when cloning. 2379 */ 2380 if (sk_user_data_is_nocopy(newsk)) 2381 newsk->sk_user_data = NULL; 2382 2383 newsk->sk_err = 0; 2384 newsk->sk_err_soft = 0; 2385 newsk->sk_priority = 0; 2386 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2387 2388 /* Before updating sk_refcnt, we must commit prior changes to memory 2389 * (Documentation/RCU/rculist_nulls.rst for details) 2390 */ 2391 smp_wmb(); 2392 refcount_set(&newsk->sk_refcnt, 2); 2393 2394 sk_set_socket(newsk, NULL); 2395 sk_tx_queue_clear(newsk); 2396 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2397 2398 if (newsk->sk_prot->sockets_allocated) 2399 sk_sockets_allocated_inc(newsk); 2400 2401 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2402 net_enable_timestamp(); 2403 out: 2404 return newsk; 2405 } 2406 EXPORT_SYMBOL_GPL(sk_clone_lock); 2407 2408 void sk_free_unlock_clone(struct sock *sk) 2409 { 2410 /* It is still raw copy of parent, so invalidate 2411 * destructor and make plain sk_free() */ 2412 sk->sk_destruct = NULL; 2413 bh_unlock_sock(sk); 2414 sk_free(sk); 2415 } 2416 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2417 2418 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2419 { 2420 bool is_ipv6 = false; 2421 u32 max_size; 2422 2423 #if IS_ENABLED(CONFIG_IPV6) 2424 is_ipv6 = (sk->sk_family == AF_INET6 && 2425 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2426 #endif 2427 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2428 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2429 READ_ONCE(dst->dev->gso_ipv4_max_size); 2430 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2431 max_size = GSO_LEGACY_MAX_SIZE; 2432 2433 return max_size - (MAX_TCP_HEADER + 1); 2434 } 2435 2436 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2437 { 2438 u32 max_segs = 1; 2439 2440 sk->sk_route_caps = dst->dev->features; 2441 if (sk_is_tcp(sk)) 2442 sk->sk_route_caps |= NETIF_F_GSO; 2443 if (sk->sk_route_caps & NETIF_F_GSO) 2444 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2445 if (unlikely(sk->sk_gso_disabled)) 2446 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2447 if (sk_can_gso(sk)) { 2448 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2449 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2450 } else { 2451 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2452 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2453 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2454 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2455 } 2456 } 2457 sk->sk_gso_max_segs = max_segs; 2458 sk_dst_set(sk, dst); 2459 } 2460 EXPORT_SYMBOL_GPL(sk_setup_caps); 2461 2462 /* 2463 * Simple resource managers for sockets. 2464 */ 2465 2466 2467 /* 2468 * Write buffer destructor automatically called from kfree_skb. 2469 */ 2470 void sock_wfree(struct sk_buff *skb) 2471 { 2472 struct sock *sk = skb->sk; 2473 unsigned int len = skb->truesize; 2474 bool free; 2475 2476 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2477 if (sock_flag(sk, SOCK_RCU_FREE) && 2478 sk->sk_write_space == sock_def_write_space) { 2479 rcu_read_lock(); 2480 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2481 sock_def_write_space_wfree(sk); 2482 rcu_read_unlock(); 2483 if (unlikely(free)) 2484 __sk_free(sk); 2485 return; 2486 } 2487 2488 /* 2489 * Keep a reference on sk_wmem_alloc, this will be released 2490 * after sk_write_space() call 2491 */ 2492 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2493 sk->sk_write_space(sk); 2494 len = 1; 2495 } 2496 /* 2497 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2498 * could not do because of in-flight packets 2499 */ 2500 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2501 __sk_free(sk); 2502 } 2503 EXPORT_SYMBOL(sock_wfree); 2504 2505 /* This variant of sock_wfree() is used by TCP, 2506 * since it sets SOCK_USE_WRITE_QUEUE. 2507 */ 2508 void __sock_wfree(struct sk_buff *skb) 2509 { 2510 struct sock *sk = skb->sk; 2511 2512 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2513 __sk_free(sk); 2514 } 2515 2516 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2517 { 2518 skb_orphan(skb); 2519 skb->sk = sk; 2520 #ifdef CONFIG_INET 2521 if (unlikely(!sk_fullsock(sk))) { 2522 skb->destructor = sock_edemux; 2523 sock_hold(sk); 2524 return; 2525 } 2526 #endif 2527 skb->destructor = sock_wfree; 2528 skb_set_hash_from_sk(skb, sk); 2529 /* 2530 * We used to take a refcount on sk, but following operation 2531 * is enough to guarantee sk_free() wont free this sock until 2532 * all in-flight packets are completed 2533 */ 2534 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2535 } 2536 EXPORT_SYMBOL(skb_set_owner_w); 2537 2538 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2539 { 2540 #ifdef CONFIG_TLS_DEVICE 2541 /* Drivers depend on in-order delivery for crypto offload, 2542 * partial orphan breaks out-of-order-OK logic. 2543 */ 2544 if (skb->decrypted) 2545 return false; 2546 #endif 2547 return (skb->destructor == sock_wfree || 2548 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2549 } 2550 2551 /* This helper is used by netem, as it can hold packets in its 2552 * delay queue. We want to allow the owner socket to send more 2553 * packets, as if they were already TX completed by a typical driver. 2554 * But we also want to keep skb->sk set because some packet schedulers 2555 * rely on it (sch_fq for example). 2556 */ 2557 void skb_orphan_partial(struct sk_buff *skb) 2558 { 2559 if (skb_is_tcp_pure_ack(skb)) 2560 return; 2561 2562 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2563 return; 2564 2565 skb_orphan(skb); 2566 } 2567 EXPORT_SYMBOL(skb_orphan_partial); 2568 2569 /* 2570 * Read buffer destructor automatically called from kfree_skb. 2571 */ 2572 void sock_rfree(struct sk_buff *skb) 2573 { 2574 struct sock *sk = skb->sk; 2575 unsigned int len = skb->truesize; 2576 2577 atomic_sub(len, &sk->sk_rmem_alloc); 2578 sk_mem_uncharge(sk, len); 2579 } 2580 EXPORT_SYMBOL(sock_rfree); 2581 2582 /* 2583 * Buffer destructor for skbs that are not used directly in read or write 2584 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2585 */ 2586 void sock_efree(struct sk_buff *skb) 2587 { 2588 sock_put(skb->sk); 2589 } 2590 EXPORT_SYMBOL(sock_efree); 2591 2592 /* Buffer destructor for prefetch/receive path where reference count may 2593 * not be held, e.g. for listen sockets. 2594 */ 2595 #ifdef CONFIG_INET 2596 void sock_pfree(struct sk_buff *skb) 2597 { 2598 if (sk_is_refcounted(skb->sk)) 2599 sock_gen_put(skb->sk); 2600 } 2601 EXPORT_SYMBOL(sock_pfree); 2602 #endif /* CONFIG_INET */ 2603 2604 kuid_t sock_i_uid(struct sock *sk) 2605 { 2606 kuid_t uid; 2607 2608 read_lock_bh(&sk->sk_callback_lock); 2609 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2610 read_unlock_bh(&sk->sk_callback_lock); 2611 return uid; 2612 } 2613 EXPORT_SYMBOL(sock_i_uid); 2614 2615 unsigned long __sock_i_ino(struct sock *sk) 2616 { 2617 unsigned long ino; 2618 2619 read_lock(&sk->sk_callback_lock); 2620 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2621 read_unlock(&sk->sk_callback_lock); 2622 return ino; 2623 } 2624 EXPORT_SYMBOL(__sock_i_ino); 2625 2626 unsigned long sock_i_ino(struct sock *sk) 2627 { 2628 unsigned long ino; 2629 2630 local_bh_disable(); 2631 ino = __sock_i_ino(sk); 2632 local_bh_enable(); 2633 return ino; 2634 } 2635 EXPORT_SYMBOL(sock_i_ino); 2636 2637 /* 2638 * Allocate a skb from the socket's send buffer. 2639 */ 2640 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2641 gfp_t priority) 2642 { 2643 if (force || 2644 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2645 struct sk_buff *skb = alloc_skb(size, priority); 2646 2647 if (skb) { 2648 skb_set_owner_w(skb, sk); 2649 return skb; 2650 } 2651 } 2652 return NULL; 2653 } 2654 EXPORT_SYMBOL(sock_wmalloc); 2655 2656 static void sock_ofree(struct sk_buff *skb) 2657 { 2658 struct sock *sk = skb->sk; 2659 2660 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2661 } 2662 2663 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2664 gfp_t priority) 2665 { 2666 struct sk_buff *skb; 2667 2668 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2669 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2670 READ_ONCE(sysctl_optmem_max)) 2671 return NULL; 2672 2673 skb = alloc_skb(size, priority); 2674 if (!skb) 2675 return NULL; 2676 2677 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2678 skb->sk = sk; 2679 skb->destructor = sock_ofree; 2680 return skb; 2681 } 2682 2683 /* 2684 * Allocate a memory block from the socket's option memory buffer. 2685 */ 2686 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2687 { 2688 int optmem_max = READ_ONCE(sysctl_optmem_max); 2689 2690 if ((unsigned int)size <= optmem_max && 2691 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2692 void *mem; 2693 /* First do the add, to avoid the race if kmalloc 2694 * might sleep. 2695 */ 2696 atomic_add(size, &sk->sk_omem_alloc); 2697 mem = kmalloc(size, priority); 2698 if (mem) 2699 return mem; 2700 atomic_sub(size, &sk->sk_omem_alloc); 2701 } 2702 return NULL; 2703 } 2704 EXPORT_SYMBOL(sock_kmalloc); 2705 2706 /* Free an option memory block. Note, we actually want the inline 2707 * here as this allows gcc to detect the nullify and fold away the 2708 * condition entirely. 2709 */ 2710 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2711 const bool nullify) 2712 { 2713 if (WARN_ON_ONCE(!mem)) 2714 return; 2715 if (nullify) 2716 kfree_sensitive(mem); 2717 else 2718 kfree(mem); 2719 atomic_sub(size, &sk->sk_omem_alloc); 2720 } 2721 2722 void sock_kfree_s(struct sock *sk, void *mem, int size) 2723 { 2724 __sock_kfree_s(sk, mem, size, false); 2725 } 2726 EXPORT_SYMBOL(sock_kfree_s); 2727 2728 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2729 { 2730 __sock_kfree_s(sk, mem, size, true); 2731 } 2732 EXPORT_SYMBOL(sock_kzfree_s); 2733 2734 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2735 I think, these locks should be removed for datagram sockets. 2736 */ 2737 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2738 { 2739 DEFINE_WAIT(wait); 2740 2741 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2742 for (;;) { 2743 if (!timeo) 2744 break; 2745 if (signal_pending(current)) 2746 break; 2747 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2748 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2749 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2750 break; 2751 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2752 break; 2753 if (READ_ONCE(sk->sk_err)) 2754 break; 2755 timeo = schedule_timeout(timeo); 2756 } 2757 finish_wait(sk_sleep(sk), &wait); 2758 return timeo; 2759 } 2760 2761 2762 /* 2763 * Generic send/receive buffer handlers 2764 */ 2765 2766 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2767 unsigned long data_len, int noblock, 2768 int *errcode, int max_page_order) 2769 { 2770 struct sk_buff *skb; 2771 long timeo; 2772 int err; 2773 2774 timeo = sock_sndtimeo(sk, noblock); 2775 for (;;) { 2776 err = sock_error(sk); 2777 if (err != 0) 2778 goto failure; 2779 2780 err = -EPIPE; 2781 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2782 goto failure; 2783 2784 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2785 break; 2786 2787 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2788 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2789 err = -EAGAIN; 2790 if (!timeo) 2791 goto failure; 2792 if (signal_pending(current)) 2793 goto interrupted; 2794 timeo = sock_wait_for_wmem(sk, timeo); 2795 } 2796 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2797 errcode, sk->sk_allocation); 2798 if (skb) 2799 skb_set_owner_w(skb, sk); 2800 return skb; 2801 2802 interrupted: 2803 err = sock_intr_errno(timeo); 2804 failure: 2805 *errcode = err; 2806 return NULL; 2807 } 2808 EXPORT_SYMBOL(sock_alloc_send_pskb); 2809 2810 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2811 struct sockcm_cookie *sockc) 2812 { 2813 u32 tsflags; 2814 2815 switch (cmsg->cmsg_type) { 2816 case SO_MARK: 2817 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2818 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2819 return -EPERM; 2820 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2821 return -EINVAL; 2822 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2823 break; 2824 case SO_TIMESTAMPING_OLD: 2825 case SO_TIMESTAMPING_NEW: 2826 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2827 return -EINVAL; 2828 2829 tsflags = *(u32 *)CMSG_DATA(cmsg); 2830 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2831 return -EINVAL; 2832 2833 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2834 sockc->tsflags |= tsflags; 2835 break; 2836 case SCM_TXTIME: 2837 if (!sock_flag(sk, SOCK_TXTIME)) 2838 return -EINVAL; 2839 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2840 return -EINVAL; 2841 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2842 break; 2843 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2844 case SCM_RIGHTS: 2845 case SCM_CREDENTIALS: 2846 break; 2847 default: 2848 return -EINVAL; 2849 } 2850 return 0; 2851 } 2852 EXPORT_SYMBOL(__sock_cmsg_send); 2853 2854 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2855 struct sockcm_cookie *sockc) 2856 { 2857 struct cmsghdr *cmsg; 2858 int ret; 2859 2860 for_each_cmsghdr(cmsg, msg) { 2861 if (!CMSG_OK(msg, cmsg)) 2862 return -EINVAL; 2863 if (cmsg->cmsg_level != SOL_SOCKET) 2864 continue; 2865 ret = __sock_cmsg_send(sk, cmsg, sockc); 2866 if (ret) 2867 return ret; 2868 } 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(sock_cmsg_send); 2872 2873 static void sk_enter_memory_pressure(struct sock *sk) 2874 { 2875 if (!sk->sk_prot->enter_memory_pressure) 2876 return; 2877 2878 sk->sk_prot->enter_memory_pressure(sk); 2879 } 2880 2881 static void sk_leave_memory_pressure(struct sock *sk) 2882 { 2883 if (sk->sk_prot->leave_memory_pressure) { 2884 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2885 tcp_leave_memory_pressure, sk); 2886 } else { 2887 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2888 2889 if (memory_pressure && READ_ONCE(*memory_pressure)) 2890 WRITE_ONCE(*memory_pressure, 0); 2891 } 2892 } 2893 2894 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2895 2896 /** 2897 * skb_page_frag_refill - check that a page_frag contains enough room 2898 * @sz: minimum size of the fragment we want to get 2899 * @pfrag: pointer to page_frag 2900 * @gfp: priority for memory allocation 2901 * 2902 * Note: While this allocator tries to use high order pages, there is 2903 * no guarantee that allocations succeed. Therefore, @sz MUST be 2904 * less or equal than PAGE_SIZE. 2905 */ 2906 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2907 { 2908 if (pfrag->page) { 2909 if (page_ref_count(pfrag->page) == 1) { 2910 pfrag->offset = 0; 2911 return true; 2912 } 2913 if (pfrag->offset + sz <= pfrag->size) 2914 return true; 2915 put_page(pfrag->page); 2916 } 2917 2918 pfrag->offset = 0; 2919 if (SKB_FRAG_PAGE_ORDER && 2920 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2921 /* Avoid direct reclaim but allow kswapd to wake */ 2922 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2923 __GFP_COMP | __GFP_NOWARN | 2924 __GFP_NORETRY, 2925 SKB_FRAG_PAGE_ORDER); 2926 if (likely(pfrag->page)) { 2927 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2928 return true; 2929 } 2930 } 2931 pfrag->page = alloc_page(gfp); 2932 if (likely(pfrag->page)) { 2933 pfrag->size = PAGE_SIZE; 2934 return true; 2935 } 2936 return false; 2937 } 2938 EXPORT_SYMBOL(skb_page_frag_refill); 2939 2940 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2941 { 2942 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2943 return true; 2944 2945 sk_enter_memory_pressure(sk); 2946 sk_stream_moderate_sndbuf(sk); 2947 return false; 2948 } 2949 EXPORT_SYMBOL(sk_page_frag_refill); 2950 2951 void __lock_sock(struct sock *sk) 2952 __releases(&sk->sk_lock.slock) 2953 __acquires(&sk->sk_lock.slock) 2954 { 2955 DEFINE_WAIT(wait); 2956 2957 for (;;) { 2958 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2959 TASK_UNINTERRUPTIBLE); 2960 spin_unlock_bh(&sk->sk_lock.slock); 2961 schedule(); 2962 spin_lock_bh(&sk->sk_lock.slock); 2963 if (!sock_owned_by_user(sk)) 2964 break; 2965 } 2966 finish_wait(&sk->sk_lock.wq, &wait); 2967 } 2968 2969 void __release_sock(struct sock *sk) 2970 __releases(&sk->sk_lock.slock) 2971 __acquires(&sk->sk_lock.slock) 2972 { 2973 struct sk_buff *skb, *next; 2974 2975 while ((skb = sk->sk_backlog.head) != NULL) { 2976 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2977 2978 spin_unlock_bh(&sk->sk_lock.slock); 2979 2980 do { 2981 next = skb->next; 2982 prefetch(next); 2983 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2984 skb_mark_not_on_list(skb); 2985 sk_backlog_rcv(sk, skb); 2986 2987 cond_resched(); 2988 2989 skb = next; 2990 } while (skb != NULL); 2991 2992 spin_lock_bh(&sk->sk_lock.slock); 2993 } 2994 2995 /* 2996 * Doing the zeroing here guarantee we can not loop forever 2997 * while a wild producer attempts to flood us. 2998 */ 2999 sk->sk_backlog.len = 0; 3000 } 3001 3002 void __sk_flush_backlog(struct sock *sk) 3003 { 3004 spin_lock_bh(&sk->sk_lock.slock); 3005 __release_sock(sk); 3006 spin_unlock_bh(&sk->sk_lock.slock); 3007 } 3008 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3009 3010 /** 3011 * sk_wait_data - wait for data to arrive at sk_receive_queue 3012 * @sk: sock to wait on 3013 * @timeo: for how long 3014 * @skb: last skb seen on sk_receive_queue 3015 * 3016 * Now socket state including sk->sk_err is changed only under lock, 3017 * hence we may omit checks after joining wait queue. 3018 * We check receive queue before schedule() only as optimization; 3019 * it is very likely that release_sock() added new data. 3020 */ 3021 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3022 { 3023 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3024 int rc; 3025 3026 add_wait_queue(sk_sleep(sk), &wait); 3027 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3028 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3029 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3030 remove_wait_queue(sk_sleep(sk), &wait); 3031 return rc; 3032 } 3033 EXPORT_SYMBOL(sk_wait_data); 3034 3035 /** 3036 * __sk_mem_raise_allocated - increase memory_allocated 3037 * @sk: socket 3038 * @size: memory size to allocate 3039 * @amt: pages to allocate 3040 * @kind: allocation type 3041 * 3042 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 3043 */ 3044 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3045 { 3046 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 3047 struct proto *prot = sk->sk_prot; 3048 bool charged = true; 3049 long allocated; 3050 3051 sk_memory_allocated_add(sk, amt); 3052 allocated = sk_memory_allocated(sk); 3053 if (memcg_charge && 3054 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3055 gfp_memcg_charge()))) 3056 goto suppress_allocation; 3057 3058 /* Under limit. */ 3059 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3060 sk_leave_memory_pressure(sk); 3061 return 1; 3062 } 3063 3064 /* Under pressure. */ 3065 if (allocated > sk_prot_mem_limits(sk, 1)) 3066 sk_enter_memory_pressure(sk); 3067 3068 /* Over hard limit. */ 3069 if (allocated > sk_prot_mem_limits(sk, 2)) 3070 goto suppress_allocation; 3071 3072 /* guarantee minimum buffer size under pressure */ 3073 if (kind == SK_MEM_RECV) { 3074 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3075 return 1; 3076 3077 } else { /* SK_MEM_SEND */ 3078 int wmem0 = sk_get_wmem0(sk, prot); 3079 3080 if (sk->sk_type == SOCK_STREAM) { 3081 if (sk->sk_wmem_queued < wmem0) 3082 return 1; 3083 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3084 return 1; 3085 } 3086 } 3087 3088 if (sk_has_memory_pressure(sk)) { 3089 u64 alloc; 3090 3091 if (!sk_under_memory_pressure(sk)) 3092 return 1; 3093 alloc = sk_sockets_allocated_read_positive(sk); 3094 if (sk_prot_mem_limits(sk, 2) > alloc * 3095 sk_mem_pages(sk->sk_wmem_queued + 3096 atomic_read(&sk->sk_rmem_alloc) + 3097 sk->sk_forward_alloc)) 3098 return 1; 3099 } 3100 3101 suppress_allocation: 3102 3103 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3104 sk_stream_moderate_sndbuf(sk); 3105 3106 /* Fail only if socket is _under_ its sndbuf. 3107 * In this case we cannot block, so that we have to fail. 3108 */ 3109 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3110 /* Force charge with __GFP_NOFAIL */ 3111 if (memcg_charge && !charged) { 3112 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3113 gfp_memcg_charge() | __GFP_NOFAIL); 3114 } 3115 return 1; 3116 } 3117 } 3118 3119 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3120 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3121 3122 sk_memory_allocated_sub(sk, amt); 3123 3124 if (memcg_charge && charged) 3125 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3126 3127 return 0; 3128 } 3129 3130 /** 3131 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3132 * @sk: socket 3133 * @size: memory size to allocate 3134 * @kind: allocation type 3135 * 3136 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3137 * rmem allocation. This function assumes that protocols which have 3138 * memory_pressure use sk_wmem_queued as write buffer accounting. 3139 */ 3140 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3141 { 3142 int ret, amt = sk_mem_pages(size); 3143 3144 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3145 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3146 if (!ret) 3147 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3148 return ret; 3149 } 3150 EXPORT_SYMBOL(__sk_mem_schedule); 3151 3152 /** 3153 * __sk_mem_reduce_allocated - reclaim memory_allocated 3154 * @sk: socket 3155 * @amount: number of quanta 3156 * 3157 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3158 */ 3159 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3160 { 3161 sk_memory_allocated_sub(sk, amount); 3162 3163 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3164 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3165 3166 if (sk_under_global_memory_pressure(sk) && 3167 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3168 sk_leave_memory_pressure(sk); 3169 } 3170 3171 /** 3172 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3173 * @sk: socket 3174 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3175 */ 3176 void __sk_mem_reclaim(struct sock *sk, int amount) 3177 { 3178 amount >>= PAGE_SHIFT; 3179 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3180 __sk_mem_reduce_allocated(sk, amount); 3181 } 3182 EXPORT_SYMBOL(__sk_mem_reclaim); 3183 3184 int sk_set_peek_off(struct sock *sk, int val) 3185 { 3186 WRITE_ONCE(sk->sk_peek_off, val); 3187 return 0; 3188 } 3189 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3190 3191 /* 3192 * Set of default routines for initialising struct proto_ops when 3193 * the protocol does not support a particular function. In certain 3194 * cases where it makes no sense for a protocol to have a "do nothing" 3195 * function, some default processing is provided. 3196 */ 3197 3198 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3199 { 3200 return -EOPNOTSUPP; 3201 } 3202 EXPORT_SYMBOL(sock_no_bind); 3203 3204 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3205 int len, int flags) 3206 { 3207 return -EOPNOTSUPP; 3208 } 3209 EXPORT_SYMBOL(sock_no_connect); 3210 3211 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3212 { 3213 return -EOPNOTSUPP; 3214 } 3215 EXPORT_SYMBOL(sock_no_socketpair); 3216 3217 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3218 bool kern) 3219 { 3220 return -EOPNOTSUPP; 3221 } 3222 EXPORT_SYMBOL(sock_no_accept); 3223 3224 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3225 int peer) 3226 { 3227 return -EOPNOTSUPP; 3228 } 3229 EXPORT_SYMBOL(sock_no_getname); 3230 3231 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3232 { 3233 return -EOPNOTSUPP; 3234 } 3235 EXPORT_SYMBOL(sock_no_ioctl); 3236 3237 int sock_no_listen(struct socket *sock, int backlog) 3238 { 3239 return -EOPNOTSUPP; 3240 } 3241 EXPORT_SYMBOL(sock_no_listen); 3242 3243 int sock_no_shutdown(struct socket *sock, int how) 3244 { 3245 return -EOPNOTSUPP; 3246 } 3247 EXPORT_SYMBOL(sock_no_shutdown); 3248 3249 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3250 { 3251 return -EOPNOTSUPP; 3252 } 3253 EXPORT_SYMBOL(sock_no_sendmsg); 3254 3255 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3256 { 3257 return -EOPNOTSUPP; 3258 } 3259 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3260 3261 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3262 int flags) 3263 { 3264 return -EOPNOTSUPP; 3265 } 3266 EXPORT_SYMBOL(sock_no_recvmsg); 3267 3268 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3269 { 3270 /* Mirror missing mmap method error code */ 3271 return -ENODEV; 3272 } 3273 EXPORT_SYMBOL(sock_no_mmap); 3274 3275 /* 3276 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3277 * various sock-based usage counts. 3278 */ 3279 void __receive_sock(struct file *file) 3280 { 3281 struct socket *sock; 3282 3283 sock = sock_from_file(file); 3284 if (sock) { 3285 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3286 sock_update_classid(&sock->sk->sk_cgrp_data); 3287 } 3288 } 3289 3290 /* 3291 * Default Socket Callbacks 3292 */ 3293 3294 static void sock_def_wakeup(struct sock *sk) 3295 { 3296 struct socket_wq *wq; 3297 3298 rcu_read_lock(); 3299 wq = rcu_dereference(sk->sk_wq); 3300 if (skwq_has_sleeper(wq)) 3301 wake_up_interruptible_all(&wq->wait); 3302 rcu_read_unlock(); 3303 } 3304 3305 static void sock_def_error_report(struct sock *sk) 3306 { 3307 struct socket_wq *wq; 3308 3309 rcu_read_lock(); 3310 wq = rcu_dereference(sk->sk_wq); 3311 if (skwq_has_sleeper(wq)) 3312 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3313 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3314 rcu_read_unlock(); 3315 } 3316 3317 void sock_def_readable(struct sock *sk) 3318 { 3319 struct socket_wq *wq; 3320 3321 trace_sk_data_ready(sk); 3322 3323 rcu_read_lock(); 3324 wq = rcu_dereference(sk->sk_wq); 3325 if (skwq_has_sleeper(wq)) 3326 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3327 EPOLLRDNORM | EPOLLRDBAND); 3328 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3329 rcu_read_unlock(); 3330 } 3331 3332 static void sock_def_write_space(struct sock *sk) 3333 { 3334 struct socket_wq *wq; 3335 3336 rcu_read_lock(); 3337 3338 /* Do not wake up a writer until he can make "significant" 3339 * progress. --DaveM 3340 */ 3341 if (sock_writeable(sk)) { 3342 wq = rcu_dereference(sk->sk_wq); 3343 if (skwq_has_sleeper(wq)) 3344 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3345 EPOLLWRNORM | EPOLLWRBAND); 3346 3347 /* Should agree with poll, otherwise some programs break */ 3348 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3349 } 3350 3351 rcu_read_unlock(); 3352 } 3353 3354 /* An optimised version of sock_def_write_space(), should only be called 3355 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3356 * ->sk_wmem_alloc. 3357 */ 3358 static void sock_def_write_space_wfree(struct sock *sk) 3359 { 3360 /* Do not wake up a writer until he can make "significant" 3361 * progress. --DaveM 3362 */ 3363 if (sock_writeable(sk)) { 3364 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3365 3366 /* rely on refcount_sub from sock_wfree() */ 3367 smp_mb__after_atomic(); 3368 if (wq && waitqueue_active(&wq->wait)) 3369 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3370 EPOLLWRNORM | EPOLLWRBAND); 3371 3372 /* Should agree with poll, otherwise some programs break */ 3373 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3374 } 3375 } 3376 3377 static void sock_def_destruct(struct sock *sk) 3378 { 3379 } 3380 3381 void sk_send_sigurg(struct sock *sk) 3382 { 3383 if (sk->sk_socket && sk->sk_socket->file) 3384 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3385 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3386 } 3387 EXPORT_SYMBOL(sk_send_sigurg); 3388 3389 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3390 unsigned long expires) 3391 { 3392 if (!mod_timer(timer, expires)) 3393 sock_hold(sk); 3394 } 3395 EXPORT_SYMBOL(sk_reset_timer); 3396 3397 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3398 { 3399 if (del_timer(timer)) 3400 __sock_put(sk); 3401 } 3402 EXPORT_SYMBOL(sk_stop_timer); 3403 3404 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3405 { 3406 if (del_timer_sync(timer)) 3407 __sock_put(sk); 3408 } 3409 EXPORT_SYMBOL(sk_stop_timer_sync); 3410 3411 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3412 { 3413 sk_init_common(sk); 3414 sk->sk_send_head = NULL; 3415 3416 timer_setup(&sk->sk_timer, NULL, 0); 3417 3418 sk->sk_allocation = GFP_KERNEL; 3419 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3420 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3421 sk->sk_state = TCP_CLOSE; 3422 sk->sk_use_task_frag = true; 3423 sk_set_socket(sk, sock); 3424 3425 sock_set_flag(sk, SOCK_ZAPPED); 3426 3427 if (sock) { 3428 sk->sk_type = sock->type; 3429 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3430 sock->sk = sk; 3431 } else { 3432 RCU_INIT_POINTER(sk->sk_wq, NULL); 3433 } 3434 sk->sk_uid = uid; 3435 3436 rwlock_init(&sk->sk_callback_lock); 3437 if (sk->sk_kern_sock) 3438 lockdep_set_class_and_name( 3439 &sk->sk_callback_lock, 3440 af_kern_callback_keys + sk->sk_family, 3441 af_family_kern_clock_key_strings[sk->sk_family]); 3442 else 3443 lockdep_set_class_and_name( 3444 &sk->sk_callback_lock, 3445 af_callback_keys + sk->sk_family, 3446 af_family_clock_key_strings[sk->sk_family]); 3447 3448 sk->sk_state_change = sock_def_wakeup; 3449 sk->sk_data_ready = sock_def_readable; 3450 sk->sk_write_space = sock_def_write_space; 3451 sk->sk_error_report = sock_def_error_report; 3452 sk->sk_destruct = sock_def_destruct; 3453 3454 sk->sk_frag.page = NULL; 3455 sk->sk_frag.offset = 0; 3456 sk->sk_peek_off = -1; 3457 3458 sk->sk_peer_pid = NULL; 3459 sk->sk_peer_cred = NULL; 3460 spin_lock_init(&sk->sk_peer_lock); 3461 3462 sk->sk_write_pending = 0; 3463 sk->sk_rcvlowat = 1; 3464 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3465 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3466 3467 sk->sk_stamp = SK_DEFAULT_STAMP; 3468 #if BITS_PER_LONG==32 3469 seqlock_init(&sk->sk_stamp_seq); 3470 #endif 3471 atomic_set(&sk->sk_zckey, 0); 3472 3473 #ifdef CONFIG_NET_RX_BUSY_POLL 3474 sk->sk_napi_id = 0; 3475 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3476 #endif 3477 3478 sk->sk_max_pacing_rate = ~0UL; 3479 sk->sk_pacing_rate = ~0UL; 3480 WRITE_ONCE(sk->sk_pacing_shift, 10); 3481 sk->sk_incoming_cpu = -1; 3482 3483 sk_rx_queue_clear(sk); 3484 /* 3485 * Before updating sk_refcnt, we must commit prior changes to memory 3486 * (Documentation/RCU/rculist_nulls.rst for details) 3487 */ 3488 smp_wmb(); 3489 refcount_set(&sk->sk_refcnt, 1); 3490 atomic_set(&sk->sk_drops, 0); 3491 } 3492 EXPORT_SYMBOL(sock_init_data_uid); 3493 3494 void sock_init_data(struct socket *sock, struct sock *sk) 3495 { 3496 kuid_t uid = sock ? 3497 SOCK_INODE(sock)->i_uid : 3498 make_kuid(sock_net(sk)->user_ns, 0); 3499 3500 sock_init_data_uid(sock, sk, uid); 3501 } 3502 EXPORT_SYMBOL(sock_init_data); 3503 3504 void lock_sock_nested(struct sock *sk, int subclass) 3505 { 3506 /* The sk_lock has mutex_lock() semantics here. */ 3507 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3508 3509 might_sleep(); 3510 spin_lock_bh(&sk->sk_lock.slock); 3511 if (sock_owned_by_user_nocheck(sk)) 3512 __lock_sock(sk); 3513 sk->sk_lock.owned = 1; 3514 spin_unlock_bh(&sk->sk_lock.slock); 3515 } 3516 EXPORT_SYMBOL(lock_sock_nested); 3517 3518 void release_sock(struct sock *sk) 3519 { 3520 spin_lock_bh(&sk->sk_lock.slock); 3521 if (sk->sk_backlog.tail) 3522 __release_sock(sk); 3523 3524 /* Warning : release_cb() might need to release sk ownership, 3525 * ie call sock_release_ownership(sk) before us. 3526 */ 3527 if (sk->sk_prot->release_cb) 3528 sk->sk_prot->release_cb(sk); 3529 3530 sock_release_ownership(sk); 3531 if (waitqueue_active(&sk->sk_lock.wq)) 3532 wake_up(&sk->sk_lock.wq); 3533 spin_unlock_bh(&sk->sk_lock.slock); 3534 } 3535 EXPORT_SYMBOL(release_sock); 3536 3537 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3538 { 3539 might_sleep(); 3540 spin_lock_bh(&sk->sk_lock.slock); 3541 3542 if (!sock_owned_by_user_nocheck(sk)) { 3543 /* 3544 * Fast path return with bottom halves disabled and 3545 * sock::sk_lock.slock held. 3546 * 3547 * The 'mutex' is not contended and holding 3548 * sock::sk_lock.slock prevents all other lockers to 3549 * proceed so the corresponding unlock_sock_fast() can 3550 * avoid the slow path of release_sock() completely and 3551 * just release slock. 3552 * 3553 * From a semantical POV this is equivalent to 'acquiring' 3554 * the 'mutex', hence the corresponding lockdep 3555 * mutex_release() has to happen in the fast path of 3556 * unlock_sock_fast(). 3557 */ 3558 return false; 3559 } 3560 3561 __lock_sock(sk); 3562 sk->sk_lock.owned = 1; 3563 __acquire(&sk->sk_lock.slock); 3564 spin_unlock_bh(&sk->sk_lock.slock); 3565 return true; 3566 } 3567 EXPORT_SYMBOL(__lock_sock_fast); 3568 3569 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3570 bool timeval, bool time32) 3571 { 3572 struct sock *sk = sock->sk; 3573 struct timespec64 ts; 3574 3575 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3576 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3577 if (ts.tv_sec == -1) 3578 return -ENOENT; 3579 if (ts.tv_sec == 0) { 3580 ktime_t kt = ktime_get_real(); 3581 sock_write_timestamp(sk, kt); 3582 ts = ktime_to_timespec64(kt); 3583 } 3584 3585 if (timeval) 3586 ts.tv_nsec /= 1000; 3587 3588 #ifdef CONFIG_COMPAT_32BIT_TIME 3589 if (time32) 3590 return put_old_timespec32(&ts, userstamp); 3591 #endif 3592 #ifdef CONFIG_SPARC64 3593 /* beware of padding in sparc64 timeval */ 3594 if (timeval && !in_compat_syscall()) { 3595 struct __kernel_old_timeval __user tv = { 3596 .tv_sec = ts.tv_sec, 3597 .tv_usec = ts.tv_nsec, 3598 }; 3599 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3600 return -EFAULT; 3601 return 0; 3602 } 3603 #endif 3604 return put_timespec64(&ts, userstamp); 3605 } 3606 EXPORT_SYMBOL(sock_gettstamp); 3607 3608 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3609 { 3610 if (!sock_flag(sk, flag)) { 3611 unsigned long previous_flags = sk->sk_flags; 3612 3613 sock_set_flag(sk, flag); 3614 /* 3615 * we just set one of the two flags which require net 3616 * time stamping, but time stamping might have been on 3617 * already because of the other one 3618 */ 3619 if (sock_needs_netstamp(sk) && 3620 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3621 net_enable_timestamp(); 3622 } 3623 } 3624 3625 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3626 int level, int type) 3627 { 3628 struct sock_exterr_skb *serr; 3629 struct sk_buff *skb; 3630 int copied, err; 3631 3632 err = -EAGAIN; 3633 skb = sock_dequeue_err_skb(sk); 3634 if (skb == NULL) 3635 goto out; 3636 3637 copied = skb->len; 3638 if (copied > len) { 3639 msg->msg_flags |= MSG_TRUNC; 3640 copied = len; 3641 } 3642 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3643 if (err) 3644 goto out_free_skb; 3645 3646 sock_recv_timestamp(msg, sk, skb); 3647 3648 serr = SKB_EXT_ERR(skb); 3649 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3650 3651 msg->msg_flags |= MSG_ERRQUEUE; 3652 err = copied; 3653 3654 out_free_skb: 3655 kfree_skb(skb); 3656 out: 3657 return err; 3658 } 3659 EXPORT_SYMBOL(sock_recv_errqueue); 3660 3661 /* 3662 * Get a socket option on an socket. 3663 * 3664 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3665 * asynchronous errors should be reported by getsockopt. We assume 3666 * this means if you specify SO_ERROR (otherwise whats the point of it). 3667 */ 3668 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3669 char __user *optval, int __user *optlen) 3670 { 3671 struct sock *sk = sock->sk; 3672 3673 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3674 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3675 } 3676 EXPORT_SYMBOL(sock_common_getsockopt); 3677 3678 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3679 int flags) 3680 { 3681 struct sock *sk = sock->sk; 3682 int addr_len = 0; 3683 int err; 3684 3685 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3686 if (err >= 0) 3687 msg->msg_namelen = addr_len; 3688 return err; 3689 } 3690 EXPORT_SYMBOL(sock_common_recvmsg); 3691 3692 /* 3693 * Set socket options on an inet socket. 3694 */ 3695 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3696 sockptr_t optval, unsigned int optlen) 3697 { 3698 struct sock *sk = sock->sk; 3699 3700 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3701 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3702 } 3703 EXPORT_SYMBOL(sock_common_setsockopt); 3704 3705 void sk_common_release(struct sock *sk) 3706 { 3707 if (sk->sk_prot->destroy) 3708 sk->sk_prot->destroy(sk); 3709 3710 /* 3711 * Observation: when sk_common_release is called, processes have 3712 * no access to socket. But net still has. 3713 * Step one, detach it from networking: 3714 * 3715 * A. Remove from hash tables. 3716 */ 3717 3718 sk->sk_prot->unhash(sk); 3719 3720 if (sk->sk_socket) 3721 sk->sk_socket->sk = NULL; 3722 3723 /* 3724 * In this point socket cannot receive new packets, but it is possible 3725 * that some packets are in flight because some CPU runs receiver and 3726 * did hash table lookup before we unhashed socket. They will achieve 3727 * receive queue and will be purged by socket destructor. 3728 * 3729 * Also we still have packets pending on receive queue and probably, 3730 * our own packets waiting in device queues. sock_destroy will drain 3731 * receive queue, but transmitted packets will delay socket destruction 3732 * until the last reference will be released. 3733 */ 3734 3735 sock_orphan(sk); 3736 3737 xfrm_sk_free_policy(sk); 3738 3739 sock_put(sk); 3740 } 3741 EXPORT_SYMBOL(sk_common_release); 3742 3743 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3744 { 3745 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3746 3747 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3748 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3749 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3750 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3751 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3752 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3753 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3754 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3755 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3756 } 3757 3758 #ifdef CONFIG_PROC_FS 3759 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3760 3761 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3762 { 3763 int cpu, idx = prot->inuse_idx; 3764 int res = 0; 3765 3766 for_each_possible_cpu(cpu) 3767 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3768 3769 return res >= 0 ? res : 0; 3770 } 3771 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3772 3773 int sock_inuse_get(struct net *net) 3774 { 3775 int cpu, res = 0; 3776 3777 for_each_possible_cpu(cpu) 3778 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3779 3780 return res; 3781 } 3782 3783 EXPORT_SYMBOL_GPL(sock_inuse_get); 3784 3785 static int __net_init sock_inuse_init_net(struct net *net) 3786 { 3787 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3788 if (net->core.prot_inuse == NULL) 3789 return -ENOMEM; 3790 return 0; 3791 } 3792 3793 static void __net_exit sock_inuse_exit_net(struct net *net) 3794 { 3795 free_percpu(net->core.prot_inuse); 3796 } 3797 3798 static struct pernet_operations net_inuse_ops = { 3799 .init = sock_inuse_init_net, 3800 .exit = sock_inuse_exit_net, 3801 }; 3802 3803 static __init int net_inuse_init(void) 3804 { 3805 if (register_pernet_subsys(&net_inuse_ops)) 3806 panic("Cannot initialize net inuse counters"); 3807 3808 return 0; 3809 } 3810 3811 core_initcall(net_inuse_init); 3812 3813 static int assign_proto_idx(struct proto *prot) 3814 { 3815 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3816 3817 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3818 pr_err("PROTO_INUSE_NR exhausted\n"); 3819 return -ENOSPC; 3820 } 3821 3822 set_bit(prot->inuse_idx, proto_inuse_idx); 3823 return 0; 3824 } 3825 3826 static void release_proto_idx(struct proto *prot) 3827 { 3828 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3829 clear_bit(prot->inuse_idx, proto_inuse_idx); 3830 } 3831 #else 3832 static inline int assign_proto_idx(struct proto *prot) 3833 { 3834 return 0; 3835 } 3836 3837 static inline void release_proto_idx(struct proto *prot) 3838 { 3839 } 3840 3841 #endif 3842 3843 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3844 { 3845 if (!twsk_prot) 3846 return; 3847 kfree(twsk_prot->twsk_slab_name); 3848 twsk_prot->twsk_slab_name = NULL; 3849 kmem_cache_destroy(twsk_prot->twsk_slab); 3850 twsk_prot->twsk_slab = NULL; 3851 } 3852 3853 static int tw_prot_init(const struct proto *prot) 3854 { 3855 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3856 3857 if (!twsk_prot) 3858 return 0; 3859 3860 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3861 prot->name); 3862 if (!twsk_prot->twsk_slab_name) 3863 return -ENOMEM; 3864 3865 twsk_prot->twsk_slab = 3866 kmem_cache_create(twsk_prot->twsk_slab_name, 3867 twsk_prot->twsk_obj_size, 0, 3868 SLAB_ACCOUNT | prot->slab_flags, 3869 NULL); 3870 if (!twsk_prot->twsk_slab) { 3871 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3872 prot->name); 3873 return -ENOMEM; 3874 } 3875 3876 return 0; 3877 } 3878 3879 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3880 { 3881 if (!rsk_prot) 3882 return; 3883 kfree(rsk_prot->slab_name); 3884 rsk_prot->slab_name = NULL; 3885 kmem_cache_destroy(rsk_prot->slab); 3886 rsk_prot->slab = NULL; 3887 } 3888 3889 static int req_prot_init(const struct proto *prot) 3890 { 3891 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3892 3893 if (!rsk_prot) 3894 return 0; 3895 3896 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3897 prot->name); 3898 if (!rsk_prot->slab_name) 3899 return -ENOMEM; 3900 3901 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3902 rsk_prot->obj_size, 0, 3903 SLAB_ACCOUNT | prot->slab_flags, 3904 NULL); 3905 3906 if (!rsk_prot->slab) { 3907 pr_crit("%s: Can't create request sock SLAB cache!\n", 3908 prot->name); 3909 return -ENOMEM; 3910 } 3911 return 0; 3912 } 3913 3914 int proto_register(struct proto *prot, int alloc_slab) 3915 { 3916 int ret = -ENOBUFS; 3917 3918 if (prot->memory_allocated && !prot->sysctl_mem) { 3919 pr_err("%s: missing sysctl_mem\n", prot->name); 3920 return -EINVAL; 3921 } 3922 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3923 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3924 return -EINVAL; 3925 } 3926 if (alloc_slab) { 3927 prot->slab = kmem_cache_create_usercopy(prot->name, 3928 prot->obj_size, 0, 3929 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3930 prot->slab_flags, 3931 prot->useroffset, prot->usersize, 3932 NULL); 3933 3934 if (prot->slab == NULL) { 3935 pr_crit("%s: Can't create sock SLAB cache!\n", 3936 prot->name); 3937 goto out; 3938 } 3939 3940 if (req_prot_init(prot)) 3941 goto out_free_request_sock_slab; 3942 3943 if (tw_prot_init(prot)) 3944 goto out_free_timewait_sock_slab; 3945 } 3946 3947 mutex_lock(&proto_list_mutex); 3948 ret = assign_proto_idx(prot); 3949 if (ret) { 3950 mutex_unlock(&proto_list_mutex); 3951 goto out_free_timewait_sock_slab; 3952 } 3953 list_add(&prot->node, &proto_list); 3954 mutex_unlock(&proto_list_mutex); 3955 return ret; 3956 3957 out_free_timewait_sock_slab: 3958 if (alloc_slab) 3959 tw_prot_cleanup(prot->twsk_prot); 3960 out_free_request_sock_slab: 3961 if (alloc_slab) { 3962 req_prot_cleanup(prot->rsk_prot); 3963 3964 kmem_cache_destroy(prot->slab); 3965 prot->slab = NULL; 3966 } 3967 out: 3968 return ret; 3969 } 3970 EXPORT_SYMBOL(proto_register); 3971 3972 void proto_unregister(struct proto *prot) 3973 { 3974 mutex_lock(&proto_list_mutex); 3975 release_proto_idx(prot); 3976 list_del(&prot->node); 3977 mutex_unlock(&proto_list_mutex); 3978 3979 kmem_cache_destroy(prot->slab); 3980 prot->slab = NULL; 3981 3982 req_prot_cleanup(prot->rsk_prot); 3983 tw_prot_cleanup(prot->twsk_prot); 3984 } 3985 EXPORT_SYMBOL(proto_unregister); 3986 3987 int sock_load_diag_module(int family, int protocol) 3988 { 3989 if (!protocol) { 3990 if (!sock_is_registered(family)) 3991 return -ENOENT; 3992 3993 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3994 NETLINK_SOCK_DIAG, family); 3995 } 3996 3997 #ifdef CONFIG_INET 3998 if (family == AF_INET && 3999 protocol != IPPROTO_RAW && 4000 protocol < MAX_INET_PROTOS && 4001 !rcu_access_pointer(inet_protos[protocol])) 4002 return -ENOENT; 4003 #endif 4004 4005 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4006 NETLINK_SOCK_DIAG, family, protocol); 4007 } 4008 EXPORT_SYMBOL(sock_load_diag_module); 4009 4010 #ifdef CONFIG_PROC_FS 4011 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4012 __acquires(proto_list_mutex) 4013 { 4014 mutex_lock(&proto_list_mutex); 4015 return seq_list_start_head(&proto_list, *pos); 4016 } 4017 4018 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4019 { 4020 return seq_list_next(v, &proto_list, pos); 4021 } 4022 4023 static void proto_seq_stop(struct seq_file *seq, void *v) 4024 __releases(proto_list_mutex) 4025 { 4026 mutex_unlock(&proto_list_mutex); 4027 } 4028 4029 static char proto_method_implemented(const void *method) 4030 { 4031 return method == NULL ? 'n' : 'y'; 4032 } 4033 static long sock_prot_memory_allocated(struct proto *proto) 4034 { 4035 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4036 } 4037 4038 static const char *sock_prot_memory_pressure(struct proto *proto) 4039 { 4040 return proto->memory_pressure != NULL ? 4041 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4042 } 4043 4044 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4045 { 4046 4047 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4048 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4049 proto->name, 4050 proto->obj_size, 4051 sock_prot_inuse_get(seq_file_net(seq), proto), 4052 sock_prot_memory_allocated(proto), 4053 sock_prot_memory_pressure(proto), 4054 proto->max_header, 4055 proto->slab == NULL ? "no" : "yes", 4056 module_name(proto->owner), 4057 proto_method_implemented(proto->close), 4058 proto_method_implemented(proto->connect), 4059 proto_method_implemented(proto->disconnect), 4060 proto_method_implemented(proto->accept), 4061 proto_method_implemented(proto->ioctl), 4062 proto_method_implemented(proto->init), 4063 proto_method_implemented(proto->destroy), 4064 proto_method_implemented(proto->shutdown), 4065 proto_method_implemented(proto->setsockopt), 4066 proto_method_implemented(proto->getsockopt), 4067 proto_method_implemented(proto->sendmsg), 4068 proto_method_implemented(proto->recvmsg), 4069 proto_method_implemented(proto->bind), 4070 proto_method_implemented(proto->backlog_rcv), 4071 proto_method_implemented(proto->hash), 4072 proto_method_implemented(proto->unhash), 4073 proto_method_implemented(proto->get_port), 4074 proto_method_implemented(proto->enter_memory_pressure)); 4075 } 4076 4077 static int proto_seq_show(struct seq_file *seq, void *v) 4078 { 4079 if (v == &proto_list) 4080 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4081 "protocol", 4082 "size", 4083 "sockets", 4084 "memory", 4085 "press", 4086 "maxhdr", 4087 "slab", 4088 "module", 4089 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4090 else 4091 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4092 return 0; 4093 } 4094 4095 static const struct seq_operations proto_seq_ops = { 4096 .start = proto_seq_start, 4097 .next = proto_seq_next, 4098 .stop = proto_seq_stop, 4099 .show = proto_seq_show, 4100 }; 4101 4102 static __net_init int proto_init_net(struct net *net) 4103 { 4104 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4105 sizeof(struct seq_net_private))) 4106 return -ENOMEM; 4107 4108 return 0; 4109 } 4110 4111 static __net_exit void proto_exit_net(struct net *net) 4112 { 4113 remove_proc_entry("protocols", net->proc_net); 4114 } 4115 4116 4117 static __net_initdata struct pernet_operations proto_net_ops = { 4118 .init = proto_init_net, 4119 .exit = proto_exit_net, 4120 }; 4121 4122 static int __init proto_init(void) 4123 { 4124 return register_pernet_subsys(&proto_net_ops); 4125 } 4126 4127 subsys_initcall(proto_init); 4128 4129 #endif /* PROC_FS */ 4130 4131 #ifdef CONFIG_NET_RX_BUSY_POLL 4132 bool sk_busy_loop_end(void *p, unsigned long start_time) 4133 { 4134 struct sock *sk = p; 4135 4136 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4137 return true; 4138 4139 if (sk_is_udp(sk) && 4140 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4141 return true; 4142 4143 return sk_busy_loop_timeout(sk, start_time); 4144 } 4145 EXPORT_SYMBOL(sk_busy_loop_end); 4146 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4147 4148 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4149 { 4150 if (!sk->sk_prot->bind_add) 4151 return -EOPNOTSUPP; 4152 return sk->sk_prot->bind_add(sk, addr, addr_len); 4153 } 4154 EXPORT_SYMBOL(sock_bind_add); 4155 4156 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4157 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4158 void __user *arg, void *karg, size_t size) 4159 { 4160 int ret; 4161 4162 if (copy_from_user(karg, arg, size)) 4163 return -EFAULT; 4164 4165 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4166 if (ret) 4167 return ret; 4168 4169 if (copy_to_user(arg, karg, size)) 4170 return -EFAULT; 4171 4172 return 0; 4173 } 4174 EXPORT_SYMBOL(sock_ioctl_inout); 4175 4176 /* This is the most common ioctl prep function, where the result (4 bytes) is 4177 * copied back to userspace if the ioctl() returns successfully. No input is 4178 * copied from userspace as input argument. 4179 */ 4180 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4181 { 4182 int ret, karg = 0; 4183 4184 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4185 if (ret) 4186 return ret; 4187 4188 return put_user(karg, (int __user *)arg); 4189 } 4190 4191 /* A wrapper around sock ioctls, which copies the data from userspace 4192 * (depending on the protocol/ioctl), and copies back the result to userspace. 4193 * The main motivation for this function is to pass kernel memory to the 4194 * protocol ioctl callbacks, instead of userspace memory. 4195 */ 4196 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4197 { 4198 int rc = 1; 4199 4200 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4201 rc = ipmr_sk_ioctl(sk, cmd, arg); 4202 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4203 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4204 else if (sk_is_phonet(sk)) 4205 rc = phonet_sk_ioctl(sk, cmd, arg); 4206 4207 /* If ioctl was processed, returns its value */ 4208 if (rc <= 0) 4209 return rc; 4210 4211 /* Otherwise call the default handler */ 4212 return sock_ioctl_out(sk, cmd, arg); 4213 } 4214 EXPORT_SYMBOL(sk_ioctl); 4215