xref: /openbmc/linux/net/core/sock.c (revision 2572f00d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 
138 #include <trace/events/sock.h>
139 
140 #ifdef CONFIG_INET
141 #include <net/tcp.h>
142 #endif
143 
144 #include <net/busy_poll.h>
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 /**
150  * sk_ns_capable - General socket capability test
151  * @sk: Socket to use a capability on or through
152  * @user_ns: The user namespace of the capability to use
153  * @cap: The capability to use
154  *
155  * Test to see if the opener of the socket had when the socket was
156  * created and the current process has the capability @cap in the user
157  * namespace @user_ns.
158  */
159 bool sk_ns_capable(const struct sock *sk,
160 		   struct user_namespace *user_ns, int cap)
161 {
162 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 		ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166 
167 /**
168  * sk_capable - Socket global capability test
169  * @sk: Socket to use a capability on or through
170  * @cap: The global capability to use
171  *
172  * Test to see if the opener of the socket had when the socket was
173  * created and the current process has the capability @cap in all user
174  * namespaces.
175  */
176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 	return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181 
182 /**
183  * sk_net_capable - Network namespace socket capability test
184  * @sk: Socket to use a capability on or through
185  * @cap: The capability to use
186  *
187  * Test to see if the opener of the socket had when the socket was created
188  * and the current process has the capability @cap over the network namespace
189  * the socket is a member of.
190  */
191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196 
197 
198 #ifdef CONFIG_MEMCG_KMEM
199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
200 {
201 	struct proto *proto;
202 	int ret = 0;
203 
204 	mutex_lock(&proto_list_mutex);
205 	list_for_each_entry(proto, &proto_list, node) {
206 		if (proto->init_cgroup) {
207 			ret = proto->init_cgroup(memcg, ss);
208 			if (ret)
209 				goto out;
210 		}
211 	}
212 
213 	mutex_unlock(&proto_list_mutex);
214 	return ret;
215 out:
216 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 		if (proto->destroy_cgroup)
218 			proto->destroy_cgroup(memcg);
219 	mutex_unlock(&proto_list_mutex);
220 	return ret;
221 }
222 
223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
224 {
225 	struct proto *proto;
226 
227 	mutex_lock(&proto_list_mutex);
228 	list_for_each_entry_reverse(proto, &proto_list, node)
229 		if (proto->destroy_cgroup)
230 			proto->destroy_cgroup(memcg);
231 	mutex_unlock(&proto_list_mutex);
232 }
233 #endif
234 
235 /*
236  * Each address family might have different locking rules, so we have
237  * one slock key per address family:
238  */
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
241 
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
245 #endif
246 
247 /*
248  * Make lock validator output more readable. (we pre-construct these
249  * strings build-time, so that runtime initialization of socket
250  * locks is fast):
251  */
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
254   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
255   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
256   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
257   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
258   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
259   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
260   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
261   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
262   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
263   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
264   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
265   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
266   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
267 };
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
270   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
271   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
272   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
273   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
274   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
275   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
276   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
277   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
278   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
279   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
280   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
281   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
282   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
283 };
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
286   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
287   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
288   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
289   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
290   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
291   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
292   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
293   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
294   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
295   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
296   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
297   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
298   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
299 };
300 
301 /*
302  * sk_callback_lock locking rules are per-address-family,
303  * so split the lock classes by using a per-AF key:
304  */
305 static struct lock_class_key af_callback_keys[AF_MAX];
306 
307 /* Take into consideration the size of the struct sk_buff overhead in the
308  * determination of these values, since that is non-constant across
309  * platforms.  This makes socket queueing behavior and performance
310  * not depend upon such differences.
311  */
312 #define _SK_MEM_PACKETS		256
313 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324 
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
328 
329 int sysctl_tstamp_allow_data __read_mostly = 1;
330 
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
333 
334 /**
335  * sk_set_memalloc - sets %SOCK_MEMALLOC
336  * @sk: socket to set it on
337  *
338  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339  * It's the responsibility of the admin to adjust min_free_kbytes
340  * to meet the requirements
341  */
342 void sk_set_memalloc(struct sock *sk)
343 {
344 	sock_set_flag(sk, SOCK_MEMALLOC);
345 	sk->sk_allocation |= __GFP_MEMALLOC;
346 	static_key_slow_inc(&memalloc_socks);
347 }
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
349 
350 void sk_clear_memalloc(struct sock *sk)
351 {
352 	sock_reset_flag(sk, SOCK_MEMALLOC);
353 	sk->sk_allocation &= ~__GFP_MEMALLOC;
354 	static_key_slow_dec(&memalloc_socks);
355 
356 	/*
357 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 	 * it has rmem allocations due to the last swapfile being deactivated
360 	 * but there is a risk that the socket is unusable due to exceeding
361 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
362 	 */
363 	sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
425 static bool sock_needs_netstamp(const struct sock *sk)
426 {
427 	switch (sk->sk_family) {
428 	case AF_UNSPEC:
429 	case AF_UNIX:
430 		return false;
431 	default:
432 		return true;
433 	}
434 }
435 
436 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
437 {
438 	if (sk->sk_flags & flags) {
439 		sk->sk_flags &= ~flags;
440 		if (sock_needs_netstamp(sk) &&
441 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
442 			net_disable_timestamp();
443 	}
444 }
445 
446 
447 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
448 {
449 	int err;
450 	unsigned long flags;
451 	struct sk_buff_head *list = &sk->sk_receive_queue;
452 
453 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
454 		atomic_inc(&sk->sk_drops);
455 		trace_sock_rcvqueue_full(sk, skb);
456 		return -ENOMEM;
457 	}
458 
459 	err = sk_filter(sk, skb);
460 	if (err)
461 		return err;
462 
463 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
464 		atomic_inc(&sk->sk_drops);
465 		return -ENOBUFS;
466 	}
467 
468 	skb->dev = NULL;
469 	skb_set_owner_r(skb, sk);
470 
471 	/* we escape from rcu protected region, make sure we dont leak
472 	 * a norefcounted dst
473 	 */
474 	skb_dst_force(skb);
475 
476 	spin_lock_irqsave(&list->lock, flags);
477 	sock_skb_set_dropcount(sk, skb);
478 	__skb_queue_tail(list, skb);
479 	spin_unlock_irqrestore(&list->lock, flags);
480 
481 	if (!sock_flag(sk, SOCK_DEAD))
482 		sk->sk_data_ready(sk);
483 	return 0;
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486 
487 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
488 {
489 	int rc = NET_RX_SUCCESS;
490 
491 	if (sk_filter(sk, skb))
492 		goto discard_and_relse;
493 
494 	skb->dev = NULL;
495 
496 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
497 		atomic_inc(&sk->sk_drops);
498 		goto discard_and_relse;
499 	}
500 	if (nested)
501 		bh_lock_sock_nested(sk);
502 	else
503 		bh_lock_sock(sk);
504 	if (!sock_owned_by_user(sk)) {
505 		/*
506 		 * trylock + unlock semantics:
507 		 */
508 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
509 
510 		rc = sk_backlog_rcv(sk, skb);
511 
512 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
513 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
514 		bh_unlock_sock(sk);
515 		atomic_inc(&sk->sk_drops);
516 		goto discard_and_relse;
517 	}
518 
519 	bh_unlock_sock(sk);
520 out:
521 	sock_put(sk);
522 	return rc;
523 discard_and_relse:
524 	kfree_skb(skb);
525 	goto out;
526 }
527 EXPORT_SYMBOL(sk_receive_skb);
528 
529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
530 {
531 	struct dst_entry *dst = __sk_dst_get(sk);
532 
533 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
534 		sk_tx_queue_clear(sk);
535 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
536 		dst_release(dst);
537 		return NULL;
538 	}
539 
540 	return dst;
541 }
542 EXPORT_SYMBOL(__sk_dst_check);
543 
544 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
545 {
546 	struct dst_entry *dst = sk_dst_get(sk);
547 
548 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
549 		sk_dst_reset(sk);
550 		dst_release(dst);
551 		return NULL;
552 	}
553 
554 	return dst;
555 }
556 EXPORT_SYMBOL(sk_dst_check);
557 
558 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
559 				int optlen)
560 {
561 	int ret = -ENOPROTOOPT;
562 #ifdef CONFIG_NETDEVICES
563 	struct net *net = sock_net(sk);
564 	char devname[IFNAMSIZ];
565 	int index;
566 
567 	/* Sorry... */
568 	ret = -EPERM;
569 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
570 		goto out;
571 
572 	ret = -EINVAL;
573 	if (optlen < 0)
574 		goto out;
575 
576 	/* Bind this socket to a particular device like "eth0",
577 	 * as specified in the passed interface name. If the
578 	 * name is "" or the option length is zero the socket
579 	 * is not bound.
580 	 */
581 	if (optlen > IFNAMSIZ - 1)
582 		optlen = IFNAMSIZ - 1;
583 	memset(devname, 0, sizeof(devname));
584 
585 	ret = -EFAULT;
586 	if (copy_from_user(devname, optval, optlen))
587 		goto out;
588 
589 	index = 0;
590 	if (devname[0] != '\0') {
591 		struct net_device *dev;
592 
593 		rcu_read_lock();
594 		dev = dev_get_by_name_rcu(net, devname);
595 		if (dev)
596 			index = dev->ifindex;
597 		rcu_read_unlock();
598 		ret = -ENODEV;
599 		if (!dev)
600 			goto out;
601 	}
602 
603 	lock_sock(sk);
604 	sk->sk_bound_dev_if = index;
605 	sk_dst_reset(sk);
606 	release_sock(sk);
607 
608 	ret = 0;
609 
610 out:
611 #endif
612 
613 	return ret;
614 }
615 
616 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
617 				int __user *optlen, int len)
618 {
619 	int ret = -ENOPROTOOPT;
620 #ifdef CONFIG_NETDEVICES
621 	struct net *net = sock_net(sk);
622 	char devname[IFNAMSIZ];
623 
624 	if (sk->sk_bound_dev_if == 0) {
625 		len = 0;
626 		goto zero;
627 	}
628 
629 	ret = -EINVAL;
630 	if (len < IFNAMSIZ)
631 		goto out;
632 
633 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
634 	if (ret)
635 		goto out;
636 
637 	len = strlen(devname) + 1;
638 
639 	ret = -EFAULT;
640 	if (copy_to_user(optval, devname, len))
641 		goto out;
642 
643 zero:
644 	ret = -EFAULT;
645 	if (put_user(len, optlen))
646 		goto out;
647 
648 	ret = 0;
649 
650 out:
651 #endif
652 
653 	return ret;
654 }
655 
656 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
657 {
658 	if (valbool)
659 		sock_set_flag(sk, bit);
660 	else
661 		sock_reset_flag(sk, bit);
662 }
663 
664 bool sk_mc_loop(struct sock *sk)
665 {
666 	if (dev_recursion_level())
667 		return false;
668 	if (!sk)
669 		return true;
670 	switch (sk->sk_family) {
671 	case AF_INET:
672 		return inet_sk(sk)->mc_loop;
673 #if IS_ENABLED(CONFIG_IPV6)
674 	case AF_INET6:
675 		return inet6_sk(sk)->mc_loop;
676 #endif
677 	}
678 	WARN_ON(1);
679 	return true;
680 }
681 EXPORT_SYMBOL(sk_mc_loop);
682 
683 /*
684  *	This is meant for all protocols to use and covers goings on
685  *	at the socket level. Everything here is generic.
686  */
687 
688 int sock_setsockopt(struct socket *sock, int level, int optname,
689 		    char __user *optval, unsigned int optlen)
690 {
691 	struct sock *sk = sock->sk;
692 	int val;
693 	int valbool;
694 	struct linger ling;
695 	int ret = 0;
696 
697 	/*
698 	 *	Options without arguments
699 	 */
700 
701 	if (optname == SO_BINDTODEVICE)
702 		return sock_setbindtodevice(sk, optval, optlen);
703 
704 	if (optlen < sizeof(int))
705 		return -EINVAL;
706 
707 	if (get_user(val, (int __user *)optval))
708 		return -EFAULT;
709 
710 	valbool = val ? 1 : 0;
711 
712 	lock_sock(sk);
713 
714 	switch (optname) {
715 	case SO_DEBUG:
716 		if (val && !capable(CAP_NET_ADMIN))
717 			ret = -EACCES;
718 		else
719 			sock_valbool_flag(sk, SOCK_DBG, valbool);
720 		break;
721 	case SO_REUSEADDR:
722 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
723 		break;
724 	case SO_REUSEPORT:
725 		sk->sk_reuseport = valbool;
726 		break;
727 	case SO_TYPE:
728 	case SO_PROTOCOL:
729 	case SO_DOMAIN:
730 	case SO_ERROR:
731 		ret = -ENOPROTOOPT;
732 		break;
733 	case SO_DONTROUTE:
734 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
735 		break;
736 	case SO_BROADCAST:
737 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
738 		break;
739 	case SO_SNDBUF:
740 		/* Don't error on this BSD doesn't and if you think
741 		 * about it this is right. Otherwise apps have to
742 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743 		 * are treated in BSD as hints
744 		 */
745 		val = min_t(u32, val, sysctl_wmem_max);
746 set_sndbuf:
747 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
748 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
749 		/* Wake up sending tasks if we upped the value. */
750 		sk->sk_write_space(sk);
751 		break;
752 
753 	case SO_SNDBUFFORCE:
754 		if (!capable(CAP_NET_ADMIN)) {
755 			ret = -EPERM;
756 			break;
757 		}
758 		goto set_sndbuf;
759 
760 	case SO_RCVBUF:
761 		/* Don't error on this BSD doesn't and if you think
762 		 * about it this is right. Otherwise apps have to
763 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
764 		 * are treated in BSD as hints
765 		 */
766 		val = min_t(u32, val, sysctl_rmem_max);
767 set_rcvbuf:
768 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
769 		/*
770 		 * We double it on the way in to account for
771 		 * "struct sk_buff" etc. overhead.   Applications
772 		 * assume that the SO_RCVBUF setting they make will
773 		 * allow that much actual data to be received on that
774 		 * socket.
775 		 *
776 		 * Applications are unaware that "struct sk_buff" and
777 		 * other overheads allocate from the receive buffer
778 		 * during socket buffer allocation.
779 		 *
780 		 * And after considering the possible alternatives,
781 		 * returning the value we actually used in getsockopt
782 		 * is the most desirable behavior.
783 		 */
784 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
785 		break;
786 
787 	case SO_RCVBUFFORCE:
788 		if (!capable(CAP_NET_ADMIN)) {
789 			ret = -EPERM;
790 			break;
791 		}
792 		goto set_rcvbuf;
793 
794 	case SO_KEEPALIVE:
795 #ifdef CONFIG_INET
796 		if (sk->sk_protocol == IPPROTO_TCP &&
797 		    sk->sk_type == SOCK_STREAM)
798 			tcp_set_keepalive(sk, valbool);
799 #endif
800 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
801 		break;
802 
803 	case SO_OOBINLINE:
804 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
805 		break;
806 
807 	case SO_NO_CHECK:
808 		sk->sk_no_check_tx = valbool;
809 		break;
810 
811 	case SO_PRIORITY:
812 		if ((val >= 0 && val <= 6) ||
813 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
814 			sk->sk_priority = val;
815 		else
816 			ret = -EPERM;
817 		break;
818 
819 	case SO_LINGER:
820 		if (optlen < sizeof(ling)) {
821 			ret = -EINVAL;	/* 1003.1g */
822 			break;
823 		}
824 		if (copy_from_user(&ling, optval, sizeof(ling))) {
825 			ret = -EFAULT;
826 			break;
827 		}
828 		if (!ling.l_onoff)
829 			sock_reset_flag(sk, SOCK_LINGER);
830 		else {
831 #if (BITS_PER_LONG == 32)
832 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
833 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
834 			else
835 #endif
836 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
837 			sock_set_flag(sk, SOCK_LINGER);
838 		}
839 		break;
840 
841 	case SO_BSDCOMPAT:
842 		sock_warn_obsolete_bsdism("setsockopt");
843 		break;
844 
845 	case SO_PASSCRED:
846 		if (valbool)
847 			set_bit(SOCK_PASSCRED, &sock->flags);
848 		else
849 			clear_bit(SOCK_PASSCRED, &sock->flags);
850 		break;
851 
852 	case SO_TIMESTAMP:
853 	case SO_TIMESTAMPNS:
854 		if (valbool)  {
855 			if (optname == SO_TIMESTAMP)
856 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
857 			else
858 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
859 			sock_set_flag(sk, SOCK_RCVTSTAMP);
860 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
861 		} else {
862 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
863 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
864 		}
865 		break;
866 
867 	case SO_TIMESTAMPING:
868 		if (val & ~SOF_TIMESTAMPING_MASK) {
869 			ret = -EINVAL;
870 			break;
871 		}
872 
873 		if (val & SOF_TIMESTAMPING_OPT_ID &&
874 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
875 			if (sk->sk_protocol == IPPROTO_TCP &&
876 			    sk->sk_type == SOCK_STREAM) {
877 				if (sk->sk_state != TCP_ESTABLISHED) {
878 					ret = -EINVAL;
879 					break;
880 				}
881 				sk->sk_tskey = tcp_sk(sk)->snd_una;
882 			} else {
883 				sk->sk_tskey = 0;
884 			}
885 		}
886 		sk->sk_tsflags = val;
887 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
888 			sock_enable_timestamp(sk,
889 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
890 		else
891 			sock_disable_timestamp(sk,
892 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
893 		break;
894 
895 	case SO_RCVLOWAT:
896 		if (val < 0)
897 			val = INT_MAX;
898 		sk->sk_rcvlowat = val ? : 1;
899 		break;
900 
901 	case SO_RCVTIMEO:
902 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
903 		break;
904 
905 	case SO_SNDTIMEO:
906 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
907 		break;
908 
909 	case SO_ATTACH_FILTER:
910 		ret = -EINVAL;
911 		if (optlen == sizeof(struct sock_fprog)) {
912 			struct sock_fprog fprog;
913 
914 			ret = -EFAULT;
915 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
916 				break;
917 
918 			ret = sk_attach_filter(&fprog, sk);
919 		}
920 		break;
921 
922 	case SO_ATTACH_BPF:
923 		ret = -EINVAL;
924 		if (optlen == sizeof(u32)) {
925 			u32 ufd;
926 
927 			ret = -EFAULT;
928 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
929 				break;
930 
931 			ret = sk_attach_bpf(ufd, sk);
932 		}
933 		break;
934 
935 	case SO_DETACH_FILTER:
936 		ret = sk_detach_filter(sk);
937 		break;
938 
939 	case SO_LOCK_FILTER:
940 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
941 			ret = -EPERM;
942 		else
943 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
944 		break;
945 
946 	case SO_PASSSEC:
947 		if (valbool)
948 			set_bit(SOCK_PASSSEC, &sock->flags);
949 		else
950 			clear_bit(SOCK_PASSSEC, &sock->flags);
951 		break;
952 	case SO_MARK:
953 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 			ret = -EPERM;
955 		else
956 			sk->sk_mark = val;
957 		break;
958 
959 	case SO_RXQ_OVFL:
960 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
961 		break;
962 
963 	case SO_WIFI_STATUS:
964 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
965 		break;
966 
967 	case SO_PEEK_OFF:
968 		if (sock->ops->set_peek_off)
969 			ret = sock->ops->set_peek_off(sk, val);
970 		else
971 			ret = -EOPNOTSUPP;
972 		break;
973 
974 	case SO_NOFCS:
975 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
976 		break;
977 
978 	case SO_SELECT_ERR_QUEUE:
979 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
980 		break;
981 
982 #ifdef CONFIG_NET_RX_BUSY_POLL
983 	case SO_BUSY_POLL:
984 		/* allow unprivileged users to decrease the value */
985 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
986 			ret = -EPERM;
987 		else {
988 			if (val < 0)
989 				ret = -EINVAL;
990 			else
991 				sk->sk_ll_usec = val;
992 		}
993 		break;
994 #endif
995 
996 	case SO_MAX_PACING_RATE:
997 		sk->sk_max_pacing_rate = val;
998 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
999 					 sk->sk_max_pacing_rate);
1000 		break;
1001 
1002 	case SO_INCOMING_CPU:
1003 		sk->sk_incoming_cpu = val;
1004 		break;
1005 
1006 	default:
1007 		ret = -ENOPROTOOPT;
1008 		break;
1009 	}
1010 	release_sock(sk);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(sock_setsockopt);
1014 
1015 
1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1017 			  struct ucred *ucred)
1018 {
1019 	ucred->pid = pid_vnr(pid);
1020 	ucred->uid = ucred->gid = -1;
1021 	if (cred) {
1022 		struct user_namespace *current_ns = current_user_ns();
1023 
1024 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1025 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1026 	}
1027 }
1028 
1029 int sock_getsockopt(struct socket *sock, int level, int optname,
1030 		    char __user *optval, int __user *optlen)
1031 {
1032 	struct sock *sk = sock->sk;
1033 
1034 	union {
1035 		int val;
1036 		struct linger ling;
1037 		struct timeval tm;
1038 	} v;
1039 
1040 	int lv = sizeof(int);
1041 	int len;
1042 
1043 	if (get_user(len, optlen))
1044 		return -EFAULT;
1045 	if (len < 0)
1046 		return -EINVAL;
1047 
1048 	memset(&v, 0, sizeof(v));
1049 
1050 	switch (optname) {
1051 	case SO_DEBUG:
1052 		v.val = sock_flag(sk, SOCK_DBG);
1053 		break;
1054 
1055 	case SO_DONTROUTE:
1056 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1057 		break;
1058 
1059 	case SO_BROADCAST:
1060 		v.val = sock_flag(sk, SOCK_BROADCAST);
1061 		break;
1062 
1063 	case SO_SNDBUF:
1064 		v.val = sk->sk_sndbuf;
1065 		break;
1066 
1067 	case SO_RCVBUF:
1068 		v.val = sk->sk_rcvbuf;
1069 		break;
1070 
1071 	case SO_REUSEADDR:
1072 		v.val = sk->sk_reuse;
1073 		break;
1074 
1075 	case SO_REUSEPORT:
1076 		v.val = sk->sk_reuseport;
1077 		break;
1078 
1079 	case SO_KEEPALIVE:
1080 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1081 		break;
1082 
1083 	case SO_TYPE:
1084 		v.val = sk->sk_type;
1085 		break;
1086 
1087 	case SO_PROTOCOL:
1088 		v.val = sk->sk_protocol;
1089 		break;
1090 
1091 	case SO_DOMAIN:
1092 		v.val = sk->sk_family;
1093 		break;
1094 
1095 	case SO_ERROR:
1096 		v.val = -sock_error(sk);
1097 		if (v.val == 0)
1098 			v.val = xchg(&sk->sk_err_soft, 0);
1099 		break;
1100 
1101 	case SO_OOBINLINE:
1102 		v.val = sock_flag(sk, SOCK_URGINLINE);
1103 		break;
1104 
1105 	case SO_NO_CHECK:
1106 		v.val = sk->sk_no_check_tx;
1107 		break;
1108 
1109 	case SO_PRIORITY:
1110 		v.val = sk->sk_priority;
1111 		break;
1112 
1113 	case SO_LINGER:
1114 		lv		= sizeof(v.ling);
1115 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1116 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1117 		break;
1118 
1119 	case SO_BSDCOMPAT:
1120 		sock_warn_obsolete_bsdism("getsockopt");
1121 		break;
1122 
1123 	case SO_TIMESTAMP:
1124 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1125 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1126 		break;
1127 
1128 	case SO_TIMESTAMPNS:
1129 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1130 		break;
1131 
1132 	case SO_TIMESTAMPING:
1133 		v.val = sk->sk_tsflags;
1134 		break;
1135 
1136 	case SO_RCVTIMEO:
1137 		lv = sizeof(struct timeval);
1138 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1139 			v.tm.tv_sec = 0;
1140 			v.tm.tv_usec = 0;
1141 		} else {
1142 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1143 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1144 		}
1145 		break;
1146 
1147 	case SO_SNDTIMEO:
1148 		lv = sizeof(struct timeval);
1149 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1150 			v.tm.tv_sec = 0;
1151 			v.tm.tv_usec = 0;
1152 		} else {
1153 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1154 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1155 		}
1156 		break;
1157 
1158 	case SO_RCVLOWAT:
1159 		v.val = sk->sk_rcvlowat;
1160 		break;
1161 
1162 	case SO_SNDLOWAT:
1163 		v.val = 1;
1164 		break;
1165 
1166 	case SO_PASSCRED:
1167 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1168 		break;
1169 
1170 	case SO_PEERCRED:
1171 	{
1172 		struct ucred peercred;
1173 		if (len > sizeof(peercred))
1174 			len = sizeof(peercred);
1175 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1176 		if (copy_to_user(optval, &peercred, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	case SO_PEERNAME:
1182 	{
1183 		char address[128];
1184 
1185 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1186 			return -ENOTCONN;
1187 		if (lv < len)
1188 			return -EINVAL;
1189 		if (copy_to_user(optval, address, len))
1190 			return -EFAULT;
1191 		goto lenout;
1192 	}
1193 
1194 	/* Dubious BSD thing... Probably nobody even uses it, but
1195 	 * the UNIX standard wants it for whatever reason... -DaveM
1196 	 */
1197 	case SO_ACCEPTCONN:
1198 		v.val = sk->sk_state == TCP_LISTEN;
1199 		break;
1200 
1201 	case SO_PASSSEC:
1202 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1203 		break;
1204 
1205 	case SO_PEERSEC:
1206 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1207 
1208 	case SO_MARK:
1209 		v.val = sk->sk_mark;
1210 		break;
1211 
1212 	case SO_RXQ_OVFL:
1213 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1214 		break;
1215 
1216 	case SO_WIFI_STATUS:
1217 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1218 		break;
1219 
1220 	case SO_PEEK_OFF:
1221 		if (!sock->ops->set_peek_off)
1222 			return -EOPNOTSUPP;
1223 
1224 		v.val = sk->sk_peek_off;
1225 		break;
1226 	case SO_NOFCS:
1227 		v.val = sock_flag(sk, SOCK_NOFCS);
1228 		break;
1229 
1230 	case SO_BINDTODEVICE:
1231 		return sock_getbindtodevice(sk, optval, optlen, len);
1232 
1233 	case SO_GET_FILTER:
1234 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1235 		if (len < 0)
1236 			return len;
1237 
1238 		goto lenout;
1239 
1240 	case SO_LOCK_FILTER:
1241 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1242 		break;
1243 
1244 	case SO_BPF_EXTENSIONS:
1245 		v.val = bpf_tell_extensions();
1246 		break;
1247 
1248 	case SO_SELECT_ERR_QUEUE:
1249 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1250 		break;
1251 
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1253 	case SO_BUSY_POLL:
1254 		v.val = sk->sk_ll_usec;
1255 		break;
1256 #endif
1257 
1258 	case SO_MAX_PACING_RATE:
1259 		v.val = sk->sk_max_pacing_rate;
1260 		break;
1261 
1262 	case SO_INCOMING_CPU:
1263 		v.val = sk->sk_incoming_cpu;
1264 		break;
1265 
1266 	default:
1267 		/* We implement the SO_SNDLOWAT etc to not be settable
1268 		 * (1003.1g 7).
1269 		 */
1270 		return -ENOPROTOOPT;
1271 	}
1272 
1273 	if (len > lv)
1274 		len = lv;
1275 	if (copy_to_user(optval, &v, len))
1276 		return -EFAULT;
1277 lenout:
1278 	if (put_user(len, optlen))
1279 		return -EFAULT;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Initialize an sk_lock.
1285  *
1286  * (We also register the sk_lock with the lock validator.)
1287  */
1288 static inline void sock_lock_init(struct sock *sk)
1289 {
1290 	sock_lock_init_class_and_name(sk,
1291 			af_family_slock_key_strings[sk->sk_family],
1292 			af_family_slock_keys + sk->sk_family,
1293 			af_family_key_strings[sk->sk_family],
1294 			af_family_keys + sk->sk_family);
1295 }
1296 
1297 /*
1298  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301  */
1302 static void sock_copy(struct sock *nsk, const struct sock *osk)
1303 {
1304 #ifdef CONFIG_SECURITY_NETWORK
1305 	void *sptr = nsk->sk_security;
1306 #endif
1307 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1308 
1309 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1310 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1311 
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 	nsk->sk_security = sptr;
1314 	security_sk_clone(osk, nsk);
1315 #endif
1316 }
1317 
1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1319 {
1320 	unsigned long nulls1, nulls2;
1321 
1322 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1323 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1324 	if (nulls1 > nulls2)
1325 		swap(nulls1, nulls2);
1326 
1327 	if (nulls1 != 0)
1328 		memset((char *)sk, 0, nulls1);
1329 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1330 	       nulls2 - nulls1 - sizeof(void *));
1331 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1332 	       size - nulls2 - sizeof(void *));
1333 }
1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1335 
1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1337 		int family)
1338 {
1339 	struct sock *sk;
1340 	struct kmem_cache *slab;
1341 
1342 	slab = prot->slab;
1343 	if (slab != NULL) {
1344 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1345 		if (!sk)
1346 			return sk;
1347 		if (priority & __GFP_ZERO) {
1348 			if (prot->clear_sk)
1349 				prot->clear_sk(sk, prot->obj_size);
1350 			else
1351 				sk_prot_clear_nulls(sk, prot->obj_size);
1352 		}
1353 	} else
1354 		sk = kmalloc(prot->obj_size, priority);
1355 
1356 	if (sk != NULL) {
1357 		kmemcheck_annotate_bitfield(sk, flags);
1358 
1359 		if (security_sk_alloc(sk, family, priority))
1360 			goto out_free;
1361 
1362 		if (!try_module_get(prot->owner))
1363 			goto out_free_sec;
1364 		sk_tx_queue_clear(sk);
1365 	}
1366 
1367 	return sk;
1368 
1369 out_free_sec:
1370 	security_sk_free(sk);
1371 out_free:
1372 	if (slab != NULL)
1373 		kmem_cache_free(slab, sk);
1374 	else
1375 		kfree(sk);
1376 	return NULL;
1377 }
1378 
1379 static void sk_prot_free(struct proto *prot, struct sock *sk)
1380 {
1381 	struct kmem_cache *slab;
1382 	struct module *owner;
1383 
1384 	owner = prot->owner;
1385 	slab = prot->slab;
1386 
1387 	security_sk_free(sk);
1388 	if (slab != NULL)
1389 		kmem_cache_free(slab, sk);
1390 	else
1391 		kfree(sk);
1392 	module_put(owner);
1393 }
1394 
1395 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1396 void sock_update_netprioidx(struct sock *sk)
1397 {
1398 	if (in_interrupt())
1399 		return;
1400 
1401 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1402 }
1403 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1404 #endif
1405 
1406 /**
1407  *	sk_alloc - All socket objects are allocated here
1408  *	@net: the applicable net namespace
1409  *	@family: protocol family
1410  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1411  *	@prot: struct proto associated with this new sock instance
1412  *	@kern: is this to be a kernel socket?
1413  */
1414 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1415 		      struct proto *prot, int kern)
1416 {
1417 	struct sock *sk;
1418 
1419 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1420 	if (sk) {
1421 		sk->sk_family = family;
1422 		/*
1423 		 * See comment in struct sock definition to understand
1424 		 * why we need sk_prot_creator -acme
1425 		 */
1426 		sk->sk_prot = sk->sk_prot_creator = prot;
1427 		sock_lock_init(sk);
1428 		sk->sk_net_refcnt = kern ? 0 : 1;
1429 		if (likely(sk->sk_net_refcnt))
1430 			get_net(net);
1431 		sock_net_set(sk, net);
1432 		atomic_set(&sk->sk_wmem_alloc, 1);
1433 
1434 		sock_update_classid(sk);
1435 		sock_update_netprioidx(sk);
1436 	}
1437 
1438 	return sk;
1439 }
1440 EXPORT_SYMBOL(sk_alloc);
1441 
1442 void sk_destruct(struct sock *sk)
1443 {
1444 	struct sk_filter *filter;
1445 
1446 	if (sk->sk_destruct)
1447 		sk->sk_destruct(sk);
1448 
1449 	filter = rcu_dereference_check(sk->sk_filter,
1450 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1451 	if (filter) {
1452 		sk_filter_uncharge(sk, filter);
1453 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1454 	}
1455 
1456 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1457 
1458 	if (atomic_read(&sk->sk_omem_alloc))
1459 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1460 			 __func__, atomic_read(&sk->sk_omem_alloc));
1461 
1462 	if (sk->sk_peer_cred)
1463 		put_cred(sk->sk_peer_cred);
1464 	put_pid(sk->sk_peer_pid);
1465 	if (likely(sk->sk_net_refcnt))
1466 		put_net(sock_net(sk));
1467 	sk_prot_free(sk->sk_prot_creator, sk);
1468 }
1469 
1470 static void __sk_free(struct sock *sk)
1471 {
1472 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1473 		sock_diag_broadcast_destroy(sk);
1474 	else
1475 		sk_destruct(sk);
1476 }
1477 
1478 void sk_free(struct sock *sk)
1479 {
1480 	/*
1481 	 * We subtract one from sk_wmem_alloc and can know if
1482 	 * some packets are still in some tx queue.
1483 	 * If not null, sock_wfree() will call __sk_free(sk) later
1484 	 */
1485 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1486 		__sk_free(sk);
1487 }
1488 EXPORT_SYMBOL(sk_free);
1489 
1490 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1491 {
1492 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1493 		sock_update_memcg(newsk);
1494 }
1495 
1496 /**
1497  *	sk_clone_lock - clone a socket, and lock its clone
1498  *	@sk: the socket to clone
1499  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1500  *
1501  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1502  */
1503 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1504 {
1505 	struct sock *newsk;
1506 	bool is_charged = true;
1507 
1508 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1509 	if (newsk != NULL) {
1510 		struct sk_filter *filter;
1511 
1512 		sock_copy(newsk, sk);
1513 
1514 		/* SANITY */
1515 		if (likely(newsk->sk_net_refcnt))
1516 			get_net(sock_net(newsk));
1517 		sk_node_init(&newsk->sk_node);
1518 		sock_lock_init(newsk);
1519 		bh_lock_sock(newsk);
1520 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1521 		newsk->sk_backlog.len = 0;
1522 
1523 		atomic_set(&newsk->sk_rmem_alloc, 0);
1524 		/*
1525 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1526 		 */
1527 		atomic_set(&newsk->sk_wmem_alloc, 1);
1528 		atomic_set(&newsk->sk_omem_alloc, 0);
1529 		skb_queue_head_init(&newsk->sk_receive_queue);
1530 		skb_queue_head_init(&newsk->sk_write_queue);
1531 
1532 		rwlock_init(&newsk->sk_callback_lock);
1533 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1534 				af_callback_keys + newsk->sk_family,
1535 				af_family_clock_key_strings[newsk->sk_family]);
1536 
1537 		newsk->sk_dst_cache	= NULL;
1538 		newsk->sk_wmem_queued	= 0;
1539 		newsk->sk_forward_alloc = 0;
1540 		newsk->sk_send_head	= NULL;
1541 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1542 
1543 		sock_reset_flag(newsk, SOCK_DONE);
1544 		skb_queue_head_init(&newsk->sk_error_queue);
1545 
1546 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1547 		if (filter != NULL)
1548 			/* though it's an empty new sock, the charging may fail
1549 			 * if sysctl_optmem_max was changed between creation of
1550 			 * original socket and cloning
1551 			 */
1552 			is_charged = sk_filter_charge(newsk, filter);
1553 
1554 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1555 			/* It is still raw copy of parent, so invalidate
1556 			 * destructor and make plain sk_free() */
1557 			newsk->sk_destruct = NULL;
1558 			bh_unlock_sock(newsk);
1559 			sk_free(newsk);
1560 			newsk = NULL;
1561 			goto out;
1562 		}
1563 
1564 		newsk->sk_err	   = 0;
1565 		newsk->sk_priority = 0;
1566 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1567 		atomic64_set(&newsk->sk_cookie, 0);
1568 		/*
1569 		 * Before updating sk_refcnt, we must commit prior changes to memory
1570 		 * (Documentation/RCU/rculist_nulls.txt for details)
1571 		 */
1572 		smp_wmb();
1573 		atomic_set(&newsk->sk_refcnt, 2);
1574 
1575 		/*
1576 		 * Increment the counter in the same struct proto as the master
1577 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1578 		 * is the same as sk->sk_prot->socks, as this field was copied
1579 		 * with memcpy).
1580 		 *
1581 		 * This _changes_ the previous behaviour, where
1582 		 * tcp_create_openreq_child always was incrementing the
1583 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1584 		 * to be taken into account in all callers. -acme
1585 		 */
1586 		sk_refcnt_debug_inc(newsk);
1587 		sk_set_socket(newsk, NULL);
1588 		newsk->sk_wq = NULL;
1589 
1590 		sk_update_clone(sk, newsk);
1591 
1592 		if (newsk->sk_prot->sockets_allocated)
1593 			sk_sockets_allocated_inc(newsk);
1594 
1595 		if (sock_needs_netstamp(sk) &&
1596 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1597 			net_enable_timestamp();
1598 	}
1599 out:
1600 	return newsk;
1601 }
1602 EXPORT_SYMBOL_GPL(sk_clone_lock);
1603 
1604 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1605 {
1606 	u32 max_segs = 1;
1607 
1608 	sk_dst_set(sk, dst);
1609 	sk->sk_route_caps = dst->dev->features;
1610 	if (sk->sk_route_caps & NETIF_F_GSO)
1611 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1612 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1613 	if (sk_can_gso(sk)) {
1614 		if (dst->header_len) {
1615 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1616 		} else {
1617 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1618 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1619 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1620 		}
1621 	}
1622 	sk->sk_gso_max_segs = max_segs;
1623 }
1624 EXPORT_SYMBOL_GPL(sk_setup_caps);
1625 
1626 /*
1627  *	Simple resource managers for sockets.
1628  */
1629 
1630 
1631 /*
1632  * Write buffer destructor automatically called from kfree_skb.
1633  */
1634 void sock_wfree(struct sk_buff *skb)
1635 {
1636 	struct sock *sk = skb->sk;
1637 	unsigned int len = skb->truesize;
1638 
1639 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1640 		/*
1641 		 * Keep a reference on sk_wmem_alloc, this will be released
1642 		 * after sk_write_space() call
1643 		 */
1644 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1645 		sk->sk_write_space(sk);
1646 		len = 1;
1647 	}
1648 	/*
1649 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1650 	 * could not do because of in-flight packets
1651 	 */
1652 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1653 		__sk_free(sk);
1654 }
1655 EXPORT_SYMBOL(sock_wfree);
1656 
1657 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1658 {
1659 	skb_orphan(skb);
1660 	skb->sk = sk;
1661 #ifdef CONFIG_INET
1662 	if (unlikely(!sk_fullsock(sk))) {
1663 		skb->destructor = sock_edemux;
1664 		sock_hold(sk);
1665 		return;
1666 	}
1667 #endif
1668 	skb->destructor = sock_wfree;
1669 	skb_set_hash_from_sk(skb, sk);
1670 	/*
1671 	 * We used to take a refcount on sk, but following operation
1672 	 * is enough to guarantee sk_free() wont free this sock until
1673 	 * all in-flight packets are completed
1674 	 */
1675 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1676 }
1677 EXPORT_SYMBOL(skb_set_owner_w);
1678 
1679 void skb_orphan_partial(struct sk_buff *skb)
1680 {
1681 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1682 	 * so we do not completely orphan skb, but transfert all
1683 	 * accounted bytes but one, to avoid unexpected reorders.
1684 	 */
1685 	if (skb->destructor == sock_wfree
1686 #ifdef CONFIG_INET
1687 	    || skb->destructor == tcp_wfree
1688 #endif
1689 		) {
1690 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1691 		skb->truesize = 1;
1692 	} else {
1693 		skb_orphan(skb);
1694 	}
1695 }
1696 EXPORT_SYMBOL(skb_orphan_partial);
1697 
1698 /*
1699  * Read buffer destructor automatically called from kfree_skb.
1700  */
1701 void sock_rfree(struct sk_buff *skb)
1702 {
1703 	struct sock *sk = skb->sk;
1704 	unsigned int len = skb->truesize;
1705 
1706 	atomic_sub(len, &sk->sk_rmem_alloc);
1707 	sk_mem_uncharge(sk, len);
1708 }
1709 EXPORT_SYMBOL(sock_rfree);
1710 
1711 /*
1712  * Buffer destructor for skbs that are not used directly in read or write
1713  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1714  */
1715 void sock_efree(struct sk_buff *skb)
1716 {
1717 	sock_put(skb->sk);
1718 }
1719 EXPORT_SYMBOL(sock_efree);
1720 
1721 kuid_t sock_i_uid(struct sock *sk)
1722 {
1723 	kuid_t uid;
1724 
1725 	read_lock_bh(&sk->sk_callback_lock);
1726 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1727 	read_unlock_bh(&sk->sk_callback_lock);
1728 	return uid;
1729 }
1730 EXPORT_SYMBOL(sock_i_uid);
1731 
1732 unsigned long sock_i_ino(struct sock *sk)
1733 {
1734 	unsigned long ino;
1735 
1736 	read_lock_bh(&sk->sk_callback_lock);
1737 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1738 	read_unlock_bh(&sk->sk_callback_lock);
1739 	return ino;
1740 }
1741 EXPORT_SYMBOL(sock_i_ino);
1742 
1743 /*
1744  * Allocate a skb from the socket's send buffer.
1745  */
1746 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1747 			     gfp_t priority)
1748 {
1749 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1750 		struct sk_buff *skb = alloc_skb(size, priority);
1751 		if (skb) {
1752 			skb_set_owner_w(skb, sk);
1753 			return skb;
1754 		}
1755 	}
1756 	return NULL;
1757 }
1758 EXPORT_SYMBOL(sock_wmalloc);
1759 
1760 /*
1761  * Allocate a memory block from the socket's option memory buffer.
1762  */
1763 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1764 {
1765 	if ((unsigned int)size <= sysctl_optmem_max &&
1766 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1767 		void *mem;
1768 		/* First do the add, to avoid the race if kmalloc
1769 		 * might sleep.
1770 		 */
1771 		atomic_add(size, &sk->sk_omem_alloc);
1772 		mem = kmalloc(size, priority);
1773 		if (mem)
1774 			return mem;
1775 		atomic_sub(size, &sk->sk_omem_alloc);
1776 	}
1777 	return NULL;
1778 }
1779 EXPORT_SYMBOL(sock_kmalloc);
1780 
1781 /* Free an option memory block. Note, we actually want the inline
1782  * here as this allows gcc to detect the nullify and fold away the
1783  * condition entirely.
1784  */
1785 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1786 				  const bool nullify)
1787 {
1788 	if (WARN_ON_ONCE(!mem))
1789 		return;
1790 	if (nullify)
1791 		kzfree(mem);
1792 	else
1793 		kfree(mem);
1794 	atomic_sub(size, &sk->sk_omem_alloc);
1795 }
1796 
1797 void sock_kfree_s(struct sock *sk, void *mem, int size)
1798 {
1799 	__sock_kfree_s(sk, mem, size, false);
1800 }
1801 EXPORT_SYMBOL(sock_kfree_s);
1802 
1803 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1804 {
1805 	__sock_kfree_s(sk, mem, size, true);
1806 }
1807 EXPORT_SYMBOL(sock_kzfree_s);
1808 
1809 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1810    I think, these locks should be removed for datagram sockets.
1811  */
1812 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1813 {
1814 	DEFINE_WAIT(wait);
1815 
1816 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1817 	for (;;) {
1818 		if (!timeo)
1819 			break;
1820 		if (signal_pending(current))
1821 			break;
1822 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1823 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1824 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1825 			break;
1826 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1827 			break;
1828 		if (sk->sk_err)
1829 			break;
1830 		timeo = schedule_timeout(timeo);
1831 	}
1832 	finish_wait(sk_sleep(sk), &wait);
1833 	return timeo;
1834 }
1835 
1836 
1837 /*
1838  *	Generic send/receive buffer handlers
1839  */
1840 
1841 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1842 				     unsigned long data_len, int noblock,
1843 				     int *errcode, int max_page_order)
1844 {
1845 	struct sk_buff *skb;
1846 	long timeo;
1847 	int err;
1848 
1849 	timeo = sock_sndtimeo(sk, noblock);
1850 	for (;;) {
1851 		err = sock_error(sk);
1852 		if (err != 0)
1853 			goto failure;
1854 
1855 		err = -EPIPE;
1856 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1857 			goto failure;
1858 
1859 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1860 			break;
1861 
1862 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1863 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1864 		err = -EAGAIN;
1865 		if (!timeo)
1866 			goto failure;
1867 		if (signal_pending(current))
1868 			goto interrupted;
1869 		timeo = sock_wait_for_wmem(sk, timeo);
1870 	}
1871 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1872 				   errcode, sk->sk_allocation);
1873 	if (skb)
1874 		skb_set_owner_w(skb, sk);
1875 	return skb;
1876 
1877 interrupted:
1878 	err = sock_intr_errno(timeo);
1879 failure:
1880 	*errcode = err;
1881 	return NULL;
1882 }
1883 EXPORT_SYMBOL(sock_alloc_send_pskb);
1884 
1885 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1886 				    int noblock, int *errcode)
1887 {
1888 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1889 }
1890 EXPORT_SYMBOL(sock_alloc_send_skb);
1891 
1892 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1893 		   struct sockcm_cookie *sockc)
1894 {
1895 	struct cmsghdr *cmsg;
1896 
1897 	for_each_cmsghdr(cmsg, msg) {
1898 		if (!CMSG_OK(msg, cmsg))
1899 			return -EINVAL;
1900 		if (cmsg->cmsg_level != SOL_SOCKET)
1901 			continue;
1902 		switch (cmsg->cmsg_type) {
1903 		case SO_MARK:
1904 			if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1905 				return -EPERM;
1906 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1907 				return -EINVAL;
1908 			sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1909 			break;
1910 		default:
1911 			return -EINVAL;
1912 		}
1913 	}
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL(sock_cmsg_send);
1917 
1918 /* On 32bit arches, an skb frag is limited to 2^15 */
1919 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1920 
1921 /**
1922  * skb_page_frag_refill - check that a page_frag contains enough room
1923  * @sz: minimum size of the fragment we want to get
1924  * @pfrag: pointer to page_frag
1925  * @gfp: priority for memory allocation
1926  *
1927  * Note: While this allocator tries to use high order pages, there is
1928  * no guarantee that allocations succeed. Therefore, @sz MUST be
1929  * less or equal than PAGE_SIZE.
1930  */
1931 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1932 {
1933 	if (pfrag->page) {
1934 		if (atomic_read(&pfrag->page->_count) == 1) {
1935 			pfrag->offset = 0;
1936 			return true;
1937 		}
1938 		if (pfrag->offset + sz <= pfrag->size)
1939 			return true;
1940 		put_page(pfrag->page);
1941 	}
1942 
1943 	pfrag->offset = 0;
1944 	if (SKB_FRAG_PAGE_ORDER) {
1945 		/* Avoid direct reclaim but allow kswapd to wake */
1946 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1947 					  __GFP_COMP | __GFP_NOWARN |
1948 					  __GFP_NORETRY,
1949 					  SKB_FRAG_PAGE_ORDER);
1950 		if (likely(pfrag->page)) {
1951 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1952 			return true;
1953 		}
1954 	}
1955 	pfrag->page = alloc_page(gfp);
1956 	if (likely(pfrag->page)) {
1957 		pfrag->size = PAGE_SIZE;
1958 		return true;
1959 	}
1960 	return false;
1961 }
1962 EXPORT_SYMBOL(skb_page_frag_refill);
1963 
1964 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1965 {
1966 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1967 		return true;
1968 
1969 	sk_enter_memory_pressure(sk);
1970 	sk_stream_moderate_sndbuf(sk);
1971 	return false;
1972 }
1973 EXPORT_SYMBOL(sk_page_frag_refill);
1974 
1975 static void __lock_sock(struct sock *sk)
1976 	__releases(&sk->sk_lock.slock)
1977 	__acquires(&sk->sk_lock.slock)
1978 {
1979 	DEFINE_WAIT(wait);
1980 
1981 	for (;;) {
1982 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1983 					TASK_UNINTERRUPTIBLE);
1984 		spin_unlock_bh(&sk->sk_lock.slock);
1985 		schedule();
1986 		spin_lock_bh(&sk->sk_lock.slock);
1987 		if (!sock_owned_by_user(sk))
1988 			break;
1989 	}
1990 	finish_wait(&sk->sk_lock.wq, &wait);
1991 }
1992 
1993 static void __release_sock(struct sock *sk)
1994 	__releases(&sk->sk_lock.slock)
1995 	__acquires(&sk->sk_lock.slock)
1996 {
1997 	struct sk_buff *skb = sk->sk_backlog.head;
1998 
1999 	do {
2000 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2001 		bh_unlock_sock(sk);
2002 
2003 		do {
2004 			struct sk_buff *next = skb->next;
2005 
2006 			prefetch(next);
2007 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2008 			skb->next = NULL;
2009 			sk_backlog_rcv(sk, skb);
2010 
2011 			/*
2012 			 * We are in process context here with softirqs
2013 			 * disabled, use cond_resched_softirq() to preempt.
2014 			 * This is safe to do because we've taken the backlog
2015 			 * queue private:
2016 			 */
2017 			cond_resched_softirq();
2018 
2019 			skb = next;
2020 		} while (skb != NULL);
2021 
2022 		bh_lock_sock(sk);
2023 	} while ((skb = sk->sk_backlog.head) != NULL);
2024 
2025 	/*
2026 	 * Doing the zeroing here guarantee we can not loop forever
2027 	 * while a wild producer attempts to flood us.
2028 	 */
2029 	sk->sk_backlog.len = 0;
2030 }
2031 
2032 /**
2033  * sk_wait_data - wait for data to arrive at sk_receive_queue
2034  * @sk:    sock to wait on
2035  * @timeo: for how long
2036  * @skb:   last skb seen on sk_receive_queue
2037  *
2038  * Now socket state including sk->sk_err is changed only under lock,
2039  * hence we may omit checks after joining wait queue.
2040  * We check receive queue before schedule() only as optimization;
2041  * it is very likely that release_sock() added new data.
2042  */
2043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2044 {
2045 	int rc;
2046 	DEFINE_WAIT(wait);
2047 
2048 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2049 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2050 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2051 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2052 	finish_wait(sk_sleep(sk), &wait);
2053 	return rc;
2054 }
2055 EXPORT_SYMBOL(sk_wait_data);
2056 
2057 /**
2058  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2059  *	@sk: socket
2060  *	@size: memory size to allocate
2061  *	@kind: allocation type
2062  *
2063  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2064  *	rmem allocation. This function assumes that protocols which have
2065  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2066  */
2067 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2068 {
2069 	struct proto *prot = sk->sk_prot;
2070 	int amt = sk_mem_pages(size);
2071 	long allocated;
2072 	int parent_status = UNDER_LIMIT;
2073 
2074 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2075 
2076 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2077 
2078 	/* Under limit. */
2079 	if (parent_status == UNDER_LIMIT &&
2080 			allocated <= sk_prot_mem_limits(sk, 0)) {
2081 		sk_leave_memory_pressure(sk);
2082 		return 1;
2083 	}
2084 
2085 	/* Under pressure. (we or our parents) */
2086 	if ((parent_status > SOFT_LIMIT) ||
2087 			allocated > sk_prot_mem_limits(sk, 1))
2088 		sk_enter_memory_pressure(sk);
2089 
2090 	/* Over hard limit (we or our parents) */
2091 	if ((parent_status == OVER_LIMIT) ||
2092 			(allocated > sk_prot_mem_limits(sk, 2)))
2093 		goto suppress_allocation;
2094 
2095 	/* guarantee minimum buffer size under pressure */
2096 	if (kind == SK_MEM_RECV) {
2097 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2098 			return 1;
2099 
2100 	} else { /* SK_MEM_SEND */
2101 		if (sk->sk_type == SOCK_STREAM) {
2102 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2103 				return 1;
2104 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2105 			   prot->sysctl_wmem[0])
2106 				return 1;
2107 	}
2108 
2109 	if (sk_has_memory_pressure(sk)) {
2110 		int alloc;
2111 
2112 		if (!sk_under_memory_pressure(sk))
2113 			return 1;
2114 		alloc = sk_sockets_allocated_read_positive(sk);
2115 		if (sk_prot_mem_limits(sk, 2) > alloc *
2116 		    sk_mem_pages(sk->sk_wmem_queued +
2117 				 atomic_read(&sk->sk_rmem_alloc) +
2118 				 sk->sk_forward_alloc))
2119 			return 1;
2120 	}
2121 
2122 suppress_allocation:
2123 
2124 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2125 		sk_stream_moderate_sndbuf(sk);
2126 
2127 		/* Fail only if socket is _under_ its sndbuf.
2128 		 * In this case we cannot block, so that we have to fail.
2129 		 */
2130 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2131 			return 1;
2132 	}
2133 
2134 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2135 
2136 	/* Alas. Undo changes. */
2137 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2138 
2139 	sk_memory_allocated_sub(sk, amt);
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL(__sk_mem_schedule);
2144 
2145 /**
2146  *	__sk_mem_reclaim - reclaim memory_allocated
2147  *	@sk: socket
2148  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2149  */
2150 void __sk_mem_reclaim(struct sock *sk, int amount)
2151 {
2152 	amount >>= SK_MEM_QUANTUM_SHIFT;
2153 	sk_memory_allocated_sub(sk, amount);
2154 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2155 
2156 	if (sk_under_memory_pressure(sk) &&
2157 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2158 		sk_leave_memory_pressure(sk);
2159 }
2160 EXPORT_SYMBOL(__sk_mem_reclaim);
2161 
2162 
2163 /*
2164  * Set of default routines for initialising struct proto_ops when
2165  * the protocol does not support a particular function. In certain
2166  * cases where it makes no sense for a protocol to have a "do nothing"
2167  * function, some default processing is provided.
2168  */
2169 
2170 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2171 {
2172 	return -EOPNOTSUPP;
2173 }
2174 EXPORT_SYMBOL(sock_no_bind);
2175 
2176 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2177 		    int len, int flags)
2178 {
2179 	return -EOPNOTSUPP;
2180 }
2181 EXPORT_SYMBOL(sock_no_connect);
2182 
2183 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2184 {
2185 	return -EOPNOTSUPP;
2186 }
2187 EXPORT_SYMBOL(sock_no_socketpair);
2188 
2189 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2190 {
2191 	return -EOPNOTSUPP;
2192 }
2193 EXPORT_SYMBOL(sock_no_accept);
2194 
2195 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2196 		    int *len, int peer)
2197 {
2198 	return -EOPNOTSUPP;
2199 }
2200 EXPORT_SYMBOL(sock_no_getname);
2201 
2202 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2203 {
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL(sock_no_poll);
2207 
2208 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2209 {
2210 	return -EOPNOTSUPP;
2211 }
2212 EXPORT_SYMBOL(sock_no_ioctl);
2213 
2214 int sock_no_listen(struct socket *sock, int backlog)
2215 {
2216 	return -EOPNOTSUPP;
2217 }
2218 EXPORT_SYMBOL(sock_no_listen);
2219 
2220 int sock_no_shutdown(struct socket *sock, int how)
2221 {
2222 	return -EOPNOTSUPP;
2223 }
2224 EXPORT_SYMBOL(sock_no_shutdown);
2225 
2226 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2227 		    char __user *optval, unsigned int optlen)
2228 {
2229 	return -EOPNOTSUPP;
2230 }
2231 EXPORT_SYMBOL(sock_no_setsockopt);
2232 
2233 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2234 		    char __user *optval, int __user *optlen)
2235 {
2236 	return -EOPNOTSUPP;
2237 }
2238 EXPORT_SYMBOL(sock_no_getsockopt);
2239 
2240 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2241 {
2242 	return -EOPNOTSUPP;
2243 }
2244 EXPORT_SYMBOL(sock_no_sendmsg);
2245 
2246 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2247 		    int flags)
2248 {
2249 	return -EOPNOTSUPP;
2250 }
2251 EXPORT_SYMBOL(sock_no_recvmsg);
2252 
2253 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2254 {
2255 	/* Mirror missing mmap method error code */
2256 	return -ENODEV;
2257 }
2258 EXPORT_SYMBOL(sock_no_mmap);
2259 
2260 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2261 {
2262 	ssize_t res;
2263 	struct msghdr msg = {.msg_flags = flags};
2264 	struct kvec iov;
2265 	char *kaddr = kmap(page);
2266 	iov.iov_base = kaddr + offset;
2267 	iov.iov_len = size;
2268 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2269 	kunmap(page);
2270 	return res;
2271 }
2272 EXPORT_SYMBOL(sock_no_sendpage);
2273 
2274 /*
2275  *	Default Socket Callbacks
2276  */
2277 
2278 static void sock_def_wakeup(struct sock *sk)
2279 {
2280 	struct socket_wq *wq;
2281 
2282 	rcu_read_lock();
2283 	wq = rcu_dereference(sk->sk_wq);
2284 	if (wq_has_sleeper(wq))
2285 		wake_up_interruptible_all(&wq->wait);
2286 	rcu_read_unlock();
2287 }
2288 
2289 static void sock_def_error_report(struct sock *sk)
2290 {
2291 	struct socket_wq *wq;
2292 
2293 	rcu_read_lock();
2294 	wq = rcu_dereference(sk->sk_wq);
2295 	if (wq_has_sleeper(wq))
2296 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2297 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2298 	rcu_read_unlock();
2299 }
2300 
2301 static void sock_def_readable(struct sock *sk)
2302 {
2303 	struct socket_wq *wq;
2304 
2305 	rcu_read_lock();
2306 	wq = rcu_dereference(sk->sk_wq);
2307 	if (wq_has_sleeper(wq))
2308 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2309 						POLLRDNORM | POLLRDBAND);
2310 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2311 	rcu_read_unlock();
2312 }
2313 
2314 static void sock_def_write_space(struct sock *sk)
2315 {
2316 	struct socket_wq *wq;
2317 
2318 	rcu_read_lock();
2319 
2320 	/* Do not wake up a writer until he can make "significant"
2321 	 * progress.  --DaveM
2322 	 */
2323 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2324 		wq = rcu_dereference(sk->sk_wq);
2325 		if (wq_has_sleeper(wq))
2326 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2327 						POLLWRNORM | POLLWRBAND);
2328 
2329 		/* Should agree with poll, otherwise some programs break */
2330 		if (sock_writeable(sk))
2331 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2332 	}
2333 
2334 	rcu_read_unlock();
2335 }
2336 
2337 static void sock_def_destruct(struct sock *sk)
2338 {
2339 }
2340 
2341 void sk_send_sigurg(struct sock *sk)
2342 {
2343 	if (sk->sk_socket && sk->sk_socket->file)
2344 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2345 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2346 }
2347 EXPORT_SYMBOL(sk_send_sigurg);
2348 
2349 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2350 		    unsigned long expires)
2351 {
2352 	if (!mod_timer(timer, expires))
2353 		sock_hold(sk);
2354 }
2355 EXPORT_SYMBOL(sk_reset_timer);
2356 
2357 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2358 {
2359 	if (del_timer(timer))
2360 		__sock_put(sk);
2361 }
2362 EXPORT_SYMBOL(sk_stop_timer);
2363 
2364 void sock_init_data(struct socket *sock, struct sock *sk)
2365 {
2366 	skb_queue_head_init(&sk->sk_receive_queue);
2367 	skb_queue_head_init(&sk->sk_write_queue);
2368 	skb_queue_head_init(&sk->sk_error_queue);
2369 
2370 	sk->sk_send_head	=	NULL;
2371 
2372 	init_timer(&sk->sk_timer);
2373 
2374 	sk->sk_allocation	=	GFP_KERNEL;
2375 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2376 	sk->sk_sndbuf		=	sysctl_wmem_default;
2377 	sk->sk_state		=	TCP_CLOSE;
2378 	sk_set_socket(sk, sock);
2379 
2380 	sock_set_flag(sk, SOCK_ZAPPED);
2381 
2382 	if (sock) {
2383 		sk->sk_type	=	sock->type;
2384 		sk->sk_wq	=	sock->wq;
2385 		sock->sk	=	sk;
2386 	} else
2387 		sk->sk_wq	=	NULL;
2388 
2389 	rwlock_init(&sk->sk_callback_lock);
2390 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2391 			af_callback_keys + sk->sk_family,
2392 			af_family_clock_key_strings[sk->sk_family]);
2393 
2394 	sk->sk_state_change	=	sock_def_wakeup;
2395 	sk->sk_data_ready	=	sock_def_readable;
2396 	sk->sk_write_space	=	sock_def_write_space;
2397 	sk->sk_error_report	=	sock_def_error_report;
2398 	sk->sk_destruct		=	sock_def_destruct;
2399 
2400 	sk->sk_frag.page	=	NULL;
2401 	sk->sk_frag.offset	=	0;
2402 	sk->sk_peek_off		=	-1;
2403 
2404 	sk->sk_peer_pid 	=	NULL;
2405 	sk->sk_peer_cred	=	NULL;
2406 	sk->sk_write_pending	=	0;
2407 	sk->sk_rcvlowat		=	1;
2408 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2409 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2410 
2411 	sk->sk_stamp = ktime_set(-1L, 0);
2412 
2413 #ifdef CONFIG_NET_RX_BUSY_POLL
2414 	sk->sk_napi_id		=	0;
2415 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2416 #endif
2417 
2418 	sk->sk_max_pacing_rate = ~0U;
2419 	sk->sk_pacing_rate = ~0U;
2420 	sk->sk_incoming_cpu = -1;
2421 	/*
2422 	 * Before updating sk_refcnt, we must commit prior changes to memory
2423 	 * (Documentation/RCU/rculist_nulls.txt for details)
2424 	 */
2425 	smp_wmb();
2426 	atomic_set(&sk->sk_refcnt, 1);
2427 	atomic_set(&sk->sk_drops, 0);
2428 }
2429 EXPORT_SYMBOL(sock_init_data);
2430 
2431 void lock_sock_nested(struct sock *sk, int subclass)
2432 {
2433 	might_sleep();
2434 	spin_lock_bh(&sk->sk_lock.slock);
2435 	if (sk->sk_lock.owned)
2436 		__lock_sock(sk);
2437 	sk->sk_lock.owned = 1;
2438 	spin_unlock(&sk->sk_lock.slock);
2439 	/*
2440 	 * The sk_lock has mutex_lock() semantics here:
2441 	 */
2442 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2443 	local_bh_enable();
2444 }
2445 EXPORT_SYMBOL(lock_sock_nested);
2446 
2447 void release_sock(struct sock *sk)
2448 {
2449 	/*
2450 	 * The sk_lock has mutex_unlock() semantics:
2451 	 */
2452 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2453 
2454 	spin_lock_bh(&sk->sk_lock.slock);
2455 	if (sk->sk_backlog.tail)
2456 		__release_sock(sk);
2457 
2458 	/* Warning : release_cb() might need to release sk ownership,
2459 	 * ie call sock_release_ownership(sk) before us.
2460 	 */
2461 	if (sk->sk_prot->release_cb)
2462 		sk->sk_prot->release_cb(sk);
2463 
2464 	sock_release_ownership(sk);
2465 	if (waitqueue_active(&sk->sk_lock.wq))
2466 		wake_up(&sk->sk_lock.wq);
2467 	spin_unlock_bh(&sk->sk_lock.slock);
2468 }
2469 EXPORT_SYMBOL(release_sock);
2470 
2471 /**
2472  * lock_sock_fast - fast version of lock_sock
2473  * @sk: socket
2474  *
2475  * This version should be used for very small section, where process wont block
2476  * return false if fast path is taken
2477  *   sk_lock.slock locked, owned = 0, BH disabled
2478  * return true if slow path is taken
2479  *   sk_lock.slock unlocked, owned = 1, BH enabled
2480  */
2481 bool lock_sock_fast(struct sock *sk)
2482 {
2483 	might_sleep();
2484 	spin_lock_bh(&sk->sk_lock.slock);
2485 
2486 	if (!sk->sk_lock.owned)
2487 		/*
2488 		 * Note : We must disable BH
2489 		 */
2490 		return false;
2491 
2492 	__lock_sock(sk);
2493 	sk->sk_lock.owned = 1;
2494 	spin_unlock(&sk->sk_lock.slock);
2495 	/*
2496 	 * The sk_lock has mutex_lock() semantics here:
2497 	 */
2498 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2499 	local_bh_enable();
2500 	return true;
2501 }
2502 EXPORT_SYMBOL(lock_sock_fast);
2503 
2504 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2505 {
2506 	struct timeval tv;
2507 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2508 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2509 	tv = ktime_to_timeval(sk->sk_stamp);
2510 	if (tv.tv_sec == -1)
2511 		return -ENOENT;
2512 	if (tv.tv_sec == 0) {
2513 		sk->sk_stamp = ktime_get_real();
2514 		tv = ktime_to_timeval(sk->sk_stamp);
2515 	}
2516 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2517 }
2518 EXPORT_SYMBOL(sock_get_timestamp);
2519 
2520 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2521 {
2522 	struct timespec ts;
2523 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2524 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2525 	ts = ktime_to_timespec(sk->sk_stamp);
2526 	if (ts.tv_sec == -1)
2527 		return -ENOENT;
2528 	if (ts.tv_sec == 0) {
2529 		sk->sk_stamp = ktime_get_real();
2530 		ts = ktime_to_timespec(sk->sk_stamp);
2531 	}
2532 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2533 }
2534 EXPORT_SYMBOL(sock_get_timestampns);
2535 
2536 void sock_enable_timestamp(struct sock *sk, int flag)
2537 {
2538 	if (!sock_flag(sk, flag)) {
2539 		unsigned long previous_flags = sk->sk_flags;
2540 
2541 		sock_set_flag(sk, flag);
2542 		/*
2543 		 * we just set one of the two flags which require net
2544 		 * time stamping, but time stamping might have been on
2545 		 * already because of the other one
2546 		 */
2547 		if (sock_needs_netstamp(sk) &&
2548 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2549 			net_enable_timestamp();
2550 	}
2551 }
2552 
2553 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2554 		       int level, int type)
2555 {
2556 	struct sock_exterr_skb *serr;
2557 	struct sk_buff *skb;
2558 	int copied, err;
2559 
2560 	err = -EAGAIN;
2561 	skb = sock_dequeue_err_skb(sk);
2562 	if (skb == NULL)
2563 		goto out;
2564 
2565 	copied = skb->len;
2566 	if (copied > len) {
2567 		msg->msg_flags |= MSG_TRUNC;
2568 		copied = len;
2569 	}
2570 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2571 	if (err)
2572 		goto out_free_skb;
2573 
2574 	sock_recv_timestamp(msg, sk, skb);
2575 
2576 	serr = SKB_EXT_ERR(skb);
2577 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2578 
2579 	msg->msg_flags |= MSG_ERRQUEUE;
2580 	err = copied;
2581 
2582 out_free_skb:
2583 	kfree_skb(skb);
2584 out:
2585 	return err;
2586 }
2587 EXPORT_SYMBOL(sock_recv_errqueue);
2588 
2589 /*
2590  *	Get a socket option on an socket.
2591  *
2592  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2593  *	asynchronous errors should be reported by getsockopt. We assume
2594  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2595  */
2596 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2597 			   char __user *optval, int __user *optlen)
2598 {
2599 	struct sock *sk = sock->sk;
2600 
2601 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2602 }
2603 EXPORT_SYMBOL(sock_common_getsockopt);
2604 
2605 #ifdef CONFIG_COMPAT
2606 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2607 				  char __user *optval, int __user *optlen)
2608 {
2609 	struct sock *sk = sock->sk;
2610 
2611 	if (sk->sk_prot->compat_getsockopt != NULL)
2612 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2613 						      optval, optlen);
2614 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2615 }
2616 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2617 #endif
2618 
2619 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2620 			int flags)
2621 {
2622 	struct sock *sk = sock->sk;
2623 	int addr_len = 0;
2624 	int err;
2625 
2626 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2627 				   flags & ~MSG_DONTWAIT, &addr_len);
2628 	if (err >= 0)
2629 		msg->msg_namelen = addr_len;
2630 	return err;
2631 }
2632 EXPORT_SYMBOL(sock_common_recvmsg);
2633 
2634 /*
2635  *	Set socket options on an inet socket.
2636  */
2637 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2638 			   char __user *optval, unsigned int optlen)
2639 {
2640 	struct sock *sk = sock->sk;
2641 
2642 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2643 }
2644 EXPORT_SYMBOL(sock_common_setsockopt);
2645 
2646 #ifdef CONFIG_COMPAT
2647 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2648 				  char __user *optval, unsigned int optlen)
2649 {
2650 	struct sock *sk = sock->sk;
2651 
2652 	if (sk->sk_prot->compat_setsockopt != NULL)
2653 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2654 						      optval, optlen);
2655 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2656 }
2657 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2658 #endif
2659 
2660 void sk_common_release(struct sock *sk)
2661 {
2662 	if (sk->sk_prot->destroy)
2663 		sk->sk_prot->destroy(sk);
2664 
2665 	/*
2666 	 * Observation: when sock_common_release is called, processes have
2667 	 * no access to socket. But net still has.
2668 	 * Step one, detach it from networking:
2669 	 *
2670 	 * A. Remove from hash tables.
2671 	 */
2672 
2673 	sk->sk_prot->unhash(sk);
2674 
2675 	/*
2676 	 * In this point socket cannot receive new packets, but it is possible
2677 	 * that some packets are in flight because some CPU runs receiver and
2678 	 * did hash table lookup before we unhashed socket. They will achieve
2679 	 * receive queue and will be purged by socket destructor.
2680 	 *
2681 	 * Also we still have packets pending on receive queue and probably,
2682 	 * our own packets waiting in device queues. sock_destroy will drain
2683 	 * receive queue, but transmitted packets will delay socket destruction
2684 	 * until the last reference will be released.
2685 	 */
2686 
2687 	sock_orphan(sk);
2688 
2689 	xfrm_sk_free_policy(sk);
2690 
2691 	sk_refcnt_debug_release(sk);
2692 
2693 	if (sk->sk_frag.page) {
2694 		put_page(sk->sk_frag.page);
2695 		sk->sk_frag.page = NULL;
2696 	}
2697 
2698 	sock_put(sk);
2699 }
2700 EXPORT_SYMBOL(sk_common_release);
2701 
2702 #ifdef CONFIG_PROC_FS
2703 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2704 struct prot_inuse {
2705 	int val[PROTO_INUSE_NR];
2706 };
2707 
2708 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2709 
2710 #ifdef CONFIG_NET_NS
2711 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2712 {
2713 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2714 }
2715 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2716 
2717 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2718 {
2719 	int cpu, idx = prot->inuse_idx;
2720 	int res = 0;
2721 
2722 	for_each_possible_cpu(cpu)
2723 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2724 
2725 	return res >= 0 ? res : 0;
2726 }
2727 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2728 
2729 static int __net_init sock_inuse_init_net(struct net *net)
2730 {
2731 	net->core.inuse = alloc_percpu(struct prot_inuse);
2732 	return net->core.inuse ? 0 : -ENOMEM;
2733 }
2734 
2735 static void __net_exit sock_inuse_exit_net(struct net *net)
2736 {
2737 	free_percpu(net->core.inuse);
2738 }
2739 
2740 static struct pernet_operations net_inuse_ops = {
2741 	.init = sock_inuse_init_net,
2742 	.exit = sock_inuse_exit_net,
2743 };
2744 
2745 static __init int net_inuse_init(void)
2746 {
2747 	if (register_pernet_subsys(&net_inuse_ops))
2748 		panic("Cannot initialize net inuse counters");
2749 
2750 	return 0;
2751 }
2752 
2753 core_initcall(net_inuse_init);
2754 #else
2755 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2756 
2757 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2758 {
2759 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2760 }
2761 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2762 
2763 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2764 {
2765 	int cpu, idx = prot->inuse_idx;
2766 	int res = 0;
2767 
2768 	for_each_possible_cpu(cpu)
2769 		res += per_cpu(prot_inuse, cpu).val[idx];
2770 
2771 	return res >= 0 ? res : 0;
2772 }
2773 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2774 #endif
2775 
2776 static void assign_proto_idx(struct proto *prot)
2777 {
2778 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2779 
2780 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2781 		pr_err("PROTO_INUSE_NR exhausted\n");
2782 		return;
2783 	}
2784 
2785 	set_bit(prot->inuse_idx, proto_inuse_idx);
2786 }
2787 
2788 static void release_proto_idx(struct proto *prot)
2789 {
2790 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2791 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2792 }
2793 #else
2794 static inline void assign_proto_idx(struct proto *prot)
2795 {
2796 }
2797 
2798 static inline void release_proto_idx(struct proto *prot)
2799 {
2800 }
2801 #endif
2802 
2803 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2804 {
2805 	if (!rsk_prot)
2806 		return;
2807 	kfree(rsk_prot->slab_name);
2808 	rsk_prot->slab_name = NULL;
2809 	kmem_cache_destroy(rsk_prot->slab);
2810 	rsk_prot->slab = NULL;
2811 }
2812 
2813 static int req_prot_init(const struct proto *prot)
2814 {
2815 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2816 
2817 	if (!rsk_prot)
2818 		return 0;
2819 
2820 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2821 					prot->name);
2822 	if (!rsk_prot->slab_name)
2823 		return -ENOMEM;
2824 
2825 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2826 					   rsk_prot->obj_size, 0,
2827 					   prot->slab_flags, NULL);
2828 
2829 	if (!rsk_prot->slab) {
2830 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2831 			prot->name);
2832 		return -ENOMEM;
2833 	}
2834 	return 0;
2835 }
2836 
2837 int proto_register(struct proto *prot, int alloc_slab)
2838 {
2839 	if (alloc_slab) {
2840 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2841 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2842 					NULL);
2843 
2844 		if (prot->slab == NULL) {
2845 			pr_crit("%s: Can't create sock SLAB cache!\n",
2846 				prot->name);
2847 			goto out;
2848 		}
2849 
2850 		if (req_prot_init(prot))
2851 			goto out_free_request_sock_slab;
2852 
2853 		if (prot->twsk_prot != NULL) {
2854 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2855 
2856 			if (prot->twsk_prot->twsk_slab_name == NULL)
2857 				goto out_free_request_sock_slab;
2858 
2859 			prot->twsk_prot->twsk_slab =
2860 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2861 						  prot->twsk_prot->twsk_obj_size,
2862 						  0,
2863 						  prot->slab_flags,
2864 						  NULL);
2865 			if (prot->twsk_prot->twsk_slab == NULL)
2866 				goto out_free_timewait_sock_slab_name;
2867 		}
2868 	}
2869 
2870 	mutex_lock(&proto_list_mutex);
2871 	list_add(&prot->node, &proto_list);
2872 	assign_proto_idx(prot);
2873 	mutex_unlock(&proto_list_mutex);
2874 	return 0;
2875 
2876 out_free_timewait_sock_slab_name:
2877 	kfree(prot->twsk_prot->twsk_slab_name);
2878 out_free_request_sock_slab:
2879 	req_prot_cleanup(prot->rsk_prot);
2880 
2881 	kmem_cache_destroy(prot->slab);
2882 	prot->slab = NULL;
2883 out:
2884 	return -ENOBUFS;
2885 }
2886 EXPORT_SYMBOL(proto_register);
2887 
2888 void proto_unregister(struct proto *prot)
2889 {
2890 	mutex_lock(&proto_list_mutex);
2891 	release_proto_idx(prot);
2892 	list_del(&prot->node);
2893 	mutex_unlock(&proto_list_mutex);
2894 
2895 	kmem_cache_destroy(prot->slab);
2896 	prot->slab = NULL;
2897 
2898 	req_prot_cleanup(prot->rsk_prot);
2899 
2900 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2901 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2902 		kfree(prot->twsk_prot->twsk_slab_name);
2903 		prot->twsk_prot->twsk_slab = NULL;
2904 	}
2905 }
2906 EXPORT_SYMBOL(proto_unregister);
2907 
2908 #ifdef CONFIG_PROC_FS
2909 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2910 	__acquires(proto_list_mutex)
2911 {
2912 	mutex_lock(&proto_list_mutex);
2913 	return seq_list_start_head(&proto_list, *pos);
2914 }
2915 
2916 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2917 {
2918 	return seq_list_next(v, &proto_list, pos);
2919 }
2920 
2921 static void proto_seq_stop(struct seq_file *seq, void *v)
2922 	__releases(proto_list_mutex)
2923 {
2924 	mutex_unlock(&proto_list_mutex);
2925 }
2926 
2927 static char proto_method_implemented(const void *method)
2928 {
2929 	return method == NULL ? 'n' : 'y';
2930 }
2931 static long sock_prot_memory_allocated(struct proto *proto)
2932 {
2933 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2934 }
2935 
2936 static char *sock_prot_memory_pressure(struct proto *proto)
2937 {
2938 	return proto->memory_pressure != NULL ?
2939 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2940 }
2941 
2942 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2943 {
2944 
2945 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2946 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2947 		   proto->name,
2948 		   proto->obj_size,
2949 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2950 		   sock_prot_memory_allocated(proto),
2951 		   sock_prot_memory_pressure(proto),
2952 		   proto->max_header,
2953 		   proto->slab == NULL ? "no" : "yes",
2954 		   module_name(proto->owner),
2955 		   proto_method_implemented(proto->close),
2956 		   proto_method_implemented(proto->connect),
2957 		   proto_method_implemented(proto->disconnect),
2958 		   proto_method_implemented(proto->accept),
2959 		   proto_method_implemented(proto->ioctl),
2960 		   proto_method_implemented(proto->init),
2961 		   proto_method_implemented(proto->destroy),
2962 		   proto_method_implemented(proto->shutdown),
2963 		   proto_method_implemented(proto->setsockopt),
2964 		   proto_method_implemented(proto->getsockopt),
2965 		   proto_method_implemented(proto->sendmsg),
2966 		   proto_method_implemented(proto->recvmsg),
2967 		   proto_method_implemented(proto->sendpage),
2968 		   proto_method_implemented(proto->bind),
2969 		   proto_method_implemented(proto->backlog_rcv),
2970 		   proto_method_implemented(proto->hash),
2971 		   proto_method_implemented(proto->unhash),
2972 		   proto_method_implemented(proto->get_port),
2973 		   proto_method_implemented(proto->enter_memory_pressure));
2974 }
2975 
2976 static int proto_seq_show(struct seq_file *seq, void *v)
2977 {
2978 	if (v == &proto_list)
2979 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2980 			   "protocol",
2981 			   "size",
2982 			   "sockets",
2983 			   "memory",
2984 			   "press",
2985 			   "maxhdr",
2986 			   "slab",
2987 			   "module",
2988 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2989 	else
2990 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2991 	return 0;
2992 }
2993 
2994 static const struct seq_operations proto_seq_ops = {
2995 	.start  = proto_seq_start,
2996 	.next   = proto_seq_next,
2997 	.stop   = proto_seq_stop,
2998 	.show   = proto_seq_show,
2999 };
3000 
3001 static int proto_seq_open(struct inode *inode, struct file *file)
3002 {
3003 	return seq_open_net(inode, file, &proto_seq_ops,
3004 			    sizeof(struct seq_net_private));
3005 }
3006 
3007 static const struct file_operations proto_seq_fops = {
3008 	.owner		= THIS_MODULE,
3009 	.open		= proto_seq_open,
3010 	.read		= seq_read,
3011 	.llseek		= seq_lseek,
3012 	.release	= seq_release_net,
3013 };
3014 
3015 static __net_init int proto_init_net(struct net *net)
3016 {
3017 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3018 		return -ENOMEM;
3019 
3020 	return 0;
3021 }
3022 
3023 static __net_exit void proto_exit_net(struct net *net)
3024 {
3025 	remove_proc_entry("protocols", net->proc_net);
3026 }
3027 
3028 
3029 static __net_initdata struct pernet_operations proto_net_ops = {
3030 	.init = proto_init_net,
3031 	.exit = proto_exit_net,
3032 };
3033 
3034 static int __init proto_init(void)
3035 {
3036 	return register_pernet_subsys(&proto_net_ops);
3037 }
3038 
3039 subsys_initcall(proto_init);
3040 
3041 #endif /* PROC_FS */
3042