1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 #include <linux/highmem.h> 116 #include <linux/user_namespace.h> 117 #include <linux/static_key.h> 118 #include <linux/memcontrol.h> 119 #include <linux/prefetch.h> 120 121 #include <asm/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 138 #include <trace/events/sock.h> 139 140 #ifdef CONFIG_INET 141 #include <net/tcp.h> 142 #endif 143 144 #include <net/busy_poll.h> 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 /** 150 * sk_ns_capable - General socket capability test 151 * @sk: Socket to use a capability on or through 152 * @user_ns: The user namespace of the capability to use 153 * @cap: The capability to use 154 * 155 * Test to see if the opener of the socket had when the socket was 156 * created and the current process has the capability @cap in the user 157 * namespace @user_ns. 158 */ 159 bool sk_ns_capable(const struct sock *sk, 160 struct user_namespace *user_ns, int cap) 161 { 162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 163 ns_capable(user_ns, cap); 164 } 165 EXPORT_SYMBOL(sk_ns_capable); 166 167 /** 168 * sk_capable - Socket global capability test 169 * @sk: Socket to use a capability on or through 170 * @cap: The global capability to use 171 * 172 * Test to see if the opener of the socket had when the socket was 173 * created and the current process has the capability @cap in all user 174 * namespaces. 175 */ 176 bool sk_capable(const struct sock *sk, int cap) 177 { 178 return sk_ns_capable(sk, &init_user_ns, cap); 179 } 180 EXPORT_SYMBOL(sk_capable); 181 182 /** 183 * sk_net_capable - Network namespace socket capability test 184 * @sk: Socket to use a capability on or through 185 * @cap: The capability to use 186 * 187 * Test to see if the opener of the socket had when the socket was created 188 * and the current process has the capability @cap over the network namespace 189 * the socket is a member of. 190 */ 191 bool sk_net_capable(const struct sock *sk, int cap) 192 { 193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 194 } 195 EXPORT_SYMBOL(sk_net_capable); 196 197 198 #ifdef CONFIG_MEMCG_KMEM 199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 200 { 201 struct proto *proto; 202 int ret = 0; 203 204 mutex_lock(&proto_list_mutex); 205 list_for_each_entry(proto, &proto_list, node) { 206 if (proto->init_cgroup) { 207 ret = proto->init_cgroup(memcg, ss); 208 if (ret) 209 goto out; 210 } 211 } 212 213 mutex_unlock(&proto_list_mutex); 214 return ret; 215 out: 216 list_for_each_entry_continue_reverse(proto, &proto_list, node) 217 if (proto->destroy_cgroup) 218 proto->destroy_cgroup(memcg); 219 mutex_unlock(&proto_list_mutex); 220 return ret; 221 } 222 223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 224 { 225 struct proto *proto; 226 227 mutex_lock(&proto_list_mutex); 228 list_for_each_entry_reverse(proto, &proto_list, node) 229 if (proto->destroy_cgroup) 230 proto->destroy_cgroup(memcg); 231 mutex_unlock(&proto_list_mutex); 232 } 233 #endif 234 235 /* 236 * Each address family might have different locking rules, so we have 237 * one slock key per address family: 238 */ 239 static struct lock_class_key af_family_keys[AF_MAX]; 240 static struct lock_class_key af_family_slock_keys[AF_MAX]; 241 242 #if defined(CONFIG_MEMCG_KMEM) 243 struct static_key memcg_socket_limit_enabled; 244 EXPORT_SYMBOL(memcg_socket_limit_enabled); 245 #endif 246 247 /* 248 * Make lock validator output more readable. (we pre-construct these 249 * strings build-time, so that runtime initialization of socket 250 * locks is fast): 251 */ 252 static const char *const af_family_key_strings[AF_MAX+1] = { 253 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 254 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 255 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 256 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 257 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 258 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 259 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 260 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 261 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 262 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 263 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 264 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 265 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 266 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX" 267 }; 268 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 269 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 270 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 271 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 272 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 273 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 274 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 275 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 276 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 277 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 278 "slock-27" , "slock-28" , "slock-AF_CAN" , 279 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 280 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 281 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 282 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX" 283 }; 284 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 285 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 286 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 287 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 288 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 289 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 290 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 291 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 292 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 293 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 294 "clock-27" , "clock-28" , "clock-AF_CAN" , 295 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 296 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 297 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 298 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX" 299 }; 300 301 /* 302 * sk_callback_lock locking rules are per-address-family, 303 * so split the lock classes by using a per-AF key: 304 */ 305 static struct lock_class_key af_callback_keys[AF_MAX]; 306 307 /* Take into consideration the size of the struct sk_buff overhead in the 308 * determination of these values, since that is non-constant across 309 * platforms. This makes socket queueing behavior and performance 310 * not depend upon such differences. 311 */ 312 #define _SK_MEM_PACKETS 256 313 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 314 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 315 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 316 317 /* Run time adjustable parameters. */ 318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 319 EXPORT_SYMBOL(sysctl_wmem_max); 320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 321 EXPORT_SYMBOL(sysctl_rmem_max); 322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 324 325 /* Maximal space eaten by iovec or ancillary data plus some space */ 326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 327 EXPORT_SYMBOL(sysctl_optmem_max); 328 329 int sysctl_tstamp_allow_data __read_mostly = 1; 330 331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 332 EXPORT_SYMBOL_GPL(memalloc_socks); 333 334 /** 335 * sk_set_memalloc - sets %SOCK_MEMALLOC 336 * @sk: socket to set it on 337 * 338 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 339 * It's the responsibility of the admin to adjust min_free_kbytes 340 * to meet the requirements 341 */ 342 void sk_set_memalloc(struct sock *sk) 343 { 344 sock_set_flag(sk, SOCK_MEMALLOC); 345 sk->sk_allocation |= __GFP_MEMALLOC; 346 static_key_slow_inc(&memalloc_socks); 347 } 348 EXPORT_SYMBOL_GPL(sk_set_memalloc); 349 350 void sk_clear_memalloc(struct sock *sk) 351 { 352 sock_reset_flag(sk, SOCK_MEMALLOC); 353 sk->sk_allocation &= ~__GFP_MEMALLOC; 354 static_key_slow_dec(&memalloc_socks); 355 356 /* 357 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 358 * progress of swapping. SOCK_MEMALLOC may be cleared while 359 * it has rmem allocations due to the last swapfile being deactivated 360 * but there is a risk that the socket is unusable due to exceeding 361 * the rmem limits. Reclaim the reserves and obey rmem limits again. 362 */ 363 sk_mem_reclaim(sk); 364 } 365 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 366 367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 368 { 369 int ret; 370 unsigned long pflags = current->flags; 371 372 /* these should have been dropped before queueing */ 373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 374 375 current->flags |= PF_MEMALLOC; 376 ret = sk->sk_backlog_rcv(sk, skb); 377 tsk_restore_flags(current, pflags, PF_MEMALLOC); 378 379 return ret; 380 } 381 EXPORT_SYMBOL(__sk_backlog_rcv); 382 383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 384 { 385 struct timeval tv; 386 387 if (optlen < sizeof(tv)) 388 return -EINVAL; 389 if (copy_from_user(&tv, optval, sizeof(tv))) 390 return -EFAULT; 391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 392 return -EDOM; 393 394 if (tv.tv_sec < 0) { 395 static int warned __read_mostly; 396 397 *timeo_p = 0; 398 if (warned < 10 && net_ratelimit()) { 399 warned++; 400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 401 __func__, current->comm, task_pid_nr(current)); 402 } 403 return 0; 404 } 405 *timeo_p = MAX_SCHEDULE_TIMEOUT; 406 if (tv.tv_sec == 0 && tv.tv_usec == 0) 407 return 0; 408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 410 return 0; 411 } 412 413 static void sock_warn_obsolete_bsdism(const char *name) 414 { 415 static int warned; 416 static char warncomm[TASK_COMM_LEN]; 417 if (strcmp(warncomm, current->comm) && warned < 5) { 418 strcpy(warncomm, current->comm); 419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 420 warncomm, name); 421 warned++; 422 } 423 } 424 425 static bool sock_needs_netstamp(const struct sock *sk) 426 { 427 switch (sk->sk_family) { 428 case AF_UNSPEC: 429 case AF_UNIX: 430 return false; 431 default: 432 return true; 433 } 434 } 435 436 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 437 { 438 if (sk->sk_flags & flags) { 439 sk->sk_flags &= ~flags; 440 if (sock_needs_netstamp(sk) && 441 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 442 net_disable_timestamp(); 443 } 444 } 445 446 447 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 448 { 449 int err; 450 unsigned long flags; 451 struct sk_buff_head *list = &sk->sk_receive_queue; 452 453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 454 atomic_inc(&sk->sk_drops); 455 trace_sock_rcvqueue_full(sk, skb); 456 return -ENOMEM; 457 } 458 459 err = sk_filter(sk, skb); 460 if (err) 461 return err; 462 463 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 464 atomic_inc(&sk->sk_drops); 465 return -ENOBUFS; 466 } 467 468 skb->dev = NULL; 469 skb_set_owner_r(skb, sk); 470 471 /* we escape from rcu protected region, make sure we dont leak 472 * a norefcounted dst 473 */ 474 skb_dst_force(skb); 475 476 spin_lock_irqsave(&list->lock, flags); 477 sock_skb_set_dropcount(sk, skb); 478 __skb_queue_tail(list, skb); 479 spin_unlock_irqrestore(&list->lock, flags); 480 481 if (!sock_flag(sk, SOCK_DEAD)) 482 sk->sk_data_ready(sk); 483 return 0; 484 } 485 EXPORT_SYMBOL(sock_queue_rcv_skb); 486 487 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 488 { 489 int rc = NET_RX_SUCCESS; 490 491 if (sk_filter(sk, skb)) 492 goto discard_and_relse; 493 494 skb->dev = NULL; 495 496 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 497 atomic_inc(&sk->sk_drops); 498 goto discard_and_relse; 499 } 500 if (nested) 501 bh_lock_sock_nested(sk); 502 else 503 bh_lock_sock(sk); 504 if (!sock_owned_by_user(sk)) { 505 /* 506 * trylock + unlock semantics: 507 */ 508 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 509 510 rc = sk_backlog_rcv(sk, skb); 511 512 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 513 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 514 bh_unlock_sock(sk); 515 atomic_inc(&sk->sk_drops); 516 goto discard_and_relse; 517 } 518 519 bh_unlock_sock(sk); 520 out: 521 sock_put(sk); 522 return rc; 523 discard_and_relse: 524 kfree_skb(skb); 525 goto out; 526 } 527 EXPORT_SYMBOL(sk_receive_skb); 528 529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 530 { 531 struct dst_entry *dst = __sk_dst_get(sk); 532 533 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 534 sk_tx_queue_clear(sk); 535 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 536 dst_release(dst); 537 return NULL; 538 } 539 540 return dst; 541 } 542 EXPORT_SYMBOL(__sk_dst_check); 543 544 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 545 { 546 struct dst_entry *dst = sk_dst_get(sk); 547 548 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 549 sk_dst_reset(sk); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(sk_dst_check); 557 558 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 559 int optlen) 560 { 561 int ret = -ENOPROTOOPT; 562 #ifdef CONFIG_NETDEVICES 563 struct net *net = sock_net(sk); 564 char devname[IFNAMSIZ]; 565 int index; 566 567 /* Sorry... */ 568 ret = -EPERM; 569 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 570 goto out; 571 572 ret = -EINVAL; 573 if (optlen < 0) 574 goto out; 575 576 /* Bind this socket to a particular device like "eth0", 577 * as specified in the passed interface name. If the 578 * name is "" or the option length is zero the socket 579 * is not bound. 580 */ 581 if (optlen > IFNAMSIZ - 1) 582 optlen = IFNAMSIZ - 1; 583 memset(devname, 0, sizeof(devname)); 584 585 ret = -EFAULT; 586 if (copy_from_user(devname, optval, optlen)) 587 goto out; 588 589 index = 0; 590 if (devname[0] != '\0') { 591 struct net_device *dev; 592 593 rcu_read_lock(); 594 dev = dev_get_by_name_rcu(net, devname); 595 if (dev) 596 index = dev->ifindex; 597 rcu_read_unlock(); 598 ret = -ENODEV; 599 if (!dev) 600 goto out; 601 } 602 603 lock_sock(sk); 604 sk->sk_bound_dev_if = index; 605 sk_dst_reset(sk); 606 release_sock(sk); 607 608 ret = 0; 609 610 out: 611 #endif 612 613 return ret; 614 } 615 616 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 617 int __user *optlen, int len) 618 { 619 int ret = -ENOPROTOOPT; 620 #ifdef CONFIG_NETDEVICES 621 struct net *net = sock_net(sk); 622 char devname[IFNAMSIZ]; 623 624 if (sk->sk_bound_dev_if == 0) { 625 len = 0; 626 goto zero; 627 } 628 629 ret = -EINVAL; 630 if (len < IFNAMSIZ) 631 goto out; 632 633 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 634 if (ret) 635 goto out; 636 637 len = strlen(devname) + 1; 638 639 ret = -EFAULT; 640 if (copy_to_user(optval, devname, len)) 641 goto out; 642 643 zero: 644 ret = -EFAULT; 645 if (put_user(len, optlen)) 646 goto out; 647 648 ret = 0; 649 650 out: 651 #endif 652 653 return ret; 654 } 655 656 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 657 { 658 if (valbool) 659 sock_set_flag(sk, bit); 660 else 661 sock_reset_flag(sk, bit); 662 } 663 664 bool sk_mc_loop(struct sock *sk) 665 { 666 if (dev_recursion_level()) 667 return false; 668 if (!sk) 669 return true; 670 switch (sk->sk_family) { 671 case AF_INET: 672 return inet_sk(sk)->mc_loop; 673 #if IS_ENABLED(CONFIG_IPV6) 674 case AF_INET6: 675 return inet6_sk(sk)->mc_loop; 676 #endif 677 } 678 WARN_ON(1); 679 return true; 680 } 681 EXPORT_SYMBOL(sk_mc_loop); 682 683 /* 684 * This is meant for all protocols to use and covers goings on 685 * at the socket level. Everything here is generic. 686 */ 687 688 int sock_setsockopt(struct socket *sock, int level, int optname, 689 char __user *optval, unsigned int optlen) 690 { 691 struct sock *sk = sock->sk; 692 int val; 693 int valbool; 694 struct linger ling; 695 int ret = 0; 696 697 /* 698 * Options without arguments 699 */ 700 701 if (optname == SO_BINDTODEVICE) 702 return sock_setbindtodevice(sk, optval, optlen); 703 704 if (optlen < sizeof(int)) 705 return -EINVAL; 706 707 if (get_user(val, (int __user *)optval)) 708 return -EFAULT; 709 710 valbool = val ? 1 : 0; 711 712 lock_sock(sk); 713 714 switch (optname) { 715 case SO_DEBUG: 716 if (val && !capable(CAP_NET_ADMIN)) 717 ret = -EACCES; 718 else 719 sock_valbool_flag(sk, SOCK_DBG, valbool); 720 break; 721 case SO_REUSEADDR: 722 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 723 break; 724 case SO_REUSEPORT: 725 sk->sk_reuseport = valbool; 726 break; 727 case SO_TYPE: 728 case SO_PROTOCOL: 729 case SO_DOMAIN: 730 case SO_ERROR: 731 ret = -ENOPROTOOPT; 732 break; 733 case SO_DONTROUTE: 734 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 735 break; 736 case SO_BROADCAST: 737 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 738 break; 739 case SO_SNDBUF: 740 /* Don't error on this BSD doesn't and if you think 741 * about it this is right. Otherwise apps have to 742 * play 'guess the biggest size' games. RCVBUF/SNDBUF 743 * are treated in BSD as hints 744 */ 745 val = min_t(u32, val, sysctl_wmem_max); 746 set_sndbuf: 747 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 748 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF); 749 /* Wake up sending tasks if we upped the value. */ 750 sk->sk_write_space(sk); 751 break; 752 753 case SO_SNDBUFFORCE: 754 if (!capable(CAP_NET_ADMIN)) { 755 ret = -EPERM; 756 break; 757 } 758 goto set_sndbuf; 759 760 case SO_RCVBUF: 761 /* Don't error on this BSD doesn't and if you think 762 * about it this is right. Otherwise apps have to 763 * play 'guess the biggest size' games. RCVBUF/SNDBUF 764 * are treated in BSD as hints 765 */ 766 val = min_t(u32, val, sysctl_rmem_max); 767 set_rcvbuf: 768 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 769 /* 770 * We double it on the way in to account for 771 * "struct sk_buff" etc. overhead. Applications 772 * assume that the SO_RCVBUF setting they make will 773 * allow that much actual data to be received on that 774 * socket. 775 * 776 * Applications are unaware that "struct sk_buff" and 777 * other overheads allocate from the receive buffer 778 * during socket buffer allocation. 779 * 780 * And after considering the possible alternatives, 781 * returning the value we actually used in getsockopt 782 * is the most desirable behavior. 783 */ 784 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF); 785 break; 786 787 case SO_RCVBUFFORCE: 788 if (!capable(CAP_NET_ADMIN)) { 789 ret = -EPERM; 790 break; 791 } 792 goto set_rcvbuf; 793 794 case SO_KEEPALIVE: 795 #ifdef CONFIG_INET 796 if (sk->sk_protocol == IPPROTO_TCP && 797 sk->sk_type == SOCK_STREAM) 798 tcp_set_keepalive(sk, valbool); 799 #endif 800 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 801 break; 802 803 case SO_OOBINLINE: 804 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 805 break; 806 807 case SO_NO_CHECK: 808 sk->sk_no_check_tx = valbool; 809 break; 810 811 case SO_PRIORITY: 812 if ((val >= 0 && val <= 6) || 813 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 814 sk->sk_priority = val; 815 else 816 ret = -EPERM; 817 break; 818 819 case SO_LINGER: 820 if (optlen < sizeof(ling)) { 821 ret = -EINVAL; /* 1003.1g */ 822 break; 823 } 824 if (copy_from_user(&ling, optval, sizeof(ling))) { 825 ret = -EFAULT; 826 break; 827 } 828 if (!ling.l_onoff) 829 sock_reset_flag(sk, SOCK_LINGER); 830 else { 831 #if (BITS_PER_LONG == 32) 832 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 833 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 834 else 835 #endif 836 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 837 sock_set_flag(sk, SOCK_LINGER); 838 } 839 break; 840 841 case SO_BSDCOMPAT: 842 sock_warn_obsolete_bsdism("setsockopt"); 843 break; 844 845 case SO_PASSCRED: 846 if (valbool) 847 set_bit(SOCK_PASSCRED, &sock->flags); 848 else 849 clear_bit(SOCK_PASSCRED, &sock->flags); 850 break; 851 852 case SO_TIMESTAMP: 853 case SO_TIMESTAMPNS: 854 if (valbool) { 855 if (optname == SO_TIMESTAMP) 856 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 857 else 858 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 859 sock_set_flag(sk, SOCK_RCVTSTAMP); 860 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 861 } else { 862 sock_reset_flag(sk, SOCK_RCVTSTAMP); 863 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 864 } 865 break; 866 867 case SO_TIMESTAMPING: 868 if (val & ~SOF_TIMESTAMPING_MASK) { 869 ret = -EINVAL; 870 break; 871 } 872 873 if (val & SOF_TIMESTAMPING_OPT_ID && 874 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 875 if (sk->sk_protocol == IPPROTO_TCP && 876 sk->sk_type == SOCK_STREAM) { 877 if (sk->sk_state != TCP_ESTABLISHED) { 878 ret = -EINVAL; 879 break; 880 } 881 sk->sk_tskey = tcp_sk(sk)->snd_una; 882 } else { 883 sk->sk_tskey = 0; 884 } 885 } 886 sk->sk_tsflags = val; 887 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 888 sock_enable_timestamp(sk, 889 SOCK_TIMESTAMPING_RX_SOFTWARE); 890 else 891 sock_disable_timestamp(sk, 892 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 893 break; 894 895 case SO_RCVLOWAT: 896 if (val < 0) 897 val = INT_MAX; 898 sk->sk_rcvlowat = val ? : 1; 899 break; 900 901 case SO_RCVTIMEO: 902 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 903 break; 904 905 case SO_SNDTIMEO: 906 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 907 break; 908 909 case SO_ATTACH_FILTER: 910 ret = -EINVAL; 911 if (optlen == sizeof(struct sock_fprog)) { 912 struct sock_fprog fprog; 913 914 ret = -EFAULT; 915 if (copy_from_user(&fprog, optval, sizeof(fprog))) 916 break; 917 918 ret = sk_attach_filter(&fprog, sk); 919 } 920 break; 921 922 case SO_ATTACH_BPF: 923 ret = -EINVAL; 924 if (optlen == sizeof(u32)) { 925 u32 ufd; 926 927 ret = -EFAULT; 928 if (copy_from_user(&ufd, optval, sizeof(ufd))) 929 break; 930 931 ret = sk_attach_bpf(ufd, sk); 932 } 933 break; 934 935 case SO_DETACH_FILTER: 936 ret = sk_detach_filter(sk); 937 break; 938 939 case SO_LOCK_FILTER: 940 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 941 ret = -EPERM; 942 else 943 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 944 break; 945 946 case SO_PASSSEC: 947 if (valbool) 948 set_bit(SOCK_PASSSEC, &sock->flags); 949 else 950 clear_bit(SOCK_PASSSEC, &sock->flags); 951 break; 952 case SO_MARK: 953 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 954 ret = -EPERM; 955 else 956 sk->sk_mark = val; 957 break; 958 959 case SO_RXQ_OVFL: 960 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 961 break; 962 963 case SO_WIFI_STATUS: 964 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 965 break; 966 967 case SO_PEEK_OFF: 968 if (sock->ops->set_peek_off) 969 ret = sock->ops->set_peek_off(sk, val); 970 else 971 ret = -EOPNOTSUPP; 972 break; 973 974 case SO_NOFCS: 975 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 976 break; 977 978 case SO_SELECT_ERR_QUEUE: 979 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 980 break; 981 982 #ifdef CONFIG_NET_RX_BUSY_POLL 983 case SO_BUSY_POLL: 984 /* allow unprivileged users to decrease the value */ 985 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 986 ret = -EPERM; 987 else { 988 if (val < 0) 989 ret = -EINVAL; 990 else 991 sk->sk_ll_usec = val; 992 } 993 break; 994 #endif 995 996 case SO_MAX_PACING_RATE: 997 sk->sk_max_pacing_rate = val; 998 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 999 sk->sk_max_pacing_rate); 1000 break; 1001 1002 case SO_INCOMING_CPU: 1003 sk->sk_incoming_cpu = val; 1004 break; 1005 1006 default: 1007 ret = -ENOPROTOOPT; 1008 break; 1009 } 1010 release_sock(sk); 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(sock_setsockopt); 1014 1015 1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1017 struct ucred *ucred) 1018 { 1019 ucred->pid = pid_vnr(pid); 1020 ucred->uid = ucred->gid = -1; 1021 if (cred) { 1022 struct user_namespace *current_ns = current_user_ns(); 1023 1024 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1025 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1026 } 1027 } 1028 1029 int sock_getsockopt(struct socket *sock, int level, int optname, 1030 char __user *optval, int __user *optlen) 1031 { 1032 struct sock *sk = sock->sk; 1033 1034 union { 1035 int val; 1036 struct linger ling; 1037 struct timeval tm; 1038 } v; 1039 1040 int lv = sizeof(int); 1041 int len; 1042 1043 if (get_user(len, optlen)) 1044 return -EFAULT; 1045 if (len < 0) 1046 return -EINVAL; 1047 1048 memset(&v, 0, sizeof(v)); 1049 1050 switch (optname) { 1051 case SO_DEBUG: 1052 v.val = sock_flag(sk, SOCK_DBG); 1053 break; 1054 1055 case SO_DONTROUTE: 1056 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1057 break; 1058 1059 case SO_BROADCAST: 1060 v.val = sock_flag(sk, SOCK_BROADCAST); 1061 break; 1062 1063 case SO_SNDBUF: 1064 v.val = sk->sk_sndbuf; 1065 break; 1066 1067 case SO_RCVBUF: 1068 v.val = sk->sk_rcvbuf; 1069 break; 1070 1071 case SO_REUSEADDR: 1072 v.val = sk->sk_reuse; 1073 break; 1074 1075 case SO_REUSEPORT: 1076 v.val = sk->sk_reuseport; 1077 break; 1078 1079 case SO_KEEPALIVE: 1080 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1081 break; 1082 1083 case SO_TYPE: 1084 v.val = sk->sk_type; 1085 break; 1086 1087 case SO_PROTOCOL: 1088 v.val = sk->sk_protocol; 1089 break; 1090 1091 case SO_DOMAIN: 1092 v.val = sk->sk_family; 1093 break; 1094 1095 case SO_ERROR: 1096 v.val = -sock_error(sk); 1097 if (v.val == 0) 1098 v.val = xchg(&sk->sk_err_soft, 0); 1099 break; 1100 1101 case SO_OOBINLINE: 1102 v.val = sock_flag(sk, SOCK_URGINLINE); 1103 break; 1104 1105 case SO_NO_CHECK: 1106 v.val = sk->sk_no_check_tx; 1107 break; 1108 1109 case SO_PRIORITY: 1110 v.val = sk->sk_priority; 1111 break; 1112 1113 case SO_LINGER: 1114 lv = sizeof(v.ling); 1115 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1116 v.ling.l_linger = sk->sk_lingertime / HZ; 1117 break; 1118 1119 case SO_BSDCOMPAT: 1120 sock_warn_obsolete_bsdism("getsockopt"); 1121 break; 1122 1123 case SO_TIMESTAMP: 1124 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1125 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1126 break; 1127 1128 case SO_TIMESTAMPNS: 1129 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1130 break; 1131 1132 case SO_TIMESTAMPING: 1133 v.val = sk->sk_tsflags; 1134 break; 1135 1136 case SO_RCVTIMEO: 1137 lv = sizeof(struct timeval); 1138 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1139 v.tm.tv_sec = 0; 1140 v.tm.tv_usec = 0; 1141 } else { 1142 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1143 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1144 } 1145 break; 1146 1147 case SO_SNDTIMEO: 1148 lv = sizeof(struct timeval); 1149 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1150 v.tm.tv_sec = 0; 1151 v.tm.tv_usec = 0; 1152 } else { 1153 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1154 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1155 } 1156 break; 1157 1158 case SO_RCVLOWAT: 1159 v.val = sk->sk_rcvlowat; 1160 break; 1161 1162 case SO_SNDLOWAT: 1163 v.val = 1; 1164 break; 1165 1166 case SO_PASSCRED: 1167 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1168 break; 1169 1170 case SO_PEERCRED: 1171 { 1172 struct ucred peercred; 1173 if (len > sizeof(peercred)) 1174 len = sizeof(peercred); 1175 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1176 if (copy_to_user(optval, &peercred, len)) 1177 return -EFAULT; 1178 goto lenout; 1179 } 1180 1181 case SO_PEERNAME: 1182 { 1183 char address[128]; 1184 1185 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1186 return -ENOTCONN; 1187 if (lv < len) 1188 return -EINVAL; 1189 if (copy_to_user(optval, address, len)) 1190 return -EFAULT; 1191 goto lenout; 1192 } 1193 1194 /* Dubious BSD thing... Probably nobody even uses it, but 1195 * the UNIX standard wants it for whatever reason... -DaveM 1196 */ 1197 case SO_ACCEPTCONN: 1198 v.val = sk->sk_state == TCP_LISTEN; 1199 break; 1200 1201 case SO_PASSSEC: 1202 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1203 break; 1204 1205 case SO_PEERSEC: 1206 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1207 1208 case SO_MARK: 1209 v.val = sk->sk_mark; 1210 break; 1211 1212 case SO_RXQ_OVFL: 1213 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1214 break; 1215 1216 case SO_WIFI_STATUS: 1217 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1218 break; 1219 1220 case SO_PEEK_OFF: 1221 if (!sock->ops->set_peek_off) 1222 return -EOPNOTSUPP; 1223 1224 v.val = sk->sk_peek_off; 1225 break; 1226 case SO_NOFCS: 1227 v.val = sock_flag(sk, SOCK_NOFCS); 1228 break; 1229 1230 case SO_BINDTODEVICE: 1231 return sock_getbindtodevice(sk, optval, optlen, len); 1232 1233 case SO_GET_FILTER: 1234 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1235 if (len < 0) 1236 return len; 1237 1238 goto lenout; 1239 1240 case SO_LOCK_FILTER: 1241 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1242 break; 1243 1244 case SO_BPF_EXTENSIONS: 1245 v.val = bpf_tell_extensions(); 1246 break; 1247 1248 case SO_SELECT_ERR_QUEUE: 1249 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1250 break; 1251 1252 #ifdef CONFIG_NET_RX_BUSY_POLL 1253 case SO_BUSY_POLL: 1254 v.val = sk->sk_ll_usec; 1255 break; 1256 #endif 1257 1258 case SO_MAX_PACING_RATE: 1259 v.val = sk->sk_max_pacing_rate; 1260 break; 1261 1262 case SO_INCOMING_CPU: 1263 v.val = sk->sk_incoming_cpu; 1264 break; 1265 1266 default: 1267 /* We implement the SO_SNDLOWAT etc to not be settable 1268 * (1003.1g 7). 1269 */ 1270 return -ENOPROTOOPT; 1271 } 1272 1273 if (len > lv) 1274 len = lv; 1275 if (copy_to_user(optval, &v, len)) 1276 return -EFAULT; 1277 lenout: 1278 if (put_user(len, optlen)) 1279 return -EFAULT; 1280 return 0; 1281 } 1282 1283 /* 1284 * Initialize an sk_lock. 1285 * 1286 * (We also register the sk_lock with the lock validator.) 1287 */ 1288 static inline void sock_lock_init(struct sock *sk) 1289 { 1290 sock_lock_init_class_and_name(sk, 1291 af_family_slock_key_strings[sk->sk_family], 1292 af_family_slock_keys + sk->sk_family, 1293 af_family_key_strings[sk->sk_family], 1294 af_family_keys + sk->sk_family); 1295 } 1296 1297 /* 1298 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1299 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1300 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1301 */ 1302 static void sock_copy(struct sock *nsk, const struct sock *osk) 1303 { 1304 #ifdef CONFIG_SECURITY_NETWORK 1305 void *sptr = nsk->sk_security; 1306 #endif 1307 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1308 1309 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1310 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1311 1312 #ifdef CONFIG_SECURITY_NETWORK 1313 nsk->sk_security = sptr; 1314 security_sk_clone(osk, nsk); 1315 #endif 1316 } 1317 1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size) 1319 { 1320 unsigned long nulls1, nulls2; 1321 1322 nulls1 = offsetof(struct sock, __sk_common.skc_node.next); 1323 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next); 1324 if (nulls1 > nulls2) 1325 swap(nulls1, nulls2); 1326 1327 if (nulls1 != 0) 1328 memset((char *)sk, 0, nulls1); 1329 memset((char *)sk + nulls1 + sizeof(void *), 0, 1330 nulls2 - nulls1 - sizeof(void *)); 1331 memset((char *)sk + nulls2 + sizeof(void *), 0, 1332 size - nulls2 - sizeof(void *)); 1333 } 1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls); 1335 1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1337 int family) 1338 { 1339 struct sock *sk; 1340 struct kmem_cache *slab; 1341 1342 slab = prot->slab; 1343 if (slab != NULL) { 1344 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1345 if (!sk) 1346 return sk; 1347 if (priority & __GFP_ZERO) { 1348 if (prot->clear_sk) 1349 prot->clear_sk(sk, prot->obj_size); 1350 else 1351 sk_prot_clear_nulls(sk, prot->obj_size); 1352 } 1353 } else 1354 sk = kmalloc(prot->obj_size, priority); 1355 1356 if (sk != NULL) { 1357 kmemcheck_annotate_bitfield(sk, flags); 1358 1359 if (security_sk_alloc(sk, family, priority)) 1360 goto out_free; 1361 1362 if (!try_module_get(prot->owner)) 1363 goto out_free_sec; 1364 sk_tx_queue_clear(sk); 1365 } 1366 1367 return sk; 1368 1369 out_free_sec: 1370 security_sk_free(sk); 1371 out_free: 1372 if (slab != NULL) 1373 kmem_cache_free(slab, sk); 1374 else 1375 kfree(sk); 1376 return NULL; 1377 } 1378 1379 static void sk_prot_free(struct proto *prot, struct sock *sk) 1380 { 1381 struct kmem_cache *slab; 1382 struct module *owner; 1383 1384 owner = prot->owner; 1385 slab = prot->slab; 1386 1387 security_sk_free(sk); 1388 if (slab != NULL) 1389 kmem_cache_free(slab, sk); 1390 else 1391 kfree(sk); 1392 module_put(owner); 1393 } 1394 1395 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1396 void sock_update_netprioidx(struct sock *sk) 1397 { 1398 if (in_interrupt()) 1399 return; 1400 1401 sk->sk_cgrp_prioidx = task_netprioidx(current); 1402 } 1403 EXPORT_SYMBOL_GPL(sock_update_netprioidx); 1404 #endif 1405 1406 /** 1407 * sk_alloc - All socket objects are allocated here 1408 * @net: the applicable net namespace 1409 * @family: protocol family 1410 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1411 * @prot: struct proto associated with this new sock instance 1412 * @kern: is this to be a kernel socket? 1413 */ 1414 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1415 struct proto *prot, int kern) 1416 { 1417 struct sock *sk; 1418 1419 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1420 if (sk) { 1421 sk->sk_family = family; 1422 /* 1423 * See comment in struct sock definition to understand 1424 * why we need sk_prot_creator -acme 1425 */ 1426 sk->sk_prot = sk->sk_prot_creator = prot; 1427 sock_lock_init(sk); 1428 sk->sk_net_refcnt = kern ? 0 : 1; 1429 if (likely(sk->sk_net_refcnt)) 1430 get_net(net); 1431 sock_net_set(sk, net); 1432 atomic_set(&sk->sk_wmem_alloc, 1); 1433 1434 sock_update_classid(sk); 1435 sock_update_netprioidx(sk); 1436 } 1437 1438 return sk; 1439 } 1440 EXPORT_SYMBOL(sk_alloc); 1441 1442 void sk_destruct(struct sock *sk) 1443 { 1444 struct sk_filter *filter; 1445 1446 if (sk->sk_destruct) 1447 sk->sk_destruct(sk); 1448 1449 filter = rcu_dereference_check(sk->sk_filter, 1450 atomic_read(&sk->sk_wmem_alloc) == 0); 1451 if (filter) { 1452 sk_filter_uncharge(sk, filter); 1453 RCU_INIT_POINTER(sk->sk_filter, NULL); 1454 } 1455 1456 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1457 1458 if (atomic_read(&sk->sk_omem_alloc)) 1459 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1460 __func__, atomic_read(&sk->sk_omem_alloc)); 1461 1462 if (sk->sk_peer_cred) 1463 put_cred(sk->sk_peer_cred); 1464 put_pid(sk->sk_peer_pid); 1465 if (likely(sk->sk_net_refcnt)) 1466 put_net(sock_net(sk)); 1467 sk_prot_free(sk->sk_prot_creator, sk); 1468 } 1469 1470 static void __sk_free(struct sock *sk) 1471 { 1472 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1473 sock_diag_broadcast_destroy(sk); 1474 else 1475 sk_destruct(sk); 1476 } 1477 1478 void sk_free(struct sock *sk) 1479 { 1480 /* 1481 * We subtract one from sk_wmem_alloc and can know if 1482 * some packets are still in some tx queue. 1483 * If not null, sock_wfree() will call __sk_free(sk) later 1484 */ 1485 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1486 __sk_free(sk); 1487 } 1488 EXPORT_SYMBOL(sk_free); 1489 1490 static void sk_update_clone(const struct sock *sk, struct sock *newsk) 1491 { 1492 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1493 sock_update_memcg(newsk); 1494 } 1495 1496 /** 1497 * sk_clone_lock - clone a socket, and lock its clone 1498 * @sk: the socket to clone 1499 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1500 * 1501 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1502 */ 1503 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1504 { 1505 struct sock *newsk; 1506 bool is_charged = true; 1507 1508 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1509 if (newsk != NULL) { 1510 struct sk_filter *filter; 1511 1512 sock_copy(newsk, sk); 1513 1514 /* SANITY */ 1515 if (likely(newsk->sk_net_refcnt)) 1516 get_net(sock_net(newsk)); 1517 sk_node_init(&newsk->sk_node); 1518 sock_lock_init(newsk); 1519 bh_lock_sock(newsk); 1520 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1521 newsk->sk_backlog.len = 0; 1522 1523 atomic_set(&newsk->sk_rmem_alloc, 0); 1524 /* 1525 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1526 */ 1527 atomic_set(&newsk->sk_wmem_alloc, 1); 1528 atomic_set(&newsk->sk_omem_alloc, 0); 1529 skb_queue_head_init(&newsk->sk_receive_queue); 1530 skb_queue_head_init(&newsk->sk_write_queue); 1531 1532 rwlock_init(&newsk->sk_callback_lock); 1533 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1534 af_callback_keys + newsk->sk_family, 1535 af_family_clock_key_strings[newsk->sk_family]); 1536 1537 newsk->sk_dst_cache = NULL; 1538 newsk->sk_wmem_queued = 0; 1539 newsk->sk_forward_alloc = 0; 1540 newsk->sk_send_head = NULL; 1541 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1542 1543 sock_reset_flag(newsk, SOCK_DONE); 1544 skb_queue_head_init(&newsk->sk_error_queue); 1545 1546 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1547 if (filter != NULL) 1548 /* though it's an empty new sock, the charging may fail 1549 * if sysctl_optmem_max was changed between creation of 1550 * original socket and cloning 1551 */ 1552 is_charged = sk_filter_charge(newsk, filter); 1553 1554 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1555 /* It is still raw copy of parent, so invalidate 1556 * destructor and make plain sk_free() */ 1557 newsk->sk_destruct = NULL; 1558 bh_unlock_sock(newsk); 1559 sk_free(newsk); 1560 newsk = NULL; 1561 goto out; 1562 } 1563 1564 newsk->sk_err = 0; 1565 newsk->sk_priority = 0; 1566 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1567 atomic64_set(&newsk->sk_cookie, 0); 1568 /* 1569 * Before updating sk_refcnt, we must commit prior changes to memory 1570 * (Documentation/RCU/rculist_nulls.txt for details) 1571 */ 1572 smp_wmb(); 1573 atomic_set(&newsk->sk_refcnt, 2); 1574 1575 /* 1576 * Increment the counter in the same struct proto as the master 1577 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1578 * is the same as sk->sk_prot->socks, as this field was copied 1579 * with memcpy). 1580 * 1581 * This _changes_ the previous behaviour, where 1582 * tcp_create_openreq_child always was incrementing the 1583 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1584 * to be taken into account in all callers. -acme 1585 */ 1586 sk_refcnt_debug_inc(newsk); 1587 sk_set_socket(newsk, NULL); 1588 newsk->sk_wq = NULL; 1589 1590 sk_update_clone(sk, newsk); 1591 1592 if (newsk->sk_prot->sockets_allocated) 1593 sk_sockets_allocated_inc(newsk); 1594 1595 if (sock_needs_netstamp(sk) && 1596 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1597 net_enable_timestamp(); 1598 } 1599 out: 1600 return newsk; 1601 } 1602 EXPORT_SYMBOL_GPL(sk_clone_lock); 1603 1604 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1605 { 1606 u32 max_segs = 1; 1607 1608 sk_dst_set(sk, dst); 1609 sk->sk_route_caps = dst->dev->features; 1610 if (sk->sk_route_caps & NETIF_F_GSO) 1611 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1612 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1613 if (sk_can_gso(sk)) { 1614 if (dst->header_len) { 1615 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1616 } else { 1617 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1618 sk->sk_gso_max_size = dst->dev->gso_max_size; 1619 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1620 } 1621 } 1622 sk->sk_gso_max_segs = max_segs; 1623 } 1624 EXPORT_SYMBOL_GPL(sk_setup_caps); 1625 1626 /* 1627 * Simple resource managers for sockets. 1628 */ 1629 1630 1631 /* 1632 * Write buffer destructor automatically called from kfree_skb. 1633 */ 1634 void sock_wfree(struct sk_buff *skb) 1635 { 1636 struct sock *sk = skb->sk; 1637 unsigned int len = skb->truesize; 1638 1639 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1640 /* 1641 * Keep a reference on sk_wmem_alloc, this will be released 1642 * after sk_write_space() call 1643 */ 1644 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1645 sk->sk_write_space(sk); 1646 len = 1; 1647 } 1648 /* 1649 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1650 * could not do because of in-flight packets 1651 */ 1652 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1653 __sk_free(sk); 1654 } 1655 EXPORT_SYMBOL(sock_wfree); 1656 1657 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1658 { 1659 skb_orphan(skb); 1660 skb->sk = sk; 1661 #ifdef CONFIG_INET 1662 if (unlikely(!sk_fullsock(sk))) { 1663 skb->destructor = sock_edemux; 1664 sock_hold(sk); 1665 return; 1666 } 1667 #endif 1668 skb->destructor = sock_wfree; 1669 skb_set_hash_from_sk(skb, sk); 1670 /* 1671 * We used to take a refcount on sk, but following operation 1672 * is enough to guarantee sk_free() wont free this sock until 1673 * all in-flight packets are completed 1674 */ 1675 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1676 } 1677 EXPORT_SYMBOL(skb_set_owner_w); 1678 1679 void skb_orphan_partial(struct sk_buff *skb) 1680 { 1681 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1682 * so we do not completely orphan skb, but transfert all 1683 * accounted bytes but one, to avoid unexpected reorders. 1684 */ 1685 if (skb->destructor == sock_wfree 1686 #ifdef CONFIG_INET 1687 || skb->destructor == tcp_wfree 1688 #endif 1689 ) { 1690 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1691 skb->truesize = 1; 1692 } else { 1693 skb_orphan(skb); 1694 } 1695 } 1696 EXPORT_SYMBOL(skb_orphan_partial); 1697 1698 /* 1699 * Read buffer destructor automatically called from kfree_skb. 1700 */ 1701 void sock_rfree(struct sk_buff *skb) 1702 { 1703 struct sock *sk = skb->sk; 1704 unsigned int len = skb->truesize; 1705 1706 atomic_sub(len, &sk->sk_rmem_alloc); 1707 sk_mem_uncharge(sk, len); 1708 } 1709 EXPORT_SYMBOL(sock_rfree); 1710 1711 /* 1712 * Buffer destructor for skbs that are not used directly in read or write 1713 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1714 */ 1715 void sock_efree(struct sk_buff *skb) 1716 { 1717 sock_put(skb->sk); 1718 } 1719 EXPORT_SYMBOL(sock_efree); 1720 1721 kuid_t sock_i_uid(struct sock *sk) 1722 { 1723 kuid_t uid; 1724 1725 read_lock_bh(&sk->sk_callback_lock); 1726 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1727 read_unlock_bh(&sk->sk_callback_lock); 1728 return uid; 1729 } 1730 EXPORT_SYMBOL(sock_i_uid); 1731 1732 unsigned long sock_i_ino(struct sock *sk) 1733 { 1734 unsigned long ino; 1735 1736 read_lock_bh(&sk->sk_callback_lock); 1737 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1738 read_unlock_bh(&sk->sk_callback_lock); 1739 return ino; 1740 } 1741 EXPORT_SYMBOL(sock_i_ino); 1742 1743 /* 1744 * Allocate a skb from the socket's send buffer. 1745 */ 1746 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1747 gfp_t priority) 1748 { 1749 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1750 struct sk_buff *skb = alloc_skb(size, priority); 1751 if (skb) { 1752 skb_set_owner_w(skb, sk); 1753 return skb; 1754 } 1755 } 1756 return NULL; 1757 } 1758 EXPORT_SYMBOL(sock_wmalloc); 1759 1760 /* 1761 * Allocate a memory block from the socket's option memory buffer. 1762 */ 1763 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1764 { 1765 if ((unsigned int)size <= sysctl_optmem_max && 1766 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1767 void *mem; 1768 /* First do the add, to avoid the race if kmalloc 1769 * might sleep. 1770 */ 1771 atomic_add(size, &sk->sk_omem_alloc); 1772 mem = kmalloc(size, priority); 1773 if (mem) 1774 return mem; 1775 atomic_sub(size, &sk->sk_omem_alloc); 1776 } 1777 return NULL; 1778 } 1779 EXPORT_SYMBOL(sock_kmalloc); 1780 1781 /* Free an option memory block. Note, we actually want the inline 1782 * here as this allows gcc to detect the nullify and fold away the 1783 * condition entirely. 1784 */ 1785 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1786 const bool nullify) 1787 { 1788 if (WARN_ON_ONCE(!mem)) 1789 return; 1790 if (nullify) 1791 kzfree(mem); 1792 else 1793 kfree(mem); 1794 atomic_sub(size, &sk->sk_omem_alloc); 1795 } 1796 1797 void sock_kfree_s(struct sock *sk, void *mem, int size) 1798 { 1799 __sock_kfree_s(sk, mem, size, false); 1800 } 1801 EXPORT_SYMBOL(sock_kfree_s); 1802 1803 void sock_kzfree_s(struct sock *sk, void *mem, int size) 1804 { 1805 __sock_kfree_s(sk, mem, size, true); 1806 } 1807 EXPORT_SYMBOL(sock_kzfree_s); 1808 1809 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1810 I think, these locks should be removed for datagram sockets. 1811 */ 1812 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1813 { 1814 DEFINE_WAIT(wait); 1815 1816 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1817 for (;;) { 1818 if (!timeo) 1819 break; 1820 if (signal_pending(current)) 1821 break; 1822 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1823 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1824 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1825 break; 1826 if (sk->sk_shutdown & SEND_SHUTDOWN) 1827 break; 1828 if (sk->sk_err) 1829 break; 1830 timeo = schedule_timeout(timeo); 1831 } 1832 finish_wait(sk_sleep(sk), &wait); 1833 return timeo; 1834 } 1835 1836 1837 /* 1838 * Generic send/receive buffer handlers 1839 */ 1840 1841 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1842 unsigned long data_len, int noblock, 1843 int *errcode, int max_page_order) 1844 { 1845 struct sk_buff *skb; 1846 long timeo; 1847 int err; 1848 1849 timeo = sock_sndtimeo(sk, noblock); 1850 for (;;) { 1851 err = sock_error(sk); 1852 if (err != 0) 1853 goto failure; 1854 1855 err = -EPIPE; 1856 if (sk->sk_shutdown & SEND_SHUTDOWN) 1857 goto failure; 1858 1859 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1860 break; 1861 1862 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1863 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1864 err = -EAGAIN; 1865 if (!timeo) 1866 goto failure; 1867 if (signal_pending(current)) 1868 goto interrupted; 1869 timeo = sock_wait_for_wmem(sk, timeo); 1870 } 1871 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1872 errcode, sk->sk_allocation); 1873 if (skb) 1874 skb_set_owner_w(skb, sk); 1875 return skb; 1876 1877 interrupted: 1878 err = sock_intr_errno(timeo); 1879 failure: 1880 *errcode = err; 1881 return NULL; 1882 } 1883 EXPORT_SYMBOL(sock_alloc_send_pskb); 1884 1885 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1886 int noblock, int *errcode) 1887 { 1888 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1889 } 1890 EXPORT_SYMBOL(sock_alloc_send_skb); 1891 1892 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1893 struct sockcm_cookie *sockc) 1894 { 1895 struct cmsghdr *cmsg; 1896 1897 for_each_cmsghdr(cmsg, msg) { 1898 if (!CMSG_OK(msg, cmsg)) 1899 return -EINVAL; 1900 if (cmsg->cmsg_level != SOL_SOCKET) 1901 continue; 1902 switch (cmsg->cmsg_type) { 1903 case SO_MARK: 1904 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1905 return -EPERM; 1906 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1907 return -EINVAL; 1908 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 1909 break; 1910 default: 1911 return -EINVAL; 1912 } 1913 } 1914 return 0; 1915 } 1916 EXPORT_SYMBOL(sock_cmsg_send); 1917 1918 /* On 32bit arches, an skb frag is limited to 2^15 */ 1919 #define SKB_FRAG_PAGE_ORDER get_order(32768) 1920 1921 /** 1922 * skb_page_frag_refill - check that a page_frag contains enough room 1923 * @sz: minimum size of the fragment we want to get 1924 * @pfrag: pointer to page_frag 1925 * @gfp: priority for memory allocation 1926 * 1927 * Note: While this allocator tries to use high order pages, there is 1928 * no guarantee that allocations succeed. Therefore, @sz MUST be 1929 * less or equal than PAGE_SIZE. 1930 */ 1931 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1932 { 1933 if (pfrag->page) { 1934 if (atomic_read(&pfrag->page->_count) == 1) { 1935 pfrag->offset = 0; 1936 return true; 1937 } 1938 if (pfrag->offset + sz <= pfrag->size) 1939 return true; 1940 put_page(pfrag->page); 1941 } 1942 1943 pfrag->offset = 0; 1944 if (SKB_FRAG_PAGE_ORDER) { 1945 /* Avoid direct reclaim but allow kswapd to wake */ 1946 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 1947 __GFP_COMP | __GFP_NOWARN | 1948 __GFP_NORETRY, 1949 SKB_FRAG_PAGE_ORDER); 1950 if (likely(pfrag->page)) { 1951 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 1952 return true; 1953 } 1954 } 1955 pfrag->page = alloc_page(gfp); 1956 if (likely(pfrag->page)) { 1957 pfrag->size = PAGE_SIZE; 1958 return true; 1959 } 1960 return false; 1961 } 1962 EXPORT_SYMBOL(skb_page_frag_refill); 1963 1964 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1965 { 1966 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 1967 return true; 1968 1969 sk_enter_memory_pressure(sk); 1970 sk_stream_moderate_sndbuf(sk); 1971 return false; 1972 } 1973 EXPORT_SYMBOL(sk_page_frag_refill); 1974 1975 static void __lock_sock(struct sock *sk) 1976 __releases(&sk->sk_lock.slock) 1977 __acquires(&sk->sk_lock.slock) 1978 { 1979 DEFINE_WAIT(wait); 1980 1981 for (;;) { 1982 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1983 TASK_UNINTERRUPTIBLE); 1984 spin_unlock_bh(&sk->sk_lock.slock); 1985 schedule(); 1986 spin_lock_bh(&sk->sk_lock.slock); 1987 if (!sock_owned_by_user(sk)) 1988 break; 1989 } 1990 finish_wait(&sk->sk_lock.wq, &wait); 1991 } 1992 1993 static void __release_sock(struct sock *sk) 1994 __releases(&sk->sk_lock.slock) 1995 __acquires(&sk->sk_lock.slock) 1996 { 1997 struct sk_buff *skb = sk->sk_backlog.head; 1998 1999 do { 2000 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2001 bh_unlock_sock(sk); 2002 2003 do { 2004 struct sk_buff *next = skb->next; 2005 2006 prefetch(next); 2007 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2008 skb->next = NULL; 2009 sk_backlog_rcv(sk, skb); 2010 2011 /* 2012 * We are in process context here with softirqs 2013 * disabled, use cond_resched_softirq() to preempt. 2014 * This is safe to do because we've taken the backlog 2015 * queue private: 2016 */ 2017 cond_resched_softirq(); 2018 2019 skb = next; 2020 } while (skb != NULL); 2021 2022 bh_lock_sock(sk); 2023 } while ((skb = sk->sk_backlog.head) != NULL); 2024 2025 /* 2026 * Doing the zeroing here guarantee we can not loop forever 2027 * while a wild producer attempts to flood us. 2028 */ 2029 sk->sk_backlog.len = 0; 2030 } 2031 2032 /** 2033 * sk_wait_data - wait for data to arrive at sk_receive_queue 2034 * @sk: sock to wait on 2035 * @timeo: for how long 2036 * @skb: last skb seen on sk_receive_queue 2037 * 2038 * Now socket state including sk->sk_err is changed only under lock, 2039 * hence we may omit checks after joining wait queue. 2040 * We check receive queue before schedule() only as optimization; 2041 * it is very likely that release_sock() added new data. 2042 */ 2043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2044 { 2045 int rc; 2046 DEFINE_WAIT(wait); 2047 2048 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2049 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2050 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb); 2051 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2052 finish_wait(sk_sleep(sk), &wait); 2053 return rc; 2054 } 2055 EXPORT_SYMBOL(sk_wait_data); 2056 2057 /** 2058 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2059 * @sk: socket 2060 * @size: memory size to allocate 2061 * @kind: allocation type 2062 * 2063 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2064 * rmem allocation. This function assumes that protocols which have 2065 * memory_pressure use sk_wmem_queued as write buffer accounting. 2066 */ 2067 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2068 { 2069 struct proto *prot = sk->sk_prot; 2070 int amt = sk_mem_pages(size); 2071 long allocated; 2072 int parent_status = UNDER_LIMIT; 2073 2074 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2075 2076 allocated = sk_memory_allocated_add(sk, amt, &parent_status); 2077 2078 /* Under limit. */ 2079 if (parent_status == UNDER_LIMIT && 2080 allocated <= sk_prot_mem_limits(sk, 0)) { 2081 sk_leave_memory_pressure(sk); 2082 return 1; 2083 } 2084 2085 /* Under pressure. (we or our parents) */ 2086 if ((parent_status > SOFT_LIMIT) || 2087 allocated > sk_prot_mem_limits(sk, 1)) 2088 sk_enter_memory_pressure(sk); 2089 2090 /* Over hard limit (we or our parents) */ 2091 if ((parent_status == OVER_LIMIT) || 2092 (allocated > sk_prot_mem_limits(sk, 2))) 2093 goto suppress_allocation; 2094 2095 /* guarantee minimum buffer size under pressure */ 2096 if (kind == SK_MEM_RECV) { 2097 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2098 return 1; 2099 2100 } else { /* SK_MEM_SEND */ 2101 if (sk->sk_type == SOCK_STREAM) { 2102 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2103 return 1; 2104 } else if (atomic_read(&sk->sk_wmem_alloc) < 2105 prot->sysctl_wmem[0]) 2106 return 1; 2107 } 2108 2109 if (sk_has_memory_pressure(sk)) { 2110 int alloc; 2111 2112 if (!sk_under_memory_pressure(sk)) 2113 return 1; 2114 alloc = sk_sockets_allocated_read_positive(sk); 2115 if (sk_prot_mem_limits(sk, 2) > alloc * 2116 sk_mem_pages(sk->sk_wmem_queued + 2117 atomic_read(&sk->sk_rmem_alloc) + 2118 sk->sk_forward_alloc)) 2119 return 1; 2120 } 2121 2122 suppress_allocation: 2123 2124 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2125 sk_stream_moderate_sndbuf(sk); 2126 2127 /* Fail only if socket is _under_ its sndbuf. 2128 * In this case we cannot block, so that we have to fail. 2129 */ 2130 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2131 return 1; 2132 } 2133 2134 trace_sock_exceed_buf_limit(sk, prot, allocated); 2135 2136 /* Alas. Undo changes. */ 2137 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 2138 2139 sk_memory_allocated_sub(sk, amt); 2140 2141 return 0; 2142 } 2143 EXPORT_SYMBOL(__sk_mem_schedule); 2144 2145 /** 2146 * __sk_mem_reclaim - reclaim memory_allocated 2147 * @sk: socket 2148 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2149 */ 2150 void __sk_mem_reclaim(struct sock *sk, int amount) 2151 { 2152 amount >>= SK_MEM_QUANTUM_SHIFT; 2153 sk_memory_allocated_sub(sk, amount); 2154 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2155 2156 if (sk_under_memory_pressure(sk) && 2157 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2158 sk_leave_memory_pressure(sk); 2159 } 2160 EXPORT_SYMBOL(__sk_mem_reclaim); 2161 2162 2163 /* 2164 * Set of default routines for initialising struct proto_ops when 2165 * the protocol does not support a particular function. In certain 2166 * cases where it makes no sense for a protocol to have a "do nothing" 2167 * function, some default processing is provided. 2168 */ 2169 2170 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2171 { 2172 return -EOPNOTSUPP; 2173 } 2174 EXPORT_SYMBOL(sock_no_bind); 2175 2176 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2177 int len, int flags) 2178 { 2179 return -EOPNOTSUPP; 2180 } 2181 EXPORT_SYMBOL(sock_no_connect); 2182 2183 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2184 { 2185 return -EOPNOTSUPP; 2186 } 2187 EXPORT_SYMBOL(sock_no_socketpair); 2188 2189 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2190 { 2191 return -EOPNOTSUPP; 2192 } 2193 EXPORT_SYMBOL(sock_no_accept); 2194 2195 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2196 int *len, int peer) 2197 { 2198 return -EOPNOTSUPP; 2199 } 2200 EXPORT_SYMBOL(sock_no_getname); 2201 2202 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2203 { 2204 return 0; 2205 } 2206 EXPORT_SYMBOL(sock_no_poll); 2207 2208 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2209 { 2210 return -EOPNOTSUPP; 2211 } 2212 EXPORT_SYMBOL(sock_no_ioctl); 2213 2214 int sock_no_listen(struct socket *sock, int backlog) 2215 { 2216 return -EOPNOTSUPP; 2217 } 2218 EXPORT_SYMBOL(sock_no_listen); 2219 2220 int sock_no_shutdown(struct socket *sock, int how) 2221 { 2222 return -EOPNOTSUPP; 2223 } 2224 EXPORT_SYMBOL(sock_no_shutdown); 2225 2226 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2227 char __user *optval, unsigned int optlen) 2228 { 2229 return -EOPNOTSUPP; 2230 } 2231 EXPORT_SYMBOL(sock_no_setsockopt); 2232 2233 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2234 char __user *optval, int __user *optlen) 2235 { 2236 return -EOPNOTSUPP; 2237 } 2238 EXPORT_SYMBOL(sock_no_getsockopt); 2239 2240 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2241 { 2242 return -EOPNOTSUPP; 2243 } 2244 EXPORT_SYMBOL(sock_no_sendmsg); 2245 2246 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2247 int flags) 2248 { 2249 return -EOPNOTSUPP; 2250 } 2251 EXPORT_SYMBOL(sock_no_recvmsg); 2252 2253 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2254 { 2255 /* Mirror missing mmap method error code */ 2256 return -ENODEV; 2257 } 2258 EXPORT_SYMBOL(sock_no_mmap); 2259 2260 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2261 { 2262 ssize_t res; 2263 struct msghdr msg = {.msg_flags = flags}; 2264 struct kvec iov; 2265 char *kaddr = kmap(page); 2266 iov.iov_base = kaddr + offset; 2267 iov.iov_len = size; 2268 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2269 kunmap(page); 2270 return res; 2271 } 2272 EXPORT_SYMBOL(sock_no_sendpage); 2273 2274 /* 2275 * Default Socket Callbacks 2276 */ 2277 2278 static void sock_def_wakeup(struct sock *sk) 2279 { 2280 struct socket_wq *wq; 2281 2282 rcu_read_lock(); 2283 wq = rcu_dereference(sk->sk_wq); 2284 if (wq_has_sleeper(wq)) 2285 wake_up_interruptible_all(&wq->wait); 2286 rcu_read_unlock(); 2287 } 2288 2289 static void sock_def_error_report(struct sock *sk) 2290 { 2291 struct socket_wq *wq; 2292 2293 rcu_read_lock(); 2294 wq = rcu_dereference(sk->sk_wq); 2295 if (wq_has_sleeper(wq)) 2296 wake_up_interruptible_poll(&wq->wait, POLLERR); 2297 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2298 rcu_read_unlock(); 2299 } 2300 2301 static void sock_def_readable(struct sock *sk) 2302 { 2303 struct socket_wq *wq; 2304 2305 rcu_read_lock(); 2306 wq = rcu_dereference(sk->sk_wq); 2307 if (wq_has_sleeper(wq)) 2308 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2309 POLLRDNORM | POLLRDBAND); 2310 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2311 rcu_read_unlock(); 2312 } 2313 2314 static void sock_def_write_space(struct sock *sk) 2315 { 2316 struct socket_wq *wq; 2317 2318 rcu_read_lock(); 2319 2320 /* Do not wake up a writer until he can make "significant" 2321 * progress. --DaveM 2322 */ 2323 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2324 wq = rcu_dereference(sk->sk_wq); 2325 if (wq_has_sleeper(wq)) 2326 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2327 POLLWRNORM | POLLWRBAND); 2328 2329 /* Should agree with poll, otherwise some programs break */ 2330 if (sock_writeable(sk)) 2331 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2332 } 2333 2334 rcu_read_unlock(); 2335 } 2336 2337 static void sock_def_destruct(struct sock *sk) 2338 { 2339 } 2340 2341 void sk_send_sigurg(struct sock *sk) 2342 { 2343 if (sk->sk_socket && sk->sk_socket->file) 2344 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2345 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2346 } 2347 EXPORT_SYMBOL(sk_send_sigurg); 2348 2349 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2350 unsigned long expires) 2351 { 2352 if (!mod_timer(timer, expires)) 2353 sock_hold(sk); 2354 } 2355 EXPORT_SYMBOL(sk_reset_timer); 2356 2357 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2358 { 2359 if (del_timer(timer)) 2360 __sock_put(sk); 2361 } 2362 EXPORT_SYMBOL(sk_stop_timer); 2363 2364 void sock_init_data(struct socket *sock, struct sock *sk) 2365 { 2366 skb_queue_head_init(&sk->sk_receive_queue); 2367 skb_queue_head_init(&sk->sk_write_queue); 2368 skb_queue_head_init(&sk->sk_error_queue); 2369 2370 sk->sk_send_head = NULL; 2371 2372 init_timer(&sk->sk_timer); 2373 2374 sk->sk_allocation = GFP_KERNEL; 2375 sk->sk_rcvbuf = sysctl_rmem_default; 2376 sk->sk_sndbuf = sysctl_wmem_default; 2377 sk->sk_state = TCP_CLOSE; 2378 sk_set_socket(sk, sock); 2379 2380 sock_set_flag(sk, SOCK_ZAPPED); 2381 2382 if (sock) { 2383 sk->sk_type = sock->type; 2384 sk->sk_wq = sock->wq; 2385 sock->sk = sk; 2386 } else 2387 sk->sk_wq = NULL; 2388 2389 rwlock_init(&sk->sk_callback_lock); 2390 lockdep_set_class_and_name(&sk->sk_callback_lock, 2391 af_callback_keys + sk->sk_family, 2392 af_family_clock_key_strings[sk->sk_family]); 2393 2394 sk->sk_state_change = sock_def_wakeup; 2395 sk->sk_data_ready = sock_def_readable; 2396 sk->sk_write_space = sock_def_write_space; 2397 sk->sk_error_report = sock_def_error_report; 2398 sk->sk_destruct = sock_def_destruct; 2399 2400 sk->sk_frag.page = NULL; 2401 sk->sk_frag.offset = 0; 2402 sk->sk_peek_off = -1; 2403 2404 sk->sk_peer_pid = NULL; 2405 sk->sk_peer_cred = NULL; 2406 sk->sk_write_pending = 0; 2407 sk->sk_rcvlowat = 1; 2408 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2409 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2410 2411 sk->sk_stamp = ktime_set(-1L, 0); 2412 2413 #ifdef CONFIG_NET_RX_BUSY_POLL 2414 sk->sk_napi_id = 0; 2415 sk->sk_ll_usec = sysctl_net_busy_read; 2416 #endif 2417 2418 sk->sk_max_pacing_rate = ~0U; 2419 sk->sk_pacing_rate = ~0U; 2420 sk->sk_incoming_cpu = -1; 2421 /* 2422 * Before updating sk_refcnt, we must commit prior changes to memory 2423 * (Documentation/RCU/rculist_nulls.txt for details) 2424 */ 2425 smp_wmb(); 2426 atomic_set(&sk->sk_refcnt, 1); 2427 atomic_set(&sk->sk_drops, 0); 2428 } 2429 EXPORT_SYMBOL(sock_init_data); 2430 2431 void lock_sock_nested(struct sock *sk, int subclass) 2432 { 2433 might_sleep(); 2434 spin_lock_bh(&sk->sk_lock.slock); 2435 if (sk->sk_lock.owned) 2436 __lock_sock(sk); 2437 sk->sk_lock.owned = 1; 2438 spin_unlock(&sk->sk_lock.slock); 2439 /* 2440 * The sk_lock has mutex_lock() semantics here: 2441 */ 2442 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2443 local_bh_enable(); 2444 } 2445 EXPORT_SYMBOL(lock_sock_nested); 2446 2447 void release_sock(struct sock *sk) 2448 { 2449 /* 2450 * The sk_lock has mutex_unlock() semantics: 2451 */ 2452 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 2453 2454 spin_lock_bh(&sk->sk_lock.slock); 2455 if (sk->sk_backlog.tail) 2456 __release_sock(sk); 2457 2458 /* Warning : release_cb() might need to release sk ownership, 2459 * ie call sock_release_ownership(sk) before us. 2460 */ 2461 if (sk->sk_prot->release_cb) 2462 sk->sk_prot->release_cb(sk); 2463 2464 sock_release_ownership(sk); 2465 if (waitqueue_active(&sk->sk_lock.wq)) 2466 wake_up(&sk->sk_lock.wq); 2467 spin_unlock_bh(&sk->sk_lock.slock); 2468 } 2469 EXPORT_SYMBOL(release_sock); 2470 2471 /** 2472 * lock_sock_fast - fast version of lock_sock 2473 * @sk: socket 2474 * 2475 * This version should be used for very small section, where process wont block 2476 * return false if fast path is taken 2477 * sk_lock.slock locked, owned = 0, BH disabled 2478 * return true if slow path is taken 2479 * sk_lock.slock unlocked, owned = 1, BH enabled 2480 */ 2481 bool lock_sock_fast(struct sock *sk) 2482 { 2483 might_sleep(); 2484 spin_lock_bh(&sk->sk_lock.slock); 2485 2486 if (!sk->sk_lock.owned) 2487 /* 2488 * Note : We must disable BH 2489 */ 2490 return false; 2491 2492 __lock_sock(sk); 2493 sk->sk_lock.owned = 1; 2494 spin_unlock(&sk->sk_lock.slock); 2495 /* 2496 * The sk_lock has mutex_lock() semantics here: 2497 */ 2498 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2499 local_bh_enable(); 2500 return true; 2501 } 2502 EXPORT_SYMBOL(lock_sock_fast); 2503 2504 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2505 { 2506 struct timeval tv; 2507 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2508 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2509 tv = ktime_to_timeval(sk->sk_stamp); 2510 if (tv.tv_sec == -1) 2511 return -ENOENT; 2512 if (tv.tv_sec == 0) { 2513 sk->sk_stamp = ktime_get_real(); 2514 tv = ktime_to_timeval(sk->sk_stamp); 2515 } 2516 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2517 } 2518 EXPORT_SYMBOL(sock_get_timestamp); 2519 2520 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2521 { 2522 struct timespec ts; 2523 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2524 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2525 ts = ktime_to_timespec(sk->sk_stamp); 2526 if (ts.tv_sec == -1) 2527 return -ENOENT; 2528 if (ts.tv_sec == 0) { 2529 sk->sk_stamp = ktime_get_real(); 2530 ts = ktime_to_timespec(sk->sk_stamp); 2531 } 2532 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2533 } 2534 EXPORT_SYMBOL(sock_get_timestampns); 2535 2536 void sock_enable_timestamp(struct sock *sk, int flag) 2537 { 2538 if (!sock_flag(sk, flag)) { 2539 unsigned long previous_flags = sk->sk_flags; 2540 2541 sock_set_flag(sk, flag); 2542 /* 2543 * we just set one of the two flags which require net 2544 * time stamping, but time stamping might have been on 2545 * already because of the other one 2546 */ 2547 if (sock_needs_netstamp(sk) && 2548 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2549 net_enable_timestamp(); 2550 } 2551 } 2552 2553 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2554 int level, int type) 2555 { 2556 struct sock_exterr_skb *serr; 2557 struct sk_buff *skb; 2558 int copied, err; 2559 2560 err = -EAGAIN; 2561 skb = sock_dequeue_err_skb(sk); 2562 if (skb == NULL) 2563 goto out; 2564 2565 copied = skb->len; 2566 if (copied > len) { 2567 msg->msg_flags |= MSG_TRUNC; 2568 copied = len; 2569 } 2570 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2571 if (err) 2572 goto out_free_skb; 2573 2574 sock_recv_timestamp(msg, sk, skb); 2575 2576 serr = SKB_EXT_ERR(skb); 2577 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2578 2579 msg->msg_flags |= MSG_ERRQUEUE; 2580 err = copied; 2581 2582 out_free_skb: 2583 kfree_skb(skb); 2584 out: 2585 return err; 2586 } 2587 EXPORT_SYMBOL(sock_recv_errqueue); 2588 2589 /* 2590 * Get a socket option on an socket. 2591 * 2592 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2593 * asynchronous errors should be reported by getsockopt. We assume 2594 * this means if you specify SO_ERROR (otherwise whats the point of it). 2595 */ 2596 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2597 char __user *optval, int __user *optlen) 2598 { 2599 struct sock *sk = sock->sk; 2600 2601 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2602 } 2603 EXPORT_SYMBOL(sock_common_getsockopt); 2604 2605 #ifdef CONFIG_COMPAT 2606 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2607 char __user *optval, int __user *optlen) 2608 { 2609 struct sock *sk = sock->sk; 2610 2611 if (sk->sk_prot->compat_getsockopt != NULL) 2612 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2613 optval, optlen); 2614 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2615 } 2616 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2617 #endif 2618 2619 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2620 int flags) 2621 { 2622 struct sock *sk = sock->sk; 2623 int addr_len = 0; 2624 int err; 2625 2626 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2627 flags & ~MSG_DONTWAIT, &addr_len); 2628 if (err >= 0) 2629 msg->msg_namelen = addr_len; 2630 return err; 2631 } 2632 EXPORT_SYMBOL(sock_common_recvmsg); 2633 2634 /* 2635 * Set socket options on an inet socket. 2636 */ 2637 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2638 char __user *optval, unsigned int optlen) 2639 { 2640 struct sock *sk = sock->sk; 2641 2642 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2643 } 2644 EXPORT_SYMBOL(sock_common_setsockopt); 2645 2646 #ifdef CONFIG_COMPAT 2647 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2648 char __user *optval, unsigned int optlen) 2649 { 2650 struct sock *sk = sock->sk; 2651 2652 if (sk->sk_prot->compat_setsockopt != NULL) 2653 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2654 optval, optlen); 2655 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2656 } 2657 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2658 #endif 2659 2660 void sk_common_release(struct sock *sk) 2661 { 2662 if (sk->sk_prot->destroy) 2663 sk->sk_prot->destroy(sk); 2664 2665 /* 2666 * Observation: when sock_common_release is called, processes have 2667 * no access to socket. But net still has. 2668 * Step one, detach it from networking: 2669 * 2670 * A. Remove from hash tables. 2671 */ 2672 2673 sk->sk_prot->unhash(sk); 2674 2675 /* 2676 * In this point socket cannot receive new packets, but it is possible 2677 * that some packets are in flight because some CPU runs receiver and 2678 * did hash table lookup before we unhashed socket. They will achieve 2679 * receive queue and will be purged by socket destructor. 2680 * 2681 * Also we still have packets pending on receive queue and probably, 2682 * our own packets waiting in device queues. sock_destroy will drain 2683 * receive queue, but transmitted packets will delay socket destruction 2684 * until the last reference will be released. 2685 */ 2686 2687 sock_orphan(sk); 2688 2689 xfrm_sk_free_policy(sk); 2690 2691 sk_refcnt_debug_release(sk); 2692 2693 if (sk->sk_frag.page) { 2694 put_page(sk->sk_frag.page); 2695 sk->sk_frag.page = NULL; 2696 } 2697 2698 sock_put(sk); 2699 } 2700 EXPORT_SYMBOL(sk_common_release); 2701 2702 #ifdef CONFIG_PROC_FS 2703 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2704 struct prot_inuse { 2705 int val[PROTO_INUSE_NR]; 2706 }; 2707 2708 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2709 2710 #ifdef CONFIG_NET_NS 2711 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2712 { 2713 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2714 } 2715 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2716 2717 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2718 { 2719 int cpu, idx = prot->inuse_idx; 2720 int res = 0; 2721 2722 for_each_possible_cpu(cpu) 2723 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2724 2725 return res >= 0 ? res : 0; 2726 } 2727 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2728 2729 static int __net_init sock_inuse_init_net(struct net *net) 2730 { 2731 net->core.inuse = alloc_percpu(struct prot_inuse); 2732 return net->core.inuse ? 0 : -ENOMEM; 2733 } 2734 2735 static void __net_exit sock_inuse_exit_net(struct net *net) 2736 { 2737 free_percpu(net->core.inuse); 2738 } 2739 2740 static struct pernet_operations net_inuse_ops = { 2741 .init = sock_inuse_init_net, 2742 .exit = sock_inuse_exit_net, 2743 }; 2744 2745 static __init int net_inuse_init(void) 2746 { 2747 if (register_pernet_subsys(&net_inuse_ops)) 2748 panic("Cannot initialize net inuse counters"); 2749 2750 return 0; 2751 } 2752 2753 core_initcall(net_inuse_init); 2754 #else 2755 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2756 2757 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2758 { 2759 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2760 } 2761 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2762 2763 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2764 { 2765 int cpu, idx = prot->inuse_idx; 2766 int res = 0; 2767 2768 for_each_possible_cpu(cpu) 2769 res += per_cpu(prot_inuse, cpu).val[idx]; 2770 2771 return res >= 0 ? res : 0; 2772 } 2773 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2774 #endif 2775 2776 static void assign_proto_idx(struct proto *prot) 2777 { 2778 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2779 2780 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2781 pr_err("PROTO_INUSE_NR exhausted\n"); 2782 return; 2783 } 2784 2785 set_bit(prot->inuse_idx, proto_inuse_idx); 2786 } 2787 2788 static void release_proto_idx(struct proto *prot) 2789 { 2790 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2791 clear_bit(prot->inuse_idx, proto_inuse_idx); 2792 } 2793 #else 2794 static inline void assign_proto_idx(struct proto *prot) 2795 { 2796 } 2797 2798 static inline void release_proto_idx(struct proto *prot) 2799 { 2800 } 2801 #endif 2802 2803 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2804 { 2805 if (!rsk_prot) 2806 return; 2807 kfree(rsk_prot->slab_name); 2808 rsk_prot->slab_name = NULL; 2809 kmem_cache_destroy(rsk_prot->slab); 2810 rsk_prot->slab = NULL; 2811 } 2812 2813 static int req_prot_init(const struct proto *prot) 2814 { 2815 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2816 2817 if (!rsk_prot) 2818 return 0; 2819 2820 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2821 prot->name); 2822 if (!rsk_prot->slab_name) 2823 return -ENOMEM; 2824 2825 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2826 rsk_prot->obj_size, 0, 2827 prot->slab_flags, NULL); 2828 2829 if (!rsk_prot->slab) { 2830 pr_crit("%s: Can't create request sock SLAB cache!\n", 2831 prot->name); 2832 return -ENOMEM; 2833 } 2834 return 0; 2835 } 2836 2837 int proto_register(struct proto *prot, int alloc_slab) 2838 { 2839 if (alloc_slab) { 2840 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2841 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2842 NULL); 2843 2844 if (prot->slab == NULL) { 2845 pr_crit("%s: Can't create sock SLAB cache!\n", 2846 prot->name); 2847 goto out; 2848 } 2849 2850 if (req_prot_init(prot)) 2851 goto out_free_request_sock_slab; 2852 2853 if (prot->twsk_prot != NULL) { 2854 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2855 2856 if (prot->twsk_prot->twsk_slab_name == NULL) 2857 goto out_free_request_sock_slab; 2858 2859 prot->twsk_prot->twsk_slab = 2860 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2861 prot->twsk_prot->twsk_obj_size, 2862 0, 2863 prot->slab_flags, 2864 NULL); 2865 if (prot->twsk_prot->twsk_slab == NULL) 2866 goto out_free_timewait_sock_slab_name; 2867 } 2868 } 2869 2870 mutex_lock(&proto_list_mutex); 2871 list_add(&prot->node, &proto_list); 2872 assign_proto_idx(prot); 2873 mutex_unlock(&proto_list_mutex); 2874 return 0; 2875 2876 out_free_timewait_sock_slab_name: 2877 kfree(prot->twsk_prot->twsk_slab_name); 2878 out_free_request_sock_slab: 2879 req_prot_cleanup(prot->rsk_prot); 2880 2881 kmem_cache_destroy(prot->slab); 2882 prot->slab = NULL; 2883 out: 2884 return -ENOBUFS; 2885 } 2886 EXPORT_SYMBOL(proto_register); 2887 2888 void proto_unregister(struct proto *prot) 2889 { 2890 mutex_lock(&proto_list_mutex); 2891 release_proto_idx(prot); 2892 list_del(&prot->node); 2893 mutex_unlock(&proto_list_mutex); 2894 2895 kmem_cache_destroy(prot->slab); 2896 prot->slab = NULL; 2897 2898 req_prot_cleanup(prot->rsk_prot); 2899 2900 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2901 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2902 kfree(prot->twsk_prot->twsk_slab_name); 2903 prot->twsk_prot->twsk_slab = NULL; 2904 } 2905 } 2906 EXPORT_SYMBOL(proto_unregister); 2907 2908 #ifdef CONFIG_PROC_FS 2909 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2910 __acquires(proto_list_mutex) 2911 { 2912 mutex_lock(&proto_list_mutex); 2913 return seq_list_start_head(&proto_list, *pos); 2914 } 2915 2916 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2917 { 2918 return seq_list_next(v, &proto_list, pos); 2919 } 2920 2921 static void proto_seq_stop(struct seq_file *seq, void *v) 2922 __releases(proto_list_mutex) 2923 { 2924 mutex_unlock(&proto_list_mutex); 2925 } 2926 2927 static char proto_method_implemented(const void *method) 2928 { 2929 return method == NULL ? 'n' : 'y'; 2930 } 2931 static long sock_prot_memory_allocated(struct proto *proto) 2932 { 2933 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 2934 } 2935 2936 static char *sock_prot_memory_pressure(struct proto *proto) 2937 { 2938 return proto->memory_pressure != NULL ? 2939 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 2940 } 2941 2942 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2943 { 2944 2945 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 2946 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2947 proto->name, 2948 proto->obj_size, 2949 sock_prot_inuse_get(seq_file_net(seq), proto), 2950 sock_prot_memory_allocated(proto), 2951 sock_prot_memory_pressure(proto), 2952 proto->max_header, 2953 proto->slab == NULL ? "no" : "yes", 2954 module_name(proto->owner), 2955 proto_method_implemented(proto->close), 2956 proto_method_implemented(proto->connect), 2957 proto_method_implemented(proto->disconnect), 2958 proto_method_implemented(proto->accept), 2959 proto_method_implemented(proto->ioctl), 2960 proto_method_implemented(proto->init), 2961 proto_method_implemented(proto->destroy), 2962 proto_method_implemented(proto->shutdown), 2963 proto_method_implemented(proto->setsockopt), 2964 proto_method_implemented(proto->getsockopt), 2965 proto_method_implemented(proto->sendmsg), 2966 proto_method_implemented(proto->recvmsg), 2967 proto_method_implemented(proto->sendpage), 2968 proto_method_implemented(proto->bind), 2969 proto_method_implemented(proto->backlog_rcv), 2970 proto_method_implemented(proto->hash), 2971 proto_method_implemented(proto->unhash), 2972 proto_method_implemented(proto->get_port), 2973 proto_method_implemented(proto->enter_memory_pressure)); 2974 } 2975 2976 static int proto_seq_show(struct seq_file *seq, void *v) 2977 { 2978 if (v == &proto_list) 2979 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2980 "protocol", 2981 "size", 2982 "sockets", 2983 "memory", 2984 "press", 2985 "maxhdr", 2986 "slab", 2987 "module", 2988 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2989 else 2990 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2991 return 0; 2992 } 2993 2994 static const struct seq_operations proto_seq_ops = { 2995 .start = proto_seq_start, 2996 .next = proto_seq_next, 2997 .stop = proto_seq_stop, 2998 .show = proto_seq_show, 2999 }; 3000 3001 static int proto_seq_open(struct inode *inode, struct file *file) 3002 { 3003 return seq_open_net(inode, file, &proto_seq_ops, 3004 sizeof(struct seq_net_private)); 3005 } 3006 3007 static const struct file_operations proto_seq_fops = { 3008 .owner = THIS_MODULE, 3009 .open = proto_seq_open, 3010 .read = seq_read, 3011 .llseek = seq_lseek, 3012 .release = seq_release_net, 3013 }; 3014 3015 static __net_init int proto_init_net(struct net *net) 3016 { 3017 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3018 return -ENOMEM; 3019 3020 return 0; 3021 } 3022 3023 static __net_exit void proto_exit_net(struct net *net) 3024 { 3025 remove_proc_entry("protocols", net->proc_net); 3026 } 3027 3028 3029 static __net_initdata struct pernet_operations proto_net_ops = { 3030 .init = proto_init_net, 3031 .exit = proto_exit_net, 3032 }; 3033 3034 static int __init proto_init(void) 3035 { 3036 return register_pernet_subsys(&proto_net_ops); 3037 } 3038 3039 subsys_initcall(proto_init); 3040 3041 #endif /* PROC_FS */ 3042