xref: /openbmc/linux/net/core/sock.c (revision 1491eaf9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 		     const int nested, unsigned int trim_cap)
457 {
458 	int rc = NET_RX_SUCCESS;
459 
460 	if (sk_filter_trim_cap(sk, skb, trim_cap))
461 		goto discard_and_relse;
462 
463 	skb->dev = NULL;
464 
465 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 		atomic_inc(&sk->sk_drops);
467 		goto discard_and_relse;
468 	}
469 	if (nested)
470 		bh_lock_sock_nested(sk);
471 	else
472 		bh_lock_sock(sk);
473 	if (!sock_owned_by_user(sk)) {
474 		/*
475 		 * trylock + unlock semantics:
476 		 */
477 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479 		rc = sk_backlog_rcv(sk, skb);
480 
481 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 		bh_unlock_sock(sk);
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 
488 	bh_unlock_sock(sk);
489 out:
490 	sock_put(sk);
491 	return rc;
492 discard_and_relse:
493 	kfree_skb(skb);
494 	goto out;
495 }
496 EXPORT_SYMBOL(__sk_receive_skb);
497 
498 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
499 {
500 	struct dst_entry *dst = __sk_dst_get(sk);
501 
502 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
503 		sk_tx_queue_clear(sk);
504 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
505 		dst_release(dst);
506 		return NULL;
507 	}
508 
509 	return dst;
510 }
511 EXPORT_SYMBOL(__sk_dst_check);
512 
513 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
514 {
515 	struct dst_entry *dst = sk_dst_get(sk);
516 
517 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
518 		sk_dst_reset(sk);
519 		dst_release(dst);
520 		return NULL;
521 	}
522 
523 	return dst;
524 }
525 EXPORT_SYMBOL(sk_dst_check);
526 
527 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
528 				int optlen)
529 {
530 	int ret = -ENOPROTOOPT;
531 #ifdef CONFIG_NETDEVICES
532 	struct net *net = sock_net(sk);
533 	char devname[IFNAMSIZ];
534 	int index;
535 
536 	/* Sorry... */
537 	ret = -EPERM;
538 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
539 		goto out;
540 
541 	ret = -EINVAL;
542 	if (optlen < 0)
543 		goto out;
544 
545 	/* Bind this socket to a particular device like "eth0",
546 	 * as specified in the passed interface name. If the
547 	 * name is "" or the option length is zero the socket
548 	 * is not bound.
549 	 */
550 	if (optlen > IFNAMSIZ - 1)
551 		optlen = IFNAMSIZ - 1;
552 	memset(devname, 0, sizeof(devname));
553 
554 	ret = -EFAULT;
555 	if (copy_from_user(devname, optval, optlen))
556 		goto out;
557 
558 	index = 0;
559 	if (devname[0] != '\0') {
560 		struct net_device *dev;
561 
562 		rcu_read_lock();
563 		dev = dev_get_by_name_rcu(net, devname);
564 		if (dev)
565 			index = dev->ifindex;
566 		rcu_read_unlock();
567 		ret = -ENODEV;
568 		if (!dev)
569 			goto out;
570 	}
571 
572 	lock_sock(sk);
573 	sk->sk_bound_dev_if = index;
574 	sk_dst_reset(sk);
575 	release_sock(sk);
576 
577 	ret = 0;
578 
579 out:
580 #endif
581 
582 	return ret;
583 }
584 
585 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
586 				int __user *optlen, int len)
587 {
588 	int ret = -ENOPROTOOPT;
589 #ifdef CONFIG_NETDEVICES
590 	struct net *net = sock_net(sk);
591 	char devname[IFNAMSIZ];
592 
593 	if (sk->sk_bound_dev_if == 0) {
594 		len = 0;
595 		goto zero;
596 	}
597 
598 	ret = -EINVAL;
599 	if (len < IFNAMSIZ)
600 		goto out;
601 
602 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
603 	if (ret)
604 		goto out;
605 
606 	len = strlen(devname) + 1;
607 
608 	ret = -EFAULT;
609 	if (copy_to_user(optval, devname, len))
610 		goto out;
611 
612 zero:
613 	ret = -EFAULT;
614 	if (put_user(len, optlen))
615 		goto out;
616 
617 	ret = 0;
618 
619 out:
620 #endif
621 
622 	return ret;
623 }
624 
625 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
626 {
627 	if (valbool)
628 		sock_set_flag(sk, bit);
629 	else
630 		sock_reset_flag(sk, bit);
631 }
632 
633 bool sk_mc_loop(struct sock *sk)
634 {
635 	if (dev_recursion_level())
636 		return false;
637 	if (!sk)
638 		return true;
639 	switch (sk->sk_family) {
640 	case AF_INET:
641 		return inet_sk(sk)->mc_loop;
642 #if IS_ENABLED(CONFIG_IPV6)
643 	case AF_INET6:
644 		return inet6_sk(sk)->mc_loop;
645 #endif
646 	}
647 	WARN_ON(1);
648 	return true;
649 }
650 EXPORT_SYMBOL(sk_mc_loop);
651 
652 /*
653  *	This is meant for all protocols to use and covers goings on
654  *	at the socket level. Everything here is generic.
655  */
656 
657 int sock_setsockopt(struct socket *sock, int level, int optname,
658 		    char __user *optval, unsigned int optlen)
659 {
660 	struct sock *sk = sock->sk;
661 	int val;
662 	int valbool;
663 	struct linger ling;
664 	int ret = 0;
665 
666 	/*
667 	 *	Options without arguments
668 	 */
669 
670 	if (optname == SO_BINDTODEVICE)
671 		return sock_setbindtodevice(sk, optval, optlen);
672 
673 	if (optlen < sizeof(int))
674 		return -EINVAL;
675 
676 	if (get_user(val, (int __user *)optval))
677 		return -EFAULT;
678 
679 	valbool = val ? 1 : 0;
680 
681 	lock_sock(sk);
682 
683 	switch (optname) {
684 	case SO_DEBUG:
685 		if (val && !capable(CAP_NET_ADMIN))
686 			ret = -EACCES;
687 		else
688 			sock_valbool_flag(sk, SOCK_DBG, valbool);
689 		break;
690 	case SO_REUSEADDR:
691 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
692 		break;
693 	case SO_REUSEPORT:
694 		sk->sk_reuseport = valbool;
695 		break;
696 	case SO_TYPE:
697 	case SO_PROTOCOL:
698 	case SO_DOMAIN:
699 	case SO_ERROR:
700 		ret = -ENOPROTOOPT;
701 		break;
702 	case SO_DONTROUTE:
703 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
704 		break;
705 	case SO_BROADCAST:
706 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
707 		break;
708 	case SO_SNDBUF:
709 		/* Don't error on this BSD doesn't and if you think
710 		 * about it this is right. Otherwise apps have to
711 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
712 		 * are treated in BSD as hints
713 		 */
714 		val = min_t(u32, val, sysctl_wmem_max);
715 set_sndbuf:
716 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
717 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
718 		/* Wake up sending tasks if we upped the value. */
719 		sk->sk_write_space(sk);
720 		break;
721 
722 	case SO_SNDBUFFORCE:
723 		if (!capable(CAP_NET_ADMIN)) {
724 			ret = -EPERM;
725 			break;
726 		}
727 		goto set_sndbuf;
728 
729 	case SO_RCVBUF:
730 		/* Don't error on this BSD doesn't and if you think
731 		 * about it this is right. Otherwise apps have to
732 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
733 		 * are treated in BSD as hints
734 		 */
735 		val = min_t(u32, val, sysctl_rmem_max);
736 set_rcvbuf:
737 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
738 		/*
739 		 * We double it on the way in to account for
740 		 * "struct sk_buff" etc. overhead.   Applications
741 		 * assume that the SO_RCVBUF setting they make will
742 		 * allow that much actual data to be received on that
743 		 * socket.
744 		 *
745 		 * Applications are unaware that "struct sk_buff" and
746 		 * other overheads allocate from the receive buffer
747 		 * during socket buffer allocation.
748 		 *
749 		 * And after considering the possible alternatives,
750 		 * returning the value we actually used in getsockopt
751 		 * is the most desirable behavior.
752 		 */
753 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
754 		break;
755 
756 	case SO_RCVBUFFORCE:
757 		if (!capable(CAP_NET_ADMIN)) {
758 			ret = -EPERM;
759 			break;
760 		}
761 		goto set_rcvbuf;
762 
763 	case SO_KEEPALIVE:
764 #ifdef CONFIG_INET
765 		if (sk->sk_protocol == IPPROTO_TCP &&
766 		    sk->sk_type == SOCK_STREAM)
767 			tcp_set_keepalive(sk, valbool);
768 #endif
769 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
770 		break;
771 
772 	case SO_OOBINLINE:
773 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
774 		break;
775 
776 	case SO_NO_CHECK:
777 		sk->sk_no_check_tx = valbool;
778 		break;
779 
780 	case SO_PRIORITY:
781 		if ((val >= 0 && val <= 6) ||
782 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
783 			sk->sk_priority = val;
784 		else
785 			ret = -EPERM;
786 		break;
787 
788 	case SO_LINGER:
789 		if (optlen < sizeof(ling)) {
790 			ret = -EINVAL;	/* 1003.1g */
791 			break;
792 		}
793 		if (copy_from_user(&ling, optval, sizeof(ling))) {
794 			ret = -EFAULT;
795 			break;
796 		}
797 		if (!ling.l_onoff)
798 			sock_reset_flag(sk, SOCK_LINGER);
799 		else {
800 #if (BITS_PER_LONG == 32)
801 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
802 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
803 			else
804 #endif
805 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
806 			sock_set_flag(sk, SOCK_LINGER);
807 		}
808 		break;
809 
810 	case SO_BSDCOMPAT:
811 		sock_warn_obsolete_bsdism("setsockopt");
812 		break;
813 
814 	case SO_PASSCRED:
815 		if (valbool)
816 			set_bit(SOCK_PASSCRED, &sock->flags);
817 		else
818 			clear_bit(SOCK_PASSCRED, &sock->flags);
819 		break;
820 
821 	case SO_TIMESTAMP:
822 	case SO_TIMESTAMPNS:
823 		if (valbool)  {
824 			if (optname == SO_TIMESTAMP)
825 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
826 			else
827 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
828 			sock_set_flag(sk, SOCK_RCVTSTAMP);
829 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 		} else {
831 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
832 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833 		}
834 		break;
835 
836 	case SO_TIMESTAMPING:
837 		if (val & ~SOF_TIMESTAMPING_MASK) {
838 			ret = -EINVAL;
839 			break;
840 		}
841 
842 		if (val & SOF_TIMESTAMPING_OPT_ID &&
843 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
844 			if (sk->sk_protocol == IPPROTO_TCP &&
845 			    sk->sk_type == SOCK_STREAM) {
846 				if ((1 << sk->sk_state) &
847 				    (TCPF_CLOSE | TCPF_LISTEN)) {
848 					ret = -EINVAL;
849 					break;
850 				}
851 				sk->sk_tskey = tcp_sk(sk)->snd_una;
852 			} else {
853 				sk->sk_tskey = 0;
854 			}
855 		}
856 		sk->sk_tsflags = val;
857 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858 			sock_enable_timestamp(sk,
859 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
860 		else
861 			sock_disable_timestamp(sk,
862 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863 		break;
864 
865 	case SO_RCVLOWAT:
866 		if (val < 0)
867 			val = INT_MAX;
868 		sk->sk_rcvlowat = val ? : 1;
869 		break;
870 
871 	case SO_RCVTIMEO:
872 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
873 		break;
874 
875 	case SO_SNDTIMEO:
876 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
877 		break;
878 
879 	case SO_ATTACH_FILTER:
880 		ret = -EINVAL;
881 		if (optlen == sizeof(struct sock_fprog)) {
882 			struct sock_fprog fprog;
883 
884 			ret = -EFAULT;
885 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
886 				break;
887 
888 			ret = sk_attach_filter(&fprog, sk);
889 		}
890 		break;
891 
892 	case SO_ATTACH_BPF:
893 		ret = -EINVAL;
894 		if (optlen == sizeof(u32)) {
895 			u32 ufd;
896 
897 			ret = -EFAULT;
898 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
899 				break;
900 
901 			ret = sk_attach_bpf(ufd, sk);
902 		}
903 		break;
904 
905 	case SO_ATTACH_REUSEPORT_CBPF:
906 		ret = -EINVAL;
907 		if (optlen == sizeof(struct sock_fprog)) {
908 			struct sock_fprog fprog;
909 
910 			ret = -EFAULT;
911 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
912 				break;
913 
914 			ret = sk_reuseport_attach_filter(&fprog, sk);
915 		}
916 		break;
917 
918 	case SO_ATTACH_REUSEPORT_EBPF:
919 		ret = -EINVAL;
920 		if (optlen == sizeof(u32)) {
921 			u32 ufd;
922 
923 			ret = -EFAULT;
924 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
925 				break;
926 
927 			ret = sk_reuseport_attach_bpf(ufd, sk);
928 		}
929 		break;
930 
931 	case SO_DETACH_FILTER:
932 		ret = sk_detach_filter(sk);
933 		break;
934 
935 	case SO_LOCK_FILTER:
936 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
937 			ret = -EPERM;
938 		else
939 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
940 		break;
941 
942 	case SO_PASSSEC:
943 		if (valbool)
944 			set_bit(SOCK_PASSSEC, &sock->flags);
945 		else
946 			clear_bit(SOCK_PASSSEC, &sock->flags);
947 		break;
948 	case SO_MARK:
949 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
950 			ret = -EPERM;
951 		else
952 			sk->sk_mark = val;
953 		break;
954 
955 	case SO_RXQ_OVFL:
956 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
957 		break;
958 
959 	case SO_WIFI_STATUS:
960 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
961 		break;
962 
963 	case SO_PEEK_OFF:
964 		if (sock->ops->set_peek_off)
965 			ret = sock->ops->set_peek_off(sk, val);
966 		else
967 			ret = -EOPNOTSUPP;
968 		break;
969 
970 	case SO_NOFCS:
971 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
972 		break;
973 
974 	case SO_SELECT_ERR_QUEUE:
975 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
976 		break;
977 
978 #ifdef CONFIG_NET_RX_BUSY_POLL
979 	case SO_BUSY_POLL:
980 		/* allow unprivileged users to decrease the value */
981 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
982 			ret = -EPERM;
983 		else {
984 			if (val < 0)
985 				ret = -EINVAL;
986 			else
987 				sk->sk_ll_usec = val;
988 		}
989 		break;
990 #endif
991 
992 	case SO_MAX_PACING_RATE:
993 		sk->sk_max_pacing_rate = val;
994 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
995 					 sk->sk_max_pacing_rate);
996 		break;
997 
998 	case SO_INCOMING_CPU:
999 		sk->sk_incoming_cpu = val;
1000 		break;
1001 
1002 	case SO_CNX_ADVICE:
1003 		if (val == 1)
1004 			dst_negative_advice(sk);
1005 		break;
1006 	default:
1007 		ret = -ENOPROTOOPT;
1008 		break;
1009 	}
1010 	release_sock(sk);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(sock_setsockopt);
1014 
1015 
1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1017 			  struct ucred *ucred)
1018 {
1019 	ucred->pid = pid_vnr(pid);
1020 	ucred->uid = ucred->gid = -1;
1021 	if (cred) {
1022 		struct user_namespace *current_ns = current_user_ns();
1023 
1024 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1025 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1026 	}
1027 }
1028 
1029 int sock_getsockopt(struct socket *sock, int level, int optname,
1030 		    char __user *optval, int __user *optlen)
1031 {
1032 	struct sock *sk = sock->sk;
1033 
1034 	union {
1035 		int val;
1036 		struct linger ling;
1037 		struct timeval tm;
1038 	} v;
1039 
1040 	int lv = sizeof(int);
1041 	int len;
1042 
1043 	if (get_user(len, optlen))
1044 		return -EFAULT;
1045 	if (len < 0)
1046 		return -EINVAL;
1047 
1048 	memset(&v, 0, sizeof(v));
1049 
1050 	switch (optname) {
1051 	case SO_DEBUG:
1052 		v.val = sock_flag(sk, SOCK_DBG);
1053 		break;
1054 
1055 	case SO_DONTROUTE:
1056 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1057 		break;
1058 
1059 	case SO_BROADCAST:
1060 		v.val = sock_flag(sk, SOCK_BROADCAST);
1061 		break;
1062 
1063 	case SO_SNDBUF:
1064 		v.val = sk->sk_sndbuf;
1065 		break;
1066 
1067 	case SO_RCVBUF:
1068 		v.val = sk->sk_rcvbuf;
1069 		break;
1070 
1071 	case SO_REUSEADDR:
1072 		v.val = sk->sk_reuse;
1073 		break;
1074 
1075 	case SO_REUSEPORT:
1076 		v.val = sk->sk_reuseport;
1077 		break;
1078 
1079 	case SO_KEEPALIVE:
1080 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1081 		break;
1082 
1083 	case SO_TYPE:
1084 		v.val = sk->sk_type;
1085 		break;
1086 
1087 	case SO_PROTOCOL:
1088 		v.val = sk->sk_protocol;
1089 		break;
1090 
1091 	case SO_DOMAIN:
1092 		v.val = sk->sk_family;
1093 		break;
1094 
1095 	case SO_ERROR:
1096 		v.val = -sock_error(sk);
1097 		if (v.val == 0)
1098 			v.val = xchg(&sk->sk_err_soft, 0);
1099 		break;
1100 
1101 	case SO_OOBINLINE:
1102 		v.val = sock_flag(sk, SOCK_URGINLINE);
1103 		break;
1104 
1105 	case SO_NO_CHECK:
1106 		v.val = sk->sk_no_check_tx;
1107 		break;
1108 
1109 	case SO_PRIORITY:
1110 		v.val = sk->sk_priority;
1111 		break;
1112 
1113 	case SO_LINGER:
1114 		lv		= sizeof(v.ling);
1115 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1116 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1117 		break;
1118 
1119 	case SO_BSDCOMPAT:
1120 		sock_warn_obsolete_bsdism("getsockopt");
1121 		break;
1122 
1123 	case SO_TIMESTAMP:
1124 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1125 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1126 		break;
1127 
1128 	case SO_TIMESTAMPNS:
1129 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1130 		break;
1131 
1132 	case SO_TIMESTAMPING:
1133 		v.val = sk->sk_tsflags;
1134 		break;
1135 
1136 	case SO_RCVTIMEO:
1137 		lv = sizeof(struct timeval);
1138 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1139 			v.tm.tv_sec = 0;
1140 			v.tm.tv_usec = 0;
1141 		} else {
1142 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1143 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1144 		}
1145 		break;
1146 
1147 	case SO_SNDTIMEO:
1148 		lv = sizeof(struct timeval);
1149 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1150 			v.tm.tv_sec = 0;
1151 			v.tm.tv_usec = 0;
1152 		} else {
1153 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1154 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1155 		}
1156 		break;
1157 
1158 	case SO_RCVLOWAT:
1159 		v.val = sk->sk_rcvlowat;
1160 		break;
1161 
1162 	case SO_SNDLOWAT:
1163 		v.val = 1;
1164 		break;
1165 
1166 	case SO_PASSCRED:
1167 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1168 		break;
1169 
1170 	case SO_PEERCRED:
1171 	{
1172 		struct ucred peercred;
1173 		if (len > sizeof(peercred))
1174 			len = sizeof(peercred);
1175 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1176 		if (copy_to_user(optval, &peercred, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	case SO_PEERNAME:
1182 	{
1183 		char address[128];
1184 
1185 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1186 			return -ENOTCONN;
1187 		if (lv < len)
1188 			return -EINVAL;
1189 		if (copy_to_user(optval, address, len))
1190 			return -EFAULT;
1191 		goto lenout;
1192 	}
1193 
1194 	/* Dubious BSD thing... Probably nobody even uses it, but
1195 	 * the UNIX standard wants it for whatever reason... -DaveM
1196 	 */
1197 	case SO_ACCEPTCONN:
1198 		v.val = sk->sk_state == TCP_LISTEN;
1199 		break;
1200 
1201 	case SO_PASSSEC:
1202 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1203 		break;
1204 
1205 	case SO_PEERSEC:
1206 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1207 
1208 	case SO_MARK:
1209 		v.val = sk->sk_mark;
1210 		break;
1211 
1212 	case SO_RXQ_OVFL:
1213 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1214 		break;
1215 
1216 	case SO_WIFI_STATUS:
1217 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1218 		break;
1219 
1220 	case SO_PEEK_OFF:
1221 		if (!sock->ops->set_peek_off)
1222 			return -EOPNOTSUPP;
1223 
1224 		v.val = sk->sk_peek_off;
1225 		break;
1226 	case SO_NOFCS:
1227 		v.val = sock_flag(sk, SOCK_NOFCS);
1228 		break;
1229 
1230 	case SO_BINDTODEVICE:
1231 		return sock_getbindtodevice(sk, optval, optlen, len);
1232 
1233 	case SO_GET_FILTER:
1234 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1235 		if (len < 0)
1236 			return len;
1237 
1238 		goto lenout;
1239 
1240 	case SO_LOCK_FILTER:
1241 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1242 		break;
1243 
1244 	case SO_BPF_EXTENSIONS:
1245 		v.val = bpf_tell_extensions();
1246 		break;
1247 
1248 	case SO_SELECT_ERR_QUEUE:
1249 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1250 		break;
1251 
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1253 	case SO_BUSY_POLL:
1254 		v.val = sk->sk_ll_usec;
1255 		break;
1256 #endif
1257 
1258 	case SO_MAX_PACING_RATE:
1259 		v.val = sk->sk_max_pacing_rate;
1260 		break;
1261 
1262 	case SO_INCOMING_CPU:
1263 		v.val = sk->sk_incoming_cpu;
1264 		break;
1265 
1266 	default:
1267 		/* We implement the SO_SNDLOWAT etc to not be settable
1268 		 * (1003.1g 7).
1269 		 */
1270 		return -ENOPROTOOPT;
1271 	}
1272 
1273 	if (len > lv)
1274 		len = lv;
1275 	if (copy_to_user(optval, &v, len))
1276 		return -EFAULT;
1277 lenout:
1278 	if (put_user(len, optlen))
1279 		return -EFAULT;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Initialize an sk_lock.
1285  *
1286  * (We also register the sk_lock with the lock validator.)
1287  */
1288 static inline void sock_lock_init(struct sock *sk)
1289 {
1290 	sock_lock_init_class_and_name(sk,
1291 			af_family_slock_key_strings[sk->sk_family],
1292 			af_family_slock_keys + sk->sk_family,
1293 			af_family_key_strings[sk->sk_family],
1294 			af_family_keys + sk->sk_family);
1295 }
1296 
1297 /*
1298  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301  */
1302 static void sock_copy(struct sock *nsk, const struct sock *osk)
1303 {
1304 #ifdef CONFIG_SECURITY_NETWORK
1305 	void *sptr = nsk->sk_security;
1306 #endif
1307 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1308 
1309 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1310 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1311 
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 	nsk->sk_security = sptr;
1314 	security_sk_clone(osk, nsk);
1315 #endif
1316 }
1317 
1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1319 {
1320 	unsigned long nulls1, nulls2;
1321 
1322 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1323 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1324 	if (nulls1 > nulls2)
1325 		swap(nulls1, nulls2);
1326 
1327 	if (nulls1 != 0)
1328 		memset((char *)sk, 0, nulls1);
1329 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1330 	       nulls2 - nulls1 - sizeof(void *));
1331 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1332 	       size - nulls2 - sizeof(void *));
1333 }
1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1335 
1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1337 		int family)
1338 {
1339 	struct sock *sk;
1340 	struct kmem_cache *slab;
1341 
1342 	slab = prot->slab;
1343 	if (slab != NULL) {
1344 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1345 		if (!sk)
1346 			return sk;
1347 		if (priority & __GFP_ZERO) {
1348 			if (prot->clear_sk)
1349 				prot->clear_sk(sk, prot->obj_size);
1350 			else
1351 				sk_prot_clear_nulls(sk, prot->obj_size);
1352 		}
1353 	} else
1354 		sk = kmalloc(prot->obj_size, priority);
1355 
1356 	if (sk != NULL) {
1357 		kmemcheck_annotate_bitfield(sk, flags);
1358 
1359 		if (security_sk_alloc(sk, family, priority))
1360 			goto out_free;
1361 
1362 		if (!try_module_get(prot->owner))
1363 			goto out_free_sec;
1364 		sk_tx_queue_clear(sk);
1365 	}
1366 
1367 	return sk;
1368 
1369 out_free_sec:
1370 	security_sk_free(sk);
1371 out_free:
1372 	if (slab != NULL)
1373 		kmem_cache_free(slab, sk);
1374 	else
1375 		kfree(sk);
1376 	return NULL;
1377 }
1378 
1379 static void sk_prot_free(struct proto *prot, struct sock *sk)
1380 {
1381 	struct kmem_cache *slab;
1382 	struct module *owner;
1383 
1384 	owner = prot->owner;
1385 	slab = prot->slab;
1386 
1387 	cgroup_sk_free(&sk->sk_cgrp_data);
1388 	security_sk_free(sk);
1389 	if (slab != NULL)
1390 		kmem_cache_free(slab, sk);
1391 	else
1392 		kfree(sk);
1393 	module_put(owner);
1394 }
1395 
1396 /**
1397  *	sk_alloc - All socket objects are allocated here
1398  *	@net: the applicable net namespace
1399  *	@family: protocol family
1400  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1401  *	@prot: struct proto associated with this new sock instance
1402  *	@kern: is this to be a kernel socket?
1403  */
1404 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1405 		      struct proto *prot, int kern)
1406 {
1407 	struct sock *sk;
1408 
1409 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1410 	if (sk) {
1411 		sk->sk_family = family;
1412 		/*
1413 		 * See comment in struct sock definition to understand
1414 		 * why we need sk_prot_creator -acme
1415 		 */
1416 		sk->sk_prot = sk->sk_prot_creator = prot;
1417 		sock_lock_init(sk);
1418 		sk->sk_net_refcnt = kern ? 0 : 1;
1419 		if (likely(sk->sk_net_refcnt))
1420 			get_net(net);
1421 		sock_net_set(sk, net);
1422 		atomic_set(&sk->sk_wmem_alloc, 1);
1423 
1424 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1425 		sock_update_classid(&sk->sk_cgrp_data);
1426 		sock_update_netprioidx(&sk->sk_cgrp_data);
1427 	}
1428 
1429 	return sk;
1430 }
1431 EXPORT_SYMBOL(sk_alloc);
1432 
1433 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1434  * grace period. This is the case for UDP sockets and TCP listeners.
1435  */
1436 static void __sk_destruct(struct rcu_head *head)
1437 {
1438 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1439 	struct sk_filter *filter;
1440 
1441 	if (sk->sk_destruct)
1442 		sk->sk_destruct(sk);
1443 
1444 	filter = rcu_dereference_check(sk->sk_filter,
1445 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1446 	if (filter) {
1447 		sk_filter_uncharge(sk, filter);
1448 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1449 	}
1450 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1451 		reuseport_detach_sock(sk);
1452 
1453 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1454 
1455 	if (atomic_read(&sk->sk_omem_alloc))
1456 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1457 			 __func__, atomic_read(&sk->sk_omem_alloc));
1458 
1459 	if (sk->sk_peer_cred)
1460 		put_cred(sk->sk_peer_cred);
1461 	put_pid(sk->sk_peer_pid);
1462 	if (likely(sk->sk_net_refcnt))
1463 		put_net(sock_net(sk));
1464 	sk_prot_free(sk->sk_prot_creator, sk);
1465 }
1466 
1467 void sk_destruct(struct sock *sk)
1468 {
1469 	if (sock_flag(sk, SOCK_RCU_FREE))
1470 		call_rcu(&sk->sk_rcu, __sk_destruct);
1471 	else
1472 		__sk_destruct(&sk->sk_rcu);
1473 }
1474 
1475 static void __sk_free(struct sock *sk)
1476 {
1477 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1478 		sock_diag_broadcast_destroy(sk);
1479 	else
1480 		sk_destruct(sk);
1481 }
1482 
1483 void sk_free(struct sock *sk)
1484 {
1485 	/*
1486 	 * We subtract one from sk_wmem_alloc and can know if
1487 	 * some packets are still in some tx queue.
1488 	 * If not null, sock_wfree() will call __sk_free(sk) later
1489 	 */
1490 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1491 		__sk_free(sk);
1492 }
1493 EXPORT_SYMBOL(sk_free);
1494 
1495 /**
1496  *	sk_clone_lock - clone a socket, and lock its clone
1497  *	@sk: the socket to clone
1498  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1499  *
1500  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1501  */
1502 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1503 {
1504 	struct sock *newsk;
1505 	bool is_charged = true;
1506 
1507 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1508 	if (newsk != NULL) {
1509 		struct sk_filter *filter;
1510 
1511 		sock_copy(newsk, sk);
1512 
1513 		/* SANITY */
1514 		if (likely(newsk->sk_net_refcnt))
1515 			get_net(sock_net(newsk));
1516 		sk_node_init(&newsk->sk_node);
1517 		sock_lock_init(newsk);
1518 		bh_lock_sock(newsk);
1519 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1520 		newsk->sk_backlog.len = 0;
1521 
1522 		atomic_set(&newsk->sk_rmem_alloc, 0);
1523 		/*
1524 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1525 		 */
1526 		atomic_set(&newsk->sk_wmem_alloc, 1);
1527 		atomic_set(&newsk->sk_omem_alloc, 0);
1528 		skb_queue_head_init(&newsk->sk_receive_queue);
1529 		skb_queue_head_init(&newsk->sk_write_queue);
1530 
1531 		rwlock_init(&newsk->sk_callback_lock);
1532 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1533 				af_callback_keys + newsk->sk_family,
1534 				af_family_clock_key_strings[newsk->sk_family]);
1535 
1536 		newsk->sk_dst_cache	= NULL;
1537 		newsk->sk_wmem_queued	= 0;
1538 		newsk->sk_forward_alloc = 0;
1539 		atomic_set(&newsk->sk_drops, 0);
1540 		newsk->sk_send_head	= NULL;
1541 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1542 
1543 		sock_reset_flag(newsk, SOCK_DONE);
1544 		skb_queue_head_init(&newsk->sk_error_queue);
1545 
1546 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1547 		if (filter != NULL)
1548 			/* though it's an empty new sock, the charging may fail
1549 			 * if sysctl_optmem_max was changed between creation of
1550 			 * original socket and cloning
1551 			 */
1552 			is_charged = sk_filter_charge(newsk, filter);
1553 
1554 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1555 			/* It is still raw copy of parent, so invalidate
1556 			 * destructor and make plain sk_free() */
1557 			newsk->sk_destruct = NULL;
1558 			bh_unlock_sock(newsk);
1559 			sk_free(newsk);
1560 			newsk = NULL;
1561 			goto out;
1562 		}
1563 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1564 
1565 		newsk->sk_err	   = 0;
1566 		newsk->sk_priority = 0;
1567 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1568 		atomic64_set(&newsk->sk_cookie, 0);
1569 
1570 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1571 
1572 		/*
1573 		 * Before updating sk_refcnt, we must commit prior changes to memory
1574 		 * (Documentation/RCU/rculist_nulls.txt for details)
1575 		 */
1576 		smp_wmb();
1577 		atomic_set(&newsk->sk_refcnt, 2);
1578 
1579 		/*
1580 		 * Increment the counter in the same struct proto as the master
1581 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1582 		 * is the same as sk->sk_prot->socks, as this field was copied
1583 		 * with memcpy).
1584 		 *
1585 		 * This _changes_ the previous behaviour, where
1586 		 * tcp_create_openreq_child always was incrementing the
1587 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1588 		 * to be taken into account in all callers. -acme
1589 		 */
1590 		sk_refcnt_debug_inc(newsk);
1591 		sk_set_socket(newsk, NULL);
1592 		newsk->sk_wq = NULL;
1593 
1594 		if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1595 			sock_update_memcg(newsk);
1596 
1597 		if (newsk->sk_prot->sockets_allocated)
1598 			sk_sockets_allocated_inc(newsk);
1599 
1600 		if (sock_needs_netstamp(sk) &&
1601 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1602 			net_enable_timestamp();
1603 	}
1604 out:
1605 	return newsk;
1606 }
1607 EXPORT_SYMBOL_GPL(sk_clone_lock);
1608 
1609 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1610 {
1611 	u32 max_segs = 1;
1612 
1613 	sk_dst_set(sk, dst);
1614 	sk->sk_route_caps = dst->dev->features;
1615 	if (sk->sk_route_caps & NETIF_F_GSO)
1616 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1617 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1618 	if (sk_can_gso(sk)) {
1619 		if (dst->header_len) {
1620 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1621 		} else {
1622 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1623 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1624 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1625 		}
1626 	}
1627 	sk->sk_gso_max_segs = max_segs;
1628 }
1629 EXPORT_SYMBOL_GPL(sk_setup_caps);
1630 
1631 /*
1632  *	Simple resource managers for sockets.
1633  */
1634 
1635 
1636 /*
1637  * Write buffer destructor automatically called from kfree_skb.
1638  */
1639 void sock_wfree(struct sk_buff *skb)
1640 {
1641 	struct sock *sk = skb->sk;
1642 	unsigned int len = skb->truesize;
1643 
1644 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1645 		/*
1646 		 * Keep a reference on sk_wmem_alloc, this will be released
1647 		 * after sk_write_space() call
1648 		 */
1649 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1650 		sk->sk_write_space(sk);
1651 		len = 1;
1652 	}
1653 	/*
1654 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1655 	 * could not do because of in-flight packets
1656 	 */
1657 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1658 		__sk_free(sk);
1659 }
1660 EXPORT_SYMBOL(sock_wfree);
1661 
1662 /* This variant of sock_wfree() is used by TCP,
1663  * since it sets SOCK_USE_WRITE_QUEUE.
1664  */
1665 void __sock_wfree(struct sk_buff *skb)
1666 {
1667 	struct sock *sk = skb->sk;
1668 
1669 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1670 		__sk_free(sk);
1671 }
1672 
1673 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1674 {
1675 	skb_orphan(skb);
1676 	skb->sk = sk;
1677 #ifdef CONFIG_INET
1678 	if (unlikely(!sk_fullsock(sk))) {
1679 		skb->destructor = sock_edemux;
1680 		sock_hold(sk);
1681 		return;
1682 	}
1683 #endif
1684 	skb->destructor = sock_wfree;
1685 	skb_set_hash_from_sk(skb, sk);
1686 	/*
1687 	 * We used to take a refcount on sk, but following operation
1688 	 * is enough to guarantee sk_free() wont free this sock until
1689 	 * all in-flight packets are completed
1690 	 */
1691 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1692 }
1693 EXPORT_SYMBOL(skb_set_owner_w);
1694 
1695 /* This helper is used by netem, as it can hold packets in its
1696  * delay queue. We want to allow the owner socket to send more
1697  * packets, as if they were already TX completed by a typical driver.
1698  * But we also want to keep skb->sk set because some packet schedulers
1699  * rely on it (sch_fq for example). So we set skb->truesize to a small
1700  * amount (1) and decrease sk_wmem_alloc accordingly.
1701  */
1702 void skb_orphan_partial(struct sk_buff *skb)
1703 {
1704 	/* If this skb is a TCP pure ACK or already went here,
1705 	 * we have nothing to do. 2 is already a very small truesize.
1706 	 */
1707 	if (skb->truesize <= 2)
1708 		return;
1709 
1710 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1711 	 * so we do not completely orphan skb, but transfert all
1712 	 * accounted bytes but one, to avoid unexpected reorders.
1713 	 */
1714 	if (skb->destructor == sock_wfree
1715 #ifdef CONFIG_INET
1716 	    || skb->destructor == tcp_wfree
1717 #endif
1718 		) {
1719 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1720 		skb->truesize = 1;
1721 	} else {
1722 		skb_orphan(skb);
1723 	}
1724 }
1725 EXPORT_SYMBOL(skb_orphan_partial);
1726 
1727 /*
1728  * Read buffer destructor automatically called from kfree_skb.
1729  */
1730 void sock_rfree(struct sk_buff *skb)
1731 {
1732 	struct sock *sk = skb->sk;
1733 	unsigned int len = skb->truesize;
1734 
1735 	atomic_sub(len, &sk->sk_rmem_alloc);
1736 	sk_mem_uncharge(sk, len);
1737 }
1738 EXPORT_SYMBOL(sock_rfree);
1739 
1740 /*
1741  * Buffer destructor for skbs that are not used directly in read or write
1742  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1743  */
1744 void sock_efree(struct sk_buff *skb)
1745 {
1746 	sock_put(skb->sk);
1747 }
1748 EXPORT_SYMBOL(sock_efree);
1749 
1750 kuid_t sock_i_uid(struct sock *sk)
1751 {
1752 	kuid_t uid;
1753 
1754 	read_lock_bh(&sk->sk_callback_lock);
1755 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1756 	read_unlock_bh(&sk->sk_callback_lock);
1757 	return uid;
1758 }
1759 EXPORT_SYMBOL(sock_i_uid);
1760 
1761 unsigned long sock_i_ino(struct sock *sk)
1762 {
1763 	unsigned long ino;
1764 
1765 	read_lock_bh(&sk->sk_callback_lock);
1766 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1767 	read_unlock_bh(&sk->sk_callback_lock);
1768 	return ino;
1769 }
1770 EXPORT_SYMBOL(sock_i_ino);
1771 
1772 /*
1773  * Allocate a skb from the socket's send buffer.
1774  */
1775 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1776 			     gfp_t priority)
1777 {
1778 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1779 		struct sk_buff *skb = alloc_skb(size, priority);
1780 		if (skb) {
1781 			skb_set_owner_w(skb, sk);
1782 			return skb;
1783 		}
1784 	}
1785 	return NULL;
1786 }
1787 EXPORT_SYMBOL(sock_wmalloc);
1788 
1789 /*
1790  * Allocate a memory block from the socket's option memory buffer.
1791  */
1792 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1793 {
1794 	if ((unsigned int)size <= sysctl_optmem_max &&
1795 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1796 		void *mem;
1797 		/* First do the add, to avoid the race if kmalloc
1798 		 * might sleep.
1799 		 */
1800 		atomic_add(size, &sk->sk_omem_alloc);
1801 		mem = kmalloc(size, priority);
1802 		if (mem)
1803 			return mem;
1804 		atomic_sub(size, &sk->sk_omem_alloc);
1805 	}
1806 	return NULL;
1807 }
1808 EXPORT_SYMBOL(sock_kmalloc);
1809 
1810 /* Free an option memory block. Note, we actually want the inline
1811  * here as this allows gcc to detect the nullify and fold away the
1812  * condition entirely.
1813  */
1814 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1815 				  const bool nullify)
1816 {
1817 	if (WARN_ON_ONCE(!mem))
1818 		return;
1819 	if (nullify)
1820 		kzfree(mem);
1821 	else
1822 		kfree(mem);
1823 	atomic_sub(size, &sk->sk_omem_alloc);
1824 }
1825 
1826 void sock_kfree_s(struct sock *sk, void *mem, int size)
1827 {
1828 	__sock_kfree_s(sk, mem, size, false);
1829 }
1830 EXPORT_SYMBOL(sock_kfree_s);
1831 
1832 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1833 {
1834 	__sock_kfree_s(sk, mem, size, true);
1835 }
1836 EXPORT_SYMBOL(sock_kzfree_s);
1837 
1838 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1839    I think, these locks should be removed for datagram sockets.
1840  */
1841 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1842 {
1843 	DEFINE_WAIT(wait);
1844 
1845 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1846 	for (;;) {
1847 		if (!timeo)
1848 			break;
1849 		if (signal_pending(current))
1850 			break;
1851 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1852 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1853 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1854 			break;
1855 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1856 			break;
1857 		if (sk->sk_err)
1858 			break;
1859 		timeo = schedule_timeout(timeo);
1860 	}
1861 	finish_wait(sk_sleep(sk), &wait);
1862 	return timeo;
1863 }
1864 
1865 
1866 /*
1867  *	Generic send/receive buffer handlers
1868  */
1869 
1870 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1871 				     unsigned long data_len, int noblock,
1872 				     int *errcode, int max_page_order)
1873 {
1874 	struct sk_buff *skb;
1875 	long timeo;
1876 	int err;
1877 
1878 	timeo = sock_sndtimeo(sk, noblock);
1879 	for (;;) {
1880 		err = sock_error(sk);
1881 		if (err != 0)
1882 			goto failure;
1883 
1884 		err = -EPIPE;
1885 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1886 			goto failure;
1887 
1888 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1889 			break;
1890 
1891 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1892 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1893 		err = -EAGAIN;
1894 		if (!timeo)
1895 			goto failure;
1896 		if (signal_pending(current))
1897 			goto interrupted;
1898 		timeo = sock_wait_for_wmem(sk, timeo);
1899 	}
1900 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1901 				   errcode, sk->sk_allocation);
1902 	if (skb)
1903 		skb_set_owner_w(skb, sk);
1904 	return skb;
1905 
1906 interrupted:
1907 	err = sock_intr_errno(timeo);
1908 failure:
1909 	*errcode = err;
1910 	return NULL;
1911 }
1912 EXPORT_SYMBOL(sock_alloc_send_pskb);
1913 
1914 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1915 				    int noblock, int *errcode)
1916 {
1917 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1918 }
1919 EXPORT_SYMBOL(sock_alloc_send_skb);
1920 
1921 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1922 		     struct sockcm_cookie *sockc)
1923 {
1924 	u32 tsflags;
1925 
1926 	switch (cmsg->cmsg_type) {
1927 	case SO_MARK:
1928 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1929 			return -EPERM;
1930 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1931 			return -EINVAL;
1932 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1933 		break;
1934 	case SO_TIMESTAMPING:
1935 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1936 			return -EINVAL;
1937 
1938 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1939 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1940 			return -EINVAL;
1941 
1942 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1943 		sockc->tsflags |= tsflags;
1944 		break;
1945 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1946 	case SCM_RIGHTS:
1947 	case SCM_CREDENTIALS:
1948 		break;
1949 	default:
1950 		return -EINVAL;
1951 	}
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL(__sock_cmsg_send);
1955 
1956 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1957 		   struct sockcm_cookie *sockc)
1958 {
1959 	struct cmsghdr *cmsg;
1960 	int ret;
1961 
1962 	for_each_cmsghdr(cmsg, msg) {
1963 		if (!CMSG_OK(msg, cmsg))
1964 			return -EINVAL;
1965 		if (cmsg->cmsg_level != SOL_SOCKET)
1966 			continue;
1967 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1968 		if (ret)
1969 			return ret;
1970 	}
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL(sock_cmsg_send);
1974 
1975 /* On 32bit arches, an skb frag is limited to 2^15 */
1976 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1977 
1978 /**
1979  * skb_page_frag_refill - check that a page_frag contains enough room
1980  * @sz: minimum size of the fragment we want to get
1981  * @pfrag: pointer to page_frag
1982  * @gfp: priority for memory allocation
1983  *
1984  * Note: While this allocator tries to use high order pages, there is
1985  * no guarantee that allocations succeed. Therefore, @sz MUST be
1986  * less or equal than PAGE_SIZE.
1987  */
1988 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1989 {
1990 	if (pfrag->page) {
1991 		if (page_ref_count(pfrag->page) == 1) {
1992 			pfrag->offset = 0;
1993 			return true;
1994 		}
1995 		if (pfrag->offset + sz <= pfrag->size)
1996 			return true;
1997 		put_page(pfrag->page);
1998 	}
1999 
2000 	pfrag->offset = 0;
2001 	if (SKB_FRAG_PAGE_ORDER) {
2002 		/* Avoid direct reclaim but allow kswapd to wake */
2003 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2004 					  __GFP_COMP | __GFP_NOWARN |
2005 					  __GFP_NORETRY,
2006 					  SKB_FRAG_PAGE_ORDER);
2007 		if (likely(pfrag->page)) {
2008 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2009 			return true;
2010 		}
2011 	}
2012 	pfrag->page = alloc_page(gfp);
2013 	if (likely(pfrag->page)) {
2014 		pfrag->size = PAGE_SIZE;
2015 		return true;
2016 	}
2017 	return false;
2018 }
2019 EXPORT_SYMBOL(skb_page_frag_refill);
2020 
2021 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2022 {
2023 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2024 		return true;
2025 
2026 	sk_enter_memory_pressure(sk);
2027 	sk_stream_moderate_sndbuf(sk);
2028 	return false;
2029 }
2030 EXPORT_SYMBOL(sk_page_frag_refill);
2031 
2032 static void __lock_sock(struct sock *sk)
2033 	__releases(&sk->sk_lock.slock)
2034 	__acquires(&sk->sk_lock.slock)
2035 {
2036 	DEFINE_WAIT(wait);
2037 
2038 	for (;;) {
2039 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2040 					TASK_UNINTERRUPTIBLE);
2041 		spin_unlock_bh(&sk->sk_lock.slock);
2042 		schedule();
2043 		spin_lock_bh(&sk->sk_lock.slock);
2044 		if (!sock_owned_by_user(sk))
2045 			break;
2046 	}
2047 	finish_wait(&sk->sk_lock.wq, &wait);
2048 }
2049 
2050 static void __release_sock(struct sock *sk)
2051 	__releases(&sk->sk_lock.slock)
2052 	__acquires(&sk->sk_lock.slock)
2053 {
2054 	struct sk_buff *skb, *next;
2055 
2056 	while ((skb = sk->sk_backlog.head) != NULL) {
2057 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2058 
2059 		spin_unlock_bh(&sk->sk_lock.slock);
2060 
2061 		do {
2062 			next = skb->next;
2063 			prefetch(next);
2064 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2065 			skb->next = NULL;
2066 			sk_backlog_rcv(sk, skb);
2067 
2068 			cond_resched();
2069 
2070 			skb = next;
2071 		} while (skb != NULL);
2072 
2073 		spin_lock_bh(&sk->sk_lock.slock);
2074 	}
2075 
2076 	/*
2077 	 * Doing the zeroing here guarantee we can not loop forever
2078 	 * while a wild producer attempts to flood us.
2079 	 */
2080 	sk->sk_backlog.len = 0;
2081 }
2082 
2083 void __sk_flush_backlog(struct sock *sk)
2084 {
2085 	spin_lock_bh(&sk->sk_lock.slock);
2086 	__release_sock(sk);
2087 	spin_unlock_bh(&sk->sk_lock.slock);
2088 }
2089 
2090 /**
2091  * sk_wait_data - wait for data to arrive at sk_receive_queue
2092  * @sk:    sock to wait on
2093  * @timeo: for how long
2094  * @skb:   last skb seen on sk_receive_queue
2095  *
2096  * Now socket state including sk->sk_err is changed only under lock,
2097  * hence we may omit checks after joining wait queue.
2098  * We check receive queue before schedule() only as optimization;
2099  * it is very likely that release_sock() added new data.
2100  */
2101 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2102 {
2103 	int rc;
2104 	DEFINE_WAIT(wait);
2105 
2106 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2107 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2108 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2109 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2110 	finish_wait(sk_sleep(sk), &wait);
2111 	return rc;
2112 }
2113 EXPORT_SYMBOL(sk_wait_data);
2114 
2115 /**
2116  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2117  *	@sk: socket
2118  *	@size: memory size to allocate
2119  *	@kind: allocation type
2120  *
2121  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2122  *	rmem allocation. This function assumes that protocols which have
2123  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2124  */
2125 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2126 {
2127 	struct proto *prot = sk->sk_prot;
2128 	int amt = sk_mem_pages(size);
2129 	long allocated;
2130 
2131 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2132 
2133 	allocated = sk_memory_allocated_add(sk, amt);
2134 
2135 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2136 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2137 		goto suppress_allocation;
2138 
2139 	/* Under limit. */
2140 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2141 		sk_leave_memory_pressure(sk);
2142 		return 1;
2143 	}
2144 
2145 	/* Under pressure. */
2146 	if (allocated > sk_prot_mem_limits(sk, 1))
2147 		sk_enter_memory_pressure(sk);
2148 
2149 	/* Over hard limit. */
2150 	if (allocated > sk_prot_mem_limits(sk, 2))
2151 		goto suppress_allocation;
2152 
2153 	/* guarantee minimum buffer size under pressure */
2154 	if (kind == SK_MEM_RECV) {
2155 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2156 			return 1;
2157 
2158 	} else { /* SK_MEM_SEND */
2159 		if (sk->sk_type == SOCK_STREAM) {
2160 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2161 				return 1;
2162 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2163 			   prot->sysctl_wmem[0])
2164 				return 1;
2165 	}
2166 
2167 	if (sk_has_memory_pressure(sk)) {
2168 		int alloc;
2169 
2170 		if (!sk_under_memory_pressure(sk))
2171 			return 1;
2172 		alloc = sk_sockets_allocated_read_positive(sk);
2173 		if (sk_prot_mem_limits(sk, 2) > alloc *
2174 		    sk_mem_pages(sk->sk_wmem_queued +
2175 				 atomic_read(&sk->sk_rmem_alloc) +
2176 				 sk->sk_forward_alloc))
2177 			return 1;
2178 	}
2179 
2180 suppress_allocation:
2181 
2182 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2183 		sk_stream_moderate_sndbuf(sk);
2184 
2185 		/* Fail only if socket is _under_ its sndbuf.
2186 		 * In this case we cannot block, so that we have to fail.
2187 		 */
2188 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2189 			return 1;
2190 	}
2191 
2192 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2193 
2194 	/* Alas. Undo changes. */
2195 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2196 
2197 	sk_memory_allocated_sub(sk, amt);
2198 
2199 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2200 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2201 
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL(__sk_mem_schedule);
2205 
2206 /**
2207  *	__sk_mem_reclaim - reclaim memory_allocated
2208  *	@sk: socket
2209  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2210  */
2211 void __sk_mem_reclaim(struct sock *sk, int amount)
2212 {
2213 	amount >>= SK_MEM_QUANTUM_SHIFT;
2214 	sk_memory_allocated_sub(sk, amount);
2215 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2216 
2217 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2218 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2219 
2220 	if (sk_under_memory_pressure(sk) &&
2221 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2222 		sk_leave_memory_pressure(sk);
2223 }
2224 EXPORT_SYMBOL(__sk_mem_reclaim);
2225 
2226 int sk_set_peek_off(struct sock *sk, int val)
2227 {
2228 	if (val < 0)
2229 		return -EINVAL;
2230 
2231 	sk->sk_peek_off = val;
2232 	return 0;
2233 }
2234 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2235 
2236 /*
2237  * Set of default routines for initialising struct proto_ops when
2238  * the protocol does not support a particular function. In certain
2239  * cases where it makes no sense for a protocol to have a "do nothing"
2240  * function, some default processing is provided.
2241  */
2242 
2243 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2244 {
2245 	return -EOPNOTSUPP;
2246 }
2247 EXPORT_SYMBOL(sock_no_bind);
2248 
2249 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2250 		    int len, int flags)
2251 {
2252 	return -EOPNOTSUPP;
2253 }
2254 EXPORT_SYMBOL(sock_no_connect);
2255 
2256 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2257 {
2258 	return -EOPNOTSUPP;
2259 }
2260 EXPORT_SYMBOL(sock_no_socketpair);
2261 
2262 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2263 {
2264 	return -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(sock_no_accept);
2267 
2268 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2269 		    int *len, int peer)
2270 {
2271 	return -EOPNOTSUPP;
2272 }
2273 EXPORT_SYMBOL(sock_no_getname);
2274 
2275 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2276 {
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL(sock_no_poll);
2280 
2281 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2282 {
2283 	return -EOPNOTSUPP;
2284 }
2285 EXPORT_SYMBOL(sock_no_ioctl);
2286 
2287 int sock_no_listen(struct socket *sock, int backlog)
2288 {
2289 	return -EOPNOTSUPP;
2290 }
2291 EXPORT_SYMBOL(sock_no_listen);
2292 
2293 int sock_no_shutdown(struct socket *sock, int how)
2294 {
2295 	return -EOPNOTSUPP;
2296 }
2297 EXPORT_SYMBOL(sock_no_shutdown);
2298 
2299 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2300 		    char __user *optval, unsigned int optlen)
2301 {
2302 	return -EOPNOTSUPP;
2303 }
2304 EXPORT_SYMBOL(sock_no_setsockopt);
2305 
2306 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2307 		    char __user *optval, int __user *optlen)
2308 {
2309 	return -EOPNOTSUPP;
2310 }
2311 EXPORT_SYMBOL(sock_no_getsockopt);
2312 
2313 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2314 {
2315 	return -EOPNOTSUPP;
2316 }
2317 EXPORT_SYMBOL(sock_no_sendmsg);
2318 
2319 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2320 		    int flags)
2321 {
2322 	return -EOPNOTSUPP;
2323 }
2324 EXPORT_SYMBOL(sock_no_recvmsg);
2325 
2326 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2327 {
2328 	/* Mirror missing mmap method error code */
2329 	return -ENODEV;
2330 }
2331 EXPORT_SYMBOL(sock_no_mmap);
2332 
2333 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2334 {
2335 	ssize_t res;
2336 	struct msghdr msg = {.msg_flags = flags};
2337 	struct kvec iov;
2338 	char *kaddr = kmap(page);
2339 	iov.iov_base = kaddr + offset;
2340 	iov.iov_len = size;
2341 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2342 	kunmap(page);
2343 	return res;
2344 }
2345 EXPORT_SYMBOL(sock_no_sendpage);
2346 
2347 /*
2348  *	Default Socket Callbacks
2349  */
2350 
2351 static void sock_def_wakeup(struct sock *sk)
2352 {
2353 	struct socket_wq *wq;
2354 
2355 	rcu_read_lock();
2356 	wq = rcu_dereference(sk->sk_wq);
2357 	if (skwq_has_sleeper(wq))
2358 		wake_up_interruptible_all(&wq->wait);
2359 	rcu_read_unlock();
2360 }
2361 
2362 static void sock_def_error_report(struct sock *sk)
2363 {
2364 	struct socket_wq *wq;
2365 
2366 	rcu_read_lock();
2367 	wq = rcu_dereference(sk->sk_wq);
2368 	if (skwq_has_sleeper(wq))
2369 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2370 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2371 	rcu_read_unlock();
2372 }
2373 
2374 static void sock_def_readable(struct sock *sk)
2375 {
2376 	struct socket_wq *wq;
2377 
2378 	rcu_read_lock();
2379 	wq = rcu_dereference(sk->sk_wq);
2380 	if (skwq_has_sleeper(wq))
2381 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2382 						POLLRDNORM | POLLRDBAND);
2383 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2384 	rcu_read_unlock();
2385 }
2386 
2387 static void sock_def_write_space(struct sock *sk)
2388 {
2389 	struct socket_wq *wq;
2390 
2391 	rcu_read_lock();
2392 
2393 	/* Do not wake up a writer until he can make "significant"
2394 	 * progress.  --DaveM
2395 	 */
2396 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2397 		wq = rcu_dereference(sk->sk_wq);
2398 		if (skwq_has_sleeper(wq))
2399 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2400 						POLLWRNORM | POLLWRBAND);
2401 
2402 		/* Should agree with poll, otherwise some programs break */
2403 		if (sock_writeable(sk))
2404 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2405 	}
2406 
2407 	rcu_read_unlock();
2408 }
2409 
2410 static void sock_def_destruct(struct sock *sk)
2411 {
2412 }
2413 
2414 void sk_send_sigurg(struct sock *sk)
2415 {
2416 	if (sk->sk_socket && sk->sk_socket->file)
2417 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2418 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2419 }
2420 EXPORT_SYMBOL(sk_send_sigurg);
2421 
2422 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2423 		    unsigned long expires)
2424 {
2425 	if (!mod_timer(timer, expires))
2426 		sock_hold(sk);
2427 }
2428 EXPORT_SYMBOL(sk_reset_timer);
2429 
2430 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2431 {
2432 	if (del_timer(timer))
2433 		__sock_put(sk);
2434 }
2435 EXPORT_SYMBOL(sk_stop_timer);
2436 
2437 void sock_init_data(struct socket *sock, struct sock *sk)
2438 {
2439 	skb_queue_head_init(&sk->sk_receive_queue);
2440 	skb_queue_head_init(&sk->sk_write_queue);
2441 	skb_queue_head_init(&sk->sk_error_queue);
2442 
2443 	sk->sk_send_head	=	NULL;
2444 
2445 	init_timer(&sk->sk_timer);
2446 
2447 	sk->sk_allocation	=	GFP_KERNEL;
2448 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2449 	sk->sk_sndbuf		=	sysctl_wmem_default;
2450 	sk->sk_state		=	TCP_CLOSE;
2451 	sk_set_socket(sk, sock);
2452 
2453 	sock_set_flag(sk, SOCK_ZAPPED);
2454 
2455 	if (sock) {
2456 		sk->sk_type	=	sock->type;
2457 		sk->sk_wq	=	sock->wq;
2458 		sock->sk	=	sk;
2459 	} else
2460 		sk->sk_wq	=	NULL;
2461 
2462 	rwlock_init(&sk->sk_callback_lock);
2463 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2464 			af_callback_keys + sk->sk_family,
2465 			af_family_clock_key_strings[sk->sk_family]);
2466 
2467 	sk->sk_state_change	=	sock_def_wakeup;
2468 	sk->sk_data_ready	=	sock_def_readable;
2469 	sk->sk_write_space	=	sock_def_write_space;
2470 	sk->sk_error_report	=	sock_def_error_report;
2471 	sk->sk_destruct		=	sock_def_destruct;
2472 
2473 	sk->sk_frag.page	=	NULL;
2474 	sk->sk_frag.offset	=	0;
2475 	sk->sk_peek_off		=	-1;
2476 
2477 	sk->sk_peer_pid 	=	NULL;
2478 	sk->sk_peer_cred	=	NULL;
2479 	sk->sk_write_pending	=	0;
2480 	sk->sk_rcvlowat		=	1;
2481 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2482 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2483 
2484 	sk->sk_stamp = ktime_set(-1L, 0);
2485 
2486 #ifdef CONFIG_NET_RX_BUSY_POLL
2487 	sk->sk_napi_id		=	0;
2488 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2489 #endif
2490 
2491 	sk->sk_max_pacing_rate = ~0U;
2492 	sk->sk_pacing_rate = ~0U;
2493 	sk->sk_incoming_cpu = -1;
2494 	/*
2495 	 * Before updating sk_refcnt, we must commit prior changes to memory
2496 	 * (Documentation/RCU/rculist_nulls.txt for details)
2497 	 */
2498 	smp_wmb();
2499 	atomic_set(&sk->sk_refcnt, 1);
2500 	atomic_set(&sk->sk_drops, 0);
2501 }
2502 EXPORT_SYMBOL(sock_init_data);
2503 
2504 void lock_sock_nested(struct sock *sk, int subclass)
2505 {
2506 	might_sleep();
2507 	spin_lock_bh(&sk->sk_lock.slock);
2508 	if (sk->sk_lock.owned)
2509 		__lock_sock(sk);
2510 	sk->sk_lock.owned = 1;
2511 	spin_unlock(&sk->sk_lock.slock);
2512 	/*
2513 	 * The sk_lock has mutex_lock() semantics here:
2514 	 */
2515 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2516 	local_bh_enable();
2517 }
2518 EXPORT_SYMBOL(lock_sock_nested);
2519 
2520 void release_sock(struct sock *sk)
2521 {
2522 	spin_lock_bh(&sk->sk_lock.slock);
2523 	if (sk->sk_backlog.tail)
2524 		__release_sock(sk);
2525 
2526 	/* Warning : release_cb() might need to release sk ownership,
2527 	 * ie call sock_release_ownership(sk) before us.
2528 	 */
2529 	if (sk->sk_prot->release_cb)
2530 		sk->sk_prot->release_cb(sk);
2531 
2532 	sock_release_ownership(sk);
2533 	if (waitqueue_active(&sk->sk_lock.wq))
2534 		wake_up(&sk->sk_lock.wq);
2535 	spin_unlock_bh(&sk->sk_lock.slock);
2536 }
2537 EXPORT_SYMBOL(release_sock);
2538 
2539 /**
2540  * lock_sock_fast - fast version of lock_sock
2541  * @sk: socket
2542  *
2543  * This version should be used for very small section, where process wont block
2544  * return false if fast path is taken
2545  *   sk_lock.slock locked, owned = 0, BH disabled
2546  * return true if slow path is taken
2547  *   sk_lock.slock unlocked, owned = 1, BH enabled
2548  */
2549 bool lock_sock_fast(struct sock *sk)
2550 {
2551 	might_sleep();
2552 	spin_lock_bh(&sk->sk_lock.slock);
2553 
2554 	if (!sk->sk_lock.owned)
2555 		/*
2556 		 * Note : We must disable BH
2557 		 */
2558 		return false;
2559 
2560 	__lock_sock(sk);
2561 	sk->sk_lock.owned = 1;
2562 	spin_unlock(&sk->sk_lock.slock);
2563 	/*
2564 	 * The sk_lock has mutex_lock() semantics here:
2565 	 */
2566 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2567 	local_bh_enable();
2568 	return true;
2569 }
2570 EXPORT_SYMBOL(lock_sock_fast);
2571 
2572 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2573 {
2574 	struct timeval tv;
2575 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2576 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2577 	tv = ktime_to_timeval(sk->sk_stamp);
2578 	if (tv.tv_sec == -1)
2579 		return -ENOENT;
2580 	if (tv.tv_sec == 0) {
2581 		sk->sk_stamp = ktime_get_real();
2582 		tv = ktime_to_timeval(sk->sk_stamp);
2583 	}
2584 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2585 }
2586 EXPORT_SYMBOL(sock_get_timestamp);
2587 
2588 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2589 {
2590 	struct timespec ts;
2591 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2592 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2593 	ts = ktime_to_timespec(sk->sk_stamp);
2594 	if (ts.tv_sec == -1)
2595 		return -ENOENT;
2596 	if (ts.tv_sec == 0) {
2597 		sk->sk_stamp = ktime_get_real();
2598 		ts = ktime_to_timespec(sk->sk_stamp);
2599 	}
2600 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2601 }
2602 EXPORT_SYMBOL(sock_get_timestampns);
2603 
2604 void sock_enable_timestamp(struct sock *sk, int flag)
2605 {
2606 	if (!sock_flag(sk, flag)) {
2607 		unsigned long previous_flags = sk->sk_flags;
2608 
2609 		sock_set_flag(sk, flag);
2610 		/*
2611 		 * we just set one of the two flags which require net
2612 		 * time stamping, but time stamping might have been on
2613 		 * already because of the other one
2614 		 */
2615 		if (sock_needs_netstamp(sk) &&
2616 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2617 			net_enable_timestamp();
2618 	}
2619 }
2620 
2621 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2622 		       int level, int type)
2623 {
2624 	struct sock_exterr_skb *serr;
2625 	struct sk_buff *skb;
2626 	int copied, err;
2627 
2628 	err = -EAGAIN;
2629 	skb = sock_dequeue_err_skb(sk);
2630 	if (skb == NULL)
2631 		goto out;
2632 
2633 	copied = skb->len;
2634 	if (copied > len) {
2635 		msg->msg_flags |= MSG_TRUNC;
2636 		copied = len;
2637 	}
2638 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2639 	if (err)
2640 		goto out_free_skb;
2641 
2642 	sock_recv_timestamp(msg, sk, skb);
2643 
2644 	serr = SKB_EXT_ERR(skb);
2645 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2646 
2647 	msg->msg_flags |= MSG_ERRQUEUE;
2648 	err = copied;
2649 
2650 out_free_skb:
2651 	kfree_skb(skb);
2652 out:
2653 	return err;
2654 }
2655 EXPORT_SYMBOL(sock_recv_errqueue);
2656 
2657 /*
2658  *	Get a socket option on an socket.
2659  *
2660  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2661  *	asynchronous errors should be reported by getsockopt. We assume
2662  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2663  */
2664 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2665 			   char __user *optval, int __user *optlen)
2666 {
2667 	struct sock *sk = sock->sk;
2668 
2669 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2670 }
2671 EXPORT_SYMBOL(sock_common_getsockopt);
2672 
2673 #ifdef CONFIG_COMPAT
2674 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2675 				  char __user *optval, int __user *optlen)
2676 {
2677 	struct sock *sk = sock->sk;
2678 
2679 	if (sk->sk_prot->compat_getsockopt != NULL)
2680 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2681 						      optval, optlen);
2682 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2683 }
2684 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2685 #endif
2686 
2687 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2688 			int flags)
2689 {
2690 	struct sock *sk = sock->sk;
2691 	int addr_len = 0;
2692 	int err;
2693 
2694 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2695 				   flags & ~MSG_DONTWAIT, &addr_len);
2696 	if (err >= 0)
2697 		msg->msg_namelen = addr_len;
2698 	return err;
2699 }
2700 EXPORT_SYMBOL(sock_common_recvmsg);
2701 
2702 /*
2703  *	Set socket options on an inet socket.
2704  */
2705 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2706 			   char __user *optval, unsigned int optlen)
2707 {
2708 	struct sock *sk = sock->sk;
2709 
2710 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2711 }
2712 EXPORT_SYMBOL(sock_common_setsockopt);
2713 
2714 #ifdef CONFIG_COMPAT
2715 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2716 				  char __user *optval, unsigned int optlen)
2717 {
2718 	struct sock *sk = sock->sk;
2719 
2720 	if (sk->sk_prot->compat_setsockopt != NULL)
2721 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2722 						      optval, optlen);
2723 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2724 }
2725 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2726 #endif
2727 
2728 void sk_common_release(struct sock *sk)
2729 {
2730 	if (sk->sk_prot->destroy)
2731 		sk->sk_prot->destroy(sk);
2732 
2733 	/*
2734 	 * Observation: when sock_common_release is called, processes have
2735 	 * no access to socket. But net still has.
2736 	 * Step one, detach it from networking:
2737 	 *
2738 	 * A. Remove from hash tables.
2739 	 */
2740 
2741 	sk->sk_prot->unhash(sk);
2742 
2743 	/*
2744 	 * In this point socket cannot receive new packets, but it is possible
2745 	 * that some packets are in flight because some CPU runs receiver and
2746 	 * did hash table lookup before we unhashed socket. They will achieve
2747 	 * receive queue and will be purged by socket destructor.
2748 	 *
2749 	 * Also we still have packets pending on receive queue and probably,
2750 	 * our own packets waiting in device queues. sock_destroy will drain
2751 	 * receive queue, but transmitted packets will delay socket destruction
2752 	 * until the last reference will be released.
2753 	 */
2754 
2755 	sock_orphan(sk);
2756 
2757 	xfrm_sk_free_policy(sk);
2758 
2759 	sk_refcnt_debug_release(sk);
2760 
2761 	if (sk->sk_frag.page) {
2762 		put_page(sk->sk_frag.page);
2763 		sk->sk_frag.page = NULL;
2764 	}
2765 
2766 	sock_put(sk);
2767 }
2768 EXPORT_SYMBOL(sk_common_release);
2769 
2770 #ifdef CONFIG_PROC_FS
2771 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2772 struct prot_inuse {
2773 	int val[PROTO_INUSE_NR];
2774 };
2775 
2776 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2777 
2778 #ifdef CONFIG_NET_NS
2779 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2780 {
2781 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2782 }
2783 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2784 
2785 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2786 {
2787 	int cpu, idx = prot->inuse_idx;
2788 	int res = 0;
2789 
2790 	for_each_possible_cpu(cpu)
2791 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2792 
2793 	return res >= 0 ? res : 0;
2794 }
2795 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2796 
2797 static int __net_init sock_inuse_init_net(struct net *net)
2798 {
2799 	net->core.inuse = alloc_percpu(struct prot_inuse);
2800 	return net->core.inuse ? 0 : -ENOMEM;
2801 }
2802 
2803 static void __net_exit sock_inuse_exit_net(struct net *net)
2804 {
2805 	free_percpu(net->core.inuse);
2806 }
2807 
2808 static struct pernet_operations net_inuse_ops = {
2809 	.init = sock_inuse_init_net,
2810 	.exit = sock_inuse_exit_net,
2811 };
2812 
2813 static __init int net_inuse_init(void)
2814 {
2815 	if (register_pernet_subsys(&net_inuse_ops))
2816 		panic("Cannot initialize net inuse counters");
2817 
2818 	return 0;
2819 }
2820 
2821 core_initcall(net_inuse_init);
2822 #else
2823 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2824 
2825 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2826 {
2827 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2828 }
2829 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2830 
2831 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2832 {
2833 	int cpu, idx = prot->inuse_idx;
2834 	int res = 0;
2835 
2836 	for_each_possible_cpu(cpu)
2837 		res += per_cpu(prot_inuse, cpu).val[idx];
2838 
2839 	return res >= 0 ? res : 0;
2840 }
2841 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2842 #endif
2843 
2844 static void assign_proto_idx(struct proto *prot)
2845 {
2846 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2847 
2848 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2849 		pr_err("PROTO_INUSE_NR exhausted\n");
2850 		return;
2851 	}
2852 
2853 	set_bit(prot->inuse_idx, proto_inuse_idx);
2854 }
2855 
2856 static void release_proto_idx(struct proto *prot)
2857 {
2858 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2859 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2860 }
2861 #else
2862 static inline void assign_proto_idx(struct proto *prot)
2863 {
2864 }
2865 
2866 static inline void release_proto_idx(struct proto *prot)
2867 {
2868 }
2869 #endif
2870 
2871 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2872 {
2873 	if (!rsk_prot)
2874 		return;
2875 	kfree(rsk_prot->slab_name);
2876 	rsk_prot->slab_name = NULL;
2877 	kmem_cache_destroy(rsk_prot->slab);
2878 	rsk_prot->slab = NULL;
2879 }
2880 
2881 static int req_prot_init(const struct proto *prot)
2882 {
2883 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2884 
2885 	if (!rsk_prot)
2886 		return 0;
2887 
2888 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2889 					prot->name);
2890 	if (!rsk_prot->slab_name)
2891 		return -ENOMEM;
2892 
2893 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2894 					   rsk_prot->obj_size, 0,
2895 					   prot->slab_flags, NULL);
2896 
2897 	if (!rsk_prot->slab) {
2898 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2899 			prot->name);
2900 		return -ENOMEM;
2901 	}
2902 	return 0;
2903 }
2904 
2905 int proto_register(struct proto *prot, int alloc_slab)
2906 {
2907 	if (alloc_slab) {
2908 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2909 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2910 					NULL);
2911 
2912 		if (prot->slab == NULL) {
2913 			pr_crit("%s: Can't create sock SLAB cache!\n",
2914 				prot->name);
2915 			goto out;
2916 		}
2917 
2918 		if (req_prot_init(prot))
2919 			goto out_free_request_sock_slab;
2920 
2921 		if (prot->twsk_prot != NULL) {
2922 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2923 
2924 			if (prot->twsk_prot->twsk_slab_name == NULL)
2925 				goto out_free_request_sock_slab;
2926 
2927 			prot->twsk_prot->twsk_slab =
2928 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2929 						  prot->twsk_prot->twsk_obj_size,
2930 						  0,
2931 						  prot->slab_flags,
2932 						  NULL);
2933 			if (prot->twsk_prot->twsk_slab == NULL)
2934 				goto out_free_timewait_sock_slab_name;
2935 		}
2936 	}
2937 
2938 	mutex_lock(&proto_list_mutex);
2939 	list_add(&prot->node, &proto_list);
2940 	assign_proto_idx(prot);
2941 	mutex_unlock(&proto_list_mutex);
2942 	return 0;
2943 
2944 out_free_timewait_sock_slab_name:
2945 	kfree(prot->twsk_prot->twsk_slab_name);
2946 out_free_request_sock_slab:
2947 	req_prot_cleanup(prot->rsk_prot);
2948 
2949 	kmem_cache_destroy(prot->slab);
2950 	prot->slab = NULL;
2951 out:
2952 	return -ENOBUFS;
2953 }
2954 EXPORT_SYMBOL(proto_register);
2955 
2956 void proto_unregister(struct proto *prot)
2957 {
2958 	mutex_lock(&proto_list_mutex);
2959 	release_proto_idx(prot);
2960 	list_del(&prot->node);
2961 	mutex_unlock(&proto_list_mutex);
2962 
2963 	kmem_cache_destroy(prot->slab);
2964 	prot->slab = NULL;
2965 
2966 	req_prot_cleanup(prot->rsk_prot);
2967 
2968 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2969 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2970 		kfree(prot->twsk_prot->twsk_slab_name);
2971 		prot->twsk_prot->twsk_slab = NULL;
2972 	}
2973 }
2974 EXPORT_SYMBOL(proto_unregister);
2975 
2976 #ifdef CONFIG_PROC_FS
2977 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2978 	__acquires(proto_list_mutex)
2979 {
2980 	mutex_lock(&proto_list_mutex);
2981 	return seq_list_start_head(&proto_list, *pos);
2982 }
2983 
2984 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2985 {
2986 	return seq_list_next(v, &proto_list, pos);
2987 }
2988 
2989 static void proto_seq_stop(struct seq_file *seq, void *v)
2990 	__releases(proto_list_mutex)
2991 {
2992 	mutex_unlock(&proto_list_mutex);
2993 }
2994 
2995 static char proto_method_implemented(const void *method)
2996 {
2997 	return method == NULL ? 'n' : 'y';
2998 }
2999 static long sock_prot_memory_allocated(struct proto *proto)
3000 {
3001 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3002 }
3003 
3004 static char *sock_prot_memory_pressure(struct proto *proto)
3005 {
3006 	return proto->memory_pressure != NULL ?
3007 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3008 }
3009 
3010 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3011 {
3012 
3013 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3014 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3015 		   proto->name,
3016 		   proto->obj_size,
3017 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3018 		   sock_prot_memory_allocated(proto),
3019 		   sock_prot_memory_pressure(proto),
3020 		   proto->max_header,
3021 		   proto->slab == NULL ? "no" : "yes",
3022 		   module_name(proto->owner),
3023 		   proto_method_implemented(proto->close),
3024 		   proto_method_implemented(proto->connect),
3025 		   proto_method_implemented(proto->disconnect),
3026 		   proto_method_implemented(proto->accept),
3027 		   proto_method_implemented(proto->ioctl),
3028 		   proto_method_implemented(proto->init),
3029 		   proto_method_implemented(proto->destroy),
3030 		   proto_method_implemented(proto->shutdown),
3031 		   proto_method_implemented(proto->setsockopt),
3032 		   proto_method_implemented(proto->getsockopt),
3033 		   proto_method_implemented(proto->sendmsg),
3034 		   proto_method_implemented(proto->recvmsg),
3035 		   proto_method_implemented(proto->sendpage),
3036 		   proto_method_implemented(proto->bind),
3037 		   proto_method_implemented(proto->backlog_rcv),
3038 		   proto_method_implemented(proto->hash),
3039 		   proto_method_implemented(proto->unhash),
3040 		   proto_method_implemented(proto->get_port),
3041 		   proto_method_implemented(proto->enter_memory_pressure));
3042 }
3043 
3044 static int proto_seq_show(struct seq_file *seq, void *v)
3045 {
3046 	if (v == &proto_list)
3047 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3048 			   "protocol",
3049 			   "size",
3050 			   "sockets",
3051 			   "memory",
3052 			   "press",
3053 			   "maxhdr",
3054 			   "slab",
3055 			   "module",
3056 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3057 	else
3058 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3059 	return 0;
3060 }
3061 
3062 static const struct seq_operations proto_seq_ops = {
3063 	.start  = proto_seq_start,
3064 	.next   = proto_seq_next,
3065 	.stop   = proto_seq_stop,
3066 	.show   = proto_seq_show,
3067 };
3068 
3069 static int proto_seq_open(struct inode *inode, struct file *file)
3070 {
3071 	return seq_open_net(inode, file, &proto_seq_ops,
3072 			    sizeof(struct seq_net_private));
3073 }
3074 
3075 static const struct file_operations proto_seq_fops = {
3076 	.owner		= THIS_MODULE,
3077 	.open		= proto_seq_open,
3078 	.read		= seq_read,
3079 	.llseek		= seq_lseek,
3080 	.release	= seq_release_net,
3081 };
3082 
3083 static __net_init int proto_init_net(struct net *net)
3084 {
3085 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3086 		return -ENOMEM;
3087 
3088 	return 0;
3089 }
3090 
3091 static __net_exit void proto_exit_net(struct net *net)
3092 {
3093 	remove_proc_entry("protocols", net->proc_net);
3094 }
3095 
3096 
3097 static __net_initdata struct pernet_operations proto_net_ops = {
3098 	.init = proto_init_net,
3099 	.exit = proto_exit_net,
3100 };
3101 
3102 static int __init proto_init(void)
3103 {
3104 	return register_pernet_subsys(&proto_net_ops);
3105 }
3106 
3107 subsys_initcall(proto_init);
3108 
3109 #endif /* PROC_FS */
3110