xref: /openbmc/linux/net/core/sock.c (revision 110e6f26)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	int err;
411 	unsigned long flags;
412 	struct sk_buff_head *list = &sk->sk_receive_queue;
413 
414 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
415 		atomic_inc(&sk->sk_drops);
416 		trace_sock_rcvqueue_full(sk, skb);
417 		return -ENOMEM;
418 	}
419 
420 	err = sk_filter(sk, skb);
421 	if (err)
422 		return err;
423 
424 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
425 		atomic_inc(&sk->sk_drops);
426 		return -ENOBUFS;
427 	}
428 
429 	skb->dev = NULL;
430 	skb_set_owner_r(skb, sk);
431 
432 	/* we escape from rcu protected region, make sure we dont leak
433 	 * a norefcounted dst
434 	 */
435 	skb_dst_force(skb);
436 
437 	spin_lock_irqsave(&list->lock, flags);
438 	sock_skb_set_dropcount(sk, skb);
439 	__skb_queue_tail(list, skb);
440 	spin_unlock_irqrestore(&list->lock, flags);
441 
442 	if (!sock_flag(sk, SOCK_DEAD))
443 		sk->sk_data_ready(sk);
444 	return 0;
445 }
446 EXPORT_SYMBOL(sock_queue_rcv_skb);
447 
448 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
449 {
450 	int rc = NET_RX_SUCCESS;
451 
452 	if (sk_filter(sk, skb))
453 		goto discard_and_relse;
454 
455 	skb->dev = NULL;
456 
457 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
458 		atomic_inc(&sk->sk_drops);
459 		goto discard_and_relse;
460 	}
461 	if (nested)
462 		bh_lock_sock_nested(sk);
463 	else
464 		bh_lock_sock(sk);
465 	if (!sock_owned_by_user(sk)) {
466 		/*
467 		 * trylock + unlock semantics:
468 		 */
469 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
470 
471 		rc = sk_backlog_rcv(sk, skb);
472 
473 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
474 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
475 		bh_unlock_sock(sk);
476 		atomic_inc(&sk->sk_drops);
477 		goto discard_and_relse;
478 	}
479 
480 	bh_unlock_sock(sk);
481 out:
482 	sock_put(sk);
483 	return rc;
484 discard_and_relse:
485 	kfree_skb(skb);
486 	goto out;
487 }
488 EXPORT_SYMBOL(sk_receive_skb);
489 
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 	struct dst_entry *dst = __sk_dst_get(sk);
493 
494 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 		sk_tx_queue_clear(sk);
496 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 		dst_release(dst);
498 		return NULL;
499 	}
500 
501 	return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504 
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 	struct dst_entry *dst = sk_dst_get(sk);
508 
509 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 		sk_dst_reset(sk);
511 		dst_release(dst);
512 		return NULL;
513 	}
514 
515 	return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518 
519 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
520 				int optlen)
521 {
522 	int ret = -ENOPROTOOPT;
523 #ifdef CONFIG_NETDEVICES
524 	struct net *net = sock_net(sk);
525 	char devname[IFNAMSIZ];
526 	int index;
527 
528 	/* Sorry... */
529 	ret = -EPERM;
530 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
531 		goto out;
532 
533 	ret = -EINVAL;
534 	if (optlen < 0)
535 		goto out;
536 
537 	/* Bind this socket to a particular device like "eth0",
538 	 * as specified in the passed interface name. If the
539 	 * name is "" or the option length is zero the socket
540 	 * is not bound.
541 	 */
542 	if (optlen > IFNAMSIZ - 1)
543 		optlen = IFNAMSIZ - 1;
544 	memset(devname, 0, sizeof(devname));
545 
546 	ret = -EFAULT;
547 	if (copy_from_user(devname, optval, optlen))
548 		goto out;
549 
550 	index = 0;
551 	if (devname[0] != '\0') {
552 		struct net_device *dev;
553 
554 		rcu_read_lock();
555 		dev = dev_get_by_name_rcu(net, devname);
556 		if (dev)
557 			index = dev->ifindex;
558 		rcu_read_unlock();
559 		ret = -ENODEV;
560 		if (!dev)
561 			goto out;
562 	}
563 
564 	lock_sock(sk);
565 	sk->sk_bound_dev_if = index;
566 	sk_dst_reset(sk);
567 	release_sock(sk);
568 
569 	ret = 0;
570 
571 out:
572 #endif
573 
574 	return ret;
575 }
576 
577 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
578 				int __user *optlen, int len)
579 {
580 	int ret = -ENOPROTOOPT;
581 #ifdef CONFIG_NETDEVICES
582 	struct net *net = sock_net(sk);
583 	char devname[IFNAMSIZ];
584 
585 	if (sk->sk_bound_dev_if == 0) {
586 		len = 0;
587 		goto zero;
588 	}
589 
590 	ret = -EINVAL;
591 	if (len < IFNAMSIZ)
592 		goto out;
593 
594 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
595 	if (ret)
596 		goto out;
597 
598 	len = strlen(devname) + 1;
599 
600 	ret = -EFAULT;
601 	if (copy_to_user(optval, devname, len))
602 		goto out;
603 
604 zero:
605 	ret = -EFAULT;
606 	if (put_user(len, optlen))
607 		goto out;
608 
609 	ret = 0;
610 
611 out:
612 #endif
613 
614 	return ret;
615 }
616 
617 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
618 {
619 	if (valbool)
620 		sock_set_flag(sk, bit);
621 	else
622 		sock_reset_flag(sk, bit);
623 }
624 
625 bool sk_mc_loop(struct sock *sk)
626 {
627 	if (dev_recursion_level())
628 		return false;
629 	if (!sk)
630 		return true;
631 	switch (sk->sk_family) {
632 	case AF_INET:
633 		return inet_sk(sk)->mc_loop;
634 #if IS_ENABLED(CONFIG_IPV6)
635 	case AF_INET6:
636 		return inet6_sk(sk)->mc_loop;
637 #endif
638 	}
639 	WARN_ON(1);
640 	return true;
641 }
642 EXPORT_SYMBOL(sk_mc_loop);
643 
644 /*
645  *	This is meant for all protocols to use and covers goings on
646  *	at the socket level. Everything here is generic.
647  */
648 
649 int sock_setsockopt(struct socket *sock, int level, int optname,
650 		    char __user *optval, unsigned int optlen)
651 {
652 	struct sock *sk = sock->sk;
653 	int val;
654 	int valbool;
655 	struct linger ling;
656 	int ret = 0;
657 
658 	/*
659 	 *	Options without arguments
660 	 */
661 
662 	if (optname == SO_BINDTODEVICE)
663 		return sock_setbindtodevice(sk, optval, optlen);
664 
665 	if (optlen < sizeof(int))
666 		return -EINVAL;
667 
668 	if (get_user(val, (int __user *)optval))
669 		return -EFAULT;
670 
671 	valbool = val ? 1 : 0;
672 
673 	lock_sock(sk);
674 
675 	switch (optname) {
676 	case SO_DEBUG:
677 		if (val && !capable(CAP_NET_ADMIN))
678 			ret = -EACCES;
679 		else
680 			sock_valbool_flag(sk, SOCK_DBG, valbool);
681 		break;
682 	case SO_REUSEADDR:
683 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
684 		break;
685 	case SO_REUSEPORT:
686 		sk->sk_reuseport = valbool;
687 		break;
688 	case SO_TYPE:
689 	case SO_PROTOCOL:
690 	case SO_DOMAIN:
691 	case SO_ERROR:
692 		ret = -ENOPROTOOPT;
693 		break;
694 	case SO_DONTROUTE:
695 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
696 		break;
697 	case SO_BROADCAST:
698 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
699 		break;
700 	case SO_SNDBUF:
701 		/* Don't error on this BSD doesn't and if you think
702 		 * about it this is right. Otherwise apps have to
703 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
704 		 * are treated in BSD as hints
705 		 */
706 		val = min_t(u32, val, sysctl_wmem_max);
707 set_sndbuf:
708 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
709 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
710 		/* Wake up sending tasks if we upped the value. */
711 		sk->sk_write_space(sk);
712 		break;
713 
714 	case SO_SNDBUFFORCE:
715 		if (!capable(CAP_NET_ADMIN)) {
716 			ret = -EPERM;
717 			break;
718 		}
719 		goto set_sndbuf;
720 
721 	case SO_RCVBUF:
722 		/* Don't error on this BSD doesn't and if you think
723 		 * about it this is right. Otherwise apps have to
724 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
725 		 * are treated in BSD as hints
726 		 */
727 		val = min_t(u32, val, sysctl_rmem_max);
728 set_rcvbuf:
729 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
730 		/*
731 		 * We double it on the way in to account for
732 		 * "struct sk_buff" etc. overhead.   Applications
733 		 * assume that the SO_RCVBUF setting they make will
734 		 * allow that much actual data to be received on that
735 		 * socket.
736 		 *
737 		 * Applications are unaware that "struct sk_buff" and
738 		 * other overheads allocate from the receive buffer
739 		 * during socket buffer allocation.
740 		 *
741 		 * And after considering the possible alternatives,
742 		 * returning the value we actually used in getsockopt
743 		 * is the most desirable behavior.
744 		 */
745 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
746 		break;
747 
748 	case SO_RCVBUFFORCE:
749 		if (!capable(CAP_NET_ADMIN)) {
750 			ret = -EPERM;
751 			break;
752 		}
753 		goto set_rcvbuf;
754 
755 	case SO_KEEPALIVE:
756 #ifdef CONFIG_INET
757 		if (sk->sk_protocol == IPPROTO_TCP &&
758 		    sk->sk_type == SOCK_STREAM)
759 			tcp_set_keepalive(sk, valbool);
760 #endif
761 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
762 		break;
763 
764 	case SO_OOBINLINE:
765 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
766 		break;
767 
768 	case SO_NO_CHECK:
769 		sk->sk_no_check_tx = valbool;
770 		break;
771 
772 	case SO_PRIORITY:
773 		if ((val >= 0 && val <= 6) ||
774 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
775 			sk->sk_priority = val;
776 		else
777 			ret = -EPERM;
778 		break;
779 
780 	case SO_LINGER:
781 		if (optlen < sizeof(ling)) {
782 			ret = -EINVAL;	/* 1003.1g */
783 			break;
784 		}
785 		if (copy_from_user(&ling, optval, sizeof(ling))) {
786 			ret = -EFAULT;
787 			break;
788 		}
789 		if (!ling.l_onoff)
790 			sock_reset_flag(sk, SOCK_LINGER);
791 		else {
792 #if (BITS_PER_LONG == 32)
793 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
794 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
795 			else
796 #endif
797 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
798 			sock_set_flag(sk, SOCK_LINGER);
799 		}
800 		break;
801 
802 	case SO_BSDCOMPAT:
803 		sock_warn_obsolete_bsdism("setsockopt");
804 		break;
805 
806 	case SO_PASSCRED:
807 		if (valbool)
808 			set_bit(SOCK_PASSCRED, &sock->flags);
809 		else
810 			clear_bit(SOCK_PASSCRED, &sock->flags);
811 		break;
812 
813 	case SO_TIMESTAMP:
814 	case SO_TIMESTAMPNS:
815 		if (valbool)  {
816 			if (optname == SO_TIMESTAMP)
817 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
818 			else
819 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
820 			sock_set_flag(sk, SOCK_RCVTSTAMP);
821 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
822 		} else {
823 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
824 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
825 		}
826 		break;
827 
828 	case SO_TIMESTAMPING:
829 		if (val & ~SOF_TIMESTAMPING_MASK) {
830 			ret = -EINVAL;
831 			break;
832 		}
833 
834 		if (val & SOF_TIMESTAMPING_OPT_ID &&
835 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
836 			if (sk->sk_protocol == IPPROTO_TCP &&
837 			    sk->sk_type == SOCK_STREAM) {
838 				if (sk->sk_state != TCP_ESTABLISHED) {
839 					ret = -EINVAL;
840 					break;
841 				}
842 				sk->sk_tskey = tcp_sk(sk)->snd_una;
843 			} else {
844 				sk->sk_tskey = 0;
845 			}
846 		}
847 		sk->sk_tsflags = val;
848 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
849 			sock_enable_timestamp(sk,
850 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
851 		else
852 			sock_disable_timestamp(sk,
853 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
854 		break;
855 
856 	case SO_RCVLOWAT:
857 		if (val < 0)
858 			val = INT_MAX;
859 		sk->sk_rcvlowat = val ? : 1;
860 		break;
861 
862 	case SO_RCVTIMEO:
863 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
864 		break;
865 
866 	case SO_SNDTIMEO:
867 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
868 		break;
869 
870 	case SO_ATTACH_FILTER:
871 		ret = -EINVAL;
872 		if (optlen == sizeof(struct sock_fprog)) {
873 			struct sock_fprog fprog;
874 
875 			ret = -EFAULT;
876 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
877 				break;
878 
879 			ret = sk_attach_filter(&fprog, sk);
880 		}
881 		break;
882 
883 	case SO_ATTACH_BPF:
884 		ret = -EINVAL;
885 		if (optlen == sizeof(u32)) {
886 			u32 ufd;
887 
888 			ret = -EFAULT;
889 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
890 				break;
891 
892 			ret = sk_attach_bpf(ufd, sk);
893 		}
894 		break;
895 
896 	case SO_ATTACH_REUSEPORT_CBPF:
897 		ret = -EINVAL;
898 		if (optlen == sizeof(struct sock_fprog)) {
899 			struct sock_fprog fprog;
900 
901 			ret = -EFAULT;
902 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
903 				break;
904 
905 			ret = sk_reuseport_attach_filter(&fprog, sk);
906 		}
907 		break;
908 
909 	case SO_ATTACH_REUSEPORT_EBPF:
910 		ret = -EINVAL;
911 		if (optlen == sizeof(u32)) {
912 			u32 ufd;
913 
914 			ret = -EFAULT;
915 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
916 				break;
917 
918 			ret = sk_reuseport_attach_bpf(ufd, sk);
919 		}
920 		break;
921 
922 	case SO_DETACH_FILTER:
923 		ret = sk_detach_filter(sk);
924 		break;
925 
926 	case SO_LOCK_FILTER:
927 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
928 			ret = -EPERM;
929 		else
930 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
931 		break;
932 
933 	case SO_PASSSEC:
934 		if (valbool)
935 			set_bit(SOCK_PASSSEC, &sock->flags);
936 		else
937 			clear_bit(SOCK_PASSSEC, &sock->flags);
938 		break;
939 	case SO_MARK:
940 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
941 			ret = -EPERM;
942 		else
943 			sk->sk_mark = val;
944 		break;
945 
946 	case SO_RXQ_OVFL:
947 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
948 		break;
949 
950 	case SO_WIFI_STATUS:
951 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
952 		break;
953 
954 	case SO_PEEK_OFF:
955 		if (sock->ops->set_peek_off)
956 			ret = sock->ops->set_peek_off(sk, val);
957 		else
958 			ret = -EOPNOTSUPP;
959 		break;
960 
961 	case SO_NOFCS:
962 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
963 		break;
964 
965 	case SO_SELECT_ERR_QUEUE:
966 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
967 		break;
968 
969 #ifdef CONFIG_NET_RX_BUSY_POLL
970 	case SO_BUSY_POLL:
971 		/* allow unprivileged users to decrease the value */
972 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
973 			ret = -EPERM;
974 		else {
975 			if (val < 0)
976 				ret = -EINVAL;
977 			else
978 				sk->sk_ll_usec = val;
979 		}
980 		break;
981 #endif
982 
983 	case SO_MAX_PACING_RATE:
984 		sk->sk_max_pacing_rate = val;
985 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
986 					 sk->sk_max_pacing_rate);
987 		break;
988 
989 	case SO_INCOMING_CPU:
990 		sk->sk_incoming_cpu = val;
991 		break;
992 
993 	case SO_CNX_ADVICE:
994 		if (val == 1)
995 			dst_negative_advice(sk);
996 		break;
997 	default:
998 		ret = -ENOPROTOOPT;
999 		break;
1000 	}
1001 	release_sock(sk);
1002 	return ret;
1003 }
1004 EXPORT_SYMBOL(sock_setsockopt);
1005 
1006 
1007 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1008 			  struct ucred *ucred)
1009 {
1010 	ucred->pid = pid_vnr(pid);
1011 	ucred->uid = ucred->gid = -1;
1012 	if (cred) {
1013 		struct user_namespace *current_ns = current_user_ns();
1014 
1015 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1016 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1017 	}
1018 }
1019 
1020 int sock_getsockopt(struct socket *sock, int level, int optname,
1021 		    char __user *optval, int __user *optlen)
1022 {
1023 	struct sock *sk = sock->sk;
1024 
1025 	union {
1026 		int val;
1027 		struct linger ling;
1028 		struct timeval tm;
1029 	} v;
1030 
1031 	int lv = sizeof(int);
1032 	int len;
1033 
1034 	if (get_user(len, optlen))
1035 		return -EFAULT;
1036 	if (len < 0)
1037 		return -EINVAL;
1038 
1039 	memset(&v, 0, sizeof(v));
1040 
1041 	switch (optname) {
1042 	case SO_DEBUG:
1043 		v.val = sock_flag(sk, SOCK_DBG);
1044 		break;
1045 
1046 	case SO_DONTROUTE:
1047 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1048 		break;
1049 
1050 	case SO_BROADCAST:
1051 		v.val = sock_flag(sk, SOCK_BROADCAST);
1052 		break;
1053 
1054 	case SO_SNDBUF:
1055 		v.val = sk->sk_sndbuf;
1056 		break;
1057 
1058 	case SO_RCVBUF:
1059 		v.val = sk->sk_rcvbuf;
1060 		break;
1061 
1062 	case SO_REUSEADDR:
1063 		v.val = sk->sk_reuse;
1064 		break;
1065 
1066 	case SO_REUSEPORT:
1067 		v.val = sk->sk_reuseport;
1068 		break;
1069 
1070 	case SO_KEEPALIVE:
1071 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1072 		break;
1073 
1074 	case SO_TYPE:
1075 		v.val = sk->sk_type;
1076 		break;
1077 
1078 	case SO_PROTOCOL:
1079 		v.val = sk->sk_protocol;
1080 		break;
1081 
1082 	case SO_DOMAIN:
1083 		v.val = sk->sk_family;
1084 		break;
1085 
1086 	case SO_ERROR:
1087 		v.val = -sock_error(sk);
1088 		if (v.val == 0)
1089 			v.val = xchg(&sk->sk_err_soft, 0);
1090 		break;
1091 
1092 	case SO_OOBINLINE:
1093 		v.val = sock_flag(sk, SOCK_URGINLINE);
1094 		break;
1095 
1096 	case SO_NO_CHECK:
1097 		v.val = sk->sk_no_check_tx;
1098 		break;
1099 
1100 	case SO_PRIORITY:
1101 		v.val = sk->sk_priority;
1102 		break;
1103 
1104 	case SO_LINGER:
1105 		lv		= sizeof(v.ling);
1106 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1107 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1108 		break;
1109 
1110 	case SO_BSDCOMPAT:
1111 		sock_warn_obsolete_bsdism("getsockopt");
1112 		break;
1113 
1114 	case SO_TIMESTAMP:
1115 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1116 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 		break;
1118 
1119 	case SO_TIMESTAMPNS:
1120 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1121 		break;
1122 
1123 	case SO_TIMESTAMPING:
1124 		v.val = sk->sk_tsflags;
1125 		break;
1126 
1127 	case SO_RCVTIMEO:
1128 		lv = sizeof(struct timeval);
1129 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1130 			v.tm.tv_sec = 0;
1131 			v.tm.tv_usec = 0;
1132 		} else {
1133 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1134 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1135 		}
1136 		break;
1137 
1138 	case SO_SNDTIMEO:
1139 		lv = sizeof(struct timeval);
1140 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1141 			v.tm.tv_sec = 0;
1142 			v.tm.tv_usec = 0;
1143 		} else {
1144 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1145 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1146 		}
1147 		break;
1148 
1149 	case SO_RCVLOWAT:
1150 		v.val = sk->sk_rcvlowat;
1151 		break;
1152 
1153 	case SO_SNDLOWAT:
1154 		v.val = 1;
1155 		break;
1156 
1157 	case SO_PASSCRED:
1158 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1159 		break;
1160 
1161 	case SO_PEERCRED:
1162 	{
1163 		struct ucred peercred;
1164 		if (len > sizeof(peercred))
1165 			len = sizeof(peercred);
1166 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1167 		if (copy_to_user(optval, &peercred, len))
1168 			return -EFAULT;
1169 		goto lenout;
1170 	}
1171 
1172 	case SO_PEERNAME:
1173 	{
1174 		char address[128];
1175 
1176 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1177 			return -ENOTCONN;
1178 		if (lv < len)
1179 			return -EINVAL;
1180 		if (copy_to_user(optval, address, len))
1181 			return -EFAULT;
1182 		goto lenout;
1183 	}
1184 
1185 	/* Dubious BSD thing... Probably nobody even uses it, but
1186 	 * the UNIX standard wants it for whatever reason... -DaveM
1187 	 */
1188 	case SO_ACCEPTCONN:
1189 		v.val = sk->sk_state == TCP_LISTEN;
1190 		break;
1191 
1192 	case SO_PASSSEC:
1193 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1194 		break;
1195 
1196 	case SO_PEERSEC:
1197 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1198 
1199 	case SO_MARK:
1200 		v.val = sk->sk_mark;
1201 		break;
1202 
1203 	case SO_RXQ_OVFL:
1204 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1205 		break;
1206 
1207 	case SO_WIFI_STATUS:
1208 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1209 		break;
1210 
1211 	case SO_PEEK_OFF:
1212 		if (!sock->ops->set_peek_off)
1213 			return -EOPNOTSUPP;
1214 
1215 		v.val = sk->sk_peek_off;
1216 		break;
1217 	case SO_NOFCS:
1218 		v.val = sock_flag(sk, SOCK_NOFCS);
1219 		break;
1220 
1221 	case SO_BINDTODEVICE:
1222 		return sock_getbindtodevice(sk, optval, optlen, len);
1223 
1224 	case SO_GET_FILTER:
1225 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1226 		if (len < 0)
1227 			return len;
1228 
1229 		goto lenout;
1230 
1231 	case SO_LOCK_FILTER:
1232 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1233 		break;
1234 
1235 	case SO_BPF_EXTENSIONS:
1236 		v.val = bpf_tell_extensions();
1237 		break;
1238 
1239 	case SO_SELECT_ERR_QUEUE:
1240 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1241 		break;
1242 
1243 #ifdef CONFIG_NET_RX_BUSY_POLL
1244 	case SO_BUSY_POLL:
1245 		v.val = sk->sk_ll_usec;
1246 		break;
1247 #endif
1248 
1249 	case SO_MAX_PACING_RATE:
1250 		v.val = sk->sk_max_pacing_rate;
1251 		break;
1252 
1253 	case SO_INCOMING_CPU:
1254 		v.val = sk->sk_incoming_cpu;
1255 		break;
1256 
1257 	default:
1258 		/* We implement the SO_SNDLOWAT etc to not be settable
1259 		 * (1003.1g 7).
1260 		 */
1261 		return -ENOPROTOOPT;
1262 	}
1263 
1264 	if (len > lv)
1265 		len = lv;
1266 	if (copy_to_user(optval, &v, len))
1267 		return -EFAULT;
1268 lenout:
1269 	if (put_user(len, optlen))
1270 		return -EFAULT;
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Initialize an sk_lock.
1276  *
1277  * (We also register the sk_lock with the lock validator.)
1278  */
1279 static inline void sock_lock_init(struct sock *sk)
1280 {
1281 	sock_lock_init_class_and_name(sk,
1282 			af_family_slock_key_strings[sk->sk_family],
1283 			af_family_slock_keys + sk->sk_family,
1284 			af_family_key_strings[sk->sk_family],
1285 			af_family_keys + sk->sk_family);
1286 }
1287 
1288 /*
1289  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1290  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1291  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1292  */
1293 static void sock_copy(struct sock *nsk, const struct sock *osk)
1294 {
1295 #ifdef CONFIG_SECURITY_NETWORK
1296 	void *sptr = nsk->sk_security;
1297 #endif
1298 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1299 
1300 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1301 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1302 
1303 #ifdef CONFIG_SECURITY_NETWORK
1304 	nsk->sk_security = sptr;
1305 	security_sk_clone(osk, nsk);
1306 #endif
1307 }
1308 
1309 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1310 {
1311 	unsigned long nulls1, nulls2;
1312 
1313 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1314 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1315 	if (nulls1 > nulls2)
1316 		swap(nulls1, nulls2);
1317 
1318 	if (nulls1 != 0)
1319 		memset((char *)sk, 0, nulls1);
1320 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1321 	       nulls2 - nulls1 - sizeof(void *));
1322 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1323 	       size - nulls2 - sizeof(void *));
1324 }
1325 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1326 
1327 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1328 		int family)
1329 {
1330 	struct sock *sk;
1331 	struct kmem_cache *slab;
1332 
1333 	slab = prot->slab;
1334 	if (slab != NULL) {
1335 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1336 		if (!sk)
1337 			return sk;
1338 		if (priority & __GFP_ZERO) {
1339 			if (prot->clear_sk)
1340 				prot->clear_sk(sk, prot->obj_size);
1341 			else
1342 				sk_prot_clear_nulls(sk, prot->obj_size);
1343 		}
1344 	} else
1345 		sk = kmalloc(prot->obj_size, priority);
1346 
1347 	if (sk != NULL) {
1348 		kmemcheck_annotate_bitfield(sk, flags);
1349 
1350 		if (security_sk_alloc(sk, family, priority))
1351 			goto out_free;
1352 
1353 		if (!try_module_get(prot->owner))
1354 			goto out_free_sec;
1355 		sk_tx_queue_clear(sk);
1356 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1357 	}
1358 
1359 	return sk;
1360 
1361 out_free_sec:
1362 	security_sk_free(sk);
1363 out_free:
1364 	if (slab != NULL)
1365 		kmem_cache_free(slab, sk);
1366 	else
1367 		kfree(sk);
1368 	return NULL;
1369 }
1370 
1371 static void sk_prot_free(struct proto *prot, struct sock *sk)
1372 {
1373 	struct kmem_cache *slab;
1374 	struct module *owner;
1375 
1376 	owner = prot->owner;
1377 	slab = prot->slab;
1378 
1379 	cgroup_sk_free(&sk->sk_cgrp_data);
1380 	security_sk_free(sk);
1381 	if (slab != NULL)
1382 		kmem_cache_free(slab, sk);
1383 	else
1384 		kfree(sk);
1385 	module_put(owner);
1386 }
1387 
1388 /**
1389  *	sk_alloc - All socket objects are allocated here
1390  *	@net: the applicable net namespace
1391  *	@family: protocol family
1392  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1393  *	@prot: struct proto associated with this new sock instance
1394  *	@kern: is this to be a kernel socket?
1395  */
1396 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1397 		      struct proto *prot, int kern)
1398 {
1399 	struct sock *sk;
1400 
1401 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1402 	if (sk) {
1403 		sk->sk_family = family;
1404 		/*
1405 		 * See comment in struct sock definition to understand
1406 		 * why we need sk_prot_creator -acme
1407 		 */
1408 		sk->sk_prot = sk->sk_prot_creator = prot;
1409 		sock_lock_init(sk);
1410 		sk->sk_net_refcnt = kern ? 0 : 1;
1411 		if (likely(sk->sk_net_refcnt))
1412 			get_net(net);
1413 		sock_net_set(sk, net);
1414 		atomic_set(&sk->sk_wmem_alloc, 1);
1415 
1416 		sock_update_classid(&sk->sk_cgrp_data);
1417 		sock_update_netprioidx(&sk->sk_cgrp_data);
1418 	}
1419 
1420 	return sk;
1421 }
1422 EXPORT_SYMBOL(sk_alloc);
1423 
1424 void sk_destruct(struct sock *sk)
1425 {
1426 	struct sk_filter *filter;
1427 
1428 	if (sk->sk_destruct)
1429 		sk->sk_destruct(sk);
1430 
1431 	filter = rcu_dereference_check(sk->sk_filter,
1432 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1433 	if (filter) {
1434 		sk_filter_uncharge(sk, filter);
1435 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1436 	}
1437 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1438 		reuseport_detach_sock(sk);
1439 
1440 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1441 
1442 	if (atomic_read(&sk->sk_omem_alloc))
1443 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1444 			 __func__, atomic_read(&sk->sk_omem_alloc));
1445 
1446 	if (sk->sk_peer_cred)
1447 		put_cred(sk->sk_peer_cred);
1448 	put_pid(sk->sk_peer_pid);
1449 	if (likely(sk->sk_net_refcnt))
1450 		put_net(sock_net(sk));
1451 	sk_prot_free(sk->sk_prot_creator, sk);
1452 }
1453 
1454 static void __sk_free(struct sock *sk)
1455 {
1456 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1457 		sock_diag_broadcast_destroy(sk);
1458 	else
1459 		sk_destruct(sk);
1460 }
1461 
1462 void sk_free(struct sock *sk)
1463 {
1464 	/*
1465 	 * We subtract one from sk_wmem_alloc and can know if
1466 	 * some packets are still in some tx queue.
1467 	 * If not null, sock_wfree() will call __sk_free(sk) later
1468 	 */
1469 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1470 		__sk_free(sk);
1471 }
1472 EXPORT_SYMBOL(sk_free);
1473 
1474 /**
1475  *	sk_clone_lock - clone a socket, and lock its clone
1476  *	@sk: the socket to clone
1477  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1478  *
1479  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1480  */
1481 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1482 {
1483 	struct sock *newsk;
1484 	bool is_charged = true;
1485 
1486 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1487 	if (newsk != NULL) {
1488 		struct sk_filter *filter;
1489 
1490 		sock_copy(newsk, sk);
1491 
1492 		/* SANITY */
1493 		if (likely(newsk->sk_net_refcnt))
1494 			get_net(sock_net(newsk));
1495 		sk_node_init(&newsk->sk_node);
1496 		sock_lock_init(newsk);
1497 		bh_lock_sock(newsk);
1498 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1499 		newsk->sk_backlog.len = 0;
1500 
1501 		atomic_set(&newsk->sk_rmem_alloc, 0);
1502 		/*
1503 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1504 		 */
1505 		atomic_set(&newsk->sk_wmem_alloc, 1);
1506 		atomic_set(&newsk->sk_omem_alloc, 0);
1507 		skb_queue_head_init(&newsk->sk_receive_queue);
1508 		skb_queue_head_init(&newsk->sk_write_queue);
1509 
1510 		rwlock_init(&newsk->sk_callback_lock);
1511 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1512 				af_callback_keys + newsk->sk_family,
1513 				af_family_clock_key_strings[newsk->sk_family]);
1514 
1515 		newsk->sk_dst_cache	= NULL;
1516 		newsk->sk_wmem_queued	= 0;
1517 		newsk->sk_forward_alloc = 0;
1518 		newsk->sk_send_head	= NULL;
1519 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1520 
1521 		sock_reset_flag(newsk, SOCK_DONE);
1522 		skb_queue_head_init(&newsk->sk_error_queue);
1523 
1524 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1525 		if (filter != NULL)
1526 			/* though it's an empty new sock, the charging may fail
1527 			 * if sysctl_optmem_max was changed between creation of
1528 			 * original socket and cloning
1529 			 */
1530 			is_charged = sk_filter_charge(newsk, filter);
1531 
1532 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1533 			/* It is still raw copy of parent, so invalidate
1534 			 * destructor and make plain sk_free() */
1535 			newsk->sk_destruct = NULL;
1536 			bh_unlock_sock(newsk);
1537 			sk_free(newsk);
1538 			newsk = NULL;
1539 			goto out;
1540 		}
1541 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1542 
1543 		newsk->sk_err	   = 0;
1544 		newsk->sk_priority = 0;
1545 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1546 		atomic64_set(&newsk->sk_cookie, 0);
1547 		/*
1548 		 * Before updating sk_refcnt, we must commit prior changes to memory
1549 		 * (Documentation/RCU/rculist_nulls.txt for details)
1550 		 */
1551 		smp_wmb();
1552 		atomic_set(&newsk->sk_refcnt, 2);
1553 
1554 		/*
1555 		 * Increment the counter in the same struct proto as the master
1556 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1557 		 * is the same as sk->sk_prot->socks, as this field was copied
1558 		 * with memcpy).
1559 		 *
1560 		 * This _changes_ the previous behaviour, where
1561 		 * tcp_create_openreq_child always was incrementing the
1562 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1563 		 * to be taken into account in all callers. -acme
1564 		 */
1565 		sk_refcnt_debug_inc(newsk);
1566 		sk_set_socket(newsk, NULL);
1567 		newsk->sk_wq = NULL;
1568 
1569 		if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1570 			sock_update_memcg(newsk);
1571 
1572 		if (newsk->sk_prot->sockets_allocated)
1573 			sk_sockets_allocated_inc(newsk);
1574 
1575 		if (sock_needs_netstamp(sk) &&
1576 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1577 			net_enable_timestamp();
1578 	}
1579 out:
1580 	return newsk;
1581 }
1582 EXPORT_SYMBOL_GPL(sk_clone_lock);
1583 
1584 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1585 {
1586 	u32 max_segs = 1;
1587 
1588 	sk_dst_set(sk, dst);
1589 	sk->sk_route_caps = dst->dev->features;
1590 	if (sk->sk_route_caps & NETIF_F_GSO)
1591 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1592 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1593 	if (sk_can_gso(sk)) {
1594 		if (dst->header_len) {
1595 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1596 		} else {
1597 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1598 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1599 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1600 		}
1601 	}
1602 	sk->sk_gso_max_segs = max_segs;
1603 }
1604 EXPORT_SYMBOL_GPL(sk_setup_caps);
1605 
1606 /*
1607  *	Simple resource managers for sockets.
1608  */
1609 
1610 
1611 /*
1612  * Write buffer destructor automatically called from kfree_skb.
1613  */
1614 void sock_wfree(struct sk_buff *skb)
1615 {
1616 	struct sock *sk = skb->sk;
1617 	unsigned int len = skb->truesize;
1618 
1619 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1620 		/*
1621 		 * Keep a reference on sk_wmem_alloc, this will be released
1622 		 * after sk_write_space() call
1623 		 */
1624 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1625 		sk->sk_write_space(sk);
1626 		len = 1;
1627 	}
1628 	/*
1629 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1630 	 * could not do because of in-flight packets
1631 	 */
1632 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1633 		__sk_free(sk);
1634 }
1635 EXPORT_SYMBOL(sock_wfree);
1636 
1637 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1638 {
1639 	skb_orphan(skb);
1640 	skb->sk = sk;
1641 #ifdef CONFIG_INET
1642 	if (unlikely(!sk_fullsock(sk))) {
1643 		skb->destructor = sock_edemux;
1644 		sock_hold(sk);
1645 		return;
1646 	}
1647 #endif
1648 	skb->destructor = sock_wfree;
1649 	skb_set_hash_from_sk(skb, sk);
1650 	/*
1651 	 * We used to take a refcount on sk, but following operation
1652 	 * is enough to guarantee sk_free() wont free this sock until
1653 	 * all in-flight packets are completed
1654 	 */
1655 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1656 }
1657 EXPORT_SYMBOL(skb_set_owner_w);
1658 
1659 void skb_orphan_partial(struct sk_buff *skb)
1660 {
1661 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1662 	 * so we do not completely orphan skb, but transfert all
1663 	 * accounted bytes but one, to avoid unexpected reorders.
1664 	 */
1665 	if (skb->destructor == sock_wfree
1666 #ifdef CONFIG_INET
1667 	    || skb->destructor == tcp_wfree
1668 #endif
1669 		) {
1670 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1671 		skb->truesize = 1;
1672 	} else {
1673 		skb_orphan(skb);
1674 	}
1675 }
1676 EXPORT_SYMBOL(skb_orphan_partial);
1677 
1678 /*
1679  * Read buffer destructor automatically called from kfree_skb.
1680  */
1681 void sock_rfree(struct sk_buff *skb)
1682 {
1683 	struct sock *sk = skb->sk;
1684 	unsigned int len = skb->truesize;
1685 
1686 	atomic_sub(len, &sk->sk_rmem_alloc);
1687 	sk_mem_uncharge(sk, len);
1688 }
1689 EXPORT_SYMBOL(sock_rfree);
1690 
1691 /*
1692  * Buffer destructor for skbs that are not used directly in read or write
1693  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1694  */
1695 void sock_efree(struct sk_buff *skb)
1696 {
1697 	sock_put(skb->sk);
1698 }
1699 EXPORT_SYMBOL(sock_efree);
1700 
1701 kuid_t sock_i_uid(struct sock *sk)
1702 {
1703 	kuid_t uid;
1704 
1705 	read_lock_bh(&sk->sk_callback_lock);
1706 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1707 	read_unlock_bh(&sk->sk_callback_lock);
1708 	return uid;
1709 }
1710 EXPORT_SYMBOL(sock_i_uid);
1711 
1712 unsigned long sock_i_ino(struct sock *sk)
1713 {
1714 	unsigned long ino;
1715 
1716 	read_lock_bh(&sk->sk_callback_lock);
1717 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1718 	read_unlock_bh(&sk->sk_callback_lock);
1719 	return ino;
1720 }
1721 EXPORT_SYMBOL(sock_i_ino);
1722 
1723 /*
1724  * Allocate a skb from the socket's send buffer.
1725  */
1726 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1727 			     gfp_t priority)
1728 {
1729 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1730 		struct sk_buff *skb = alloc_skb(size, priority);
1731 		if (skb) {
1732 			skb_set_owner_w(skb, sk);
1733 			return skb;
1734 		}
1735 	}
1736 	return NULL;
1737 }
1738 EXPORT_SYMBOL(sock_wmalloc);
1739 
1740 /*
1741  * Allocate a memory block from the socket's option memory buffer.
1742  */
1743 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1744 {
1745 	if ((unsigned int)size <= sysctl_optmem_max &&
1746 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1747 		void *mem;
1748 		/* First do the add, to avoid the race if kmalloc
1749 		 * might sleep.
1750 		 */
1751 		atomic_add(size, &sk->sk_omem_alloc);
1752 		mem = kmalloc(size, priority);
1753 		if (mem)
1754 			return mem;
1755 		atomic_sub(size, &sk->sk_omem_alloc);
1756 	}
1757 	return NULL;
1758 }
1759 EXPORT_SYMBOL(sock_kmalloc);
1760 
1761 /* Free an option memory block. Note, we actually want the inline
1762  * here as this allows gcc to detect the nullify and fold away the
1763  * condition entirely.
1764  */
1765 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1766 				  const bool nullify)
1767 {
1768 	if (WARN_ON_ONCE(!mem))
1769 		return;
1770 	if (nullify)
1771 		kzfree(mem);
1772 	else
1773 		kfree(mem);
1774 	atomic_sub(size, &sk->sk_omem_alloc);
1775 }
1776 
1777 void sock_kfree_s(struct sock *sk, void *mem, int size)
1778 {
1779 	__sock_kfree_s(sk, mem, size, false);
1780 }
1781 EXPORT_SYMBOL(sock_kfree_s);
1782 
1783 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1784 {
1785 	__sock_kfree_s(sk, mem, size, true);
1786 }
1787 EXPORT_SYMBOL(sock_kzfree_s);
1788 
1789 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1790    I think, these locks should be removed for datagram sockets.
1791  */
1792 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1793 {
1794 	DEFINE_WAIT(wait);
1795 
1796 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1797 	for (;;) {
1798 		if (!timeo)
1799 			break;
1800 		if (signal_pending(current))
1801 			break;
1802 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1803 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1804 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1805 			break;
1806 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1807 			break;
1808 		if (sk->sk_err)
1809 			break;
1810 		timeo = schedule_timeout(timeo);
1811 	}
1812 	finish_wait(sk_sleep(sk), &wait);
1813 	return timeo;
1814 }
1815 
1816 
1817 /*
1818  *	Generic send/receive buffer handlers
1819  */
1820 
1821 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1822 				     unsigned long data_len, int noblock,
1823 				     int *errcode, int max_page_order)
1824 {
1825 	struct sk_buff *skb;
1826 	long timeo;
1827 	int err;
1828 
1829 	timeo = sock_sndtimeo(sk, noblock);
1830 	for (;;) {
1831 		err = sock_error(sk);
1832 		if (err != 0)
1833 			goto failure;
1834 
1835 		err = -EPIPE;
1836 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1837 			goto failure;
1838 
1839 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1840 			break;
1841 
1842 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1843 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1844 		err = -EAGAIN;
1845 		if (!timeo)
1846 			goto failure;
1847 		if (signal_pending(current))
1848 			goto interrupted;
1849 		timeo = sock_wait_for_wmem(sk, timeo);
1850 	}
1851 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1852 				   errcode, sk->sk_allocation);
1853 	if (skb)
1854 		skb_set_owner_w(skb, sk);
1855 	return skb;
1856 
1857 interrupted:
1858 	err = sock_intr_errno(timeo);
1859 failure:
1860 	*errcode = err;
1861 	return NULL;
1862 }
1863 EXPORT_SYMBOL(sock_alloc_send_pskb);
1864 
1865 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1866 				    int noblock, int *errcode)
1867 {
1868 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1869 }
1870 EXPORT_SYMBOL(sock_alloc_send_skb);
1871 
1872 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1873 		   struct sockcm_cookie *sockc)
1874 {
1875 	struct cmsghdr *cmsg;
1876 
1877 	for_each_cmsghdr(cmsg, msg) {
1878 		if (!CMSG_OK(msg, cmsg))
1879 			return -EINVAL;
1880 		if (cmsg->cmsg_level != SOL_SOCKET)
1881 			continue;
1882 		switch (cmsg->cmsg_type) {
1883 		case SO_MARK:
1884 			if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1885 				return -EPERM;
1886 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1887 				return -EINVAL;
1888 			sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1889 			break;
1890 		default:
1891 			return -EINVAL;
1892 		}
1893 	}
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL(sock_cmsg_send);
1897 
1898 /* On 32bit arches, an skb frag is limited to 2^15 */
1899 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1900 
1901 /**
1902  * skb_page_frag_refill - check that a page_frag contains enough room
1903  * @sz: minimum size of the fragment we want to get
1904  * @pfrag: pointer to page_frag
1905  * @gfp: priority for memory allocation
1906  *
1907  * Note: While this allocator tries to use high order pages, there is
1908  * no guarantee that allocations succeed. Therefore, @sz MUST be
1909  * less or equal than PAGE_SIZE.
1910  */
1911 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1912 {
1913 	if (pfrag->page) {
1914 		if (page_ref_count(pfrag->page) == 1) {
1915 			pfrag->offset = 0;
1916 			return true;
1917 		}
1918 		if (pfrag->offset + sz <= pfrag->size)
1919 			return true;
1920 		put_page(pfrag->page);
1921 	}
1922 
1923 	pfrag->offset = 0;
1924 	if (SKB_FRAG_PAGE_ORDER) {
1925 		/* Avoid direct reclaim but allow kswapd to wake */
1926 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1927 					  __GFP_COMP | __GFP_NOWARN |
1928 					  __GFP_NORETRY,
1929 					  SKB_FRAG_PAGE_ORDER);
1930 		if (likely(pfrag->page)) {
1931 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1932 			return true;
1933 		}
1934 	}
1935 	pfrag->page = alloc_page(gfp);
1936 	if (likely(pfrag->page)) {
1937 		pfrag->size = PAGE_SIZE;
1938 		return true;
1939 	}
1940 	return false;
1941 }
1942 EXPORT_SYMBOL(skb_page_frag_refill);
1943 
1944 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1945 {
1946 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1947 		return true;
1948 
1949 	sk_enter_memory_pressure(sk);
1950 	sk_stream_moderate_sndbuf(sk);
1951 	return false;
1952 }
1953 EXPORT_SYMBOL(sk_page_frag_refill);
1954 
1955 static void __lock_sock(struct sock *sk)
1956 	__releases(&sk->sk_lock.slock)
1957 	__acquires(&sk->sk_lock.slock)
1958 {
1959 	DEFINE_WAIT(wait);
1960 
1961 	for (;;) {
1962 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1963 					TASK_UNINTERRUPTIBLE);
1964 		spin_unlock_bh(&sk->sk_lock.slock);
1965 		schedule();
1966 		spin_lock_bh(&sk->sk_lock.slock);
1967 		if (!sock_owned_by_user(sk))
1968 			break;
1969 	}
1970 	finish_wait(&sk->sk_lock.wq, &wait);
1971 }
1972 
1973 static void __release_sock(struct sock *sk)
1974 	__releases(&sk->sk_lock.slock)
1975 	__acquires(&sk->sk_lock.slock)
1976 {
1977 	struct sk_buff *skb = sk->sk_backlog.head;
1978 
1979 	do {
1980 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1981 		bh_unlock_sock(sk);
1982 
1983 		do {
1984 			struct sk_buff *next = skb->next;
1985 
1986 			prefetch(next);
1987 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1988 			skb->next = NULL;
1989 			sk_backlog_rcv(sk, skb);
1990 
1991 			/*
1992 			 * We are in process context here with softirqs
1993 			 * disabled, use cond_resched_softirq() to preempt.
1994 			 * This is safe to do because we've taken the backlog
1995 			 * queue private:
1996 			 */
1997 			cond_resched_softirq();
1998 
1999 			skb = next;
2000 		} while (skb != NULL);
2001 
2002 		bh_lock_sock(sk);
2003 	} while ((skb = sk->sk_backlog.head) != NULL);
2004 
2005 	/*
2006 	 * Doing the zeroing here guarantee we can not loop forever
2007 	 * while a wild producer attempts to flood us.
2008 	 */
2009 	sk->sk_backlog.len = 0;
2010 }
2011 
2012 /**
2013  * sk_wait_data - wait for data to arrive at sk_receive_queue
2014  * @sk:    sock to wait on
2015  * @timeo: for how long
2016  * @skb:   last skb seen on sk_receive_queue
2017  *
2018  * Now socket state including sk->sk_err is changed only under lock,
2019  * hence we may omit checks after joining wait queue.
2020  * We check receive queue before schedule() only as optimization;
2021  * it is very likely that release_sock() added new data.
2022  */
2023 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2024 {
2025 	int rc;
2026 	DEFINE_WAIT(wait);
2027 
2028 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2029 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2030 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2031 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2032 	finish_wait(sk_sleep(sk), &wait);
2033 	return rc;
2034 }
2035 EXPORT_SYMBOL(sk_wait_data);
2036 
2037 /**
2038  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2039  *	@sk: socket
2040  *	@size: memory size to allocate
2041  *	@kind: allocation type
2042  *
2043  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2044  *	rmem allocation. This function assumes that protocols which have
2045  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2046  */
2047 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2048 {
2049 	struct proto *prot = sk->sk_prot;
2050 	int amt = sk_mem_pages(size);
2051 	long allocated;
2052 
2053 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2054 
2055 	allocated = sk_memory_allocated_add(sk, amt);
2056 
2057 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2058 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2059 		goto suppress_allocation;
2060 
2061 	/* Under limit. */
2062 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2063 		sk_leave_memory_pressure(sk);
2064 		return 1;
2065 	}
2066 
2067 	/* Under pressure. */
2068 	if (allocated > sk_prot_mem_limits(sk, 1))
2069 		sk_enter_memory_pressure(sk);
2070 
2071 	/* Over hard limit. */
2072 	if (allocated > sk_prot_mem_limits(sk, 2))
2073 		goto suppress_allocation;
2074 
2075 	/* guarantee minimum buffer size under pressure */
2076 	if (kind == SK_MEM_RECV) {
2077 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2078 			return 1;
2079 
2080 	} else { /* SK_MEM_SEND */
2081 		if (sk->sk_type == SOCK_STREAM) {
2082 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2083 				return 1;
2084 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2085 			   prot->sysctl_wmem[0])
2086 				return 1;
2087 	}
2088 
2089 	if (sk_has_memory_pressure(sk)) {
2090 		int alloc;
2091 
2092 		if (!sk_under_memory_pressure(sk))
2093 			return 1;
2094 		alloc = sk_sockets_allocated_read_positive(sk);
2095 		if (sk_prot_mem_limits(sk, 2) > alloc *
2096 		    sk_mem_pages(sk->sk_wmem_queued +
2097 				 atomic_read(&sk->sk_rmem_alloc) +
2098 				 sk->sk_forward_alloc))
2099 			return 1;
2100 	}
2101 
2102 suppress_allocation:
2103 
2104 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2105 		sk_stream_moderate_sndbuf(sk);
2106 
2107 		/* Fail only if socket is _under_ its sndbuf.
2108 		 * In this case we cannot block, so that we have to fail.
2109 		 */
2110 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2111 			return 1;
2112 	}
2113 
2114 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2115 
2116 	/* Alas. Undo changes. */
2117 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2118 
2119 	sk_memory_allocated_sub(sk, amt);
2120 
2121 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2122 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2123 
2124 	return 0;
2125 }
2126 EXPORT_SYMBOL(__sk_mem_schedule);
2127 
2128 /**
2129  *	__sk_mem_reclaim - reclaim memory_allocated
2130  *	@sk: socket
2131  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2132  */
2133 void __sk_mem_reclaim(struct sock *sk, int amount)
2134 {
2135 	amount >>= SK_MEM_QUANTUM_SHIFT;
2136 	sk_memory_allocated_sub(sk, amount);
2137 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2138 
2139 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2140 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2141 
2142 	if (sk_under_memory_pressure(sk) &&
2143 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2144 		sk_leave_memory_pressure(sk);
2145 }
2146 EXPORT_SYMBOL(__sk_mem_reclaim);
2147 
2148 
2149 /*
2150  * Set of default routines for initialising struct proto_ops when
2151  * the protocol does not support a particular function. In certain
2152  * cases where it makes no sense for a protocol to have a "do nothing"
2153  * function, some default processing is provided.
2154  */
2155 
2156 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2157 {
2158 	return -EOPNOTSUPP;
2159 }
2160 EXPORT_SYMBOL(sock_no_bind);
2161 
2162 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2163 		    int len, int flags)
2164 {
2165 	return -EOPNOTSUPP;
2166 }
2167 EXPORT_SYMBOL(sock_no_connect);
2168 
2169 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2170 {
2171 	return -EOPNOTSUPP;
2172 }
2173 EXPORT_SYMBOL(sock_no_socketpair);
2174 
2175 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2176 {
2177 	return -EOPNOTSUPP;
2178 }
2179 EXPORT_SYMBOL(sock_no_accept);
2180 
2181 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2182 		    int *len, int peer)
2183 {
2184 	return -EOPNOTSUPP;
2185 }
2186 EXPORT_SYMBOL(sock_no_getname);
2187 
2188 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2189 {
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL(sock_no_poll);
2193 
2194 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2195 {
2196 	return -EOPNOTSUPP;
2197 }
2198 EXPORT_SYMBOL(sock_no_ioctl);
2199 
2200 int sock_no_listen(struct socket *sock, int backlog)
2201 {
2202 	return -EOPNOTSUPP;
2203 }
2204 EXPORT_SYMBOL(sock_no_listen);
2205 
2206 int sock_no_shutdown(struct socket *sock, int how)
2207 {
2208 	return -EOPNOTSUPP;
2209 }
2210 EXPORT_SYMBOL(sock_no_shutdown);
2211 
2212 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2213 		    char __user *optval, unsigned int optlen)
2214 {
2215 	return -EOPNOTSUPP;
2216 }
2217 EXPORT_SYMBOL(sock_no_setsockopt);
2218 
2219 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2220 		    char __user *optval, int __user *optlen)
2221 {
2222 	return -EOPNOTSUPP;
2223 }
2224 EXPORT_SYMBOL(sock_no_getsockopt);
2225 
2226 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2227 {
2228 	return -EOPNOTSUPP;
2229 }
2230 EXPORT_SYMBOL(sock_no_sendmsg);
2231 
2232 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2233 		    int flags)
2234 {
2235 	return -EOPNOTSUPP;
2236 }
2237 EXPORT_SYMBOL(sock_no_recvmsg);
2238 
2239 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2240 {
2241 	/* Mirror missing mmap method error code */
2242 	return -ENODEV;
2243 }
2244 EXPORT_SYMBOL(sock_no_mmap);
2245 
2246 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2247 {
2248 	ssize_t res;
2249 	struct msghdr msg = {.msg_flags = flags};
2250 	struct kvec iov;
2251 	char *kaddr = kmap(page);
2252 	iov.iov_base = kaddr + offset;
2253 	iov.iov_len = size;
2254 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2255 	kunmap(page);
2256 	return res;
2257 }
2258 EXPORT_SYMBOL(sock_no_sendpage);
2259 
2260 /*
2261  *	Default Socket Callbacks
2262  */
2263 
2264 static void sock_def_wakeup(struct sock *sk)
2265 {
2266 	struct socket_wq *wq;
2267 
2268 	rcu_read_lock();
2269 	wq = rcu_dereference(sk->sk_wq);
2270 	if (skwq_has_sleeper(wq))
2271 		wake_up_interruptible_all(&wq->wait);
2272 	rcu_read_unlock();
2273 }
2274 
2275 static void sock_def_error_report(struct sock *sk)
2276 {
2277 	struct socket_wq *wq;
2278 
2279 	rcu_read_lock();
2280 	wq = rcu_dereference(sk->sk_wq);
2281 	if (skwq_has_sleeper(wq))
2282 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2283 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2284 	rcu_read_unlock();
2285 }
2286 
2287 static void sock_def_readable(struct sock *sk)
2288 {
2289 	struct socket_wq *wq;
2290 
2291 	rcu_read_lock();
2292 	wq = rcu_dereference(sk->sk_wq);
2293 	if (skwq_has_sleeper(wq))
2294 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2295 						POLLRDNORM | POLLRDBAND);
2296 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2297 	rcu_read_unlock();
2298 }
2299 
2300 static void sock_def_write_space(struct sock *sk)
2301 {
2302 	struct socket_wq *wq;
2303 
2304 	rcu_read_lock();
2305 
2306 	/* Do not wake up a writer until he can make "significant"
2307 	 * progress.  --DaveM
2308 	 */
2309 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2310 		wq = rcu_dereference(sk->sk_wq);
2311 		if (skwq_has_sleeper(wq))
2312 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2313 						POLLWRNORM | POLLWRBAND);
2314 
2315 		/* Should agree with poll, otherwise some programs break */
2316 		if (sock_writeable(sk))
2317 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2318 	}
2319 
2320 	rcu_read_unlock();
2321 }
2322 
2323 static void sock_def_destruct(struct sock *sk)
2324 {
2325 }
2326 
2327 void sk_send_sigurg(struct sock *sk)
2328 {
2329 	if (sk->sk_socket && sk->sk_socket->file)
2330 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2331 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2332 }
2333 EXPORT_SYMBOL(sk_send_sigurg);
2334 
2335 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2336 		    unsigned long expires)
2337 {
2338 	if (!mod_timer(timer, expires))
2339 		sock_hold(sk);
2340 }
2341 EXPORT_SYMBOL(sk_reset_timer);
2342 
2343 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2344 {
2345 	if (del_timer(timer))
2346 		__sock_put(sk);
2347 }
2348 EXPORT_SYMBOL(sk_stop_timer);
2349 
2350 void sock_init_data(struct socket *sock, struct sock *sk)
2351 {
2352 	skb_queue_head_init(&sk->sk_receive_queue);
2353 	skb_queue_head_init(&sk->sk_write_queue);
2354 	skb_queue_head_init(&sk->sk_error_queue);
2355 
2356 	sk->sk_send_head	=	NULL;
2357 
2358 	init_timer(&sk->sk_timer);
2359 
2360 	sk->sk_allocation	=	GFP_KERNEL;
2361 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2362 	sk->sk_sndbuf		=	sysctl_wmem_default;
2363 	sk->sk_state		=	TCP_CLOSE;
2364 	sk_set_socket(sk, sock);
2365 
2366 	sock_set_flag(sk, SOCK_ZAPPED);
2367 
2368 	if (sock) {
2369 		sk->sk_type	=	sock->type;
2370 		sk->sk_wq	=	sock->wq;
2371 		sock->sk	=	sk;
2372 	} else
2373 		sk->sk_wq	=	NULL;
2374 
2375 	rwlock_init(&sk->sk_callback_lock);
2376 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2377 			af_callback_keys + sk->sk_family,
2378 			af_family_clock_key_strings[sk->sk_family]);
2379 
2380 	sk->sk_state_change	=	sock_def_wakeup;
2381 	sk->sk_data_ready	=	sock_def_readable;
2382 	sk->sk_write_space	=	sock_def_write_space;
2383 	sk->sk_error_report	=	sock_def_error_report;
2384 	sk->sk_destruct		=	sock_def_destruct;
2385 
2386 	sk->sk_frag.page	=	NULL;
2387 	sk->sk_frag.offset	=	0;
2388 	sk->sk_peek_off		=	-1;
2389 
2390 	sk->sk_peer_pid 	=	NULL;
2391 	sk->sk_peer_cred	=	NULL;
2392 	sk->sk_write_pending	=	0;
2393 	sk->sk_rcvlowat		=	1;
2394 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2395 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2396 
2397 	sk->sk_stamp = ktime_set(-1L, 0);
2398 
2399 #ifdef CONFIG_NET_RX_BUSY_POLL
2400 	sk->sk_napi_id		=	0;
2401 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2402 #endif
2403 
2404 	sk->sk_max_pacing_rate = ~0U;
2405 	sk->sk_pacing_rate = ~0U;
2406 	sk->sk_incoming_cpu = -1;
2407 	/*
2408 	 * Before updating sk_refcnt, we must commit prior changes to memory
2409 	 * (Documentation/RCU/rculist_nulls.txt for details)
2410 	 */
2411 	smp_wmb();
2412 	atomic_set(&sk->sk_refcnt, 1);
2413 	atomic_set(&sk->sk_drops, 0);
2414 }
2415 EXPORT_SYMBOL(sock_init_data);
2416 
2417 void lock_sock_nested(struct sock *sk, int subclass)
2418 {
2419 	might_sleep();
2420 	spin_lock_bh(&sk->sk_lock.slock);
2421 	if (sk->sk_lock.owned)
2422 		__lock_sock(sk);
2423 	sk->sk_lock.owned = 1;
2424 	spin_unlock(&sk->sk_lock.slock);
2425 	/*
2426 	 * The sk_lock has mutex_lock() semantics here:
2427 	 */
2428 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2429 	local_bh_enable();
2430 }
2431 EXPORT_SYMBOL(lock_sock_nested);
2432 
2433 void release_sock(struct sock *sk)
2434 {
2435 	/*
2436 	 * The sk_lock has mutex_unlock() semantics:
2437 	 */
2438 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2439 
2440 	spin_lock_bh(&sk->sk_lock.slock);
2441 	if (sk->sk_backlog.tail)
2442 		__release_sock(sk);
2443 
2444 	/* Warning : release_cb() might need to release sk ownership,
2445 	 * ie call sock_release_ownership(sk) before us.
2446 	 */
2447 	if (sk->sk_prot->release_cb)
2448 		sk->sk_prot->release_cb(sk);
2449 
2450 	sock_release_ownership(sk);
2451 	if (waitqueue_active(&sk->sk_lock.wq))
2452 		wake_up(&sk->sk_lock.wq);
2453 	spin_unlock_bh(&sk->sk_lock.slock);
2454 }
2455 EXPORT_SYMBOL(release_sock);
2456 
2457 /**
2458  * lock_sock_fast - fast version of lock_sock
2459  * @sk: socket
2460  *
2461  * This version should be used for very small section, where process wont block
2462  * return false if fast path is taken
2463  *   sk_lock.slock locked, owned = 0, BH disabled
2464  * return true if slow path is taken
2465  *   sk_lock.slock unlocked, owned = 1, BH enabled
2466  */
2467 bool lock_sock_fast(struct sock *sk)
2468 {
2469 	might_sleep();
2470 	spin_lock_bh(&sk->sk_lock.slock);
2471 
2472 	if (!sk->sk_lock.owned)
2473 		/*
2474 		 * Note : We must disable BH
2475 		 */
2476 		return false;
2477 
2478 	__lock_sock(sk);
2479 	sk->sk_lock.owned = 1;
2480 	spin_unlock(&sk->sk_lock.slock);
2481 	/*
2482 	 * The sk_lock has mutex_lock() semantics here:
2483 	 */
2484 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2485 	local_bh_enable();
2486 	return true;
2487 }
2488 EXPORT_SYMBOL(lock_sock_fast);
2489 
2490 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2491 {
2492 	struct timeval tv;
2493 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2494 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2495 	tv = ktime_to_timeval(sk->sk_stamp);
2496 	if (tv.tv_sec == -1)
2497 		return -ENOENT;
2498 	if (tv.tv_sec == 0) {
2499 		sk->sk_stamp = ktime_get_real();
2500 		tv = ktime_to_timeval(sk->sk_stamp);
2501 	}
2502 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2503 }
2504 EXPORT_SYMBOL(sock_get_timestamp);
2505 
2506 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2507 {
2508 	struct timespec ts;
2509 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2510 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2511 	ts = ktime_to_timespec(sk->sk_stamp);
2512 	if (ts.tv_sec == -1)
2513 		return -ENOENT;
2514 	if (ts.tv_sec == 0) {
2515 		sk->sk_stamp = ktime_get_real();
2516 		ts = ktime_to_timespec(sk->sk_stamp);
2517 	}
2518 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2519 }
2520 EXPORT_SYMBOL(sock_get_timestampns);
2521 
2522 void sock_enable_timestamp(struct sock *sk, int flag)
2523 {
2524 	if (!sock_flag(sk, flag)) {
2525 		unsigned long previous_flags = sk->sk_flags;
2526 
2527 		sock_set_flag(sk, flag);
2528 		/*
2529 		 * we just set one of the two flags which require net
2530 		 * time stamping, but time stamping might have been on
2531 		 * already because of the other one
2532 		 */
2533 		if (sock_needs_netstamp(sk) &&
2534 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2535 			net_enable_timestamp();
2536 	}
2537 }
2538 
2539 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2540 		       int level, int type)
2541 {
2542 	struct sock_exterr_skb *serr;
2543 	struct sk_buff *skb;
2544 	int copied, err;
2545 
2546 	err = -EAGAIN;
2547 	skb = sock_dequeue_err_skb(sk);
2548 	if (skb == NULL)
2549 		goto out;
2550 
2551 	copied = skb->len;
2552 	if (copied > len) {
2553 		msg->msg_flags |= MSG_TRUNC;
2554 		copied = len;
2555 	}
2556 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2557 	if (err)
2558 		goto out_free_skb;
2559 
2560 	sock_recv_timestamp(msg, sk, skb);
2561 
2562 	serr = SKB_EXT_ERR(skb);
2563 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2564 
2565 	msg->msg_flags |= MSG_ERRQUEUE;
2566 	err = copied;
2567 
2568 out_free_skb:
2569 	kfree_skb(skb);
2570 out:
2571 	return err;
2572 }
2573 EXPORT_SYMBOL(sock_recv_errqueue);
2574 
2575 /*
2576  *	Get a socket option on an socket.
2577  *
2578  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2579  *	asynchronous errors should be reported by getsockopt. We assume
2580  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2581  */
2582 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2583 			   char __user *optval, int __user *optlen)
2584 {
2585 	struct sock *sk = sock->sk;
2586 
2587 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2588 }
2589 EXPORT_SYMBOL(sock_common_getsockopt);
2590 
2591 #ifdef CONFIG_COMPAT
2592 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2593 				  char __user *optval, int __user *optlen)
2594 {
2595 	struct sock *sk = sock->sk;
2596 
2597 	if (sk->sk_prot->compat_getsockopt != NULL)
2598 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2599 						      optval, optlen);
2600 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2601 }
2602 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2603 #endif
2604 
2605 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2606 			int flags)
2607 {
2608 	struct sock *sk = sock->sk;
2609 	int addr_len = 0;
2610 	int err;
2611 
2612 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2613 				   flags & ~MSG_DONTWAIT, &addr_len);
2614 	if (err >= 0)
2615 		msg->msg_namelen = addr_len;
2616 	return err;
2617 }
2618 EXPORT_SYMBOL(sock_common_recvmsg);
2619 
2620 /*
2621  *	Set socket options on an inet socket.
2622  */
2623 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2624 			   char __user *optval, unsigned int optlen)
2625 {
2626 	struct sock *sk = sock->sk;
2627 
2628 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2629 }
2630 EXPORT_SYMBOL(sock_common_setsockopt);
2631 
2632 #ifdef CONFIG_COMPAT
2633 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2634 				  char __user *optval, unsigned int optlen)
2635 {
2636 	struct sock *sk = sock->sk;
2637 
2638 	if (sk->sk_prot->compat_setsockopt != NULL)
2639 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2640 						      optval, optlen);
2641 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2642 }
2643 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2644 #endif
2645 
2646 void sk_common_release(struct sock *sk)
2647 {
2648 	if (sk->sk_prot->destroy)
2649 		sk->sk_prot->destroy(sk);
2650 
2651 	/*
2652 	 * Observation: when sock_common_release is called, processes have
2653 	 * no access to socket. But net still has.
2654 	 * Step one, detach it from networking:
2655 	 *
2656 	 * A. Remove from hash tables.
2657 	 */
2658 
2659 	sk->sk_prot->unhash(sk);
2660 
2661 	/*
2662 	 * In this point socket cannot receive new packets, but it is possible
2663 	 * that some packets are in flight because some CPU runs receiver and
2664 	 * did hash table lookup before we unhashed socket. They will achieve
2665 	 * receive queue and will be purged by socket destructor.
2666 	 *
2667 	 * Also we still have packets pending on receive queue and probably,
2668 	 * our own packets waiting in device queues. sock_destroy will drain
2669 	 * receive queue, but transmitted packets will delay socket destruction
2670 	 * until the last reference will be released.
2671 	 */
2672 
2673 	sock_orphan(sk);
2674 
2675 	xfrm_sk_free_policy(sk);
2676 
2677 	sk_refcnt_debug_release(sk);
2678 
2679 	if (sk->sk_frag.page) {
2680 		put_page(sk->sk_frag.page);
2681 		sk->sk_frag.page = NULL;
2682 	}
2683 
2684 	sock_put(sk);
2685 }
2686 EXPORT_SYMBOL(sk_common_release);
2687 
2688 #ifdef CONFIG_PROC_FS
2689 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2690 struct prot_inuse {
2691 	int val[PROTO_INUSE_NR];
2692 };
2693 
2694 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2695 
2696 #ifdef CONFIG_NET_NS
2697 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2698 {
2699 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2700 }
2701 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2702 
2703 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2704 {
2705 	int cpu, idx = prot->inuse_idx;
2706 	int res = 0;
2707 
2708 	for_each_possible_cpu(cpu)
2709 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2710 
2711 	return res >= 0 ? res : 0;
2712 }
2713 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2714 
2715 static int __net_init sock_inuse_init_net(struct net *net)
2716 {
2717 	net->core.inuse = alloc_percpu(struct prot_inuse);
2718 	return net->core.inuse ? 0 : -ENOMEM;
2719 }
2720 
2721 static void __net_exit sock_inuse_exit_net(struct net *net)
2722 {
2723 	free_percpu(net->core.inuse);
2724 }
2725 
2726 static struct pernet_operations net_inuse_ops = {
2727 	.init = sock_inuse_init_net,
2728 	.exit = sock_inuse_exit_net,
2729 };
2730 
2731 static __init int net_inuse_init(void)
2732 {
2733 	if (register_pernet_subsys(&net_inuse_ops))
2734 		panic("Cannot initialize net inuse counters");
2735 
2736 	return 0;
2737 }
2738 
2739 core_initcall(net_inuse_init);
2740 #else
2741 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2742 
2743 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2744 {
2745 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2746 }
2747 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2748 
2749 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2750 {
2751 	int cpu, idx = prot->inuse_idx;
2752 	int res = 0;
2753 
2754 	for_each_possible_cpu(cpu)
2755 		res += per_cpu(prot_inuse, cpu).val[idx];
2756 
2757 	return res >= 0 ? res : 0;
2758 }
2759 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2760 #endif
2761 
2762 static void assign_proto_idx(struct proto *prot)
2763 {
2764 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2765 
2766 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2767 		pr_err("PROTO_INUSE_NR exhausted\n");
2768 		return;
2769 	}
2770 
2771 	set_bit(prot->inuse_idx, proto_inuse_idx);
2772 }
2773 
2774 static void release_proto_idx(struct proto *prot)
2775 {
2776 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2777 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2778 }
2779 #else
2780 static inline void assign_proto_idx(struct proto *prot)
2781 {
2782 }
2783 
2784 static inline void release_proto_idx(struct proto *prot)
2785 {
2786 }
2787 #endif
2788 
2789 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2790 {
2791 	if (!rsk_prot)
2792 		return;
2793 	kfree(rsk_prot->slab_name);
2794 	rsk_prot->slab_name = NULL;
2795 	kmem_cache_destroy(rsk_prot->slab);
2796 	rsk_prot->slab = NULL;
2797 }
2798 
2799 static int req_prot_init(const struct proto *prot)
2800 {
2801 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2802 
2803 	if (!rsk_prot)
2804 		return 0;
2805 
2806 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2807 					prot->name);
2808 	if (!rsk_prot->slab_name)
2809 		return -ENOMEM;
2810 
2811 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2812 					   rsk_prot->obj_size, 0,
2813 					   prot->slab_flags, NULL);
2814 
2815 	if (!rsk_prot->slab) {
2816 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2817 			prot->name);
2818 		return -ENOMEM;
2819 	}
2820 	return 0;
2821 }
2822 
2823 int proto_register(struct proto *prot, int alloc_slab)
2824 {
2825 	if (alloc_slab) {
2826 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2827 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2828 					NULL);
2829 
2830 		if (prot->slab == NULL) {
2831 			pr_crit("%s: Can't create sock SLAB cache!\n",
2832 				prot->name);
2833 			goto out;
2834 		}
2835 
2836 		if (req_prot_init(prot))
2837 			goto out_free_request_sock_slab;
2838 
2839 		if (prot->twsk_prot != NULL) {
2840 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2841 
2842 			if (prot->twsk_prot->twsk_slab_name == NULL)
2843 				goto out_free_request_sock_slab;
2844 
2845 			prot->twsk_prot->twsk_slab =
2846 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2847 						  prot->twsk_prot->twsk_obj_size,
2848 						  0,
2849 						  prot->slab_flags,
2850 						  NULL);
2851 			if (prot->twsk_prot->twsk_slab == NULL)
2852 				goto out_free_timewait_sock_slab_name;
2853 		}
2854 	}
2855 
2856 	mutex_lock(&proto_list_mutex);
2857 	list_add(&prot->node, &proto_list);
2858 	assign_proto_idx(prot);
2859 	mutex_unlock(&proto_list_mutex);
2860 	return 0;
2861 
2862 out_free_timewait_sock_slab_name:
2863 	kfree(prot->twsk_prot->twsk_slab_name);
2864 out_free_request_sock_slab:
2865 	req_prot_cleanup(prot->rsk_prot);
2866 
2867 	kmem_cache_destroy(prot->slab);
2868 	prot->slab = NULL;
2869 out:
2870 	return -ENOBUFS;
2871 }
2872 EXPORT_SYMBOL(proto_register);
2873 
2874 void proto_unregister(struct proto *prot)
2875 {
2876 	mutex_lock(&proto_list_mutex);
2877 	release_proto_idx(prot);
2878 	list_del(&prot->node);
2879 	mutex_unlock(&proto_list_mutex);
2880 
2881 	kmem_cache_destroy(prot->slab);
2882 	prot->slab = NULL;
2883 
2884 	req_prot_cleanup(prot->rsk_prot);
2885 
2886 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2887 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2888 		kfree(prot->twsk_prot->twsk_slab_name);
2889 		prot->twsk_prot->twsk_slab = NULL;
2890 	}
2891 }
2892 EXPORT_SYMBOL(proto_unregister);
2893 
2894 #ifdef CONFIG_PROC_FS
2895 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2896 	__acquires(proto_list_mutex)
2897 {
2898 	mutex_lock(&proto_list_mutex);
2899 	return seq_list_start_head(&proto_list, *pos);
2900 }
2901 
2902 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2903 {
2904 	return seq_list_next(v, &proto_list, pos);
2905 }
2906 
2907 static void proto_seq_stop(struct seq_file *seq, void *v)
2908 	__releases(proto_list_mutex)
2909 {
2910 	mutex_unlock(&proto_list_mutex);
2911 }
2912 
2913 static char proto_method_implemented(const void *method)
2914 {
2915 	return method == NULL ? 'n' : 'y';
2916 }
2917 static long sock_prot_memory_allocated(struct proto *proto)
2918 {
2919 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2920 }
2921 
2922 static char *sock_prot_memory_pressure(struct proto *proto)
2923 {
2924 	return proto->memory_pressure != NULL ?
2925 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2926 }
2927 
2928 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2929 {
2930 
2931 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2932 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2933 		   proto->name,
2934 		   proto->obj_size,
2935 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2936 		   sock_prot_memory_allocated(proto),
2937 		   sock_prot_memory_pressure(proto),
2938 		   proto->max_header,
2939 		   proto->slab == NULL ? "no" : "yes",
2940 		   module_name(proto->owner),
2941 		   proto_method_implemented(proto->close),
2942 		   proto_method_implemented(proto->connect),
2943 		   proto_method_implemented(proto->disconnect),
2944 		   proto_method_implemented(proto->accept),
2945 		   proto_method_implemented(proto->ioctl),
2946 		   proto_method_implemented(proto->init),
2947 		   proto_method_implemented(proto->destroy),
2948 		   proto_method_implemented(proto->shutdown),
2949 		   proto_method_implemented(proto->setsockopt),
2950 		   proto_method_implemented(proto->getsockopt),
2951 		   proto_method_implemented(proto->sendmsg),
2952 		   proto_method_implemented(proto->recvmsg),
2953 		   proto_method_implemented(proto->sendpage),
2954 		   proto_method_implemented(proto->bind),
2955 		   proto_method_implemented(proto->backlog_rcv),
2956 		   proto_method_implemented(proto->hash),
2957 		   proto_method_implemented(proto->unhash),
2958 		   proto_method_implemented(proto->get_port),
2959 		   proto_method_implemented(proto->enter_memory_pressure));
2960 }
2961 
2962 static int proto_seq_show(struct seq_file *seq, void *v)
2963 {
2964 	if (v == &proto_list)
2965 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2966 			   "protocol",
2967 			   "size",
2968 			   "sockets",
2969 			   "memory",
2970 			   "press",
2971 			   "maxhdr",
2972 			   "slab",
2973 			   "module",
2974 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2975 	else
2976 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2977 	return 0;
2978 }
2979 
2980 static const struct seq_operations proto_seq_ops = {
2981 	.start  = proto_seq_start,
2982 	.next   = proto_seq_next,
2983 	.stop   = proto_seq_stop,
2984 	.show   = proto_seq_show,
2985 };
2986 
2987 static int proto_seq_open(struct inode *inode, struct file *file)
2988 {
2989 	return seq_open_net(inode, file, &proto_seq_ops,
2990 			    sizeof(struct seq_net_private));
2991 }
2992 
2993 static const struct file_operations proto_seq_fops = {
2994 	.owner		= THIS_MODULE,
2995 	.open		= proto_seq_open,
2996 	.read		= seq_read,
2997 	.llseek		= seq_lseek,
2998 	.release	= seq_release_net,
2999 };
3000 
3001 static __net_init int proto_init_net(struct net *net)
3002 {
3003 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3004 		return -ENOMEM;
3005 
3006 	return 0;
3007 }
3008 
3009 static __net_exit void proto_exit_net(struct net *net)
3010 {
3011 	remove_proc_entry("protocols", net->proc_net);
3012 }
3013 
3014 
3015 static __net_initdata struct pernet_operations proto_net_ops = {
3016 	.init = proto_init_net,
3017 	.exit = proto_exit_net,
3018 };
3019 
3020 static int __init proto_init(void)
3021 {
3022 	return register_pernet_subsys(&proto_net_ops);
3023 }
3024 
3025 subsys_initcall(proto_init);
3026 
3027 #endif /* PROC_FS */
3028