1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 static DEFINE_MUTEX(proto_list_mutex); 145 static LIST_HEAD(proto_list); 146 147 /** 148 * sk_ns_capable - General socket capability test 149 * @sk: Socket to use a capability on or through 150 * @user_ns: The user namespace of the capability to use 151 * @cap: The capability to use 152 * 153 * Test to see if the opener of the socket had when the socket was 154 * created and the current process has the capability @cap in the user 155 * namespace @user_ns. 156 */ 157 bool sk_ns_capable(const struct sock *sk, 158 struct user_namespace *user_ns, int cap) 159 { 160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 161 ns_capable(user_ns, cap); 162 } 163 EXPORT_SYMBOL(sk_ns_capable); 164 165 /** 166 * sk_capable - Socket global capability test 167 * @sk: Socket to use a capability on or through 168 * @cap: The global capability to use 169 * 170 * Test to see if the opener of the socket had when the socket was 171 * created and the current process has the capability @cap in all user 172 * namespaces. 173 */ 174 bool sk_capable(const struct sock *sk, int cap) 175 { 176 return sk_ns_capable(sk, &init_user_ns, cap); 177 } 178 EXPORT_SYMBOL(sk_capable); 179 180 /** 181 * sk_net_capable - Network namespace socket capability test 182 * @sk: Socket to use a capability on or through 183 * @cap: The capability to use 184 * 185 * Test to see if the opener of the socket had when the socket was created 186 * and the current process has the capability @cap over the network namespace 187 * the socket is a member of. 188 */ 189 bool sk_net_capable(const struct sock *sk, int cap) 190 { 191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 192 } 193 EXPORT_SYMBOL(sk_net_capable); 194 195 /* 196 * Each address family might have different locking rules, so we have 197 * one slock key per address family and separate keys for internal and 198 * userspace sockets. 199 */ 200 static struct lock_class_key af_family_keys[AF_MAX]; 201 static struct lock_class_key af_family_kern_keys[AF_MAX]; 202 static struct lock_class_key af_family_slock_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 211 #define _sock_locks(x) \ 212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 221 x "27" , x "28" , x "AF_CAN" , \ 222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 227 x "AF_MCTP" , \ 228 x "AF_MAX" 229 230 static const char *const af_family_key_strings[AF_MAX+1] = { 231 _sock_locks("sk_lock-") 232 }; 233 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 234 _sock_locks("slock-") 235 }; 236 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 237 _sock_locks("clock-") 238 }; 239 240 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 241 _sock_locks("k-sk_lock-") 242 }; 243 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 244 _sock_locks("k-slock-") 245 }; 246 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 247 _sock_locks("k-clock-") 248 }; 249 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 250 _sock_locks("rlock-") 251 }; 252 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 253 _sock_locks("wlock-") 254 }; 255 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 256 _sock_locks("elock-") 257 }; 258 259 /* 260 * sk_callback_lock and sk queues locking rules are per-address-family, 261 * so split the lock classes by using a per-AF key: 262 */ 263 static struct lock_class_key af_callback_keys[AF_MAX]; 264 static struct lock_class_key af_rlock_keys[AF_MAX]; 265 static struct lock_class_key af_wlock_keys[AF_MAX]; 266 static struct lock_class_key af_elock_keys[AF_MAX]; 267 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 268 269 /* Run time adjustable parameters. */ 270 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 271 EXPORT_SYMBOL(sysctl_wmem_max); 272 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 273 EXPORT_SYMBOL(sysctl_rmem_max); 274 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 275 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 276 277 /* Maximal space eaten by iovec or ancillary data plus some space */ 278 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 279 EXPORT_SYMBOL(sysctl_optmem_max); 280 281 int sysctl_tstamp_allow_data __read_mostly = 1; 282 283 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 284 EXPORT_SYMBOL_GPL(memalloc_socks_key); 285 286 /** 287 * sk_set_memalloc - sets %SOCK_MEMALLOC 288 * @sk: socket to set it on 289 * 290 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 291 * It's the responsibility of the admin to adjust min_free_kbytes 292 * to meet the requirements 293 */ 294 void sk_set_memalloc(struct sock *sk) 295 { 296 sock_set_flag(sk, SOCK_MEMALLOC); 297 sk->sk_allocation |= __GFP_MEMALLOC; 298 static_branch_inc(&memalloc_socks_key); 299 } 300 EXPORT_SYMBOL_GPL(sk_set_memalloc); 301 302 void sk_clear_memalloc(struct sock *sk) 303 { 304 sock_reset_flag(sk, SOCK_MEMALLOC); 305 sk->sk_allocation &= ~__GFP_MEMALLOC; 306 static_branch_dec(&memalloc_socks_key); 307 308 /* 309 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 310 * progress of swapping. SOCK_MEMALLOC may be cleared while 311 * it has rmem allocations due to the last swapfile being deactivated 312 * but there is a risk that the socket is unusable due to exceeding 313 * the rmem limits. Reclaim the reserves and obey rmem limits again. 314 */ 315 sk_mem_reclaim(sk); 316 } 317 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 318 319 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 320 { 321 int ret; 322 unsigned int noreclaim_flag; 323 324 /* these should have been dropped before queueing */ 325 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 326 327 noreclaim_flag = memalloc_noreclaim_save(); 328 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 329 tcp_v6_do_rcv, 330 tcp_v4_do_rcv, 331 sk, skb); 332 memalloc_noreclaim_restore(noreclaim_flag); 333 334 return ret; 335 } 336 EXPORT_SYMBOL(__sk_backlog_rcv); 337 338 void sk_error_report(struct sock *sk) 339 { 340 sk->sk_error_report(sk); 341 342 switch (sk->sk_family) { 343 case AF_INET: 344 fallthrough; 345 case AF_INET6: 346 trace_inet_sk_error_report(sk); 347 break; 348 default: 349 break; 350 } 351 } 352 EXPORT_SYMBOL(sk_error_report); 353 354 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 355 { 356 struct __kernel_sock_timeval tv; 357 358 if (timeo == MAX_SCHEDULE_TIMEOUT) { 359 tv.tv_sec = 0; 360 tv.tv_usec = 0; 361 } else { 362 tv.tv_sec = timeo / HZ; 363 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 364 } 365 366 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 367 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 368 *(struct old_timeval32 *)optval = tv32; 369 return sizeof(tv32); 370 } 371 372 if (old_timeval) { 373 struct __kernel_old_timeval old_tv; 374 old_tv.tv_sec = tv.tv_sec; 375 old_tv.tv_usec = tv.tv_usec; 376 *(struct __kernel_old_timeval *)optval = old_tv; 377 return sizeof(old_tv); 378 } 379 380 *(struct __kernel_sock_timeval *)optval = tv; 381 return sizeof(tv); 382 } 383 EXPORT_SYMBOL(sock_get_timeout); 384 385 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 386 sockptr_t optval, int optlen, bool old_timeval) 387 { 388 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 389 struct old_timeval32 tv32; 390 391 if (optlen < sizeof(tv32)) 392 return -EINVAL; 393 394 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 395 return -EFAULT; 396 tv->tv_sec = tv32.tv_sec; 397 tv->tv_usec = tv32.tv_usec; 398 } else if (old_timeval) { 399 struct __kernel_old_timeval old_tv; 400 401 if (optlen < sizeof(old_tv)) 402 return -EINVAL; 403 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 404 return -EFAULT; 405 tv->tv_sec = old_tv.tv_sec; 406 tv->tv_usec = old_tv.tv_usec; 407 } else { 408 if (optlen < sizeof(*tv)) 409 return -EINVAL; 410 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 411 return -EFAULT; 412 } 413 414 return 0; 415 } 416 EXPORT_SYMBOL(sock_copy_user_timeval); 417 418 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 419 bool old_timeval) 420 { 421 struct __kernel_sock_timeval tv; 422 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 423 424 if (err) 425 return err; 426 427 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 428 return -EDOM; 429 430 if (tv.tv_sec < 0) { 431 static int warned __read_mostly; 432 433 *timeo_p = 0; 434 if (warned < 10 && net_ratelimit()) { 435 warned++; 436 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 437 __func__, current->comm, task_pid_nr(current)); 438 } 439 return 0; 440 } 441 *timeo_p = MAX_SCHEDULE_TIMEOUT; 442 if (tv.tv_sec == 0 && tv.tv_usec == 0) 443 return 0; 444 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 445 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 446 return 0; 447 } 448 449 static bool sock_needs_netstamp(const struct sock *sk) 450 { 451 switch (sk->sk_family) { 452 case AF_UNSPEC: 453 case AF_UNIX: 454 return false; 455 default: 456 return true; 457 } 458 } 459 460 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 461 { 462 if (sk->sk_flags & flags) { 463 sk->sk_flags &= ~flags; 464 if (sock_needs_netstamp(sk) && 465 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 466 net_disable_timestamp(); 467 } 468 } 469 470 471 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 472 { 473 unsigned long flags; 474 struct sk_buff_head *list = &sk->sk_receive_queue; 475 476 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 477 atomic_inc(&sk->sk_drops); 478 trace_sock_rcvqueue_full(sk, skb); 479 return -ENOMEM; 480 } 481 482 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 483 atomic_inc(&sk->sk_drops); 484 return -ENOBUFS; 485 } 486 487 skb->dev = NULL; 488 skb_set_owner_r(skb, sk); 489 490 /* we escape from rcu protected region, make sure we dont leak 491 * a norefcounted dst 492 */ 493 skb_dst_force(skb); 494 495 spin_lock_irqsave(&list->lock, flags); 496 sock_skb_set_dropcount(sk, skb); 497 __skb_queue_tail(list, skb); 498 spin_unlock_irqrestore(&list->lock, flags); 499 500 if (!sock_flag(sk, SOCK_DEAD)) 501 sk->sk_data_ready(sk); 502 return 0; 503 } 504 EXPORT_SYMBOL(__sock_queue_rcv_skb); 505 506 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 507 { 508 int err; 509 510 err = sk_filter(sk, skb); 511 if (err) 512 return err; 513 514 return __sock_queue_rcv_skb(sk, skb); 515 } 516 EXPORT_SYMBOL(sock_queue_rcv_skb); 517 518 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 519 const int nested, unsigned int trim_cap, bool refcounted) 520 { 521 int rc = NET_RX_SUCCESS; 522 523 if (sk_filter_trim_cap(sk, skb, trim_cap)) 524 goto discard_and_relse; 525 526 skb->dev = NULL; 527 528 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 529 atomic_inc(&sk->sk_drops); 530 goto discard_and_relse; 531 } 532 if (nested) 533 bh_lock_sock_nested(sk); 534 else 535 bh_lock_sock(sk); 536 if (!sock_owned_by_user(sk)) { 537 /* 538 * trylock + unlock semantics: 539 */ 540 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 541 542 rc = sk_backlog_rcv(sk, skb); 543 544 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 545 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 546 bh_unlock_sock(sk); 547 atomic_inc(&sk->sk_drops); 548 goto discard_and_relse; 549 } 550 551 bh_unlock_sock(sk); 552 out: 553 if (refcounted) 554 sock_put(sk); 555 return rc; 556 discard_and_relse: 557 kfree_skb(skb); 558 goto out; 559 } 560 EXPORT_SYMBOL(__sk_receive_skb); 561 562 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 563 u32)); 564 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 565 u32)); 566 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 567 { 568 struct dst_entry *dst = __sk_dst_get(sk); 569 570 if (dst && dst->obsolete && 571 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 572 dst, cookie) == NULL) { 573 sk_tx_queue_clear(sk); 574 sk->sk_dst_pending_confirm = 0; 575 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 576 dst_release(dst); 577 return NULL; 578 } 579 580 return dst; 581 } 582 EXPORT_SYMBOL(__sk_dst_check); 583 584 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 585 { 586 struct dst_entry *dst = sk_dst_get(sk); 587 588 if (dst && dst->obsolete && 589 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 590 dst, cookie) == NULL) { 591 sk_dst_reset(sk); 592 dst_release(dst); 593 return NULL; 594 } 595 596 return dst; 597 } 598 EXPORT_SYMBOL(sk_dst_check); 599 600 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 601 { 602 int ret = -ENOPROTOOPT; 603 #ifdef CONFIG_NETDEVICES 604 struct net *net = sock_net(sk); 605 606 /* Sorry... */ 607 ret = -EPERM; 608 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 609 goto out; 610 611 ret = -EINVAL; 612 if (ifindex < 0) 613 goto out; 614 615 sk->sk_bound_dev_if = ifindex; 616 if (sk->sk_prot->rehash) 617 sk->sk_prot->rehash(sk); 618 sk_dst_reset(sk); 619 620 ret = 0; 621 622 out: 623 #endif 624 625 return ret; 626 } 627 628 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 629 { 630 int ret; 631 632 if (lock_sk) 633 lock_sock(sk); 634 ret = sock_bindtoindex_locked(sk, ifindex); 635 if (lock_sk) 636 release_sock(sk); 637 638 return ret; 639 } 640 EXPORT_SYMBOL(sock_bindtoindex); 641 642 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 643 { 644 int ret = -ENOPROTOOPT; 645 #ifdef CONFIG_NETDEVICES 646 struct net *net = sock_net(sk); 647 char devname[IFNAMSIZ]; 648 int index; 649 650 ret = -EINVAL; 651 if (optlen < 0) 652 goto out; 653 654 /* Bind this socket to a particular device like "eth0", 655 * as specified in the passed interface name. If the 656 * name is "" or the option length is zero the socket 657 * is not bound. 658 */ 659 if (optlen > IFNAMSIZ - 1) 660 optlen = IFNAMSIZ - 1; 661 memset(devname, 0, sizeof(devname)); 662 663 ret = -EFAULT; 664 if (copy_from_sockptr(devname, optval, optlen)) 665 goto out; 666 667 index = 0; 668 if (devname[0] != '\0') { 669 struct net_device *dev; 670 671 rcu_read_lock(); 672 dev = dev_get_by_name_rcu(net, devname); 673 if (dev) 674 index = dev->ifindex; 675 rcu_read_unlock(); 676 ret = -ENODEV; 677 if (!dev) 678 goto out; 679 } 680 681 return sock_bindtoindex(sk, index, true); 682 out: 683 #endif 684 685 return ret; 686 } 687 688 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 689 int __user *optlen, int len) 690 { 691 int ret = -ENOPROTOOPT; 692 #ifdef CONFIG_NETDEVICES 693 struct net *net = sock_net(sk); 694 char devname[IFNAMSIZ]; 695 696 if (sk->sk_bound_dev_if == 0) { 697 len = 0; 698 goto zero; 699 } 700 701 ret = -EINVAL; 702 if (len < IFNAMSIZ) 703 goto out; 704 705 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 706 if (ret) 707 goto out; 708 709 len = strlen(devname) + 1; 710 711 ret = -EFAULT; 712 if (copy_to_user(optval, devname, len)) 713 goto out; 714 715 zero: 716 ret = -EFAULT; 717 if (put_user(len, optlen)) 718 goto out; 719 720 ret = 0; 721 722 out: 723 #endif 724 725 return ret; 726 } 727 728 bool sk_mc_loop(struct sock *sk) 729 { 730 if (dev_recursion_level()) 731 return false; 732 if (!sk) 733 return true; 734 switch (sk->sk_family) { 735 case AF_INET: 736 return inet_sk(sk)->mc_loop; 737 #if IS_ENABLED(CONFIG_IPV6) 738 case AF_INET6: 739 return inet6_sk(sk)->mc_loop; 740 #endif 741 } 742 WARN_ON_ONCE(1); 743 return true; 744 } 745 EXPORT_SYMBOL(sk_mc_loop); 746 747 void sock_set_reuseaddr(struct sock *sk) 748 { 749 lock_sock(sk); 750 sk->sk_reuse = SK_CAN_REUSE; 751 release_sock(sk); 752 } 753 EXPORT_SYMBOL(sock_set_reuseaddr); 754 755 void sock_set_reuseport(struct sock *sk) 756 { 757 lock_sock(sk); 758 sk->sk_reuseport = true; 759 release_sock(sk); 760 } 761 EXPORT_SYMBOL(sock_set_reuseport); 762 763 void sock_no_linger(struct sock *sk) 764 { 765 lock_sock(sk); 766 sk->sk_lingertime = 0; 767 sock_set_flag(sk, SOCK_LINGER); 768 release_sock(sk); 769 } 770 EXPORT_SYMBOL(sock_no_linger); 771 772 void sock_set_priority(struct sock *sk, u32 priority) 773 { 774 lock_sock(sk); 775 sk->sk_priority = priority; 776 release_sock(sk); 777 } 778 EXPORT_SYMBOL(sock_set_priority); 779 780 void sock_set_sndtimeo(struct sock *sk, s64 secs) 781 { 782 lock_sock(sk); 783 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 784 sk->sk_sndtimeo = secs * HZ; 785 else 786 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 787 release_sock(sk); 788 } 789 EXPORT_SYMBOL(sock_set_sndtimeo); 790 791 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 792 { 793 if (val) { 794 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 795 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 796 sock_set_flag(sk, SOCK_RCVTSTAMP); 797 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 798 } else { 799 sock_reset_flag(sk, SOCK_RCVTSTAMP); 800 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 801 } 802 } 803 804 void sock_enable_timestamps(struct sock *sk) 805 { 806 lock_sock(sk); 807 __sock_set_timestamps(sk, true, false, true); 808 release_sock(sk); 809 } 810 EXPORT_SYMBOL(sock_enable_timestamps); 811 812 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 813 { 814 switch (optname) { 815 case SO_TIMESTAMP_OLD: 816 __sock_set_timestamps(sk, valbool, false, false); 817 break; 818 case SO_TIMESTAMP_NEW: 819 __sock_set_timestamps(sk, valbool, true, false); 820 break; 821 case SO_TIMESTAMPNS_OLD: 822 __sock_set_timestamps(sk, valbool, false, true); 823 break; 824 case SO_TIMESTAMPNS_NEW: 825 __sock_set_timestamps(sk, valbool, true, true); 826 break; 827 } 828 } 829 830 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 831 { 832 struct net *net = sock_net(sk); 833 struct net_device *dev = NULL; 834 bool match = false; 835 int *vclock_index; 836 int i, num; 837 838 if (sk->sk_bound_dev_if) 839 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 840 841 if (!dev) { 842 pr_err("%s: sock not bind to device\n", __func__); 843 return -EOPNOTSUPP; 844 } 845 846 num = ethtool_get_phc_vclocks(dev, &vclock_index); 847 dev_put(dev); 848 849 for (i = 0; i < num; i++) { 850 if (*(vclock_index + i) == phc_index) { 851 match = true; 852 break; 853 } 854 } 855 856 if (num > 0) 857 kfree(vclock_index); 858 859 if (!match) 860 return -EINVAL; 861 862 sk->sk_bind_phc = phc_index; 863 864 return 0; 865 } 866 867 int sock_set_timestamping(struct sock *sk, int optname, 868 struct so_timestamping timestamping) 869 { 870 int val = timestamping.flags; 871 int ret; 872 873 if (val & ~SOF_TIMESTAMPING_MASK) 874 return -EINVAL; 875 876 if (val & SOF_TIMESTAMPING_OPT_ID && 877 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 878 if (sk_is_tcp(sk)) { 879 if ((1 << sk->sk_state) & 880 (TCPF_CLOSE | TCPF_LISTEN)) 881 return -EINVAL; 882 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 883 } else { 884 atomic_set(&sk->sk_tskey, 0); 885 } 886 } 887 888 if (val & SOF_TIMESTAMPING_OPT_STATS && 889 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 890 return -EINVAL; 891 892 if (val & SOF_TIMESTAMPING_BIND_PHC) { 893 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 894 if (ret) 895 return ret; 896 } 897 898 sk->sk_tsflags = val; 899 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 900 901 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 902 sock_enable_timestamp(sk, 903 SOCK_TIMESTAMPING_RX_SOFTWARE); 904 else 905 sock_disable_timestamp(sk, 906 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 907 return 0; 908 } 909 910 void sock_set_keepalive(struct sock *sk) 911 { 912 lock_sock(sk); 913 if (sk->sk_prot->keepalive) 914 sk->sk_prot->keepalive(sk, true); 915 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 916 release_sock(sk); 917 } 918 EXPORT_SYMBOL(sock_set_keepalive); 919 920 static void __sock_set_rcvbuf(struct sock *sk, int val) 921 { 922 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 923 * as a negative value. 924 */ 925 val = min_t(int, val, INT_MAX / 2); 926 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 927 928 /* We double it on the way in to account for "struct sk_buff" etc. 929 * overhead. Applications assume that the SO_RCVBUF setting they make 930 * will allow that much actual data to be received on that socket. 931 * 932 * Applications are unaware that "struct sk_buff" and other overheads 933 * allocate from the receive buffer during socket buffer allocation. 934 * 935 * And after considering the possible alternatives, returning the value 936 * we actually used in getsockopt is the most desirable behavior. 937 */ 938 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 939 } 940 941 void sock_set_rcvbuf(struct sock *sk, int val) 942 { 943 lock_sock(sk); 944 __sock_set_rcvbuf(sk, val); 945 release_sock(sk); 946 } 947 EXPORT_SYMBOL(sock_set_rcvbuf); 948 949 static void __sock_set_mark(struct sock *sk, u32 val) 950 { 951 if (val != sk->sk_mark) { 952 sk->sk_mark = val; 953 sk_dst_reset(sk); 954 } 955 } 956 957 void sock_set_mark(struct sock *sk, u32 val) 958 { 959 lock_sock(sk); 960 __sock_set_mark(sk, val); 961 release_sock(sk); 962 } 963 EXPORT_SYMBOL(sock_set_mark); 964 965 static void sock_release_reserved_memory(struct sock *sk, int bytes) 966 { 967 /* Round down bytes to multiple of pages */ 968 bytes &= ~(SK_MEM_QUANTUM - 1); 969 970 WARN_ON(bytes > sk->sk_reserved_mem); 971 sk->sk_reserved_mem -= bytes; 972 sk_mem_reclaim(sk); 973 } 974 975 static int sock_reserve_memory(struct sock *sk, int bytes) 976 { 977 long allocated; 978 bool charged; 979 int pages; 980 981 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 982 return -EOPNOTSUPP; 983 984 if (!bytes) 985 return 0; 986 987 pages = sk_mem_pages(bytes); 988 989 /* pre-charge to memcg */ 990 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 991 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 992 if (!charged) 993 return -ENOMEM; 994 995 /* pre-charge to forward_alloc */ 996 allocated = sk_memory_allocated_add(sk, pages); 997 /* If the system goes into memory pressure with this 998 * precharge, give up and return error. 999 */ 1000 if (allocated > sk_prot_mem_limits(sk, 1)) { 1001 sk_memory_allocated_sub(sk, pages); 1002 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1003 return -ENOMEM; 1004 } 1005 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT; 1006 1007 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT; 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * This is meant for all protocols to use and covers goings on 1014 * at the socket level. Everything here is generic. 1015 */ 1016 1017 int sock_setsockopt(struct socket *sock, int level, int optname, 1018 sockptr_t optval, unsigned int optlen) 1019 { 1020 struct so_timestamping timestamping; 1021 struct sock_txtime sk_txtime; 1022 struct sock *sk = sock->sk; 1023 int val; 1024 int valbool; 1025 struct linger ling; 1026 int ret = 0; 1027 1028 /* 1029 * Options without arguments 1030 */ 1031 1032 if (optname == SO_BINDTODEVICE) 1033 return sock_setbindtodevice(sk, optval, optlen); 1034 1035 if (optlen < sizeof(int)) 1036 return -EINVAL; 1037 1038 if (copy_from_sockptr(&val, optval, sizeof(val))) 1039 return -EFAULT; 1040 1041 valbool = val ? 1 : 0; 1042 1043 lock_sock(sk); 1044 1045 switch (optname) { 1046 case SO_DEBUG: 1047 if (val && !capable(CAP_NET_ADMIN)) 1048 ret = -EACCES; 1049 else 1050 sock_valbool_flag(sk, SOCK_DBG, valbool); 1051 break; 1052 case SO_REUSEADDR: 1053 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1054 break; 1055 case SO_REUSEPORT: 1056 sk->sk_reuseport = valbool; 1057 break; 1058 case SO_TYPE: 1059 case SO_PROTOCOL: 1060 case SO_DOMAIN: 1061 case SO_ERROR: 1062 ret = -ENOPROTOOPT; 1063 break; 1064 case SO_DONTROUTE: 1065 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1066 sk_dst_reset(sk); 1067 break; 1068 case SO_BROADCAST: 1069 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1070 break; 1071 case SO_SNDBUF: 1072 /* Don't error on this BSD doesn't and if you think 1073 * about it this is right. Otherwise apps have to 1074 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1075 * are treated in BSD as hints 1076 */ 1077 val = min_t(u32, val, sysctl_wmem_max); 1078 set_sndbuf: 1079 /* Ensure val * 2 fits into an int, to prevent max_t() 1080 * from treating it as a negative value. 1081 */ 1082 val = min_t(int, val, INT_MAX / 2); 1083 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1084 WRITE_ONCE(sk->sk_sndbuf, 1085 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1086 /* Wake up sending tasks if we upped the value. */ 1087 sk->sk_write_space(sk); 1088 break; 1089 1090 case SO_SNDBUFFORCE: 1091 if (!capable(CAP_NET_ADMIN)) { 1092 ret = -EPERM; 1093 break; 1094 } 1095 1096 /* No negative values (to prevent underflow, as val will be 1097 * multiplied by 2). 1098 */ 1099 if (val < 0) 1100 val = 0; 1101 goto set_sndbuf; 1102 1103 case SO_RCVBUF: 1104 /* Don't error on this BSD doesn't and if you think 1105 * about it this is right. Otherwise apps have to 1106 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1107 * are treated in BSD as hints 1108 */ 1109 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1110 break; 1111 1112 case SO_RCVBUFFORCE: 1113 if (!capable(CAP_NET_ADMIN)) { 1114 ret = -EPERM; 1115 break; 1116 } 1117 1118 /* No negative values (to prevent underflow, as val will be 1119 * multiplied by 2). 1120 */ 1121 __sock_set_rcvbuf(sk, max(val, 0)); 1122 break; 1123 1124 case SO_KEEPALIVE: 1125 if (sk->sk_prot->keepalive) 1126 sk->sk_prot->keepalive(sk, valbool); 1127 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1128 break; 1129 1130 case SO_OOBINLINE: 1131 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1132 break; 1133 1134 case SO_NO_CHECK: 1135 sk->sk_no_check_tx = valbool; 1136 break; 1137 1138 case SO_PRIORITY: 1139 if ((val >= 0 && val <= 6) || 1140 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1141 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1142 sk->sk_priority = val; 1143 else 1144 ret = -EPERM; 1145 break; 1146 1147 case SO_LINGER: 1148 if (optlen < sizeof(ling)) { 1149 ret = -EINVAL; /* 1003.1g */ 1150 break; 1151 } 1152 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1153 ret = -EFAULT; 1154 break; 1155 } 1156 if (!ling.l_onoff) 1157 sock_reset_flag(sk, SOCK_LINGER); 1158 else { 1159 #if (BITS_PER_LONG == 32) 1160 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1161 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1162 else 1163 #endif 1164 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1165 sock_set_flag(sk, SOCK_LINGER); 1166 } 1167 break; 1168 1169 case SO_BSDCOMPAT: 1170 break; 1171 1172 case SO_PASSCRED: 1173 if (valbool) 1174 set_bit(SOCK_PASSCRED, &sock->flags); 1175 else 1176 clear_bit(SOCK_PASSCRED, &sock->flags); 1177 break; 1178 1179 case SO_TIMESTAMP_OLD: 1180 case SO_TIMESTAMP_NEW: 1181 case SO_TIMESTAMPNS_OLD: 1182 case SO_TIMESTAMPNS_NEW: 1183 sock_set_timestamp(sk, optname, valbool); 1184 break; 1185 1186 case SO_TIMESTAMPING_NEW: 1187 case SO_TIMESTAMPING_OLD: 1188 if (optlen == sizeof(timestamping)) { 1189 if (copy_from_sockptr(×tamping, optval, 1190 sizeof(timestamping))) { 1191 ret = -EFAULT; 1192 break; 1193 } 1194 } else { 1195 memset(×tamping, 0, sizeof(timestamping)); 1196 timestamping.flags = val; 1197 } 1198 ret = sock_set_timestamping(sk, optname, timestamping); 1199 break; 1200 1201 case SO_RCVLOWAT: 1202 if (val < 0) 1203 val = INT_MAX; 1204 if (sock->ops->set_rcvlowat) 1205 ret = sock->ops->set_rcvlowat(sk, val); 1206 else 1207 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1208 break; 1209 1210 case SO_RCVTIMEO_OLD: 1211 case SO_RCVTIMEO_NEW: 1212 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1213 optlen, optname == SO_RCVTIMEO_OLD); 1214 break; 1215 1216 case SO_SNDTIMEO_OLD: 1217 case SO_SNDTIMEO_NEW: 1218 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1219 optlen, optname == SO_SNDTIMEO_OLD); 1220 break; 1221 1222 case SO_ATTACH_FILTER: { 1223 struct sock_fprog fprog; 1224 1225 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1226 if (!ret) 1227 ret = sk_attach_filter(&fprog, sk); 1228 break; 1229 } 1230 case SO_ATTACH_BPF: 1231 ret = -EINVAL; 1232 if (optlen == sizeof(u32)) { 1233 u32 ufd; 1234 1235 ret = -EFAULT; 1236 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1237 break; 1238 1239 ret = sk_attach_bpf(ufd, sk); 1240 } 1241 break; 1242 1243 case SO_ATTACH_REUSEPORT_CBPF: { 1244 struct sock_fprog fprog; 1245 1246 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1247 if (!ret) 1248 ret = sk_reuseport_attach_filter(&fprog, sk); 1249 break; 1250 } 1251 case SO_ATTACH_REUSEPORT_EBPF: 1252 ret = -EINVAL; 1253 if (optlen == sizeof(u32)) { 1254 u32 ufd; 1255 1256 ret = -EFAULT; 1257 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1258 break; 1259 1260 ret = sk_reuseport_attach_bpf(ufd, sk); 1261 } 1262 break; 1263 1264 case SO_DETACH_REUSEPORT_BPF: 1265 ret = reuseport_detach_prog(sk); 1266 break; 1267 1268 case SO_DETACH_FILTER: 1269 ret = sk_detach_filter(sk); 1270 break; 1271 1272 case SO_LOCK_FILTER: 1273 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1274 ret = -EPERM; 1275 else 1276 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1277 break; 1278 1279 case SO_PASSSEC: 1280 if (valbool) 1281 set_bit(SOCK_PASSSEC, &sock->flags); 1282 else 1283 clear_bit(SOCK_PASSSEC, &sock->flags); 1284 break; 1285 case SO_MARK: 1286 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1287 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1288 ret = -EPERM; 1289 break; 1290 } 1291 1292 __sock_set_mark(sk, val); 1293 break; 1294 1295 case SO_RXQ_OVFL: 1296 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1297 break; 1298 1299 case SO_WIFI_STATUS: 1300 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1301 break; 1302 1303 case SO_PEEK_OFF: 1304 if (sock->ops->set_peek_off) 1305 ret = sock->ops->set_peek_off(sk, val); 1306 else 1307 ret = -EOPNOTSUPP; 1308 break; 1309 1310 case SO_NOFCS: 1311 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1312 break; 1313 1314 case SO_SELECT_ERR_QUEUE: 1315 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1316 break; 1317 1318 #ifdef CONFIG_NET_RX_BUSY_POLL 1319 case SO_BUSY_POLL: 1320 /* allow unprivileged users to decrease the value */ 1321 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1322 ret = -EPERM; 1323 else { 1324 if (val < 0) 1325 ret = -EINVAL; 1326 else 1327 WRITE_ONCE(sk->sk_ll_usec, val); 1328 } 1329 break; 1330 case SO_PREFER_BUSY_POLL: 1331 if (valbool && !capable(CAP_NET_ADMIN)) 1332 ret = -EPERM; 1333 else 1334 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1335 break; 1336 case SO_BUSY_POLL_BUDGET: 1337 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1338 ret = -EPERM; 1339 } else { 1340 if (val < 0 || val > U16_MAX) 1341 ret = -EINVAL; 1342 else 1343 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1344 } 1345 break; 1346 #endif 1347 1348 case SO_MAX_PACING_RATE: 1349 { 1350 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1351 1352 if (sizeof(ulval) != sizeof(val) && 1353 optlen >= sizeof(ulval) && 1354 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1355 ret = -EFAULT; 1356 break; 1357 } 1358 if (ulval != ~0UL) 1359 cmpxchg(&sk->sk_pacing_status, 1360 SK_PACING_NONE, 1361 SK_PACING_NEEDED); 1362 sk->sk_max_pacing_rate = ulval; 1363 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1364 break; 1365 } 1366 case SO_INCOMING_CPU: 1367 WRITE_ONCE(sk->sk_incoming_cpu, val); 1368 break; 1369 1370 case SO_CNX_ADVICE: 1371 if (val == 1) 1372 dst_negative_advice(sk); 1373 break; 1374 1375 case SO_ZEROCOPY: 1376 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1377 if (!(sk_is_tcp(sk) || 1378 (sk->sk_type == SOCK_DGRAM && 1379 sk->sk_protocol == IPPROTO_UDP))) 1380 ret = -EOPNOTSUPP; 1381 } else if (sk->sk_family != PF_RDS) { 1382 ret = -EOPNOTSUPP; 1383 } 1384 if (!ret) { 1385 if (val < 0 || val > 1) 1386 ret = -EINVAL; 1387 else 1388 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1389 } 1390 break; 1391 1392 case SO_TXTIME: 1393 if (optlen != sizeof(struct sock_txtime)) { 1394 ret = -EINVAL; 1395 break; 1396 } else if (copy_from_sockptr(&sk_txtime, optval, 1397 sizeof(struct sock_txtime))) { 1398 ret = -EFAULT; 1399 break; 1400 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1401 ret = -EINVAL; 1402 break; 1403 } 1404 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1405 * scheduler has enough safe guards. 1406 */ 1407 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1408 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1409 ret = -EPERM; 1410 break; 1411 } 1412 sock_valbool_flag(sk, SOCK_TXTIME, true); 1413 sk->sk_clockid = sk_txtime.clockid; 1414 sk->sk_txtime_deadline_mode = 1415 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1416 sk->sk_txtime_report_errors = 1417 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1418 break; 1419 1420 case SO_BINDTOIFINDEX: 1421 ret = sock_bindtoindex_locked(sk, val); 1422 break; 1423 1424 case SO_BUF_LOCK: 1425 if (val & ~SOCK_BUF_LOCK_MASK) { 1426 ret = -EINVAL; 1427 break; 1428 } 1429 sk->sk_userlocks = val | (sk->sk_userlocks & 1430 ~SOCK_BUF_LOCK_MASK); 1431 break; 1432 1433 case SO_RESERVE_MEM: 1434 { 1435 int delta; 1436 1437 if (val < 0) { 1438 ret = -EINVAL; 1439 break; 1440 } 1441 1442 delta = val - sk->sk_reserved_mem; 1443 if (delta < 0) 1444 sock_release_reserved_memory(sk, -delta); 1445 else 1446 ret = sock_reserve_memory(sk, delta); 1447 break; 1448 } 1449 1450 case SO_TXREHASH: 1451 if (val < -1 || val > 1) { 1452 ret = -EINVAL; 1453 break; 1454 } 1455 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1456 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1457 break; 1458 1459 default: 1460 ret = -ENOPROTOOPT; 1461 break; 1462 } 1463 release_sock(sk); 1464 return ret; 1465 } 1466 EXPORT_SYMBOL(sock_setsockopt); 1467 1468 static const struct cred *sk_get_peer_cred(struct sock *sk) 1469 { 1470 const struct cred *cred; 1471 1472 spin_lock(&sk->sk_peer_lock); 1473 cred = get_cred(sk->sk_peer_cred); 1474 spin_unlock(&sk->sk_peer_lock); 1475 1476 return cred; 1477 } 1478 1479 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1480 struct ucred *ucred) 1481 { 1482 ucred->pid = pid_vnr(pid); 1483 ucred->uid = ucred->gid = -1; 1484 if (cred) { 1485 struct user_namespace *current_ns = current_user_ns(); 1486 1487 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1488 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1489 } 1490 } 1491 1492 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1493 { 1494 struct user_namespace *user_ns = current_user_ns(); 1495 int i; 1496 1497 for (i = 0; i < src->ngroups; i++) 1498 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1499 return -EFAULT; 1500 1501 return 0; 1502 } 1503 1504 int sock_getsockopt(struct socket *sock, int level, int optname, 1505 char __user *optval, int __user *optlen) 1506 { 1507 struct sock *sk = sock->sk; 1508 1509 union { 1510 int val; 1511 u64 val64; 1512 unsigned long ulval; 1513 struct linger ling; 1514 struct old_timeval32 tm32; 1515 struct __kernel_old_timeval tm; 1516 struct __kernel_sock_timeval stm; 1517 struct sock_txtime txtime; 1518 struct so_timestamping timestamping; 1519 } v; 1520 1521 int lv = sizeof(int); 1522 int len; 1523 1524 if (get_user(len, optlen)) 1525 return -EFAULT; 1526 if (len < 0) 1527 return -EINVAL; 1528 1529 memset(&v, 0, sizeof(v)); 1530 1531 switch (optname) { 1532 case SO_DEBUG: 1533 v.val = sock_flag(sk, SOCK_DBG); 1534 break; 1535 1536 case SO_DONTROUTE: 1537 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1538 break; 1539 1540 case SO_BROADCAST: 1541 v.val = sock_flag(sk, SOCK_BROADCAST); 1542 break; 1543 1544 case SO_SNDBUF: 1545 v.val = sk->sk_sndbuf; 1546 break; 1547 1548 case SO_RCVBUF: 1549 v.val = sk->sk_rcvbuf; 1550 break; 1551 1552 case SO_REUSEADDR: 1553 v.val = sk->sk_reuse; 1554 break; 1555 1556 case SO_REUSEPORT: 1557 v.val = sk->sk_reuseport; 1558 break; 1559 1560 case SO_KEEPALIVE: 1561 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1562 break; 1563 1564 case SO_TYPE: 1565 v.val = sk->sk_type; 1566 break; 1567 1568 case SO_PROTOCOL: 1569 v.val = sk->sk_protocol; 1570 break; 1571 1572 case SO_DOMAIN: 1573 v.val = sk->sk_family; 1574 break; 1575 1576 case SO_ERROR: 1577 v.val = -sock_error(sk); 1578 if (v.val == 0) 1579 v.val = xchg(&sk->sk_err_soft, 0); 1580 break; 1581 1582 case SO_OOBINLINE: 1583 v.val = sock_flag(sk, SOCK_URGINLINE); 1584 break; 1585 1586 case SO_NO_CHECK: 1587 v.val = sk->sk_no_check_tx; 1588 break; 1589 1590 case SO_PRIORITY: 1591 v.val = sk->sk_priority; 1592 break; 1593 1594 case SO_LINGER: 1595 lv = sizeof(v.ling); 1596 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1597 v.ling.l_linger = sk->sk_lingertime / HZ; 1598 break; 1599 1600 case SO_BSDCOMPAT: 1601 break; 1602 1603 case SO_TIMESTAMP_OLD: 1604 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1605 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1606 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1607 break; 1608 1609 case SO_TIMESTAMPNS_OLD: 1610 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1611 break; 1612 1613 case SO_TIMESTAMP_NEW: 1614 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1615 break; 1616 1617 case SO_TIMESTAMPNS_NEW: 1618 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1619 break; 1620 1621 case SO_TIMESTAMPING_OLD: 1622 lv = sizeof(v.timestamping); 1623 v.timestamping.flags = sk->sk_tsflags; 1624 v.timestamping.bind_phc = sk->sk_bind_phc; 1625 break; 1626 1627 case SO_RCVTIMEO_OLD: 1628 case SO_RCVTIMEO_NEW: 1629 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1630 break; 1631 1632 case SO_SNDTIMEO_OLD: 1633 case SO_SNDTIMEO_NEW: 1634 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1635 break; 1636 1637 case SO_RCVLOWAT: 1638 v.val = sk->sk_rcvlowat; 1639 break; 1640 1641 case SO_SNDLOWAT: 1642 v.val = 1; 1643 break; 1644 1645 case SO_PASSCRED: 1646 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1647 break; 1648 1649 case SO_PEERCRED: 1650 { 1651 struct ucred peercred; 1652 if (len > sizeof(peercred)) 1653 len = sizeof(peercred); 1654 1655 spin_lock(&sk->sk_peer_lock); 1656 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1657 spin_unlock(&sk->sk_peer_lock); 1658 1659 if (copy_to_user(optval, &peercred, len)) 1660 return -EFAULT; 1661 goto lenout; 1662 } 1663 1664 case SO_PEERGROUPS: 1665 { 1666 const struct cred *cred; 1667 int ret, n; 1668 1669 cred = sk_get_peer_cred(sk); 1670 if (!cred) 1671 return -ENODATA; 1672 1673 n = cred->group_info->ngroups; 1674 if (len < n * sizeof(gid_t)) { 1675 len = n * sizeof(gid_t); 1676 put_cred(cred); 1677 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1678 } 1679 len = n * sizeof(gid_t); 1680 1681 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1682 put_cred(cred); 1683 if (ret) 1684 return ret; 1685 goto lenout; 1686 } 1687 1688 case SO_PEERNAME: 1689 { 1690 char address[128]; 1691 1692 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1693 if (lv < 0) 1694 return -ENOTCONN; 1695 if (lv < len) 1696 return -EINVAL; 1697 if (copy_to_user(optval, address, len)) 1698 return -EFAULT; 1699 goto lenout; 1700 } 1701 1702 /* Dubious BSD thing... Probably nobody even uses it, but 1703 * the UNIX standard wants it for whatever reason... -DaveM 1704 */ 1705 case SO_ACCEPTCONN: 1706 v.val = sk->sk_state == TCP_LISTEN; 1707 break; 1708 1709 case SO_PASSSEC: 1710 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1711 break; 1712 1713 case SO_PEERSEC: 1714 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1715 1716 case SO_MARK: 1717 v.val = sk->sk_mark; 1718 break; 1719 1720 case SO_RXQ_OVFL: 1721 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1722 break; 1723 1724 case SO_WIFI_STATUS: 1725 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1726 break; 1727 1728 case SO_PEEK_OFF: 1729 if (!sock->ops->set_peek_off) 1730 return -EOPNOTSUPP; 1731 1732 v.val = sk->sk_peek_off; 1733 break; 1734 case SO_NOFCS: 1735 v.val = sock_flag(sk, SOCK_NOFCS); 1736 break; 1737 1738 case SO_BINDTODEVICE: 1739 return sock_getbindtodevice(sk, optval, optlen, len); 1740 1741 case SO_GET_FILTER: 1742 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1743 if (len < 0) 1744 return len; 1745 1746 goto lenout; 1747 1748 case SO_LOCK_FILTER: 1749 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1750 break; 1751 1752 case SO_BPF_EXTENSIONS: 1753 v.val = bpf_tell_extensions(); 1754 break; 1755 1756 case SO_SELECT_ERR_QUEUE: 1757 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1758 break; 1759 1760 #ifdef CONFIG_NET_RX_BUSY_POLL 1761 case SO_BUSY_POLL: 1762 v.val = sk->sk_ll_usec; 1763 break; 1764 case SO_PREFER_BUSY_POLL: 1765 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1766 break; 1767 #endif 1768 1769 case SO_MAX_PACING_RATE: 1770 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1771 lv = sizeof(v.ulval); 1772 v.ulval = sk->sk_max_pacing_rate; 1773 } else { 1774 /* 32bit version */ 1775 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1776 } 1777 break; 1778 1779 case SO_INCOMING_CPU: 1780 v.val = READ_ONCE(sk->sk_incoming_cpu); 1781 break; 1782 1783 case SO_MEMINFO: 1784 { 1785 u32 meminfo[SK_MEMINFO_VARS]; 1786 1787 sk_get_meminfo(sk, meminfo); 1788 1789 len = min_t(unsigned int, len, sizeof(meminfo)); 1790 if (copy_to_user(optval, &meminfo, len)) 1791 return -EFAULT; 1792 1793 goto lenout; 1794 } 1795 1796 #ifdef CONFIG_NET_RX_BUSY_POLL 1797 case SO_INCOMING_NAPI_ID: 1798 v.val = READ_ONCE(sk->sk_napi_id); 1799 1800 /* aggregate non-NAPI IDs down to 0 */ 1801 if (v.val < MIN_NAPI_ID) 1802 v.val = 0; 1803 1804 break; 1805 #endif 1806 1807 case SO_COOKIE: 1808 lv = sizeof(u64); 1809 if (len < lv) 1810 return -EINVAL; 1811 v.val64 = sock_gen_cookie(sk); 1812 break; 1813 1814 case SO_ZEROCOPY: 1815 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1816 break; 1817 1818 case SO_TXTIME: 1819 lv = sizeof(v.txtime); 1820 v.txtime.clockid = sk->sk_clockid; 1821 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1822 SOF_TXTIME_DEADLINE_MODE : 0; 1823 v.txtime.flags |= sk->sk_txtime_report_errors ? 1824 SOF_TXTIME_REPORT_ERRORS : 0; 1825 break; 1826 1827 case SO_BINDTOIFINDEX: 1828 v.val = sk->sk_bound_dev_if; 1829 break; 1830 1831 case SO_NETNS_COOKIE: 1832 lv = sizeof(u64); 1833 if (len != lv) 1834 return -EINVAL; 1835 v.val64 = sock_net(sk)->net_cookie; 1836 break; 1837 1838 case SO_BUF_LOCK: 1839 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1840 break; 1841 1842 case SO_RESERVE_MEM: 1843 v.val = sk->sk_reserved_mem; 1844 break; 1845 1846 case SO_TXREHASH: 1847 v.val = sk->sk_txrehash; 1848 break; 1849 1850 default: 1851 /* We implement the SO_SNDLOWAT etc to not be settable 1852 * (1003.1g 7). 1853 */ 1854 return -ENOPROTOOPT; 1855 } 1856 1857 if (len > lv) 1858 len = lv; 1859 if (copy_to_user(optval, &v, len)) 1860 return -EFAULT; 1861 lenout: 1862 if (put_user(len, optlen)) 1863 return -EFAULT; 1864 return 0; 1865 } 1866 1867 /* 1868 * Initialize an sk_lock. 1869 * 1870 * (We also register the sk_lock with the lock validator.) 1871 */ 1872 static inline void sock_lock_init(struct sock *sk) 1873 { 1874 if (sk->sk_kern_sock) 1875 sock_lock_init_class_and_name( 1876 sk, 1877 af_family_kern_slock_key_strings[sk->sk_family], 1878 af_family_kern_slock_keys + sk->sk_family, 1879 af_family_kern_key_strings[sk->sk_family], 1880 af_family_kern_keys + sk->sk_family); 1881 else 1882 sock_lock_init_class_and_name( 1883 sk, 1884 af_family_slock_key_strings[sk->sk_family], 1885 af_family_slock_keys + sk->sk_family, 1886 af_family_key_strings[sk->sk_family], 1887 af_family_keys + sk->sk_family); 1888 } 1889 1890 /* 1891 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1892 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1893 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1894 */ 1895 static void sock_copy(struct sock *nsk, const struct sock *osk) 1896 { 1897 const struct proto *prot = READ_ONCE(osk->sk_prot); 1898 #ifdef CONFIG_SECURITY_NETWORK 1899 void *sptr = nsk->sk_security; 1900 #endif 1901 1902 /* If we move sk_tx_queue_mapping out of the private section, 1903 * we must check if sk_tx_queue_clear() is called after 1904 * sock_copy() in sk_clone_lock(). 1905 */ 1906 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1907 offsetof(struct sock, sk_dontcopy_begin) || 1908 offsetof(struct sock, sk_tx_queue_mapping) >= 1909 offsetof(struct sock, sk_dontcopy_end)); 1910 1911 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1912 1913 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1914 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1915 1916 #ifdef CONFIG_SECURITY_NETWORK 1917 nsk->sk_security = sptr; 1918 security_sk_clone(osk, nsk); 1919 #endif 1920 } 1921 1922 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1923 int family) 1924 { 1925 struct sock *sk; 1926 struct kmem_cache *slab; 1927 1928 slab = prot->slab; 1929 if (slab != NULL) { 1930 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1931 if (!sk) 1932 return sk; 1933 if (want_init_on_alloc(priority)) 1934 sk_prot_clear_nulls(sk, prot->obj_size); 1935 } else 1936 sk = kmalloc(prot->obj_size, priority); 1937 1938 if (sk != NULL) { 1939 if (security_sk_alloc(sk, family, priority)) 1940 goto out_free; 1941 1942 if (!try_module_get(prot->owner)) 1943 goto out_free_sec; 1944 } 1945 1946 return sk; 1947 1948 out_free_sec: 1949 security_sk_free(sk); 1950 out_free: 1951 if (slab != NULL) 1952 kmem_cache_free(slab, sk); 1953 else 1954 kfree(sk); 1955 return NULL; 1956 } 1957 1958 static void sk_prot_free(struct proto *prot, struct sock *sk) 1959 { 1960 struct kmem_cache *slab; 1961 struct module *owner; 1962 1963 owner = prot->owner; 1964 slab = prot->slab; 1965 1966 cgroup_sk_free(&sk->sk_cgrp_data); 1967 mem_cgroup_sk_free(sk); 1968 security_sk_free(sk); 1969 if (slab != NULL) 1970 kmem_cache_free(slab, sk); 1971 else 1972 kfree(sk); 1973 module_put(owner); 1974 } 1975 1976 /** 1977 * sk_alloc - All socket objects are allocated here 1978 * @net: the applicable net namespace 1979 * @family: protocol family 1980 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1981 * @prot: struct proto associated with this new sock instance 1982 * @kern: is this to be a kernel socket? 1983 */ 1984 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1985 struct proto *prot, int kern) 1986 { 1987 struct sock *sk; 1988 1989 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1990 if (sk) { 1991 sk->sk_family = family; 1992 /* 1993 * See comment in struct sock definition to understand 1994 * why we need sk_prot_creator -acme 1995 */ 1996 sk->sk_prot = sk->sk_prot_creator = prot; 1997 sk->sk_kern_sock = kern; 1998 sock_lock_init(sk); 1999 sk->sk_net_refcnt = kern ? 0 : 1; 2000 if (likely(sk->sk_net_refcnt)) { 2001 get_net_track(net, &sk->ns_tracker, priority); 2002 sock_inuse_add(net, 1); 2003 } 2004 2005 sock_net_set(sk, net); 2006 refcount_set(&sk->sk_wmem_alloc, 1); 2007 2008 mem_cgroup_sk_alloc(sk); 2009 cgroup_sk_alloc(&sk->sk_cgrp_data); 2010 sock_update_classid(&sk->sk_cgrp_data); 2011 sock_update_netprioidx(&sk->sk_cgrp_data); 2012 sk_tx_queue_clear(sk); 2013 } 2014 2015 return sk; 2016 } 2017 EXPORT_SYMBOL(sk_alloc); 2018 2019 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2020 * grace period. This is the case for UDP sockets and TCP listeners. 2021 */ 2022 static void __sk_destruct(struct rcu_head *head) 2023 { 2024 struct sock *sk = container_of(head, struct sock, sk_rcu); 2025 struct sk_filter *filter; 2026 2027 if (sk->sk_destruct) 2028 sk->sk_destruct(sk); 2029 2030 filter = rcu_dereference_check(sk->sk_filter, 2031 refcount_read(&sk->sk_wmem_alloc) == 0); 2032 if (filter) { 2033 sk_filter_uncharge(sk, filter); 2034 RCU_INIT_POINTER(sk->sk_filter, NULL); 2035 } 2036 2037 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2038 2039 #ifdef CONFIG_BPF_SYSCALL 2040 bpf_sk_storage_free(sk); 2041 #endif 2042 2043 if (atomic_read(&sk->sk_omem_alloc)) 2044 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2045 __func__, atomic_read(&sk->sk_omem_alloc)); 2046 2047 if (sk->sk_frag.page) { 2048 put_page(sk->sk_frag.page); 2049 sk->sk_frag.page = NULL; 2050 } 2051 2052 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2053 put_cred(sk->sk_peer_cred); 2054 put_pid(sk->sk_peer_pid); 2055 2056 if (likely(sk->sk_net_refcnt)) 2057 put_net_track(sock_net(sk), &sk->ns_tracker); 2058 sk_prot_free(sk->sk_prot_creator, sk); 2059 } 2060 2061 void sk_destruct(struct sock *sk) 2062 { 2063 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2064 2065 WARN_ON_ONCE(!llist_empty(&sk->defer_list)); 2066 sk_defer_free_flush(sk); 2067 2068 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2069 reuseport_detach_sock(sk); 2070 use_call_rcu = true; 2071 } 2072 2073 if (use_call_rcu) 2074 call_rcu(&sk->sk_rcu, __sk_destruct); 2075 else 2076 __sk_destruct(&sk->sk_rcu); 2077 } 2078 2079 static void __sk_free(struct sock *sk) 2080 { 2081 if (likely(sk->sk_net_refcnt)) 2082 sock_inuse_add(sock_net(sk), -1); 2083 2084 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2085 sock_diag_broadcast_destroy(sk); 2086 else 2087 sk_destruct(sk); 2088 } 2089 2090 void sk_free(struct sock *sk) 2091 { 2092 /* 2093 * We subtract one from sk_wmem_alloc and can know if 2094 * some packets are still in some tx queue. 2095 * If not null, sock_wfree() will call __sk_free(sk) later 2096 */ 2097 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2098 __sk_free(sk); 2099 } 2100 EXPORT_SYMBOL(sk_free); 2101 2102 static void sk_init_common(struct sock *sk) 2103 { 2104 skb_queue_head_init(&sk->sk_receive_queue); 2105 skb_queue_head_init(&sk->sk_write_queue); 2106 skb_queue_head_init(&sk->sk_error_queue); 2107 2108 rwlock_init(&sk->sk_callback_lock); 2109 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2110 af_rlock_keys + sk->sk_family, 2111 af_family_rlock_key_strings[sk->sk_family]); 2112 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2113 af_wlock_keys + sk->sk_family, 2114 af_family_wlock_key_strings[sk->sk_family]); 2115 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2116 af_elock_keys + sk->sk_family, 2117 af_family_elock_key_strings[sk->sk_family]); 2118 lockdep_set_class_and_name(&sk->sk_callback_lock, 2119 af_callback_keys + sk->sk_family, 2120 af_family_clock_key_strings[sk->sk_family]); 2121 } 2122 2123 /** 2124 * sk_clone_lock - clone a socket, and lock its clone 2125 * @sk: the socket to clone 2126 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2127 * 2128 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2129 */ 2130 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2131 { 2132 struct proto *prot = READ_ONCE(sk->sk_prot); 2133 struct sk_filter *filter; 2134 bool is_charged = true; 2135 struct sock *newsk; 2136 2137 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2138 if (!newsk) 2139 goto out; 2140 2141 sock_copy(newsk, sk); 2142 2143 newsk->sk_prot_creator = prot; 2144 2145 /* SANITY */ 2146 if (likely(newsk->sk_net_refcnt)) { 2147 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2148 sock_inuse_add(sock_net(newsk), 1); 2149 } 2150 sk_node_init(&newsk->sk_node); 2151 sock_lock_init(newsk); 2152 bh_lock_sock(newsk); 2153 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2154 newsk->sk_backlog.len = 0; 2155 2156 atomic_set(&newsk->sk_rmem_alloc, 0); 2157 2158 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2159 refcount_set(&newsk->sk_wmem_alloc, 1); 2160 2161 atomic_set(&newsk->sk_omem_alloc, 0); 2162 sk_init_common(newsk); 2163 2164 newsk->sk_dst_cache = NULL; 2165 newsk->sk_dst_pending_confirm = 0; 2166 newsk->sk_wmem_queued = 0; 2167 newsk->sk_forward_alloc = 0; 2168 newsk->sk_reserved_mem = 0; 2169 atomic_set(&newsk->sk_drops, 0); 2170 newsk->sk_send_head = NULL; 2171 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2172 atomic_set(&newsk->sk_zckey, 0); 2173 2174 sock_reset_flag(newsk, SOCK_DONE); 2175 2176 /* sk->sk_memcg will be populated at accept() time */ 2177 newsk->sk_memcg = NULL; 2178 2179 cgroup_sk_clone(&newsk->sk_cgrp_data); 2180 2181 rcu_read_lock(); 2182 filter = rcu_dereference(sk->sk_filter); 2183 if (filter != NULL) 2184 /* though it's an empty new sock, the charging may fail 2185 * if sysctl_optmem_max was changed between creation of 2186 * original socket and cloning 2187 */ 2188 is_charged = sk_filter_charge(newsk, filter); 2189 RCU_INIT_POINTER(newsk->sk_filter, filter); 2190 rcu_read_unlock(); 2191 2192 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2193 /* We need to make sure that we don't uncharge the new 2194 * socket if we couldn't charge it in the first place 2195 * as otherwise we uncharge the parent's filter. 2196 */ 2197 if (!is_charged) 2198 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2199 sk_free_unlock_clone(newsk); 2200 newsk = NULL; 2201 goto out; 2202 } 2203 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2204 2205 if (bpf_sk_storage_clone(sk, newsk)) { 2206 sk_free_unlock_clone(newsk); 2207 newsk = NULL; 2208 goto out; 2209 } 2210 2211 /* Clear sk_user_data if parent had the pointer tagged 2212 * as not suitable for copying when cloning. 2213 */ 2214 if (sk_user_data_is_nocopy(newsk)) 2215 newsk->sk_user_data = NULL; 2216 2217 newsk->sk_err = 0; 2218 newsk->sk_err_soft = 0; 2219 newsk->sk_priority = 0; 2220 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2221 2222 /* Before updating sk_refcnt, we must commit prior changes to memory 2223 * (Documentation/RCU/rculist_nulls.rst for details) 2224 */ 2225 smp_wmb(); 2226 refcount_set(&newsk->sk_refcnt, 2); 2227 2228 /* Increment the counter in the same struct proto as the master 2229 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2230 * is the same as sk->sk_prot->socks, as this field was copied 2231 * with memcpy). 2232 * 2233 * This _changes_ the previous behaviour, where 2234 * tcp_create_openreq_child always was incrementing the 2235 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2236 * to be taken into account in all callers. -acme 2237 */ 2238 sk_refcnt_debug_inc(newsk); 2239 sk_set_socket(newsk, NULL); 2240 sk_tx_queue_clear(newsk); 2241 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2242 2243 if (newsk->sk_prot->sockets_allocated) 2244 sk_sockets_allocated_inc(newsk); 2245 2246 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2247 net_enable_timestamp(); 2248 out: 2249 return newsk; 2250 } 2251 EXPORT_SYMBOL_GPL(sk_clone_lock); 2252 2253 void sk_free_unlock_clone(struct sock *sk) 2254 { 2255 /* It is still raw copy of parent, so invalidate 2256 * destructor and make plain sk_free() */ 2257 sk->sk_destruct = NULL; 2258 bh_unlock_sock(sk); 2259 sk_free(sk); 2260 } 2261 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2262 2263 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2264 { 2265 u32 max_segs = 1; 2266 2267 sk_dst_set(sk, dst); 2268 sk->sk_route_caps = dst->dev->features; 2269 if (sk_is_tcp(sk)) 2270 sk->sk_route_caps |= NETIF_F_GSO; 2271 if (sk->sk_route_caps & NETIF_F_GSO) 2272 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2273 if (unlikely(sk->sk_gso_disabled)) 2274 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2275 if (sk_can_gso(sk)) { 2276 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2277 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2278 } else { 2279 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2280 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2281 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2282 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2283 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2284 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2285 } 2286 } 2287 sk->sk_gso_max_segs = max_segs; 2288 } 2289 EXPORT_SYMBOL_GPL(sk_setup_caps); 2290 2291 /* 2292 * Simple resource managers for sockets. 2293 */ 2294 2295 2296 /* 2297 * Write buffer destructor automatically called from kfree_skb. 2298 */ 2299 void sock_wfree(struct sk_buff *skb) 2300 { 2301 struct sock *sk = skb->sk; 2302 unsigned int len = skb->truesize; 2303 2304 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2305 /* 2306 * Keep a reference on sk_wmem_alloc, this will be released 2307 * after sk_write_space() call 2308 */ 2309 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2310 sk->sk_write_space(sk); 2311 len = 1; 2312 } 2313 /* 2314 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2315 * could not do because of in-flight packets 2316 */ 2317 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2318 __sk_free(sk); 2319 } 2320 EXPORT_SYMBOL(sock_wfree); 2321 2322 /* This variant of sock_wfree() is used by TCP, 2323 * since it sets SOCK_USE_WRITE_QUEUE. 2324 */ 2325 void __sock_wfree(struct sk_buff *skb) 2326 { 2327 struct sock *sk = skb->sk; 2328 2329 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2330 __sk_free(sk); 2331 } 2332 2333 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2334 { 2335 skb_orphan(skb); 2336 skb->sk = sk; 2337 #ifdef CONFIG_INET 2338 if (unlikely(!sk_fullsock(sk))) { 2339 skb->destructor = sock_edemux; 2340 sock_hold(sk); 2341 return; 2342 } 2343 #endif 2344 skb->destructor = sock_wfree; 2345 skb_set_hash_from_sk(skb, sk); 2346 /* 2347 * We used to take a refcount on sk, but following operation 2348 * is enough to guarantee sk_free() wont free this sock until 2349 * all in-flight packets are completed 2350 */ 2351 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2352 } 2353 EXPORT_SYMBOL(skb_set_owner_w); 2354 2355 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2356 { 2357 #ifdef CONFIG_TLS_DEVICE 2358 /* Drivers depend on in-order delivery for crypto offload, 2359 * partial orphan breaks out-of-order-OK logic. 2360 */ 2361 if (skb->decrypted) 2362 return false; 2363 #endif 2364 return (skb->destructor == sock_wfree || 2365 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2366 } 2367 2368 /* This helper is used by netem, as it can hold packets in its 2369 * delay queue. We want to allow the owner socket to send more 2370 * packets, as if they were already TX completed by a typical driver. 2371 * But we also want to keep skb->sk set because some packet schedulers 2372 * rely on it (sch_fq for example). 2373 */ 2374 void skb_orphan_partial(struct sk_buff *skb) 2375 { 2376 if (skb_is_tcp_pure_ack(skb)) 2377 return; 2378 2379 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2380 return; 2381 2382 skb_orphan(skb); 2383 } 2384 EXPORT_SYMBOL(skb_orphan_partial); 2385 2386 /* 2387 * Read buffer destructor automatically called from kfree_skb. 2388 */ 2389 void sock_rfree(struct sk_buff *skb) 2390 { 2391 struct sock *sk = skb->sk; 2392 unsigned int len = skb->truesize; 2393 2394 atomic_sub(len, &sk->sk_rmem_alloc); 2395 sk_mem_uncharge(sk, len); 2396 } 2397 EXPORT_SYMBOL(sock_rfree); 2398 2399 /* 2400 * Buffer destructor for skbs that are not used directly in read or write 2401 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2402 */ 2403 void sock_efree(struct sk_buff *skb) 2404 { 2405 sock_put(skb->sk); 2406 } 2407 EXPORT_SYMBOL(sock_efree); 2408 2409 /* Buffer destructor for prefetch/receive path where reference count may 2410 * not be held, e.g. for listen sockets. 2411 */ 2412 #ifdef CONFIG_INET 2413 void sock_pfree(struct sk_buff *skb) 2414 { 2415 if (sk_is_refcounted(skb->sk)) 2416 sock_gen_put(skb->sk); 2417 } 2418 EXPORT_SYMBOL(sock_pfree); 2419 #endif /* CONFIG_INET */ 2420 2421 kuid_t sock_i_uid(struct sock *sk) 2422 { 2423 kuid_t uid; 2424 2425 read_lock_bh(&sk->sk_callback_lock); 2426 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2427 read_unlock_bh(&sk->sk_callback_lock); 2428 return uid; 2429 } 2430 EXPORT_SYMBOL(sock_i_uid); 2431 2432 unsigned long sock_i_ino(struct sock *sk) 2433 { 2434 unsigned long ino; 2435 2436 read_lock_bh(&sk->sk_callback_lock); 2437 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2438 read_unlock_bh(&sk->sk_callback_lock); 2439 return ino; 2440 } 2441 EXPORT_SYMBOL(sock_i_ino); 2442 2443 /* 2444 * Allocate a skb from the socket's send buffer. 2445 */ 2446 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2447 gfp_t priority) 2448 { 2449 if (force || 2450 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2451 struct sk_buff *skb = alloc_skb(size, priority); 2452 2453 if (skb) { 2454 skb_set_owner_w(skb, sk); 2455 return skb; 2456 } 2457 } 2458 return NULL; 2459 } 2460 EXPORT_SYMBOL(sock_wmalloc); 2461 2462 static void sock_ofree(struct sk_buff *skb) 2463 { 2464 struct sock *sk = skb->sk; 2465 2466 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2467 } 2468 2469 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2470 gfp_t priority) 2471 { 2472 struct sk_buff *skb; 2473 2474 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2475 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2476 sysctl_optmem_max) 2477 return NULL; 2478 2479 skb = alloc_skb(size, priority); 2480 if (!skb) 2481 return NULL; 2482 2483 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2484 skb->sk = sk; 2485 skb->destructor = sock_ofree; 2486 return skb; 2487 } 2488 2489 /* 2490 * Allocate a memory block from the socket's option memory buffer. 2491 */ 2492 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2493 { 2494 if ((unsigned int)size <= sysctl_optmem_max && 2495 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2496 void *mem; 2497 /* First do the add, to avoid the race if kmalloc 2498 * might sleep. 2499 */ 2500 atomic_add(size, &sk->sk_omem_alloc); 2501 mem = kmalloc(size, priority); 2502 if (mem) 2503 return mem; 2504 atomic_sub(size, &sk->sk_omem_alloc); 2505 } 2506 return NULL; 2507 } 2508 EXPORT_SYMBOL(sock_kmalloc); 2509 2510 /* Free an option memory block. Note, we actually want the inline 2511 * here as this allows gcc to detect the nullify and fold away the 2512 * condition entirely. 2513 */ 2514 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2515 const bool nullify) 2516 { 2517 if (WARN_ON_ONCE(!mem)) 2518 return; 2519 if (nullify) 2520 kfree_sensitive(mem); 2521 else 2522 kfree(mem); 2523 atomic_sub(size, &sk->sk_omem_alloc); 2524 } 2525 2526 void sock_kfree_s(struct sock *sk, void *mem, int size) 2527 { 2528 __sock_kfree_s(sk, mem, size, false); 2529 } 2530 EXPORT_SYMBOL(sock_kfree_s); 2531 2532 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2533 { 2534 __sock_kfree_s(sk, mem, size, true); 2535 } 2536 EXPORT_SYMBOL(sock_kzfree_s); 2537 2538 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2539 I think, these locks should be removed for datagram sockets. 2540 */ 2541 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2542 { 2543 DEFINE_WAIT(wait); 2544 2545 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2546 for (;;) { 2547 if (!timeo) 2548 break; 2549 if (signal_pending(current)) 2550 break; 2551 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2552 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2553 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2554 break; 2555 if (sk->sk_shutdown & SEND_SHUTDOWN) 2556 break; 2557 if (sk->sk_err) 2558 break; 2559 timeo = schedule_timeout(timeo); 2560 } 2561 finish_wait(sk_sleep(sk), &wait); 2562 return timeo; 2563 } 2564 2565 2566 /* 2567 * Generic send/receive buffer handlers 2568 */ 2569 2570 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2571 unsigned long data_len, int noblock, 2572 int *errcode, int max_page_order) 2573 { 2574 struct sk_buff *skb; 2575 long timeo; 2576 int err; 2577 2578 timeo = sock_sndtimeo(sk, noblock); 2579 for (;;) { 2580 err = sock_error(sk); 2581 if (err != 0) 2582 goto failure; 2583 2584 err = -EPIPE; 2585 if (sk->sk_shutdown & SEND_SHUTDOWN) 2586 goto failure; 2587 2588 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2589 break; 2590 2591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2593 err = -EAGAIN; 2594 if (!timeo) 2595 goto failure; 2596 if (signal_pending(current)) 2597 goto interrupted; 2598 timeo = sock_wait_for_wmem(sk, timeo); 2599 } 2600 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2601 errcode, sk->sk_allocation); 2602 if (skb) 2603 skb_set_owner_w(skb, sk); 2604 return skb; 2605 2606 interrupted: 2607 err = sock_intr_errno(timeo); 2608 failure: 2609 *errcode = err; 2610 return NULL; 2611 } 2612 EXPORT_SYMBOL(sock_alloc_send_pskb); 2613 2614 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2615 int noblock, int *errcode) 2616 { 2617 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2618 } 2619 EXPORT_SYMBOL(sock_alloc_send_skb); 2620 2621 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2622 struct sockcm_cookie *sockc) 2623 { 2624 u32 tsflags; 2625 2626 switch (cmsg->cmsg_type) { 2627 case SO_MARK: 2628 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2629 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2630 return -EPERM; 2631 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2632 return -EINVAL; 2633 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2634 break; 2635 case SO_TIMESTAMPING_OLD: 2636 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2637 return -EINVAL; 2638 2639 tsflags = *(u32 *)CMSG_DATA(cmsg); 2640 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2641 return -EINVAL; 2642 2643 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2644 sockc->tsflags |= tsflags; 2645 break; 2646 case SCM_TXTIME: 2647 if (!sock_flag(sk, SOCK_TXTIME)) 2648 return -EINVAL; 2649 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2650 return -EINVAL; 2651 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2652 break; 2653 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2654 case SCM_RIGHTS: 2655 case SCM_CREDENTIALS: 2656 break; 2657 default: 2658 return -EINVAL; 2659 } 2660 return 0; 2661 } 2662 EXPORT_SYMBOL(__sock_cmsg_send); 2663 2664 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2665 struct sockcm_cookie *sockc) 2666 { 2667 struct cmsghdr *cmsg; 2668 int ret; 2669 2670 for_each_cmsghdr(cmsg, msg) { 2671 if (!CMSG_OK(msg, cmsg)) 2672 return -EINVAL; 2673 if (cmsg->cmsg_level != SOL_SOCKET) 2674 continue; 2675 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2676 if (ret) 2677 return ret; 2678 } 2679 return 0; 2680 } 2681 EXPORT_SYMBOL(sock_cmsg_send); 2682 2683 static void sk_enter_memory_pressure(struct sock *sk) 2684 { 2685 if (!sk->sk_prot->enter_memory_pressure) 2686 return; 2687 2688 sk->sk_prot->enter_memory_pressure(sk); 2689 } 2690 2691 static void sk_leave_memory_pressure(struct sock *sk) 2692 { 2693 if (sk->sk_prot->leave_memory_pressure) { 2694 sk->sk_prot->leave_memory_pressure(sk); 2695 } else { 2696 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2697 2698 if (memory_pressure && READ_ONCE(*memory_pressure)) 2699 WRITE_ONCE(*memory_pressure, 0); 2700 } 2701 } 2702 2703 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2704 2705 /** 2706 * skb_page_frag_refill - check that a page_frag contains enough room 2707 * @sz: minimum size of the fragment we want to get 2708 * @pfrag: pointer to page_frag 2709 * @gfp: priority for memory allocation 2710 * 2711 * Note: While this allocator tries to use high order pages, there is 2712 * no guarantee that allocations succeed. Therefore, @sz MUST be 2713 * less or equal than PAGE_SIZE. 2714 */ 2715 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2716 { 2717 if (pfrag->page) { 2718 if (page_ref_count(pfrag->page) == 1) { 2719 pfrag->offset = 0; 2720 return true; 2721 } 2722 if (pfrag->offset + sz <= pfrag->size) 2723 return true; 2724 put_page(pfrag->page); 2725 } 2726 2727 pfrag->offset = 0; 2728 if (SKB_FRAG_PAGE_ORDER && 2729 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2730 /* Avoid direct reclaim but allow kswapd to wake */ 2731 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2732 __GFP_COMP | __GFP_NOWARN | 2733 __GFP_NORETRY, 2734 SKB_FRAG_PAGE_ORDER); 2735 if (likely(pfrag->page)) { 2736 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2737 return true; 2738 } 2739 } 2740 pfrag->page = alloc_page(gfp); 2741 if (likely(pfrag->page)) { 2742 pfrag->size = PAGE_SIZE; 2743 return true; 2744 } 2745 return false; 2746 } 2747 EXPORT_SYMBOL(skb_page_frag_refill); 2748 2749 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2750 { 2751 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2752 return true; 2753 2754 sk_enter_memory_pressure(sk); 2755 sk_stream_moderate_sndbuf(sk); 2756 return false; 2757 } 2758 EXPORT_SYMBOL(sk_page_frag_refill); 2759 2760 void __lock_sock(struct sock *sk) 2761 __releases(&sk->sk_lock.slock) 2762 __acquires(&sk->sk_lock.slock) 2763 { 2764 DEFINE_WAIT(wait); 2765 2766 for (;;) { 2767 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2768 TASK_UNINTERRUPTIBLE); 2769 spin_unlock_bh(&sk->sk_lock.slock); 2770 schedule(); 2771 spin_lock_bh(&sk->sk_lock.slock); 2772 if (!sock_owned_by_user(sk)) 2773 break; 2774 } 2775 finish_wait(&sk->sk_lock.wq, &wait); 2776 } 2777 2778 void __release_sock(struct sock *sk) 2779 __releases(&sk->sk_lock.slock) 2780 __acquires(&sk->sk_lock.slock) 2781 { 2782 struct sk_buff *skb, *next; 2783 2784 while ((skb = sk->sk_backlog.head) != NULL) { 2785 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2786 2787 spin_unlock_bh(&sk->sk_lock.slock); 2788 2789 do { 2790 next = skb->next; 2791 prefetch(next); 2792 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2793 skb_mark_not_on_list(skb); 2794 sk_backlog_rcv(sk, skb); 2795 2796 cond_resched(); 2797 2798 skb = next; 2799 } while (skb != NULL); 2800 2801 spin_lock_bh(&sk->sk_lock.slock); 2802 } 2803 2804 /* 2805 * Doing the zeroing here guarantee we can not loop forever 2806 * while a wild producer attempts to flood us. 2807 */ 2808 sk->sk_backlog.len = 0; 2809 } 2810 2811 void __sk_flush_backlog(struct sock *sk) 2812 { 2813 spin_lock_bh(&sk->sk_lock.slock); 2814 __release_sock(sk); 2815 spin_unlock_bh(&sk->sk_lock.slock); 2816 } 2817 2818 /** 2819 * sk_wait_data - wait for data to arrive at sk_receive_queue 2820 * @sk: sock to wait on 2821 * @timeo: for how long 2822 * @skb: last skb seen on sk_receive_queue 2823 * 2824 * Now socket state including sk->sk_err is changed only under lock, 2825 * hence we may omit checks after joining wait queue. 2826 * We check receive queue before schedule() only as optimization; 2827 * it is very likely that release_sock() added new data. 2828 */ 2829 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2830 { 2831 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2832 int rc; 2833 2834 add_wait_queue(sk_sleep(sk), &wait); 2835 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2836 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2837 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2838 remove_wait_queue(sk_sleep(sk), &wait); 2839 return rc; 2840 } 2841 EXPORT_SYMBOL(sk_wait_data); 2842 2843 /** 2844 * __sk_mem_raise_allocated - increase memory_allocated 2845 * @sk: socket 2846 * @size: memory size to allocate 2847 * @amt: pages to allocate 2848 * @kind: allocation type 2849 * 2850 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2851 */ 2852 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2853 { 2854 struct proto *prot = sk->sk_prot; 2855 long allocated = sk_memory_allocated_add(sk, amt); 2856 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2857 bool charged = true; 2858 2859 if (memcg_charge && 2860 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2861 gfp_memcg_charge()))) 2862 goto suppress_allocation; 2863 2864 /* Under limit. */ 2865 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2866 sk_leave_memory_pressure(sk); 2867 return 1; 2868 } 2869 2870 /* Under pressure. */ 2871 if (allocated > sk_prot_mem_limits(sk, 1)) 2872 sk_enter_memory_pressure(sk); 2873 2874 /* Over hard limit. */ 2875 if (allocated > sk_prot_mem_limits(sk, 2)) 2876 goto suppress_allocation; 2877 2878 /* guarantee minimum buffer size under pressure */ 2879 if (kind == SK_MEM_RECV) { 2880 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2881 return 1; 2882 2883 } else { /* SK_MEM_SEND */ 2884 int wmem0 = sk_get_wmem0(sk, prot); 2885 2886 if (sk->sk_type == SOCK_STREAM) { 2887 if (sk->sk_wmem_queued < wmem0) 2888 return 1; 2889 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2890 return 1; 2891 } 2892 } 2893 2894 if (sk_has_memory_pressure(sk)) { 2895 u64 alloc; 2896 2897 if (!sk_under_memory_pressure(sk)) 2898 return 1; 2899 alloc = sk_sockets_allocated_read_positive(sk); 2900 if (sk_prot_mem_limits(sk, 2) > alloc * 2901 sk_mem_pages(sk->sk_wmem_queued + 2902 atomic_read(&sk->sk_rmem_alloc) + 2903 sk->sk_forward_alloc)) 2904 return 1; 2905 } 2906 2907 suppress_allocation: 2908 2909 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2910 sk_stream_moderate_sndbuf(sk); 2911 2912 /* Fail only if socket is _under_ its sndbuf. 2913 * In this case we cannot block, so that we have to fail. 2914 */ 2915 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2916 /* Force charge with __GFP_NOFAIL */ 2917 if (memcg_charge && !charged) { 2918 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2919 gfp_memcg_charge() | __GFP_NOFAIL); 2920 } 2921 return 1; 2922 } 2923 } 2924 2925 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2926 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2927 2928 sk_memory_allocated_sub(sk, amt); 2929 2930 if (memcg_charge && charged) 2931 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2932 2933 return 0; 2934 } 2935 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2936 2937 /** 2938 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2939 * @sk: socket 2940 * @size: memory size to allocate 2941 * @kind: allocation type 2942 * 2943 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2944 * rmem allocation. This function assumes that protocols which have 2945 * memory_pressure use sk_wmem_queued as write buffer accounting. 2946 */ 2947 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2948 { 2949 int ret, amt = sk_mem_pages(size); 2950 2951 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2952 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2953 if (!ret) 2954 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2955 return ret; 2956 } 2957 EXPORT_SYMBOL(__sk_mem_schedule); 2958 2959 /** 2960 * __sk_mem_reduce_allocated - reclaim memory_allocated 2961 * @sk: socket 2962 * @amount: number of quanta 2963 * 2964 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2965 */ 2966 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2967 { 2968 sk_memory_allocated_sub(sk, amount); 2969 2970 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2971 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2972 2973 if (sk_under_memory_pressure(sk) && 2974 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2975 sk_leave_memory_pressure(sk); 2976 } 2977 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2978 2979 /** 2980 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2981 * @sk: socket 2982 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2983 */ 2984 void __sk_mem_reclaim(struct sock *sk, int amount) 2985 { 2986 amount >>= SK_MEM_QUANTUM_SHIFT; 2987 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2988 __sk_mem_reduce_allocated(sk, amount); 2989 } 2990 EXPORT_SYMBOL(__sk_mem_reclaim); 2991 2992 int sk_set_peek_off(struct sock *sk, int val) 2993 { 2994 sk->sk_peek_off = val; 2995 return 0; 2996 } 2997 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2998 2999 /* 3000 * Set of default routines for initialising struct proto_ops when 3001 * the protocol does not support a particular function. In certain 3002 * cases where it makes no sense for a protocol to have a "do nothing" 3003 * function, some default processing is provided. 3004 */ 3005 3006 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3007 { 3008 return -EOPNOTSUPP; 3009 } 3010 EXPORT_SYMBOL(sock_no_bind); 3011 3012 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3013 int len, int flags) 3014 { 3015 return -EOPNOTSUPP; 3016 } 3017 EXPORT_SYMBOL(sock_no_connect); 3018 3019 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3020 { 3021 return -EOPNOTSUPP; 3022 } 3023 EXPORT_SYMBOL(sock_no_socketpair); 3024 3025 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3026 bool kern) 3027 { 3028 return -EOPNOTSUPP; 3029 } 3030 EXPORT_SYMBOL(sock_no_accept); 3031 3032 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3033 int peer) 3034 { 3035 return -EOPNOTSUPP; 3036 } 3037 EXPORT_SYMBOL(sock_no_getname); 3038 3039 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3040 { 3041 return -EOPNOTSUPP; 3042 } 3043 EXPORT_SYMBOL(sock_no_ioctl); 3044 3045 int sock_no_listen(struct socket *sock, int backlog) 3046 { 3047 return -EOPNOTSUPP; 3048 } 3049 EXPORT_SYMBOL(sock_no_listen); 3050 3051 int sock_no_shutdown(struct socket *sock, int how) 3052 { 3053 return -EOPNOTSUPP; 3054 } 3055 EXPORT_SYMBOL(sock_no_shutdown); 3056 3057 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3058 { 3059 return -EOPNOTSUPP; 3060 } 3061 EXPORT_SYMBOL(sock_no_sendmsg); 3062 3063 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3064 { 3065 return -EOPNOTSUPP; 3066 } 3067 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3068 3069 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3070 int flags) 3071 { 3072 return -EOPNOTSUPP; 3073 } 3074 EXPORT_SYMBOL(sock_no_recvmsg); 3075 3076 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3077 { 3078 /* Mirror missing mmap method error code */ 3079 return -ENODEV; 3080 } 3081 EXPORT_SYMBOL(sock_no_mmap); 3082 3083 /* 3084 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3085 * various sock-based usage counts. 3086 */ 3087 void __receive_sock(struct file *file) 3088 { 3089 struct socket *sock; 3090 3091 sock = sock_from_file(file); 3092 if (sock) { 3093 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3094 sock_update_classid(&sock->sk->sk_cgrp_data); 3095 } 3096 } 3097 3098 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3099 { 3100 ssize_t res; 3101 struct msghdr msg = {.msg_flags = flags}; 3102 struct kvec iov; 3103 char *kaddr = kmap(page); 3104 iov.iov_base = kaddr + offset; 3105 iov.iov_len = size; 3106 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3107 kunmap(page); 3108 return res; 3109 } 3110 EXPORT_SYMBOL(sock_no_sendpage); 3111 3112 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3113 int offset, size_t size, int flags) 3114 { 3115 ssize_t res; 3116 struct msghdr msg = {.msg_flags = flags}; 3117 struct kvec iov; 3118 char *kaddr = kmap(page); 3119 3120 iov.iov_base = kaddr + offset; 3121 iov.iov_len = size; 3122 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3123 kunmap(page); 3124 return res; 3125 } 3126 EXPORT_SYMBOL(sock_no_sendpage_locked); 3127 3128 /* 3129 * Default Socket Callbacks 3130 */ 3131 3132 static void sock_def_wakeup(struct sock *sk) 3133 { 3134 struct socket_wq *wq; 3135 3136 rcu_read_lock(); 3137 wq = rcu_dereference(sk->sk_wq); 3138 if (skwq_has_sleeper(wq)) 3139 wake_up_interruptible_all(&wq->wait); 3140 rcu_read_unlock(); 3141 } 3142 3143 static void sock_def_error_report(struct sock *sk) 3144 { 3145 struct socket_wq *wq; 3146 3147 rcu_read_lock(); 3148 wq = rcu_dereference(sk->sk_wq); 3149 if (skwq_has_sleeper(wq)) 3150 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3151 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3152 rcu_read_unlock(); 3153 } 3154 3155 void sock_def_readable(struct sock *sk) 3156 { 3157 struct socket_wq *wq; 3158 3159 rcu_read_lock(); 3160 wq = rcu_dereference(sk->sk_wq); 3161 if (skwq_has_sleeper(wq)) 3162 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3163 EPOLLRDNORM | EPOLLRDBAND); 3164 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3165 rcu_read_unlock(); 3166 } 3167 3168 static void sock_def_write_space(struct sock *sk) 3169 { 3170 struct socket_wq *wq; 3171 3172 rcu_read_lock(); 3173 3174 /* Do not wake up a writer until he can make "significant" 3175 * progress. --DaveM 3176 */ 3177 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 3178 wq = rcu_dereference(sk->sk_wq); 3179 if (skwq_has_sleeper(wq)) 3180 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3181 EPOLLWRNORM | EPOLLWRBAND); 3182 3183 /* Should agree with poll, otherwise some programs break */ 3184 if (sock_writeable(sk)) 3185 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3186 } 3187 3188 rcu_read_unlock(); 3189 } 3190 3191 static void sock_def_destruct(struct sock *sk) 3192 { 3193 } 3194 3195 void sk_send_sigurg(struct sock *sk) 3196 { 3197 if (sk->sk_socket && sk->sk_socket->file) 3198 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3199 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3200 } 3201 EXPORT_SYMBOL(sk_send_sigurg); 3202 3203 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3204 unsigned long expires) 3205 { 3206 if (!mod_timer(timer, expires)) 3207 sock_hold(sk); 3208 } 3209 EXPORT_SYMBOL(sk_reset_timer); 3210 3211 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3212 { 3213 if (del_timer(timer)) 3214 __sock_put(sk); 3215 } 3216 EXPORT_SYMBOL(sk_stop_timer); 3217 3218 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3219 { 3220 if (del_timer_sync(timer)) 3221 __sock_put(sk); 3222 } 3223 EXPORT_SYMBOL(sk_stop_timer_sync); 3224 3225 void sock_init_data(struct socket *sock, struct sock *sk) 3226 { 3227 sk_init_common(sk); 3228 sk->sk_send_head = NULL; 3229 3230 timer_setup(&sk->sk_timer, NULL, 0); 3231 3232 sk->sk_allocation = GFP_KERNEL; 3233 sk->sk_rcvbuf = sysctl_rmem_default; 3234 sk->sk_sndbuf = sysctl_wmem_default; 3235 sk->sk_state = TCP_CLOSE; 3236 sk_set_socket(sk, sock); 3237 3238 sock_set_flag(sk, SOCK_ZAPPED); 3239 3240 if (sock) { 3241 sk->sk_type = sock->type; 3242 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3243 sock->sk = sk; 3244 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3245 } else { 3246 RCU_INIT_POINTER(sk->sk_wq, NULL); 3247 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3248 } 3249 3250 rwlock_init(&sk->sk_callback_lock); 3251 if (sk->sk_kern_sock) 3252 lockdep_set_class_and_name( 3253 &sk->sk_callback_lock, 3254 af_kern_callback_keys + sk->sk_family, 3255 af_family_kern_clock_key_strings[sk->sk_family]); 3256 else 3257 lockdep_set_class_and_name( 3258 &sk->sk_callback_lock, 3259 af_callback_keys + sk->sk_family, 3260 af_family_clock_key_strings[sk->sk_family]); 3261 3262 sk->sk_state_change = sock_def_wakeup; 3263 sk->sk_data_ready = sock_def_readable; 3264 sk->sk_write_space = sock_def_write_space; 3265 sk->sk_error_report = sock_def_error_report; 3266 sk->sk_destruct = sock_def_destruct; 3267 3268 sk->sk_frag.page = NULL; 3269 sk->sk_frag.offset = 0; 3270 sk->sk_peek_off = -1; 3271 3272 sk->sk_peer_pid = NULL; 3273 sk->sk_peer_cred = NULL; 3274 spin_lock_init(&sk->sk_peer_lock); 3275 3276 sk->sk_write_pending = 0; 3277 sk->sk_rcvlowat = 1; 3278 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3279 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3280 3281 sk->sk_stamp = SK_DEFAULT_STAMP; 3282 #if BITS_PER_LONG==32 3283 seqlock_init(&sk->sk_stamp_seq); 3284 #endif 3285 atomic_set(&sk->sk_zckey, 0); 3286 3287 #ifdef CONFIG_NET_RX_BUSY_POLL 3288 sk->sk_napi_id = 0; 3289 sk->sk_ll_usec = sysctl_net_busy_read; 3290 #endif 3291 3292 sk->sk_max_pacing_rate = ~0UL; 3293 sk->sk_pacing_rate = ~0UL; 3294 WRITE_ONCE(sk->sk_pacing_shift, 10); 3295 sk->sk_incoming_cpu = -1; 3296 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3297 3298 sk_rx_queue_clear(sk); 3299 /* 3300 * Before updating sk_refcnt, we must commit prior changes to memory 3301 * (Documentation/RCU/rculist_nulls.rst for details) 3302 */ 3303 smp_wmb(); 3304 refcount_set(&sk->sk_refcnt, 1); 3305 atomic_set(&sk->sk_drops, 0); 3306 } 3307 EXPORT_SYMBOL(sock_init_data); 3308 3309 void lock_sock_nested(struct sock *sk, int subclass) 3310 { 3311 /* The sk_lock has mutex_lock() semantics here. */ 3312 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3313 3314 might_sleep(); 3315 spin_lock_bh(&sk->sk_lock.slock); 3316 if (sock_owned_by_user_nocheck(sk)) 3317 __lock_sock(sk); 3318 sk->sk_lock.owned = 1; 3319 spin_unlock_bh(&sk->sk_lock.slock); 3320 } 3321 EXPORT_SYMBOL(lock_sock_nested); 3322 3323 void release_sock(struct sock *sk) 3324 { 3325 spin_lock_bh(&sk->sk_lock.slock); 3326 if (sk->sk_backlog.tail) 3327 __release_sock(sk); 3328 3329 /* Warning : release_cb() might need to release sk ownership, 3330 * ie call sock_release_ownership(sk) before us. 3331 */ 3332 if (sk->sk_prot->release_cb) 3333 sk->sk_prot->release_cb(sk); 3334 3335 sock_release_ownership(sk); 3336 if (waitqueue_active(&sk->sk_lock.wq)) 3337 wake_up(&sk->sk_lock.wq); 3338 spin_unlock_bh(&sk->sk_lock.slock); 3339 } 3340 EXPORT_SYMBOL(release_sock); 3341 3342 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3343 { 3344 might_sleep(); 3345 spin_lock_bh(&sk->sk_lock.slock); 3346 3347 if (!sock_owned_by_user_nocheck(sk)) { 3348 /* 3349 * Fast path return with bottom halves disabled and 3350 * sock::sk_lock.slock held. 3351 * 3352 * The 'mutex' is not contended and holding 3353 * sock::sk_lock.slock prevents all other lockers to 3354 * proceed so the corresponding unlock_sock_fast() can 3355 * avoid the slow path of release_sock() completely and 3356 * just release slock. 3357 * 3358 * From a semantical POV this is equivalent to 'acquiring' 3359 * the 'mutex', hence the corresponding lockdep 3360 * mutex_release() has to happen in the fast path of 3361 * unlock_sock_fast(). 3362 */ 3363 return false; 3364 } 3365 3366 __lock_sock(sk); 3367 sk->sk_lock.owned = 1; 3368 __acquire(&sk->sk_lock.slock); 3369 spin_unlock_bh(&sk->sk_lock.slock); 3370 return true; 3371 } 3372 EXPORT_SYMBOL(__lock_sock_fast); 3373 3374 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3375 bool timeval, bool time32) 3376 { 3377 struct sock *sk = sock->sk; 3378 struct timespec64 ts; 3379 3380 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3381 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3382 if (ts.tv_sec == -1) 3383 return -ENOENT; 3384 if (ts.tv_sec == 0) { 3385 ktime_t kt = ktime_get_real(); 3386 sock_write_timestamp(sk, kt); 3387 ts = ktime_to_timespec64(kt); 3388 } 3389 3390 if (timeval) 3391 ts.tv_nsec /= 1000; 3392 3393 #ifdef CONFIG_COMPAT_32BIT_TIME 3394 if (time32) 3395 return put_old_timespec32(&ts, userstamp); 3396 #endif 3397 #ifdef CONFIG_SPARC64 3398 /* beware of padding in sparc64 timeval */ 3399 if (timeval && !in_compat_syscall()) { 3400 struct __kernel_old_timeval __user tv = { 3401 .tv_sec = ts.tv_sec, 3402 .tv_usec = ts.tv_nsec, 3403 }; 3404 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3405 return -EFAULT; 3406 return 0; 3407 } 3408 #endif 3409 return put_timespec64(&ts, userstamp); 3410 } 3411 EXPORT_SYMBOL(sock_gettstamp); 3412 3413 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3414 { 3415 if (!sock_flag(sk, flag)) { 3416 unsigned long previous_flags = sk->sk_flags; 3417 3418 sock_set_flag(sk, flag); 3419 /* 3420 * we just set one of the two flags which require net 3421 * time stamping, but time stamping might have been on 3422 * already because of the other one 3423 */ 3424 if (sock_needs_netstamp(sk) && 3425 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3426 net_enable_timestamp(); 3427 } 3428 } 3429 3430 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3431 int level, int type) 3432 { 3433 struct sock_exterr_skb *serr; 3434 struct sk_buff *skb; 3435 int copied, err; 3436 3437 err = -EAGAIN; 3438 skb = sock_dequeue_err_skb(sk); 3439 if (skb == NULL) 3440 goto out; 3441 3442 copied = skb->len; 3443 if (copied > len) { 3444 msg->msg_flags |= MSG_TRUNC; 3445 copied = len; 3446 } 3447 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3448 if (err) 3449 goto out_free_skb; 3450 3451 sock_recv_timestamp(msg, sk, skb); 3452 3453 serr = SKB_EXT_ERR(skb); 3454 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3455 3456 msg->msg_flags |= MSG_ERRQUEUE; 3457 err = copied; 3458 3459 out_free_skb: 3460 kfree_skb(skb); 3461 out: 3462 return err; 3463 } 3464 EXPORT_SYMBOL(sock_recv_errqueue); 3465 3466 /* 3467 * Get a socket option on an socket. 3468 * 3469 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3470 * asynchronous errors should be reported by getsockopt. We assume 3471 * this means if you specify SO_ERROR (otherwise whats the point of it). 3472 */ 3473 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3474 char __user *optval, int __user *optlen) 3475 { 3476 struct sock *sk = sock->sk; 3477 3478 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3479 } 3480 EXPORT_SYMBOL(sock_common_getsockopt); 3481 3482 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3483 int flags) 3484 { 3485 struct sock *sk = sock->sk; 3486 int addr_len = 0; 3487 int err; 3488 3489 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3490 flags & ~MSG_DONTWAIT, &addr_len); 3491 if (err >= 0) 3492 msg->msg_namelen = addr_len; 3493 return err; 3494 } 3495 EXPORT_SYMBOL(sock_common_recvmsg); 3496 3497 /* 3498 * Set socket options on an inet socket. 3499 */ 3500 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3501 sockptr_t optval, unsigned int optlen) 3502 { 3503 struct sock *sk = sock->sk; 3504 3505 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3506 } 3507 EXPORT_SYMBOL(sock_common_setsockopt); 3508 3509 void sk_common_release(struct sock *sk) 3510 { 3511 if (sk->sk_prot->destroy) 3512 sk->sk_prot->destroy(sk); 3513 3514 /* 3515 * Observation: when sk_common_release is called, processes have 3516 * no access to socket. But net still has. 3517 * Step one, detach it from networking: 3518 * 3519 * A. Remove from hash tables. 3520 */ 3521 3522 sk->sk_prot->unhash(sk); 3523 3524 /* 3525 * In this point socket cannot receive new packets, but it is possible 3526 * that some packets are in flight because some CPU runs receiver and 3527 * did hash table lookup before we unhashed socket. They will achieve 3528 * receive queue and will be purged by socket destructor. 3529 * 3530 * Also we still have packets pending on receive queue and probably, 3531 * our own packets waiting in device queues. sock_destroy will drain 3532 * receive queue, but transmitted packets will delay socket destruction 3533 * until the last reference will be released. 3534 */ 3535 3536 sock_orphan(sk); 3537 3538 xfrm_sk_free_policy(sk); 3539 3540 sk_refcnt_debug_release(sk); 3541 3542 sock_put(sk); 3543 } 3544 EXPORT_SYMBOL(sk_common_release); 3545 3546 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3547 { 3548 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3549 3550 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3551 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3552 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3553 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3554 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3555 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3556 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3557 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3558 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3559 } 3560 3561 #ifdef CONFIG_PROC_FS 3562 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3563 3564 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3565 { 3566 int cpu, idx = prot->inuse_idx; 3567 int res = 0; 3568 3569 for_each_possible_cpu(cpu) 3570 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3571 3572 return res >= 0 ? res : 0; 3573 } 3574 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3575 3576 int sock_inuse_get(struct net *net) 3577 { 3578 int cpu, res = 0; 3579 3580 for_each_possible_cpu(cpu) 3581 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3582 3583 return res; 3584 } 3585 3586 EXPORT_SYMBOL_GPL(sock_inuse_get); 3587 3588 static int __net_init sock_inuse_init_net(struct net *net) 3589 { 3590 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3591 if (net->core.prot_inuse == NULL) 3592 return -ENOMEM; 3593 return 0; 3594 } 3595 3596 static void __net_exit sock_inuse_exit_net(struct net *net) 3597 { 3598 free_percpu(net->core.prot_inuse); 3599 } 3600 3601 static struct pernet_operations net_inuse_ops = { 3602 .init = sock_inuse_init_net, 3603 .exit = sock_inuse_exit_net, 3604 }; 3605 3606 static __init int net_inuse_init(void) 3607 { 3608 if (register_pernet_subsys(&net_inuse_ops)) 3609 panic("Cannot initialize net inuse counters"); 3610 3611 return 0; 3612 } 3613 3614 core_initcall(net_inuse_init); 3615 3616 static int assign_proto_idx(struct proto *prot) 3617 { 3618 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3619 3620 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3621 pr_err("PROTO_INUSE_NR exhausted\n"); 3622 return -ENOSPC; 3623 } 3624 3625 set_bit(prot->inuse_idx, proto_inuse_idx); 3626 return 0; 3627 } 3628 3629 static void release_proto_idx(struct proto *prot) 3630 { 3631 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3632 clear_bit(prot->inuse_idx, proto_inuse_idx); 3633 } 3634 #else 3635 static inline int assign_proto_idx(struct proto *prot) 3636 { 3637 return 0; 3638 } 3639 3640 static inline void release_proto_idx(struct proto *prot) 3641 { 3642 } 3643 3644 #endif 3645 3646 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3647 { 3648 if (!twsk_prot) 3649 return; 3650 kfree(twsk_prot->twsk_slab_name); 3651 twsk_prot->twsk_slab_name = NULL; 3652 kmem_cache_destroy(twsk_prot->twsk_slab); 3653 twsk_prot->twsk_slab = NULL; 3654 } 3655 3656 static int tw_prot_init(const struct proto *prot) 3657 { 3658 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3659 3660 if (!twsk_prot) 3661 return 0; 3662 3663 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3664 prot->name); 3665 if (!twsk_prot->twsk_slab_name) 3666 return -ENOMEM; 3667 3668 twsk_prot->twsk_slab = 3669 kmem_cache_create(twsk_prot->twsk_slab_name, 3670 twsk_prot->twsk_obj_size, 0, 3671 SLAB_ACCOUNT | prot->slab_flags, 3672 NULL); 3673 if (!twsk_prot->twsk_slab) { 3674 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3675 prot->name); 3676 return -ENOMEM; 3677 } 3678 3679 return 0; 3680 } 3681 3682 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3683 { 3684 if (!rsk_prot) 3685 return; 3686 kfree(rsk_prot->slab_name); 3687 rsk_prot->slab_name = NULL; 3688 kmem_cache_destroy(rsk_prot->slab); 3689 rsk_prot->slab = NULL; 3690 } 3691 3692 static int req_prot_init(const struct proto *prot) 3693 { 3694 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3695 3696 if (!rsk_prot) 3697 return 0; 3698 3699 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3700 prot->name); 3701 if (!rsk_prot->slab_name) 3702 return -ENOMEM; 3703 3704 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3705 rsk_prot->obj_size, 0, 3706 SLAB_ACCOUNT | prot->slab_flags, 3707 NULL); 3708 3709 if (!rsk_prot->slab) { 3710 pr_crit("%s: Can't create request sock SLAB cache!\n", 3711 prot->name); 3712 return -ENOMEM; 3713 } 3714 return 0; 3715 } 3716 3717 int proto_register(struct proto *prot, int alloc_slab) 3718 { 3719 int ret = -ENOBUFS; 3720 3721 if (prot->memory_allocated && !prot->sysctl_mem) { 3722 pr_err("%s: missing sysctl_mem\n", prot->name); 3723 return -EINVAL; 3724 } 3725 if (alloc_slab) { 3726 prot->slab = kmem_cache_create_usercopy(prot->name, 3727 prot->obj_size, 0, 3728 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3729 prot->slab_flags, 3730 prot->useroffset, prot->usersize, 3731 NULL); 3732 3733 if (prot->slab == NULL) { 3734 pr_crit("%s: Can't create sock SLAB cache!\n", 3735 prot->name); 3736 goto out; 3737 } 3738 3739 if (req_prot_init(prot)) 3740 goto out_free_request_sock_slab; 3741 3742 if (tw_prot_init(prot)) 3743 goto out_free_timewait_sock_slab; 3744 } 3745 3746 mutex_lock(&proto_list_mutex); 3747 ret = assign_proto_idx(prot); 3748 if (ret) { 3749 mutex_unlock(&proto_list_mutex); 3750 goto out_free_timewait_sock_slab; 3751 } 3752 list_add(&prot->node, &proto_list); 3753 mutex_unlock(&proto_list_mutex); 3754 return ret; 3755 3756 out_free_timewait_sock_slab: 3757 if (alloc_slab) 3758 tw_prot_cleanup(prot->twsk_prot); 3759 out_free_request_sock_slab: 3760 if (alloc_slab) { 3761 req_prot_cleanup(prot->rsk_prot); 3762 3763 kmem_cache_destroy(prot->slab); 3764 prot->slab = NULL; 3765 } 3766 out: 3767 return ret; 3768 } 3769 EXPORT_SYMBOL(proto_register); 3770 3771 void proto_unregister(struct proto *prot) 3772 { 3773 mutex_lock(&proto_list_mutex); 3774 release_proto_idx(prot); 3775 list_del(&prot->node); 3776 mutex_unlock(&proto_list_mutex); 3777 3778 kmem_cache_destroy(prot->slab); 3779 prot->slab = NULL; 3780 3781 req_prot_cleanup(prot->rsk_prot); 3782 tw_prot_cleanup(prot->twsk_prot); 3783 } 3784 EXPORT_SYMBOL(proto_unregister); 3785 3786 int sock_load_diag_module(int family, int protocol) 3787 { 3788 if (!protocol) { 3789 if (!sock_is_registered(family)) 3790 return -ENOENT; 3791 3792 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3793 NETLINK_SOCK_DIAG, family); 3794 } 3795 3796 #ifdef CONFIG_INET 3797 if (family == AF_INET && 3798 protocol != IPPROTO_RAW && 3799 protocol < MAX_INET_PROTOS && 3800 !rcu_access_pointer(inet_protos[protocol])) 3801 return -ENOENT; 3802 #endif 3803 3804 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3805 NETLINK_SOCK_DIAG, family, protocol); 3806 } 3807 EXPORT_SYMBOL(sock_load_diag_module); 3808 3809 #ifdef CONFIG_PROC_FS 3810 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3811 __acquires(proto_list_mutex) 3812 { 3813 mutex_lock(&proto_list_mutex); 3814 return seq_list_start_head(&proto_list, *pos); 3815 } 3816 3817 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3818 { 3819 return seq_list_next(v, &proto_list, pos); 3820 } 3821 3822 static void proto_seq_stop(struct seq_file *seq, void *v) 3823 __releases(proto_list_mutex) 3824 { 3825 mutex_unlock(&proto_list_mutex); 3826 } 3827 3828 static char proto_method_implemented(const void *method) 3829 { 3830 return method == NULL ? 'n' : 'y'; 3831 } 3832 static long sock_prot_memory_allocated(struct proto *proto) 3833 { 3834 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3835 } 3836 3837 static const char *sock_prot_memory_pressure(struct proto *proto) 3838 { 3839 return proto->memory_pressure != NULL ? 3840 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3841 } 3842 3843 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3844 { 3845 3846 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3847 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3848 proto->name, 3849 proto->obj_size, 3850 sock_prot_inuse_get(seq_file_net(seq), proto), 3851 sock_prot_memory_allocated(proto), 3852 sock_prot_memory_pressure(proto), 3853 proto->max_header, 3854 proto->slab == NULL ? "no" : "yes", 3855 module_name(proto->owner), 3856 proto_method_implemented(proto->close), 3857 proto_method_implemented(proto->connect), 3858 proto_method_implemented(proto->disconnect), 3859 proto_method_implemented(proto->accept), 3860 proto_method_implemented(proto->ioctl), 3861 proto_method_implemented(proto->init), 3862 proto_method_implemented(proto->destroy), 3863 proto_method_implemented(proto->shutdown), 3864 proto_method_implemented(proto->setsockopt), 3865 proto_method_implemented(proto->getsockopt), 3866 proto_method_implemented(proto->sendmsg), 3867 proto_method_implemented(proto->recvmsg), 3868 proto_method_implemented(proto->sendpage), 3869 proto_method_implemented(proto->bind), 3870 proto_method_implemented(proto->backlog_rcv), 3871 proto_method_implemented(proto->hash), 3872 proto_method_implemented(proto->unhash), 3873 proto_method_implemented(proto->get_port), 3874 proto_method_implemented(proto->enter_memory_pressure)); 3875 } 3876 3877 static int proto_seq_show(struct seq_file *seq, void *v) 3878 { 3879 if (v == &proto_list) 3880 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3881 "protocol", 3882 "size", 3883 "sockets", 3884 "memory", 3885 "press", 3886 "maxhdr", 3887 "slab", 3888 "module", 3889 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3890 else 3891 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3892 return 0; 3893 } 3894 3895 static const struct seq_operations proto_seq_ops = { 3896 .start = proto_seq_start, 3897 .next = proto_seq_next, 3898 .stop = proto_seq_stop, 3899 .show = proto_seq_show, 3900 }; 3901 3902 static __net_init int proto_init_net(struct net *net) 3903 { 3904 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3905 sizeof(struct seq_net_private))) 3906 return -ENOMEM; 3907 3908 return 0; 3909 } 3910 3911 static __net_exit void proto_exit_net(struct net *net) 3912 { 3913 remove_proc_entry("protocols", net->proc_net); 3914 } 3915 3916 3917 static __net_initdata struct pernet_operations proto_net_ops = { 3918 .init = proto_init_net, 3919 .exit = proto_exit_net, 3920 }; 3921 3922 static int __init proto_init(void) 3923 { 3924 return register_pernet_subsys(&proto_net_ops); 3925 } 3926 3927 subsys_initcall(proto_init); 3928 3929 #endif /* PROC_FS */ 3930 3931 #ifdef CONFIG_NET_RX_BUSY_POLL 3932 bool sk_busy_loop_end(void *p, unsigned long start_time) 3933 { 3934 struct sock *sk = p; 3935 3936 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3937 sk_busy_loop_timeout(sk, start_time); 3938 } 3939 EXPORT_SYMBOL(sk_busy_loop_end); 3940 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3941 3942 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3943 { 3944 if (!sk->sk_prot->bind_add) 3945 return -EOPNOTSUPP; 3946 return sk->sk_prot->bind_add(sk, addr, addr_len); 3947 } 3948 EXPORT_SYMBOL(sock_bind_add); 3949