1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 #include <linux/highmem.h> 116 #include <linux/user_namespace.h> 117 #include <linux/static_key.h> 118 #include <linux/memcontrol.h> 119 #include <linux/prefetch.h> 120 121 #include <asm/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 139 #include <trace/events/sock.h> 140 141 #ifdef CONFIG_INET 142 #include <net/tcp.h> 143 #endif 144 145 #include <net/busy_poll.h> 146 147 static DEFINE_MUTEX(proto_list_mutex); 148 static LIST_HEAD(proto_list); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family: 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 static const char *const af_family_key_strings[AF_MAX+1] = { 211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" , 225 "sk_lock-AF_MAX" 226 }; 227 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 237 "slock-27" , "slock-28" , "slock-AF_CAN" , 238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" , 242 "slock-AF_MAX" 243 }; 244 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 254 "clock-27" , "clock-28" , "clock-AF_CAN" , 255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" , 259 "clock-AF_MAX" 260 }; 261 262 /* 263 * sk_callback_lock locking rules are per-address-family, 264 * so split the lock classes by using a per-AF key: 265 */ 266 static struct lock_class_key af_callback_keys[AF_MAX]; 267 268 /* Take into consideration the size of the struct sk_buff overhead in the 269 * determination of these values, since that is non-constant across 270 * platforms. This makes socket queueing behavior and performance 271 * not depend upon such differences. 272 */ 273 #define _SK_MEM_PACKETS 256 274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 /* Maximal space eaten by iovec or ancillary data plus some space */ 287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 288 EXPORT_SYMBOL(sysctl_optmem_max); 289 290 int sysctl_tstamp_allow_data __read_mostly = 1; 291 292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 293 EXPORT_SYMBOL_GPL(memalloc_socks); 294 295 /** 296 * sk_set_memalloc - sets %SOCK_MEMALLOC 297 * @sk: socket to set it on 298 * 299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 300 * It's the responsibility of the admin to adjust min_free_kbytes 301 * to meet the requirements 302 */ 303 void sk_set_memalloc(struct sock *sk) 304 { 305 sock_set_flag(sk, SOCK_MEMALLOC); 306 sk->sk_allocation |= __GFP_MEMALLOC; 307 static_key_slow_inc(&memalloc_socks); 308 } 309 EXPORT_SYMBOL_GPL(sk_set_memalloc); 310 311 void sk_clear_memalloc(struct sock *sk) 312 { 313 sock_reset_flag(sk, SOCK_MEMALLOC); 314 sk->sk_allocation &= ~__GFP_MEMALLOC; 315 static_key_slow_dec(&memalloc_socks); 316 317 /* 318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 319 * progress of swapping. SOCK_MEMALLOC may be cleared while 320 * it has rmem allocations due to the last swapfile being deactivated 321 * but there is a risk that the socket is unusable due to exceeding 322 * the rmem limits. Reclaim the reserves and obey rmem limits again. 323 */ 324 sk_mem_reclaim(sk); 325 } 326 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 327 328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 329 { 330 int ret; 331 unsigned long pflags = current->flags; 332 333 /* these should have been dropped before queueing */ 334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 335 336 current->flags |= PF_MEMALLOC; 337 ret = sk->sk_backlog_rcv(sk, skb); 338 tsk_restore_flags(current, pflags, PF_MEMALLOC); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 345 { 346 struct timeval tv; 347 348 if (optlen < sizeof(tv)) 349 return -EINVAL; 350 if (copy_from_user(&tv, optval, sizeof(tv))) 351 return -EFAULT; 352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 353 return -EDOM; 354 355 if (tv.tv_sec < 0) { 356 static int warned __read_mostly; 357 358 *timeo_p = 0; 359 if (warned < 10 && net_ratelimit()) { 360 warned++; 361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 362 __func__, current->comm, task_pid_nr(current)); 363 } 364 return 0; 365 } 366 *timeo_p = MAX_SCHEDULE_TIMEOUT; 367 if (tv.tv_sec == 0 && tv.tv_usec == 0) 368 return 0; 369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 371 return 0; 372 } 373 374 static void sock_warn_obsolete_bsdism(const char *name) 375 { 376 static int warned; 377 static char warncomm[TASK_COMM_LEN]; 378 if (strcmp(warncomm, current->comm) && warned < 5) { 379 strcpy(warncomm, current->comm); 380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 381 warncomm, name); 382 warned++; 383 } 384 } 385 386 static bool sock_needs_netstamp(const struct sock *sk) 387 { 388 switch (sk->sk_family) { 389 case AF_UNSPEC: 390 case AF_UNIX: 391 return false; 392 default: 393 return true; 394 } 395 } 396 397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 398 { 399 if (sk->sk_flags & flags) { 400 sk->sk_flags &= ~flags; 401 if (sock_needs_netstamp(sk) && 402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 403 net_disable_timestamp(); 404 } 405 } 406 407 408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 409 { 410 unsigned long flags; 411 struct sk_buff_head *list = &sk->sk_receive_queue; 412 413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 414 atomic_inc(&sk->sk_drops); 415 trace_sock_rcvqueue_full(sk, skb); 416 return -ENOMEM; 417 } 418 419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 420 atomic_inc(&sk->sk_drops); 421 return -ENOBUFS; 422 } 423 424 skb->dev = NULL; 425 skb_set_owner_r(skb, sk); 426 427 /* we escape from rcu protected region, make sure we dont leak 428 * a norefcounted dst 429 */ 430 skb_dst_force(skb); 431 432 spin_lock_irqsave(&list->lock, flags); 433 sock_skb_set_dropcount(sk, skb); 434 __skb_queue_tail(list, skb); 435 spin_unlock_irqrestore(&list->lock, flags); 436 437 if (!sock_flag(sk, SOCK_DEAD)) 438 sk->sk_data_ready(sk); 439 return 0; 440 } 441 EXPORT_SYMBOL(__sock_queue_rcv_skb); 442 443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 444 { 445 int err; 446 447 err = sk_filter(sk, skb); 448 if (err) 449 return err; 450 451 return __sock_queue_rcv_skb(sk, skb); 452 } 453 EXPORT_SYMBOL(sock_queue_rcv_skb); 454 455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 456 const int nested, unsigned int trim_cap) 457 { 458 int rc = NET_RX_SUCCESS; 459 460 if (sk_filter_trim_cap(sk, skb, trim_cap)) 461 goto discard_and_relse; 462 463 skb->dev = NULL; 464 465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 466 atomic_inc(&sk->sk_drops); 467 goto discard_and_relse; 468 } 469 if (nested) 470 bh_lock_sock_nested(sk); 471 else 472 bh_lock_sock(sk); 473 if (!sock_owned_by_user(sk)) { 474 /* 475 * trylock + unlock semantics: 476 */ 477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 478 479 rc = sk_backlog_rcv(sk, skb); 480 481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 483 bh_unlock_sock(sk); 484 atomic_inc(&sk->sk_drops); 485 goto discard_and_relse; 486 } 487 488 bh_unlock_sock(sk); 489 out: 490 sock_put(sk); 491 return rc; 492 discard_and_relse: 493 kfree_skb(skb); 494 goto out; 495 } 496 EXPORT_SYMBOL(__sk_receive_skb); 497 498 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 499 { 500 struct dst_entry *dst = __sk_dst_get(sk); 501 502 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 503 sk_tx_queue_clear(sk); 504 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 505 dst_release(dst); 506 return NULL; 507 } 508 509 return dst; 510 } 511 EXPORT_SYMBOL(__sk_dst_check); 512 513 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 514 { 515 struct dst_entry *dst = sk_dst_get(sk); 516 517 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 518 sk_dst_reset(sk); 519 dst_release(dst); 520 return NULL; 521 } 522 523 return dst; 524 } 525 EXPORT_SYMBOL(sk_dst_check); 526 527 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 528 int optlen) 529 { 530 int ret = -ENOPROTOOPT; 531 #ifdef CONFIG_NETDEVICES 532 struct net *net = sock_net(sk); 533 char devname[IFNAMSIZ]; 534 int index; 535 536 /* Sorry... */ 537 ret = -EPERM; 538 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 539 goto out; 540 541 ret = -EINVAL; 542 if (optlen < 0) 543 goto out; 544 545 /* Bind this socket to a particular device like "eth0", 546 * as specified in the passed interface name. If the 547 * name is "" or the option length is zero the socket 548 * is not bound. 549 */ 550 if (optlen > IFNAMSIZ - 1) 551 optlen = IFNAMSIZ - 1; 552 memset(devname, 0, sizeof(devname)); 553 554 ret = -EFAULT; 555 if (copy_from_user(devname, optval, optlen)) 556 goto out; 557 558 index = 0; 559 if (devname[0] != '\0') { 560 struct net_device *dev; 561 562 rcu_read_lock(); 563 dev = dev_get_by_name_rcu(net, devname); 564 if (dev) 565 index = dev->ifindex; 566 rcu_read_unlock(); 567 ret = -ENODEV; 568 if (!dev) 569 goto out; 570 } 571 572 lock_sock(sk); 573 sk->sk_bound_dev_if = index; 574 sk_dst_reset(sk); 575 release_sock(sk); 576 577 ret = 0; 578 579 out: 580 #endif 581 582 return ret; 583 } 584 585 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 586 int __user *optlen, int len) 587 { 588 int ret = -ENOPROTOOPT; 589 #ifdef CONFIG_NETDEVICES 590 struct net *net = sock_net(sk); 591 char devname[IFNAMSIZ]; 592 593 if (sk->sk_bound_dev_if == 0) { 594 len = 0; 595 goto zero; 596 } 597 598 ret = -EINVAL; 599 if (len < IFNAMSIZ) 600 goto out; 601 602 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 603 if (ret) 604 goto out; 605 606 len = strlen(devname) + 1; 607 608 ret = -EFAULT; 609 if (copy_to_user(optval, devname, len)) 610 goto out; 611 612 zero: 613 ret = -EFAULT; 614 if (put_user(len, optlen)) 615 goto out; 616 617 ret = 0; 618 619 out: 620 #endif 621 622 return ret; 623 } 624 625 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 626 { 627 if (valbool) 628 sock_set_flag(sk, bit); 629 else 630 sock_reset_flag(sk, bit); 631 } 632 633 bool sk_mc_loop(struct sock *sk) 634 { 635 if (dev_recursion_level()) 636 return false; 637 if (!sk) 638 return true; 639 switch (sk->sk_family) { 640 case AF_INET: 641 return inet_sk(sk)->mc_loop; 642 #if IS_ENABLED(CONFIG_IPV6) 643 case AF_INET6: 644 return inet6_sk(sk)->mc_loop; 645 #endif 646 } 647 WARN_ON(1); 648 return true; 649 } 650 EXPORT_SYMBOL(sk_mc_loop); 651 652 /* 653 * This is meant for all protocols to use and covers goings on 654 * at the socket level. Everything here is generic. 655 */ 656 657 int sock_setsockopt(struct socket *sock, int level, int optname, 658 char __user *optval, unsigned int optlen) 659 { 660 struct sock *sk = sock->sk; 661 int val; 662 int valbool; 663 struct linger ling; 664 int ret = 0; 665 666 /* 667 * Options without arguments 668 */ 669 670 if (optname == SO_BINDTODEVICE) 671 return sock_setbindtodevice(sk, optval, optlen); 672 673 if (optlen < sizeof(int)) 674 return -EINVAL; 675 676 if (get_user(val, (int __user *)optval)) 677 return -EFAULT; 678 679 valbool = val ? 1 : 0; 680 681 lock_sock(sk); 682 683 switch (optname) { 684 case SO_DEBUG: 685 if (val && !capable(CAP_NET_ADMIN)) 686 ret = -EACCES; 687 else 688 sock_valbool_flag(sk, SOCK_DBG, valbool); 689 break; 690 case SO_REUSEADDR: 691 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 692 break; 693 case SO_REUSEPORT: 694 sk->sk_reuseport = valbool; 695 break; 696 case SO_TYPE: 697 case SO_PROTOCOL: 698 case SO_DOMAIN: 699 case SO_ERROR: 700 ret = -ENOPROTOOPT; 701 break; 702 case SO_DONTROUTE: 703 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 704 break; 705 case SO_BROADCAST: 706 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 707 break; 708 case SO_SNDBUF: 709 /* Don't error on this BSD doesn't and if you think 710 * about it this is right. Otherwise apps have to 711 * play 'guess the biggest size' games. RCVBUF/SNDBUF 712 * are treated in BSD as hints 713 */ 714 val = min_t(u32, val, sysctl_wmem_max); 715 set_sndbuf: 716 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 717 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF); 718 /* Wake up sending tasks if we upped the value. */ 719 sk->sk_write_space(sk); 720 break; 721 722 case SO_SNDBUFFORCE: 723 if (!capable(CAP_NET_ADMIN)) { 724 ret = -EPERM; 725 break; 726 } 727 goto set_sndbuf; 728 729 case SO_RCVBUF: 730 /* Don't error on this BSD doesn't and if you think 731 * about it this is right. Otherwise apps have to 732 * play 'guess the biggest size' games. RCVBUF/SNDBUF 733 * are treated in BSD as hints 734 */ 735 val = min_t(u32, val, sysctl_rmem_max); 736 set_rcvbuf: 737 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 738 /* 739 * We double it on the way in to account for 740 * "struct sk_buff" etc. overhead. Applications 741 * assume that the SO_RCVBUF setting they make will 742 * allow that much actual data to be received on that 743 * socket. 744 * 745 * Applications are unaware that "struct sk_buff" and 746 * other overheads allocate from the receive buffer 747 * during socket buffer allocation. 748 * 749 * And after considering the possible alternatives, 750 * returning the value we actually used in getsockopt 751 * is the most desirable behavior. 752 */ 753 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF); 754 break; 755 756 case SO_RCVBUFFORCE: 757 if (!capable(CAP_NET_ADMIN)) { 758 ret = -EPERM; 759 break; 760 } 761 goto set_rcvbuf; 762 763 case SO_KEEPALIVE: 764 #ifdef CONFIG_INET 765 if (sk->sk_protocol == IPPROTO_TCP && 766 sk->sk_type == SOCK_STREAM) 767 tcp_set_keepalive(sk, valbool); 768 #endif 769 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 770 break; 771 772 case SO_OOBINLINE: 773 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 774 break; 775 776 case SO_NO_CHECK: 777 sk->sk_no_check_tx = valbool; 778 break; 779 780 case SO_PRIORITY: 781 if ((val >= 0 && val <= 6) || 782 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 783 sk->sk_priority = val; 784 else 785 ret = -EPERM; 786 break; 787 788 case SO_LINGER: 789 if (optlen < sizeof(ling)) { 790 ret = -EINVAL; /* 1003.1g */ 791 break; 792 } 793 if (copy_from_user(&ling, optval, sizeof(ling))) { 794 ret = -EFAULT; 795 break; 796 } 797 if (!ling.l_onoff) 798 sock_reset_flag(sk, SOCK_LINGER); 799 else { 800 #if (BITS_PER_LONG == 32) 801 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 802 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 803 else 804 #endif 805 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 806 sock_set_flag(sk, SOCK_LINGER); 807 } 808 break; 809 810 case SO_BSDCOMPAT: 811 sock_warn_obsolete_bsdism("setsockopt"); 812 break; 813 814 case SO_PASSCRED: 815 if (valbool) 816 set_bit(SOCK_PASSCRED, &sock->flags); 817 else 818 clear_bit(SOCK_PASSCRED, &sock->flags); 819 break; 820 821 case SO_TIMESTAMP: 822 case SO_TIMESTAMPNS: 823 if (valbool) { 824 if (optname == SO_TIMESTAMP) 825 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 826 else 827 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 828 sock_set_flag(sk, SOCK_RCVTSTAMP); 829 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 830 } else { 831 sock_reset_flag(sk, SOCK_RCVTSTAMP); 832 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 833 } 834 break; 835 836 case SO_TIMESTAMPING: 837 if (val & ~SOF_TIMESTAMPING_MASK) { 838 ret = -EINVAL; 839 break; 840 } 841 842 if (val & SOF_TIMESTAMPING_OPT_ID && 843 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 844 if (sk->sk_protocol == IPPROTO_TCP && 845 sk->sk_type == SOCK_STREAM) { 846 if ((1 << sk->sk_state) & 847 (TCPF_CLOSE | TCPF_LISTEN)) { 848 ret = -EINVAL; 849 break; 850 } 851 sk->sk_tskey = tcp_sk(sk)->snd_una; 852 } else { 853 sk->sk_tskey = 0; 854 } 855 } 856 sk->sk_tsflags = val; 857 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 858 sock_enable_timestamp(sk, 859 SOCK_TIMESTAMPING_RX_SOFTWARE); 860 else 861 sock_disable_timestamp(sk, 862 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 863 break; 864 865 case SO_RCVLOWAT: 866 if (val < 0) 867 val = INT_MAX; 868 sk->sk_rcvlowat = val ? : 1; 869 break; 870 871 case SO_RCVTIMEO: 872 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 873 break; 874 875 case SO_SNDTIMEO: 876 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 877 break; 878 879 case SO_ATTACH_FILTER: 880 ret = -EINVAL; 881 if (optlen == sizeof(struct sock_fprog)) { 882 struct sock_fprog fprog; 883 884 ret = -EFAULT; 885 if (copy_from_user(&fprog, optval, sizeof(fprog))) 886 break; 887 888 ret = sk_attach_filter(&fprog, sk); 889 } 890 break; 891 892 case SO_ATTACH_BPF: 893 ret = -EINVAL; 894 if (optlen == sizeof(u32)) { 895 u32 ufd; 896 897 ret = -EFAULT; 898 if (copy_from_user(&ufd, optval, sizeof(ufd))) 899 break; 900 901 ret = sk_attach_bpf(ufd, sk); 902 } 903 break; 904 905 case SO_ATTACH_REUSEPORT_CBPF: 906 ret = -EINVAL; 907 if (optlen == sizeof(struct sock_fprog)) { 908 struct sock_fprog fprog; 909 910 ret = -EFAULT; 911 if (copy_from_user(&fprog, optval, sizeof(fprog))) 912 break; 913 914 ret = sk_reuseport_attach_filter(&fprog, sk); 915 } 916 break; 917 918 case SO_ATTACH_REUSEPORT_EBPF: 919 ret = -EINVAL; 920 if (optlen == sizeof(u32)) { 921 u32 ufd; 922 923 ret = -EFAULT; 924 if (copy_from_user(&ufd, optval, sizeof(ufd))) 925 break; 926 927 ret = sk_reuseport_attach_bpf(ufd, sk); 928 } 929 break; 930 931 case SO_DETACH_FILTER: 932 ret = sk_detach_filter(sk); 933 break; 934 935 case SO_LOCK_FILTER: 936 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 937 ret = -EPERM; 938 else 939 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 940 break; 941 942 case SO_PASSSEC: 943 if (valbool) 944 set_bit(SOCK_PASSSEC, &sock->flags); 945 else 946 clear_bit(SOCK_PASSSEC, &sock->flags); 947 break; 948 case SO_MARK: 949 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 950 ret = -EPERM; 951 else 952 sk->sk_mark = val; 953 break; 954 955 case SO_RXQ_OVFL: 956 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 957 break; 958 959 case SO_WIFI_STATUS: 960 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 961 break; 962 963 case SO_PEEK_OFF: 964 if (sock->ops->set_peek_off) 965 ret = sock->ops->set_peek_off(sk, val); 966 else 967 ret = -EOPNOTSUPP; 968 break; 969 970 case SO_NOFCS: 971 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 972 break; 973 974 case SO_SELECT_ERR_QUEUE: 975 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 976 break; 977 978 #ifdef CONFIG_NET_RX_BUSY_POLL 979 case SO_BUSY_POLL: 980 /* allow unprivileged users to decrease the value */ 981 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 982 ret = -EPERM; 983 else { 984 if (val < 0) 985 ret = -EINVAL; 986 else 987 sk->sk_ll_usec = val; 988 } 989 break; 990 #endif 991 992 case SO_MAX_PACING_RATE: 993 sk->sk_max_pacing_rate = val; 994 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 995 sk->sk_max_pacing_rate); 996 break; 997 998 case SO_INCOMING_CPU: 999 sk->sk_incoming_cpu = val; 1000 break; 1001 1002 case SO_CNX_ADVICE: 1003 if (val == 1) 1004 dst_negative_advice(sk); 1005 break; 1006 default: 1007 ret = -ENOPROTOOPT; 1008 break; 1009 } 1010 release_sock(sk); 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(sock_setsockopt); 1014 1015 1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1017 struct ucred *ucred) 1018 { 1019 ucred->pid = pid_vnr(pid); 1020 ucred->uid = ucred->gid = -1; 1021 if (cred) { 1022 struct user_namespace *current_ns = current_user_ns(); 1023 1024 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1025 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1026 } 1027 } 1028 1029 int sock_getsockopt(struct socket *sock, int level, int optname, 1030 char __user *optval, int __user *optlen) 1031 { 1032 struct sock *sk = sock->sk; 1033 1034 union { 1035 int val; 1036 struct linger ling; 1037 struct timeval tm; 1038 } v; 1039 1040 int lv = sizeof(int); 1041 int len; 1042 1043 if (get_user(len, optlen)) 1044 return -EFAULT; 1045 if (len < 0) 1046 return -EINVAL; 1047 1048 memset(&v, 0, sizeof(v)); 1049 1050 switch (optname) { 1051 case SO_DEBUG: 1052 v.val = sock_flag(sk, SOCK_DBG); 1053 break; 1054 1055 case SO_DONTROUTE: 1056 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1057 break; 1058 1059 case SO_BROADCAST: 1060 v.val = sock_flag(sk, SOCK_BROADCAST); 1061 break; 1062 1063 case SO_SNDBUF: 1064 v.val = sk->sk_sndbuf; 1065 break; 1066 1067 case SO_RCVBUF: 1068 v.val = sk->sk_rcvbuf; 1069 break; 1070 1071 case SO_REUSEADDR: 1072 v.val = sk->sk_reuse; 1073 break; 1074 1075 case SO_REUSEPORT: 1076 v.val = sk->sk_reuseport; 1077 break; 1078 1079 case SO_KEEPALIVE: 1080 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1081 break; 1082 1083 case SO_TYPE: 1084 v.val = sk->sk_type; 1085 break; 1086 1087 case SO_PROTOCOL: 1088 v.val = sk->sk_protocol; 1089 break; 1090 1091 case SO_DOMAIN: 1092 v.val = sk->sk_family; 1093 break; 1094 1095 case SO_ERROR: 1096 v.val = -sock_error(sk); 1097 if (v.val == 0) 1098 v.val = xchg(&sk->sk_err_soft, 0); 1099 break; 1100 1101 case SO_OOBINLINE: 1102 v.val = sock_flag(sk, SOCK_URGINLINE); 1103 break; 1104 1105 case SO_NO_CHECK: 1106 v.val = sk->sk_no_check_tx; 1107 break; 1108 1109 case SO_PRIORITY: 1110 v.val = sk->sk_priority; 1111 break; 1112 1113 case SO_LINGER: 1114 lv = sizeof(v.ling); 1115 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1116 v.ling.l_linger = sk->sk_lingertime / HZ; 1117 break; 1118 1119 case SO_BSDCOMPAT: 1120 sock_warn_obsolete_bsdism("getsockopt"); 1121 break; 1122 1123 case SO_TIMESTAMP: 1124 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1125 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1126 break; 1127 1128 case SO_TIMESTAMPNS: 1129 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1130 break; 1131 1132 case SO_TIMESTAMPING: 1133 v.val = sk->sk_tsflags; 1134 break; 1135 1136 case SO_RCVTIMEO: 1137 lv = sizeof(struct timeval); 1138 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1139 v.tm.tv_sec = 0; 1140 v.tm.tv_usec = 0; 1141 } else { 1142 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1143 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1144 } 1145 break; 1146 1147 case SO_SNDTIMEO: 1148 lv = sizeof(struct timeval); 1149 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1150 v.tm.tv_sec = 0; 1151 v.tm.tv_usec = 0; 1152 } else { 1153 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1154 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1155 } 1156 break; 1157 1158 case SO_RCVLOWAT: 1159 v.val = sk->sk_rcvlowat; 1160 break; 1161 1162 case SO_SNDLOWAT: 1163 v.val = 1; 1164 break; 1165 1166 case SO_PASSCRED: 1167 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1168 break; 1169 1170 case SO_PEERCRED: 1171 { 1172 struct ucred peercred; 1173 if (len > sizeof(peercred)) 1174 len = sizeof(peercred); 1175 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1176 if (copy_to_user(optval, &peercred, len)) 1177 return -EFAULT; 1178 goto lenout; 1179 } 1180 1181 case SO_PEERNAME: 1182 { 1183 char address[128]; 1184 1185 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1186 return -ENOTCONN; 1187 if (lv < len) 1188 return -EINVAL; 1189 if (copy_to_user(optval, address, len)) 1190 return -EFAULT; 1191 goto lenout; 1192 } 1193 1194 /* Dubious BSD thing... Probably nobody even uses it, but 1195 * the UNIX standard wants it for whatever reason... -DaveM 1196 */ 1197 case SO_ACCEPTCONN: 1198 v.val = sk->sk_state == TCP_LISTEN; 1199 break; 1200 1201 case SO_PASSSEC: 1202 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1203 break; 1204 1205 case SO_PEERSEC: 1206 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1207 1208 case SO_MARK: 1209 v.val = sk->sk_mark; 1210 break; 1211 1212 case SO_RXQ_OVFL: 1213 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1214 break; 1215 1216 case SO_WIFI_STATUS: 1217 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1218 break; 1219 1220 case SO_PEEK_OFF: 1221 if (!sock->ops->set_peek_off) 1222 return -EOPNOTSUPP; 1223 1224 v.val = sk->sk_peek_off; 1225 break; 1226 case SO_NOFCS: 1227 v.val = sock_flag(sk, SOCK_NOFCS); 1228 break; 1229 1230 case SO_BINDTODEVICE: 1231 return sock_getbindtodevice(sk, optval, optlen, len); 1232 1233 case SO_GET_FILTER: 1234 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1235 if (len < 0) 1236 return len; 1237 1238 goto lenout; 1239 1240 case SO_LOCK_FILTER: 1241 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1242 break; 1243 1244 case SO_BPF_EXTENSIONS: 1245 v.val = bpf_tell_extensions(); 1246 break; 1247 1248 case SO_SELECT_ERR_QUEUE: 1249 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1250 break; 1251 1252 #ifdef CONFIG_NET_RX_BUSY_POLL 1253 case SO_BUSY_POLL: 1254 v.val = sk->sk_ll_usec; 1255 break; 1256 #endif 1257 1258 case SO_MAX_PACING_RATE: 1259 v.val = sk->sk_max_pacing_rate; 1260 break; 1261 1262 case SO_INCOMING_CPU: 1263 v.val = sk->sk_incoming_cpu; 1264 break; 1265 1266 default: 1267 /* We implement the SO_SNDLOWAT etc to not be settable 1268 * (1003.1g 7). 1269 */ 1270 return -ENOPROTOOPT; 1271 } 1272 1273 if (len > lv) 1274 len = lv; 1275 if (copy_to_user(optval, &v, len)) 1276 return -EFAULT; 1277 lenout: 1278 if (put_user(len, optlen)) 1279 return -EFAULT; 1280 return 0; 1281 } 1282 1283 /* 1284 * Initialize an sk_lock. 1285 * 1286 * (We also register the sk_lock with the lock validator.) 1287 */ 1288 static inline void sock_lock_init(struct sock *sk) 1289 { 1290 sock_lock_init_class_and_name(sk, 1291 af_family_slock_key_strings[sk->sk_family], 1292 af_family_slock_keys + sk->sk_family, 1293 af_family_key_strings[sk->sk_family], 1294 af_family_keys + sk->sk_family); 1295 } 1296 1297 /* 1298 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1299 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1300 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1301 */ 1302 static void sock_copy(struct sock *nsk, const struct sock *osk) 1303 { 1304 #ifdef CONFIG_SECURITY_NETWORK 1305 void *sptr = nsk->sk_security; 1306 #endif 1307 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1308 1309 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1310 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1311 1312 #ifdef CONFIG_SECURITY_NETWORK 1313 nsk->sk_security = sptr; 1314 security_sk_clone(osk, nsk); 1315 #endif 1316 } 1317 1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size) 1319 { 1320 unsigned long nulls1, nulls2; 1321 1322 nulls1 = offsetof(struct sock, __sk_common.skc_node.next); 1323 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next); 1324 if (nulls1 > nulls2) 1325 swap(nulls1, nulls2); 1326 1327 if (nulls1 != 0) 1328 memset((char *)sk, 0, nulls1); 1329 memset((char *)sk + nulls1 + sizeof(void *), 0, 1330 nulls2 - nulls1 - sizeof(void *)); 1331 memset((char *)sk + nulls2 + sizeof(void *), 0, 1332 size - nulls2 - sizeof(void *)); 1333 } 1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls); 1335 1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1337 int family) 1338 { 1339 struct sock *sk; 1340 struct kmem_cache *slab; 1341 1342 slab = prot->slab; 1343 if (slab != NULL) { 1344 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1345 if (!sk) 1346 return sk; 1347 if (priority & __GFP_ZERO) { 1348 if (prot->clear_sk) 1349 prot->clear_sk(sk, prot->obj_size); 1350 else 1351 sk_prot_clear_nulls(sk, prot->obj_size); 1352 } 1353 } else 1354 sk = kmalloc(prot->obj_size, priority); 1355 1356 if (sk != NULL) { 1357 kmemcheck_annotate_bitfield(sk, flags); 1358 1359 if (security_sk_alloc(sk, family, priority)) 1360 goto out_free; 1361 1362 if (!try_module_get(prot->owner)) 1363 goto out_free_sec; 1364 sk_tx_queue_clear(sk); 1365 cgroup_sk_alloc(&sk->sk_cgrp_data); 1366 } 1367 1368 return sk; 1369 1370 out_free_sec: 1371 security_sk_free(sk); 1372 out_free: 1373 if (slab != NULL) 1374 kmem_cache_free(slab, sk); 1375 else 1376 kfree(sk); 1377 return NULL; 1378 } 1379 1380 static void sk_prot_free(struct proto *prot, struct sock *sk) 1381 { 1382 struct kmem_cache *slab; 1383 struct module *owner; 1384 1385 owner = prot->owner; 1386 slab = prot->slab; 1387 1388 cgroup_sk_free(&sk->sk_cgrp_data); 1389 security_sk_free(sk); 1390 if (slab != NULL) 1391 kmem_cache_free(slab, sk); 1392 else 1393 kfree(sk); 1394 module_put(owner); 1395 } 1396 1397 /** 1398 * sk_alloc - All socket objects are allocated here 1399 * @net: the applicable net namespace 1400 * @family: protocol family 1401 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1402 * @prot: struct proto associated with this new sock instance 1403 * @kern: is this to be a kernel socket? 1404 */ 1405 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1406 struct proto *prot, int kern) 1407 { 1408 struct sock *sk; 1409 1410 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1411 if (sk) { 1412 sk->sk_family = family; 1413 /* 1414 * See comment in struct sock definition to understand 1415 * why we need sk_prot_creator -acme 1416 */ 1417 sk->sk_prot = sk->sk_prot_creator = prot; 1418 sock_lock_init(sk); 1419 sk->sk_net_refcnt = kern ? 0 : 1; 1420 if (likely(sk->sk_net_refcnt)) 1421 get_net(net); 1422 sock_net_set(sk, net); 1423 atomic_set(&sk->sk_wmem_alloc, 1); 1424 1425 sock_update_classid(&sk->sk_cgrp_data); 1426 sock_update_netprioidx(&sk->sk_cgrp_data); 1427 } 1428 1429 return sk; 1430 } 1431 EXPORT_SYMBOL(sk_alloc); 1432 1433 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1434 * grace period. This is the case for UDP sockets and TCP listeners. 1435 */ 1436 static void __sk_destruct(struct rcu_head *head) 1437 { 1438 struct sock *sk = container_of(head, struct sock, sk_rcu); 1439 struct sk_filter *filter; 1440 1441 if (sk->sk_destruct) 1442 sk->sk_destruct(sk); 1443 1444 filter = rcu_dereference_check(sk->sk_filter, 1445 atomic_read(&sk->sk_wmem_alloc) == 0); 1446 if (filter) { 1447 sk_filter_uncharge(sk, filter); 1448 RCU_INIT_POINTER(sk->sk_filter, NULL); 1449 } 1450 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1451 reuseport_detach_sock(sk); 1452 1453 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1454 1455 if (atomic_read(&sk->sk_omem_alloc)) 1456 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1457 __func__, atomic_read(&sk->sk_omem_alloc)); 1458 1459 if (sk->sk_peer_cred) 1460 put_cred(sk->sk_peer_cred); 1461 put_pid(sk->sk_peer_pid); 1462 if (likely(sk->sk_net_refcnt)) 1463 put_net(sock_net(sk)); 1464 sk_prot_free(sk->sk_prot_creator, sk); 1465 } 1466 1467 void sk_destruct(struct sock *sk) 1468 { 1469 if (sock_flag(sk, SOCK_RCU_FREE)) 1470 call_rcu(&sk->sk_rcu, __sk_destruct); 1471 else 1472 __sk_destruct(&sk->sk_rcu); 1473 } 1474 1475 static void __sk_free(struct sock *sk) 1476 { 1477 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1478 sock_diag_broadcast_destroy(sk); 1479 else 1480 sk_destruct(sk); 1481 } 1482 1483 void sk_free(struct sock *sk) 1484 { 1485 /* 1486 * We subtract one from sk_wmem_alloc and can know if 1487 * some packets are still in some tx queue. 1488 * If not null, sock_wfree() will call __sk_free(sk) later 1489 */ 1490 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1491 __sk_free(sk); 1492 } 1493 EXPORT_SYMBOL(sk_free); 1494 1495 /** 1496 * sk_clone_lock - clone a socket, and lock its clone 1497 * @sk: the socket to clone 1498 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1499 * 1500 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1501 */ 1502 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1503 { 1504 struct sock *newsk; 1505 bool is_charged = true; 1506 1507 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1508 if (newsk != NULL) { 1509 struct sk_filter *filter; 1510 1511 sock_copy(newsk, sk); 1512 1513 /* SANITY */ 1514 if (likely(newsk->sk_net_refcnt)) 1515 get_net(sock_net(newsk)); 1516 sk_node_init(&newsk->sk_node); 1517 sock_lock_init(newsk); 1518 bh_lock_sock(newsk); 1519 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1520 newsk->sk_backlog.len = 0; 1521 1522 atomic_set(&newsk->sk_rmem_alloc, 0); 1523 /* 1524 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1525 */ 1526 atomic_set(&newsk->sk_wmem_alloc, 1); 1527 atomic_set(&newsk->sk_omem_alloc, 0); 1528 skb_queue_head_init(&newsk->sk_receive_queue); 1529 skb_queue_head_init(&newsk->sk_write_queue); 1530 1531 rwlock_init(&newsk->sk_callback_lock); 1532 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1533 af_callback_keys + newsk->sk_family, 1534 af_family_clock_key_strings[newsk->sk_family]); 1535 1536 newsk->sk_dst_cache = NULL; 1537 newsk->sk_wmem_queued = 0; 1538 newsk->sk_forward_alloc = 0; 1539 atomic_set(&newsk->sk_drops, 0); 1540 newsk->sk_send_head = NULL; 1541 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1542 1543 sock_reset_flag(newsk, SOCK_DONE); 1544 skb_queue_head_init(&newsk->sk_error_queue); 1545 1546 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1547 if (filter != NULL) 1548 /* though it's an empty new sock, the charging may fail 1549 * if sysctl_optmem_max was changed between creation of 1550 * original socket and cloning 1551 */ 1552 is_charged = sk_filter_charge(newsk, filter); 1553 1554 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1555 /* It is still raw copy of parent, so invalidate 1556 * destructor and make plain sk_free() */ 1557 newsk->sk_destruct = NULL; 1558 bh_unlock_sock(newsk); 1559 sk_free(newsk); 1560 newsk = NULL; 1561 goto out; 1562 } 1563 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1564 1565 newsk->sk_err = 0; 1566 newsk->sk_priority = 0; 1567 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1568 atomic64_set(&newsk->sk_cookie, 0); 1569 /* 1570 * Before updating sk_refcnt, we must commit prior changes to memory 1571 * (Documentation/RCU/rculist_nulls.txt for details) 1572 */ 1573 smp_wmb(); 1574 atomic_set(&newsk->sk_refcnt, 2); 1575 1576 /* 1577 * Increment the counter in the same struct proto as the master 1578 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1579 * is the same as sk->sk_prot->socks, as this field was copied 1580 * with memcpy). 1581 * 1582 * This _changes_ the previous behaviour, where 1583 * tcp_create_openreq_child always was incrementing the 1584 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1585 * to be taken into account in all callers. -acme 1586 */ 1587 sk_refcnt_debug_inc(newsk); 1588 sk_set_socket(newsk, NULL); 1589 newsk->sk_wq = NULL; 1590 1591 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 1592 sock_update_memcg(newsk); 1593 1594 if (newsk->sk_prot->sockets_allocated) 1595 sk_sockets_allocated_inc(newsk); 1596 1597 if (sock_needs_netstamp(sk) && 1598 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1599 net_enable_timestamp(); 1600 } 1601 out: 1602 return newsk; 1603 } 1604 EXPORT_SYMBOL_GPL(sk_clone_lock); 1605 1606 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1607 { 1608 u32 max_segs = 1; 1609 1610 sk_dst_set(sk, dst); 1611 sk->sk_route_caps = dst->dev->features; 1612 if (sk->sk_route_caps & NETIF_F_GSO) 1613 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1614 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1615 if (sk_can_gso(sk)) { 1616 if (dst->header_len) { 1617 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1618 } else { 1619 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1620 sk->sk_gso_max_size = dst->dev->gso_max_size; 1621 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1622 } 1623 } 1624 sk->sk_gso_max_segs = max_segs; 1625 } 1626 EXPORT_SYMBOL_GPL(sk_setup_caps); 1627 1628 /* 1629 * Simple resource managers for sockets. 1630 */ 1631 1632 1633 /* 1634 * Write buffer destructor automatically called from kfree_skb. 1635 */ 1636 void sock_wfree(struct sk_buff *skb) 1637 { 1638 struct sock *sk = skb->sk; 1639 unsigned int len = skb->truesize; 1640 1641 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1642 /* 1643 * Keep a reference on sk_wmem_alloc, this will be released 1644 * after sk_write_space() call 1645 */ 1646 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1647 sk->sk_write_space(sk); 1648 len = 1; 1649 } 1650 /* 1651 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1652 * could not do because of in-flight packets 1653 */ 1654 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1655 __sk_free(sk); 1656 } 1657 EXPORT_SYMBOL(sock_wfree); 1658 1659 /* This variant of sock_wfree() is used by TCP, 1660 * since it sets SOCK_USE_WRITE_QUEUE. 1661 */ 1662 void __sock_wfree(struct sk_buff *skb) 1663 { 1664 struct sock *sk = skb->sk; 1665 1666 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1667 __sk_free(sk); 1668 } 1669 1670 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1671 { 1672 skb_orphan(skb); 1673 skb->sk = sk; 1674 #ifdef CONFIG_INET 1675 if (unlikely(!sk_fullsock(sk))) { 1676 skb->destructor = sock_edemux; 1677 sock_hold(sk); 1678 return; 1679 } 1680 #endif 1681 skb->destructor = sock_wfree; 1682 skb_set_hash_from_sk(skb, sk); 1683 /* 1684 * We used to take a refcount on sk, but following operation 1685 * is enough to guarantee sk_free() wont free this sock until 1686 * all in-flight packets are completed 1687 */ 1688 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1689 } 1690 EXPORT_SYMBOL(skb_set_owner_w); 1691 1692 /* This helper is used by netem, as it can hold packets in its 1693 * delay queue. We want to allow the owner socket to send more 1694 * packets, as if they were already TX completed by a typical driver. 1695 * But we also want to keep skb->sk set because some packet schedulers 1696 * rely on it (sch_fq for example). So we set skb->truesize to a small 1697 * amount (1) and decrease sk_wmem_alloc accordingly. 1698 */ 1699 void skb_orphan_partial(struct sk_buff *skb) 1700 { 1701 /* If this skb is a TCP pure ACK or already went here, 1702 * we have nothing to do. 2 is already a very small truesize. 1703 */ 1704 if (skb->truesize <= 2) 1705 return; 1706 1707 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1708 * so we do not completely orphan skb, but transfert all 1709 * accounted bytes but one, to avoid unexpected reorders. 1710 */ 1711 if (skb->destructor == sock_wfree 1712 #ifdef CONFIG_INET 1713 || skb->destructor == tcp_wfree 1714 #endif 1715 ) { 1716 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1717 skb->truesize = 1; 1718 } else { 1719 skb_orphan(skb); 1720 } 1721 } 1722 EXPORT_SYMBOL(skb_orphan_partial); 1723 1724 /* 1725 * Read buffer destructor automatically called from kfree_skb. 1726 */ 1727 void sock_rfree(struct sk_buff *skb) 1728 { 1729 struct sock *sk = skb->sk; 1730 unsigned int len = skb->truesize; 1731 1732 atomic_sub(len, &sk->sk_rmem_alloc); 1733 sk_mem_uncharge(sk, len); 1734 } 1735 EXPORT_SYMBOL(sock_rfree); 1736 1737 /* 1738 * Buffer destructor for skbs that are not used directly in read or write 1739 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1740 */ 1741 void sock_efree(struct sk_buff *skb) 1742 { 1743 sock_put(skb->sk); 1744 } 1745 EXPORT_SYMBOL(sock_efree); 1746 1747 kuid_t sock_i_uid(struct sock *sk) 1748 { 1749 kuid_t uid; 1750 1751 read_lock_bh(&sk->sk_callback_lock); 1752 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1753 read_unlock_bh(&sk->sk_callback_lock); 1754 return uid; 1755 } 1756 EXPORT_SYMBOL(sock_i_uid); 1757 1758 unsigned long sock_i_ino(struct sock *sk) 1759 { 1760 unsigned long ino; 1761 1762 read_lock_bh(&sk->sk_callback_lock); 1763 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1764 read_unlock_bh(&sk->sk_callback_lock); 1765 return ino; 1766 } 1767 EXPORT_SYMBOL(sock_i_ino); 1768 1769 /* 1770 * Allocate a skb from the socket's send buffer. 1771 */ 1772 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1773 gfp_t priority) 1774 { 1775 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1776 struct sk_buff *skb = alloc_skb(size, priority); 1777 if (skb) { 1778 skb_set_owner_w(skb, sk); 1779 return skb; 1780 } 1781 } 1782 return NULL; 1783 } 1784 EXPORT_SYMBOL(sock_wmalloc); 1785 1786 /* 1787 * Allocate a memory block from the socket's option memory buffer. 1788 */ 1789 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1790 { 1791 if ((unsigned int)size <= sysctl_optmem_max && 1792 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1793 void *mem; 1794 /* First do the add, to avoid the race if kmalloc 1795 * might sleep. 1796 */ 1797 atomic_add(size, &sk->sk_omem_alloc); 1798 mem = kmalloc(size, priority); 1799 if (mem) 1800 return mem; 1801 atomic_sub(size, &sk->sk_omem_alloc); 1802 } 1803 return NULL; 1804 } 1805 EXPORT_SYMBOL(sock_kmalloc); 1806 1807 /* Free an option memory block. Note, we actually want the inline 1808 * here as this allows gcc to detect the nullify and fold away the 1809 * condition entirely. 1810 */ 1811 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1812 const bool nullify) 1813 { 1814 if (WARN_ON_ONCE(!mem)) 1815 return; 1816 if (nullify) 1817 kzfree(mem); 1818 else 1819 kfree(mem); 1820 atomic_sub(size, &sk->sk_omem_alloc); 1821 } 1822 1823 void sock_kfree_s(struct sock *sk, void *mem, int size) 1824 { 1825 __sock_kfree_s(sk, mem, size, false); 1826 } 1827 EXPORT_SYMBOL(sock_kfree_s); 1828 1829 void sock_kzfree_s(struct sock *sk, void *mem, int size) 1830 { 1831 __sock_kfree_s(sk, mem, size, true); 1832 } 1833 EXPORT_SYMBOL(sock_kzfree_s); 1834 1835 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1836 I think, these locks should be removed for datagram sockets. 1837 */ 1838 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1839 { 1840 DEFINE_WAIT(wait); 1841 1842 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1843 for (;;) { 1844 if (!timeo) 1845 break; 1846 if (signal_pending(current)) 1847 break; 1848 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1849 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1850 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1851 break; 1852 if (sk->sk_shutdown & SEND_SHUTDOWN) 1853 break; 1854 if (sk->sk_err) 1855 break; 1856 timeo = schedule_timeout(timeo); 1857 } 1858 finish_wait(sk_sleep(sk), &wait); 1859 return timeo; 1860 } 1861 1862 1863 /* 1864 * Generic send/receive buffer handlers 1865 */ 1866 1867 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1868 unsigned long data_len, int noblock, 1869 int *errcode, int max_page_order) 1870 { 1871 struct sk_buff *skb; 1872 long timeo; 1873 int err; 1874 1875 timeo = sock_sndtimeo(sk, noblock); 1876 for (;;) { 1877 err = sock_error(sk); 1878 if (err != 0) 1879 goto failure; 1880 1881 err = -EPIPE; 1882 if (sk->sk_shutdown & SEND_SHUTDOWN) 1883 goto failure; 1884 1885 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1886 break; 1887 1888 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1889 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1890 err = -EAGAIN; 1891 if (!timeo) 1892 goto failure; 1893 if (signal_pending(current)) 1894 goto interrupted; 1895 timeo = sock_wait_for_wmem(sk, timeo); 1896 } 1897 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1898 errcode, sk->sk_allocation); 1899 if (skb) 1900 skb_set_owner_w(skb, sk); 1901 return skb; 1902 1903 interrupted: 1904 err = sock_intr_errno(timeo); 1905 failure: 1906 *errcode = err; 1907 return NULL; 1908 } 1909 EXPORT_SYMBOL(sock_alloc_send_pskb); 1910 1911 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1912 int noblock, int *errcode) 1913 { 1914 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1915 } 1916 EXPORT_SYMBOL(sock_alloc_send_skb); 1917 1918 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1919 struct sockcm_cookie *sockc) 1920 { 1921 u32 tsflags; 1922 1923 switch (cmsg->cmsg_type) { 1924 case SO_MARK: 1925 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1926 return -EPERM; 1927 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1928 return -EINVAL; 1929 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 1930 break; 1931 case SO_TIMESTAMPING: 1932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1933 return -EINVAL; 1934 1935 tsflags = *(u32 *)CMSG_DATA(cmsg); 1936 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 1937 return -EINVAL; 1938 1939 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 1940 sockc->tsflags |= tsflags; 1941 break; 1942 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 1943 case SCM_RIGHTS: 1944 case SCM_CREDENTIALS: 1945 break; 1946 default: 1947 return -EINVAL; 1948 } 1949 return 0; 1950 } 1951 EXPORT_SYMBOL(__sock_cmsg_send); 1952 1953 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1954 struct sockcm_cookie *sockc) 1955 { 1956 struct cmsghdr *cmsg; 1957 int ret; 1958 1959 for_each_cmsghdr(cmsg, msg) { 1960 if (!CMSG_OK(msg, cmsg)) 1961 return -EINVAL; 1962 if (cmsg->cmsg_level != SOL_SOCKET) 1963 continue; 1964 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 1965 if (ret) 1966 return ret; 1967 } 1968 return 0; 1969 } 1970 EXPORT_SYMBOL(sock_cmsg_send); 1971 1972 /* On 32bit arches, an skb frag is limited to 2^15 */ 1973 #define SKB_FRAG_PAGE_ORDER get_order(32768) 1974 1975 /** 1976 * skb_page_frag_refill - check that a page_frag contains enough room 1977 * @sz: minimum size of the fragment we want to get 1978 * @pfrag: pointer to page_frag 1979 * @gfp: priority for memory allocation 1980 * 1981 * Note: While this allocator tries to use high order pages, there is 1982 * no guarantee that allocations succeed. Therefore, @sz MUST be 1983 * less or equal than PAGE_SIZE. 1984 */ 1985 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1986 { 1987 if (pfrag->page) { 1988 if (page_ref_count(pfrag->page) == 1) { 1989 pfrag->offset = 0; 1990 return true; 1991 } 1992 if (pfrag->offset + sz <= pfrag->size) 1993 return true; 1994 put_page(pfrag->page); 1995 } 1996 1997 pfrag->offset = 0; 1998 if (SKB_FRAG_PAGE_ORDER) { 1999 /* Avoid direct reclaim but allow kswapd to wake */ 2000 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2001 __GFP_COMP | __GFP_NOWARN | 2002 __GFP_NORETRY, 2003 SKB_FRAG_PAGE_ORDER); 2004 if (likely(pfrag->page)) { 2005 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2006 return true; 2007 } 2008 } 2009 pfrag->page = alloc_page(gfp); 2010 if (likely(pfrag->page)) { 2011 pfrag->size = PAGE_SIZE; 2012 return true; 2013 } 2014 return false; 2015 } 2016 EXPORT_SYMBOL(skb_page_frag_refill); 2017 2018 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2019 { 2020 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2021 return true; 2022 2023 sk_enter_memory_pressure(sk); 2024 sk_stream_moderate_sndbuf(sk); 2025 return false; 2026 } 2027 EXPORT_SYMBOL(sk_page_frag_refill); 2028 2029 static void __lock_sock(struct sock *sk) 2030 __releases(&sk->sk_lock.slock) 2031 __acquires(&sk->sk_lock.slock) 2032 { 2033 DEFINE_WAIT(wait); 2034 2035 for (;;) { 2036 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2037 TASK_UNINTERRUPTIBLE); 2038 spin_unlock_bh(&sk->sk_lock.slock); 2039 schedule(); 2040 spin_lock_bh(&sk->sk_lock.slock); 2041 if (!sock_owned_by_user(sk)) 2042 break; 2043 } 2044 finish_wait(&sk->sk_lock.wq, &wait); 2045 } 2046 2047 static void __release_sock(struct sock *sk) 2048 __releases(&sk->sk_lock.slock) 2049 __acquires(&sk->sk_lock.slock) 2050 { 2051 struct sk_buff *skb, *next; 2052 2053 while ((skb = sk->sk_backlog.head) != NULL) { 2054 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2055 2056 spin_unlock_bh(&sk->sk_lock.slock); 2057 2058 do { 2059 next = skb->next; 2060 prefetch(next); 2061 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2062 skb->next = NULL; 2063 sk_backlog_rcv(sk, skb); 2064 2065 cond_resched(); 2066 2067 skb = next; 2068 } while (skb != NULL); 2069 2070 spin_lock_bh(&sk->sk_lock.slock); 2071 } 2072 2073 /* 2074 * Doing the zeroing here guarantee we can not loop forever 2075 * while a wild producer attempts to flood us. 2076 */ 2077 sk->sk_backlog.len = 0; 2078 } 2079 2080 void __sk_flush_backlog(struct sock *sk) 2081 { 2082 spin_lock_bh(&sk->sk_lock.slock); 2083 __release_sock(sk); 2084 spin_unlock_bh(&sk->sk_lock.slock); 2085 } 2086 2087 /** 2088 * sk_wait_data - wait for data to arrive at sk_receive_queue 2089 * @sk: sock to wait on 2090 * @timeo: for how long 2091 * @skb: last skb seen on sk_receive_queue 2092 * 2093 * Now socket state including sk->sk_err is changed only under lock, 2094 * hence we may omit checks after joining wait queue. 2095 * We check receive queue before schedule() only as optimization; 2096 * it is very likely that release_sock() added new data. 2097 */ 2098 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2099 { 2100 int rc; 2101 DEFINE_WAIT(wait); 2102 2103 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2104 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2105 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb); 2106 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2107 finish_wait(sk_sleep(sk), &wait); 2108 return rc; 2109 } 2110 EXPORT_SYMBOL(sk_wait_data); 2111 2112 /** 2113 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2114 * @sk: socket 2115 * @size: memory size to allocate 2116 * @kind: allocation type 2117 * 2118 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2119 * rmem allocation. This function assumes that protocols which have 2120 * memory_pressure use sk_wmem_queued as write buffer accounting. 2121 */ 2122 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2123 { 2124 struct proto *prot = sk->sk_prot; 2125 int amt = sk_mem_pages(size); 2126 long allocated; 2127 2128 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2129 2130 allocated = sk_memory_allocated_add(sk, amt); 2131 2132 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2133 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2134 goto suppress_allocation; 2135 2136 /* Under limit. */ 2137 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2138 sk_leave_memory_pressure(sk); 2139 return 1; 2140 } 2141 2142 /* Under pressure. */ 2143 if (allocated > sk_prot_mem_limits(sk, 1)) 2144 sk_enter_memory_pressure(sk); 2145 2146 /* Over hard limit. */ 2147 if (allocated > sk_prot_mem_limits(sk, 2)) 2148 goto suppress_allocation; 2149 2150 /* guarantee minimum buffer size under pressure */ 2151 if (kind == SK_MEM_RECV) { 2152 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2153 return 1; 2154 2155 } else { /* SK_MEM_SEND */ 2156 if (sk->sk_type == SOCK_STREAM) { 2157 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2158 return 1; 2159 } else if (atomic_read(&sk->sk_wmem_alloc) < 2160 prot->sysctl_wmem[0]) 2161 return 1; 2162 } 2163 2164 if (sk_has_memory_pressure(sk)) { 2165 int alloc; 2166 2167 if (!sk_under_memory_pressure(sk)) 2168 return 1; 2169 alloc = sk_sockets_allocated_read_positive(sk); 2170 if (sk_prot_mem_limits(sk, 2) > alloc * 2171 sk_mem_pages(sk->sk_wmem_queued + 2172 atomic_read(&sk->sk_rmem_alloc) + 2173 sk->sk_forward_alloc)) 2174 return 1; 2175 } 2176 2177 suppress_allocation: 2178 2179 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2180 sk_stream_moderate_sndbuf(sk); 2181 2182 /* Fail only if socket is _under_ its sndbuf. 2183 * In this case we cannot block, so that we have to fail. 2184 */ 2185 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2186 return 1; 2187 } 2188 2189 trace_sock_exceed_buf_limit(sk, prot, allocated); 2190 2191 /* Alas. Undo changes. */ 2192 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 2193 2194 sk_memory_allocated_sub(sk, amt); 2195 2196 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2197 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2198 2199 return 0; 2200 } 2201 EXPORT_SYMBOL(__sk_mem_schedule); 2202 2203 /** 2204 * __sk_mem_reclaim - reclaim memory_allocated 2205 * @sk: socket 2206 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2207 */ 2208 void __sk_mem_reclaim(struct sock *sk, int amount) 2209 { 2210 amount >>= SK_MEM_QUANTUM_SHIFT; 2211 sk_memory_allocated_sub(sk, amount); 2212 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2213 2214 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2215 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2216 2217 if (sk_under_memory_pressure(sk) && 2218 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2219 sk_leave_memory_pressure(sk); 2220 } 2221 EXPORT_SYMBOL(__sk_mem_reclaim); 2222 2223 int sk_set_peek_off(struct sock *sk, int val) 2224 { 2225 if (val < 0) 2226 return -EINVAL; 2227 2228 sk->sk_peek_off = val; 2229 return 0; 2230 } 2231 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2232 2233 /* 2234 * Set of default routines for initialising struct proto_ops when 2235 * the protocol does not support a particular function. In certain 2236 * cases where it makes no sense for a protocol to have a "do nothing" 2237 * function, some default processing is provided. 2238 */ 2239 2240 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2241 { 2242 return -EOPNOTSUPP; 2243 } 2244 EXPORT_SYMBOL(sock_no_bind); 2245 2246 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2247 int len, int flags) 2248 { 2249 return -EOPNOTSUPP; 2250 } 2251 EXPORT_SYMBOL(sock_no_connect); 2252 2253 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2254 { 2255 return -EOPNOTSUPP; 2256 } 2257 EXPORT_SYMBOL(sock_no_socketpair); 2258 2259 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2260 { 2261 return -EOPNOTSUPP; 2262 } 2263 EXPORT_SYMBOL(sock_no_accept); 2264 2265 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2266 int *len, int peer) 2267 { 2268 return -EOPNOTSUPP; 2269 } 2270 EXPORT_SYMBOL(sock_no_getname); 2271 2272 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2273 { 2274 return 0; 2275 } 2276 EXPORT_SYMBOL(sock_no_poll); 2277 2278 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2279 { 2280 return -EOPNOTSUPP; 2281 } 2282 EXPORT_SYMBOL(sock_no_ioctl); 2283 2284 int sock_no_listen(struct socket *sock, int backlog) 2285 { 2286 return -EOPNOTSUPP; 2287 } 2288 EXPORT_SYMBOL(sock_no_listen); 2289 2290 int sock_no_shutdown(struct socket *sock, int how) 2291 { 2292 return -EOPNOTSUPP; 2293 } 2294 EXPORT_SYMBOL(sock_no_shutdown); 2295 2296 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2297 char __user *optval, unsigned int optlen) 2298 { 2299 return -EOPNOTSUPP; 2300 } 2301 EXPORT_SYMBOL(sock_no_setsockopt); 2302 2303 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2304 char __user *optval, int __user *optlen) 2305 { 2306 return -EOPNOTSUPP; 2307 } 2308 EXPORT_SYMBOL(sock_no_getsockopt); 2309 2310 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2311 { 2312 return -EOPNOTSUPP; 2313 } 2314 EXPORT_SYMBOL(sock_no_sendmsg); 2315 2316 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2317 int flags) 2318 { 2319 return -EOPNOTSUPP; 2320 } 2321 EXPORT_SYMBOL(sock_no_recvmsg); 2322 2323 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2324 { 2325 /* Mirror missing mmap method error code */ 2326 return -ENODEV; 2327 } 2328 EXPORT_SYMBOL(sock_no_mmap); 2329 2330 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2331 { 2332 ssize_t res; 2333 struct msghdr msg = {.msg_flags = flags}; 2334 struct kvec iov; 2335 char *kaddr = kmap(page); 2336 iov.iov_base = kaddr + offset; 2337 iov.iov_len = size; 2338 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2339 kunmap(page); 2340 return res; 2341 } 2342 EXPORT_SYMBOL(sock_no_sendpage); 2343 2344 /* 2345 * Default Socket Callbacks 2346 */ 2347 2348 static void sock_def_wakeup(struct sock *sk) 2349 { 2350 struct socket_wq *wq; 2351 2352 rcu_read_lock(); 2353 wq = rcu_dereference(sk->sk_wq); 2354 if (skwq_has_sleeper(wq)) 2355 wake_up_interruptible_all(&wq->wait); 2356 rcu_read_unlock(); 2357 } 2358 2359 static void sock_def_error_report(struct sock *sk) 2360 { 2361 struct socket_wq *wq; 2362 2363 rcu_read_lock(); 2364 wq = rcu_dereference(sk->sk_wq); 2365 if (skwq_has_sleeper(wq)) 2366 wake_up_interruptible_poll(&wq->wait, POLLERR); 2367 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2368 rcu_read_unlock(); 2369 } 2370 2371 static void sock_def_readable(struct sock *sk) 2372 { 2373 struct socket_wq *wq; 2374 2375 rcu_read_lock(); 2376 wq = rcu_dereference(sk->sk_wq); 2377 if (skwq_has_sleeper(wq)) 2378 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2379 POLLRDNORM | POLLRDBAND); 2380 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2381 rcu_read_unlock(); 2382 } 2383 2384 static void sock_def_write_space(struct sock *sk) 2385 { 2386 struct socket_wq *wq; 2387 2388 rcu_read_lock(); 2389 2390 /* Do not wake up a writer until he can make "significant" 2391 * progress. --DaveM 2392 */ 2393 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2394 wq = rcu_dereference(sk->sk_wq); 2395 if (skwq_has_sleeper(wq)) 2396 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2397 POLLWRNORM | POLLWRBAND); 2398 2399 /* Should agree with poll, otherwise some programs break */ 2400 if (sock_writeable(sk)) 2401 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2402 } 2403 2404 rcu_read_unlock(); 2405 } 2406 2407 static void sock_def_destruct(struct sock *sk) 2408 { 2409 } 2410 2411 void sk_send_sigurg(struct sock *sk) 2412 { 2413 if (sk->sk_socket && sk->sk_socket->file) 2414 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2415 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2416 } 2417 EXPORT_SYMBOL(sk_send_sigurg); 2418 2419 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2420 unsigned long expires) 2421 { 2422 if (!mod_timer(timer, expires)) 2423 sock_hold(sk); 2424 } 2425 EXPORT_SYMBOL(sk_reset_timer); 2426 2427 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2428 { 2429 if (del_timer(timer)) 2430 __sock_put(sk); 2431 } 2432 EXPORT_SYMBOL(sk_stop_timer); 2433 2434 void sock_init_data(struct socket *sock, struct sock *sk) 2435 { 2436 skb_queue_head_init(&sk->sk_receive_queue); 2437 skb_queue_head_init(&sk->sk_write_queue); 2438 skb_queue_head_init(&sk->sk_error_queue); 2439 2440 sk->sk_send_head = NULL; 2441 2442 init_timer(&sk->sk_timer); 2443 2444 sk->sk_allocation = GFP_KERNEL; 2445 sk->sk_rcvbuf = sysctl_rmem_default; 2446 sk->sk_sndbuf = sysctl_wmem_default; 2447 sk->sk_state = TCP_CLOSE; 2448 sk_set_socket(sk, sock); 2449 2450 sock_set_flag(sk, SOCK_ZAPPED); 2451 2452 if (sock) { 2453 sk->sk_type = sock->type; 2454 sk->sk_wq = sock->wq; 2455 sock->sk = sk; 2456 } else 2457 sk->sk_wq = NULL; 2458 2459 rwlock_init(&sk->sk_callback_lock); 2460 lockdep_set_class_and_name(&sk->sk_callback_lock, 2461 af_callback_keys + sk->sk_family, 2462 af_family_clock_key_strings[sk->sk_family]); 2463 2464 sk->sk_state_change = sock_def_wakeup; 2465 sk->sk_data_ready = sock_def_readable; 2466 sk->sk_write_space = sock_def_write_space; 2467 sk->sk_error_report = sock_def_error_report; 2468 sk->sk_destruct = sock_def_destruct; 2469 2470 sk->sk_frag.page = NULL; 2471 sk->sk_frag.offset = 0; 2472 sk->sk_peek_off = -1; 2473 2474 sk->sk_peer_pid = NULL; 2475 sk->sk_peer_cred = NULL; 2476 sk->sk_write_pending = 0; 2477 sk->sk_rcvlowat = 1; 2478 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2479 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2480 2481 sk->sk_stamp = ktime_set(-1L, 0); 2482 2483 #ifdef CONFIG_NET_RX_BUSY_POLL 2484 sk->sk_napi_id = 0; 2485 sk->sk_ll_usec = sysctl_net_busy_read; 2486 #endif 2487 2488 sk->sk_max_pacing_rate = ~0U; 2489 sk->sk_pacing_rate = ~0U; 2490 sk->sk_incoming_cpu = -1; 2491 /* 2492 * Before updating sk_refcnt, we must commit prior changes to memory 2493 * (Documentation/RCU/rculist_nulls.txt for details) 2494 */ 2495 smp_wmb(); 2496 atomic_set(&sk->sk_refcnt, 1); 2497 atomic_set(&sk->sk_drops, 0); 2498 } 2499 EXPORT_SYMBOL(sock_init_data); 2500 2501 void lock_sock_nested(struct sock *sk, int subclass) 2502 { 2503 might_sleep(); 2504 spin_lock_bh(&sk->sk_lock.slock); 2505 if (sk->sk_lock.owned) 2506 __lock_sock(sk); 2507 sk->sk_lock.owned = 1; 2508 spin_unlock(&sk->sk_lock.slock); 2509 /* 2510 * The sk_lock has mutex_lock() semantics here: 2511 */ 2512 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2513 local_bh_enable(); 2514 } 2515 EXPORT_SYMBOL(lock_sock_nested); 2516 2517 void release_sock(struct sock *sk) 2518 { 2519 spin_lock_bh(&sk->sk_lock.slock); 2520 if (sk->sk_backlog.tail) 2521 __release_sock(sk); 2522 2523 /* Warning : release_cb() might need to release sk ownership, 2524 * ie call sock_release_ownership(sk) before us. 2525 */ 2526 if (sk->sk_prot->release_cb) 2527 sk->sk_prot->release_cb(sk); 2528 2529 sock_release_ownership(sk); 2530 if (waitqueue_active(&sk->sk_lock.wq)) 2531 wake_up(&sk->sk_lock.wq); 2532 spin_unlock_bh(&sk->sk_lock.slock); 2533 } 2534 EXPORT_SYMBOL(release_sock); 2535 2536 /** 2537 * lock_sock_fast - fast version of lock_sock 2538 * @sk: socket 2539 * 2540 * This version should be used for very small section, where process wont block 2541 * return false if fast path is taken 2542 * sk_lock.slock locked, owned = 0, BH disabled 2543 * return true if slow path is taken 2544 * sk_lock.slock unlocked, owned = 1, BH enabled 2545 */ 2546 bool lock_sock_fast(struct sock *sk) 2547 { 2548 might_sleep(); 2549 spin_lock_bh(&sk->sk_lock.slock); 2550 2551 if (!sk->sk_lock.owned) 2552 /* 2553 * Note : We must disable BH 2554 */ 2555 return false; 2556 2557 __lock_sock(sk); 2558 sk->sk_lock.owned = 1; 2559 spin_unlock(&sk->sk_lock.slock); 2560 /* 2561 * The sk_lock has mutex_lock() semantics here: 2562 */ 2563 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2564 local_bh_enable(); 2565 return true; 2566 } 2567 EXPORT_SYMBOL(lock_sock_fast); 2568 2569 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2570 { 2571 struct timeval tv; 2572 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2573 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2574 tv = ktime_to_timeval(sk->sk_stamp); 2575 if (tv.tv_sec == -1) 2576 return -ENOENT; 2577 if (tv.tv_sec == 0) { 2578 sk->sk_stamp = ktime_get_real(); 2579 tv = ktime_to_timeval(sk->sk_stamp); 2580 } 2581 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2582 } 2583 EXPORT_SYMBOL(sock_get_timestamp); 2584 2585 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2586 { 2587 struct timespec ts; 2588 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2589 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2590 ts = ktime_to_timespec(sk->sk_stamp); 2591 if (ts.tv_sec == -1) 2592 return -ENOENT; 2593 if (ts.tv_sec == 0) { 2594 sk->sk_stamp = ktime_get_real(); 2595 ts = ktime_to_timespec(sk->sk_stamp); 2596 } 2597 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2598 } 2599 EXPORT_SYMBOL(sock_get_timestampns); 2600 2601 void sock_enable_timestamp(struct sock *sk, int flag) 2602 { 2603 if (!sock_flag(sk, flag)) { 2604 unsigned long previous_flags = sk->sk_flags; 2605 2606 sock_set_flag(sk, flag); 2607 /* 2608 * we just set one of the two flags which require net 2609 * time stamping, but time stamping might have been on 2610 * already because of the other one 2611 */ 2612 if (sock_needs_netstamp(sk) && 2613 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2614 net_enable_timestamp(); 2615 } 2616 } 2617 2618 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2619 int level, int type) 2620 { 2621 struct sock_exterr_skb *serr; 2622 struct sk_buff *skb; 2623 int copied, err; 2624 2625 err = -EAGAIN; 2626 skb = sock_dequeue_err_skb(sk); 2627 if (skb == NULL) 2628 goto out; 2629 2630 copied = skb->len; 2631 if (copied > len) { 2632 msg->msg_flags |= MSG_TRUNC; 2633 copied = len; 2634 } 2635 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2636 if (err) 2637 goto out_free_skb; 2638 2639 sock_recv_timestamp(msg, sk, skb); 2640 2641 serr = SKB_EXT_ERR(skb); 2642 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2643 2644 msg->msg_flags |= MSG_ERRQUEUE; 2645 err = copied; 2646 2647 out_free_skb: 2648 kfree_skb(skb); 2649 out: 2650 return err; 2651 } 2652 EXPORT_SYMBOL(sock_recv_errqueue); 2653 2654 /* 2655 * Get a socket option on an socket. 2656 * 2657 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2658 * asynchronous errors should be reported by getsockopt. We assume 2659 * this means if you specify SO_ERROR (otherwise whats the point of it). 2660 */ 2661 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2662 char __user *optval, int __user *optlen) 2663 { 2664 struct sock *sk = sock->sk; 2665 2666 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2667 } 2668 EXPORT_SYMBOL(sock_common_getsockopt); 2669 2670 #ifdef CONFIG_COMPAT 2671 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2672 char __user *optval, int __user *optlen) 2673 { 2674 struct sock *sk = sock->sk; 2675 2676 if (sk->sk_prot->compat_getsockopt != NULL) 2677 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2678 optval, optlen); 2679 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2680 } 2681 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2682 #endif 2683 2684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2685 int flags) 2686 { 2687 struct sock *sk = sock->sk; 2688 int addr_len = 0; 2689 int err; 2690 2691 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2692 flags & ~MSG_DONTWAIT, &addr_len); 2693 if (err >= 0) 2694 msg->msg_namelen = addr_len; 2695 return err; 2696 } 2697 EXPORT_SYMBOL(sock_common_recvmsg); 2698 2699 /* 2700 * Set socket options on an inet socket. 2701 */ 2702 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2703 char __user *optval, unsigned int optlen) 2704 { 2705 struct sock *sk = sock->sk; 2706 2707 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2708 } 2709 EXPORT_SYMBOL(sock_common_setsockopt); 2710 2711 #ifdef CONFIG_COMPAT 2712 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2713 char __user *optval, unsigned int optlen) 2714 { 2715 struct sock *sk = sock->sk; 2716 2717 if (sk->sk_prot->compat_setsockopt != NULL) 2718 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2719 optval, optlen); 2720 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2721 } 2722 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2723 #endif 2724 2725 void sk_common_release(struct sock *sk) 2726 { 2727 if (sk->sk_prot->destroy) 2728 sk->sk_prot->destroy(sk); 2729 2730 /* 2731 * Observation: when sock_common_release is called, processes have 2732 * no access to socket. But net still has. 2733 * Step one, detach it from networking: 2734 * 2735 * A. Remove from hash tables. 2736 */ 2737 2738 sk->sk_prot->unhash(sk); 2739 2740 /* 2741 * In this point socket cannot receive new packets, but it is possible 2742 * that some packets are in flight because some CPU runs receiver and 2743 * did hash table lookup before we unhashed socket. They will achieve 2744 * receive queue and will be purged by socket destructor. 2745 * 2746 * Also we still have packets pending on receive queue and probably, 2747 * our own packets waiting in device queues. sock_destroy will drain 2748 * receive queue, but transmitted packets will delay socket destruction 2749 * until the last reference will be released. 2750 */ 2751 2752 sock_orphan(sk); 2753 2754 xfrm_sk_free_policy(sk); 2755 2756 sk_refcnt_debug_release(sk); 2757 2758 if (sk->sk_frag.page) { 2759 put_page(sk->sk_frag.page); 2760 sk->sk_frag.page = NULL; 2761 } 2762 2763 sock_put(sk); 2764 } 2765 EXPORT_SYMBOL(sk_common_release); 2766 2767 #ifdef CONFIG_PROC_FS 2768 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2769 struct prot_inuse { 2770 int val[PROTO_INUSE_NR]; 2771 }; 2772 2773 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2774 2775 #ifdef CONFIG_NET_NS 2776 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2777 { 2778 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2779 } 2780 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2781 2782 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2783 { 2784 int cpu, idx = prot->inuse_idx; 2785 int res = 0; 2786 2787 for_each_possible_cpu(cpu) 2788 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2789 2790 return res >= 0 ? res : 0; 2791 } 2792 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2793 2794 static int __net_init sock_inuse_init_net(struct net *net) 2795 { 2796 net->core.inuse = alloc_percpu(struct prot_inuse); 2797 return net->core.inuse ? 0 : -ENOMEM; 2798 } 2799 2800 static void __net_exit sock_inuse_exit_net(struct net *net) 2801 { 2802 free_percpu(net->core.inuse); 2803 } 2804 2805 static struct pernet_operations net_inuse_ops = { 2806 .init = sock_inuse_init_net, 2807 .exit = sock_inuse_exit_net, 2808 }; 2809 2810 static __init int net_inuse_init(void) 2811 { 2812 if (register_pernet_subsys(&net_inuse_ops)) 2813 panic("Cannot initialize net inuse counters"); 2814 2815 return 0; 2816 } 2817 2818 core_initcall(net_inuse_init); 2819 #else 2820 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2821 2822 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2823 { 2824 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2825 } 2826 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2827 2828 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2829 { 2830 int cpu, idx = prot->inuse_idx; 2831 int res = 0; 2832 2833 for_each_possible_cpu(cpu) 2834 res += per_cpu(prot_inuse, cpu).val[idx]; 2835 2836 return res >= 0 ? res : 0; 2837 } 2838 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2839 #endif 2840 2841 static void assign_proto_idx(struct proto *prot) 2842 { 2843 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2844 2845 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2846 pr_err("PROTO_INUSE_NR exhausted\n"); 2847 return; 2848 } 2849 2850 set_bit(prot->inuse_idx, proto_inuse_idx); 2851 } 2852 2853 static void release_proto_idx(struct proto *prot) 2854 { 2855 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2856 clear_bit(prot->inuse_idx, proto_inuse_idx); 2857 } 2858 #else 2859 static inline void assign_proto_idx(struct proto *prot) 2860 { 2861 } 2862 2863 static inline void release_proto_idx(struct proto *prot) 2864 { 2865 } 2866 #endif 2867 2868 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2869 { 2870 if (!rsk_prot) 2871 return; 2872 kfree(rsk_prot->slab_name); 2873 rsk_prot->slab_name = NULL; 2874 kmem_cache_destroy(rsk_prot->slab); 2875 rsk_prot->slab = NULL; 2876 } 2877 2878 static int req_prot_init(const struct proto *prot) 2879 { 2880 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2881 2882 if (!rsk_prot) 2883 return 0; 2884 2885 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2886 prot->name); 2887 if (!rsk_prot->slab_name) 2888 return -ENOMEM; 2889 2890 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2891 rsk_prot->obj_size, 0, 2892 prot->slab_flags, NULL); 2893 2894 if (!rsk_prot->slab) { 2895 pr_crit("%s: Can't create request sock SLAB cache!\n", 2896 prot->name); 2897 return -ENOMEM; 2898 } 2899 return 0; 2900 } 2901 2902 int proto_register(struct proto *prot, int alloc_slab) 2903 { 2904 if (alloc_slab) { 2905 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2906 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2907 NULL); 2908 2909 if (prot->slab == NULL) { 2910 pr_crit("%s: Can't create sock SLAB cache!\n", 2911 prot->name); 2912 goto out; 2913 } 2914 2915 if (req_prot_init(prot)) 2916 goto out_free_request_sock_slab; 2917 2918 if (prot->twsk_prot != NULL) { 2919 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2920 2921 if (prot->twsk_prot->twsk_slab_name == NULL) 2922 goto out_free_request_sock_slab; 2923 2924 prot->twsk_prot->twsk_slab = 2925 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2926 prot->twsk_prot->twsk_obj_size, 2927 0, 2928 prot->slab_flags, 2929 NULL); 2930 if (prot->twsk_prot->twsk_slab == NULL) 2931 goto out_free_timewait_sock_slab_name; 2932 } 2933 } 2934 2935 mutex_lock(&proto_list_mutex); 2936 list_add(&prot->node, &proto_list); 2937 assign_proto_idx(prot); 2938 mutex_unlock(&proto_list_mutex); 2939 return 0; 2940 2941 out_free_timewait_sock_slab_name: 2942 kfree(prot->twsk_prot->twsk_slab_name); 2943 out_free_request_sock_slab: 2944 req_prot_cleanup(prot->rsk_prot); 2945 2946 kmem_cache_destroy(prot->slab); 2947 prot->slab = NULL; 2948 out: 2949 return -ENOBUFS; 2950 } 2951 EXPORT_SYMBOL(proto_register); 2952 2953 void proto_unregister(struct proto *prot) 2954 { 2955 mutex_lock(&proto_list_mutex); 2956 release_proto_idx(prot); 2957 list_del(&prot->node); 2958 mutex_unlock(&proto_list_mutex); 2959 2960 kmem_cache_destroy(prot->slab); 2961 prot->slab = NULL; 2962 2963 req_prot_cleanup(prot->rsk_prot); 2964 2965 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2966 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2967 kfree(prot->twsk_prot->twsk_slab_name); 2968 prot->twsk_prot->twsk_slab = NULL; 2969 } 2970 } 2971 EXPORT_SYMBOL(proto_unregister); 2972 2973 #ifdef CONFIG_PROC_FS 2974 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2975 __acquires(proto_list_mutex) 2976 { 2977 mutex_lock(&proto_list_mutex); 2978 return seq_list_start_head(&proto_list, *pos); 2979 } 2980 2981 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2982 { 2983 return seq_list_next(v, &proto_list, pos); 2984 } 2985 2986 static void proto_seq_stop(struct seq_file *seq, void *v) 2987 __releases(proto_list_mutex) 2988 { 2989 mutex_unlock(&proto_list_mutex); 2990 } 2991 2992 static char proto_method_implemented(const void *method) 2993 { 2994 return method == NULL ? 'n' : 'y'; 2995 } 2996 static long sock_prot_memory_allocated(struct proto *proto) 2997 { 2998 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 2999 } 3000 3001 static char *sock_prot_memory_pressure(struct proto *proto) 3002 { 3003 return proto->memory_pressure != NULL ? 3004 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3005 } 3006 3007 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3008 { 3009 3010 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3011 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3012 proto->name, 3013 proto->obj_size, 3014 sock_prot_inuse_get(seq_file_net(seq), proto), 3015 sock_prot_memory_allocated(proto), 3016 sock_prot_memory_pressure(proto), 3017 proto->max_header, 3018 proto->slab == NULL ? "no" : "yes", 3019 module_name(proto->owner), 3020 proto_method_implemented(proto->close), 3021 proto_method_implemented(proto->connect), 3022 proto_method_implemented(proto->disconnect), 3023 proto_method_implemented(proto->accept), 3024 proto_method_implemented(proto->ioctl), 3025 proto_method_implemented(proto->init), 3026 proto_method_implemented(proto->destroy), 3027 proto_method_implemented(proto->shutdown), 3028 proto_method_implemented(proto->setsockopt), 3029 proto_method_implemented(proto->getsockopt), 3030 proto_method_implemented(proto->sendmsg), 3031 proto_method_implemented(proto->recvmsg), 3032 proto_method_implemented(proto->sendpage), 3033 proto_method_implemented(proto->bind), 3034 proto_method_implemented(proto->backlog_rcv), 3035 proto_method_implemented(proto->hash), 3036 proto_method_implemented(proto->unhash), 3037 proto_method_implemented(proto->get_port), 3038 proto_method_implemented(proto->enter_memory_pressure)); 3039 } 3040 3041 static int proto_seq_show(struct seq_file *seq, void *v) 3042 { 3043 if (v == &proto_list) 3044 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3045 "protocol", 3046 "size", 3047 "sockets", 3048 "memory", 3049 "press", 3050 "maxhdr", 3051 "slab", 3052 "module", 3053 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3054 else 3055 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3056 return 0; 3057 } 3058 3059 static const struct seq_operations proto_seq_ops = { 3060 .start = proto_seq_start, 3061 .next = proto_seq_next, 3062 .stop = proto_seq_stop, 3063 .show = proto_seq_show, 3064 }; 3065 3066 static int proto_seq_open(struct inode *inode, struct file *file) 3067 { 3068 return seq_open_net(inode, file, &proto_seq_ops, 3069 sizeof(struct seq_net_private)); 3070 } 3071 3072 static const struct file_operations proto_seq_fops = { 3073 .owner = THIS_MODULE, 3074 .open = proto_seq_open, 3075 .read = seq_read, 3076 .llseek = seq_lseek, 3077 .release = seq_release_net, 3078 }; 3079 3080 static __net_init int proto_init_net(struct net *net) 3081 { 3082 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3083 return -ENOMEM; 3084 3085 return 0; 3086 } 3087 3088 static __net_exit void proto_exit_net(struct net *net) 3089 { 3090 remove_proc_entry("protocols", net->proc_net); 3091 } 3092 3093 3094 static __net_initdata struct pernet_operations proto_net_ops = { 3095 .init = proto_init_net, 3096 .exit = proto_exit_net, 3097 }; 3098 3099 static int __init proto_init(void) 3100 { 3101 return register_pernet_subsys(&proto_net_ops); 3102 } 3103 3104 subsys_initcall(proto_init); 3105 3106 #endif /* PROC_FS */ 3107