xref: /openbmc/linux/net/core/sock.c (revision 0984d159)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 		     const int nested, unsigned int trim_cap)
457 {
458 	int rc = NET_RX_SUCCESS;
459 
460 	if (sk_filter_trim_cap(sk, skb, trim_cap))
461 		goto discard_and_relse;
462 
463 	skb->dev = NULL;
464 
465 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 		atomic_inc(&sk->sk_drops);
467 		goto discard_and_relse;
468 	}
469 	if (nested)
470 		bh_lock_sock_nested(sk);
471 	else
472 		bh_lock_sock(sk);
473 	if (!sock_owned_by_user(sk)) {
474 		/*
475 		 * trylock + unlock semantics:
476 		 */
477 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479 		rc = sk_backlog_rcv(sk, skb);
480 
481 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 		bh_unlock_sock(sk);
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 
488 	bh_unlock_sock(sk);
489 out:
490 	sock_put(sk);
491 	return rc;
492 discard_and_relse:
493 	kfree_skb(skb);
494 	goto out;
495 }
496 EXPORT_SYMBOL(__sk_receive_skb);
497 
498 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
499 {
500 	struct dst_entry *dst = __sk_dst_get(sk);
501 
502 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
503 		sk_tx_queue_clear(sk);
504 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
505 		dst_release(dst);
506 		return NULL;
507 	}
508 
509 	return dst;
510 }
511 EXPORT_SYMBOL(__sk_dst_check);
512 
513 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
514 {
515 	struct dst_entry *dst = sk_dst_get(sk);
516 
517 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
518 		sk_dst_reset(sk);
519 		dst_release(dst);
520 		return NULL;
521 	}
522 
523 	return dst;
524 }
525 EXPORT_SYMBOL(sk_dst_check);
526 
527 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
528 				int optlen)
529 {
530 	int ret = -ENOPROTOOPT;
531 #ifdef CONFIG_NETDEVICES
532 	struct net *net = sock_net(sk);
533 	char devname[IFNAMSIZ];
534 	int index;
535 
536 	/* Sorry... */
537 	ret = -EPERM;
538 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
539 		goto out;
540 
541 	ret = -EINVAL;
542 	if (optlen < 0)
543 		goto out;
544 
545 	/* Bind this socket to a particular device like "eth0",
546 	 * as specified in the passed interface name. If the
547 	 * name is "" or the option length is zero the socket
548 	 * is not bound.
549 	 */
550 	if (optlen > IFNAMSIZ - 1)
551 		optlen = IFNAMSIZ - 1;
552 	memset(devname, 0, sizeof(devname));
553 
554 	ret = -EFAULT;
555 	if (copy_from_user(devname, optval, optlen))
556 		goto out;
557 
558 	index = 0;
559 	if (devname[0] != '\0') {
560 		struct net_device *dev;
561 
562 		rcu_read_lock();
563 		dev = dev_get_by_name_rcu(net, devname);
564 		if (dev)
565 			index = dev->ifindex;
566 		rcu_read_unlock();
567 		ret = -ENODEV;
568 		if (!dev)
569 			goto out;
570 	}
571 
572 	lock_sock(sk);
573 	sk->sk_bound_dev_if = index;
574 	sk_dst_reset(sk);
575 	release_sock(sk);
576 
577 	ret = 0;
578 
579 out:
580 #endif
581 
582 	return ret;
583 }
584 
585 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
586 				int __user *optlen, int len)
587 {
588 	int ret = -ENOPROTOOPT;
589 #ifdef CONFIG_NETDEVICES
590 	struct net *net = sock_net(sk);
591 	char devname[IFNAMSIZ];
592 
593 	if (sk->sk_bound_dev_if == 0) {
594 		len = 0;
595 		goto zero;
596 	}
597 
598 	ret = -EINVAL;
599 	if (len < IFNAMSIZ)
600 		goto out;
601 
602 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
603 	if (ret)
604 		goto out;
605 
606 	len = strlen(devname) + 1;
607 
608 	ret = -EFAULT;
609 	if (copy_to_user(optval, devname, len))
610 		goto out;
611 
612 zero:
613 	ret = -EFAULT;
614 	if (put_user(len, optlen))
615 		goto out;
616 
617 	ret = 0;
618 
619 out:
620 #endif
621 
622 	return ret;
623 }
624 
625 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
626 {
627 	if (valbool)
628 		sock_set_flag(sk, bit);
629 	else
630 		sock_reset_flag(sk, bit);
631 }
632 
633 bool sk_mc_loop(struct sock *sk)
634 {
635 	if (dev_recursion_level())
636 		return false;
637 	if (!sk)
638 		return true;
639 	switch (sk->sk_family) {
640 	case AF_INET:
641 		return inet_sk(sk)->mc_loop;
642 #if IS_ENABLED(CONFIG_IPV6)
643 	case AF_INET6:
644 		return inet6_sk(sk)->mc_loop;
645 #endif
646 	}
647 	WARN_ON(1);
648 	return true;
649 }
650 EXPORT_SYMBOL(sk_mc_loop);
651 
652 /*
653  *	This is meant for all protocols to use and covers goings on
654  *	at the socket level. Everything here is generic.
655  */
656 
657 int sock_setsockopt(struct socket *sock, int level, int optname,
658 		    char __user *optval, unsigned int optlen)
659 {
660 	struct sock *sk = sock->sk;
661 	int val;
662 	int valbool;
663 	struct linger ling;
664 	int ret = 0;
665 
666 	/*
667 	 *	Options without arguments
668 	 */
669 
670 	if (optname == SO_BINDTODEVICE)
671 		return sock_setbindtodevice(sk, optval, optlen);
672 
673 	if (optlen < sizeof(int))
674 		return -EINVAL;
675 
676 	if (get_user(val, (int __user *)optval))
677 		return -EFAULT;
678 
679 	valbool = val ? 1 : 0;
680 
681 	lock_sock(sk);
682 
683 	switch (optname) {
684 	case SO_DEBUG:
685 		if (val && !capable(CAP_NET_ADMIN))
686 			ret = -EACCES;
687 		else
688 			sock_valbool_flag(sk, SOCK_DBG, valbool);
689 		break;
690 	case SO_REUSEADDR:
691 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
692 		break;
693 	case SO_REUSEPORT:
694 		sk->sk_reuseport = valbool;
695 		break;
696 	case SO_TYPE:
697 	case SO_PROTOCOL:
698 	case SO_DOMAIN:
699 	case SO_ERROR:
700 		ret = -ENOPROTOOPT;
701 		break;
702 	case SO_DONTROUTE:
703 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
704 		break;
705 	case SO_BROADCAST:
706 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
707 		break;
708 	case SO_SNDBUF:
709 		/* Don't error on this BSD doesn't and if you think
710 		 * about it this is right. Otherwise apps have to
711 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
712 		 * are treated in BSD as hints
713 		 */
714 		val = min_t(u32, val, sysctl_wmem_max);
715 set_sndbuf:
716 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
717 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
718 		/* Wake up sending tasks if we upped the value. */
719 		sk->sk_write_space(sk);
720 		break;
721 
722 	case SO_SNDBUFFORCE:
723 		if (!capable(CAP_NET_ADMIN)) {
724 			ret = -EPERM;
725 			break;
726 		}
727 		goto set_sndbuf;
728 
729 	case SO_RCVBUF:
730 		/* Don't error on this BSD doesn't and if you think
731 		 * about it this is right. Otherwise apps have to
732 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
733 		 * are treated in BSD as hints
734 		 */
735 		val = min_t(u32, val, sysctl_rmem_max);
736 set_rcvbuf:
737 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
738 		/*
739 		 * We double it on the way in to account for
740 		 * "struct sk_buff" etc. overhead.   Applications
741 		 * assume that the SO_RCVBUF setting they make will
742 		 * allow that much actual data to be received on that
743 		 * socket.
744 		 *
745 		 * Applications are unaware that "struct sk_buff" and
746 		 * other overheads allocate from the receive buffer
747 		 * during socket buffer allocation.
748 		 *
749 		 * And after considering the possible alternatives,
750 		 * returning the value we actually used in getsockopt
751 		 * is the most desirable behavior.
752 		 */
753 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
754 		break;
755 
756 	case SO_RCVBUFFORCE:
757 		if (!capable(CAP_NET_ADMIN)) {
758 			ret = -EPERM;
759 			break;
760 		}
761 		goto set_rcvbuf;
762 
763 	case SO_KEEPALIVE:
764 #ifdef CONFIG_INET
765 		if (sk->sk_protocol == IPPROTO_TCP &&
766 		    sk->sk_type == SOCK_STREAM)
767 			tcp_set_keepalive(sk, valbool);
768 #endif
769 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
770 		break;
771 
772 	case SO_OOBINLINE:
773 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
774 		break;
775 
776 	case SO_NO_CHECK:
777 		sk->sk_no_check_tx = valbool;
778 		break;
779 
780 	case SO_PRIORITY:
781 		if ((val >= 0 && val <= 6) ||
782 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
783 			sk->sk_priority = val;
784 		else
785 			ret = -EPERM;
786 		break;
787 
788 	case SO_LINGER:
789 		if (optlen < sizeof(ling)) {
790 			ret = -EINVAL;	/* 1003.1g */
791 			break;
792 		}
793 		if (copy_from_user(&ling, optval, sizeof(ling))) {
794 			ret = -EFAULT;
795 			break;
796 		}
797 		if (!ling.l_onoff)
798 			sock_reset_flag(sk, SOCK_LINGER);
799 		else {
800 #if (BITS_PER_LONG == 32)
801 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
802 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
803 			else
804 #endif
805 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
806 			sock_set_flag(sk, SOCK_LINGER);
807 		}
808 		break;
809 
810 	case SO_BSDCOMPAT:
811 		sock_warn_obsolete_bsdism("setsockopt");
812 		break;
813 
814 	case SO_PASSCRED:
815 		if (valbool)
816 			set_bit(SOCK_PASSCRED, &sock->flags);
817 		else
818 			clear_bit(SOCK_PASSCRED, &sock->flags);
819 		break;
820 
821 	case SO_TIMESTAMP:
822 	case SO_TIMESTAMPNS:
823 		if (valbool)  {
824 			if (optname == SO_TIMESTAMP)
825 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
826 			else
827 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
828 			sock_set_flag(sk, SOCK_RCVTSTAMP);
829 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 		} else {
831 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
832 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833 		}
834 		break;
835 
836 	case SO_TIMESTAMPING:
837 		if (val & ~SOF_TIMESTAMPING_MASK) {
838 			ret = -EINVAL;
839 			break;
840 		}
841 
842 		if (val & SOF_TIMESTAMPING_OPT_ID &&
843 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
844 			if (sk->sk_protocol == IPPROTO_TCP &&
845 			    sk->sk_type == SOCK_STREAM) {
846 				if ((1 << sk->sk_state) &
847 				    (TCPF_CLOSE | TCPF_LISTEN)) {
848 					ret = -EINVAL;
849 					break;
850 				}
851 				sk->sk_tskey = tcp_sk(sk)->snd_una;
852 			} else {
853 				sk->sk_tskey = 0;
854 			}
855 		}
856 		sk->sk_tsflags = val;
857 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858 			sock_enable_timestamp(sk,
859 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
860 		else
861 			sock_disable_timestamp(sk,
862 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863 		break;
864 
865 	case SO_RCVLOWAT:
866 		if (val < 0)
867 			val = INT_MAX;
868 		sk->sk_rcvlowat = val ? : 1;
869 		break;
870 
871 	case SO_RCVTIMEO:
872 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
873 		break;
874 
875 	case SO_SNDTIMEO:
876 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
877 		break;
878 
879 	case SO_ATTACH_FILTER:
880 		ret = -EINVAL;
881 		if (optlen == sizeof(struct sock_fprog)) {
882 			struct sock_fprog fprog;
883 
884 			ret = -EFAULT;
885 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
886 				break;
887 
888 			ret = sk_attach_filter(&fprog, sk);
889 		}
890 		break;
891 
892 	case SO_ATTACH_BPF:
893 		ret = -EINVAL;
894 		if (optlen == sizeof(u32)) {
895 			u32 ufd;
896 
897 			ret = -EFAULT;
898 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
899 				break;
900 
901 			ret = sk_attach_bpf(ufd, sk);
902 		}
903 		break;
904 
905 	case SO_ATTACH_REUSEPORT_CBPF:
906 		ret = -EINVAL;
907 		if (optlen == sizeof(struct sock_fprog)) {
908 			struct sock_fprog fprog;
909 
910 			ret = -EFAULT;
911 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
912 				break;
913 
914 			ret = sk_reuseport_attach_filter(&fprog, sk);
915 		}
916 		break;
917 
918 	case SO_ATTACH_REUSEPORT_EBPF:
919 		ret = -EINVAL;
920 		if (optlen == sizeof(u32)) {
921 			u32 ufd;
922 
923 			ret = -EFAULT;
924 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
925 				break;
926 
927 			ret = sk_reuseport_attach_bpf(ufd, sk);
928 		}
929 		break;
930 
931 	case SO_DETACH_FILTER:
932 		ret = sk_detach_filter(sk);
933 		break;
934 
935 	case SO_LOCK_FILTER:
936 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
937 			ret = -EPERM;
938 		else
939 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
940 		break;
941 
942 	case SO_PASSSEC:
943 		if (valbool)
944 			set_bit(SOCK_PASSSEC, &sock->flags);
945 		else
946 			clear_bit(SOCK_PASSSEC, &sock->flags);
947 		break;
948 	case SO_MARK:
949 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
950 			ret = -EPERM;
951 		else
952 			sk->sk_mark = val;
953 		break;
954 
955 	case SO_RXQ_OVFL:
956 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
957 		break;
958 
959 	case SO_WIFI_STATUS:
960 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
961 		break;
962 
963 	case SO_PEEK_OFF:
964 		if (sock->ops->set_peek_off)
965 			ret = sock->ops->set_peek_off(sk, val);
966 		else
967 			ret = -EOPNOTSUPP;
968 		break;
969 
970 	case SO_NOFCS:
971 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
972 		break;
973 
974 	case SO_SELECT_ERR_QUEUE:
975 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
976 		break;
977 
978 #ifdef CONFIG_NET_RX_BUSY_POLL
979 	case SO_BUSY_POLL:
980 		/* allow unprivileged users to decrease the value */
981 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
982 			ret = -EPERM;
983 		else {
984 			if (val < 0)
985 				ret = -EINVAL;
986 			else
987 				sk->sk_ll_usec = val;
988 		}
989 		break;
990 #endif
991 
992 	case SO_MAX_PACING_RATE:
993 		sk->sk_max_pacing_rate = val;
994 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
995 					 sk->sk_max_pacing_rate);
996 		break;
997 
998 	case SO_INCOMING_CPU:
999 		sk->sk_incoming_cpu = val;
1000 		break;
1001 
1002 	case SO_CNX_ADVICE:
1003 		if (val == 1)
1004 			dst_negative_advice(sk);
1005 		break;
1006 	default:
1007 		ret = -ENOPROTOOPT;
1008 		break;
1009 	}
1010 	release_sock(sk);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(sock_setsockopt);
1014 
1015 
1016 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1017 			  struct ucred *ucred)
1018 {
1019 	ucred->pid = pid_vnr(pid);
1020 	ucred->uid = ucred->gid = -1;
1021 	if (cred) {
1022 		struct user_namespace *current_ns = current_user_ns();
1023 
1024 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1025 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1026 	}
1027 }
1028 
1029 int sock_getsockopt(struct socket *sock, int level, int optname,
1030 		    char __user *optval, int __user *optlen)
1031 {
1032 	struct sock *sk = sock->sk;
1033 
1034 	union {
1035 		int val;
1036 		struct linger ling;
1037 		struct timeval tm;
1038 	} v;
1039 
1040 	int lv = sizeof(int);
1041 	int len;
1042 
1043 	if (get_user(len, optlen))
1044 		return -EFAULT;
1045 	if (len < 0)
1046 		return -EINVAL;
1047 
1048 	memset(&v, 0, sizeof(v));
1049 
1050 	switch (optname) {
1051 	case SO_DEBUG:
1052 		v.val = sock_flag(sk, SOCK_DBG);
1053 		break;
1054 
1055 	case SO_DONTROUTE:
1056 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1057 		break;
1058 
1059 	case SO_BROADCAST:
1060 		v.val = sock_flag(sk, SOCK_BROADCAST);
1061 		break;
1062 
1063 	case SO_SNDBUF:
1064 		v.val = sk->sk_sndbuf;
1065 		break;
1066 
1067 	case SO_RCVBUF:
1068 		v.val = sk->sk_rcvbuf;
1069 		break;
1070 
1071 	case SO_REUSEADDR:
1072 		v.val = sk->sk_reuse;
1073 		break;
1074 
1075 	case SO_REUSEPORT:
1076 		v.val = sk->sk_reuseport;
1077 		break;
1078 
1079 	case SO_KEEPALIVE:
1080 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1081 		break;
1082 
1083 	case SO_TYPE:
1084 		v.val = sk->sk_type;
1085 		break;
1086 
1087 	case SO_PROTOCOL:
1088 		v.val = sk->sk_protocol;
1089 		break;
1090 
1091 	case SO_DOMAIN:
1092 		v.val = sk->sk_family;
1093 		break;
1094 
1095 	case SO_ERROR:
1096 		v.val = -sock_error(sk);
1097 		if (v.val == 0)
1098 			v.val = xchg(&sk->sk_err_soft, 0);
1099 		break;
1100 
1101 	case SO_OOBINLINE:
1102 		v.val = sock_flag(sk, SOCK_URGINLINE);
1103 		break;
1104 
1105 	case SO_NO_CHECK:
1106 		v.val = sk->sk_no_check_tx;
1107 		break;
1108 
1109 	case SO_PRIORITY:
1110 		v.val = sk->sk_priority;
1111 		break;
1112 
1113 	case SO_LINGER:
1114 		lv		= sizeof(v.ling);
1115 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1116 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1117 		break;
1118 
1119 	case SO_BSDCOMPAT:
1120 		sock_warn_obsolete_bsdism("getsockopt");
1121 		break;
1122 
1123 	case SO_TIMESTAMP:
1124 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1125 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1126 		break;
1127 
1128 	case SO_TIMESTAMPNS:
1129 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1130 		break;
1131 
1132 	case SO_TIMESTAMPING:
1133 		v.val = sk->sk_tsflags;
1134 		break;
1135 
1136 	case SO_RCVTIMEO:
1137 		lv = sizeof(struct timeval);
1138 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1139 			v.tm.tv_sec = 0;
1140 			v.tm.tv_usec = 0;
1141 		} else {
1142 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1143 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1144 		}
1145 		break;
1146 
1147 	case SO_SNDTIMEO:
1148 		lv = sizeof(struct timeval);
1149 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1150 			v.tm.tv_sec = 0;
1151 			v.tm.tv_usec = 0;
1152 		} else {
1153 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1154 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1155 		}
1156 		break;
1157 
1158 	case SO_RCVLOWAT:
1159 		v.val = sk->sk_rcvlowat;
1160 		break;
1161 
1162 	case SO_SNDLOWAT:
1163 		v.val = 1;
1164 		break;
1165 
1166 	case SO_PASSCRED:
1167 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1168 		break;
1169 
1170 	case SO_PEERCRED:
1171 	{
1172 		struct ucred peercred;
1173 		if (len > sizeof(peercred))
1174 			len = sizeof(peercred);
1175 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1176 		if (copy_to_user(optval, &peercred, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	case SO_PEERNAME:
1182 	{
1183 		char address[128];
1184 
1185 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1186 			return -ENOTCONN;
1187 		if (lv < len)
1188 			return -EINVAL;
1189 		if (copy_to_user(optval, address, len))
1190 			return -EFAULT;
1191 		goto lenout;
1192 	}
1193 
1194 	/* Dubious BSD thing... Probably nobody even uses it, but
1195 	 * the UNIX standard wants it for whatever reason... -DaveM
1196 	 */
1197 	case SO_ACCEPTCONN:
1198 		v.val = sk->sk_state == TCP_LISTEN;
1199 		break;
1200 
1201 	case SO_PASSSEC:
1202 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1203 		break;
1204 
1205 	case SO_PEERSEC:
1206 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1207 
1208 	case SO_MARK:
1209 		v.val = sk->sk_mark;
1210 		break;
1211 
1212 	case SO_RXQ_OVFL:
1213 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1214 		break;
1215 
1216 	case SO_WIFI_STATUS:
1217 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1218 		break;
1219 
1220 	case SO_PEEK_OFF:
1221 		if (!sock->ops->set_peek_off)
1222 			return -EOPNOTSUPP;
1223 
1224 		v.val = sk->sk_peek_off;
1225 		break;
1226 	case SO_NOFCS:
1227 		v.val = sock_flag(sk, SOCK_NOFCS);
1228 		break;
1229 
1230 	case SO_BINDTODEVICE:
1231 		return sock_getbindtodevice(sk, optval, optlen, len);
1232 
1233 	case SO_GET_FILTER:
1234 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1235 		if (len < 0)
1236 			return len;
1237 
1238 		goto lenout;
1239 
1240 	case SO_LOCK_FILTER:
1241 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1242 		break;
1243 
1244 	case SO_BPF_EXTENSIONS:
1245 		v.val = bpf_tell_extensions();
1246 		break;
1247 
1248 	case SO_SELECT_ERR_QUEUE:
1249 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1250 		break;
1251 
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1253 	case SO_BUSY_POLL:
1254 		v.val = sk->sk_ll_usec;
1255 		break;
1256 #endif
1257 
1258 	case SO_MAX_PACING_RATE:
1259 		v.val = sk->sk_max_pacing_rate;
1260 		break;
1261 
1262 	case SO_INCOMING_CPU:
1263 		v.val = sk->sk_incoming_cpu;
1264 		break;
1265 
1266 	default:
1267 		/* We implement the SO_SNDLOWAT etc to not be settable
1268 		 * (1003.1g 7).
1269 		 */
1270 		return -ENOPROTOOPT;
1271 	}
1272 
1273 	if (len > lv)
1274 		len = lv;
1275 	if (copy_to_user(optval, &v, len))
1276 		return -EFAULT;
1277 lenout:
1278 	if (put_user(len, optlen))
1279 		return -EFAULT;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Initialize an sk_lock.
1285  *
1286  * (We also register the sk_lock with the lock validator.)
1287  */
1288 static inline void sock_lock_init(struct sock *sk)
1289 {
1290 	sock_lock_init_class_and_name(sk,
1291 			af_family_slock_key_strings[sk->sk_family],
1292 			af_family_slock_keys + sk->sk_family,
1293 			af_family_key_strings[sk->sk_family],
1294 			af_family_keys + sk->sk_family);
1295 }
1296 
1297 /*
1298  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301  */
1302 static void sock_copy(struct sock *nsk, const struct sock *osk)
1303 {
1304 #ifdef CONFIG_SECURITY_NETWORK
1305 	void *sptr = nsk->sk_security;
1306 #endif
1307 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1308 
1309 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1310 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1311 
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 	nsk->sk_security = sptr;
1314 	security_sk_clone(osk, nsk);
1315 #endif
1316 }
1317 
1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1319 {
1320 	unsigned long nulls1, nulls2;
1321 
1322 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1323 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1324 	if (nulls1 > nulls2)
1325 		swap(nulls1, nulls2);
1326 
1327 	if (nulls1 != 0)
1328 		memset((char *)sk, 0, nulls1);
1329 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1330 	       nulls2 - nulls1 - sizeof(void *));
1331 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1332 	       size - nulls2 - sizeof(void *));
1333 }
1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1335 
1336 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1337 		int family)
1338 {
1339 	struct sock *sk;
1340 	struct kmem_cache *slab;
1341 
1342 	slab = prot->slab;
1343 	if (slab != NULL) {
1344 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1345 		if (!sk)
1346 			return sk;
1347 		if (priority & __GFP_ZERO) {
1348 			if (prot->clear_sk)
1349 				prot->clear_sk(sk, prot->obj_size);
1350 			else
1351 				sk_prot_clear_nulls(sk, prot->obj_size);
1352 		}
1353 	} else
1354 		sk = kmalloc(prot->obj_size, priority);
1355 
1356 	if (sk != NULL) {
1357 		kmemcheck_annotate_bitfield(sk, flags);
1358 
1359 		if (security_sk_alloc(sk, family, priority))
1360 			goto out_free;
1361 
1362 		if (!try_module_get(prot->owner))
1363 			goto out_free_sec;
1364 		sk_tx_queue_clear(sk);
1365 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1366 	}
1367 
1368 	return sk;
1369 
1370 out_free_sec:
1371 	security_sk_free(sk);
1372 out_free:
1373 	if (slab != NULL)
1374 		kmem_cache_free(slab, sk);
1375 	else
1376 		kfree(sk);
1377 	return NULL;
1378 }
1379 
1380 static void sk_prot_free(struct proto *prot, struct sock *sk)
1381 {
1382 	struct kmem_cache *slab;
1383 	struct module *owner;
1384 
1385 	owner = prot->owner;
1386 	slab = prot->slab;
1387 
1388 	cgroup_sk_free(&sk->sk_cgrp_data);
1389 	security_sk_free(sk);
1390 	if (slab != NULL)
1391 		kmem_cache_free(slab, sk);
1392 	else
1393 		kfree(sk);
1394 	module_put(owner);
1395 }
1396 
1397 /**
1398  *	sk_alloc - All socket objects are allocated here
1399  *	@net: the applicable net namespace
1400  *	@family: protocol family
1401  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1402  *	@prot: struct proto associated with this new sock instance
1403  *	@kern: is this to be a kernel socket?
1404  */
1405 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1406 		      struct proto *prot, int kern)
1407 {
1408 	struct sock *sk;
1409 
1410 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1411 	if (sk) {
1412 		sk->sk_family = family;
1413 		/*
1414 		 * See comment in struct sock definition to understand
1415 		 * why we need sk_prot_creator -acme
1416 		 */
1417 		sk->sk_prot = sk->sk_prot_creator = prot;
1418 		sock_lock_init(sk);
1419 		sk->sk_net_refcnt = kern ? 0 : 1;
1420 		if (likely(sk->sk_net_refcnt))
1421 			get_net(net);
1422 		sock_net_set(sk, net);
1423 		atomic_set(&sk->sk_wmem_alloc, 1);
1424 
1425 		sock_update_classid(&sk->sk_cgrp_data);
1426 		sock_update_netprioidx(&sk->sk_cgrp_data);
1427 	}
1428 
1429 	return sk;
1430 }
1431 EXPORT_SYMBOL(sk_alloc);
1432 
1433 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1434  * grace period. This is the case for UDP sockets and TCP listeners.
1435  */
1436 static void __sk_destruct(struct rcu_head *head)
1437 {
1438 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1439 	struct sk_filter *filter;
1440 
1441 	if (sk->sk_destruct)
1442 		sk->sk_destruct(sk);
1443 
1444 	filter = rcu_dereference_check(sk->sk_filter,
1445 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1446 	if (filter) {
1447 		sk_filter_uncharge(sk, filter);
1448 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1449 	}
1450 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1451 		reuseport_detach_sock(sk);
1452 
1453 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1454 
1455 	if (atomic_read(&sk->sk_omem_alloc))
1456 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1457 			 __func__, atomic_read(&sk->sk_omem_alloc));
1458 
1459 	if (sk->sk_peer_cred)
1460 		put_cred(sk->sk_peer_cred);
1461 	put_pid(sk->sk_peer_pid);
1462 	if (likely(sk->sk_net_refcnt))
1463 		put_net(sock_net(sk));
1464 	sk_prot_free(sk->sk_prot_creator, sk);
1465 }
1466 
1467 void sk_destruct(struct sock *sk)
1468 {
1469 	if (sock_flag(sk, SOCK_RCU_FREE))
1470 		call_rcu(&sk->sk_rcu, __sk_destruct);
1471 	else
1472 		__sk_destruct(&sk->sk_rcu);
1473 }
1474 
1475 static void __sk_free(struct sock *sk)
1476 {
1477 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1478 		sock_diag_broadcast_destroy(sk);
1479 	else
1480 		sk_destruct(sk);
1481 }
1482 
1483 void sk_free(struct sock *sk)
1484 {
1485 	/*
1486 	 * We subtract one from sk_wmem_alloc and can know if
1487 	 * some packets are still in some tx queue.
1488 	 * If not null, sock_wfree() will call __sk_free(sk) later
1489 	 */
1490 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1491 		__sk_free(sk);
1492 }
1493 EXPORT_SYMBOL(sk_free);
1494 
1495 /**
1496  *	sk_clone_lock - clone a socket, and lock its clone
1497  *	@sk: the socket to clone
1498  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1499  *
1500  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1501  */
1502 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1503 {
1504 	struct sock *newsk;
1505 	bool is_charged = true;
1506 
1507 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1508 	if (newsk != NULL) {
1509 		struct sk_filter *filter;
1510 
1511 		sock_copy(newsk, sk);
1512 
1513 		/* SANITY */
1514 		if (likely(newsk->sk_net_refcnt))
1515 			get_net(sock_net(newsk));
1516 		sk_node_init(&newsk->sk_node);
1517 		sock_lock_init(newsk);
1518 		bh_lock_sock(newsk);
1519 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1520 		newsk->sk_backlog.len = 0;
1521 
1522 		atomic_set(&newsk->sk_rmem_alloc, 0);
1523 		/*
1524 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1525 		 */
1526 		atomic_set(&newsk->sk_wmem_alloc, 1);
1527 		atomic_set(&newsk->sk_omem_alloc, 0);
1528 		skb_queue_head_init(&newsk->sk_receive_queue);
1529 		skb_queue_head_init(&newsk->sk_write_queue);
1530 
1531 		rwlock_init(&newsk->sk_callback_lock);
1532 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1533 				af_callback_keys + newsk->sk_family,
1534 				af_family_clock_key_strings[newsk->sk_family]);
1535 
1536 		newsk->sk_dst_cache	= NULL;
1537 		newsk->sk_wmem_queued	= 0;
1538 		newsk->sk_forward_alloc = 0;
1539 		atomic_set(&newsk->sk_drops, 0);
1540 		newsk->sk_send_head	= NULL;
1541 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1542 
1543 		sock_reset_flag(newsk, SOCK_DONE);
1544 		skb_queue_head_init(&newsk->sk_error_queue);
1545 
1546 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1547 		if (filter != NULL)
1548 			/* though it's an empty new sock, the charging may fail
1549 			 * if sysctl_optmem_max was changed between creation of
1550 			 * original socket and cloning
1551 			 */
1552 			is_charged = sk_filter_charge(newsk, filter);
1553 
1554 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1555 			/* It is still raw copy of parent, so invalidate
1556 			 * destructor and make plain sk_free() */
1557 			newsk->sk_destruct = NULL;
1558 			bh_unlock_sock(newsk);
1559 			sk_free(newsk);
1560 			newsk = NULL;
1561 			goto out;
1562 		}
1563 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1564 
1565 		newsk->sk_err	   = 0;
1566 		newsk->sk_priority = 0;
1567 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1568 		atomic64_set(&newsk->sk_cookie, 0);
1569 		/*
1570 		 * Before updating sk_refcnt, we must commit prior changes to memory
1571 		 * (Documentation/RCU/rculist_nulls.txt for details)
1572 		 */
1573 		smp_wmb();
1574 		atomic_set(&newsk->sk_refcnt, 2);
1575 
1576 		/*
1577 		 * Increment the counter in the same struct proto as the master
1578 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1579 		 * is the same as sk->sk_prot->socks, as this field was copied
1580 		 * with memcpy).
1581 		 *
1582 		 * This _changes_ the previous behaviour, where
1583 		 * tcp_create_openreq_child always was incrementing the
1584 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1585 		 * to be taken into account in all callers. -acme
1586 		 */
1587 		sk_refcnt_debug_inc(newsk);
1588 		sk_set_socket(newsk, NULL);
1589 		newsk->sk_wq = NULL;
1590 
1591 		if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1592 			sock_update_memcg(newsk);
1593 
1594 		if (newsk->sk_prot->sockets_allocated)
1595 			sk_sockets_allocated_inc(newsk);
1596 
1597 		if (sock_needs_netstamp(sk) &&
1598 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1599 			net_enable_timestamp();
1600 	}
1601 out:
1602 	return newsk;
1603 }
1604 EXPORT_SYMBOL_GPL(sk_clone_lock);
1605 
1606 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1607 {
1608 	u32 max_segs = 1;
1609 
1610 	sk_dst_set(sk, dst);
1611 	sk->sk_route_caps = dst->dev->features;
1612 	if (sk->sk_route_caps & NETIF_F_GSO)
1613 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1614 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1615 	if (sk_can_gso(sk)) {
1616 		if (dst->header_len) {
1617 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1618 		} else {
1619 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1620 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1621 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1622 		}
1623 	}
1624 	sk->sk_gso_max_segs = max_segs;
1625 }
1626 EXPORT_SYMBOL_GPL(sk_setup_caps);
1627 
1628 /*
1629  *	Simple resource managers for sockets.
1630  */
1631 
1632 
1633 /*
1634  * Write buffer destructor automatically called from kfree_skb.
1635  */
1636 void sock_wfree(struct sk_buff *skb)
1637 {
1638 	struct sock *sk = skb->sk;
1639 	unsigned int len = skb->truesize;
1640 
1641 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1642 		/*
1643 		 * Keep a reference on sk_wmem_alloc, this will be released
1644 		 * after sk_write_space() call
1645 		 */
1646 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1647 		sk->sk_write_space(sk);
1648 		len = 1;
1649 	}
1650 	/*
1651 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1652 	 * could not do because of in-flight packets
1653 	 */
1654 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1655 		__sk_free(sk);
1656 }
1657 EXPORT_SYMBOL(sock_wfree);
1658 
1659 /* This variant of sock_wfree() is used by TCP,
1660  * since it sets SOCK_USE_WRITE_QUEUE.
1661  */
1662 void __sock_wfree(struct sk_buff *skb)
1663 {
1664 	struct sock *sk = skb->sk;
1665 
1666 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1667 		__sk_free(sk);
1668 }
1669 
1670 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1671 {
1672 	skb_orphan(skb);
1673 	skb->sk = sk;
1674 #ifdef CONFIG_INET
1675 	if (unlikely(!sk_fullsock(sk))) {
1676 		skb->destructor = sock_edemux;
1677 		sock_hold(sk);
1678 		return;
1679 	}
1680 #endif
1681 	skb->destructor = sock_wfree;
1682 	skb_set_hash_from_sk(skb, sk);
1683 	/*
1684 	 * We used to take a refcount on sk, but following operation
1685 	 * is enough to guarantee sk_free() wont free this sock until
1686 	 * all in-flight packets are completed
1687 	 */
1688 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1689 }
1690 EXPORT_SYMBOL(skb_set_owner_w);
1691 
1692 /* This helper is used by netem, as it can hold packets in its
1693  * delay queue. We want to allow the owner socket to send more
1694  * packets, as if they were already TX completed by a typical driver.
1695  * But we also want to keep skb->sk set because some packet schedulers
1696  * rely on it (sch_fq for example). So we set skb->truesize to a small
1697  * amount (1) and decrease sk_wmem_alloc accordingly.
1698  */
1699 void skb_orphan_partial(struct sk_buff *skb)
1700 {
1701 	/* If this skb is a TCP pure ACK or already went here,
1702 	 * we have nothing to do. 2 is already a very small truesize.
1703 	 */
1704 	if (skb->truesize <= 2)
1705 		return;
1706 
1707 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1708 	 * so we do not completely orphan skb, but transfert all
1709 	 * accounted bytes but one, to avoid unexpected reorders.
1710 	 */
1711 	if (skb->destructor == sock_wfree
1712 #ifdef CONFIG_INET
1713 	    || skb->destructor == tcp_wfree
1714 #endif
1715 		) {
1716 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1717 		skb->truesize = 1;
1718 	} else {
1719 		skb_orphan(skb);
1720 	}
1721 }
1722 EXPORT_SYMBOL(skb_orphan_partial);
1723 
1724 /*
1725  * Read buffer destructor automatically called from kfree_skb.
1726  */
1727 void sock_rfree(struct sk_buff *skb)
1728 {
1729 	struct sock *sk = skb->sk;
1730 	unsigned int len = skb->truesize;
1731 
1732 	atomic_sub(len, &sk->sk_rmem_alloc);
1733 	sk_mem_uncharge(sk, len);
1734 }
1735 EXPORT_SYMBOL(sock_rfree);
1736 
1737 /*
1738  * Buffer destructor for skbs that are not used directly in read or write
1739  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1740  */
1741 void sock_efree(struct sk_buff *skb)
1742 {
1743 	sock_put(skb->sk);
1744 }
1745 EXPORT_SYMBOL(sock_efree);
1746 
1747 kuid_t sock_i_uid(struct sock *sk)
1748 {
1749 	kuid_t uid;
1750 
1751 	read_lock_bh(&sk->sk_callback_lock);
1752 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1753 	read_unlock_bh(&sk->sk_callback_lock);
1754 	return uid;
1755 }
1756 EXPORT_SYMBOL(sock_i_uid);
1757 
1758 unsigned long sock_i_ino(struct sock *sk)
1759 {
1760 	unsigned long ino;
1761 
1762 	read_lock_bh(&sk->sk_callback_lock);
1763 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1764 	read_unlock_bh(&sk->sk_callback_lock);
1765 	return ino;
1766 }
1767 EXPORT_SYMBOL(sock_i_ino);
1768 
1769 /*
1770  * Allocate a skb from the socket's send buffer.
1771  */
1772 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1773 			     gfp_t priority)
1774 {
1775 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1776 		struct sk_buff *skb = alloc_skb(size, priority);
1777 		if (skb) {
1778 			skb_set_owner_w(skb, sk);
1779 			return skb;
1780 		}
1781 	}
1782 	return NULL;
1783 }
1784 EXPORT_SYMBOL(sock_wmalloc);
1785 
1786 /*
1787  * Allocate a memory block from the socket's option memory buffer.
1788  */
1789 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1790 {
1791 	if ((unsigned int)size <= sysctl_optmem_max &&
1792 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1793 		void *mem;
1794 		/* First do the add, to avoid the race if kmalloc
1795 		 * might sleep.
1796 		 */
1797 		atomic_add(size, &sk->sk_omem_alloc);
1798 		mem = kmalloc(size, priority);
1799 		if (mem)
1800 			return mem;
1801 		atomic_sub(size, &sk->sk_omem_alloc);
1802 	}
1803 	return NULL;
1804 }
1805 EXPORT_SYMBOL(sock_kmalloc);
1806 
1807 /* Free an option memory block. Note, we actually want the inline
1808  * here as this allows gcc to detect the nullify and fold away the
1809  * condition entirely.
1810  */
1811 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1812 				  const bool nullify)
1813 {
1814 	if (WARN_ON_ONCE(!mem))
1815 		return;
1816 	if (nullify)
1817 		kzfree(mem);
1818 	else
1819 		kfree(mem);
1820 	atomic_sub(size, &sk->sk_omem_alloc);
1821 }
1822 
1823 void sock_kfree_s(struct sock *sk, void *mem, int size)
1824 {
1825 	__sock_kfree_s(sk, mem, size, false);
1826 }
1827 EXPORT_SYMBOL(sock_kfree_s);
1828 
1829 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1830 {
1831 	__sock_kfree_s(sk, mem, size, true);
1832 }
1833 EXPORT_SYMBOL(sock_kzfree_s);
1834 
1835 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1836    I think, these locks should be removed for datagram sockets.
1837  */
1838 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1839 {
1840 	DEFINE_WAIT(wait);
1841 
1842 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1843 	for (;;) {
1844 		if (!timeo)
1845 			break;
1846 		if (signal_pending(current))
1847 			break;
1848 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1849 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1850 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1851 			break;
1852 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1853 			break;
1854 		if (sk->sk_err)
1855 			break;
1856 		timeo = schedule_timeout(timeo);
1857 	}
1858 	finish_wait(sk_sleep(sk), &wait);
1859 	return timeo;
1860 }
1861 
1862 
1863 /*
1864  *	Generic send/receive buffer handlers
1865  */
1866 
1867 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1868 				     unsigned long data_len, int noblock,
1869 				     int *errcode, int max_page_order)
1870 {
1871 	struct sk_buff *skb;
1872 	long timeo;
1873 	int err;
1874 
1875 	timeo = sock_sndtimeo(sk, noblock);
1876 	for (;;) {
1877 		err = sock_error(sk);
1878 		if (err != 0)
1879 			goto failure;
1880 
1881 		err = -EPIPE;
1882 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1883 			goto failure;
1884 
1885 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1886 			break;
1887 
1888 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1889 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1890 		err = -EAGAIN;
1891 		if (!timeo)
1892 			goto failure;
1893 		if (signal_pending(current))
1894 			goto interrupted;
1895 		timeo = sock_wait_for_wmem(sk, timeo);
1896 	}
1897 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1898 				   errcode, sk->sk_allocation);
1899 	if (skb)
1900 		skb_set_owner_w(skb, sk);
1901 	return skb;
1902 
1903 interrupted:
1904 	err = sock_intr_errno(timeo);
1905 failure:
1906 	*errcode = err;
1907 	return NULL;
1908 }
1909 EXPORT_SYMBOL(sock_alloc_send_pskb);
1910 
1911 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1912 				    int noblock, int *errcode)
1913 {
1914 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1915 }
1916 EXPORT_SYMBOL(sock_alloc_send_skb);
1917 
1918 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1919 		     struct sockcm_cookie *sockc)
1920 {
1921 	u32 tsflags;
1922 
1923 	switch (cmsg->cmsg_type) {
1924 	case SO_MARK:
1925 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1926 			return -EPERM;
1927 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1928 			return -EINVAL;
1929 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1930 		break;
1931 	case SO_TIMESTAMPING:
1932 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1933 			return -EINVAL;
1934 
1935 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1936 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1937 			return -EINVAL;
1938 
1939 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1940 		sockc->tsflags |= tsflags;
1941 		break;
1942 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1943 	case SCM_RIGHTS:
1944 	case SCM_CREDENTIALS:
1945 		break;
1946 	default:
1947 		return -EINVAL;
1948 	}
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL(__sock_cmsg_send);
1952 
1953 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1954 		   struct sockcm_cookie *sockc)
1955 {
1956 	struct cmsghdr *cmsg;
1957 	int ret;
1958 
1959 	for_each_cmsghdr(cmsg, msg) {
1960 		if (!CMSG_OK(msg, cmsg))
1961 			return -EINVAL;
1962 		if (cmsg->cmsg_level != SOL_SOCKET)
1963 			continue;
1964 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1965 		if (ret)
1966 			return ret;
1967 	}
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(sock_cmsg_send);
1971 
1972 /* On 32bit arches, an skb frag is limited to 2^15 */
1973 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1974 
1975 /**
1976  * skb_page_frag_refill - check that a page_frag contains enough room
1977  * @sz: minimum size of the fragment we want to get
1978  * @pfrag: pointer to page_frag
1979  * @gfp: priority for memory allocation
1980  *
1981  * Note: While this allocator tries to use high order pages, there is
1982  * no guarantee that allocations succeed. Therefore, @sz MUST be
1983  * less or equal than PAGE_SIZE.
1984  */
1985 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1986 {
1987 	if (pfrag->page) {
1988 		if (page_ref_count(pfrag->page) == 1) {
1989 			pfrag->offset = 0;
1990 			return true;
1991 		}
1992 		if (pfrag->offset + sz <= pfrag->size)
1993 			return true;
1994 		put_page(pfrag->page);
1995 	}
1996 
1997 	pfrag->offset = 0;
1998 	if (SKB_FRAG_PAGE_ORDER) {
1999 		/* Avoid direct reclaim but allow kswapd to wake */
2000 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2001 					  __GFP_COMP | __GFP_NOWARN |
2002 					  __GFP_NORETRY,
2003 					  SKB_FRAG_PAGE_ORDER);
2004 		if (likely(pfrag->page)) {
2005 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2006 			return true;
2007 		}
2008 	}
2009 	pfrag->page = alloc_page(gfp);
2010 	if (likely(pfrag->page)) {
2011 		pfrag->size = PAGE_SIZE;
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 EXPORT_SYMBOL(skb_page_frag_refill);
2017 
2018 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2019 {
2020 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2021 		return true;
2022 
2023 	sk_enter_memory_pressure(sk);
2024 	sk_stream_moderate_sndbuf(sk);
2025 	return false;
2026 }
2027 EXPORT_SYMBOL(sk_page_frag_refill);
2028 
2029 static void __lock_sock(struct sock *sk)
2030 	__releases(&sk->sk_lock.slock)
2031 	__acquires(&sk->sk_lock.slock)
2032 {
2033 	DEFINE_WAIT(wait);
2034 
2035 	for (;;) {
2036 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2037 					TASK_UNINTERRUPTIBLE);
2038 		spin_unlock_bh(&sk->sk_lock.slock);
2039 		schedule();
2040 		spin_lock_bh(&sk->sk_lock.slock);
2041 		if (!sock_owned_by_user(sk))
2042 			break;
2043 	}
2044 	finish_wait(&sk->sk_lock.wq, &wait);
2045 }
2046 
2047 static void __release_sock(struct sock *sk)
2048 	__releases(&sk->sk_lock.slock)
2049 	__acquires(&sk->sk_lock.slock)
2050 {
2051 	struct sk_buff *skb, *next;
2052 
2053 	while ((skb = sk->sk_backlog.head) != NULL) {
2054 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2055 
2056 		spin_unlock_bh(&sk->sk_lock.slock);
2057 
2058 		do {
2059 			next = skb->next;
2060 			prefetch(next);
2061 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2062 			skb->next = NULL;
2063 			sk_backlog_rcv(sk, skb);
2064 
2065 			cond_resched();
2066 
2067 			skb = next;
2068 		} while (skb != NULL);
2069 
2070 		spin_lock_bh(&sk->sk_lock.slock);
2071 	}
2072 
2073 	/*
2074 	 * Doing the zeroing here guarantee we can not loop forever
2075 	 * while a wild producer attempts to flood us.
2076 	 */
2077 	sk->sk_backlog.len = 0;
2078 }
2079 
2080 void __sk_flush_backlog(struct sock *sk)
2081 {
2082 	spin_lock_bh(&sk->sk_lock.slock);
2083 	__release_sock(sk);
2084 	spin_unlock_bh(&sk->sk_lock.slock);
2085 }
2086 
2087 /**
2088  * sk_wait_data - wait for data to arrive at sk_receive_queue
2089  * @sk:    sock to wait on
2090  * @timeo: for how long
2091  * @skb:   last skb seen on sk_receive_queue
2092  *
2093  * Now socket state including sk->sk_err is changed only under lock,
2094  * hence we may omit checks after joining wait queue.
2095  * We check receive queue before schedule() only as optimization;
2096  * it is very likely that release_sock() added new data.
2097  */
2098 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2099 {
2100 	int rc;
2101 	DEFINE_WAIT(wait);
2102 
2103 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2104 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2105 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2106 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2107 	finish_wait(sk_sleep(sk), &wait);
2108 	return rc;
2109 }
2110 EXPORT_SYMBOL(sk_wait_data);
2111 
2112 /**
2113  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2114  *	@sk: socket
2115  *	@size: memory size to allocate
2116  *	@kind: allocation type
2117  *
2118  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2119  *	rmem allocation. This function assumes that protocols which have
2120  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2121  */
2122 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2123 {
2124 	struct proto *prot = sk->sk_prot;
2125 	int amt = sk_mem_pages(size);
2126 	long allocated;
2127 
2128 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2129 
2130 	allocated = sk_memory_allocated_add(sk, amt);
2131 
2132 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2133 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2134 		goto suppress_allocation;
2135 
2136 	/* Under limit. */
2137 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2138 		sk_leave_memory_pressure(sk);
2139 		return 1;
2140 	}
2141 
2142 	/* Under pressure. */
2143 	if (allocated > sk_prot_mem_limits(sk, 1))
2144 		sk_enter_memory_pressure(sk);
2145 
2146 	/* Over hard limit. */
2147 	if (allocated > sk_prot_mem_limits(sk, 2))
2148 		goto suppress_allocation;
2149 
2150 	/* guarantee minimum buffer size under pressure */
2151 	if (kind == SK_MEM_RECV) {
2152 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2153 			return 1;
2154 
2155 	} else { /* SK_MEM_SEND */
2156 		if (sk->sk_type == SOCK_STREAM) {
2157 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2158 				return 1;
2159 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2160 			   prot->sysctl_wmem[0])
2161 				return 1;
2162 	}
2163 
2164 	if (sk_has_memory_pressure(sk)) {
2165 		int alloc;
2166 
2167 		if (!sk_under_memory_pressure(sk))
2168 			return 1;
2169 		alloc = sk_sockets_allocated_read_positive(sk);
2170 		if (sk_prot_mem_limits(sk, 2) > alloc *
2171 		    sk_mem_pages(sk->sk_wmem_queued +
2172 				 atomic_read(&sk->sk_rmem_alloc) +
2173 				 sk->sk_forward_alloc))
2174 			return 1;
2175 	}
2176 
2177 suppress_allocation:
2178 
2179 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2180 		sk_stream_moderate_sndbuf(sk);
2181 
2182 		/* Fail only if socket is _under_ its sndbuf.
2183 		 * In this case we cannot block, so that we have to fail.
2184 		 */
2185 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2186 			return 1;
2187 	}
2188 
2189 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2190 
2191 	/* Alas. Undo changes. */
2192 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2193 
2194 	sk_memory_allocated_sub(sk, amt);
2195 
2196 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2197 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2198 
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL(__sk_mem_schedule);
2202 
2203 /**
2204  *	__sk_mem_reclaim - reclaim memory_allocated
2205  *	@sk: socket
2206  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2207  */
2208 void __sk_mem_reclaim(struct sock *sk, int amount)
2209 {
2210 	amount >>= SK_MEM_QUANTUM_SHIFT;
2211 	sk_memory_allocated_sub(sk, amount);
2212 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2213 
2214 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2215 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2216 
2217 	if (sk_under_memory_pressure(sk) &&
2218 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2219 		sk_leave_memory_pressure(sk);
2220 }
2221 EXPORT_SYMBOL(__sk_mem_reclaim);
2222 
2223 int sk_set_peek_off(struct sock *sk, int val)
2224 {
2225 	if (val < 0)
2226 		return -EINVAL;
2227 
2228 	sk->sk_peek_off = val;
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2232 
2233 /*
2234  * Set of default routines for initialising struct proto_ops when
2235  * the protocol does not support a particular function. In certain
2236  * cases where it makes no sense for a protocol to have a "do nothing"
2237  * function, some default processing is provided.
2238  */
2239 
2240 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2241 {
2242 	return -EOPNOTSUPP;
2243 }
2244 EXPORT_SYMBOL(sock_no_bind);
2245 
2246 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2247 		    int len, int flags)
2248 {
2249 	return -EOPNOTSUPP;
2250 }
2251 EXPORT_SYMBOL(sock_no_connect);
2252 
2253 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2254 {
2255 	return -EOPNOTSUPP;
2256 }
2257 EXPORT_SYMBOL(sock_no_socketpair);
2258 
2259 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2260 {
2261 	return -EOPNOTSUPP;
2262 }
2263 EXPORT_SYMBOL(sock_no_accept);
2264 
2265 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2266 		    int *len, int peer)
2267 {
2268 	return -EOPNOTSUPP;
2269 }
2270 EXPORT_SYMBOL(sock_no_getname);
2271 
2272 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2273 {
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(sock_no_poll);
2277 
2278 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2279 {
2280 	return -EOPNOTSUPP;
2281 }
2282 EXPORT_SYMBOL(sock_no_ioctl);
2283 
2284 int sock_no_listen(struct socket *sock, int backlog)
2285 {
2286 	return -EOPNOTSUPP;
2287 }
2288 EXPORT_SYMBOL(sock_no_listen);
2289 
2290 int sock_no_shutdown(struct socket *sock, int how)
2291 {
2292 	return -EOPNOTSUPP;
2293 }
2294 EXPORT_SYMBOL(sock_no_shutdown);
2295 
2296 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2297 		    char __user *optval, unsigned int optlen)
2298 {
2299 	return -EOPNOTSUPP;
2300 }
2301 EXPORT_SYMBOL(sock_no_setsockopt);
2302 
2303 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2304 		    char __user *optval, int __user *optlen)
2305 {
2306 	return -EOPNOTSUPP;
2307 }
2308 EXPORT_SYMBOL(sock_no_getsockopt);
2309 
2310 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2311 {
2312 	return -EOPNOTSUPP;
2313 }
2314 EXPORT_SYMBOL(sock_no_sendmsg);
2315 
2316 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2317 		    int flags)
2318 {
2319 	return -EOPNOTSUPP;
2320 }
2321 EXPORT_SYMBOL(sock_no_recvmsg);
2322 
2323 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2324 {
2325 	/* Mirror missing mmap method error code */
2326 	return -ENODEV;
2327 }
2328 EXPORT_SYMBOL(sock_no_mmap);
2329 
2330 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2331 {
2332 	ssize_t res;
2333 	struct msghdr msg = {.msg_flags = flags};
2334 	struct kvec iov;
2335 	char *kaddr = kmap(page);
2336 	iov.iov_base = kaddr + offset;
2337 	iov.iov_len = size;
2338 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2339 	kunmap(page);
2340 	return res;
2341 }
2342 EXPORT_SYMBOL(sock_no_sendpage);
2343 
2344 /*
2345  *	Default Socket Callbacks
2346  */
2347 
2348 static void sock_def_wakeup(struct sock *sk)
2349 {
2350 	struct socket_wq *wq;
2351 
2352 	rcu_read_lock();
2353 	wq = rcu_dereference(sk->sk_wq);
2354 	if (skwq_has_sleeper(wq))
2355 		wake_up_interruptible_all(&wq->wait);
2356 	rcu_read_unlock();
2357 }
2358 
2359 static void sock_def_error_report(struct sock *sk)
2360 {
2361 	struct socket_wq *wq;
2362 
2363 	rcu_read_lock();
2364 	wq = rcu_dereference(sk->sk_wq);
2365 	if (skwq_has_sleeper(wq))
2366 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2367 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2368 	rcu_read_unlock();
2369 }
2370 
2371 static void sock_def_readable(struct sock *sk)
2372 {
2373 	struct socket_wq *wq;
2374 
2375 	rcu_read_lock();
2376 	wq = rcu_dereference(sk->sk_wq);
2377 	if (skwq_has_sleeper(wq))
2378 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2379 						POLLRDNORM | POLLRDBAND);
2380 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2381 	rcu_read_unlock();
2382 }
2383 
2384 static void sock_def_write_space(struct sock *sk)
2385 {
2386 	struct socket_wq *wq;
2387 
2388 	rcu_read_lock();
2389 
2390 	/* Do not wake up a writer until he can make "significant"
2391 	 * progress.  --DaveM
2392 	 */
2393 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2394 		wq = rcu_dereference(sk->sk_wq);
2395 		if (skwq_has_sleeper(wq))
2396 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2397 						POLLWRNORM | POLLWRBAND);
2398 
2399 		/* Should agree with poll, otherwise some programs break */
2400 		if (sock_writeable(sk))
2401 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2402 	}
2403 
2404 	rcu_read_unlock();
2405 }
2406 
2407 static void sock_def_destruct(struct sock *sk)
2408 {
2409 }
2410 
2411 void sk_send_sigurg(struct sock *sk)
2412 {
2413 	if (sk->sk_socket && sk->sk_socket->file)
2414 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2415 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2416 }
2417 EXPORT_SYMBOL(sk_send_sigurg);
2418 
2419 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2420 		    unsigned long expires)
2421 {
2422 	if (!mod_timer(timer, expires))
2423 		sock_hold(sk);
2424 }
2425 EXPORT_SYMBOL(sk_reset_timer);
2426 
2427 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2428 {
2429 	if (del_timer(timer))
2430 		__sock_put(sk);
2431 }
2432 EXPORT_SYMBOL(sk_stop_timer);
2433 
2434 void sock_init_data(struct socket *sock, struct sock *sk)
2435 {
2436 	skb_queue_head_init(&sk->sk_receive_queue);
2437 	skb_queue_head_init(&sk->sk_write_queue);
2438 	skb_queue_head_init(&sk->sk_error_queue);
2439 
2440 	sk->sk_send_head	=	NULL;
2441 
2442 	init_timer(&sk->sk_timer);
2443 
2444 	sk->sk_allocation	=	GFP_KERNEL;
2445 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2446 	sk->sk_sndbuf		=	sysctl_wmem_default;
2447 	sk->sk_state		=	TCP_CLOSE;
2448 	sk_set_socket(sk, sock);
2449 
2450 	sock_set_flag(sk, SOCK_ZAPPED);
2451 
2452 	if (sock) {
2453 		sk->sk_type	=	sock->type;
2454 		sk->sk_wq	=	sock->wq;
2455 		sock->sk	=	sk;
2456 	} else
2457 		sk->sk_wq	=	NULL;
2458 
2459 	rwlock_init(&sk->sk_callback_lock);
2460 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2461 			af_callback_keys + sk->sk_family,
2462 			af_family_clock_key_strings[sk->sk_family]);
2463 
2464 	sk->sk_state_change	=	sock_def_wakeup;
2465 	sk->sk_data_ready	=	sock_def_readable;
2466 	sk->sk_write_space	=	sock_def_write_space;
2467 	sk->sk_error_report	=	sock_def_error_report;
2468 	sk->sk_destruct		=	sock_def_destruct;
2469 
2470 	sk->sk_frag.page	=	NULL;
2471 	sk->sk_frag.offset	=	0;
2472 	sk->sk_peek_off		=	-1;
2473 
2474 	sk->sk_peer_pid 	=	NULL;
2475 	sk->sk_peer_cred	=	NULL;
2476 	sk->sk_write_pending	=	0;
2477 	sk->sk_rcvlowat		=	1;
2478 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2479 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2480 
2481 	sk->sk_stamp = ktime_set(-1L, 0);
2482 
2483 #ifdef CONFIG_NET_RX_BUSY_POLL
2484 	sk->sk_napi_id		=	0;
2485 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2486 #endif
2487 
2488 	sk->sk_max_pacing_rate = ~0U;
2489 	sk->sk_pacing_rate = ~0U;
2490 	sk->sk_incoming_cpu = -1;
2491 	/*
2492 	 * Before updating sk_refcnt, we must commit prior changes to memory
2493 	 * (Documentation/RCU/rculist_nulls.txt for details)
2494 	 */
2495 	smp_wmb();
2496 	atomic_set(&sk->sk_refcnt, 1);
2497 	atomic_set(&sk->sk_drops, 0);
2498 }
2499 EXPORT_SYMBOL(sock_init_data);
2500 
2501 void lock_sock_nested(struct sock *sk, int subclass)
2502 {
2503 	might_sleep();
2504 	spin_lock_bh(&sk->sk_lock.slock);
2505 	if (sk->sk_lock.owned)
2506 		__lock_sock(sk);
2507 	sk->sk_lock.owned = 1;
2508 	spin_unlock(&sk->sk_lock.slock);
2509 	/*
2510 	 * The sk_lock has mutex_lock() semantics here:
2511 	 */
2512 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2513 	local_bh_enable();
2514 }
2515 EXPORT_SYMBOL(lock_sock_nested);
2516 
2517 void release_sock(struct sock *sk)
2518 {
2519 	spin_lock_bh(&sk->sk_lock.slock);
2520 	if (sk->sk_backlog.tail)
2521 		__release_sock(sk);
2522 
2523 	/* Warning : release_cb() might need to release sk ownership,
2524 	 * ie call sock_release_ownership(sk) before us.
2525 	 */
2526 	if (sk->sk_prot->release_cb)
2527 		sk->sk_prot->release_cb(sk);
2528 
2529 	sock_release_ownership(sk);
2530 	if (waitqueue_active(&sk->sk_lock.wq))
2531 		wake_up(&sk->sk_lock.wq);
2532 	spin_unlock_bh(&sk->sk_lock.slock);
2533 }
2534 EXPORT_SYMBOL(release_sock);
2535 
2536 /**
2537  * lock_sock_fast - fast version of lock_sock
2538  * @sk: socket
2539  *
2540  * This version should be used for very small section, where process wont block
2541  * return false if fast path is taken
2542  *   sk_lock.slock locked, owned = 0, BH disabled
2543  * return true if slow path is taken
2544  *   sk_lock.slock unlocked, owned = 1, BH enabled
2545  */
2546 bool lock_sock_fast(struct sock *sk)
2547 {
2548 	might_sleep();
2549 	spin_lock_bh(&sk->sk_lock.slock);
2550 
2551 	if (!sk->sk_lock.owned)
2552 		/*
2553 		 * Note : We must disable BH
2554 		 */
2555 		return false;
2556 
2557 	__lock_sock(sk);
2558 	sk->sk_lock.owned = 1;
2559 	spin_unlock(&sk->sk_lock.slock);
2560 	/*
2561 	 * The sk_lock has mutex_lock() semantics here:
2562 	 */
2563 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2564 	local_bh_enable();
2565 	return true;
2566 }
2567 EXPORT_SYMBOL(lock_sock_fast);
2568 
2569 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2570 {
2571 	struct timeval tv;
2572 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2573 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2574 	tv = ktime_to_timeval(sk->sk_stamp);
2575 	if (tv.tv_sec == -1)
2576 		return -ENOENT;
2577 	if (tv.tv_sec == 0) {
2578 		sk->sk_stamp = ktime_get_real();
2579 		tv = ktime_to_timeval(sk->sk_stamp);
2580 	}
2581 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2582 }
2583 EXPORT_SYMBOL(sock_get_timestamp);
2584 
2585 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2586 {
2587 	struct timespec ts;
2588 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2589 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2590 	ts = ktime_to_timespec(sk->sk_stamp);
2591 	if (ts.tv_sec == -1)
2592 		return -ENOENT;
2593 	if (ts.tv_sec == 0) {
2594 		sk->sk_stamp = ktime_get_real();
2595 		ts = ktime_to_timespec(sk->sk_stamp);
2596 	}
2597 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2598 }
2599 EXPORT_SYMBOL(sock_get_timestampns);
2600 
2601 void sock_enable_timestamp(struct sock *sk, int flag)
2602 {
2603 	if (!sock_flag(sk, flag)) {
2604 		unsigned long previous_flags = sk->sk_flags;
2605 
2606 		sock_set_flag(sk, flag);
2607 		/*
2608 		 * we just set one of the two flags which require net
2609 		 * time stamping, but time stamping might have been on
2610 		 * already because of the other one
2611 		 */
2612 		if (sock_needs_netstamp(sk) &&
2613 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2614 			net_enable_timestamp();
2615 	}
2616 }
2617 
2618 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2619 		       int level, int type)
2620 {
2621 	struct sock_exterr_skb *serr;
2622 	struct sk_buff *skb;
2623 	int copied, err;
2624 
2625 	err = -EAGAIN;
2626 	skb = sock_dequeue_err_skb(sk);
2627 	if (skb == NULL)
2628 		goto out;
2629 
2630 	copied = skb->len;
2631 	if (copied > len) {
2632 		msg->msg_flags |= MSG_TRUNC;
2633 		copied = len;
2634 	}
2635 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2636 	if (err)
2637 		goto out_free_skb;
2638 
2639 	sock_recv_timestamp(msg, sk, skb);
2640 
2641 	serr = SKB_EXT_ERR(skb);
2642 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2643 
2644 	msg->msg_flags |= MSG_ERRQUEUE;
2645 	err = copied;
2646 
2647 out_free_skb:
2648 	kfree_skb(skb);
2649 out:
2650 	return err;
2651 }
2652 EXPORT_SYMBOL(sock_recv_errqueue);
2653 
2654 /*
2655  *	Get a socket option on an socket.
2656  *
2657  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2658  *	asynchronous errors should be reported by getsockopt. We assume
2659  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2660  */
2661 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2662 			   char __user *optval, int __user *optlen)
2663 {
2664 	struct sock *sk = sock->sk;
2665 
2666 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2667 }
2668 EXPORT_SYMBOL(sock_common_getsockopt);
2669 
2670 #ifdef CONFIG_COMPAT
2671 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2672 				  char __user *optval, int __user *optlen)
2673 {
2674 	struct sock *sk = sock->sk;
2675 
2676 	if (sk->sk_prot->compat_getsockopt != NULL)
2677 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2678 						      optval, optlen);
2679 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2680 }
2681 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2682 #endif
2683 
2684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2685 			int flags)
2686 {
2687 	struct sock *sk = sock->sk;
2688 	int addr_len = 0;
2689 	int err;
2690 
2691 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2692 				   flags & ~MSG_DONTWAIT, &addr_len);
2693 	if (err >= 0)
2694 		msg->msg_namelen = addr_len;
2695 	return err;
2696 }
2697 EXPORT_SYMBOL(sock_common_recvmsg);
2698 
2699 /*
2700  *	Set socket options on an inet socket.
2701  */
2702 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2703 			   char __user *optval, unsigned int optlen)
2704 {
2705 	struct sock *sk = sock->sk;
2706 
2707 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2708 }
2709 EXPORT_SYMBOL(sock_common_setsockopt);
2710 
2711 #ifdef CONFIG_COMPAT
2712 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2713 				  char __user *optval, unsigned int optlen)
2714 {
2715 	struct sock *sk = sock->sk;
2716 
2717 	if (sk->sk_prot->compat_setsockopt != NULL)
2718 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2719 						      optval, optlen);
2720 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2721 }
2722 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2723 #endif
2724 
2725 void sk_common_release(struct sock *sk)
2726 {
2727 	if (sk->sk_prot->destroy)
2728 		sk->sk_prot->destroy(sk);
2729 
2730 	/*
2731 	 * Observation: when sock_common_release is called, processes have
2732 	 * no access to socket. But net still has.
2733 	 * Step one, detach it from networking:
2734 	 *
2735 	 * A. Remove from hash tables.
2736 	 */
2737 
2738 	sk->sk_prot->unhash(sk);
2739 
2740 	/*
2741 	 * In this point socket cannot receive new packets, but it is possible
2742 	 * that some packets are in flight because some CPU runs receiver and
2743 	 * did hash table lookup before we unhashed socket. They will achieve
2744 	 * receive queue and will be purged by socket destructor.
2745 	 *
2746 	 * Also we still have packets pending on receive queue and probably,
2747 	 * our own packets waiting in device queues. sock_destroy will drain
2748 	 * receive queue, but transmitted packets will delay socket destruction
2749 	 * until the last reference will be released.
2750 	 */
2751 
2752 	sock_orphan(sk);
2753 
2754 	xfrm_sk_free_policy(sk);
2755 
2756 	sk_refcnt_debug_release(sk);
2757 
2758 	if (sk->sk_frag.page) {
2759 		put_page(sk->sk_frag.page);
2760 		sk->sk_frag.page = NULL;
2761 	}
2762 
2763 	sock_put(sk);
2764 }
2765 EXPORT_SYMBOL(sk_common_release);
2766 
2767 #ifdef CONFIG_PROC_FS
2768 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2769 struct prot_inuse {
2770 	int val[PROTO_INUSE_NR];
2771 };
2772 
2773 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2774 
2775 #ifdef CONFIG_NET_NS
2776 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2777 {
2778 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2779 }
2780 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2781 
2782 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2783 {
2784 	int cpu, idx = prot->inuse_idx;
2785 	int res = 0;
2786 
2787 	for_each_possible_cpu(cpu)
2788 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2789 
2790 	return res >= 0 ? res : 0;
2791 }
2792 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2793 
2794 static int __net_init sock_inuse_init_net(struct net *net)
2795 {
2796 	net->core.inuse = alloc_percpu(struct prot_inuse);
2797 	return net->core.inuse ? 0 : -ENOMEM;
2798 }
2799 
2800 static void __net_exit sock_inuse_exit_net(struct net *net)
2801 {
2802 	free_percpu(net->core.inuse);
2803 }
2804 
2805 static struct pernet_operations net_inuse_ops = {
2806 	.init = sock_inuse_init_net,
2807 	.exit = sock_inuse_exit_net,
2808 };
2809 
2810 static __init int net_inuse_init(void)
2811 {
2812 	if (register_pernet_subsys(&net_inuse_ops))
2813 		panic("Cannot initialize net inuse counters");
2814 
2815 	return 0;
2816 }
2817 
2818 core_initcall(net_inuse_init);
2819 #else
2820 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2821 
2822 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2823 {
2824 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2825 }
2826 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2827 
2828 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2829 {
2830 	int cpu, idx = prot->inuse_idx;
2831 	int res = 0;
2832 
2833 	for_each_possible_cpu(cpu)
2834 		res += per_cpu(prot_inuse, cpu).val[idx];
2835 
2836 	return res >= 0 ? res : 0;
2837 }
2838 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2839 #endif
2840 
2841 static void assign_proto_idx(struct proto *prot)
2842 {
2843 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2844 
2845 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2846 		pr_err("PROTO_INUSE_NR exhausted\n");
2847 		return;
2848 	}
2849 
2850 	set_bit(prot->inuse_idx, proto_inuse_idx);
2851 }
2852 
2853 static void release_proto_idx(struct proto *prot)
2854 {
2855 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2856 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2857 }
2858 #else
2859 static inline void assign_proto_idx(struct proto *prot)
2860 {
2861 }
2862 
2863 static inline void release_proto_idx(struct proto *prot)
2864 {
2865 }
2866 #endif
2867 
2868 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2869 {
2870 	if (!rsk_prot)
2871 		return;
2872 	kfree(rsk_prot->slab_name);
2873 	rsk_prot->slab_name = NULL;
2874 	kmem_cache_destroy(rsk_prot->slab);
2875 	rsk_prot->slab = NULL;
2876 }
2877 
2878 static int req_prot_init(const struct proto *prot)
2879 {
2880 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2881 
2882 	if (!rsk_prot)
2883 		return 0;
2884 
2885 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2886 					prot->name);
2887 	if (!rsk_prot->slab_name)
2888 		return -ENOMEM;
2889 
2890 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2891 					   rsk_prot->obj_size, 0,
2892 					   prot->slab_flags, NULL);
2893 
2894 	if (!rsk_prot->slab) {
2895 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2896 			prot->name);
2897 		return -ENOMEM;
2898 	}
2899 	return 0;
2900 }
2901 
2902 int proto_register(struct proto *prot, int alloc_slab)
2903 {
2904 	if (alloc_slab) {
2905 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2906 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2907 					NULL);
2908 
2909 		if (prot->slab == NULL) {
2910 			pr_crit("%s: Can't create sock SLAB cache!\n",
2911 				prot->name);
2912 			goto out;
2913 		}
2914 
2915 		if (req_prot_init(prot))
2916 			goto out_free_request_sock_slab;
2917 
2918 		if (prot->twsk_prot != NULL) {
2919 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2920 
2921 			if (prot->twsk_prot->twsk_slab_name == NULL)
2922 				goto out_free_request_sock_slab;
2923 
2924 			prot->twsk_prot->twsk_slab =
2925 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2926 						  prot->twsk_prot->twsk_obj_size,
2927 						  0,
2928 						  prot->slab_flags,
2929 						  NULL);
2930 			if (prot->twsk_prot->twsk_slab == NULL)
2931 				goto out_free_timewait_sock_slab_name;
2932 		}
2933 	}
2934 
2935 	mutex_lock(&proto_list_mutex);
2936 	list_add(&prot->node, &proto_list);
2937 	assign_proto_idx(prot);
2938 	mutex_unlock(&proto_list_mutex);
2939 	return 0;
2940 
2941 out_free_timewait_sock_slab_name:
2942 	kfree(prot->twsk_prot->twsk_slab_name);
2943 out_free_request_sock_slab:
2944 	req_prot_cleanup(prot->rsk_prot);
2945 
2946 	kmem_cache_destroy(prot->slab);
2947 	prot->slab = NULL;
2948 out:
2949 	return -ENOBUFS;
2950 }
2951 EXPORT_SYMBOL(proto_register);
2952 
2953 void proto_unregister(struct proto *prot)
2954 {
2955 	mutex_lock(&proto_list_mutex);
2956 	release_proto_idx(prot);
2957 	list_del(&prot->node);
2958 	mutex_unlock(&proto_list_mutex);
2959 
2960 	kmem_cache_destroy(prot->slab);
2961 	prot->slab = NULL;
2962 
2963 	req_prot_cleanup(prot->rsk_prot);
2964 
2965 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2966 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2967 		kfree(prot->twsk_prot->twsk_slab_name);
2968 		prot->twsk_prot->twsk_slab = NULL;
2969 	}
2970 }
2971 EXPORT_SYMBOL(proto_unregister);
2972 
2973 #ifdef CONFIG_PROC_FS
2974 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2975 	__acquires(proto_list_mutex)
2976 {
2977 	mutex_lock(&proto_list_mutex);
2978 	return seq_list_start_head(&proto_list, *pos);
2979 }
2980 
2981 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2982 {
2983 	return seq_list_next(v, &proto_list, pos);
2984 }
2985 
2986 static void proto_seq_stop(struct seq_file *seq, void *v)
2987 	__releases(proto_list_mutex)
2988 {
2989 	mutex_unlock(&proto_list_mutex);
2990 }
2991 
2992 static char proto_method_implemented(const void *method)
2993 {
2994 	return method == NULL ? 'n' : 'y';
2995 }
2996 static long sock_prot_memory_allocated(struct proto *proto)
2997 {
2998 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2999 }
3000 
3001 static char *sock_prot_memory_pressure(struct proto *proto)
3002 {
3003 	return proto->memory_pressure != NULL ?
3004 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3005 }
3006 
3007 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3008 {
3009 
3010 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3011 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3012 		   proto->name,
3013 		   proto->obj_size,
3014 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3015 		   sock_prot_memory_allocated(proto),
3016 		   sock_prot_memory_pressure(proto),
3017 		   proto->max_header,
3018 		   proto->slab == NULL ? "no" : "yes",
3019 		   module_name(proto->owner),
3020 		   proto_method_implemented(proto->close),
3021 		   proto_method_implemented(proto->connect),
3022 		   proto_method_implemented(proto->disconnect),
3023 		   proto_method_implemented(proto->accept),
3024 		   proto_method_implemented(proto->ioctl),
3025 		   proto_method_implemented(proto->init),
3026 		   proto_method_implemented(proto->destroy),
3027 		   proto_method_implemented(proto->shutdown),
3028 		   proto_method_implemented(proto->setsockopt),
3029 		   proto_method_implemented(proto->getsockopt),
3030 		   proto_method_implemented(proto->sendmsg),
3031 		   proto_method_implemented(proto->recvmsg),
3032 		   proto_method_implemented(proto->sendpage),
3033 		   proto_method_implemented(proto->bind),
3034 		   proto_method_implemented(proto->backlog_rcv),
3035 		   proto_method_implemented(proto->hash),
3036 		   proto_method_implemented(proto->unhash),
3037 		   proto_method_implemented(proto->get_port),
3038 		   proto_method_implemented(proto->enter_memory_pressure));
3039 }
3040 
3041 static int proto_seq_show(struct seq_file *seq, void *v)
3042 {
3043 	if (v == &proto_list)
3044 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3045 			   "protocol",
3046 			   "size",
3047 			   "sockets",
3048 			   "memory",
3049 			   "press",
3050 			   "maxhdr",
3051 			   "slab",
3052 			   "module",
3053 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3054 	else
3055 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3056 	return 0;
3057 }
3058 
3059 static const struct seq_operations proto_seq_ops = {
3060 	.start  = proto_seq_start,
3061 	.next   = proto_seq_next,
3062 	.stop   = proto_seq_stop,
3063 	.show   = proto_seq_show,
3064 };
3065 
3066 static int proto_seq_open(struct inode *inode, struct file *file)
3067 {
3068 	return seq_open_net(inode, file, &proto_seq_ops,
3069 			    sizeof(struct seq_net_private));
3070 }
3071 
3072 static const struct file_operations proto_seq_fops = {
3073 	.owner		= THIS_MODULE,
3074 	.open		= proto_seq_open,
3075 	.read		= seq_read,
3076 	.llseek		= seq_lseek,
3077 	.release	= seq_release_net,
3078 };
3079 
3080 static __net_init int proto_init_net(struct net *net)
3081 {
3082 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3083 		return -ENOMEM;
3084 
3085 	return 0;
3086 }
3087 
3088 static __net_exit void proto_exit_net(struct net *net)
3089 {
3090 	remove_proc_entry("protocols", net->proc_net);
3091 }
3092 
3093 
3094 static __net_initdata struct pernet_operations proto_net_ops = {
3095 	.init = proto_init_net,
3096 	.exit = proto_exit_net,
3097 };
3098 
3099 static int __init proto_init(void)
3100 {
3101 	return register_pernet_subsys(&proto_net_ops);
3102 }
3103 
3104 subsys_initcall(proto_init);
3105 
3106 #endif /* PROC_FS */
3107