1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 iov_iter_advance(from, copied); 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 struct scatterlist *sge; 373 u32 copy, buf_size; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 if (!bytes) 401 break; 402 msg->sg.copybreak = 0; 403 sk_msg_iter_var_next(i); 404 } while (i != msg->sg.end); 405 out: 406 msg->sg.curr = i; 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 410 411 /* Receive sk_msg from psock->ingress_msg to @msg. */ 412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 413 int len, int flags) 414 { 415 struct iov_iter *iter = &msg->msg_iter; 416 int peek = flags & MSG_PEEK; 417 struct sk_msg *msg_rx; 418 int i, copied = 0; 419 420 msg_rx = sk_psock_peek_msg(psock); 421 while (copied != len) { 422 struct scatterlist *sge; 423 424 if (unlikely(!msg_rx)) 425 break; 426 427 i = msg_rx->sg.start; 428 do { 429 struct page *page; 430 int copy; 431 432 sge = sk_msg_elem(msg_rx, i); 433 copy = sge->length; 434 page = sg_page(sge); 435 if (copied + copy > len) 436 copy = len - copied; 437 copy = copy_page_to_iter(page, sge->offset, copy, iter); 438 if (!copy) 439 return copied ? copied : -EFAULT; 440 441 copied += copy; 442 if (likely(!peek)) { 443 sge->offset += copy; 444 sge->length -= copy; 445 if (!msg_rx->skb) 446 sk_mem_uncharge(sk, copy); 447 msg_rx->sg.size -= copy; 448 449 if (!sge->length) { 450 sk_msg_iter_var_next(i); 451 if (!msg_rx->skb) 452 put_page(page); 453 } 454 } else { 455 /* Lets not optimize peek case if copy_page_to_iter 456 * didn't copy the entire length lets just break. 457 */ 458 if (copy != sge->length) 459 return copied; 460 sk_msg_iter_var_next(i); 461 } 462 463 if (copied == len) 464 break; 465 } while (i != msg_rx->sg.end); 466 467 if (unlikely(peek)) { 468 msg_rx = sk_psock_next_msg(psock, msg_rx); 469 if (!msg_rx) 470 break; 471 continue; 472 } 473 474 msg_rx->sg.start = i; 475 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 476 msg_rx = sk_psock_dequeue_msg(psock); 477 kfree_sk_msg(msg_rx); 478 } 479 msg_rx = sk_psock_peek_msg(psock); 480 } 481 482 return copied; 483 } 484 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 485 486 bool sk_msg_is_readable(struct sock *sk) 487 { 488 struct sk_psock *psock; 489 bool empty = true; 490 491 rcu_read_lock(); 492 psock = sk_psock(sk); 493 if (likely(psock)) 494 empty = list_empty(&psock->ingress_msg); 495 rcu_read_unlock(); 496 return !empty; 497 } 498 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 499 500 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 501 struct sk_buff *skb) 502 { 503 struct sk_msg *msg; 504 505 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 506 return NULL; 507 508 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 509 return NULL; 510 511 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 512 if (unlikely(!msg)) 513 return NULL; 514 515 sk_msg_init(msg); 516 return msg; 517 } 518 519 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 520 u32 off, u32 len, 521 struct sk_psock *psock, 522 struct sock *sk, 523 struct sk_msg *msg) 524 { 525 int num_sge, copied; 526 527 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 528 if (num_sge < 0) { 529 /* skb linearize may fail with ENOMEM, but lets simply try again 530 * later if this happens. Under memory pressure we don't want to 531 * drop the skb. We need to linearize the skb so that the mapping 532 * in skb_to_sgvec can not error. 533 */ 534 if (skb_linearize(skb)) 535 return -EAGAIN; 536 537 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 538 if (unlikely(num_sge < 0)) 539 return num_sge; 540 } 541 542 copied = len; 543 msg->sg.start = 0; 544 msg->sg.size = copied; 545 msg->sg.end = num_sge; 546 msg->skb = skb; 547 548 sk_psock_queue_msg(psock, msg); 549 sk_psock_data_ready(sk, psock); 550 return copied; 551 } 552 553 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 554 u32 off, u32 len); 555 556 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 557 u32 off, u32 len) 558 { 559 struct sock *sk = psock->sk; 560 struct sk_msg *msg; 561 int err; 562 563 /* If we are receiving on the same sock skb->sk is already assigned, 564 * skip memory accounting and owner transition seeing it already set 565 * correctly. 566 */ 567 if (unlikely(skb->sk == sk)) 568 return sk_psock_skb_ingress_self(psock, skb, off, len); 569 msg = sk_psock_create_ingress_msg(sk, skb); 570 if (!msg) 571 return -EAGAIN; 572 573 /* This will transition ownership of the data from the socket where 574 * the BPF program was run initiating the redirect to the socket 575 * we will eventually receive this data on. The data will be released 576 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 577 * into user buffers. 578 */ 579 skb_set_owner_r(skb, sk); 580 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 581 if (err < 0) 582 kfree(msg); 583 return err; 584 } 585 586 /* Puts an skb on the ingress queue of the socket already assigned to the 587 * skb. In this case we do not need to check memory limits or skb_set_owner_r 588 * because the skb is already accounted for here. 589 */ 590 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 591 u32 off, u32 len) 592 { 593 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 594 struct sock *sk = psock->sk; 595 int err; 596 597 if (unlikely(!msg)) 598 return -EAGAIN; 599 sk_msg_init(msg); 600 skb_set_owner_r(skb, sk); 601 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 602 if (err < 0) 603 kfree(msg); 604 return err; 605 } 606 607 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 608 u32 off, u32 len, bool ingress) 609 { 610 if (!ingress) { 611 if (!sock_writeable(psock->sk)) 612 return -EAGAIN; 613 return skb_send_sock(psock->sk, skb, off, len); 614 } 615 return sk_psock_skb_ingress(psock, skb, off, len); 616 } 617 618 static void sk_psock_skb_state(struct sk_psock *psock, 619 struct sk_psock_work_state *state, 620 struct sk_buff *skb, 621 int len, int off) 622 { 623 spin_lock_bh(&psock->ingress_lock); 624 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 625 state->skb = skb; 626 state->len = len; 627 state->off = off; 628 } else { 629 sock_drop(psock->sk, skb); 630 } 631 spin_unlock_bh(&psock->ingress_lock); 632 } 633 634 static void sk_psock_backlog(struct work_struct *work) 635 { 636 struct sk_psock *psock = container_of(work, struct sk_psock, work); 637 struct sk_psock_work_state *state = &psock->work_state; 638 struct sk_buff *skb = NULL; 639 bool ingress; 640 u32 len, off; 641 int ret; 642 643 mutex_lock(&psock->work_mutex); 644 if (unlikely(state->skb)) { 645 spin_lock_bh(&psock->ingress_lock); 646 skb = state->skb; 647 len = state->len; 648 off = state->off; 649 state->skb = NULL; 650 spin_unlock_bh(&psock->ingress_lock); 651 } 652 if (skb) 653 goto start; 654 655 while ((skb = skb_dequeue(&psock->ingress_skb))) { 656 len = skb->len; 657 off = 0; 658 if (skb_bpf_strparser(skb)) { 659 struct strp_msg *stm = strp_msg(skb); 660 661 off = stm->offset; 662 len = stm->full_len; 663 } 664 start: 665 ingress = skb_bpf_ingress(skb); 666 skb_bpf_redirect_clear(skb); 667 do { 668 ret = -EIO; 669 if (!sock_flag(psock->sk, SOCK_DEAD)) 670 ret = sk_psock_handle_skb(psock, skb, off, 671 len, ingress); 672 if (ret <= 0) { 673 if (ret == -EAGAIN) { 674 sk_psock_skb_state(psock, state, skb, 675 len, off); 676 goto end; 677 } 678 /* Hard errors break pipe and stop xmit. */ 679 sk_psock_report_error(psock, ret ? -ret : EPIPE); 680 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 681 sock_drop(psock->sk, skb); 682 goto end; 683 } 684 off += ret; 685 len -= ret; 686 } while (len); 687 688 if (!ingress) 689 kfree_skb(skb); 690 } 691 end: 692 mutex_unlock(&psock->work_mutex); 693 } 694 695 struct sk_psock *sk_psock_init(struct sock *sk, int node) 696 { 697 struct sk_psock *psock; 698 struct proto *prot; 699 700 write_lock_bh(&sk->sk_callback_lock); 701 702 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) { 703 psock = ERR_PTR(-EINVAL); 704 goto out; 705 } 706 707 if (sk->sk_user_data) { 708 psock = ERR_PTR(-EBUSY); 709 goto out; 710 } 711 712 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 713 if (!psock) { 714 psock = ERR_PTR(-ENOMEM); 715 goto out; 716 } 717 718 prot = READ_ONCE(sk->sk_prot); 719 psock->sk = sk; 720 psock->eval = __SK_NONE; 721 psock->sk_proto = prot; 722 psock->saved_unhash = prot->unhash; 723 psock->saved_destroy = prot->destroy; 724 psock->saved_close = prot->close; 725 psock->saved_write_space = sk->sk_write_space; 726 727 INIT_LIST_HEAD(&psock->link); 728 spin_lock_init(&psock->link_lock); 729 730 INIT_WORK(&psock->work, sk_psock_backlog); 731 mutex_init(&psock->work_mutex); 732 INIT_LIST_HEAD(&psock->ingress_msg); 733 spin_lock_init(&psock->ingress_lock); 734 skb_queue_head_init(&psock->ingress_skb); 735 736 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 737 refcount_set(&psock->refcnt, 1); 738 739 rcu_assign_sk_user_data_nocopy(sk, psock); 740 sock_hold(sk); 741 742 out: 743 write_unlock_bh(&sk->sk_callback_lock); 744 return psock; 745 } 746 EXPORT_SYMBOL_GPL(sk_psock_init); 747 748 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 749 { 750 struct sk_psock_link *link; 751 752 spin_lock_bh(&psock->link_lock); 753 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 754 list); 755 if (link) 756 list_del(&link->list); 757 spin_unlock_bh(&psock->link_lock); 758 return link; 759 } 760 761 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 762 { 763 struct sk_msg *msg, *tmp; 764 765 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 766 list_del(&msg->list); 767 sk_msg_free(psock->sk, msg); 768 kfree(msg); 769 } 770 } 771 772 static void __sk_psock_zap_ingress(struct sk_psock *psock) 773 { 774 struct sk_buff *skb; 775 776 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 777 skb_bpf_redirect_clear(skb); 778 sock_drop(psock->sk, skb); 779 } 780 kfree_skb(psock->work_state.skb); 781 /* We null the skb here to ensure that calls to sk_psock_backlog 782 * do not pick up the free'd skb. 783 */ 784 psock->work_state.skb = NULL; 785 __sk_psock_purge_ingress_msg(psock); 786 } 787 788 static void sk_psock_link_destroy(struct sk_psock *psock) 789 { 790 struct sk_psock_link *link, *tmp; 791 792 list_for_each_entry_safe(link, tmp, &psock->link, list) { 793 list_del(&link->list); 794 sk_psock_free_link(link); 795 } 796 } 797 798 void sk_psock_stop(struct sk_psock *psock, bool wait) 799 { 800 spin_lock_bh(&psock->ingress_lock); 801 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 802 sk_psock_cork_free(psock); 803 __sk_psock_zap_ingress(psock); 804 spin_unlock_bh(&psock->ingress_lock); 805 806 if (wait) 807 cancel_work_sync(&psock->work); 808 } 809 810 static void sk_psock_done_strp(struct sk_psock *psock); 811 812 static void sk_psock_destroy(struct work_struct *work) 813 { 814 struct sk_psock *psock = container_of(to_rcu_work(work), 815 struct sk_psock, rwork); 816 /* No sk_callback_lock since already detached. */ 817 818 sk_psock_done_strp(psock); 819 820 cancel_work_sync(&psock->work); 821 mutex_destroy(&psock->work_mutex); 822 823 psock_progs_drop(&psock->progs); 824 825 sk_psock_link_destroy(psock); 826 sk_psock_cork_free(psock); 827 828 if (psock->sk_redir) 829 sock_put(psock->sk_redir); 830 sock_put(psock->sk); 831 kfree(psock); 832 } 833 834 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 835 { 836 write_lock_bh(&sk->sk_callback_lock); 837 sk_psock_restore_proto(sk, psock); 838 rcu_assign_sk_user_data(sk, NULL); 839 if (psock->progs.stream_parser) 840 sk_psock_stop_strp(sk, psock); 841 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 842 sk_psock_stop_verdict(sk, psock); 843 write_unlock_bh(&sk->sk_callback_lock); 844 845 sk_psock_stop(psock, false); 846 847 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 848 queue_rcu_work(system_wq, &psock->rwork); 849 } 850 EXPORT_SYMBOL_GPL(sk_psock_drop); 851 852 static int sk_psock_map_verd(int verdict, bool redir) 853 { 854 switch (verdict) { 855 case SK_PASS: 856 return redir ? __SK_REDIRECT : __SK_PASS; 857 case SK_DROP: 858 default: 859 break; 860 } 861 862 return __SK_DROP; 863 } 864 865 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 866 struct sk_msg *msg) 867 { 868 struct bpf_prog *prog; 869 int ret; 870 871 rcu_read_lock(); 872 prog = READ_ONCE(psock->progs.msg_parser); 873 if (unlikely(!prog)) { 874 ret = __SK_PASS; 875 goto out; 876 } 877 878 sk_msg_compute_data_pointers(msg); 879 msg->sk = sk; 880 ret = bpf_prog_run_pin_on_cpu(prog, msg); 881 ret = sk_psock_map_verd(ret, msg->sk_redir); 882 psock->apply_bytes = msg->apply_bytes; 883 if (ret == __SK_REDIRECT) { 884 if (psock->sk_redir) 885 sock_put(psock->sk_redir); 886 psock->sk_redir = msg->sk_redir; 887 if (!psock->sk_redir) { 888 ret = __SK_DROP; 889 goto out; 890 } 891 sock_hold(psock->sk_redir); 892 } 893 out: 894 rcu_read_unlock(); 895 return ret; 896 } 897 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 898 899 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 900 { 901 struct sk_psock *psock_other; 902 struct sock *sk_other; 903 904 sk_other = skb_bpf_redirect_fetch(skb); 905 /* This error is a buggy BPF program, it returned a redirect 906 * return code, but then didn't set a redirect interface. 907 */ 908 if (unlikely(!sk_other)) { 909 skb_bpf_redirect_clear(skb); 910 sock_drop(from->sk, skb); 911 return -EIO; 912 } 913 psock_other = sk_psock(sk_other); 914 /* This error indicates the socket is being torn down or had another 915 * error that caused the pipe to break. We can't send a packet on 916 * a socket that is in this state so we drop the skb. 917 */ 918 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 919 skb_bpf_redirect_clear(skb); 920 sock_drop(from->sk, skb); 921 return -EIO; 922 } 923 spin_lock_bh(&psock_other->ingress_lock); 924 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 925 spin_unlock_bh(&psock_other->ingress_lock); 926 skb_bpf_redirect_clear(skb); 927 sock_drop(from->sk, skb); 928 return -EIO; 929 } 930 931 skb_queue_tail(&psock_other->ingress_skb, skb); 932 schedule_work(&psock_other->work); 933 spin_unlock_bh(&psock_other->ingress_lock); 934 return 0; 935 } 936 937 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 938 struct sk_psock *from, int verdict) 939 { 940 switch (verdict) { 941 case __SK_REDIRECT: 942 sk_psock_skb_redirect(from, skb); 943 break; 944 case __SK_PASS: 945 case __SK_DROP: 946 default: 947 break; 948 } 949 } 950 951 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 952 { 953 struct bpf_prog *prog; 954 int ret = __SK_PASS; 955 956 rcu_read_lock(); 957 prog = READ_ONCE(psock->progs.stream_verdict); 958 if (likely(prog)) { 959 skb->sk = psock->sk; 960 skb_dst_drop(skb); 961 skb_bpf_redirect_clear(skb); 962 ret = bpf_prog_run_pin_on_cpu(prog, skb); 963 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 964 skb->sk = NULL; 965 } 966 sk_psock_tls_verdict_apply(skb, psock, ret); 967 rcu_read_unlock(); 968 return ret; 969 } 970 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 971 972 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 973 int verdict) 974 { 975 struct sock *sk_other; 976 int err = 0; 977 u32 len, off; 978 979 switch (verdict) { 980 case __SK_PASS: 981 err = -EIO; 982 sk_other = psock->sk; 983 if (sock_flag(sk_other, SOCK_DEAD) || 984 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 985 skb_bpf_redirect_clear(skb); 986 goto out_free; 987 } 988 989 skb_bpf_set_ingress(skb); 990 991 /* If the queue is empty then we can submit directly 992 * into the msg queue. If its not empty we have to 993 * queue work otherwise we may get OOO data. Otherwise, 994 * if sk_psock_skb_ingress errors will be handled by 995 * retrying later from workqueue. 996 */ 997 if (skb_queue_empty(&psock->ingress_skb)) { 998 len = skb->len; 999 off = 0; 1000 if (skb_bpf_strparser(skb)) { 1001 struct strp_msg *stm = strp_msg(skb); 1002 1003 off = stm->offset; 1004 len = stm->full_len; 1005 } 1006 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1007 } 1008 if (err < 0) { 1009 spin_lock_bh(&psock->ingress_lock); 1010 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1011 skb_queue_tail(&psock->ingress_skb, skb); 1012 schedule_work(&psock->work); 1013 err = 0; 1014 } 1015 spin_unlock_bh(&psock->ingress_lock); 1016 if (err < 0) { 1017 skb_bpf_redirect_clear(skb); 1018 goto out_free; 1019 } 1020 } 1021 break; 1022 case __SK_REDIRECT: 1023 err = sk_psock_skb_redirect(psock, skb); 1024 break; 1025 case __SK_DROP: 1026 default: 1027 out_free: 1028 sock_drop(psock->sk, skb); 1029 } 1030 1031 return err; 1032 } 1033 1034 static void sk_psock_write_space(struct sock *sk) 1035 { 1036 struct sk_psock *psock; 1037 void (*write_space)(struct sock *sk) = NULL; 1038 1039 rcu_read_lock(); 1040 psock = sk_psock(sk); 1041 if (likely(psock)) { 1042 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1043 schedule_work(&psock->work); 1044 write_space = psock->saved_write_space; 1045 } 1046 rcu_read_unlock(); 1047 if (write_space) 1048 write_space(sk); 1049 } 1050 1051 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1052 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1053 { 1054 struct sk_psock *psock; 1055 struct bpf_prog *prog; 1056 int ret = __SK_DROP; 1057 struct sock *sk; 1058 1059 rcu_read_lock(); 1060 sk = strp->sk; 1061 psock = sk_psock(sk); 1062 if (unlikely(!psock)) { 1063 sock_drop(sk, skb); 1064 goto out; 1065 } 1066 prog = READ_ONCE(psock->progs.stream_verdict); 1067 if (likely(prog)) { 1068 skb->sk = sk; 1069 skb_dst_drop(skb); 1070 skb_bpf_redirect_clear(skb); 1071 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1072 if (ret == SK_PASS) 1073 skb_bpf_set_strparser(skb); 1074 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1075 skb->sk = NULL; 1076 } 1077 sk_psock_verdict_apply(psock, skb, ret); 1078 out: 1079 rcu_read_unlock(); 1080 } 1081 1082 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1083 { 1084 return err; 1085 } 1086 1087 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1088 { 1089 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1090 struct bpf_prog *prog; 1091 int ret = skb->len; 1092 1093 rcu_read_lock(); 1094 prog = READ_ONCE(psock->progs.stream_parser); 1095 if (likely(prog)) { 1096 skb->sk = psock->sk; 1097 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1098 skb->sk = NULL; 1099 } 1100 rcu_read_unlock(); 1101 return ret; 1102 } 1103 1104 /* Called with socket lock held. */ 1105 static void sk_psock_strp_data_ready(struct sock *sk) 1106 { 1107 struct sk_psock *psock; 1108 1109 rcu_read_lock(); 1110 psock = sk_psock(sk); 1111 if (likely(psock)) { 1112 if (tls_sw_has_ctx_rx(sk)) { 1113 psock->saved_data_ready(sk); 1114 } else { 1115 write_lock_bh(&sk->sk_callback_lock); 1116 strp_data_ready(&psock->strp); 1117 write_unlock_bh(&sk->sk_callback_lock); 1118 } 1119 } 1120 rcu_read_unlock(); 1121 } 1122 1123 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1124 { 1125 static const struct strp_callbacks cb = { 1126 .rcv_msg = sk_psock_strp_read, 1127 .read_sock_done = sk_psock_strp_read_done, 1128 .parse_msg = sk_psock_strp_parse, 1129 }; 1130 1131 return strp_init(&psock->strp, sk, &cb); 1132 } 1133 1134 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1135 { 1136 if (psock->saved_data_ready) 1137 return; 1138 1139 psock->saved_data_ready = sk->sk_data_ready; 1140 sk->sk_data_ready = sk_psock_strp_data_ready; 1141 sk->sk_write_space = sk_psock_write_space; 1142 } 1143 1144 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1145 { 1146 psock_set_prog(&psock->progs.stream_parser, NULL); 1147 1148 if (!psock->saved_data_ready) 1149 return; 1150 1151 sk->sk_data_ready = psock->saved_data_ready; 1152 psock->saved_data_ready = NULL; 1153 strp_stop(&psock->strp); 1154 } 1155 1156 static void sk_psock_done_strp(struct sk_psock *psock) 1157 { 1158 /* Parser has been stopped */ 1159 if (psock->progs.stream_parser) 1160 strp_done(&psock->strp); 1161 } 1162 #else 1163 static void sk_psock_done_strp(struct sk_psock *psock) 1164 { 1165 } 1166 #endif /* CONFIG_BPF_STREAM_PARSER */ 1167 1168 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1169 unsigned int offset, size_t orig_len) 1170 { 1171 struct sock *sk = (struct sock *)desc->arg.data; 1172 struct sk_psock *psock; 1173 struct bpf_prog *prog; 1174 int ret = __SK_DROP; 1175 int len = orig_len; 1176 1177 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1178 skb = skb_clone(skb, GFP_ATOMIC); 1179 if (!skb) { 1180 desc->error = -ENOMEM; 1181 return 0; 1182 } 1183 1184 rcu_read_lock(); 1185 psock = sk_psock(sk); 1186 if (unlikely(!psock)) { 1187 len = 0; 1188 sock_drop(sk, skb); 1189 goto out; 1190 } 1191 prog = READ_ONCE(psock->progs.stream_verdict); 1192 if (!prog) 1193 prog = READ_ONCE(psock->progs.skb_verdict); 1194 if (likely(prog)) { 1195 skb->sk = sk; 1196 skb_dst_drop(skb); 1197 skb_bpf_redirect_clear(skb); 1198 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1199 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1200 skb->sk = NULL; 1201 } 1202 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1203 len = 0; 1204 out: 1205 rcu_read_unlock(); 1206 return len; 1207 } 1208 1209 static void sk_psock_verdict_data_ready(struct sock *sk) 1210 { 1211 struct socket *sock = sk->sk_socket; 1212 read_descriptor_t desc; 1213 1214 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1215 return; 1216 1217 desc.arg.data = sk; 1218 desc.error = 0; 1219 desc.count = 1; 1220 1221 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1222 } 1223 1224 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1225 { 1226 if (psock->saved_data_ready) 1227 return; 1228 1229 psock->saved_data_ready = sk->sk_data_ready; 1230 sk->sk_data_ready = sk_psock_verdict_data_ready; 1231 sk->sk_write_space = sk_psock_write_space; 1232 } 1233 1234 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1235 { 1236 psock_set_prog(&psock->progs.stream_verdict, NULL); 1237 psock_set_prog(&psock->progs.skb_verdict, NULL); 1238 1239 if (!psock->saved_data_ready) 1240 return; 1241 1242 sk->sk_data_ready = psock->saved_data_ready; 1243 psock->saved_data_ready = NULL; 1244 } 1245