1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages2(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 bytes -= copied; 335 msg->sg.size += copied; 336 337 while (copied) { 338 use = min_t(int, copied, PAGE_SIZE - offset); 339 sg_set_page(&msg->sg.data[msg->sg.end], 340 pages[i], use, offset); 341 sg_unmark_end(&msg->sg.data[msg->sg.end]); 342 sk_mem_charge(sk, use); 343 344 offset = 0; 345 copied -= use; 346 sk_msg_iter_next(msg, end); 347 num_elems++; 348 i++; 349 } 350 /* When zerocopy is mixed with sk_msg_*copy* operations we 351 * may have a copybreak set in this case clear and prefer 352 * zerocopy remainder when possible. 353 */ 354 msg->sg.copybreak = 0; 355 msg->sg.curr = msg->sg.end; 356 } 357 out: 358 /* Revert iov_iter updates, msg will need to use 'trim' later if it 359 * also needs to be cleared. 360 */ 361 if (ret) 362 iov_iter_revert(from, msg->sg.size - orig); 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 366 367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 368 struct sk_msg *msg, u32 bytes) 369 { 370 int ret = -ENOSPC, i = msg->sg.curr; 371 struct scatterlist *sge; 372 u32 copy, buf_size; 373 void *to; 374 375 do { 376 sge = sk_msg_elem(msg, i); 377 /* This is possible if a trim operation shrunk the buffer */ 378 if (msg->sg.copybreak >= sge->length) { 379 msg->sg.copybreak = 0; 380 sk_msg_iter_var_next(i); 381 if (i == msg->sg.end) 382 break; 383 sge = sk_msg_elem(msg, i); 384 } 385 386 buf_size = sge->length - msg->sg.copybreak; 387 copy = (buf_size > bytes) ? bytes : buf_size; 388 to = sg_virt(sge) + msg->sg.copybreak; 389 msg->sg.copybreak += copy; 390 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 391 ret = copy_from_iter_nocache(to, copy, from); 392 else 393 ret = copy_from_iter(to, copy, from); 394 if (ret != copy) { 395 ret = -EFAULT; 396 goto out; 397 } 398 bytes -= copy; 399 if (!bytes) 400 break; 401 msg->sg.copybreak = 0; 402 sk_msg_iter_var_next(i); 403 } while (i != msg->sg.end); 404 out: 405 msg->sg.curr = i; 406 return ret; 407 } 408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 409 410 /* Receive sk_msg from psock->ingress_msg to @msg. */ 411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 412 int len, int flags) 413 { 414 struct iov_iter *iter = &msg->msg_iter; 415 int peek = flags & MSG_PEEK; 416 struct sk_msg *msg_rx; 417 int i, copied = 0; 418 419 msg_rx = sk_psock_peek_msg(psock); 420 while (copied != len) { 421 struct scatterlist *sge; 422 423 if (unlikely(!msg_rx)) 424 break; 425 426 i = msg_rx->sg.start; 427 do { 428 struct page *page; 429 int copy; 430 431 sge = sk_msg_elem(msg_rx, i); 432 copy = sge->length; 433 page = sg_page(sge); 434 if (copied + copy > len) 435 copy = len - copied; 436 copy = copy_page_to_iter(page, sge->offset, copy, iter); 437 if (!copy) 438 return copied ? copied : -EFAULT; 439 440 copied += copy; 441 if (likely(!peek)) { 442 sge->offset += copy; 443 sge->length -= copy; 444 if (!msg_rx->skb) 445 sk_mem_uncharge(sk, copy); 446 msg_rx->sg.size -= copy; 447 448 if (!sge->length) { 449 sk_msg_iter_var_next(i); 450 if (!msg_rx->skb) 451 put_page(page); 452 } 453 } else { 454 /* Lets not optimize peek case if copy_page_to_iter 455 * didn't copy the entire length lets just break. 456 */ 457 if (copy != sge->length) 458 return copied; 459 sk_msg_iter_var_next(i); 460 } 461 462 if (copied == len) 463 break; 464 } while ((i != msg_rx->sg.end) && !sg_is_last(sge)); 465 466 if (unlikely(peek)) { 467 msg_rx = sk_psock_next_msg(psock, msg_rx); 468 if (!msg_rx) 469 break; 470 continue; 471 } 472 473 msg_rx->sg.start = i; 474 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) { 475 msg_rx = sk_psock_dequeue_msg(psock); 476 kfree_sk_msg(msg_rx); 477 } 478 msg_rx = sk_psock_peek_msg(psock); 479 } 480 481 return copied; 482 } 483 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 484 485 bool sk_msg_is_readable(struct sock *sk) 486 { 487 struct sk_psock *psock; 488 bool empty = true; 489 490 rcu_read_lock(); 491 psock = sk_psock(sk); 492 if (likely(psock)) 493 empty = list_empty(&psock->ingress_msg); 494 rcu_read_unlock(); 495 return !empty; 496 } 497 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 498 499 static struct sk_msg *alloc_sk_msg(void) 500 { 501 struct sk_msg *msg; 502 503 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 504 if (unlikely(!msg)) 505 return NULL; 506 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS); 507 return msg; 508 } 509 510 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 511 struct sk_buff *skb) 512 { 513 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 514 return NULL; 515 516 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 517 return NULL; 518 519 return alloc_sk_msg(); 520 } 521 522 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 523 u32 off, u32 len, 524 struct sk_psock *psock, 525 struct sock *sk, 526 struct sk_msg *msg) 527 { 528 int num_sge, copied; 529 530 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 531 if (num_sge < 0) { 532 /* skb linearize may fail with ENOMEM, but lets simply try again 533 * later if this happens. Under memory pressure we don't want to 534 * drop the skb. We need to linearize the skb so that the mapping 535 * in skb_to_sgvec can not error. 536 */ 537 if (skb_linearize(skb)) 538 return -EAGAIN; 539 540 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 541 if (unlikely(num_sge < 0)) 542 return num_sge; 543 } 544 545 copied = len; 546 msg->sg.start = 0; 547 msg->sg.size = copied; 548 msg->sg.end = num_sge; 549 msg->skb = skb; 550 551 sk_psock_queue_msg(psock, msg); 552 sk_psock_data_ready(sk, psock); 553 return copied; 554 } 555 556 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 557 u32 off, u32 len); 558 559 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 560 u32 off, u32 len) 561 { 562 struct sock *sk = psock->sk; 563 struct sk_msg *msg; 564 int err; 565 566 /* If we are receiving on the same sock skb->sk is already assigned, 567 * skip memory accounting and owner transition seeing it already set 568 * correctly. 569 */ 570 if (unlikely(skb->sk == sk)) 571 return sk_psock_skb_ingress_self(psock, skb, off, len); 572 msg = sk_psock_create_ingress_msg(sk, skb); 573 if (!msg) 574 return -EAGAIN; 575 576 /* This will transition ownership of the data from the socket where 577 * the BPF program was run initiating the redirect to the socket 578 * we will eventually receive this data on. The data will be released 579 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 580 * into user buffers. 581 */ 582 skb_set_owner_r(skb, sk); 583 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 584 if (err < 0) 585 kfree(msg); 586 return err; 587 } 588 589 /* Puts an skb on the ingress queue of the socket already assigned to the 590 * skb. In this case we do not need to check memory limits or skb_set_owner_r 591 * because the skb is already accounted for here. 592 */ 593 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 594 u32 off, u32 len) 595 { 596 struct sk_msg *msg = alloc_sk_msg(); 597 struct sock *sk = psock->sk; 598 int err; 599 600 if (unlikely(!msg)) 601 return -EAGAIN; 602 skb_set_owner_r(skb, sk); 603 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 604 if (err < 0) 605 kfree(msg); 606 return err; 607 } 608 609 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 610 u32 off, u32 len, bool ingress) 611 { 612 if (!ingress) { 613 if (!sock_writeable(psock->sk)) 614 return -EAGAIN; 615 return skb_send_sock(psock->sk, skb, off, len); 616 } 617 return sk_psock_skb_ingress(psock, skb, off, len); 618 } 619 620 static void sk_psock_skb_state(struct sk_psock *psock, 621 struct sk_psock_work_state *state, 622 struct sk_buff *skb, 623 int len, int off) 624 { 625 spin_lock_bh(&psock->ingress_lock); 626 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 627 state->skb = skb; 628 state->len = len; 629 state->off = off; 630 } else { 631 sock_drop(psock->sk, skb); 632 } 633 spin_unlock_bh(&psock->ingress_lock); 634 } 635 636 static void sk_psock_backlog(struct work_struct *work) 637 { 638 struct sk_psock *psock = container_of(work, struct sk_psock, work); 639 struct sk_psock_work_state *state = &psock->work_state; 640 struct sk_buff *skb = NULL; 641 bool ingress; 642 u32 len, off; 643 int ret; 644 645 mutex_lock(&psock->work_mutex); 646 if (unlikely(state->skb)) { 647 spin_lock_bh(&psock->ingress_lock); 648 skb = state->skb; 649 len = state->len; 650 off = state->off; 651 state->skb = NULL; 652 spin_unlock_bh(&psock->ingress_lock); 653 } 654 if (skb) 655 goto start; 656 657 while ((skb = skb_dequeue(&psock->ingress_skb))) { 658 len = skb->len; 659 off = 0; 660 if (skb_bpf_strparser(skb)) { 661 struct strp_msg *stm = strp_msg(skb); 662 663 off = stm->offset; 664 len = stm->full_len; 665 } 666 start: 667 ingress = skb_bpf_ingress(skb); 668 skb_bpf_redirect_clear(skb); 669 do { 670 ret = -EIO; 671 if (!sock_flag(psock->sk, SOCK_DEAD)) 672 ret = sk_psock_handle_skb(psock, skb, off, 673 len, ingress); 674 if (ret <= 0) { 675 if (ret == -EAGAIN) { 676 sk_psock_skb_state(psock, state, skb, 677 len, off); 678 goto end; 679 } 680 /* Hard errors break pipe and stop xmit. */ 681 sk_psock_report_error(psock, ret ? -ret : EPIPE); 682 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 683 sock_drop(psock->sk, skb); 684 goto end; 685 } 686 off += ret; 687 len -= ret; 688 } while (len); 689 690 if (!ingress) 691 kfree_skb(skb); 692 } 693 end: 694 mutex_unlock(&psock->work_mutex); 695 } 696 697 struct sk_psock *sk_psock_init(struct sock *sk, int node) 698 { 699 struct sk_psock *psock; 700 struct proto *prot; 701 702 write_lock_bh(&sk->sk_callback_lock); 703 704 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) { 705 psock = ERR_PTR(-EINVAL); 706 goto out; 707 } 708 709 if (sk->sk_user_data) { 710 psock = ERR_PTR(-EBUSY); 711 goto out; 712 } 713 714 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 715 if (!psock) { 716 psock = ERR_PTR(-ENOMEM); 717 goto out; 718 } 719 720 prot = READ_ONCE(sk->sk_prot); 721 psock->sk = sk; 722 psock->eval = __SK_NONE; 723 psock->sk_proto = prot; 724 psock->saved_unhash = prot->unhash; 725 psock->saved_destroy = prot->destroy; 726 psock->saved_close = prot->close; 727 psock->saved_write_space = sk->sk_write_space; 728 729 INIT_LIST_HEAD(&psock->link); 730 spin_lock_init(&psock->link_lock); 731 732 INIT_WORK(&psock->work, sk_psock_backlog); 733 mutex_init(&psock->work_mutex); 734 INIT_LIST_HEAD(&psock->ingress_msg); 735 spin_lock_init(&psock->ingress_lock); 736 skb_queue_head_init(&psock->ingress_skb); 737 738 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 739 refcount_set(&psock->refcnt, 1); 740 741 __rcu_assign_sk_user_data_with_flags(sk, psock, 742 SK_USER_DATA_NOCOPY | 743 SK_USER_DATA_PSOCK); 744 sock_hold(sk); 745 746 out: 747 write_unlock_bh(&sk->sk_callback_lock); 748 return psock; 749 } 750 EXPORT_SYMBOL_GPL(sk_psock_init); 751 752 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 753 { 754 struct sk_psock_link *link; 755 756 spin_lock_bh(&psock->link_lock); 757 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 758 list); 759 if (link) 760 list_del(&link->list); 761 spin_unlock_bh(&psock->link_lock); 762 return link; 763 } 764 765 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 766 { 767 struct sk_msg *msg, *tmp; 768 769 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 770 list_del(&msg->list); 771 sk_msg_free(psock->sk, msg); 772 kfree(msg); 773 } 774 } 775 776 static void __sk_psock_zap_ingress(struct sk_psock *psock) 777 { 778 struct sk_buff *skb; 779 780 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 781 skb_bpf_redirect_clear(skb); 782 sock_drop(psock->sk, skb); 783 } 784 kfree_skb(psock->work_state.skb); 785 /* We null the skb here to ensure that calls to sk_psock_backlog 786 * do not pick up the free'd skb. 787 */ 788 psock->work_state.skb = NULL; 789 __sk_psock_purge_ingress_msg(psock); 790 } 791 792 static void sk_psock_link_destroy(struct sk_psock *psock) 793 { 794 struct sk_psock_link *link, *tmp; 795 796 list_for_each_entry_safe(link, tmp, &psock->link, list) { 797 list_del(&link->list); 798 sk_psock_free_link(link); 799 } 800 } 801 802 void sk_psock_stop(struct sk_psock *psock, bool wait) 803 { 804 spin_lock_bh(&psock->ingress_lock); 805 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 806 sk_psock_cork_free(psock); 807 __sk_psock_zap_ingress(psock); 808 spin_unlock_bh(&psock->ingress_lock); 809 810 if (wait) 811 cancel_work_sync(&psock->work); 812 } 813 814 static void sk_psock_done_strp(struct sk_psock *psock); 815 816 static void sk_psock_destroy(struct work_struct *work) 817 { 818 struct sk_psock *psock = container_of(to_rcu_work(work), 819 struct sk_psock, rwork); 820 /* No sk_callback_lock since already detached. */ 821 822 sk_psock_done_strp(psock); 823 824 cancel_work_sync(&psock->work); 825 mutex_destroy(&psock->work_mutex); 826 827 psock_progs_drop(&psock->progs); 828 829 sk_psock_link_destroy(psock); 830 sk_psock_cork_free(psock); 831 832 if (psock->sk_redir) 833 sock_put(psock->sk_redir); 834 sock_put(psock->sk); 835 kfree(psock); 836 } 837 838 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 839 { 840 write_lock_bh(&sk->sk_callback_lock); 841 sk_psock_restore_proto(sk, psock); 842 rcu_assign_sk_user_data(sk, NULL); 843 if (psock->progs.stream_parser) 844 sk_psock_stop_strp(sk, psock); 845 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 846 sk_psock_stop_verdict(sk, psock); 847 write_unlock_bh(&sk->sk_callback_lock); 848 849 sk_psock_stop(psock, false); 850 851 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 852 queue_rcu_work(system_wq, &psock->rwork); 853 } 854 EXPORT_SYMBOL_GPL(sk_psock_drop); 855 856 static int sk_psock_map_verd(int verdict, bool redir) 857 { 858 switch (verdict) { 859 case SK_PASS: 860 return redir ? __SK_REDIRECT : __SK_PASS; 861 case SK_DROP: 862 default: 863 break; 864 } 865 866 return __SK_DROP; 867 } 868 869 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 870 struct sk_msg *msg) 871 { 872 struct bpf_prog *prog; 873 int ret; 874 875 rcu_read_lock(); 876 prog = READ_ONCE(psock->progs.msg_parser); 877 if (unlikely(!prog)) { 878 ret = __SK_PASS; 879 goto out; 880 } 881 882 sk_msg_compute_data_pointers(msg); 883 msg->sk = sk; 884 ret = bpf_prog_run_pin_on_cpu(prog, msg); 885 ret = sk_psock_map_verd(ret, msg->sk_redir); 886 psock->apply_bytes = msg->apply_bytes; 887 if (ret == __SK_REDIRECT) { 888 if (psock->sk_redir) 889 sock_put(psock->sk_redir); 890 psock->sk_redir = msg->sk_redir; 891 if (!psock->sk_redir) { 892 ret = __SK_DROP; 893 goto out; 894 } 895 sock_hold(psock->sk_redir); 896 } 897 out: 898 rcu_read_unlock(); 899 return ret; 900 } 901 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 902 903 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 904 { 905 struct sk_psock *psock_other; 906 struct sock *sk_other; 907 908 sk_other = skb_bpf_redirect_fetch(skb); 909 /* This error is a buggy BPF program, it returned a redirect 910 * return code, but then didn't set a redirect interface. 911 */ 912 if (unlikely(!sk_other)) { 913 skb_bpf_redirect_clear(skb); 914 sock_drop(from->sk, skb); 915 return -EIO; 916 } 917 psock_other = sk_psock(sk_other); 918 /* This error indicates the socket is being torn down or had another 919 * error that caused the pipe to break. We can't send a packet on 920 * a socket that is in this state so we drop the skb. 921 */ 922 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 923 skb_bpf_redirect_clear(skb); 924 sock_drop(from->sk, skb); 925 return -EIO; 926 } 927 spin_lock_bh(&psock_other->ingress_lock); 928 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 929 spin_unlock_bh(&psock_other->ingress_lock); 930 skb_bpf_redirect_clear(skb); 931 sock_drop(from->sk, skb); 932 return -EIO; 933 } 934 935 skb_queue_tail(&psock_other->ingress_skb, skb); 936 schedule_work(&psock_other->work); 937 spin_unlock_bh(&psock_other->ingress_lock); 938 return 0; 939 } 940 941 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 942 struct sk_psock *from, int verdict) 943 { 944 switch (verdict) { 945 case __SK_REDIRECT: 946 sk_psock_skb_redirect(from, skb); 947 break; 948 case __SK_PASS: 949 case __SK_DROP: 950 default: 951 break; 952 } 953 } 954 955 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 956 { 957 struct bpf_prog *prog; 958 int ret = __SK_PASS; 959 960 rcu_read_lock(); 961 prog = READ_ONCE(psock->progs.stream_verdict); 962 if (likely(prog)) { 963 skb->sk = psock->sk; 964 skb_dst_drop(skb); 965 skb_bpf_redirect_clear(skb); 966 ret = bpf_prog_run_pin_on_cpu(prog, skb); 967 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 968 skb->sk = NULL; 969 } 970 sk_psock_tls_verdict_apply(skb, psock, ret); 971 rcu_read_unlock(); 972 return ret; 973 } 974 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 975 976 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 977 int verdict) 978 { 979 struct sock *sk_other; 980 int err = 0; 981 u32 len, off; 982 983 switch (verdict) { 984 case __SK_PASS: 985 err = -EIO; 986 sk_other = psock->sk; 987 if (sock_flag(sk_other, SOCK_DEAD) || 988 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 989 skb_bpf_redirect_clear(skb); 990 goto out_free; 991 } 992 993 skb_bpf_set_ingress(skb); 994 995 /* If the queue is empty then we can submit directly 996 * into the msg queue. If its not empty we have to 997 * queue work otherwise we may get OOO data. Otherwise, 998 * if sk_psock_skb_ingress errors will be handled by 999 * retrying later from workqueue. 1000 */ 1001 if (skb_queue_empty(&psock->ingress_skb)) { 1002 len = skb->len; 1003 off = 0; 1004 if (skb_bpf_strparser(skb)) { 1005 struct strp_msg *stm = strp_msg(skb); 1006 1007 off = stm->offset; 1008 len = stm->full_len; 1009 } 1010 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1011 } 1012 if (err < 0) { 1013 spin_lock_bh(&psock->ingress_lock); 1014 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1015 skb_queue_tail(&psock->ingress_skb, skb); 1016 schedule_work(&psock->work); 1017 err = 0; 1018 } 1019 spin_unlock_bh(&psock->ingress_lock); 1020 if (err < 0) { 1021 skb_bpf_redirect_clear(skb); 1022 goto out_free; 1023 } 1024 } 1025 break; 1026 case __SK_REDIRECT: 1027 err = sk_psock_skb_redirect(psock, skb); 1028 break; 1029 case __SK_DROP: 1030 default: 1031 out_free: 1032 sock_drop(psock->sk, skb); 1033 } 1034 1035 return err; 1036 } 1037 1038 static void sk_psock_write_space(struct sock *sk) 1039 { 1040 struct sk_psock *psock; 1041 void (*write_space)(struct sock *sk) = NULL; 1042 1043 rcu_read_lock(); 1044 psock = sk_psock(sk); 1045 if (likely(psock)) { 1046 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1047 schedule_work(&psock->work); 1048 write_space = psock->saved_write_space; 1049 } 1050 rcu_read_unlock(); 1051 if (write_space) 1052 write_space(sk); 1053 } 1054 1055 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1056 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1057 { 1058 struct sk_psock *psock; 1059 struct bpf_prog *prog; 1060 int ret = __SK_DROP; 1061 struct sock *sk; 1062 1063 rcu_read_lock(); 1064 sk = strp->sk; 1065 psock = sk_psock(sk); 1066 if (unlikely(!psock)) { 1067 sock_drop(sk, skb); 1068 goto out; 1069 } 1070 prog = READ_ONCE(psock->progs.stream_verdict); 1071 if (likely(prog)) { 1072 skb->sk = sk; 1073 skb_dst_drop(skb); 1074 skb_bpf_redirect_clear(skb); 1075 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1076 if (ret == SK_PASS) 1077 skb_bpf_set_strparser(skb); 1078 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1079 skb->sk = NULL; 1080 } 1081 sk_psock_verdict_apply(psock, skb, ret); 1082 out: 1083 rcu_read_unlock(); 1084 } 1085 1086 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1087 { 1088 return err; 1089 } 1090 1091 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1092 { 1093 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1094 struct bpf_prog *prog; 1095 int ret = skb->len; 1096 1097 rcu_read_lock(); 1098 prog = READ_ONCE(psock->progs.stream_parser); 1099 if (likely(prog)) { 1100 skb->sk = psock->sk; 1101 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1102 skb->sk = NULL; 1103 } 1104 rcu_read_unlock(); 1105 return ret; 1106 } 1107 1108 /* Called with socket lock held. */ 1109 static void sk_psock_strp_data_ready(struct sock *sk) 1110 { 1111 struct sk_psock *psock; 1112 1113 rcu_read_lock(); 1114 psock = sk_psock(sk); 1115 if (likely(psock)) { 1116 if (tls_sw_has_ctx_rx(sk)) { 1117 psock->saved_data_ready(sk); 1118 } else { 1119 write_lock_bh(&sk->sk_callback_lock); 1120 strp_data_ready(&psock->strp); 1121 write_unlock_bh(&sk->sk_callback_lock); 1122 } 1123 } 1124 rcu_read_unlock(); 1125 } 1126 1127 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1128 { 1129 static const struct strp_callbacks cb = { 1130 .rcv_msg = sk_psock_strp_read, 1131 .read_sock_done = sk_psock_strp_read_done, 1132 .parse_msg = sk_psock_strp_parse, 1133 }; 1134 1135 return strp_init(&psock->strp, sk, &cb); 1136 } 1137 1138 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1139 { 1140 if (psock->saved_data_ready) 1141 return; 1142 1143 psock->saved_data_ready = sk->sk_data_ready; 1144 sk->sk_data_ready = sk_psock_strp_data_ready; 1145 sk->sk_write_space = sk_psock_write_space; 1146 } 1147 1148 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1149 { 1150 psock_set_prog(&psock->progs.stream_parser, NULL); 1151 1152 if (!psock->saved_data_ready) 1153 return; 1154 1155 sk->sk_data_ready = psock->saved_data_ready; 1156 psock->saved_data_ready = NULL; 1157 strp_stop(&psock->strp); 1158 } 1159 1160 static void sk_psock_done_strp(struct sk_psock *psock) 1161 { 1162 /* Parser has been stopped */ 1163 if (psock->progs.stream_parser) 1164 strp_done(&psock->strp); 1165 } 1166 #else 1167 static void sk_psock_done_strp(struct sk_psock *psock) 1168 { 1169 } 1170 #endif /* CONFIG_BPF_STREAM_PARSER */ 1171 1172 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb) 1173 { 1174 struct sk_psock *psock; 1175 struct bpf_prog *prog; 1176 int ret = __SK_DROP; 1177 int len = skb->len; 1178 1179 skb_get(skb); 1180 1181 rcu_read_lock(); 1182 psock = sk_psock(sk); 1183 if (unlikely(!psock)) { 1184 len = 0; 1185 sock_drop(sk, skb); 1186 goto out; 1187 } 1188 prog = READ_ONCE(psock->progs.stream_verdict); 1189 if (!prog) 1190 prog = READ_ONCE(psock->progs.skb_verdict); 1191 if (likely(prog)) { 1192 skb_dst_drop(skb); 1193 skb_bpf_redirect_clear(skb); 1194 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1195 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1196 } 1197 ret = sk_psock_verdict_apply(psock, skb, ret); 1198 if (ret < 0) 1199 len = ret; 1200 out: 1201 rcu_read_unlock(); 1202 return len; 1203 } 1204 1205 static void sk_psock_verdict_data_ready(struct sock *sk) 1206 { 1207 struct socket *sock = sk->sk_socket; 1208 1209 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb)) 1210 return; 1211 sock->ops->read_skb(sk, sk_psock_verdict_recv); 1212 } 1213 1214 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1215 { 1216 if (psock->saved_data_ready) 1217 return; 1218 1219 psock->saved_data_ready = sk->sk_data_ready; 1220 sk->sk_data_ready = sk_psock_verdict_data_ready; 1221 sk->sk_write_space = sk_psock_write_space; 1222 } 1223 1224 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1225 { 1226 psock_set_prog(&psock->progs.stream_verdict, NULL); 1227 psock_set_prog(&psock->progs.skb_verdict, NULL); 1228 1229 if (!psock->saved_data_ready) 1230 return; 1231 1232 sk->sk_data_ready = psock->saved_data_ready; 1233 psock->saved_data_ready = NULL; 1234 } 1235