1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 #include <trace/events/sock.h> 12 13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 14 { 15 if (msg->sg.end > msg->sg.start && 16 elem_first_coalesce < msg->sg.end) 17 return true; 18 19 if (msg->sg.end < msg->sg.start && 20 (elem_first_coalesce > msg->sg.start || 21 elem_first_coalesce < msg->sg.end)) 22 return true; 23 24 return false; 25 } 26 27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 28 int elem_first_coalesce) 29 { 30 struct page_frag *pfrag = sk_page_frag(sk); 31 u32 osize = msg->sg.size; 32 int ret = 0; 33 34 len -= msg->sg.size; 35 while (len > 0) { 36 struct scatterlist *sge; 37 u32 orig_offset; 38 int use, i; 39 40 if (!sk_page_frag_refill(sk, pfrag)) { 41 ret = -ENOMEM; 42 goto msg_trim; 43 } 44 45 orig_offset = pfrag->offset; 46 use = min_t(int, len, pfrag->size - orig_offset); 47 if (!sk_wmem_schedule(sk, use)) { 48 ret = -ENOMEM; 49 goto msg_trim; 50 } 51 52 i = msg->sg.end; 53 sk_msg_iter_var_prev(i); 54 sge = &msg->sg.data[i]; 55 56 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 57 sg_page(sge) == pfrag->page && 58 sge->offset + sge->length == orig_offset) { 59 sge->length += use; 60 } else { 61 if (sk_msg_full(msg)) { 62 ret = -ENOSPC; 63 break; 64 } 65 66 sge = &msg->sg.data[msg->sg.end]; 67 sg_unmark_end(sge); 68 sg_set_page(sge, pfrag->page, use, orig_offset); 69 get_page(pfrag->page); 70 sk_msg_iter_next(msg, end); 71 } 72 73 sk_mem_charge(sk, use); 74 msg->sg.size += use; 75 pfrag->offset += use; 76 len -= use; 77 } 78 79 return ret; 80 81 msg_trim: 82 sk_msg_trim(sk, msg, osize); 83 return ret; 84 } 85 EXPORT_SYMBOL_GPL(sk_msg_alloc); 86 87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 88 u32 off, u32 len) 89 { 90 int i = src->sg.start; 91 struct scatterlist *sge = sk_msg_elem(src, i); 92 struct scatterlist *sgd = NULL; 93 u32 sge_len, sge_off; 94 95 while (off) { 96 if (sge->length > off) 97 break; 98 off -= sge->length; 99 sk_msg_iter_var_next(i); 100 if (i == src->sg.end && off) 101 return -ENOSPC; 102 sge = sk_msg_elem(src, i); 103 } 104 105 while (len) { 106 sge_len = sge->length - off; 107 if (sge_len > len) 108 sge_len = len; 109 110 if (dst->sg.end) 111 sgd = sk_msg_elem(dst, dst->sg.end - 1); 112 113 if (sgd && 114 (sg_page(sge) == sg_page(sgd)) && 115 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 116 sgd->length += sge_len; 117 dst->sg.size += sge_len; 118 } else if (!sk_msg_full(dst)) { 119 sge_off = sge->offset + off; 120 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 121 } else { 122 return -ENOSPC; 123 } 124 125 off = 0; 126 len -= sge_len; 127 sk_mem_charge(sk, sge_len); 128 sk_msg_iter_var_next(i); 129 if (i == src->sg.end && len) 130 return -ENOSPC; 131 sge = sk_msg_elem(src, i); 132 } 133 134 return 0; 135 } 136 EXPORT_SYMBOL_GPL(sk_msg_clone); 137 138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 139 { 140 int i = msg->sg.start; 141 142 do { 143 struct scatterlist *sge = sk_msg_elem(msg, i); 144 145 if (bytes < sge->length) { 146 sge->length -= bytes; 147 sge->offset += bytes; 148 sk_mem_uncharge(sk, bytes); 149 break; 150 } 151 152 sk_mem_uncharge(sk, sge->length); 153 bytes -= sge->length; 154 sge->length = 0; 155 sge->offset = 0; 156 sk_msg_iter_var_next(i); 157 } while (bytes && i != msg->sg.end); 158 msg->sg.start = i; 159 } 160 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 161 162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 163 { 164 int i = msg->sg.start; 165 166 do { 167 struct scatterlist *sge = &msg->sg.data[i]; 168 int uncharge = (bytes < sge->length) ? bytes : sge->length; 169 170 sk_mem_uncharge(sk, uncharge); 171 bytes -= uncharge; 172 sk_msg_iter_var_next(i); 173 } while (i != msg->sg.end); 174 } 175 EXPORT_SYMBOL_GPL(sk_msg_return); 176 177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 178 bool charge) 179 { 180 struct scatterlist *sge = sk_msg_elem(msg, i); 181 u32 len = sge->length; 182 183 /* When the skb owns the memory we free it from consume_skb path. */ 184 if (!msg->skb) { 185 if (charge) 186 sk_mem_uncharge(sk, len); 187 put_page(sg_page(sge)); 188 } 189 memset(sge, 0, sizeof(*sge)); 190 return len; 191 } 192 193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 194 bool charge) 195 { 196 struct scatterlist *sge = sk_msg_elem(msg, i); 197 int freed = 0; 198 199 while (msg->sg.size) { 200 msg->sg.size -= sge->length; 201 freed += sk_msg_free_elem(sk, msg, i, charge); 202 sk_msg_iter_var_next(i); 203 sk_msg_check_to_free(msg, i, msg->sg.size); 204 sge = sk_msg_elem(msg, i); 205 } 206 consume_skb(msg->skb); 207 sk_msg_init(msg); 208 return freed; 209 } 210 211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 212 { 213 return __sk_msg_free(sk, msg, msg->sg.start, false); 214 } 215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 216 217 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 218 { 219 return __sk_msg_free(sk, msg, msg->sg.start, true); 220 } 221 EXPORT_SYMBOL_GPL(sk_msg_free); 222 223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 224 u32 bytes, bool charge) 225 { 226 struct scatterlist *sge; 227 u32 i = msg->sg.start; 228 229 while (bytes) { 230 sge = sk_msg_elem(msg, i); 231 if (!sge->length) 232 break; 233 if (bytes < sge->length) { 234 if (charge) 235 sk_mem_uncharge(sk, bytes); 236 sge->length -= bytes; 237 sge->offset += bytes; 238 msg->sg.size -= bytes; 239 break; 240 } 241 242 msg->sg.size -= sge->length; 243 bytes -= sge->length; 244 sk_msg_free_elem(sk, msg, i, charge); 245 sk_msg_iter_var_next(i); 246 sk_msg_check_to_free(msg, i, bytes); 247 } 248 msg->sg.start = i; 249 } 250 251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 252 { 253 __sk_msg_free_partial(sk, msg, bytes, true); 254 } 255 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 256 257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 258 u32 bytes) 259 { 260 __sk_msg_free_partial(sk, msg, bytes, false); 261 } 262 263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 264 { 265 int trim = msg->sg.size - len; 266 u32 i = msg->sg.end; 267 268 if (trim <= 0) { 269 WARN_ON(trim < 0); 270 return; 271 } 272 273 sk_msg_iter_var_prev(i); 274 msg->sg.size = len; 275 while (msg->sg.data[i].length && 276 trim >= msg->sg.data[i].length) { 277 trim -= msg->sg.data[i].length; 278 sk_msg_free_elem(sk, msg, i, true); 279 sk_msg_iter_var_prev(i); 280 if (!trim) 281 goto out; 282 } 283 284 msg->sg.data[i].length -= trim; 285 sk_mem_uncharge(sk, trim); 286 /* Adjust copybreak if it falls into the trimmed part of last buf */ 287 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 288 msg->sg.copybreak = msg->sg.data[i].length; 289 out: 290 sk_msg_iter_var_next(i); 291 msg->sg.end = i; 292 293 /* If we trim data a full sg elem before curr pointer update 294 * copybreak and current so that any future copy operations 295 * start at new copy location. 296 * However trimed data that has not yet been used in a copy op 297 * does not require an update. 298 */ 299 if (!msg->sg.size) { 300 msg->sg.curr = msg->sg.start; 301 msg->sg.copybreak = 0; 302 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 303 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 304 sk_msg_iter_var_prev(i); 305 msg->sg.curr = i; 306 msg->sg.copybreak = msg->sg.data[i].length; 307 } 308 } 309 EXPORT_SYMBOL_GPL(sk_msg_trim); 310 311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 312 struct sk_msg *msg, u32 bytes) 313 { 314 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 315 const int to_max_pages = MAX_MSG_FRAGS; 316 struct page *pages[MAX_MSG_FRAGS]; 317 ssize_t orig, copied, use, offset; 318 319 orig = msg->sg.size; 320 while (bytes > 0) { 321 i = 0; 322 maxpages = to_max_pages - num_elems; 323 if (maxpages == 0) { 324 ret = -EFAULT; 325 goto out; 326 } 327 328 copied = iov_iter_get_pages2(from, pages, bytes, maxpages, 329 &offset); 330 if (copied <= 0) { 331 ret = -EFAULT; 332 goto out; 333 } 334 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 struct scatterlist *sge; 373 u32 copy, buf_size; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 if (!bytes) 401 break; 402 msg->sg.copybreak = 0; 403 sk_msg_iter_var_next(i); 404 } while (i != msg->sg.end); 405 out: 406 msg->sg.curr = i; 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 410 411 /* Receive sk_msg from psock->ingress_msg to @msg. */ 412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 413 int len, int flags) 414 { 415 struct iov_iter *iter = &msg->msg_iter; 416 int peek = flags & MSG_PEEK; 417 struct sk_msg *msg_rx; 418 int i, copied = 0; 419 420 msg_rx = sk_psock_peek_msg(psock); 421 while (copied != len) { 422 struct scatterlist *sge; 423 424 if (unlikely(!msg_rx)) 425 break; 426 427 i = msg_rx->sg.start; 428 do { 429 struct page *page; 430 int copy; 431 432 sge = sk_msg_elem(msg_rx, i); 433 copy = sge->length; 434 page = sg_page(sge); 435 if (copied + copy > len) 436 copy = len - copied; 437 copy = copy_page_to_iter(page, sge->offset, copy, iter); 438 if (!copy) { 439 copied = copied ? copied : -EFAULT; 440 goto out; 441 } 442 443 copied += copy; 444 if (likely(!peek)) { 445 sge->offset += copy; 446 sge->length -= copy; 447 if (!msg_rx->skb) 448 sk_mem_uncharge(sk, copy); 449 msg_rx->sg.size -= copy; 450 451 if (!sge->length) { 452 sk_msg_iter_var_next(i); 453 if (!msg_rx->skb) 454 put_page(page); 455 } 456 } else { 457 /* Lets not optimize peek case if copy_page_to_iter 458 * didn't copy the entire length lets just break. 459 */ 460 if (copy != sge->length) 461 goto out; 462 sk_msg_iter_var_next(i); 463 } 464 465 if (copied == len) 466 break; 467 } while ((i != msg_rx->sg.end) && !sg_is_last(sge)); 468 469 if (unlikely(peek)) { 470 msg_rx = sk_psock_next_msg(psock, msg_rx); 471 if (!msg_rx) 472 break; 473 continue; 474 } 475 476 msg_rx->sg.start = i; 477 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) { 478 msg_rx = sk_psock_dequeue_msg(psock); 479 kfree_sk_msg(msg_rx); 480 } 481 msg_rx = sk_psock_peek_msg(psock); 482 } 483 out: 484 return copied; 485 } 486 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 487 488 bool sk_msg_is_readable(struct sock *sk) 489 { 490 struct sk_psock *psock; 491 bool empty = true; 492 493 rcu_read_lock(); 494 psock = sk_psock(sk); 495 if (likely(psock)) 496 empty = list_empty(&psock->ingress_msg); 497 rcu_read_unlock(); 498 return !empty; 499 } 500 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 501 502 static struct sk_msg *alloc_sk_msg(gfp_t gfp) 503 { 504 struct sk_msg *msg; 505 506 msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN); 507 if (unlikely(!msg)) 508 return NULL; 509 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS); 510 return msg; 511 } 512 513 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 514 struct sk_buff *skb) 515 { 516 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 517 return NULL; 518 519 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 520 return NULL; 521 522 return alloc_sk_msg(GFP_KERNEL); 523 } 524 525 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 526 u32 off, u32 len, 527 struct sk_psock *psock, 528 struct sock *sk, 529 struct sk_msg *msg) 530 { 531 int num_sge, copied; 532 533 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 534 if (num_sge < 0) { 535 /* skb linearize may fail with ENOMEM, but lets simply try again 536 * later if this happens. Under memory pressure we don't want to 537 * drop the skb. We need to linearize the skb so that the mapping 538 * in skb_to_sgvec can not error. 539 */ 540 if (skb_linearize(skb)) 541 return -EAGAIN; 542 543 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 544 if (unlikely(num_sge < 0)) 545 return num_sge; 546 } 547 548 copied = len; 549 msg->sg.start = 0; 550 msg->sg.size = copied; 551 msg->sg.end = num_sge; 552 msg->skb = skb; 553 554 sk_psock_queue_msg(psock, msg); 555 sk_psock_data_ready(sk, psock); 556 return copied; 557 } 558 559 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 560 u32 off, u32 len); 561 562 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 563 u32 off, u32 len) 564 { 565 struct sock *sk = psock->sk; 566 struct sk_msg *msg; 567 int err; 568 569 /* If we are receiving on the same sock skb->sk is already assigned, 570 * skip memory accounting and owner transition seeing it already set 571 * correctly. 572 */ 573 if (unlikely(skb->sk == sk)) 574 return sk_psock_skb_ingress_self(psock, skb, off, len); 575 msg = sk_psock_create_ingress_msg(sk, skb); 576 if (!msg) 577 return -EAGAIN; 578 579 /* This will transition ownership of the data from the socket where 580 * the BPF program was run initiating the redirect to the socket 581 * we will eventually receive this data on. The data will be released 582 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 583 * into user buffers. 584 */ 585 skb_set_owner_r(skb, sk); 586 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 587 if (err < 0) 588 kfree(msg); 589 return err; 590 } 591 592 /* Puts an skb on the ingress queue of the socket already assigned to the 593 * skb. In this case we do not need to check memory limits or skb_set_owner_r 594 * because the skb is already accounted for here. 595 */ 596 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 597 u32 off, u32 len) 598 { 599 struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC); 600 struct sock *sk = psock->sk; 601 int err; 602 603 if (unlikely(!msg)) 604 return -EAGAIN; 605 skb_set_owner_r(skb, sk); 606 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 607 if (err < 0) 608 kfree(msg); 609 return err; 610 } 611 612 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 613 u32 off, u32 len, bool ingress) 614 { 615 if (!ingress) { 616 if (!sock_writeable(psock->sk)) 617 return -EAGAIN; 618 return skb_send_sock(psock->sk, skb, off, len); 619 } 620 return sk_psock_skb_ingress(psock, skb, off, len); 621 } 622 623 static void sk_psock_skb_state(struct sk_psock *psock, 624 struct sk_psock_work_state *state, 625 int len, int off) 626 { 627 spin_lock_bh(&psock->ingress_lock); 628 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 629 state->len = len; 630 state->off = off; 631 } 632 spin_unlock_bh(&psock->ingress_lock); 633 } 634 635 static void sk_psock_backlog(struct work_struct *work) 636 { 637 struct delayed_work *dwork = to_delayed_work(work); 638 struct sk_psock *psock = container_of(dwork, struct sk_psock, work); 639 struct sk_psock_work_state *state = &psock->work_state; 640 struct sk_buff *skb = NULL; 641 u32 len = 0, off = 0; 642 bool ingress; 643 int ret; 644 645 mutex_lock(&psock->work_mutex); 646 if (unlikely(state->len)) { 647 len = state->len; 648 off = state->off; 649 } 650 651 while ((skb = skb_peek(&psock->ingress_skb))) { 652 len = skb->len; 653 off = 0; 654 if (skb_bpf_strparser(skb)) { 655 struct strp_msg *stm = strp_msg(skb); 656 657 off = stm->offset; 658 len = stm->full_len; 659 } 660 ingress = skb_bpf_ingress(skb); 661 skb_bpf_redirect_clear(skb); 662 do { 663 ret = -EIO; 664 if (!sock_flag(psock->sk, SOCK_DEAD)) 665 ret = sk_psock_handle_skb(psock, skb, off, 666 len, ingress); 667 if (ret <= 0) { 668 if (ret == -EAGAIN) { 669 sk_psock_skb_state(psock, state, len, off); 670 671 /* Delay slightly to prioritize any 672 * other work that might be here. 673 */ 674 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 675 schedule_delayed_work(&psock->work, 1); 676 goto end; 677 } 678 /* Hard errors break pipe and stop xmit. */ 679 sk_psock_report_error(psock, ret ? -ret : EPIPE); 680 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 681 goto end; 682 } 683 off += ret; 684 len -= ret; 685 } while (len); 686 687 skb = skb_dequeue(&psock->ingress_skb); 688 if (!ingress) { 689 kfree_skb(skb); 690 } 691 } 692 end: 693 mutex_unlock(&psock->work_mutex); 694 } 695 696 struct sk_psock *sk_psock_init(struct sock *sk, int node) 697 { 698 struct sk_psock *psock; 699 struct proto *prot; 700 701 write_lock_bh(&sk->sk_callback_lock); 702 703 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) { 704 psock = ERR_PTR(-EINVAL); 705 goto out; 706 } 707 708 if (sk->sk_user_data) { 709 psock = ERR_PTR(-EBUSY); 710 goto out; 711 } 712 713 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 714 if (!psock) { 715 psock = ERR_PTR(-ENOMEM); 716 goto out; 717 } 718 719 prot = READ_ONCE(sk->sk_prot); 720 psock->sk = sk; 721 psock->eval = __SK_NONE; 722 psock->sk_proto = prot; 723 psock->saved_unhash = prot->unhash; 724 psock->saved_destroy = prot->destroy; 725 psock->saved_close = prot->close; 726 psock->saved_write_space = sk->sk_write_space; 727 728 INIT_LIST_HEAD(&psock->link); 729 spin_lock_init(&psock->link_lock); 730 731 INIT_DELAYED_WORK(&psock->work, sk_psock_backlog); 732 mutex_init(&psock->work_mutex); 733 INIT_LIST_HEAD(&psock->ingress_msg); 734 spin_lock_init(&psock->ingress_lock); 735 skb_queue_head_init(&psock->ingress_skb); 736 737 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 738 refcount_set(&psock->refcnt, 1); 739 740 __rcu_assign_sk_user_data_with_flags(sk, psock, 741 SK_USER_DATA_NOCOPY | 742 SK_USER_DATA_PSOCK); 743 sock_hold(sk); 744 745 out: 746 write_unlock_bh(&sk->sk_callback_lock); 747 return psock; 748 } 749 EXPORT_SYMBOL_GPL(sk_psock_init); 750 751 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 752 { 753 struct sk_psock_link *link; 754 755 spin_lock_bh(&psock->link_lock); 756 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 757 list); 758 if (link) 759 list_del(&link->list); 760 spin_unlock_bh(&psock->link_lock); 761 return link; 762 } 763 764 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 765 { 766 struct sk_msg *msg, *tmp; 767 768 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 769 list_del(&msg->list); 770 sk_msg_free(psock->sk, msg); 771 kfree(msg); 772 } 773 } 774 775 static void __sk_psock_zap_ingress(struct sk_psock *psock) 776 { 777 struct sk_buff *skb; 778 779 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 780 skb_bpf_redirect_clear(skb); 781 sock_drop(psock->sk, skb); 782 } 783 __sk_psock_purge_ingress_msg(psock); 784 } 785 786 static void sk_psock_link_destroy(struct sk_psock *psock) 787 { 788 struct sk_psock_link *link, *tmp; 789 790 list_for_each_entry_safe(link, tmp, &psock->link, list) { 791 list_del(&link->list); 792 sk_psock_free_link(link); 793 } 794 } 795 796 void sk_psock_stop(struct sk_psock *psock) 797 { 798 spin_lock_bh(&psock->ingress_lock); 799 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 800 sk_psock_cork_free(psock); 801 spin_unlock_bh(&psock->ingress_lock); 802 } 803 804 static void sk_psock_done_strp(struct sk_psock *psock); 805 806 static void sk_psock_destroy(struct work_struct *work) 807 { 808 struct sk_psock *psock = container_of(to_rcu_work(work), 809 struct sk_psock, rwork); 810 /* No sk_callback_lock since already detached. */ 811 812 sk_psock_done_strp(psock); 813 814 cancel_delayed_work_sync(&psock->work); 815 __sk_psock_zap_ingress(psock); 816 mutex_destroy(&psock->work_mutex); 817 818 psock_progs_drop(&psock->progs); 819 820 sk_psock_link_destroy(psock); 821 sk_psock_cork_free(psock); 822 823 if (psock->sk_redir) 824 sock_put(psock->sk_redir); 825 sock_put(psock->sk); 826 kfree(psock); 827 } 828 829 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 830 { 831 write_lock_bh(&sk->sk_callback_lock); 832 sk_psock_restore_proto(sk, psock); 833 rcu_assign_sk_user_data(sk, NULL); 834 if (psock->progs.stream_parser) 835 sk_psock_stop_strp(sk, psock); 836 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 837 sk_psock_stop_verdict(sk, psock); 838 write_unlock_bh(&sk->sk_callback_lock); 839 840 sk_psock_stop(psock); 841 842 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 843 queue_rcu_work(system_wq, &psock->rwork); 844 } 845 EXPORT_SYMBOL_GPL(sk_psock_drop); 846 847 static int sk_psock_map_verd(int verdict, bool redir) 848 { 849 switch (verdict) { 850 case SK_PASS: 851 return redir ? __SK_REDIRECT : __SK_PASS; 852 case SK_DROP: 853 default: 854 break; 855 } 856 857 return __SK_DROP; 858 } 859 860 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 861 struct sk_msg *msg) 862 { 863 struct bpf_prog *prog; 864 int ret; 865 866 rcu_read_lock(); 867 prog = READ_ONCE(psock->progs.msg_parser); 868 if (unlikely(!prog)) { 869 ret = __SK_PASS; 870 goto out; 871 } 872 873 sk_msg_compute_data_pointers(msg); 874 msg->sk = sk; 875 ret = bpf_prog_run_pin_on_cpu(prog, msg); 876 ret = sk_psock_map_verd(ret, msg->sk_redir); 877 psock->apply_bytes = msg->apply_bytes; 878 if (ret == __SK_REDIRECT) { 879 if (psock->sk_redir) { 880 sock_put(psock->sk_redir); 881 psock->sk_redir = NULL; 882 } 883 if (!msg->sk_redir) { 884 ret = __SK_DROP; 885 goto out; 886 } 887 psock->redir_ingress = sk_msg_to_ingress(msg); 888 psock->sk_redir = msg->sk_redir; 889 sock_hold(psock->sk_redir); 890 } 891 out: 892 rcu_read_unlock(); 893 return ret; 894 } 895 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 896 897 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 898 { 899 struct sk_psock *psock_other; 900 struct sock *sk_other; 901 902 sk_other = skb_bpf_redirect_fetch(skb); 903 /* This error is a buggy BPF program, it returned a redirect 904 * return code, but then didn't set a redirect interface. 905 */ 906 if (unlikely(!sk_other)) { 907 skb_bpf_redirect_clear(skb); 908 sock_drop(from->sk, skb); 909 return -EIO; 910 } 911 psock_other = sk_psock(sk_other); 912 /* This error indicates the socket is being torn down or had another 913 * error that caused the pipe to break. We can't send a packet on 914 * a socket that is in this state so we drop the skb. 915 */ 916 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 917 skb_bpf_redirect_clear(skb); 918 sock_drop(from->sk, skb); 919 return -EIO; 920 } 921 spin_lock_bh(&psock_other->ingress_lock); 922 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 923 spin_unlock_bh(&psock_other->ingress_lock); 924 skb_bpf_redirect_clear(skb); 925 sock_drop(from->sk, skb); 926 return -EIO; 927 } 928 929 skb_queue_tail(&psock_other->ingress_skb, skb); 930 schedule_delayed_work(&psock_other->work, 0); 931 spin_unlock_bh(&psock_other->ingress_lock); 932 return 0; 933 } 934 935 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 936 struct sk_psock *from, int verdict) 937 { 938 switch (verdict) { 939 case __SK_REDIRECT: 940 sk_psock_skb_redirect(from, skb); 941 break; 942 case __SK_PASS: 943 case __SK_DROP: 944 default: 945 break; 946 } 947 } 948 949 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 950 { 951 struct bpf_prog *prog; 952 int ret = __SK_PASS; 953 954 rcu_read_lock(); 955 prog = READ_ONCE(psock->progs.stream_verdict); 956 if (likely(prog)) { 957 skb->sk = psock->sk; 958 skb_dst_drop(skb); 959 skb_bpf_redirect_clear(skb); 960 ret = bpf_prog_run_pin_on_cpu(prog, skb); 961 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 962 skb->sk = NULL; 963 } 964 sk_psock_tls_verdict_apply(skb, psock, ret); 965 rcu_read_unlock(); 966 return ret; 967 } 968 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 969 970 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 971 int verdict) 972 { 973 struct sock *sk_other; 974 int err = 0; 975 u32 len, off; 976 977 switch (verdict) { 978 case __SK_PASS: 979 err = -EIO; 980 sk_other = psock->sk; 981 if (sock_flag(sk_other, SOCK_DEAD) || 982 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 983 goto out_free; 984 985 skb_bpf_set_ingress(skb); 986 987 /* If the queue is empty then we can submit directly 988 * into the msg queue. If its not empty we have to 989 * queue work otherwise we may get OOO data. Otherwise, 990 * if sk_psock_skb_ingress errors will be handled by 991 * retrying later from workqueue. 992 */ 993 if (skb_queue_empty(&psock->ingress_skb)) { 994 len = skb->len; 995 off = 0; 996 if (skb_bpf_strparser(skb)) { 997 struct strp_msg *stm = strp_msg(skb); 998 999 off = stm->offset; 1000 len = stm->full_len; 1001 } 1002 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1003 } 1004 if (err < 0) { 1005 spin_lock_bh(&psock->ingress_lock); 1006 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1007 skb_queue_tail(&psock->ingress_skb, skb); 1008 schedule_delayed_work(&psock->work, 0); 1009 err = 0; 1010 } 1011 spin_unlock_bh(&psock->ingress_lock); 1012 if (err < 0) 1013 goto out_free; 1014 } 1015 break; 1016 case __SK_REDIRECT: 1017 tcp_eat_skb(psock->sk, skb); 1018 err = sk_psock_skb_redirect(psock, skb); 1019 break; 1020 case __SK_DROP: 1021 default: 1022 out_free: 1023 skb_bpf_redirect_clear(skb); 1024 tcp_eat_skb(psock->sk, skb); 1025 sock_drop(psock->sk, skb); 1026 } 1027 1028 return err; 1029 } 1030 1031 static void sk_psock_write_space(struct sock *sk) 1032 { 1033 struct sk_psock *psock; 1034 void (*write_space)(struct sock *sk) = NULL; 1035 1036 rcu_read_lock(); 1037 psock = sk_psock(sk); 1038 if (likely(psock)) { 1039 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1040 schedule_delayed_work(&psock->work, 0); 1041 write_space = psock->saved_write_space; 1042 } 1043 rcu_read_unlock(); 1044 if (write_space) 1045 write_space(sk); 1046 } 1047 1048 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1049 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1050 { 1051 struct sk_psock *psock; 1052 struct bpf_prog *prog; 1053 int ret = __SK_DROP; 1054 struct sock *sk; 1055 1056 rcu_read_lock(); 1057 sk = strp->sk; 1058 psock = sk_psock(sk); 1059 if (unlikely(!psock)) { 1060 sock_drop(sk, skb); 1061 goto out; 1062 } 1063 prog = READ_ONCE(psock->progs.stream_verdict); 1064 if (likely(prog)) { 1065 skb->sk = sk; 1066 skb_dst_drop(skb); 1067 skb_bpf_redirect_clear(skb); 1068 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1069 skb_bpf_set_strparser(skb); 1070 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1071 skb->sk = NULL; 1072 } 1073 sk_psock_verdict_apply(psock, skb, ret); 1074 out: 1075 rcu_read_unlock(); 1076 } 1077 1078 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1079 { 1080 return err; 1081 } 1082 1083 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1084 { 1085 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1086 struct bpf_prog *prog; 1087 int ret = skb->len; 1088 1089 rcu_read_lock(); 1090 prog = READ_ONCE(psock->progs.stream_parser); 1091 if (likely(prog)) { 1092 skb->sk = psock->sk; 1093 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1094 skb->sk = NULL; 1095 } 1096 rcu_read_unlock(); 1097 return ret; 1098 } 1099 1100 /* Called with socket lock held. */ 1101 static void sk_psock_strp_data_ready(struct sock *sk) 1102 { 1103 struct sk_psock *psock; 1104 1105 trace_sk_data_ready(sk); 1106 1107 rcu_read_lock(); 1108 psock = sk_psock(sk); 1109 if (likely(psock)) { 1110 if (tls_sw_has_ctx_rx(sk)) { 1111 psock->saved_data_ready(sk); 1112 } else { 1113 write_lock_bh(&sk->sk_callback_lock); 1114 strp_data_ready(&psock->strp); 1115 write_unlock_bh(&sk->sk_callback_lock); 1116 } 1117 } 1118 rcu_read_unlock(); 1119 } 1120 1121 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1122 { 1123 static const struct strp_callbacks cb = { 1124 .rcv_msg = sk_psock_strp_read, 1125 .read_sock_done = sk_psock_strp_read_done, 1126 .parse_msg = sk_psock_strp_parse, 1127 }; 1128 1129 return strp_init(&psock->strp, sk, &cb); 1130 } 1131 1132 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1133 { 1134 if (psock->saved_data_ready) 1135 return; 1136 1137 psock->saved_data_ready = sk->sk_data_ready; 1138 sk->sk_data_ready = sk_psock_strp_data_ready; 1139 sk->sk_write_space = sk_psock_write_space; 1140 } 1141 1142 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1143 { 1144 psock_set_prog(&psock->progs.stream_parser, NULL); 1145 1146 if (!psock->saved_data_ready) 1147 return; 1148 1149 sk->sk_data_ready = psock->saved_data_ready; 1150 psock->saved_data_ready = NULL; 1151 strp_stop(&psock->strp); 1152 } 1153 1154 static void sk_psock_done_strp(struct sk_psock *psock) 1155 { 1156 /* Parser has been stopped */ 1157 if (psock->progs.stream_parser) 1158 strp_done(&psock->strp); 1159 } 1160 #else 1161 static void sk_psock_done_strp(struct sk_psock *psock) 1162 { 1163 } 1164 #endif /* CONFIG_BPF_STREAM_PARSER */ 1165 1166 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb) 1167 { 1168 struct sk_psock *psock; 1169 struct bpf_prog *prog; 1170 int ret = __SK_DROP; 1171 int len = skb->len; 1172 1173 rcu_read_lock(); 1174 psock = sk_psock(sk); 1175 if (unlikely(!psock)) { 1176 len = 0; 1177 tcp_eat_skb(sk, skb); 1178 sock_drop(sk, skb); 1179 goto out; 1180 } 1181 prog = READ_ONCE(psock->progs.stream_verdict); 1182 if (!prog) 1183 prog = READ_ONCE(psock->progs.skb_verdict); 1184 if (likely(prog)) { 1185 skb_dst_drop(skb); 1186 skb_bpf_redirect_clear(skb); 1187 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1188 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1189 } 1190 ret = sk_psock_verdict_apply(psock, skb, ret); 1191 if (ret < 0) 1192 len = ret; 1193 out: 1194 rcu_read_unlock(); 1195 return len; 1196 } 1197 1198 static void sk_psock_verdict_data_ready(struct sock *sk) 1199 { 1200 struct socket *sock = sk->sk_socket; 1201 int copied; 1202 1203 trace_sk_data_ready(sk); 1204 1205 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb)) 1206 return; 1207 copied = sock->ops->read_skb(sk, sk_psock_verdict_recv); 1208 if (copied >= 0) { 1209 struct sk_psock *psock; 1210 1211 rcu_read_lock(); 1212 psock = sk_psock(sk); 1213 if (psock) 1214 psock->saved_data_ready(sk); 1215 rcu_read_unlock(); 1216 } 1217 } 1218 1219 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1220 { 1221 if (psock->saved_data_ready) 1222 return; 1223 1224 psock->saved_data_ready = sk->sk_data_ready; 1225 sk->sk_data_ready = sk_psock_verdict_data_ready; 1226 sk->sk_write_space = sk_psock_write_space; 1227 } 1228 1229 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1230 { 1231 psock_set_prog(&psock->progs.stream_verdict, NULL); 1232 psock_set_prog(&psock->progs.skb_verdict, NULL); 1233 1234 if (!psock->saved_data_ready) 1235 return; 1236 1237 sk->sk_data_ready = psock->saved_data_ready; 1238 psock->saved_data_ready = NULL; 1239 } 1240