xref: /openbmc/linux/net/core/skmsg.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14 	if (msg->sg.end > msg->sg.start &&
15 	    elem_first_coalesce < msg->sg.end)
16 		return true;
17 
18 	if (msg->sg.end < msg->sg.start &&
19 	    (elem_first_coalesce > msg->sg.start ||
20 	     elem_first_coalesce < msg->sg.end))
21 		return true;
22 
23 	return false;
24 }
25 
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 		 int elem_first_coalesce)
28 {
29 	struct page_frag *pfrag = sk_page_frag(sk);
30 	int ret = 0;
31 
32 	len -= msg->sg.size;
33 	while (len > 0) {
34 		struct scatterlist *sge;
35 		u32 orig_offset;
36 		int use, i;
37 
38 		if (!sk_page_frag_refill(sk, pfrag))
39 			return -ENOMEM;
40 
41 		orig_offset = pfrag->offset;
42 		use = min_t(int, len, pfrag->size - orig_offset);
43 		if (!sk_wmem_schedule(sk, use))
44 			return -ENOMEM;
45 
46 		i = msg->sg.end;
47 		sk_msg_iter_var_prev(i);
48 		sge = &msg->sg.data[i];
49 
50 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
51 		    sg_page(sge) == pfrag->page &&
52 		    sge->offset + sge->length == orig_offset) {
53 			sge->length += use;
54 		} else {
55 			if (sk_msg_full(msg)) {
56 				ret = -ENOSPC;
57 				break;
58 			}
59 
60 			sge = &msg->sg.data[msg->sg.end];
61 			sg_unmark_end(sge);
62 			sg_set_page(sge, pfrag->page, use, orig_offset);
63 			get_page(pfrag->page);
64 			sk_msg_iter_next(msg, end);
65 		}
66 
67 		sk_mem_charge(sk, use);
68 		msg->sg.size += use;
69 		pfrag->offset += use;
70 		len -= use;
71 	}
72 
73 	return ret;
74 }
75 EXPORT_SYMBOL_GPL(sk_msg_alloc);
76 
77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
78 		 u32 off, u32 len)
79 {
80 	int i = src->sg.start;
81 	struct scatterlist *sge = sk_msg_elem(src, i);
82 	struct scatterlist *sgd = NULL;
83 	u32 sge_len, sge_off;
84 
85 	while (off) {
86 		if (sge->length > off)
87 			break;
88 		off -= sge->length;
89 		sk_msg_iter_var_next(i);
90 		if (i == src->sg.end && off)
91 			return -ENOSPC;
92 		sge = sk_msg_elem(src, i);
93 	}
94 
95 	while (len) {
96 		sge_len = sge->length - off;
97 		if (sge_len > len)
98 			sge_len = len;
99 
100 		if (dst->sg.end)
101 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
102 
103 		if (sgd &&
104 		    (sg_page(sge) == sg_page(sgd)) &&
105 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
106 			sgd->length += sge_len;
107 			dst->sg.size += sge_len;
108 		} else if (!sk_msg_full(dst)) {
109 			sge_off = sge->offset + off;
110 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
111 		} else {
112 			return -ENOSPC;
113 		}
114 
115 		off = 0;
116 		len -= sge_len;
117 		sk_mem_charge(sk, sge_len);
118 		sk_msg_iter_var_next(i);
119 		if (i == src->sg.end && len)
120 			return -ENOSPC;
121 		sge = sk_msg_elem(src, i);
122 	}
123 
124 	return 0;
125 }
126 EXPORT_SYMBOL_GPL(sk_msg_clone);
127 
128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
129 {
130 	int i = msg->sg.start;
131 
132 	do {
133 		struct scatterlist *sge = sk_msg_elem(msg, i);
134 
135 		if (bytes < sge->length) {
136 			sge->length -= bytes;
137 			sge->offset += bytes;
138 			sk_mem_uncharge(sk, bytes);
139 			break;
140 		}
141 
142 		sk_mem_uncharge(sk, sge->length);
143 		bytes -= sge->length;
144 		sge->length = 0;
145 		sge->offset = 0;
146 		sk_msg_iter_var_next(i);
147 	} while (bytes && i != msg->sg.end);
148 	msg->sg.start = i;
149 }
150 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
151 
152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
153 {
154 	int i = msg->sg.start;
155 
156 	do {
157 		struct scatterlist *sge = &msg->sg.data[i];
158 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
159 
160 		sk_mem_uncharge(sk, uncharge);
161 		bytes -= uncharge;
162 		sk_msg_iter_var_next(i);
163 	} while (i != msg->sg.end);
164 }
165 EXPORT_SYMBOL_GPL(sk_msg_return);
166 
167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
168 			    bool charge)
169 {
170 	struct scatterlist *sge = sk_msg_elem(msg, i);
171 	u32 len = sge->length;
172 
173 	/* When the skb owns the memory we free it from consume_skb path. */
174 	if (!msg->skb) {
175 		if (charge)
176 			sk_mem_uncharge(sk, len);
177 		put_page(sg_page(sge));
178 	}
179 	memset(sge, 0, sizeof(*sge));
180 	return len;
181 }
182 
183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
184 			 bool charge)
185 {
186 	struct scatterlist *sge = sk_msg_elem(msg, i);
187 	int freed = 0;
188 
189 	while (msg->sg.size) {
190 		msg->sg.size -= sge->length;
191 		freed += sk_msg_free_elem(sk, msg, i, charge);
192 		sk_msg_iter_var_next(i);
193 		sk_msg_check_to_free(msg, i, msg->sg.size);
194 		sge = sk_msg_elem(msg, i);
195 	}
196 	consume_skb(msg->skb);
197 	sk_msg_init(msg);
198 	return freed;
199 }
200 
201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
202 {
203 	return __sk_msg_free(sk, msg, msg->sg.start, false);
204 }
205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
206 
207 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
208 {
209 	return __sk_msg_free(sk, msg, msg->sg.start, true);
210 }
211 EXPORT_SYMBOL_GPL(sk_msg_free);
212 
213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
214 				  u32 bytes, bool charge)
215 {
216 	struct scatterlist *sge;
217 	u32 i = msg->sg.start;
218 
219 	while (bytes) {
220 		sge = sk_msg_elem(msg, i);
221 		if (!sge->length)
222 			break;
223 		if (bytes < sge->length) {
224 			if (charge)
225 				sk_mem_uncharge(sk, bytes);
226 			sge->length -= bytes;
227 			sge->offset += bytes;
228 			msg->sg.size -= bytes;
229 			break;
230 		}
231 
232 		msg->sg.size -= sge->length;
233 		bytes -= sge->length;
234 		sk_msg_free_elem(sk, msg, i, charge);
235 		sk_msg_iter_var_next(i);
236 		sk_msg_check_to_free(msg, i, bytes);
237 	}
238 	msg->sg.start = i;
239 }
240 
241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
242 {
243 	__sk_msg_free_partial(sk, msg, bytes, true);
244 }
245 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
246 
247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
248 				  u32 bytes)
249 {
250 	__sk_msg_free_partial(sk, msg, bytes, false);
251 }
252 
253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
254 {
255 	int trim = msg->sg.size - len;
256 	u32 i = msg->sg.end;
257 
258 	if (trim <= 0) {
259 		WARN_ON(trim < 0);
260 		return;
261 	}
262 
263 	sk_msg_iter_var_prev(i);
264 	msg->sg.size = len;
265 	while (msg->sg.data[i].length &&
266 	       trim >= msg->sg.data[i].length) {
267 		trim -= msg->sg.data[i].length;
268 		sk_msg_free_elem(sk, msg, i, true);
269 		sk_msg_iter_var_prev(i);
270 		if (!trim)
271 			goto out;
272 	}
273 
274 	msg->sg.data[i].length -= trim;
275 	sk_mem_uncharge(sk, trim);
276 	/* Adjust copybreak if it falls into the trimmed part of last buf */
277 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
278 		msg->sg.copybreak = msg->sg.data[i].length;
279 out:
280 	sk_msg_iter_var_next(i);
281 	msg->sg.end = i;
282 
283 	/* If we trim data a full sg elem before curr pointer update
284 	 * copybreak and current so that any future copy operations
285 	 * start at new copy location.
286 	 * However trimed data that has not yet been used in a copy op
287 	 * does not require an update.
288 	 */
289 	if (!msg->sg.size) {
290 		msg->sg.curr = msg->sg.start;
291 		msg->sg.copybreak = 0;
292 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
293 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
294 		sk_msg_iter_var_prev(i);
295 		msg->sg.curr = i;
296 		msg->sg.copybreak = msg->sg.data[i].length;
297 	}
298 }
299 EXPORT_SYMBOL_GPL(sk_msg_trim);
300 
301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
302 			      struct sk_msg *msg, u32 bytes)
303 {
304 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
305 	const int to_max_pages = MAX_MSG_FRAGS;
306 	struct page *pages[MAX_MSG_FRAGS];
307 	ssize_t orig, copied, use, offset;
308 
309 	orig = msg->sg.size;
310 	while (bytes > 0) {
311 		i = 0;
312 		maxpages = to_max_pages - num_elems;
313 		if (maxpages == 0) {
314 			ret = -EFAULT;
315 			goto out;
316 		}
317 
318 		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
319 					    &offset);
320 		if (copied <= 0) {
321 			ret = -EFAULT;
322 			goto out;
323 		}
324 
325 		iov_iter_advance(from, copied);
326 		bytes -= copied;
327 		msg->sg.size += copied;
328 
329 		while (copied) {
330 			use = min_t(int, copied, PAGE_SIZE - offset);
331 			sg_set_page(&msg->sg.data[msg->sg.end],
332 				    pages[i], use, offset);
333 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
334 			sk_mem_charge(sk, use);
335 
336 			offset = 0;
337 			copied -= use;
338 			sk_msg_iter_next(msg, end);
339 			num_elems++;
340 			i++;
341 		}
342 		/* When zerocopy is mixed with sk_msg_*copy* operations we
343 		 * may have a copybreak set in this case clear and prefer
344 		 * zerocopy remainder when possible.
345 		 */
346 		msg->sg.copybreak = 0;
347 		msg->sg.curr = msg->sg.end;
348 	}
349 out:
350 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
351 	 * also needs to be cleared.
352 	 */
353 	if (ret)
354 		iov_iter_revert(from, msg->sg.size - orig);
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
358 
359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
360 			     struct sk_msg *msg, u32 bytes)
361 {
362 	int ret = -ENOSPC, i = msg->sg.curr;
363 	struct scatterlist *sge;
364 	u32 copy, buf_size;
365 	void *to;
366 
367 	do {
368 		sge = sk_msg_elem(msg, i);
369 		/* This is possible if a trim operation shrunk the buffer */
370 		if (msg->sg.copybreak >= sge->length) {
371 			msg->sg.copybreak = 0;
372 			sk_msg_iter_var_next(i);
373 			if (i == msg->sg.end)
374 				break;
375 			sge = sk_msg_elem(msg, i);
376 		}
377 
378 		buf_size = sge->length - msg->sg.copybreak;
379 		copy = (buf_size > bytes) ? bytes : buf_size;
380 		to = sg_virt(sge) + msg->sg.copybreak;
381 		msg->sg.copybreak += copy;
382 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
383 			ret = copy_from_iter_nocache(to, copy, from);
384 		else
385 			ret = copy_from_iter(to, copy, from);
386 		if (ret != copy) {
387 			ret = -EFAULT;
388 			goto out;
389 		}
390 		bytes -= copy;
391 		if (!bytes)
392 			break;
393 		msg->sg.copybreak = 0;
394 		sk_msg_iter_var_next(i);
395 	} while (i != msg->sg.end);
396 out:
397 	msg->sg.curr = i;
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
401 
402 /* Receive sk_msg from psock->ingress_msg to @msg. */
403 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
404 		   int len, int flags)
405 {
406 	struct iov_iter *iter = &msg->msg_iter;
407 	int peek = flags & MSG_PEEK;
408 	struct sk_msg *msg_rx;
409 	int i, copied = 0;
410 
411 	msg_rx = sk_psock_peek_msg(psock);
412 	while (copied != len) {
413 		struct scatterlist *sge;
414 
415 		if (unlikely(!msg_rx))
416 			break;
417 
418 		i = msg_rx->sg.start;
419 		do {
420 			struct page *page;
421 			int copy;
422 
423 			sge = sk_msg_elem(msg_rx, i);
424 			copy = sge->length;
425 			page = sg_page(sge);
426 			if (copied + copy > len)
427 				copy = len - copied;
428 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
429 			if (!copy)
430 				return copied ? copied : -EFAULT;
431 
432 			copied += copy;
433 			if (likely(!peek)) {
434 				sge->offset += copy;
435 				sge->length -= copy;
436 				if (!msg_rx->skb)
437 					sk_mem_uncharge(sk, copy);
438 				msg_rx->sg.size -= copy;
439 
440 				if (!sge->length) {
441 					sk_msg_iter_var_next(i);
442 					if (!msg_rx->skb)
443 						put_page(page);
444 				}
445 			} else {
446 				/* Lets not optimize peek case if copy_page_to_iter
447 				 * didn't copy the entire length lets just break.
448 				 */
449 				if (copy != sge->length)
450 					return copied;
451 				sk_msg_iter_var_next(i);
452 			}
453 
454 			if (copied == len)
455 				break;
456 		} while (i != msg_rx->sg.end);
457 
458 		if (unlikely(peek)) {
459 			msg_rx = sk_psock_next_msg(psock, msg_rx);
460 			if (!msg_rx)
461 				break;
462 			continue;
463 		}
464 
465 		msg_rx->sg.start = i;
466 		if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) {
467 			msg_rx = sk_psock_dequeue_msg(psock);
468 			kfree_sk_msg(msg_rx);
469 		}
470 		msg_rx = sk_psock_peek_msg(psock);
471 	}
472 
473 	return copied;
474 }
475 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
476 
477 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
478 						  struct sk_buff *skb)
479 {
480 	struct sk_msg *msg;
481 
482 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
483 		return NULL;
484 
485 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
486 		return NULL;
487 
488 	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
489 	if (unlikely(!msg))
490 		return NULL;
491 
492 	sk_msg_init(msg);
493 	return msg;
494 }
495 
496 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
497 					struct sk_psock *psock,
498 					struct sock *sk,
499 					struct sk_msg *msg)
500 {
501 	int num_sge, copied;
502 
503 	/* skb linearize may fail with ENOMEM, but lets simply try again
504 	 * later if this happens. Under memory pressure we don't want to
505 	 * drop the skb. We need to linearize the skb so that the mapping
506 	 * in skb_to_sgvec can not error.
507 	 */
508 	if (skb_linearize(skb))
509 		return -EAGAIN;
510 	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
511 	if (unlikely(num_sge < 0)) {
512 		kfree(msg);
513 		return num_sge;
514 	}
515 
516 	copied = skb->len;
517 	msg->sg.start = 0;
518 	msg->sg.size = copied;
519 	msg->sg.end = num_sge;
520 	msg->skb = skb;
521 
522 	sk_psock_queue_msg(psock, msg);
523 	sk_psock_data_ready(sk, psock);
524 	return copied;
525 }
526 
527 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
528 
529 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
530 {
531 	struct sock *sk = psock->sk;
532 	struct sk_msg *msg;
533 
534 	/* If we are receiving on the same sock skb->sk is already assigned,
535 	 * skip memory accounting and owner transition seeing it already set
536 	 * correctly.
537 	 */
538 	if (unlikely(skb->sk == sk))
539 		return sk_psock_skb_ingress_self(psock, skb);
540 	msg = sk_psock_create_ingress_msg(sk, skb);
541 	if (!msg)
542 		return -EAGAIN;
543 
544 	/* This will transition ownership of the data from the socket where
545 	 * the BPF program was run initiating the redirect to the socket
546 	 * we will eventually receive this data on. The data will be released
547 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
548 	 * into user buffers.
549 	 */
550 	skb_set_owner_r(skb, sk);
551 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
552 }
553 
554 /* Puts an skb on the ingress queue of the socket already assigned to the
555  * skb. In this case we do not need to check memory limits or skb_set_owner_r
556  * because the skb is already accounted for here.
557  */
558 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
559 {
560 	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
561 	struct sock *sk = psock->sk;
562 
563 	if (unlikely(!msg))
564 		return -EAGAIN;
565 	sk_msg_init(msg);
566 	skb_set_owner_r(skb, sk);
567 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
568 }
569 
570 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
571 			       u32 off, u32 len, bool ingress)
572 {
573 	if (!ingress) {
574 		if (!sock_writeable(psock->sk))
575 			return -EAGAIN;
576 		return skb_send_sock(psock->sk, skb, off, len);
577 	}
578 	return sk_psock_skb_ingress(psock, skb);
579 }
580 
581 static void sock_drop(struct sock *sk, struct sk_buff *skb)
582 {
583 	sk_drops_add(sk, skb);
584 	kfree_skb(skb);
585 }
586 
587 static void sk_psock_backlog(struct work_struct *work)
588 {
589 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
590 	struct sk_psock_work_state *state = &psock->work_state;
591 	struct sk_buff *skb;
592 	bool ingress;
593 	u32 len, off;
594 	int ret;
595 
596 	mutex_lock(&psock->work_mutex);
597 	if (state->skb) {
598 		skb = state->skb;
599 		len = state->len;
600 		off = state->off;
601 		state->skb = NULL;
602 		goto start;
603 	}
604 
605 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
606 		len = skb->len;
607 		off = 0;
608 start:
609 		ingress = skb_bpf_ingress(skb);
610 		skb_bpf_redirect_clear(skb);
611 		do {
612 			ret = -EIO;
613 			if (!sock_flag(psock->sk, SOCK_DEAD))
614 				ret = sk_psock_handle_skb(psock, skb, off,
615 							  len, ingress);
616 			if (ret <= 0) {
617 				if (ret == -EAGAIN) {
618 					state->skb = skb;
619 					state->len = len;
620 					state->off = off;
621 					goto end;
622 				}
623 				/* Hard errors break pipe and stop xmit. */
624 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
625 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
626 				sock_drop(psock->sk, skb);
627 				goto end;
628 			}
629 			off += ret;
630 			len -= ret;
631 		} while (len);
632 
633 		if (!ingress)
634 			kfree_skb(skb);
635 	}
636 end:
637 	mutex_unlock(&psock->work_mutex);
638 }
639 
640 struct sk_psock *sk_psock_init(struct sock *sk, int node)
641 {
642 	struct sk_psock *psock;
643 	struct proto *prot;
644 
645 	write_lock_bh(&sk->sk_callback_lock);
646 
647 	if (sk->sk_user_data) {
648 		psock = ERR_PTR(-EBUSY);
649 		goto out;
650 	}
651 
652 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
653 	if (!psock) {
654 		psock = ERR_PTR(-ENOMEM);
655 		goto out;
656 	}
657 
658 	prot = READ_ONCE(sk->sk_prot);
659 	psock->sk = sk;
660 	psock->eval = __SK_NONE;
661 	psock->sk_proto = prot;
662 	psock->saved_unhash = prot->unhash;
663 	psock->saved_close = prot->close;
664 	psock->saved_write_space = sk->sk_write_space;
665 
666 	INIT_LIST_HEAD(&psock->link);
667 	spin_lock_init(&psock->link_lock);
668 
669 	INIT_WORK(&psock->work, sk_psock_backlog);
670 	mutex_init(&psock->work_mutex);
671 	INIT_LIST_HEAD(&psock->ingress_msg);
672 	spin_lock_init(&psock->ingress_lock);
673 	skb_queue_head_init(&psock->ingress_skb);
674 
675 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
676 	refcount_set(&psock->refcnt, 1);
677 
678 	rcu_assign_sk_user_data_nocopy(sk, psock);
679 	sock_hold(sk);
680 
681 out:
682 	write_unlock_bh(&sk->sk_callback_lock);
683 	return psock;
684 }
685 EXPORT_SYMBOL_GPL(sk_psock_init);
686 
687 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
688 {
689 	struct sk_psock_link *link;
690 
691 	spin_lock_bh(&psock->link_lock);
692 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
693 					list);
694 	if (link)
695 		list_del(&link->list);
696 	spin_unlock_bh(&psock->link_lock);
697 	return link;
698 }
699 
700 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
701 {
702 	struct sk_msg *msg, *tmp;
703 
704 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
705 		list_del(&msg->list);
706 		sk_msg_free(psock->sk, msg);
707 		kfree(msg);
708 	}
709 }
710 
711 static void __sk_psock_zap_ingress(struct sk_psock *psock)
712 {
713 	struct sk_buff *skb;
714 
715 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
716 		skb_bpf_redirect_clear(skb);
717 		sock_drop(psock->sk, skb);
718 	}
719 	__sk_psock_purge_ingress_msg(psock);
720 }
721 
722 static void sk_psock_link_destroy(struct sk_psock *psock)
723 {
724 	struct sk_psock_link *link, *tmp;
725 
726 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
727 		list_del(&link->list);
728 		sk_psock_free_link(link);
729 	}
730 }
731 
732 void sk_psock_stop(struct sk_psock *psock, bool wait)
733 {
734 	spin_lock_bh(&psock->ingress_lock);
735 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
736 	sk_psock_cork_free(psock);
737 	__sk_psock_zap_ingress(psock);
738 	spin_unlock_bh(&psock->ingress_lock);
739 
740 	if (wait)
741 		cancel_work_sync(&psock->work);
742 }
743 
744 static void sk_psock_done_strp(struct sk_psock *psock);
745 
746 static void sk_psock_destroy(struct work_struct *work)
747 {
748 	struct sk_psock *psock = container_of(to_rcu_work(work),
749 					      struct sk_psock, rwork);
750 	/* No sk_callback_lock since already detached. */
751 
752 	sk_psock_done_strp(psock);
753 
754 	cancel_work_sync(&psock->work);
755 	mutex_destroy(&psock->work_mutex);
756 
757 	psock_progs_drop(&psock->progs);
758 
759 	sk_psock_link_destroy(psock);
760 	sk_psock_cork_free(psock);
761 
762 	if (psock->sk_redir)
763 		sock_put(psock->sk_redir);
764 	sock_put(psock->sk);
765 	kfree(psock);
766 }
767 
768 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
769 {
770 	sk_psock_stop(psock, false);
771 
772 	write_lock_bh(&sk->sk_callback_lock);
773 	sk_psock_restore_proto(sk, psock);
774 	rcu_assign_sk_user_data(sk, NULL);
775 	if (psock->progs.stream_parser)
776 		sk_psock_stop_strp(sk, psock);
777 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
778 		sk_psock_stop_verdict(sk, psock);
779 	write_unlock_bh(&sk->sk_callback_lock);
780 
781 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
782 	queue_rcu_work(system_wq, &psock->rwork);
783 }
784 EXPORT_SYMBOL_GPL(sk_psock_drop);
785 
786 static int sk_psock_map_verd(int verdict, bool redir)
787 {
788 	switch (verdict) {
789 	case SK_PASS:
790 		return redir ? __SK_REDIRECT : __SK_PASS;
791 	case SK_DROP:
792 	default:
793 		break;
794 	}
795 
796 	return __SK_DROP;
797 }
798 
799 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
800 			 struct sk_msg *msg)
801 {
802 	struct bpf_prog *prog;
803 	int ret;
804 
805 	rcu_read_lock();
806 	prog = READ_ONCE(psock->progs.msg_parser);
807 	if (unlikely(!prog)) {
808 		ret = __SK_PASS;
809 		goto out;
810 	}
811 
812 	sk_msg_compute_data_pointers(msg);
813 	msg->sk = sk;
814 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
815 	ret = sk_psock_map_verd(ret, msg->sk_redir);
816 	psock->apply_bytes = msg->apply_bytes;
817 	if (ret == __SK_REDIRECT) {
818 		if (psock->sk_redir)
819 			sock_put(psock->sk_redir);
820 		psock->sk_redir = msg->sk_redir;
821 		if (!psock->sk_redir) {
822 			ret = __SK_DROP;
823 			goto out;
824 		}
825 		sock_hold(psock->sk_redir);
826 	}
827 out:
828 	rcu_read_unlock();
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
832 
833 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
834 {
835 	struct sk_psock *psock_other;
836 	struct sock *sk_other;
837 
838 	sk_other = skb_bpf_redirect_fetch(skb);
839 	/* This error is a buggy BPF program, it returned a redirect
840 	 * return code, but then didn't set a redirect interface.
841 	 */
842 	if (unlikely(!sk_other)) {
843 		sock_drop(from->sk, skb);
844 		return -EIO;
845 	}
846 	psock_other = sk_psock(sk_other);
847 	/* This error indicates the socket is being torn down or had another
848 	 * error that caused the pipe to break. We can't send a packet on
849 	 * a socket that is in this state so we drop the skb.
850 	 */
851 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
852 		skb_bpf_redirect_clear(skb);
853 		sock_drop(from->sk, skb);
854 		return -EIO;
855 	}
856 	spin_lock_bh(&psock_other->ingress_lock);
857 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
858 		spin_unlock_bh(&psock_other->ingress_lock);
859 		skb_bpf_redirect_clear(skb);
860 		sock_drop(from->sk, skb);
861 		return -EIO;
862 	}
863 
864 	skb_queue_tail(&psock_other->ingress_skb, skb);
865 	schedule_work(&psock_other->work);
866 	spin_unlock_bh(&psock_other->ingress_lock);
867 	return 0;
868 }
869 
870 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
871 				       struct sk_psock *from, int verdict)
872 {
873 	switch (verdict) {
874 	case __SK_REDIRECT:
875 		sk_psock_skb_redirect(from, skb);
876 		break;
877 	case __SK_PASS:
878 	case __SK_DROP:
879 	default:
880 		break;
881 	}
882 }
883 
884 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
885 {
886 	struct bpf_prog *prog;
887 	int ret = __SK_PASS;
888 
889 	rcu_read_lock();
890 	prog = READ_ONCE(psock->progs.stream_verdict);
891 	if (likely(prog)) {
892 		skb->sk = psock->sk;
893 		skb_dst_drop(skb);
894 		skb_bpf_redirect_clear(skb);
895 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
896 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
897 		skb->sk = NULL;
898 	}
899 	sk_psock_tls_verdict_apply(skb, psock, ret);
900 	rcu_read_unlock();
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
904 
905 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
906 				  int verdict)
907 {
908 	struct sock *sk_other;
909 	int err = 0;
910 
911 	switch (verdict) {
912 	case __SK_PASS:
913 		err = -EIO;
914 		sk_other = psock->sk;
915 		if (sock_flag(sk_other, SOCK_DEAD) ||
916 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
917 			goto out_free;
918 		}
919 
920 		skb_bpf_set_ingress(skb);
921 
922 		/* If the queue is empty then we can submit directly
923 		 * into the msg queue. If its not empty we have to
924 		 * queue work otherwise we may get OOO data. Otherwise,
925 		 * if sk_psock_skb_ingress errors will be handled by
926 		 * retrying later from workqueue.
927 		 */
928 		if (skb_queue_empty(&psock->ingress_skb)) {
929 			err = sk_psock_skb_ingress_self(psock, skb);
930 		}
931 		if (err < 0) {
932 			spin_lock_bh(&psock->ingress_lock);
933 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
934 				skb_queue_tail(&psock->ingress_skb, skb);
935 				schedule_work(&psock->work);
936 				err = 0;
937 			}
938 			spin_unlock_bh(&psock->ingress_lock);
939 			if (err < 0) {
940 				skb_bpf_redirect_clear(skb);
941 				goto out_free;
942 			}
943 		}
944 		break;
945 	case __SK_REDIRECT:
946 		err = sk_psock_skb_redirect(psock, skb);
947 		break;
948 	case __SK_DROP:
949 	default:
950 out_free:
951 		sock_drop(psock->sk, skb);
952 	}
953 
954 	return err;
955 }
956 
957 static void sk_psock_write_space(struct sock *sk)
958 {
959 	struct sk_psock *psock;
960 	void (*write_space)(struct sock *sk) = NULL;
961 
962 	rcu_read_lock();
963 	psock = sk_psock(sk);
964 	if (likely(psock)) {
965 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
966 			schedule_work(&psock->work);
967 		write_space = psock->saved_write_space;
968 	}
969 	rcu_read_unlock();
970 	if (write_space)
971 		write_space(sk);
972 }
973 
974 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
975 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
976 {
977 	struct sk_psock *psock;
978 	struct bpf_prog *prog;
979 	int ret = __SK_DROP;
980 	struct sock *sk;
981 
982 	rcu_read_lock();
983 	sk = strp->sk;
984 	psock = sk_psock(sk);
985 	if (unlikely(!psock)) {
986 		sock_drop(sk, skb);
987 		goto out;
988 	}
989 	prog = READ_ONCE(psock->progs.stream_verdict);
990 	if (likely(prog)) {
991 		skb->sk = sk;
992 		skb_dst_drop(skb);
993 		skb_bpf_redirect_clear(skb);
994 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
995 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
996 		skb->sk = NULL;
997 	}
998 	sk_psock_verdict_apply(psock, skb, ret);
999 out:
1000 	rcu_read_unlock();
1001 }
1002 
1003 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1004 {
1005 	return err;
1006 }
1007 
1008 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1009 {
1010 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1011 	struct bpf_prog *prog;
1012 	int ret = skb->len;
1013 
1014 	rcu_read_lock();
1015 	prog = READ_ONCE(psock->progs.stream_parser);
1016 	if (likely(prog)) {
1017 		skb->sk = psock->sk;
1018 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1019 		skb->sk = NULL;
1020 	}
1021 	rcu_read_unlock();
1022 	return ret;
1023 }
1024 
1025 /* Called with socket lock held. */
1026 static void sk_psock_strp_data_ready(struct sock *sk)
1027 {
1028 	struct sk_psock *psock;
1029 
1030 	rcu_read_lock();
1031 	psock = sk_psock(sk);
1032 	if (likely(psock)) {
1033 		if (tls_sw_has_ctx_rx(sk)) {
1034 			psock->saved_data_ready(sk);
1035 		} else {
1036 			write_lock_bh(&sk->sk_callback_lock);
1037 			strp_data_ready(&psock->strp);
1038 			write_unlock_bh(&sk->sk_callback_lock);
1039 		}
1040 	}
1041 	rcu_read_unlock();
1042 }
1043 
1044 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1045 {
1046 	static const struct strp_callbacks cb = {
1047 		.rcv_msg	= sk_psock_strp_read,
1048 		.read_sock_done	= sk_psock_strp_read_done,
1049 		.parse_msg	= sk_psock_strp_parse,
1050 	};
1051 
1052 	return strp_init(&psock->strp, sk, &cb);
1053 }
1054 
1055 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1056 {
1057 	if (psock->saved_data_ready)
1058 		return;
1059 
1060 	psock->saved_data_ready = sk->sk_data_ready;
1061 	sk->sk_data_ready = sk_psock_strp_data_ready;
1062 	sk->sk_write_space = sk_psock_write_space;
1063 }
1064 
1065 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1066 {
1067 	if (!psock->saved_data_ready)
1068 		return;
1069 
1070 	sk->sk_data_ready = psock->saved_data_ready;
1071 	psock->saved_data_ready = NULL;
1072 	strp_stop(&psock->strp);
1073 }
1074 
1075 static void sk_psock_done_strp(struct sk_psock *psock)
1076 {
1077 	/* Parser has been stopped */
1078 	if (psock->progs.stream_parser)
1079 		strp_done(&psock->strp);
1080 }
1081 #else
1082 static void sk_psock_done_strp(struct sk_psock *psock)
1083 {
1084 }
1085 #endif /* CONFIG_BPF_STREAM_PARSER */
1086 
1087 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
1088 				 unsigned int offset, size_t orig_len)
1089 {
1090 	struct sock *sk = (struct sock *)desc->arg.data;
1091 	struct sk_psock *psock;
1092 	struct bpf_prog *prog;
1093 	int ret = __SK_DROP;
1094 	int len = skb->len;
1095 
1096 	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
1097 	skb = skb_clone(skb, GFP_ATOMIC);
1098 	if (!skb) {
1099 		desc->error = -ENOMEM;
1100 		return 0;
1101 	}
1102 
1103 	rcu_read_lock();
1104 	psock = sk_psock(sk);
1105 	if (unlikely(!psock)) {
1106 		len = 0;
1107 		sock_drop(sk, skb);
1108 		goto out;
1109 	}
1110 	prog = READ_ONCE(psock->progs.stream_verdict);
1111 	if (!prog)
1112 		prog = READ_ONCE(psock->progs.skb_verdict);
1113 	if (likely(prog)) {
1114 		skb->sk = sk;
1115 		skb_dst_drop(skb);
1116 		skb_bpf_redirect_clear(skb);
1117 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1118 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1119 		skb->sk = NULL;
1120 	}
1121 	if (sk_psock_verdict_apply(psock, skb, ret) < 0)
1122 		len = 0;
1123 out:
1124 	rcu_read_unlock();
1125 	return len;
1126 }
1127 
1128 static void sk_psock_verdict_data_ready(struct sock *sk)
1129 {
1130 	struct socket *sock = sk->sk_socket;
1131 	read_descriptor_t desc;
1132 
1133 	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1134 		return;
1135 
1136 	desc.arg.data = sk;
1137 	desc.error = 0;
1138 	desc.count = 1;
1139 
1140 	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1141 }
1142 
1143 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1144 {
1145 	if (psock->saved_data_ready)
1146 		return;
1147 
1148 	psock->saved_data_ready = sk->sk_data_ready;
1149 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1150 	sk->sk_write_space = sk_psock_write_space;
1151 }
1152 
1153 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1154 {
1155 	if (!psock->saved_data_ready)
1156 		return;
1157 
1158 	sk->sk_data_ready = psock->saved_data_ready;
1159 	psock->saved_data_ready = NULL;
1160 }
1161