xref: /openbmc/linux/net/core/skmsg.c (revision 9fa48a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 #include <trace/events/sock.h>
12 
13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 {
15 	if (msg->sg.end > msg->sg.start &&
16 	    elem_first_coalesce < msg->sg.end)
17 		return true;
18 
19 	if (msg->sg.end < msg->sg.start &&
20 	    (elem_first_coalesce > msg->sg.start ||
21 	     elem_first_coalesce < msg->sg.end))
22 		return true;
23 
24 	return false;
25 }
26 
27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
28 		 int elem_first_coalesce)
29 {
30 	struct page_frag *pfrag = sk_page_frag(sk);
31 	u32 osize = msg->sg.size;
32 	int ret = 0;
33 
34 	len -= msg->sg.size;
35 	while (len > 0) {
36 		struct scatterlist *sge;
37 		u32 orig_offset;
38 		int use, i;
39 
40 		if (!sk_page_frag_refill(sk, pfrag)) {
41 			ret = -ENOMEM;
42 			goto msg_trim;
43 		}
44 
45 		orig_offset = pfrag->offset;
46 		use = min_t(int, len, pfrag->size - orig_offset);
47 		if (!sk_wmem_schedule(sk, use)) {
48 			ret = -ENOMEM;
49 			goto msg_trim;
50 		}
51 
52 		i = msg->sg.end;
53 		sk_msg_iter_var_prev(i);
54 		sge = &msg->sg.data[i];
55 
56 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
57 		    sg_page(sge) == pfrag->page &&
58 		    sge->offset + sge->length == orig_offset) {
59 			sge->length += use;
60 		} else {
61 			if (sk_msg_full(msg)) {
62 				ret = -ENOSPC;
63 				break;
64 			}
65 
66 			sge = &msg->sg.data[msg->sg.end];
67 			sg_unmark_end(sge);
68 			sg_set_page(sge, pfrag->page, use, orig_offset);
69 			get_page(pfrag->page);
70 			sk_msg_iter_next(msg, end);
71 		}
72 
73 		sk_mem_charge(sk, use);
74 		msg->sg.size += use;
75 		pfrag->offset += use;
76 		len -= use;
77 	}
78 
79 	return ret;
80 
81 msg_trim:
82 	sk_msg_trim(sk, msg, osize);
83 	return ret;
84 }
85 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 
87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
88 		 u32 off, u32 len)
89 {
90 	int i = src->sg.start;
91 	struct scatterlist *sge = sk_msg_elem(src, i);
92 	struct scatterlist *sgd = NULL;
93 	u32 sge_len, sge_off;
94 
95 	while (off) {
96 		if (sge->length > off)
97 			break;
98 		off -= sge->length;
99 		sk_msg_iter_var_next(i);
100 		if (i == src->sg.end && off)
101 			return -ENOSPC;
102 		sge = sk_msg_elem(src, i);
103 	}
104 
105 	while (len) {
106 		sge_len = sge->length - off;
107 		if (sge_len > len)
108 			sge_len = len;
109 
110 		if (dst->sg.end)
111 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
112 
113 		if (sgd &&
114 		    (sg_page(sge) == sg_page(sgd)) &&
115 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
116 			sgd->length += sge_len;
117 			dst->sg.size += sge_len;
118 		} else if (!sk_msg_full(dst)) {
119 			sge_off = sge->offset + off;
120 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
121 		} else {
122 			return -ENOSPC;
123 		}
124 
125 		off = 0;
126 		len -= sge_len;
127 		sk_mem_charge(sk, sge_len);
128 		sk_msg_iter_var_next(i);
129 		if (i == src->sg.end && len)
130 			return -ENOSPC;
131 		sge = sk_msg_elem(src, i);
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 
138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 {
140 	int i = msg->sg.start;
141 
142 	do {
143 		struct scatterlist *sge = sk_msg_elem(msg, i);
144 
145 		if (bytes < sge->length) {
146 			sge->length -= bytes;
147 			sge->offset += bytes;
148 			sk_mem_uncharge(sk, bytes);
149 			break;
150 		}
151 
152 		sk_mem_uncharge(sk, sge->length);
153 		bytes -= sge->length;
154 		sge->length = 0;
155 		sge->offset = 0;
156 		sk_msg_iter_var_next(i);
157 	} while (bytes && i != msg->sg.end);
158 	msg->sg.start = i;
159 }
160 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 
162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 {
164 	int i = msg->sg.start;
165 
166 	do {
167 		struct scatterlist *sge = &msg->sg.data[i];
168 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 
170 		sk_mem_uncharge(sk, uncharge);
171 		bytes -= uncharge;
172 		sk_msg_iter_var_next(i);
173 	} while (i != msg->sg.end);
174 }
175 EXPORT_SYMBOL_GPL(sk_msg_return);
176 
177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
178 			    bool charge)
179 {
180 	struct scatterlist *sge = sk_msg_elem(msg, i);
181 	u32 len = sge->length;
182 
183 	/* When the skb owns the memory we free it from consume_skb path. */
184 	if (!msg->skb) {
185 		if (charge)
186 			sk_mem_uncharge(sk, len);
187 		put_page(sg_page(sge));
188 	}
189 	memset(sge, 0, sizeof(*sge));
190 	return len;
191 }
192 
193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
194 			 bool charge)
195 {
196 	struct scatterlist *sge = sk_msg_elem(msg, i);
197 	int freed = 0;
198 
199 	while (msg->sg.size) {
200 		msg->sg.size -= sge->length;
201 		freed += sk_msg_free_elem(sk, msg, i, charge);
202 		sk_msg_iter_var_next(i);
203 		sk_msg_check_to_free(msg, i, msg->sg.size);
204 		sge = sk_msg_elem(msg, i);
205 	}
206 	consume_skb(msg->skb);
207 	sk_msg_init(msg);
208 	return freed;
209 }
210 
211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 {
213 	return __sk_msg_free(sk, msg, msg->sg.start, false);
214 }
215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 
217 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 {
219 	return __sk_msg_free(sk, msg, msg->sg.start, true);
220 }
221 EXPORT_SYMBOL_GPL(sk_msg_free);
222 
223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
224 				  u32 bytes, bool charge)
225 {
226 	struct scatterlist *sge;
227 	u32 i = msg->sg.start;
228 
229 	while (bytes) {
230 		sge = sk_msg_elem(msg, i);
231 		if (!sge->length)
232 			break;
233 		if (bytes < sge->length) {
234 			if (charge)
235 				sk_mem_uncharge(sk, bytes);
236 			sge->length -= bytes;
237 			sge->offset += bytes;
238 			msg->sg.size -= bytes;
239 			break;
240 		}
241 
242 		msg->sg.size -= sge->length;
243 		bytes -= sge->length;
244 		sk_msg_free_elem(sk, msg, i, charge);
245 		sk_msg_iter_var_next(i);
246 		sk_msg_check_to_free(msg, i, bytes);
247 	}
248 	msg->sg.start = i;
249 }
250 
251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 {
253 	__sk_msg_free_partial(sk, msg, bytes, true);
254 }
255 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 
257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
258 				  u32 bytes)
259 {
260 	__sk_msg_free_partial(sk, msg, bytes, false);
261 }
262 
263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 {
265 	int trim = msg->sg.size - len;
266 	u32 i = msg->sg.end;
267 
268 	if (trim <= 0) {
269 		WARN_ON(trim < 0);
270 		return;
271 	}
272 
273 	sk_msg_iter_var_prev(i);
274 	msg->sg.size = len;
275 	while (msg->sg.data[i].length &&
276 	       trim >= msg->sg.data[i].length) {
277 		trim -= msg->sg.data[i].length;
278 		sk_msg_free_elem(sk, msg, i, true);
279 		sk_msg_iter_var_prev(i);
280 		if (!trim)
281 			goto out;
282 	}
283 
284 	msg->sg.data[i].length -= trim;
285 	sk_mem_uncharge(sk, trim);
286 	/* Adjust copybreak if it falls into the trimmed part of last buf */
287 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
288 		msg->sg.copybreak = msg->sg.data[i].length;
289 out:
290 	sk_msg_iter_var_next(i);
291 	msg->sg.end = i;
292 
293 	/* If we trim data a full sg elem before curr pointer update
294 	 * copybreak and current so that any future copy operations
295 	 * start at new copy location.
296 	 * However trimed data that has not yet been used in a copy op
297 	 * does not require an update.
298 	 */
299 	if (!msg->sg.size) {
300 		msg->sg.curr = msg->sg.start;
301 		msg->sg.copybreak = 0;
302 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
303 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
304 		sk_msg_iter_var_prev(i);
305 		msg->sg.curr = i;
306 		msg->sg.copybreak = msg->sg.data[i].length;
307 	}
308 }
309 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 
311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
312 			      struct sk_msg *msg, u32 bytes)
313 {
314 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
315 	const int to_max_pages = MAX_MSG_FRAGS;
316 	struct page *pages[MAX_MSG_FRAGS];
317 	ssize_t orig, copied, use, offset;
318 
319 	orig = msg->sg.size;
320 	while (bytes > 0) {
321 		i = 0;
322 		maxpages = to_max_pages - num_elems;
323 		if (maxpages == 0) {
324 			ret = -EFAULT;
325 			goto out;
326 		}
327 
328 		copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
329 					    &offset);
330 		if (copied <= 0) {
331 			ret = -EFAULT;
332 			goto out;
333 		}
334 
335 		bytes -= copied;
336 		msg->sg.size += copied;
337 
338 		while (copied) {
339 			use = min_t(int, copied, PAGE_SIZE - offset);
340 			sg_set_page(&msg->sg.data[msg->sg.end],
341 				    pages[i], use, offset);
342 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
343 			sk_mem_charge(sk, use);
344 
345 			offset = 0;
346 			copied -= use;
347 			sk_msg_iter_next(msg, end);
348 			num_elems++;
349 			i++;
350 		}
351 		/* When zerocopy is mixed with sk_msg_*copy* operations we
352 		 * may have a copybreak set in this case clear and prefer
353 		 * zerocopy remainder when possible.
354 		 */
355 		msg->sg.copybreak = 0;
356 		msg->sg.curr = msg->sg.end;
357 	}
358 out:
359 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
360 	 * also needs to be cleared.
361 	 */
362 	if (ret)
363 		iov_iter_revert(from, msg->sg.size - orig);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367 
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369 			     struct sk_msg *msg, u32 bytes)
370 {
371 	int ret = -ENOSPC, i = msg->sg.curr;
372 	struct scatterlist *sge;
373 	u32 copy, buf_size;
374 	void *to;
375 
376 	do {
377 		sge = sk_msg_elem(msg, i);
378 		/* This is possible if a trim operation shrunk the buffer */
379 		if (msg->sg.copybreak >= sge->length) {
380 			msg->sg.copybreak = 0;
381 			sk_msg_iter_var_next(i);
382 			if (i == msg->sg.end)
383 				break;
384 			sge = sk_msg_elem(msg, i);
385 		}
386 
387 		buf_size = sge->length - msg->sg.copybreak;
388 		copy = (buf_size > bytes) ? bytes : buf_size;
389 		to = sg_virt(sge) + msg->sg.copybreak;
390 		msg->sg.copybreak += copy;
391 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392 			ret = copy_from_iter_nocache(to, copy, from);
393 		else
394 			ret = copy_from_iter(to, copy, from);
395 		if (ret != copy) {
396 			ret = -EFAULT;
397 			goto out;
398 		}
399 		bytes -= copy;
400 		if (!bytes)
401 			break;
402 		msg->sg.copybreak = 0;
403 		sk_msg_iter_var_next(i);
404 	} while (i != msg->sg.end);
405 out:
406 	msg->sg.curr = i;
407 	return ret;
408 }
409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410 
411 /* Receive sk_msg from psock->ingress_msg to @msg. */
412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
413 		   int len, int flags)
414 {
415 	struct iov_iter *iter = &msg->msg_iter;
416 	int peek = flags & MSG_PEEK;
417 	struct sk_msg *msg_rx;
418 	int i, copied = 0;
419 
420 	msg_rx = sk_psock_peek_msg(psock);
421 	while (copied != len) {
422 		struct scatterlist *sge;
423 
424 		if (unlikely(!msg_rx))
425 			break;
426 
427 		i = msg_rx->sg.start;
428 		do {
429 			struct page *page;
430 			int copy;
431 
432 			sge = sk_msg_elem(msg_rx, i);
433 			copy = sge->length;
434 			page = sg_page(sge);
435 			if (copied + copy > len)
436 				copy = len - copied;
437 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
438 			if (!copy) {
439 				copied = copied ? copied : -EFAULT;
440 				goto out;
441 			}
442 
443 			copied += copy;
444 			if (likely(!peek)) {
445 				sge->offset += copy;
446 				sge->length -= copy;
447 				if (!msg_rx->skb)
448 					sk_mem_uncharge(sk, copy);
449 				msg_rx->sg.size -= copy;
450 
451 				if (!sge->length) {
452 					sk_msg_iter_var_next(i);
453 					if (!msg_rx->skb)
454 						put_page(page);
455 				}
456 			} else {
457 				/* Lets not optimize peek case if copy_page_to_iter
458 				 * didn't copy the entire length lets just break.
459 				 */
460 				if (copy != sge->length)
461 					goto out;
462 				sk_msg_iter_var_next(i);
463 			}
464 
465 			if (copied == len)
466 				break;
467 		} while ((i != msg_rx->sg.end) && !sg_is_last(sge));
468 
469 		if (unlikely(peek)) {
470 			msg_rx = sk_psock_next_msg(psock, msg_rx);
471 			if (!msg_rx)
472 				break;
473 			continue;
474 		}
475 
476 		msg_rx->sg.start = i;
477 		if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
478 			msg_rx = sk_psock_dequeue_msg(psock);
479 			kfree_sk_msg(msg_rx);
480 		}
481 		msg_rx = sk_psock_peek_msg(psock);
482 	}
483 out:
484 	if (psock->work_state.skb && copied > 0)
485 		schedule_work(&psock->work);
486 	return copied;
487 }
488 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
489 
490 bool sk_msg_is_readable(struct sock *sk)
491 {
492 	struct sk_psock *psock;
493 	bool empty = true;
494 
495 	rcu_read_lock();
496 	psock = sk_psock(sk);
497 	if (likely(psock))
498 		empty = list_empty(&psock->ingress_msg);
499 	rcu_read_unlock();
500 	return !empty;
501 }
502 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
503 
504 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
505 {
506 	struct sk_msg *msg;
507 
508 	msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
509 	if (unlikely(!msg))
510 		return NULL;
511 	sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
512 	return msg;
513 }
514 
515 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
516 						  struct sk_buff *skb)
517 {
518 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
519 		return NULL;
520 
521 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
522 		return NULL;
523 
524 	return alloc_sk_msg(GFP_KERNEL);
525 }
526 
527 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
528 					u32 off, u32 len,
529 					struct sk_psock *psock,
530 					struct sock *sk,
531 					struct sk_msg *msg)
532 {
533 	int num_sge, copied;
534 
535 	num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
536 	if (num_sge < 0) {
537 		/* skb linearize may fail with ENOMEM, but lets simply try again
538 		 * later if this happens. Under memory pressure we don't want to
539 		 * drop the skb. We need to linearize the skb so that the mapping
540 		 * in skb_to_sgvec can not error.
541 		 */
542 		if (skb_linearize(skb))
543 			return -EAGAIN;
544 
545 		num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
546 		if (unlikely(num_sge < 0))
547 			return num_sge;
548 	}
549 
550 	copied = len;
551 	msg->sg.start = 0;
552 	msg->sg.size = copied;
553 	msg->sg.end = num_sge;
554 	msg->skb = skb;
555 
556 	sk_psock_queue_msg(psock, msg);
557 	sk_psock_data_ready(sk, psock);
558 	return copied;
559 }
560 
561 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
562 				     u32 off, u32 len);
563 
564 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
565 				u32 off, u32 len)
566 {
567 	struct sock *sk = psock->sk;
568 	struct sk_msg *msg;
569 	int err;
570 
571 	/* If we are receiving on the same sock skb->sk is already assigned,
572 	 * skip memory accounting and owner transition seeing it already set
573 	 * correctly.
574 	 */
575 	if (unlikely(skb->sk == sk))
576 		return sk_psock_skb_ingress_self(psock, skb, off, len);
577 	msg = sk_psock_create_ingress_msg(sk, skb);
578 	if (!msg)
579 		return -EAGAIN;
580 
581 	/* This will transition ownership of the data from the socket where
582 	 * the BPF program was run initiating the redirect to the socket
583 	 * we will eventually receive this data on. The data will be released
584 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
585 	 * into user buffers.
586 	 */
587 	skb_set_owner_r(skb, sk);
588 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
589 	if (err < 0)
590 		kfree(msg);
591 	return err;
592 }
593 
594 /* Puts an skb on the ingress queue of the socket already assigned to the
595  * skb. In this case we do not need to check memory limits or skb_set_owner_r
596  * because the skb is already accounted for here.
597  */
598 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
599 				     u32 off, u32 len)
600 {
601 	struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
602 	struct sock *sk = psock->sk;
603 	int err;
604 
605 	if (unlikely(!msg))
606 		return -EAGAIN;
607 	skb_set_owner_r(skb, sk);
608 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
609 	if (err < 0)
610 		kfree(msg);
611 	return err;
612 }
613 
614 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
615 			       u32 off, u32 len, bool ingress)
616 {
617 	if (!ingress) {
618 		if (!sock_writeable(psock->sk))
619 			return -EAGAIN;
620 		return skb_send_sock(psock->sk, skb, off, len);
621 	}
622 	return sk_psock_skb_ingress(psock, skb, off, len);
623 }
624 
625 static void sk_psock_skb_state(struct sk_psock *psock,
626 			       struct sk_psock_work_state *state,
627 			       struct sk_buff *skb,
628 			       int len, int off)
629 {
630 	spin_lock_bh(&psock->ingress_lock);
631 	if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
632 		state->skb = skb;
633 		state->len = len;
634 		state->off = off;
635 	} else {
636 		sock_drop(psock->sk, skb);
637 	}
638 	spin_unlock_bh(&psock->ingress_lock);
639 }
640 
641 static void sk_psock_backlog(struct work_struct *work)
642 {
643 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
644 	struct sk_psock_work_state *state = &psock->work_state;
645 	struct sk_buff *skb = NULL;
646 	bool ingress;
647 	u32 len, off;
648 	int ret;
649 
650 	mutex_lock(&psock->work_mutex);
651 	if (unlikely(state->skb)) {
652 		spin_lock_bh(&psock->ingress_lock);
653 		skb = state->skb;
654 		len = state->len;
655 		off = state->off;
656 		state->skb = NULL;
657 		spin_unlock_bh(&psock->ingress_lock);
658 	}
659 	if (skb)
660 		goto start;
661 
662 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
663 		len = skb->len;
664 		off = 0;
665 		if (skb_bpf_strparser(skb)) {
666 			struct strp_msg *stm = strp_msg(skb);
667 
668 			off = stm->offset;
669 			len = stm->full_len;
670 		}
671 start:
672 		ingress = skb_bpf_ingress(skb);
673 		skb_bpf_redirect_clear(skb);
674 		do {
675 			ret = -EIO;
676 			if (!sock_flag(psock->sk, SOCK_DEAD))
677 				ret = sk_psock_handle_skb(psock, skb, off,
678 							  len, ingress);
679 			if (ret <= 0) {
680 				if (ret == -EAGAIN) {
681 					sk_psock_skb_state(psock, state, skb,
682 							   len, off);
683 					goto end;
684 				}
685 				/* Hard errors break pipe and stop xmit. */
686 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
687 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
688 				sock_drop(psock->sk, skb);
689 				goto end;
690 			}
691 			off += ret;
692 			len -= ret;
693 		} while (len);
694 
695 		if (!ingress)
696 			kfree_skb(skb);
697 	}
698 end:
699 	mutex_unlock(&psock->work_mutex);
700 }
701 
702 struct sk_psock *sk_psock_init(struct sock *sk, int node)
703 {
704 	struct sk_psock *psock;
705 	struct proto *prot;
706 
707 	write_lock_bh(&sk->sk_callback_lock);
708 
709 	if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
710 		psock = ERR_PTR(-EINVAL);
711 		goto out;
712 	}
713 
714 	if (sk->sk_user_data) {
715 		psock = ERR_PTR(-EBUSY);
716 		goto out;
717 	}
718 
719 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
720 	if (!psock) {
721 		psock = ERR_PTR(-ENOMEM);
722 		goto out;
723 	}
724 
725 	prot = READ_ONCE(sk->sk_prot);
726 	psock->sk = sk;
727 	psock->eval = __SK_NONE;
728 	psock->sk_proto = prot;
729 	psock->saved_unhash = prot->unhash;
730 	psock->saved_destroy = prot->destroy;
731 	psock->saved_close = prot->close;
732 	psock->saved_write_space = sk->sk_write_space;
733 
734 	INIT_LIST_HEAD(&psock->link);
735 	spin_lock_init(&psock->link_lock);
736 
737 	INIT_WORK(&psock->work, sk_psock_backlog);
738 	mutex_init(&psock->work_mutex);
739 	INIT_LIST_HEAD(&psock->ingress_msg);
740 	spin_lock_init(&psock->ingress_lock);
741 	skb_queue_head_init(&psock->ingress_skb);
742 
743 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
744 	refcount_set(&psock->refcnt, 1);
745 
746 	__rcu_assign_sk_user_data_with_flags(sk, psock,
747 					     SK_USER_DATA_NOCOPY |
748 					     SK_USER_DATA_PSOCK);
749 	sock_hold(sk);
750 
751 out:
752 	write_unlock_bh(&sk->sk_callback_lock);
753 	return psock;
754 }
755 EXPORT_SYMBOL_GPL(sk_psock_init);
756 
757 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
758 {
759 	struct sk_psock_link *link;
760 
761 	spin_lock_bh(&psock->link_lock);
762 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
763 					list);
764 	if (link)
765 		list_del(&link->list);
766 	spin_unlock_bh(&psock->link_lock);
767 	return link;
768 }
769 
770 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
771 {
772 	struct sk_msg *msg, *tmp;
773 
774 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
775 		list_del(&msg->list);
776 		sk_msg_free(psock->sk, msg);
777 		kfree(msg);
778 	}
779 }
780 
781 static void __sk_psock_zap_ingress(struct sk_psock *psock)
782 {
783 	struct sk_buff *skb;
784 
785 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
786 		skb_bpf_redirect_clear(skb);
787 		sock_drop(psock->sk, skb);
788 	}
789 	kfree_skb(psock->work_state.skb);
790 	/* We null the skb here to ensure that calls to sk_psock_backlog
791 	 * do not pick up the free'd skb.
792 	 */
793 	psock->work_state.skb = NULL;
794 	__sk_psock_purge_ingress_msg(psock);
795 }
796 
797 static void sk_psock_link_destroy(struct sk_psock *psock)
798 {
799 	struct sk_psock_link *link, *tmp;
800 
801 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
802 		list_del(&link->list);
803 		sk_psock_free_link(link);
804 	}
805 }
806 
807 void sk_psock_stop(struct sk_psock *psock)
808 {
809 	spin_lock_bh(&psock->ingress_lock);
810 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
811 	sk_psock_cork_free(psock);
812 	__sk_psock_zap_ingress(psock);
813 	spin_unlock_bh(&psock->ingress_lock);
814 }
815 
816 static void sk_psock_done_strp(struct sk_psock *psock);
817 
818 static void sk_psock_destroy(struct work_struct *work)
819 {
820 	struct sk_psock *psock = container_of(to_rcu_work(work),
821 					      struct sk_psock, rwork);
822 	/* No sk_callback_lock since already detached. */
823 
824 	sk_psock_done_strp(psock);
825 
826 	cancel_work_sync(&psock->work);
827 	mutex_destroy(&psock->work_mutex);
828 
829 	psock_progs_drop(&psock->progs);
830 
831 	sk_psock_link_destroy(psock);
832 	sk_psock_cork_free(psock);
833 
834 	if (psock->sk_redir)
835 		sock_put(psock->sk_redir);
836 	sock_put(psock->sk);
837 	kfree(psock);
838 }
839 
840 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
841 {
842 	write_lock_bh(&sk->sk_callback_lock);
843 	sk_psock_restore_proto(sk, psock);
844 	rcu_assign_sk_user_data(sk, NULL);
845 	if (psock->progs.stream_parser)
846 		sk_psock_stop_strp(sk, psock);
847 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
848 		sk_psock_stop_verdict(sk, psock);
849 	write_unlock_bh(&sk->sk_callback_lock);
850 
851 	sk_psock_stop(psock);
852 
853 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
854 	queue_rcu_work(system_wq, &psock->rwork);
855 }
856 EXPORT_SYMBOL_GPL(sk_psock_drop);
857 
858 static int sk_psock_map_verd(int verdict, bool redir)
859 {
860 	switch (verdict) {
861 	case SK_PASS:
862 		return redir ? __SK_REDIRECT : __SK_PASS;
863 	case SK_DROP:
864 	default:
865 		break;
866 	}
867 
868 	return __SK_DROP;
869 }
870 
871 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
872 			 struct sk_msg *msg)
873 {
874 	struct bpf_prog *prog;
875 	int ret;
876 
877 	rcu_read_lock();
878 	prog = READ_ONCE(psock->progs.msg_parser);
879 	if (unlikely(!prog)) {
880 		ret = __SK_PASS;
881 		goto out;
882 	}
883 
884 	sk_msg_compute_data_pointers(msg);
885 	msg->sk = sk;
886 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
887 	ret = sk_psock_map_verd(ret, msg->sk_redir);
888 	psock->apply_bytes = msg->apply_bytes;
889 	if (ret == __SK_REDIRECT) {
890 		if (psock->sk_redir) {
891 			sock_put(psock->sk_redir);
892 			psock->sk_redir = NULL;
893 		}
894 		if (!msg->sk_redir) {
895 			ret = __SK_DROP;
896 			goto out;
897 		}
898 		psock->redir_ingress = sk_msg_to_ingress(msg);
899 		psock->sk_redir = msg->sk_redir;
900 		sock_hold(psock->sk_redir);
901 	}
902 out:
903 	rcu_read_unlock();
904 	return ret;
905 }
906 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
907 
908 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
909 {
910 	struct sk_psock *psock_other;
911 	struct sock *sk_other;
912 
913 	sk_other = skb_bpf_redirect_fetch(skb);
914 	/* This error is a buggy BPF program, it returned a redirect
915 	 * return code, but then didn't set a redirect interface.
916 	 */
917 	if (unlikely(!sk_other)) {
918 		skb_bpf_redirect_clear(skb);
919 		sock_drop(from->sk, skb);
920 		return -EIO;
921 	}
922 	psock_other = sk_psock(sk_other);
923 	/* This error indicates the socket is being torn down or had another
924 	 * error that caused the pipe to break. We can't send a packet on
925 	 * a socket that is in this state so we drop the skb.
926 	 */
927 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
928 		skb_bpf_redirect_clear(skb);
929 		sock_drop(from->sk, skb);
930 		return -EIO;
931 	}
932 	spin_lock_bh(&psock_other->ingress_lock);
933 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
934 		spin_unlock_bh(&psock_other->ingress_lock);
935 		skb_bpf_redirect_clear(skb);
936 		sock_drop(from->sk, skb);
937 		return -EIO;
938 	}
939 
940 	skb_queue_tail(&psock_other->ingress_skb, skb);
941 	schedule_work(&psock_other->work);
942 	spin_unlock_bh(&psock_other->ingress_lock);
943 	return 0;
944 }
945 
946 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
947 				       struct sk_psock *from, int verdict)
948 {
949 	switch (verdict) {
950 	case __SK_REDIRECT:
951 		sk_psock_skb_redirect(from, skb);
952 		break;
953 	case __SK_PASS:
954 	case __SK_DROP:
955 	default:
956 		break;
957 	}
958 }
959 
960 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
961 {
962 	struct bpf_prog *prog;
963 	int ret = __SK_PASS;
964 
965 	rcu_read_lock();
966 	prog = READ_ONCE(psock->progs.stream_verdict);
967 	if (likely(prog)) {
968 		skb->sk = psock->sk;
969 		skb_dst_drop(skb);
970 		skb_bpf_redirect_clear(skb);
971 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
972 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
973 		skb->sk = NULL;
974 	}
975 	sk_psock_tls_verdict_apply(skb, psock, ret);
976 	rcu_read_unlock();
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
980 
981 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
982 				  int verdict)
983 {
984 	struct sock *sk_other;
985 	int err = 0;
986 	u32 len, off;
987 
988 	switch (verdict) {
989 	case __SK_PASS:
990 		err = -EIO;
991 		sk_other = psock->sk;
992 		if (sock_flag(sk_other, SOCK_DEAD) ||
993 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
994 			skb_bpf_redirect_clear(skb);
995 			goto out_free;
996 		}
997 
998 		skb_bpf_set_ingress(skb);
999 
1000 		/* If the queue is empty then we can submit directly
1001 		 * into the msg queue. If its not empty we have to
1002 		 * queue work otherwise we may get OOO data. Otherwise,
1003 		 * if sk_psock_skb_ingress errors will be handled by
1004 		 * retrying later from workqueue.
1005 		 */
1006 		if (skb_queue_empty(&psock->ingress_skb)) {
1007 			len = skb->len;
1008 			off = 0;
1009 			if (skb_bpf_strparser(skb)) {
1010 				struct strp_msg *stm = strp_msg(skb);
1011 
1012 				off = stm->offset;
1013 				len = stm->full_len;
1014 			}
1015 			err = sk_psock_skb_ingress_self(psock, skb, off, len);
1016 		}
1017 		if (err < 0) {
1018 			spin_lock_bh(&psock->ingress_lock);
1019 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1020 				skb_queue_tail(&psock->ingress_skb, skb);
1021 				schedule_work(&psock->work);
1022 				err = 0;
1023 			}
1024 			spin_unlock_bh(&psock->ingress_lock);
1025 			if (err < 0) {
1026 				skb_bpf_redirect_clear(skb);
1027 				goto out_free;
1028 			}
1029 		}
1030 		break;
1031 	case __SK_REDIRECT:
1032 		err = sk_psock_skb_redirect(psock, skb);
1033 		break;
1034 	case __SK_DROP:
1035 	default:
1036 out_free:
1037 		sock_drop(psock->sk, skb);
1038 	}
1039 
1040 	return err;
1041 }
1042 
1043 static void sk_psock_write_space(struct sock *sk)
1044 {
1045 	struct sk_psock *psock;
1046 	void (*write_space)(struct sock *sk) = NULL;
1047 
1048 	rcu_read_lock();
1049 	psock = sk_psock(sk);
1050 	if (likely(psock)) {
1051 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1052 			schedule_work(&psock->work);
1053 		write_space = psock->saved_write_space;
1054 	}
1055 	rcu_read_unlock();
1056 	if (write_space)
1057 		write_space(sk);
1058 }
1059 
1060 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1061 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1062 {
1063 	struct sk_psock *psock;
1064 	struct bpf_prog *prog;
1065 	int ret = __SK_DROP;
1066 	struct sock *sk;
1067 
1068 	rcu_read_lock();
1069 	sk = strp->sk;
1070 	psock = sk_psock(sk);
1071 	if (unlikely(!psock)) {
1072 		sock_drop(sk, skb);
1073 		goto out;
1074 	}
1075 	prog = READ_ONCE(psock->progs.stream_verdict);
1076 	if (likely(prog)) {
1077 		skb->sk = sk;
1078 		skb_dst_drop(skb);
1079 		skb_bpf_redirect_clear(skb);
1080 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1081 		if (ret == SK_PASS)
1082 			skb_bpf_set_strparser(skb);
1083 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1084 		skb->sk = NULL;
1085 	}
1086 	sk_psock_verdict_apply(psock, skb, ret);
1087 out:
1088 	rcu_read_unlock();
1089 }
1090 
1091 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1092 {
1093 	return err;
1094 }
1095 
1096 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1097 {
1098 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1099 	struct bpf_prog *prog;
1100 	int ret = skb->len;
1101 
1102 	rcu_read_lock();
1103 	prog = READ_ONCE(psock->progs.stream_parser);
1104 	if (likely(prog)) {
1105 		skb->sk = psock->sk;
1106 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1107 		skb->sk = NULL;
1108 	}
1109 	rcu_read_unlock();
1110 	return ret;
1111 }
1112 
1113 /* Called with socket lock held. */
1114 static void sk_psock_strp_data_ready(struct sock *sk)
1115 {
1116 	struct sk_psock *psock;
1117 
1118 	trace_sk_data_ready(sk);
1119 
1120 	rcu_read_lock();
1121 	psock = sk_psock(sk);
1122 	if (likely(psock)) {
1123 		if (tls_sw_has_ctx_rx(sk)) {
1124 			psock->saved_data_ready(sk);
1125 		} else {
1126 			write_lock_bh(&sk->sk_callback_lock);
1127 			strp_data_ready(&psock->strp);
1128 			write_unlock_bh(&sk->sk_callback_lock);
1129 		}
1130 	}
1131 	rcu_read_unlock();
1132 }
1133 
1134 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1135 {
1136 	static const struct strp_callbacks cb = {
1137 		.rcv_msg	= sk_psock_strp_read,
1138 		.read_sock_done	= sk_psock_strp_read_done,
1139 		.parse_msg	= sk_psock_strp_parse,
1140 	};
1141 
1142 	return strp_init(&psock->strp, sk, &cb);
1143 }
1144 
1145 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1146 {
1147 	if (psock->saved_data_ready)
1148 		return;
1149 
1150 	psock->saved_data_ready = sk->sk_data_ready;
1151 	sk->sk_data_ready = sk_psock_strp_data_ready;
1152 	sk->sk_write_space = sk_psock_write_space;
1153 }
1154 
1155 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1156 {
1157 	psock_set_prog(&psock->progs.stream_parser, NULL);
1158 
1159 	if (!psock->saved_data_ready)
1160 		return;
1161 
1162 	sk->sk_data_ready = psock->saved_data_ready;
1163 	psock->saved_data_ready = NULL;
1164 	strp_stop(&psock->strp);
1165 }
1166 
1167 static void sk_psock_done_strp(struct sk_psock *psock)
1168 {
1169 	/* Parser has been stopped */
1170 	if (psock->progs.stream_parser)
1171 		strp_done(&psock->strp);
1172 }
1173 #else
1174 static void sk_psock_done_strp(struct sk_psock *psock)
1175 {
1176 }
1177 #endif /* CONFIG_BPF_STREAM_PARSER */
1178 
1179 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1180 {
1181 	struct sk_psock *psock;
1182 	struct bpf_prog *prog;
1183 	int ret = __SK_DROP;
1184 	int len = skb->len;
1185 
1186 	skb_get(skb);
1187 
1188 	rcu_read_lock();
1189 	psock = sk_psock(sk);
1190 	if (unlikely(!psock)) {
1191 		len = 0;
1192 		sock_drop(sk, skb);
1193 		goto out;
1194 	}
1195 	prog = READ_ONCE(psock->progs.stream_verdict);
1196 	if (!prog)
1197 		prog = READ_ONCE(psock->progs.skb_verdict);
1198 	if (likely(prog)) {
1199 		skb_dst_drop(skb);
1200 		skb_bpf_redirect_clear(skb);
1201 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1202 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1203 	}
1204 	ret = sk_psock_verdict_apply(psock, skb, ret);
1205 	if (ret < 0)
1206 		len = ret;
1207 out:
1208 	rcu_read_unlock();
1209 	return len;
1210 }
1211 
1212 static void sk_psock_verdict_data_ready(struct sock *sk)
1213 {
1214 	struct socket *sock = sk->sk_socket;
1215 
1216 	trace_sk_data_ready(sk);
1217 
1218 	if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1219 		return;
1220 	sock->ops->read_skb(sk, sk_psock_verdict_recv);
1221 }
1222 
1223 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1224 {
1225 	if (psock->saved_data_ready)
1226 		return;
1227 
1228 	psock->saved_data_ready = sk->sk_data_ready;
1229 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1230 	sk->sk_write_space = sk_psock_write_space;
1231 }
1232 
1233 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1234 {
1235 	psock_set_prog(&psock->progs.stream_verdict, NULL);
1236 	psock_set_prog(&psock->progs.skb_verdict, NULL);
1237 
1238 	if (!psock->saved_data_ready)
1239 		return;
1240 
1241 	sk->sk_data_ready = psock->saved_data_ready;
1242 	psock->saved_data_ready = NULL;
1243 }
1244