1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 int ret = 0; 31 32 len -= msg->sg.size; 33 while (len > 0) { 34 struct scatterlist *sge; 35 u32 orig_offset; 36 int use, i; 37 38 if (!sk_page_frag_refill(sk, pfrag)) 39 return -ENOMEM; 40 41 orig_offset = pfrag->offset; 42 use = min_t(int, len, pfrag->size - orig_offset); 43 if (!sk_wmem_schedule(sk, use)) 44 return -ENOMEM; 45 46 i = msg->sg.end; 47 sk_msg_iter_var_prev(i); 48 sge = &msg->sg.data[i]; 49 50 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 51 sg_page(sge) == pfrag->page && 52 sge->offset + sge->length == orig_offset) { 53 sge->length += use; 54 } else { 55 if (sk_msg_full(msg)) { 56 ret = -ENOSPC; 57 break; 58 } 59 60 sge = &msg->sg.data[msg->sg.end]; 61 sg_unmark_end(sge); 62 sg_set_page(sge, pfrag->page, use, orig_offset); 63 get_page(pfrag->page); 64 sk_msg_iter_next(msg, end); 65 } 66 67 sk_mem_charge(sk, use); 68 msg->sg.size += use; 69 pfrag->offset += use; 70 len -= use; 71 } 72 73 return ret; 74 } 75 EXPORT_SYMBOL_GPL(sk_msg_alloc); 76 77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 78 u32 off, u32 len) 79 { 80 int i = src->sg.start; 81 struct scatterlist *sge = sk_msg_elem(src, i); 82 struct scatterlist *sgd = NULL; 83 u32 sge_len, sge_off; 84 85 while (off) { 86 if (sge->length > off) 87 break; 88 off -= sge->length; 89 sk_msg_iter_var_next(i); 90 if (i == src->sg.end && off) 91 return -ENOSPC; 92 sge = sk_msg_elem(src, i); 93 } 94 95 while (len) { 96 sge_len = sge->length - off; 97 if (sge_len > len) 98 sge_len = len; 99 100 if (dst->sg.end) 101 sgd = sk_msg_elem(dst, dst->sg.end - 1); 102 103 if (sgd && 104 (sg_page(sge) == sg_page(sgd)) && 105 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 106 sgd->length += sge_len; 107 dst->sg.size += sge_len; 108 } else if (!sk_msg_full(dst)) { 109 sge_off = sge->offset + off; 110 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 111 } else { 112 return -ENOSPC; 113 } 114 115 off = 0; 116 len -= sge_len; 117 sk_mem_charge(sk, sge_len); 118 sk_msg_iter_var_next(i); 119 if (i == src->sg.end && len) 120 return -ENOSPC; 121 sge = sk_msg_elem(src, i); 122 } 123 124 return 0; 125 } 126 EXPORT_SYMBOL_GPL(sk_msg_clone); 127 128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 129 { 130 int i = msg->sg.start; 131 132 do { 133 struct scatterlist *sge = sk_msg_elem(msg, i); 134 135 if (bytes < sge->length) { 136 sge->length -= bytes; 137 sge->offset += bytes; 138 sk_mem_uncharge(sk, bytes); 139 break; 140 } 141 142 sk_mem_uncharge(sk, sge->length); 143 bytes -= sge->length; 144 sge->length = 0; 145 sge->offset = 0; 146 sk_msg_iter_var_next(i); 147 } while (bytes && i != msg->sg.end); 148 msg->sg.start = i; 149 } 150 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 151 152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 153 { 154 int i = msg->sg.start; 155 156 do { 157 struct scatterlist *sge = &msg->sg.data[i]; 158 int uncharge = (bytes < sge->length) ? bytes : sge->length; 159 160 sk_mem_uncharge(sk, uncharge); 161 bytes -= uncharge; 162 sk_msg_iter_var_next(i); 163 } while (i != msg->sg.end); 164 } 165 EXPORT_SYMBOL_GPL(sk_msg_return); 166 167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 168 bool charge) 169 { 170 struct scatterlist *sge = sk_msg_elem(msg, i); 171 u32 len = sge->length; 172 173 /* When the skb owns the memory we free it from consume_skb path. */ 174 if (!msg->skb) { 175 if (charge) 176 sk_mem_uncharge(sk, len); 177 put_page(sg_page(sge)); 178 } 179 memset(sge, 0, sizeof(*sge)); 180 return len; 181 } 182 183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 184 bool charge) 185 { 186 struct scatterlist *sge = sk_msg_elem(msg, i); 187 int freed = 0; 188 189 while (msg->sg.size) { 190 msg->sg.size -= sge->length; 191 freed += sk_msg_free_elem(sk, msg, i, charge); 192 sk_msg_iter_var_next(i); 193 sk_msg_check_to_free(msg, i, msg->sg.size); 194 sge = sk_msg_elem(msg, i); 195 } 196 consume_skb(msg->skb); 197 sk_msg_init(msg); 198 return freed; 199 } 200 201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 202 { 203 return __sk_msg_free(sk, msg, msg->sg.start, false); 204 } 205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 206 207 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 208 { 209 return __sk_msg_free(sk, msg, msg->sg.start, true); 210 } 211 EXPORT_SYMBOL_GPL(sk_msg_free); 212 213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 214 u32 bytes, bool charge) 215 { 216 struct scatterlist *sge; 217 u32 i = msg->sg.start; 218 219 while (bytes) { 220 sge = sk_msg_elem(msg, i); 221 if (!sge->length) 222 break; 223 if (bytes < sge->length) { 224 if (charge) 225 sk_mem_uncharge(sk, bytes); 226 sge->length -= bytes; 227 sge->offset += bytes; 228 msg->sg.size -= bytes; 229 break; 230 } 231 232 msg->sg.size -= sge->length; 233 bytes -= sge->length; 234 sk_msg_free_elem(sk, msg, i, charge); 235 sk_msg_iter_var_next(i); 236 sk_msg_check_to_free(msg, i, bytes); 237 } 238 msg->sg.start = i; 239 } 240 241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 242 { 243 __sk_msg_free_partial(sk, msg, bytes, true); 244 } 245 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 246 247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 248 u32 bytes) 249 { 250 __sk_msg_free_partial(sk, msg, bytes, false); 251 } 252 253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 254 { 255 int trim = msg->sg.size - len; 256 u32 i = msg->sg.end; 257 258 if (trim <= 0) { 259 WARN_ON(trim < 0); 260 return; 261 } 262 263 sk_msg_iter_var_prev(i); 264 msg->sg.size = len; 265 while (msg->sg.data[i].length && 266 trim >= msg->sg.data[i].length) { 267 trim -= msg->sg.data[i].length; 268 sk_msg_free_elem(sk, msg, i, true); 269 sk_msg_iter_var_prev(i); 270 if (!trim) 271 goto out; 272 } 273 274 msg->sg.data[i].length -= trim; 275 sk_mem_uncharge(sk, trim); 276 /* Adjust copybreak if it falls into the trimmed part of last buf */ 277 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 278 msg->sg.copybreak = msg->sg.data[i].length; 279 out: 280 sk_msg_iter_var_next(i); 281 msg->sg.end = i; 282 283 /* If we trim data a full sg elem before curr pointer update 284 * copybreak and current so that any future copy operations 285 * start at new copy location. 286 * However trimed data that has not yet been used in a copy op 287 * does not require an update. 288 */ 289 if (!msg->sg.size) { 290 msg->sg.curr = msg->sg.start; 291 msg->sg.copybreak = 0; 292 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 293 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 294 sk_msg_iter_var_prev(i); 295 msg->sg.curr = i; 296 msg->sg.copybreak = msg->sg.data[i].length; 297 } 298 } 299 EXPORT_SYMBOL_GPL(sk_msg_trim); 300 301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 302 struct sk_msg *msg, u32 bytes) 303 { 304 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 305 const int to_max_pages = MAX_MSG_FRAGS; 306 struct page *pages[MAX_MSG_FRAGS]; 307 ssize_t orig, copied, use, offset; 308 309 orig = msg->sg.size; 310 while (bytes > 0) { 311 i = 0; 312 maxpages = to_max_pages - num_elems; 313 if (maxpages == 0) { 314 ret = -EFAULT; 315 goto out; 316 } 317 318 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 319 &offset); 320 if (copied <= 0) { 321 ret = -EFAULT; 322 goto out; 323 } 324 325 iov_iter_advance(from, copied); 326 bytes -= copied; 327 msg->sg.size += copied; 328 329 while (copied) { 330 use = min_t(int, copied, PAGE_SIZE - offset); 331 sg_set_page(&msg->sg.data[msg->sg.end], 332 pages[i], use, offset); 333 sg_unmark_end(&msg->sg.data[msg->sg.end]); 334 sk_mem_charge(sk, use); 335 336 offset = 0; 337 copied -= use; 338 sk_msg_iter_next(msg, end); 339 num_elems++; 340 i++; 341 } 342 /* When zerocopy is mixed with sk_msg_*copy* operations we 343 * may have a copybreak set in this case clear and prefer 344 * zerocopy remainder when possible. 345 */ 346 msg->sg.copybreak = 0; 347 msg->sg.curr = msg->sg.end; 348 } 349 out: 350 /* Revert iov_iter updates, msg will need to use 'trim' later if it 351 * also needs to be cleared. 352 */ 353 if (ret) 354 iov_iter_revert(from, msg->sg.size - orig); 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 358 359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 360 struct sk_msg *msg, u32 bytes) 361 { 362 int ret = -ENOSPC, i = msg->sg.curr; 363 struct scatterlist *sge; 364 u32 copy, buf_size; 365 void *to; 366 367 do { 368 sge = sk_msg_elem(msg, i); 369 /* This is possible if a trim operation shrunk the buffer */ 370 if (msg->sg.copybreak >= sge->length) { 371 msg->sg.copybreak = 0; 372 sk_msg_iter_var_next(i); 373 if (i == msg->sg.end) 374 break; 375 sge = sk_msg_elem(msg, i); 376 } 377 378 buf_size = sge->length - msg->sg.copybreak; 379 copy = (buf_size > bytes) ? bytes : buf_size; 380 to = sg_virt(sge) + msg->sg.copybreak; 381 msg->sg.copybreak += copy; 382 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 383 ret = copy_from_iter_nocache(to, copy, from); 384 else 385 ret = copy_from_iter(to, copy, from); 386 if (ret != copy) { 387 ret = -EFAULT; 388 goto out; 389 } 390 bytes -= copy; 391 if (!bytes) 392 break; 393 msg->sg.copybreak = 0; 394 sk_msg_iter_var_next(i); 395 } while (i != msg->sg.end); 396 out: 397 msg->sg.curr = i; 398 return ret; 399 } 400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 401 402 /* Receive sk_msg from psock->ingress_msg to @msg. */ 403 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 404 int len, int flags) 405 { 406 struct iov_iter *iter = &msg->msg_iter; 407 int peek = flags & MSG_PEEK; 408 struct sk_msg *msg_rx; 409 int i, copied = 0; 410 411 msg_rx = sk_psock_peek_msg(psock); 412 while (copied != len) { 413 struct scatterlist *sge; 414 415 if (unlikely(!msg_rx)) 416 break; 417 418 i = msg_rx->sg.start; 419 do { 420 struct page *page; 421 int copy; 422 423 sge = sk_msg_elem(msg_rx, i); 424 copy = sge->length; 425 page = sg_page(sge); 426 if (copied + copy > len) 427 copy = len - copied; 428 copy = copy_page_to_iter(page, sge->offset, copy, iter); 429 if (!copy) 430 return copied ? copied : -EFAULT; 431 432 copied += copy; 433 if (likely(!peek)) { 434 sge->offset += copy; 435 sge->length -= copy; 436 if (!msg_rx->skb) 437 sk_mem_uncharge(sk, copy); 438 msg_rx->sg.size -= copy; 439 440 if (!sge->length) { 441 sk_msg_iter_var_next(i); 442 if (!msg_rx->skb) 443 put_page(page); 444 } 445 } else { 446 /* Lets not optimize peek case if copy_page_to_iter 447 * didn't copy the entire length lets just break. 448 */ 449 if (copy != sge->length) 450 return copied; 451 sk_msg_iter_var_next(i); 452 } 453 454 if (copied == len) 455 break; 456 } while (i != msg_rx->sg.end); 457 458 if (unlikely(peek)) { 459 msg_rx = sk_psock_next_msg(psock, msg_rx); 460 if (!msg_rx) 461 break; 462 continue; 463 } 464 465 msg_rx->sg.start = i; 466 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 467 msg_rx = sk_psock_dequeue_msg(psock); 468 kfree_sk_msg(msg_rx); 469 } 470 msg_rx = sk_psock_peek_msg(psock); 471 } 472 473 return copied; 474 } 475 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 476 477 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 478 struct sk_buff *skb) 479 { 480 struct sk_msg *msg; 481 482 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 483 return NULL; 484 485 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 486 return NULL; 487 488 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 489 if (unlikely(!msg)) 490 return NULL; 491 492 sk_msg_init(msg); 493 return msg; 494 } 495 496 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 497 struct sk_psock *psock, 498 struct sock *sk, 499 struct sk_msg *msg) 500 { 501 int num_sge, copied; 502 503 /* skb linearize may fail with ENOMEM, but lets simply try again 504 * later if this happens. Under memory pressure we don't want to 505 * drop the skb. We need to linearize the skb so that the mapping 506 * in skb_to_sgvec can not error. 507 */ 508 if (skb_linearize(skb)) 509 return -EAGAIN; 510 num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len); 511 if (unlikely(num_sge < 0)) 512 return num_sge; 513 514 copied = skb->len; 515 msg->sg.start = 0; 516 msg->sg.size = copied; 517 msg->sg.end = num_sge; 518 msg->skb = skb; 519 520 sk_psock_queue_msg(psock, msg); 521 sk_psock_data_ready(sk, psock); 522 return copied; 523 } 524 525 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb); 526 527 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb) 528 { 529 struct sock *sk = psock->sk; 530 struct sk_msg *msg; 531 int err; 532 533 /* If we are receiving on the same sock skb->sk is already assigned, 534 * skip memory accounting and owner transition seeing it already set 535 * correctly. 536 */ 537 if (unlikely(skb->sk == sk)) 538 return sk_psock_skb_ingress_self(psock, skb); 539 msg = sk_psock_create_ingress_msg(sk, skb); 540 if (!msg) 541 return -EAGAIN; 542 543 /* This will transition ownership of the data from the socket where 544 * the BPF program was run initiating the redirect to the socket 545 * we will eventually receive this data on. The data will be released 546 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 547 * into user buffers. 548 */ 549 skb_set_owner_r(skb, sk); 550 err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 551 if (err < 0) 552 kfree(msg); 553 return err; 554 } 555 556 /* Puts an skb on the ingress queue of the socket already assigned to the 557 * skb. In this case we do not need to check memory limits or skb_set_owner_r 558 * because the skb is already accounted for here. 559 */ 560 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb) 561 { 562 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 563 struct sock *sk = psock->sk; 564 int err; 565 566 if (unlikely(!msg)) 567 return -EAGAIN; 568 sk_msg_init(msg); 569 skb_set_owner_r(skb, sk); 570 err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 571 if (err < 0) 572 kfree(msg); 573 return err; 574 } 575 576 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 577 u32 off, u32 len, bool ingress) 578 { 579 if (!ingress) { 580 if (!sock_writeable(psock->sk)) 581 return -EAGAIN; 582 return skb_send_sock(psock->sk, skb, off, len); 583 } 584 return sk_psock_skb_ingress(psock, skb); 585 } 586 587 static void sock_drop(struct sock *sk, struct sk_buff *skb) 588 { 589 sk_drops_add(sk, skb); 590 kfree_skb(skb); 591 } 592 593 static void sk_psock_backlog(struct work_struct *work) 594 { 595 struct sk_psock *psock = container_of(work, struct sk_psock, work); 596 struct sk_psock_work_state *state = &psock->work_state; 597 struct sk_buff *skb; 598 bool ingress; 599 u32 len, off; 600 int ret; 601 602 mutex_lock(&psock->work_mutex); 603 if (state->skb) { 604 skb = state->skb; 605 len = state->len; 606 off = state->off; 607 state->skb = NULL; 608 goto start; 609 } 610 611 while ((skb = skb_dequeue(&psock->ingress_skb))) { 612 len = skb->len; 613 off = 0; 614 start: 615 ingress = skb_bpf_ingress(skb); 616 skb_bpf_redirect_clear(skb); 617 do { 618 ret = -EIO; 619 if (!sock_flag(psock->sk, SOCK_DEAD)) 620 ret = sk_psock_handle_skb(psock, skb, off, 621 len, ingress); 622 if (ret <= 0) { 623 if (ret == -EAGAIN) { 624 state->skb = skb; 625 state->len = len; 626 state->off = off; 627 goto end; 628 } 629 /* Hard errors break pipe and stop xmit. */ 630 sk_psock_report_error(psock, ret ? -ret : EPIPE); 631 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 632 sock_drop(psock->sk, skb); 633 goto end; 634 } 635 off += ret; 636 len -= ret; 637 } while (len); 638 639 if (!ingress) 640 kfree_skb(skb); 641 } 642 end: 643 mutex_unlock(&psock->work_mutex); 644 } 645 646 struct sk_psock *sk_psock_init(struct sock *sk, int node) 647 { 648 struct sk_psock *psock; 649 struct proto *prot; 650 651 write_lock_bh(&sk->sk_callback_lock); 652 653 if (sk->sk_user_data) { 654 psock = ERR_PTR(-EBUSY); 655 goto out; 656 } 657 658 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 659 if (!psock) { 660 psock = ERR_PTR(-ENOMEM); 661 goto out; 662 } 663 664 prot = READ_ONCE(sk->sk_prot); 665 psock->sk = sk; 666 psock->eval = __SK_NONE; 667 psock->sk_proto = prot; 668 psock->saved_unhash = prot->unhash; 669 psock->saved_close = prot->close; 670 psock->saved_write_space = sk->sk_write_space; 671 672 INIT_LIST_HEAD(&psock->link); 673 spin_lock_init(&psock->link_lock); 674 675 INIT_WORK(&psock->work, sk_psock_backlog); 676 mutex_init(&psock->work_mutex); 677 INIT_LIST_HEAD(&psock->ingress_msg); 678 spin_lock_init(&psock->ingress_lock); 679 skb_queue_head_init(&psock->ingress_skb); 680 681 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 682 refcount_set(&psock->refcnt, 1); 683 684 rcu_assign_sk_user_data_nocopy(sk, psock); 685 sock_hold(sk); 686 687 out: 688 write_unlock_bh(&sk->sk_callback_lock); 689 return psock; 690 } 691 EXPORT_SYMBOL_GPL(sk_psock_init); 692 693 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 694 { 695 struct sk_psock_link *link; 696 697 spin_lock_bh(&psock->link_lock); 698 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 699 list); 700 if (link) 701 list_del(&link->list); 702 spin_unlock_bh(&psock->link_lock); 703 return link; 704 } 705 706 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 707 { 708 struct sk_msg *msg, *tmp; 709 710 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 711 list_del(&msg->list); 712 sk_msg_free(psock->sk, msg); 713 kfree(msg); 714 } 715 } 716 717 static void __sk_psock_zap_ingress(struct sk_psock *psock) 718 { 719 struct sk_buff *skb; 720 721 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 722 skb_bpf_redirect_clear(skb); 723 sock_drop(psock->sk, skb); 724 } 725 __sk_psock_purge_ingress_msg(psock); 726 } 727 728 static void sk_psock_link_destroy(struct sk_psock *psock) 729 { 730 struct sk_psock_link *link, *tmp; 731 732 list_for_each_entry_safe(link, tmp, &psock->link, list) { 733 list_del(&link->list); 734 sk_psock_free_link(link); 735 } 736 } 737 738 void sk_psock_stop(struct sk_psock *psock, bool wait) 739 { 740 spin_lock_bh(&psock->ingress_lock); 741 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 742 sk_psock_cork_free(psock); 743 __sk_psock_zap_ingress(psock); 744 spin_unlock_bh(&psock->ingress_lock); 745 746 if (wait) 747 cancel_work_sync(&psock->work); 748 } 749 750 static void sk_psock_done_strp(struct sk_psock *psock); 751 752 static void sk_psock_destroy(struct work_struct *work) 753 { 754 struct sk_psock *psock = container_of(to_rcu_work(work), 755 struct sk_psock, rwork); 756 /* No sk_callback_lock since already detached. */ 757 758 sk_psock_done_strp(psock); 759 760 cancel_work_sync(&psock->work); 761 mutex_destroy(&psock->work_mutex); 762 763 psock_progs_drop(&psock->progs); 764 765 sk_psock_link_destroy(psock); 766 sk_psock_cork_free(psock); 767 768 if (psock->sk_redir) 769 sock_put(psock->sk_redir); 770 sock_put(psock->sk); 771 kfree(psock); 772 } 773 774 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 775 { 776 sk_psock_stop(psock, false); 777 778 write_lock_bh(&sk->sk_callback_lock); 779 sk_psock_restore_proto(sk, psock); 780 rcu_assign_sk_user_data(sk, NULL); 781 if (psock->progs.stream_parser) 782 sk_psock_stop_strp(sk, psock); 783 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 784 sk_psock_stop_verdict(sk, psock); 785 write_unlock_bh(&sk->sk_callback_lock); 786 787 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 788 queue_rcu_work(system_wq, &psock->rwork); 789 } 790 EXPORT_SYMBOL_GPL(sk_psock_drop); 791 792 static int sk_psock_map_verd(int verdict, bool redir) 793 { 794 switch (verdict) { 795 case SK_PASS: 796 return redir ? __SK_REDIRECT : __SK_PASS; 797 case SK_DROP: 798 default: 799 break; 800 } 801 802 return __SK_DROP; 803 } 804 805 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 806 struct sk_msg *msg) 807 { 808 struct bpf_prog *prog; 809 int ret; 810 811 rcu_read_lock(); 812 prog = READ_ONCE(psock->progs.msg_parser); 813 if (unlikely(!prog)) { 814 ret = __SK_PASS; 815 goto out; 816 } 817 818 sk_msg_compute_data_pointers(msg); 819 msg->sk = sk; 820 ret = bpf_prog_run_pin_on_cpu(prog, msg); 821 ret = sk_psock_map_verd(ret, msg->sk_redir); 822 psock->apply_bytes = msg->apply_bytes; 823 if (ret == __SK_REDIRECT) { 824 if (psock->sk_redir) 825 sock_put(psock->sk_redir); 826 psock->sk_redir = msg->sk_redir; 827 if (!psock->sk_redir) { 828 ret = __SK_DROP; 829 goto out; 830 } 831 sock_hold(psock->sk_redir); 832 } 833 out: 834 rcu_read_unlock(); 835 return ret; 836 } 837 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 838 839 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 840 { 841 struct sk_psock *psock_other; 842 struct sock *sk_other; 843 844 sk_other = skb_bpf_redirect_fetch(skb); 845 /* This error is a buggy BPF program, it returned a redirect 846 * return code, but then didn't set a redirect interface. 847 */ 848 if (unlikely(!sk_other)) { 849 sock_drop(from->sk, skb); 850 return -EIO; 851 } 852 psock_other = sk_psock(sk_other); 853 /* This error indicates the socket is being torn down or had another 854 * error that caused the pipe to break. We can't send a packet on 855 * a socket that is in this state so we drop the skb. 856 */ 857 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 858 skb_bpf_redirect_clear(skb); 859 sock_drop(from->sk, skb); 860 return -EIO; 861 } 862 spin_lock_bh(&psock_other->ingress_lock); 863 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 864 spin_unlock_bh(&psock_other->ingress_lock); 865 skb_bpf_redirect_clear(skb); 866 sock_drop(from->sk, skb); 867 return -EIO; 868 } 869 870 skb_queue_tail(&psock_other->ingress_skb, skb); 871 schedule_work(&psock_other->work); 872 spin_unlock_bh(&psock_other->ingress_lock); 873 return 0; 874 } 875 876 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 877 struct sk_psock *from, int verdict) 878 { 879 switch (verdict) { 880 case __SK_REDIRECT: 881 sk_psock_skb_redirect(from, skb); 882 break; 883 case __SK_PASS: 884 case __SK_DROP: 885 default: 886 break; 887 } 888 } 889 890 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 891 { 892 struct bpf_prog *prog; 893 int ret = __SK_PASS; 894 895 rcu_read_lock(); 896 prog = READ_ONCE(psock->progs.stream_verdict); 897 if (likely(prog)) { 898 skb->sk = psock->sk; 899 skb_dst_drop(skb); 900 skb_bpf_redirect_clear(skb); 901 ret = bpf_prog_run_pin_on_cpu(prog, skb); 902 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 903 skb->sk = NULL; 904 } 905 sk_psock_tls_verdict_apply(skb, psock, ret); 906 rcu_read_unlock(); 907 return ret; 908 } 909 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 910 911 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 912 int verdict) 913 { 914 struct sock *sk_other; 915 int err = 0; 916 917 switch (verdict) { 918 case __SK_PASS: 919 err = -EIO; 920 sk_other = psock->sk; 921 if (sock_flag(sk_other, SOCK_DEAD) || 922 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 923 goto out_free; 924 } 925 926 skb_bpf_set_ingress(skb); 927 928 /* If the queue is empty then we can submit directly 929 * into the msg queue. If its not empty we have to 930 * queue work otherwise we may get OOO data. Otherwise, 931 * if sk_psock_skb_ingress errors will be handled by 932 * retrying later from workqueue. 933 */ 934 if (skb_queue_empty(&psock->ingress_skb)) { 935 err = sk_psock_skb_ingress_self(psock, skb); 936 } 937 if (err < 0) { 938 spin_lock_bh(&psock->ingress_lock); 939 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 940 skb_queue_tail(&psock->ingress_skb, skb); 941 schedule_work(&psock->work); 942 err = 0; 943 } 944 spin_unlock_bh(&psock->ingress_lock); 945 if (err < 0) { 946 skb_bpf_redirect_clear(skb); 947 goto out_free; 948 } 949 } 950 break; 951 case __SK_REDIRECT: 952 err = sk_psock_skb_redirect(psock, skb); 953 break; 954 case __SK_DROP: 955 default: 956 out_free: 957 sock_drop(psock->sk, skb); 958 } 959 960 return err; 961 } 962 963 static void sk_psock_write_space(struct sock *sk) 964 { 965 struct sk_psock *psock; 966 void (*write_space)(struct sock *sk) = NULL; 967 968 rcu_read_lock(); 969 psock = sk_psock(sk); 970 if (likely(psock)) { 971 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 972 schedule_work(&psock->work); 973 write_space = psock->saved_write_space; 974 } 975 rcu_read_unlock(); 976 if (write_space) 977 write_space(sk); 978 } 979 980 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 981 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 982 { 983 struct sk_psock *psock; 984 struct bpf_prog *prog; 985 int ret = __SK_DROP; 986 struct sock *sk; 987 988 rcu_read_lock(); 989 sk = strp->sk; 990 psock = sk_psock(sk); 991 if (unlikely(!psock)) { 992 sock_drop(sk, skb); 993 goto out; 994 } 995 prog = READ_ONCE(psock->progs.stream_verdict); 996 if (likely(prog)) { 997 skb->sk = sk; 998 skb_dst_drop(skb); 999 skb_bpf_redirect_clear(skb); 1000 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1001 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1002 skb->sk = NULL; 1003 } 1004 sk_psock_verdict_apply(psock, skb, ret); 1005 out: 1006 rcu_read_unlock(); 1007 } 1008 1009 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1010 { 1011 return err; 1012 } 1013 1014 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1015 { 1016 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1017 struct bpf_prog *prog; 1018 int ret = skb->len; 1019 1020 rcu_read_lock(); 1021 prog = READ_ONCE(psock->progs.stream_parser); 1022 if (likely(prog)) { 1023 skb->sk = psock->sk; 1024 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1025 skb->sk = NULL; 1026 } 1027 rcu_read_unlock(); 1028 return ret; 1029 } 1030 1031 /* Called with socket lock held. */ 1032 static void sk_psock_strp_data_ready(struct sock *sk) 1033 { 1034 struct sk_psock *psock; 1035 1036 rcu_read_lock(); 1037 psock = sk_psock(sk); 1038 if (likely(psock)) { 1039 if (tls_sw_has_ctx_rx(sk)) { 1040 psock->saved_data_ready(sk); 1041 } else { 1042 write_lock_bh(&sk->sk_callback_lock); 1043 strp_data_ready(&psock->strp); 1044 write_unlock_bh(&sk->sk_callback_lock); 1045 } 1046 } 1047 rcu_read_unlock(); 1048 } 1049 1050 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1051 { 1052 static const struct strp_callbacks cb = { 1053 .rcv_msg = sk_psock_strp_read, 1054 .read_sock_done = sk_psock_strp_read_done, 1055 .parse_msg = sk_psock_strp_parse, 1056 }; 1057 1058 return strp_init(&psock->strp, sk, &cb); 1059 } 1060 1061 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1062 { 1063 if (psock->saved_data_ready) 1064 return; 1065 1066 psock->saved_data_ready = sk->sk_data_ready; 1067 sk->sk_data_ready = sk_psock_strp_data_ready; 1068 sk->sk_write_space = sk_psock_write_space; 1069 } 1070 1071 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1072 { 1073 if (!psock->saved_data_ready) 1074 return; 1075 1076 sk->sk_data_ready = psock->saved_data_ready; 1077 psock->saved_data_ready = NULL; 1078 strp_stop(&psock->strp); 1079 } 1080 1081 static void sk_psock_done_strp(struct sk_psock *psock) 1082 { 1083 /* Parser has been stopped */ 1084 if (psock->progs.stream_parser) 1085 strp_done(&psock->strp); 1086 } 1087 #else 1088 static void sk_psock_done_strp(struct sk_psock *psock) 1089 { 1090 } 1091 #endif /* CONFIG_BPF_STREAM_PARSER */ 1092 1093 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1094 unsigned int offset, size_t orig_len) 1095 { 1096 struct sock *sk = (struct sock *)desc->arg.data; 1097 struct sk_psock *psock; 1098 struct bpf_prog *prog; 1099 int ret = __SK_DROP; 1100 int len = skb->len; 1101 1102 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1103 skb = skb_clone(skb, GFP_ATOMIC); 1104 if (!skb) { 1105 desc->error = -ENOMEM; 1106 return 0; 1107 } 1108 1109 rcu_read_lock(); 1110 psock = sk_psock(sk); 1111 if (unlikely(!psock)) { 1112 len = 0; 1113 sock_drop(sk, skb); 1114 goto out; 1115 } 1116 prog = READ_ONCE(psock->progs.stream_verdict); 1117 if (!prog) 1118 prog = READ_ONCE(psock->progs.skb_verdict); 1119 if (likely(prog)) { 1120 skb->sk = sk; 1121 skb_dst_drop(skb); 1122 skb_bpf_redirect_clear(skb); 1123 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1124 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1125 skb->sk = NULL; 1126 } 1127 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1128 len = 0; 1129 out: 1130 rcu_read_unlock(); 1131 return len; 1132 } 1133 1134 static void sk_psock_verdict_data_ready(struct sock *sk) 1135 { 1136 struct socket *sock = sk->sk_socket; 1137 read_descriptor_t desc; 1138 1139 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1140 return; 1141 1142 desc.arg.data = sk; 1143 desc.error = 0; 1144 desc.count = 1; 1145 1146 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1147 } 1148 1149 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1150 { 1151 if (psock->saved_data_ready) 1152 return; 1153 1154 psock->saved_data_ready = sk->sk_data_ready; 1155 sk->sk_data_ready = sk_psock_verdict_data_ready; 1156 sk->sk_write_space = sk_psock_write_space; 1157 } 1158 1159 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1160 { 1161 if (!psock->saved_data_ready) 1162 return; 1163 1164 sk->sk_data_ready = psock->saved_data_ready; 1165 psock->saved_data_ready = NULL; 1166 } 1167