1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 int ret = 0; 31 32 len -= msg->sg.size; 33 while (len > 0) { 34 struct scatterlist *sge; 35 u32 orig_offset; 36 int use, i; 37 38 if (!sk_page_frag_refill(sk, pfrag)) 39 return -ENOMEM; 40 41 orig_offset = pfrag->offset; 42 use = min_t(int, len, pfrag->size - orig_offset); 43 if (!sk_wmem_schedule(sk, use)) 44 return -ENOMEM; 45 46 i = msg->sg.end; 47 sk_msg_iter_var_prev(i); 48 sge = &msg->sg.data[i]; 49 50 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 51 sg_page(sge) == pfrag->page && 52 sge->offset + sge->length == orig_offset) { 53 sge->length += use; 54 } else { 55 if (sk_msg_full(msg)) { 56 ret = -ENOSPC; 57 break; 58 } 59 60 sge = &msg->sg.data[msg->sg.end]; 61 sg_unmark_end(sge); 62 sg_set_page(sge, pfrag->page, use, orig_offset); 63 get_page(pfrag->page); 64 sk_msg_iter_next(msg, end); 65 } 66 67 sk_mem_charge(sk, use); 68 msg->sg.size += use; 69 pfrag->offset += use; 70 len -= use; 71 } 72 73 return ret; 74 } 75 EXPORT_SYMBOL_GPL(sk_msg_alloc); 76 77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 78 u32 off, u32 len) 79 { 80 int i = src->sg.start; 81 struct scatterlist *sge = sk_msg_elem(src, i); 82 struct scatterlist *sgd = NULL; 83 u32 sge_len, sge_off; 84 85 while (off) { 86 if (sge->length > off) 87 break; 88 off -= sge->length; 89 sk_msg_iter_var_next(i); 90 if (i == src->sg.end && off) 91 return -ENOSPC; 92 sge = sk_msg_elem(src, i); 93 } 94 95 while (len) { 96 sge_len = sge->length - off; 97 if (sge_len > len) 98 sge_len = len; 99 100 if (dst->sg.end) 101 sgd = sk_msg_elem(dst, dst->sg.end - 1); 102 103 if (sgd && 104 (sg_page(sge) == sg_page(sgd)) && 105 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 106 sgd->length += sge_len; 107 dst->sg.size += sge_len; 108 } else if (!sk_msg_full(dst)) { 109 sge_off = sge->offset + off; 110 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 111 } else { 112 return -ENOSPC; 113 } 114 115 off = 0; 116 len -= sge_len; 117 sk_mem_charge(sk, sge_len); 118 sk_msg_iter_var_next(i); 119 if (i == src->sg.end && len) 120 return -ENOSPC; 121 sge = sk_msg_elem(src, i); 122 } 123 124 return 0; 125 } 126 EXPORT_SYMBOL_GPL(sk_msg_clone); 127 128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 129 { 130 int i = msg->sg.start; 131 132 do { 133 struct scatterlist *sge = sk_msg_elem(msg, i); 134 135 if (bytes < sge->length) { 136 sge->length -= bytes; 137 sge->offset += bytes; 138 sk_mem_uncharge(sk, bytes); 139 break; 140 } 141 142 sk_mem_uncharge(sk, sge->length); 143 bytes -= sge->length; 144 sge->length = 0; 145 sge->offset = 0; 146 sk_msg_iter_var_next(i); 147 } while (bytes && i != msg->sg.end); 148 msg->sg.start = i; 149 } 150 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 151 152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 153 { 154 int i = msg->sg.start; 155 156 do { 157 struct scatterlist *sge = &msg->sg.data[i]; 158 int uncharge = (bytes < sge->length) ? bytes : sge->length; 159 160 sk_mem_uncharge(sk, uncharge); 161 bytes -= uncharge; 162 sk_msg_iter_var_next(i); 163 } while (i != msg->sg.end); 164 } 165 EXPORT_SYMBOL_GPL(sk_msg_return); 166 167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 168 bool charge) 169 { 170 struct scatterlist *sge = sk_msg_elem(msg, i); 171 u32 len = sge->length; 172 173 /* When the skb owns the memory we free it from consume_skb path. */ 174 if (!msg->skb) { 175 if (charge) 176 sk_mem_uncharge(sk, len); 177 put_page(sg_page(sge)); 178 } 179 memset(sge, 0, sizeof(*sge)); 180 return len; 181 } 182 183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 184 bool charge) 185 { 186 struct scatterlist *sge = sk_msg_elem(msg, i); 187 int freed = 0; 188 189 while (msg->sg.size) { 190 msg->sg.size -= sge->length; 191 freed += sk_msg_free_elem(sk, msg, i, charge); 192 sk_msg_iter_var_next(i); 193 sk_msg_check_to_free(msg, i, msg->sg.size); 194 sge = sk_msg_elem(msg, i); 195 } 196 consume_skb(msg->skb); 197 sk_msg_init(msg); 198 return freed; 199 } 200 201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 202 { 203 return __sk_msg_free(sk, msg, msg->sg.start, false); 204 } 205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 206 207 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 208 { 209 return __sk_msg_free(sk, msg, msg->sg.start, true); 210 } 211 EXPORT_SYMBOL_GPL(sk_msg_free); 212 213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 214 u32 bytes, bool charge) 215 { 216 struct scatterlist *sge; 217 u32 i = msg->sg.start; 218 219 while (bytes) { 220 sge = sk_msg_elem(msg, i); 221 if (!sge->length) 222 break; 223 if (bytes < sge->length) { 224 if (charge) 225 sk_mem_uncharge(sk, bytes); 226 sge->length -= bytes; 227 sge->offset += bytes; 228 msg->sg.size -= bytes; 229 break; 230 } 231 232 msg->sg.size -= sge->length; 233 bytes -= sge->length; 234 sk_msg_free_elem(sk, msg, i, charge); 235 sk_msg_iter_var_next(i); 236 sk_msg_check_to_free(msg, i, bytes); 237 } 238 msg->sg.start = i; 239 } 240 241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 242 { 243 __sk_msg_free_partial(sk, msg, bytes, true); 244 } 245 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 246 247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 248 u32 bytes) 249 { 250 __sk_msg_free_partial(sk, msg, bytes, false); 251 } 252 253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 254 { 255 int trim = msg->sg.size - len; 256 u32 i = msg->sg.end; 257 258 if (trim <= 0) { 259 WARN_ON(trim < 0); 260 return; 261 } 262 263 sk_msg_iter_var_prev(i); 264 msg->sg.size = len; 265 while (msg->sg.data[i].length && 266 trim >= msg->sg.data[i].length) { 267 trim -= msg->sg.data[i].length; 268 sk_msg_free_elem(sk, msg, i, true); 269 sk_msg_iter_var_prev(i); 270 if (!trim) 271 goto out; 272 } 273 274 msg->sg.data[i].length -= trim; 275 sk_mem_uncharge(sk, trim); 276 /* Adjust copybreak if it falls into the trimmed part of last buf */ 277 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 278 msg->sg.copybreak = msg->sg.data[i].length; 279 out: 280 sk_msg_iter_var_next(i); 281 msg->sg.end = i; 282 283 /* If we trim data a full sg elem before curr pointer update 284 * copybreak and current so that any future copy operations 285 * start at new copy location. 286 * However trimed data that has not yet been used in a copy op 287 * does not require an update. 288 */ 289 if (!msg->sg.size) { 290 msg->sg.curr = msg->sg.start; 291 msg->sg.copybreak = 0; 292 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 293 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 294 sk_msg_iter_var_prev(i); 295 msg->sg.curr = i; 296 msg->sg.copybreak = msg->sg.data[i].length; 297 } 298 } 299 EXPORT_SYMBOL_GPL(sk_msg_trim); 300 301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 302 struct sk_msg *msg, u32 bytes) 303 { 304 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 305 const int to_max_pages = MAX_MSG_FRAGS; 306 struct page *pages[MAX_MSG_FRAGS]; 307 ssize_t orig, copied, use, offset; 308 309 orig = msg->sg.size; 310 while (bytes > 0) { 311 i = 0; 312 maxpages = to_max_pages - num_elems; 313 if (maxpages == 0) { 314 ret = -EFAULT; 315 goto out; 316 } 317 318 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 319 &offset); 320 if (copied <= 0) { 321 ret = -EFAULT; 322 goto out; 323 } 324 325 iov_iter_advance(from, copied); 326 bytes -= copied; 327 msg->sg.size += copied; 328 329 while (copied) { 330 use = min_t(int, copied, PAGE_SIZE - offset); 331 sg_set_page(&msg->sg.data[msg->sg.end], 332 pages[i], use, offset); 333 sg_unmark_end(&msg->sg.data[msg->sg.end]); 334 sk_mem_charge(sk, use); 335 336 offset = 0; 337 copied -= use; 338 sk_msg_iter_next(msg, end); 339 num_elems++; 340 i++; 341 } 342 /* When zerocopy is mixed with sk_msg_*copy* operations we 343 * may have a copybreak set in this case clear and prefer 344 * zerocopy remainder when possible. 345 */ 346 msg->sg.copybreak = 0; 347 msg->sg.curr = msg->sg.end; 348 } 349 out: 350 /* Revert iov_iter updates, msg will need to use 'trim' later if it 351 * also needs to be cleared. 352 */ 353 if (ret) 354 iov_iter_revert(from, msg->sg.size - orig); 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 358 359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 360 struct sk_msg *msg, u32 bytes) 361 { 362 int ret = -ENOSPC, i = msg->sg.curr; 363 struct scatterlist *sge; 364 u32 copy, buf_size; 365 void *to; 366 367 do { 368 sge = sk_msg_elem(msg, i); 369 /* This is possible if a trim operation shrunk the buffer */ 370 if (msg->sg.copybreak >= sge->length) { 371 msg->sg.copybreak = 0; 372 sk_msg_iter_var_next(i); 373 if (i == msg->sg.end) 374 break; 375 sge = sk_msg_elem(msg, i); 376 } 377 378 buf_size = sge->length - msg->sg.copybreak; 379 copy = (buf_size > bytes) ? bytes : buf_size; 380 to = sg_virt(sge) + msg->sg.copybreak; 381 msg->sg.copybreak += copy; 382 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 383 ret = copy_from_iter_nocache(to, copy, from); 384 else 385 ret = copy_from_iter(to, copy, from); 386 if (ret != copy) { 387 ret = -EFAULT; 388 goto out; 389 } 390 bytes -= copy; 391 if (!bytes) 392 break; 393 msg->sg.copybreak = 0; 394 sk_msg_iter_var_next(i); 395 } while (i != msg->sg.end); 396 out: 397 msg->sg.curr = i; 398 return ret; 399 } 400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 401 402 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 403 struct sk_buff *skb) 404 { 405 struct sk_msg *msg; 406 407 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 408 return NULL; 409 410 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 411 return NULL; 412 413 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 414 if (unlikely(!msg)) 415 return NULL; 416 417 sk_msg_init(msg); 418 return msg; 419 } 420 421 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 422 struct sk_psock *psock, 423 struct sock *sk, 424 struct sk_msg *msg) 425 { 426 int num_sge, copied; 427 428 /* skb linearize may fail with ENOMEM, but lets simply try again 429 * later if this happens. Under memory pressure we don't want to 430 * drop the skb. We need to linearize the skb so that the mapping 431 * in skb_to_sgvec can not error. 432 */ 433 if (skb_linearize(skb)) 434 return -EAGAIN; 435 num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len); 436 if (unlikely(num_sge < 0)) { 437 kfree(msg); 438 return num_sge; 439 } 440 441 copied = skb->len; 442 msg->sg.start = 0; 443 msg->sg.size = copied; 444 msg->sg.end = num_sge; 445 msg->skb = skb; 446 447 sk_psock_queue_msg(psock, msg); 448 sk_psock_data_ready(sk, psock); 449 return copied; 450 } 451 452 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb); 453 454 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb) 455 { 456 struct sock *sk = psock->sk; 457 struct sk_msg *msg; 458 459 /* If we are receiving on the same sock skb->sk is already assigned, 460 * skip memory accounting and owner transition seeing it already set 461 * correctly. 462 */ 463 if (unlikely(skb->sk == sk)) 464 return sk_psock_skb_ingress_self(psock, skb); 465 msg = sk_psock_create_ingress_msg(sk, skb); 466 if (!msg) 467 return -EAGAIN; 468 469 /* This will transition ownership of the data from the socket where 470 * the BPF program was run initiating the redirect to the socket 471 * we will eventually receive this data on. The data will be released 472 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 473 * into user buffers. 474 */ 475 skb_set_owner_r(skb, sk); 476 return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 477 } 478 479 /* Puts an skb on the ingress queue of the socket already assigned to the 480 * skb. In this case we do not need to check memory limits or skb_set_owner_r 481 * because the skb is already accounted for here. 482 */ 483 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb) 484 { 485 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 486 struct sock *sk = psock->sk; 487 488 if (unlikely(!msg)) 489 return -EAGAIN; 490 sk_msg_init(msg); 491 skb_set_owner_r(skb, sk); 492 return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 493 } 494 495 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 496 u32 off, u32 len, bool ingress) 497 { 498 if (!ingress) { 499 if (!sock_writeable(psock->sk)) 500 return -EAGAIN; 501 return skb_send_sock_locked(psock->sk, skb, off, len); 502 } 503 return sk_psock_skb_ingress(psock, skb); 504 } 505 506 static void sk_psock_backlog(struct work_struct *work) 507 { 508 struct sk_psock *psock = container_of(work, struct sk_psock, work); 509 struct sk_psock_work_state *state = &psock->work_state; 510 struct sk_buff *skb; 511 bool ingress; 512 u32 len, off; 513 int ret; 514 515 /* Lock sock to avoid losing sk_socket during loop. */ 516 lock_sock(psock->sk); 517 if (state->skb) { 518 skb = state->skb; 519 len = state->len; 520 off = state->off; 521 state->skb = NULL; 522 goto start; 523 } 524 525 while ((skb = skb_dequeue(&psock->ingress_skb))) { 526 len = skb->len; 527 off = 0; 528 start: 529 ingress = tcp_skb_bpf_ingress(skb); 530 do { 531 ret = -EIO; 532 if (likely(psock->sk->sk_socket)) 533 ret = sk_psock_handle_skb(psock, skb, off, 534 len, ingress); 535 if (ret <= 0) { 536 if (ret == -EAGAIN) { 537 state->skb = skb; 538 state->len = len; 539 state->off = off; 540 goto end; 541 } 542 /* Hard errors break pipe and stop xmit. */ 543 sk_psock_report_error(psock, ret ? -ret : EPIPE); 544 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 545 kfree_skb(skb); 546 goto end; 547 } 548 off += ret; 549 len -= ret; 550 } while (len); 551 552 if (!ingress) 553 kfree_skb(skb); 554 } 555 end: 556 release_sock(psock->sk); 557 } 558 559 struct sk_psock *sk_psock_init(struct sock *sk, int node) 560 { 561 struct sk_psock *psock; 562 struct proto *prot; 563 564 write_lock_bh(&sk->sk_callback_lock); 565 566 if (inet_csk_has_ulp(sk)) { 567 psock = ERR_PTR(-EINVAL); 568 goto out; 569 } 570 571 if (sk->sk_user_data) { 572 psock = ERR_PTR(-EBUSY); 573 goto out; 574 } 575 576 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 577 if (!psock) { 578 psock = ERR_PTR(-ENOMEM); 579 goto out; 580 } 581 582 prot = READ_ONCE(sk->sk_prot); 583 psock->sk = sk; 584 psock->eval = __SK_NONE; 585 psock->sk_proto = prot; 586 psock->saved_unhash = prot->unhash; 587 psock->saved_close = prot->close; 588 psock->saved_write_space = sk->sk_write_space; 589 590 INIT_LIST_HEAD(&psock->link); 591 spin_lock_init(&psock->link_lock); 592 593 INIT_WORK(&psock->work, sk_psock_backlog); 594 INIT_LIST_HEAD(&psock->ingress_msg); 595 skb_queue_head_init(&psock->ingress_skb); 596 597 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 598 refcount_set(&psock->refcnt, 1); 599 600 rcu_assign_sk_user_data_nocopy(sk, psock); 601 sock_hold(sk); 602 603 out: 604 write_unlock_bh(&sk->sk_callback_lock); 605 return psock; 606 } 607 EXPORT_SYMBOL_GPL(sk_psock_init); 608 609 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 610 { 611 struct sk_psock_link *link; 612 613 spin_lock_bh(&psock->link_lock); 614 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 615 list); 616 if (link) 617 list_del(&link->list); 618 spin_unlock_bh(&psock->link_lock); 619 return link; 620 } 621 622 void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 623 { 624 struct sk_msg *msg, *tmp; 625 626 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 627 list_del(&msg->list); 628 sk_msg_free(psock->sk, msg); 629 kfree(msg); 630 } 631 } 632 633 static void sk_psock_zap_ingress(struct sk_psock *psock) 634 { 635 __skb_queue_purge(&psock->ingress_skb); 636 __sk_psock_purge_ingress_msg(psock); 637 } 638 639 static void sk_psock_link_destroy(struct sk_psock *psock) 640 { 641 struct sk_psock_link *link, *tmp; 642 643 list_for_each_entry_safe(link, tmp, &psock->link, list) { 644 list_del(&link->list); 645 sk_psock_free_link(link); 646 } 647 } 648 649 static void sk_psock_destroy_deferred(struct work_struct *gc) 650 { 651 struct sk_psock *psock = container_of(gc, struct sk_psock, gc); 652 653 /* No sk_callback_lock since already detached. */ 654 655 /* Parser has been stopped */ 656 if (psock->progs.skb_parser) 657 strp_done(&psock->parser.strp); 658 659 cancel_work_sync(&psock->work); 660 661 psock_progs_drop(&psock->progs); 662 663 sk_psock_link_destroy(psock); 664 sk_psock_cork_free(psock); 665 sk_psock_zap_ingress(psock); 666 667 if (psock->sk_redir) 668 sock_put(psock->sk_redir); 669 sock_put(psock->sk); 670 kfree(psock); 671 } 672 673 static void sk_psock_destroy(struct rcu_head *rcu) 674 { 675 struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu); 676 677 INIT_WORK(&psock->gc, sk_psock_destroy_deferred); 678 schedule_work(&psock->gc); 679 } 680 681 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 682 { 683 sk_psock_cork_free(psock); 684 sk_psock_zap_ingress(psock); 685 686 write_lock_bh(&sk->sk_callback_lock); 687 sk_psock_restore_proto(sk, psock); 688 rcu_assign_sk_user_data(sk, NULL); 689 if (psock->progs.skb_parser) 690 sk_psock_stop_strp(sk, psock); 691 else if (psock->progs.skb_verdict) 692 sk_psock_stop_verdict(sk, psock); 693 write_unlock_bh(&sk->sk_callback_lock); 694 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 695 696 call_rcu(&psock->rcu, sk_psock_destroy); 697 } 698 EXPORT_SYMBOL_GPL(sk_psock_drop); 699 700 static int sk_psock_map_verd(int verdict, bool redir) 701 { 702 switch (verdict) { 703 case SK_PASS: 704 return redir ? __SK_REDIRECT : __SK_PASS; 705 case SK_DROP: 706 default: 707 break; 708 } 709 710 return __SK_DROP; 711 } 712 713 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 714 struct sk_msg *msg) 715 { 716 struct bpf_prog *prog; 717 int ret; 718 719 rcu_read_lock(); 720 prog = READ_ONCE(psock->progs.msg_parser); 721 if (unlikely(!prog)) { 722 ret = __SK_PASS; 723 goto out; 724 } 725 726 sk_msg_compute_data_pointers(msg); 727 msg->sk = sk; 728 ret = bpf_prog_run_pin_on_cpu(prog, msg); 729 ret = sk_psock_map_verd(ret, msg->sk_redir); 730 psock->apply_bytes = msg->apply_bytes; 731 if (ret == __SK_REDIRECT) { 732 if (psock->sk_redir) 733 sock_put(psock->sk_redir); 734 psock->sk_redir = msg->sk_redir; 735 if (!psock->sk_redir) { 736 ret = __SK_DROP; 737 goto out; 738 } 739 sock_hold(psock->sk_redir); 740 } 741 out: 742 rcu_read_unlock(); 743 return ret; 744 } 745 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 746 747 static int sk_psock_bpf_run(struct sk_psock *psock, struct bpf_prog *prog, 748 struct sk_buff *skb) 749 { 750 bpf_compute_data_end_sk_skb(skb); 751 return bpf_prog_run_pin_on_cpu(prog, skb); 752 } 753 754 static struct sk_psock *sk_psock_from_strp(struct strparser *strp) 755 { 756 struct sk_psock_parser *parser; 757 758 parser = container_of(strp, struct sk_psock_parser, strp); 759 return container_of(parser, struct sk_psock, parser); 760 } 761 762 static void sk_psock_skb_redirect(struct sk_buff *skb) 763 { 764 struct sk_psock *psock_other; 765 struct sock *sk_other; 766 767 sk_other = tcp_skb_bpf_redirect_fetch(skb); 768 /* This error is a buggy BPF program, it returned a redirect 769 * return code, but then didn't set a redirect interface. 770 */ 771 if (unlikely(!sk_other)) { 772 kfree_skb(skb); 773 return; 774 } 775 psock_other = sk_psock(sk_other); 776 /* This error indicates the socket is being torn down or had another 777 * error that caused the pipe to break. We can't send a packet on 778 * a socket that is in this state so we drop the skb. 779 */ 780 if (!psock_other || sock_flag(sk_other, SOCK_DEAD) || 781 !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 782 kfree_skb(skb); 783 return; 784 } 785 786 skb_queue_tail(&psock_other->ingress_skb, skb); 787 schedule_work(&psock_other->work); 788 } 789 790 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict) 791 { 792 switch (verdict) { 793 case __SK_REDIRECT: 794 sk_psock_skb_redirect(skb); 795 break; 796 case __SK_PASS: 797 case __SK_DROP: 798 default: 799 break; 800 } 801 } 802 803 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 804 { 805 struct bpf_prog *prog; 806 int ret = __SK_PASS; 807 808 rcu_read_lock(); 809 prog = READ_ONCE(psock->progs.skb_verdict); 810 if (likely(prog)) { 811 skb->sk = psock->sk; 812 tcp_skb_bpf_redirect_clear(skb); 813 ret = sk_psock_bpf_run(psock, prog, skb); 814 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb)); 815 skb->sk = NULL; 816 } 817 sk_psock_tls_verdict_apply(skb, psock->sk, ret); 818 rcu_read_unlock(); 819 return ret; 820 } 821 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 822 823 static void sk_psock_verdict_apply(struct sk_psock *psock, 824 struct sk_buff *skb, int verdict) 825 { 826 struct tcp_skb_cb *tcp; 827 struct sock *sk_other; 828 int err = -EIO; 829 830 switch (verdict) { 831 case __SK_PASS: 832 sk_other = psock->sk; 833 if (sock_flag(sk_other, SOCK_DEAD) || 834 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 835 goto out_free; 836 } 837 838 tcp = TCP_SKB_CB(skb); 839 tcp->bpf.flags |= BPF_F_INGRESS; 840 841 /* If the queue is empty then we can submit directly 842 * into the msg queue. If its not empty we have to 843 * queue work otherwise we may get OOO data. Otherwise, 844 * if sk_psock_skb_ingress errors will be handled by 845 * retrying later from workqueue. 846 */ 847 if (skb_queue_empty(&psock->ingress_skb)) { 848 err = sk_psock_skb_ingress_self(psock, skb); 849 } 850 if (err < 0) { 851 skb_queue_tail(&psock->ingress_skb, skb); 852 schedule_work(&psock->work); 853 } 854 break; 855 case __SK_REDIRECT: 856 sk_psock_skb_redirect(skb); 857 break; 858 case __SK_DROP: 859 default: 860 out_free: 861 kfree_skb(skb); 862 } 863 } 864 865 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 866 { 867 struct sk_psock *psock; 868 struct bpf_prog *prog; 869 int ret = __SK_DROP; 870 struct sock *sk; 871 872 rcu_read_lock(); 873 sk = strp->sk; 874 psock = sk_psock(sk); 875 if (unlikely(!psock)) { 876 kfree_skb(skb); 877 goto out; 878 } 879 prog = READ_ONCE(psock->progs.skb_verdict); 880 if (likely(prog)) { 881 skb->sk = sk; 882 tcp_skb_bpf_redirect_clear(skb); 883 ret = sk_psock_bpf_run(psock, prog, skb); 884 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb)); 885 skb->sk = NULL; 886 } 887 sk_psock_verdict_apply(psock, skb, ret); 888 out: 889 rcu_read_unlock(); 890 } 891 892 static int sk_psock_strp_read_done(struct strparser *strp, int err) 893 { 894 return err; 895 } 896 897 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 898 { 899 struct sk_psock *psock = sk_psock_from_strp(strp); 900 struct bpf_prog *prog; 901 int ret = skb->len; 902 903 rcu_read_lock(); 904 prog = READ_ONCE(psock->progs.skb_parser); 905 if (likely(prog)) { 906 skb->sk = psock->sk; 907 ret = sk_psock_bpf_run(psock, prog, skb); 908 skb->sk = NULL; 909 } 910 rcu_read_unlock(); 911 return ret; 912 } 913 914 /* Called with socket lock held. */ 915 static void sk_psock_strp_data_ready(struct sock *sk) 916 { 917 struct sk_psock *psock; 918 919 rcu_read_lock(); 920 psock = sk_psock(sk); 921 if (likely(psock)) { 922 if (tls_sw_has_ctx_rx(sk)) { 923 psock->parser.saved_data_ready(sk); 924 } else { 925 write_lock_bh(&sk->sk_callback_lock); 926 strp_data_ready(&psock->parser.strp); 927 write_unlock_bh(&sk->sk_callback_lock); 928 } 929 } 930 rcu_read_unlock(); 931 } 932 933 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 934 unsigned int offset, size_t orig_len) 935 { 936 struct sock *sk = (struct sock *)desc->arg.data; 937 struct sk_psock *psock; 938 struct bpf_prog *prog; 939 int ret = __SK_DROP; 940 int len = skb->len; 941 942 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 943 skb = skb_clone(skb, GFP_ATOMIC); 944 if (!skb) { 945 desc->error = -ENOMEM; 946 return 0; 947 } 948 949 rcu_read_lock(); 950 psock = sk_psock(sk); 951 if (unlikely(!psock)) { 952 len = 0; 953 kfree_skb(skb); 954 goto out; 955 } 956 prog = READ_ONCE(psock->progs.skb_verdict); 957 if (likely(prog)) { 958 skb->sk = sk; 959 tcp_skb_bpf_redirect_clear(skb); 960 ret = sk_psock_bpf_run(psock, prog, skb); 961 ret = sk_psock_map_verd(ret, tcp_skb_bpf_redirect_fetch(skb)); 962 skb->sk = NULL; 963 } 964 sk_psock_verdict_apply(psock, skb, ret); 965 out: 966 rcu_read_unlock(); 967 return len; 968 } 969 970 static void sk_psock_verdict_data_ready(struct sock *sk) 971 { 972 struct socket *sock = sk->sk_socket; 973 read_descriptor_t desc; 974 975 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 976 return; 977 978 desc.arg.data = sk; 979 desc.error = 0; 980 desc.count = 1; 981 982 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 983 } 984 985 static void sk_psock_write_space(struct sock *sk) 986 { 987 struct sk_psock *psock; 988 void (*write_space)(struct sock *sk) = NULL; 989 990 rcu_read_lock(); 991 psock = sk_psock(sk); 992 if (likely(psock)) { 993 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 994 schedule_work(&psock->work); 995 write_space = psock->saved_write_space; 996 } 997 rcu_read_unlock(); 998 if (write_space) 999 write_space(sk); 1000 } 1001 1002 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1003 { 1004 static const struct strp_callbacks cb = { 1005 .rcv_msg = sk_psock_strp_read, 1006 .read_sock_done = sk_psock_strp_read_done, 1007 .parse_msg = sk_psock_strp_parse, 1008 }; 1009 1010 psock->parser.enabled = false; 1011 return strp_init(&psock->parser.strp, sk, &cb); 1012 } 1013 1014 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1015 { 1016 struct sk_psock_parser *parser = &psock->parser; 1017 1018 if (parser->enabled) 1019 return; 1020 1021 parser->saved_data_ready = sk->sk_data_ready; 1022 sk->sk_data_ready = sk_psock_verdict_data_ready; 1023 sk->sk_write_space = sk_psock_write_space; 1024 parser->enabled = true; 1025 } 1026 1027 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1028 { 1029 struct sk_psock_parser *parser = &psock->parser; 1030 1031 if (parser->enabled) 1032 return; 1033 1034 parser->saved_data_ready = sk->sk_data_ready; 1035 sk->sk_data_ready = sk_psock_strp_data_ready; 1036 sk->sk_write_space = sk_psock_write_space; 1037 parser->enabled = true; 1038 } 1039 1040 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1041 { 1042 struct sk_psock_parser *parser = &psock->parser; 1043 1044 if (!parser->enabled) 1045 return; 1046 1047 sk->sk_data_ready = parser->saved_data_ready; 1048 parser->saved_data_ready = NULL; 1049 strp_stop(&parser->strp); 1050 parser->enabled = false; 1051 } 1052 1053 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1054 { 1055 struct sk_psock_parser *parser = &psock->parser; 1056 1057 if (!parser->enabled) 1058 return; 1059 1060 sk->sk_data_ready = parser->saved_data_ready; 1061 parser->saved_data_ready = NULL; 1062 parser->enabled = false; 1063 } 1064