1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 int ret = 0; 31 32 len -= msg->sg.size; 33 while (len > 0) { 34 struct scatterlist *sge; 35 u32 orig_offset; 36 int use, i; 37 38 if (!sk_page_frag_refill(sk, pfrag)) 39 return -ENOMEM; 40 41 orig_offset = pfrag->offset; 42 use = min_t(int, len, pfrag->size - orig_offset); 43 if (!sk_wmem_schedule(sk, use)) 44 return -ENOMEM; 45 46 i = msg->sg.end; 47 sk_msg_iter_var_prev(i); 48 sge = &msg->sg.data[i]; 49 50 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 51 sg_page(sge) == pfrag->page && 52 sge->offset + sge->length == orig_offset) { 53 sge->length += use; 54 } else { 55 if (sk_msg_full(msg)) { 56 ret = -ENOSPC; 57 break; 58 } 59 60 sge = &msg->sg.data[msg->sg.end]; 61 sg_unmark_end(sge); 62 sg_set_page(sge, pfrag->page, use, orig_offset); 63 get_page(pfrag->page); 64 sk_msg_iter_next(msg, end); 65 } 66 67 sk_mem_charge(sk, use); 68 msg->sg.size += use; 69 pfrag->offset += use; 70 len -= use; 71 } 72 73 return ret; 74 } 75 EXPORT_SYMBOL_GPL(sk_msg_alloc); 76 77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 78 u32 off, u32 len) 79 { 80 int i = src->sg.start; 81 struct scatterlist *sge = sk_msg_elem(src, i); 82 struct scatterlist *sgd = NULL; 83 u32 sge_len, sge_off; 84 85 while (off) { 86 if (sge->length > off) 87 break; 88 off -= sge->length; 89 sk_msg_iter_var_next(i); 90 if (i == src->sg.end && off) 91 return -ENOSPC; 92 sge = sk_msg_elem(src, i); 93 } 94 95 while (len) { 96 sge_len = sge->length - off; 97 if (sge_len > len) 98 sge_len = len; 99 100 if (dst->sg.end) 101 sgd = sk_msg_elem(dst, dst->sg.end - 1); 102 103 if (sgd && 104 (sg_page(sge) == sg_page(sgd)) && 105 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 106 sgd->length += sge_len; 107 dst->sg.size += sge_len; 108 } else if (!sk_msg_full(dst)) { 109 sge_off = sge->offset + off; 110 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 111 } else { 112 return -ENOSPC; 113 } 114 115 off = 0; 116 len -= sge_len; 117 sk_mem_charge(sk, sge_len); 118 sk_msg_iter_var_next(i); 119 if (i == src->sg.end && len) 120 return -ENOSPC; 121 sge = sk_msg_elem(src, i); 122 } 123 124 return 0; 125 } 126 EXPORT_SYMBOL_GPL(sk_msg_clone); 127 128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 129 { 130 int i = msg->sg.start; 131 132 do { 133 struct scatterlist *sge = sk_msg_elem(msg, i); 134 135 if (bytes < sge->length) { 136 sge->length -= bytes; 137 sge->offset += bytes; 138 sk_mem_uncharge(sk, bytes); 139 break; 140 } 141 142 sk_mem_uncharge(sk, sge->length); 143 bytes -= sge->length; 144 sge->length = 0; 145 sge->offset = 0; 146 sk_msg_iter_var_next(i); 147 } while (bytes && i != msg->sg.end); 148 msg->sg.start = i; 149 } 150 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 151 152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 153 { 154 int i = msg->sg.start; 155 156 do { 157 struct scatterlist *sge = &msg->sg.data[i]; 158 int uncharge = (bytes < sge->length) ? bytes : sge->length; 159 160 sk_mem_uncharge(sk, uncharge); 161 bytes -= uncharge; 162 sk_msg_iter_var_next(i); 163 } while (i != msg->sg.end); 164 } 165 EXPORT_SYMBOL_GPL(sk_msg_return); 166 167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 168 bool charge) 169 { 170 struct scatterlist *sge = sk_msg_elem(msg, i); 171 u32 len = sge->length; 172 173 /* When the skb owns the memory we free it from consume_skb path. */ 174 if (!msg->skb) { 175 if (charge) 176 sk_mem_uncharge(sk, len); 177 put_page(sg_page(sge)); 178 } 179 memset(sge, 0, sizeof(*sge)); 180 return len; 181 } 182 183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 184 bool charge) 185 { 186 struct scatterlist *sge = sk_msg_elem(msg, i); 187 int freed = 0; 188 189 while (msg->sg.size) { 190 msg->sg.size -= sge->length; 191 freed += sk_msg_free_elem(sk, msg, i, charge); 192 sk_msg_iter_var_next(i); 193 sk_msg_check_to_free(msg, i, msg->sg.size); 194 sge = sk_msg_elem(msg, i); 195 } 196 consume_skb(msg->skb); 197 sk_msg_init(msg); 198 return freed; 199 } 200 201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 202 { 203 return __sk_msg_free(sk, msg, msg->sg.start, false); 204 } 205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 206 207 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 208 { 209 return __sk_msg_free(sk, msg, msg->sg.start, true); 210 } 211 EXPORT_SYMBOL_GPL(sk_msg_free); 212 213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 214 u32 bytes, bool charge) 215 { 216 struct scatterlist *sge; 217 u32 i = msg->sg.start; 218 219 while (bytes) { 220 sge = sk_msg_elem(msg, i); 221 if (!sge->length) 222 break; 223 if (bytes < sge->length) { 224 if (charge) 225 sk_mem_uncharge(sk, bytes); 226 sge->length -= bytes; 227 sge->offset += bytes; 228 msg->sg.size -= bytes; 229 break; 230 } 231 232 msg->sg.size -= sge->length; 233 bytes -= sge->length; 234 sk_msg_free_elem(sk, msg, i, charge); 235 sk_msg_iter_var_next(i); 236 sk_msg_check_to_free(msg, i, bytes); 237 } 238 msg->sg.start = i; 239 } 240 241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 242 { 243 __sk_msg_free_partial(sk, msg, bytes, true); 244 } 245 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 246 247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 248 u32 bytes) 249 { 250 __sk_msg_free_partial(sk, msg, bytes, false); 251 } 252 253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 254 { 255 int trim = msg->sg.size - len; 256 u32 i = msg->sg.end; 257 258 if (trim <= 0) { 259 WARN_ON(trim < 0); 260 return; 261 } 262 263 sk_msg_iter_var_prev(i); 264 msg->sg.size = len; 265 while (msg->sg.data[i].length && 266 trim >= msg->sg.data[i].length) { 267 trim -= msg->sg.data[i].length; 268 sk_msg_free_elem(sk, msg, i, true); 269 sk_msg_iter_var_prev(i); 270 if (!trim) 271 goto out; 272 } 273 274 msg->sg.data[i].length -= trim; 275 sk_mem_uncharge(sk, trim); 276 /* Adjust copybreak if it falls into the trimmed part of last buf */ 277 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 278 msg->sg.copybreak = msg->sg.data[i].length; 279 out: 280 sk_msg_iter_var_next(i); 281 msg->sg.end = i; 282 283 /* If we trim data a full sg elem before curr pointer update 284 * copybreak and current so that any future copy operations 285 * start at new copy location. 286 * However trimed data that has not yet been used in a copy op 287 * does not require an update. 288 */ 289 if (!msg->sg.size) { 290 msg->sg.curr = msg->sg.start; 291 msg->sg.copybreak = 0; 292 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 293 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 294 sk_msg_iter_var_prev(i); 295 msg->sg.curr = i; 296 msg->sg.copybreak = msg->sg.data[i].length; 297 } 298 } 299 EXPORT_SYMBOL_GPL(sk_msg_trim); 300 301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 302 struct sk_msg *msg, u32 bytes) 303 { 304 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 305 const int to_max_pages = MAX_MSG_FRAGS; 306 struct page *pages[MAX_MSG_FRAGS]; 307 ssize_t orig, copied, use, offset; 308 309 orig = msg->sg.size; 310 while (bytes > 0) { 311 i = 0; 312 maxpages = to_max_pages - num_elems; 313 if (maxpages == 0) { 314 ret = -EFAULT; 315 goto out; 316 } 317 318 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 319 &offset); 320 if (copied <= 0) { 321 ret = -EFAULT; 322 goto out; 323 } 324 325 iov_iter_advance(from, copied); 326 bytes -= copied; 327 msg->sg.size += copied; 328 329 while (copied) { 330 use = min_t(int, copied, PAGE_SIZE - offset); 331 sg_set_page(&msg->sg.data[msg->sg.end], 332 pages[i], use, offset); 333 sg_unmark_end(&msg->sg.data[msg->sg.end]); 334 sk_mem_charge(sk, use); 335 336 offset = 0; 337 copied -= use; 338 sk_msg_iter_next(msg, end); 339 num_elems++; 340 i++; 341 } 342 /* When zerocopy is mixed with sk_msg_*copy* operations we 343 * may have a copybreak set in this case clear and prefer 344 * zerocopy remainder when possible. 345 */ 346 msg->sg.copybreak = 0; 347 msg->sg.curr = msg->sg.end; 348 } 349 out: 350 /* Revert iov_iter updates, msg will need to use 'trim' later if it 351 * also needs to be cleared. 352 */ 353 if (ret) 354 iov_iter_revert(from, msg->sg.size - orig); 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 358 359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 360 struct sk_msg *msg, u32 bytes) 361 { 362 int ret = -ENOSPC, i = msg->sg.curr; 363 struct scatterlist *sge; 364 u32 copy, buf_size; 365 void *to; 366 367 do { 368 sge = sk_msg_elem(msg, i); 369 /* This is possible if a trim operation shrunk the buffer */ 370 if (msg->sg.copybreak >= sge->length) { 371 msg->sg.copybreak = 0; 372 sk_msg_iter_var_next(i); 373 if (i == msg->sg.end) 374 break; 375 sge = sk_msg_elem(msg, i); 376 } 377 378 buf_size = sge->length - msg->sg.copybreak; 379 copy = (buf_size > bytes) ? bytes : buf_size; 380 to = sg_virt(sge) + msg->sg.copybreak; 381 msg->sg.copybreak += copy; 382 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 383 ret = copy_from_iter_nocache(to, copy, from); 384 else 385 ret = copy_from_iter(to, copy, from); 386 if (ret != copy) { 387 ret = -EFAULT; 388 goto out; 389 } 390 bytes -= copy; 391 if (!bytes) 392 break; 393 msg->sg.copybreak = 0; 394 sk_msg_iter_var_next(i); 395 } while (i != msg->sg.end); 396 out: 397 msg->sg.curr = i; 398 return ret; 399 } 400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 401 402 /* Receive sk_msg from psock->ingress_msg to @msg. */ 403 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 404 int len, int flags) 405 { 406 struct iov_iter *iter = &msg->msg_iter; 407 int peek = flags & MSG_PEEK; 408 struct sk_msg *msg_rx; 409 int i, copied = 0; 410 411 msg_rx = sk_psock_peek_msg(psock); 412 while (copied != len) { 413 struct scatterlist *sge; 414 415 if (unlikely(!msg_rx)) 416 break; 417 418 i = msg_rx->sg.start; 419 do { 420 struct page *page; 421 int copy; 422 423 sge = sk_msg_elem(msg_rx, i); 424 copy = sge->length; 425 page = sg_page(sge); 426 if (copied + copy > len) 427 copy = len - copied; 428 copy = copy_page_to_iter(page, sge->offset, copy, iter); 429 if (!copy) 430 return copied ? copied : -EFAULT; 431 432 copied += copy; 433 if (likely(!peek)) { 434 sge->offset += copy; 435 sge->length -= copy; 436 if (!msg_rx->skb) 437 sk_mem_uncharge(sk, copy); 438 msg_rx->sg.size -= copy; 439 440 if (!sge->length) { 441 sk_msg_iter_var_next(i); 442 if (!msg_rx->skb) 443 put_page(page); 444 } 445 } else { 446 /* Lets not optimize peek case if copy_page_to_iter 447 * didn't copy the entire length lets just break. 448 */ 449 if (copy != sge->length) 450 return copied; 451 sk_msg_iter_var_next(i); 452 } 453 454 if (copied == len) 455 break; 456 } while (i != msg_rx->sg.end); 457 458 if (unlikely(peek)) { 459 msg_rx = sk_psock_next_msg(psock, msg_rx); 460 if (!msg_rx) 461 break; 462 continue; 463 } 464 465 msg_rx->sg.start = i; 466 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 467 msg_rx = sk_psock_dequeue_msg(psock); 468 kfree_sk_msg(msg_rx); 469 } 470 msg_rx = sk_psock_peek_msg(psock); 471 } 472 473 return copied; 474 } 475 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 476 477 bool sk_msg_is_readable(struct sock *sk) 478 { 479 struct sk_psock *psock; 480 bool empty = true; 481 482 rcu_read_lock(); 483 psock = sk_psock(sk); 484 if (likely(psock)) 485 empty = list_empty(&psock->ingress_msg); 486 rcu_read_unlock(); 487 return !empty; 488 } 489 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 490 491 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 492 struct sk_buff *skb) 493 { 494 struct sk_msg *msg; 495 496 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 497 return NULL; 498 499 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 500 return NULL; 501 502 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 503 if (unlikely(!msg)) 504 return NULL; 505 506 sk_msg_init(msg); 507 return msg; 508 } 509 510 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 511 u32 off, u32 len, 512 struct sk_psock *psock, 513 struct sock *sk, 514 struct sk_msg *msg) 515 { 516 int num_sge, copied; 517 518 /* skb linearize may fail with ENOMEM, but lets simply try again 519 * later if this happens. Under memory pressure we don't want to 520 * drop the skb. We need to linearize the skb so that the mapping 521 * in skb_to_sgvec can not error. 522 */ 523 if (skb_linearize(skb)) 524 return -EAGAIN; 525 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 526 if (unlikely(num_sge < 0)) 527 return num_sge; 528 529 copied = len; 530 msg->sg.start = 0; 531 msg->sg.size = copied; 532 msg->sg.end = num_sge; 533 msg->skb = skb; 534 535 sk_psock_queue_msg(psock, msg); 536 sk_psock_data_ready(sk, psock); 537 return copied; 538 } 539 540 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 541 u32 off, u32 len); 542 543 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 544 u32 off, u32 len) 545 { 546 struct sock *sk = psock->sk; 547 struct sk_msg *msg; 548 int err; 549 550 /* If we are receiving on the same sock skb->sk is already assigned, 551 * skip memory accounting and owner transition seeing it already set 552 * correctly. 553 */ 554 if (unlikely(skb->sk == sk)) 555 return sk_psock_skb_ingress_self(psock, skb, off, len); 556 msg = sk_psock_create_ingress_msg(sk, skb); 557 if (!msg) 558 return -EAGAIN; 559 560 /* This will transition ownership of the data from the socket where 561 * the BPF program was run initiating the redirect to the socket 562 * we will eventually receive this data on. The data will be released 563 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 564 * into user buffers. 565 */ 566 skb_set_owner_r(skb, sk); 567 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 568 if (err < 0) 569 kfree(msg); 570 return err; 571 } 572 573 /* Puts an skb on the ingress queue of the socket already assigned to the 574 * skb. In this case we do not need to check memory limits or skb_set_owner_r 575 * because the skb is already accounted for here. 576 */ 577 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 578 u32 off, u32 len) 579 { 580 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 581 struct sock *sk = psock->sk; 582 int err; 583 584 if (unlikely(!msg)) 585 return -EAGAIN; 586 sk_msg_init(msg); 587 skb_set_owner_r(skb, sk); 588 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 589 if (err < 0) 590 kfree(msg); 591 return err; 592 } 593 594 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 595 u32 off, u32 len, bool ingress) 596 { 597 if (!ingress) { 598 if (!sock_writeable(psock->sk)) 599 return -EAGAIN; 600 return skb_send_sock(psock->sk, skb, off, len); 601 } 602 return sk_psock_skb_ingress(psock, skb, off, len); 603 } 604 605 static void sk_psock_skb_state(struct sk_psock *psock, 606 struct sk_psock_work_state *state, 607 struct sk_buff *skb, 608 int len, int off) 609 { 610 spin_lock_bh(&psock->ingress_lock); 611 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 612 state->skb = skb; 613 state->len = len; 614 state->off = off; 615 } else { 616 sock_drop(psock->sk, skb); 617 } 618 spin_unlock_bh(&psock->ingress_lock); 619 } 620 621 static void sk_psock_backlog(struct work_struct *work) 622 { 623 struct sk_psock *psock = container_of(work, struct sk_psock, work); 624 struct sk_psock_work_state *state = &psock->work_state; 625 struct sk_buff *skb = NULL; 626 bool ingress; 627 u32 len, off; 628 int ret; 629 630 mutex_lock(&psock->work_mutex); 631 if (unlikely(state->skb)) { 632 spin_lock_bh(&psock->ingress_lock); 633 skb = state->skb; 634 len = state->len; 635 off = state->off; 636 state->skb = NULL; 637 spin_unlock_bh(&psock->ingress_lock); 638 } 639 if (skb) 640 goto start; 641 642 while ((skb = skb_dequeue(&psock->ingress_skb))) { 643 len = skb->len; 644 off = 0; 645 if (skb_bpf_strparser(skb)) { 646 struct strp_msg *stm = strp_msg(skb); 647 648 off = stm->offset; 649 len = stm->full_len; 650 } 651 start: 652 ingress = skb_bpf_ingress(skb); 653 skb_bpf_redirect_clear(skb); 654 do { 655 ret = -EIO; 656 if (!sock_flag(psock->sk, SOCK_DEAD)) 657 ret = sk_psock_handle_skb(psock, skb, off, 658 len, ingress); 659 if (ret <= 0) { 660 if (ret == -EAGAIN) { 661 sk_psock_skb_state(psock, state, skb, 662 len, off); 663 goto end; 664 } 665 /* Hard errors break pipe and stop xmit. */ 666 sk_psock_report_error(psock, ret ? -ret : EPIPE); 667 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 668 sock_drop(psock->sk, skb); 669 goto end; 670 } 671 off += ret; 672 len -= ret; 673 } while (len); 674 675 if (!ingress) 676 kfree_skb(skb); 677 } 678 end: 679 mutex_unlock(&psock->work_mutex); 680 } 681 682 struct sk_psock *sk_psock_init(struct sock *sk, int node) 683 { 684 struct sk_psock *psock; 685 struct proto *prot; 686 687 write_lock_bh(&sk->sk_callback_lock); 688 689 if (sk->sk_user_data) { 690 psock = ERR_PTR(-EBUSY); 691 goto out; 692 } 693 694 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 695 if (!psock) { 696 psock = ERR_PTR(-ENOMEM); 697 goto out; 698 } 699 700 prot = READ_ONCE(sk->sk_prot); 701 psock->sk = sk; 702 psock->eval = __SK_NONE; 703 psock->sk_proto = prot; 704 psock->saved_unhash = prot->unhash; 705 psock->saved_close = prot->close; 706 psock->saved_write_space = sk->sk_write_space; 707 708 INIT_LIST_HEAD(&psock->link); 709 spin_lock_init(&psock->link_lock); 710 711 INIT_WORK(&psock->work, sk_psock_backlog); 712 mutex_init(&psock->work_mutex); 713 INIT_LIST_HEAD(&psock->ingress_msg); 714 spin_lock_init(&psock->ingress_lock); 715 skb_queue_head_init(&psock->ingress_skb); 716 717 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 718 refcount_set(&psock->refcnt, 1); 719 720 rcu_assign_sk_user_data_nocopy(sk, psock); 721 sock_hold(sk); 722 723 out: 724 write_unlock_bh(&sk->sk_callback_lock); 725 return psock; 726 } 727 EXPORT_SYMBOL_GPL(sk_psock_init); 728 729 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 730 { 731 struct sk_psock_link *link; 732 733 spin_lock_bh(&psock->link_lock); 734 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 735 list); 736 if (link) 737 list_del(&link->list); 738 spin_unlock_bh(&psock->link_lock); 739 return link; 740 } 741 742 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 743 { 744 struct sk_msg *msg, *tmp; 745 746 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 747 list_del(&msg->list); 748 sk_msg_free(psock->sk, msg); 749 kfree(msg); 750 } 751 } 752 753 static void __sk_psock_zap_ingress(struct sk_psock *psock) 754 { 755 struct sk_buff *skb; 756 757 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 758 skb_bpf_redirect_clear(skb); 759 sock_drop(psock->sk, skb); 760 } 761 kfree_skb(psock->work_state.skb); 762 /* We null the skb here to ensure that calls to sk_psock_backlog 763 * do not pick up the free'd skb. 764 */ 765 psock->work_state.skb = NULL; 766 __sk_psock_purge_ingress_msg(psock); 767 } 768 769 static void sk_psock_link_destroy(struct sk_psock *psock) 770 { 771 struct sk_psock_link *link, *tmp; 772 773 list_for_each_entry_safe(link, tmp, &psock->link, list) { 774 list_del(&link->list); 775 sk_psock_free_link(link); 776 } 777 } 778 779 void sk_psock_stop(struct sk_psock *psock, bool wait) 780 { 781 spin_lock_bh(&psock->ingress_lock); 782 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 783 sk_psock_cork_free(psock); 784 __sk_psock_zap_ingress(psock); 785 spin_unlock_bh(&psock->ingress_lock); 786 787 if (wait) 788 cancel_work_sync(&psock->work); 789 } 790 791 static void sk_psock_done_strp(struct sk_psock *psock); 792 793 static void sk_psock_destroy(struct work_struct *work) 794 { 795 struct sk_psock *psock = container_of(to_rcu_work(work), 796 struct sk_psock, rwork); 797 /* No sk_callback_lock since already detached. */ 798 799 sk_psock_done_strp(psock); 800 801 cancel_work_sync(&psock->work); 802 mutex_destroy(&psock->work_mutex); 803 804 psock_progs_drop(&psock->progs); 805 806 sk_psock_link_destroy(psock); 807 sk_psock_cork_free(psock); 808 809 if (psock->sk_redir) 810 sock_put(psock->sk_redir); 811 sock_put(psock->sk); 812 kfree(psock); 813 } 814 815 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 816 { 817 write_lock_bh(&sk->sk_callback_lock); 818 sk_psock_restore_proto(sk, psock); 819 rcu_assign_sk_user_data(sk, NULL); 820 if (psock->progs.stream_parser) 821 sk_psock_stop_strp(sk, psock); 822 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 823 sk_psock_stop_verdict(sk, psock); 824 write_unlock_bh(&sk->sk_callback_lock); 825 826 sk_psock_stop(psock, false); 827 828 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 829 queue_rcu_work(system_wq, &psock->rwork); 830 } 831 EXPORT_SYMBOL_GPL(sk_psock_drop); 832 833 static int sk_psock_map_verd(int verdict, bool redir) 834 { 835 switch (verdict) { 836 case SK_PASS: 837 return redir ? __SK_REDIRECT : __SK_PASS; 838 case SK_DROP: 839 default: 840 break; 841 } 842 843 return __SK_DROP; 844 } 845 846 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 847 struct sk_msg *msg) 848 { 849 struct bpf_prog *prog; 850 int ret; 851 852 rcu_read_lock(); 853 prog = READ_ONCE(psock->progs.msg_parser); 854 if (unlikely(!prog)) { 855 ret = __SK_PASS; 856 goto out; 857 } 858 859 sk_msg_compute_data_pointers(msg); 860 msg->sk = sk; 861 ret = bpf_prog_run_pin_on_cpu(prog, msg); 862 ret = sk_psock_map_verd(ret, msg->sk_redir); 863 psock->apply_bytes = msg->apply_bytes; 864 if (ret == __SK_REDIRECT) { 865 if (psock->sk_redir) 866 sock_put(psock->sk_redir); 867 psock->sk_redir = msg->sk_redir; 868 if (!psock->sk_redir) { 869 ret = __SK_DROP; 870 goto out; 871 } 872 sock_hold(psock->sk_redir); 873 } 874 out: 875 rcu_read_unlock(); 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 879 880 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 881 { 882 struct sk_psock *psock_other; 883 struct sock *sk_other; 884 885 sk_other = skb_bpf_redirect_fetch(skb); 886 /* This error is a buggy BPF program, it returned a redirect 887 * return code, but then didn't set a redirect interface. 888 */ 889 if (unlikely(!sk_other)) { 890 skb_bpf_redirect_clear(skb); 891 sock_drop(from->sk, skb); 892 return -EIO; 893 } 894 psock_other = sk_psock(sk_other); 895 /* This error indicates the socket is being torn down or had another 896 * error that caused the pipe to break. We can't send a packet on 897 * a socket that is in this state so we drop the skb. 898 */ 899 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 900 skb_bpf_redirect_clear(skb); 901 sock_drop(from->sk, skb); 902 return -EIO; 903 } 904 spin_lock_bh(&psock_other->ingress_lock); 905 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 906 spin_unlock_bh(&psock_other->ingress_lock); 907 skb_bpf_redirect_clear(skb); 908 sock_drop(from->sk, skb); 909 return -EIO; 910 } 911 912 skb_queue_tail(&psock_other->ingress_skb, skb); 913 schedule_work(&psock_other->work); 914 spin_unlock_bh(&psock_other->ingress_lock); 915 return 0; 916 } 917 918 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 919 struct sk_psock *from, int verdict) 920 { 921 switch (verdict) { 922 case __SK_REDIRECT: 923 sk_psock_skb_redirect(from, skb); 924 break; 925 case __SK_PASS: 926 case __SK_DROP: 927 default: 928 break; 929 } 930 } 931 932 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 933 { 934 struct bpf_prog *prog; 935 int ret = __SK_PASS; 936 937 rcu_read_lock(); 938 prog = READ_ONCE(psock->progs.stream_verdict); 939 if (likely(prog)) { 940 skb->sk = psock->sk; 941 skb_dst_drop(skb); 942 skb_bpf_redirect_clear(skb); 943 ret = bpf_prog_run_pin_on_cpu(prog, skb); 944 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 945 skb->sk = NULL; 946 } 947 sk_psock_tls_verdict_apply(skb, psock, ret); 948 rcu_read_unlock(); 949 return ret; 950 } 951 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 952 953 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 954 int verdict) 955 { 956 struct sock *sk_other; 957 int err = 0; 958 u32 len, off; 959 960 switch (verdict) { 961 case __SK_PASS: 962 err = -EIO; 963 sk_other = psock->sk; 964 if (sock_flag(sk_other, SOCK_DEAD) || 965 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 966 skb_bpf_redirect_clear(skb); 967 goto out_free; 968 } 969 970 skb_bpf_set_ingress(skb); 971 972 /* If the queue is empty then we can submit directly 973 * into the msg queue. If its not empty we have to 974 * queue work otherwise we may get OOO data. Otherwise, 975 * if sk_psock_skb_ingress errors will be handled by 976 * retrying later from workqueue. 977 */ 978 if (skb_queue_empty(&psock->ingress_skb)) { 979 len = skb->len; 980 off = 0; 981 if (skb_bpf_strparser(skb)) { 982 struct strp_msg *stm = strp_msg(skb); 983 984 off = stm->offset; 985 len = stm->full_len; 986 } 987 err = sk_psock_skb_ingress_self(psock, skb, off, len); 988 } 989 if (err < 0) { 990 spin_lock_bh(&psock->ingress_lock); 991 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 992 skb_queue_tail(&psock->ingress_skb, skb); 993 schedule_work(&psock->work); 994 err = 0; 995 } 996 spin_unlock_bh(&psock->ingress_lock); 997 if (err < 0) { 998 skb_bpf_redirect_clear(skb); 999 goto out_free; 1000 } 1001 } 1002 break; 1003 case __SK_REDIRECT: 1004 err = sk_psock_skb_redirect(psock, skb); 1005 break; 1006 case __SK_DROP: 1007 default: 1008 out_free: 1009 sock_drop(psock->sk, skb); 1010 } 1011 1012 return err; 1013 } 1014 1015 static void sk_psock_write_space(struct sock *sk) 1016 { 1017 struct sk_psock *psock; 1018 void (*write_space)(struct sock *sk) = NULL; 1019 1020 rcu_read_lock(); 1021 psock = sk_psock(sk); 1022 if (likely(psock)) { 1023 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1024 schedule_work(&psock->work); 1025 write_space = psock->saved_write_space; 1026 } 1027 rcu_read_unlock(); 1028 if (write_space) 1029 write_space(sk); 1030 } 1031 1032 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1033 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1034 { 1035 struct sk_psock *psock; 1036 struct bpf_prog *prog; 1037 int ret = __SK_DROP; 1038 struct sock *sk; 1039 1040 rcu_read_lock(); 1041 sk = strp->sk; 1042 psock = sk_psock(sk); 1043 if (unlikely(!psock)) { 1044 sock_drop(sk, skb); 1045 goto out; 1046 } 1047 prog = READ_ONCE(psock->progs.stream_verdict); 1048 if (likely(prog)) { 1049 skb->sk = sk; 1050 skb_dst_drop(skb); 1051 skb_bpf_redirect_clear(skb); 1052 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1053 if (ret == SK_PASS) 1054 skb_bpf_set_strparser(skb); 1055 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1056 skb->sk = NULL; 1057 } 1058 sk_psock_verdict_apply(psock, skb, ret); 1059 out: 1060 rcu_read_unlock(); 1061 } 1062 1063 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1064 { 1065 return err; 1066 } 1067 1068 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1069 { 1070 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1071 struct bpf_prog *prog; 1072 int ret = skb->len; 1073 1074 rcu_read_lock(); 1075 prog = READ_ONCE(psock->progs.stream_parser); 1076 if (likely(prog)) { 1077 skb->sk = psock->sk; 1078 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1079 skb->sk = NULL; 1080 } 1081 rcu_read_unlock(); 1082 return ret; 1083 } 1084 1085 /* Called with socket lock held. */ 1086 static void sk_psock_strp_data_ready(struct sock *sk) 1087 { 1088 struct sk_psock *psock; 1089 1090 rcu_read_lock(); 1091 psock = sk_psock(sk); 1092 if (likely(psock)) { 1093 if (tls_sw_has_ctx_rx(sk)) { 1094 psock->saved_data_ready(sk); 1095 } else { 1096 write_lock_bh(&sk->sk_callback_lock); 1097 strp_data_ready(&psock->strp); 1098 write_unlock_bh(&sk->sk_callback_lock); 1099 } 1100 } 1101 rcu_read_unlock(); 1102 } 1103 1104 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1105 { 1106 static const struct strp_callbacks cb = { 1107 .rcv_msg = sk_psock_strp_read, 1108 .read_sock_done = sk_psock_strp_read_done, 1109 .parse_msg = sk_psock_strp_parse, 1110 }; 1111 1112 return strp_init(&psock->strp, sk, &cb); 1113 } 1114 1115 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1116 { 1117 if (psock->saved_data_ready) 1118 return; 1119 1120 psock->saved_data_ready = sk->sk_data_ready; 1121 sk->sk_data_ready = sk_psock_strp_data_ready; 1122 sk->sk_write_space = sk_psock_write_space; 1123 } 1124 1125 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1126 { 1127 if (!psock->saved_data_ready) 1128 return; 1129 1130 sk->sk_data_ready = psock->saved_data_ready; 1131 psock->saved_data_ready = NULL; 1132 strp_stop(&psock->strp); 1133 } 1134 1135 static void sk_psock_done_strp(struct sk_psock *psock) 1136 { 1137 /* Parser has been stopped */ 1138 if (psock->progs.stream_parser) 1139 strp_done(&psock->strp); 1140 } 1141 #else 1142 static void sk_psock_done_strp(struct sk_psock *psock) 1143 { 1144 } 1145 #endif /* CONFIG_BPF_STREAM_PARSER */ 1146 1147 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1148 unsigned int offset, size_t orig_len) 1149 { 1150 struct sock *sk = (struct sock *)desc->arg.data; 1151 struct sk_psock *psock; 1152 struct bpf_prog *prog; 1153 int ret = __SK_DROP; 1154 int len = skb->len; 1155 1156 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1157 skb = skb_clone(skb, GFP_ATOMIC); 1158 if (!skb) { 1159 desc->error = -ENOMEM; 1160 return 0; 1161 } 1162 1163 rcu_read_lock(); 1164 psock = sk_psock(sk); 1165 if (unlikely(!psock)) { 1166 len = 0; 1167 sock_drop(sk, skb); 1168 goto out; 1169 } 1170 prog = READ_ONCE(psock->progs.stream_verdict); 1171 if (!prog) 1172 prog = READ_ONCE(psock->progs.skb_verdict); 1173 if (likely(prog)) { 1174 skb->sk = sk; 1175 skb_dst_drop(skb); 1176 skb_bpf_redirect_clear(skb); 1177 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1178 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1179 skb->sk = NULL; 1180 } 1181 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1182 len = 0; 1183 out: 1184 rcu_read_unlock(); 1185 return len; 1186 } 1187 1188 static void sk_psock_verdict_data_ready(struct sock *sk) 1189 { 1190 struct socket *sock = sk->sk_socket; 1191 read_descriptor_t desc; 1192 1193 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1194 return; 1195 1196 desc.arg.data = sk; 1197 desc.error = 0; 1198 desc.count = 1; 1199 1200 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1201 } 1202 1203 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1204 { 1205 if (psock->saved_data_ready) 1206 return; 1207 1208 psock->saved_data_ready = sk->sk_data_ready; 1209 sk->sk_data_ready = sk_psock_verdict_data_ready; 1210 sk->sk_write_space = sk_psock_write_space; 1211 } 1212 1213 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1214 { 1215 if (!psock->saved_data_ready) 1216 return; 1217 1218 sk->sk_data_ready = psock->saved_data_ready; 1219 psock->saved_data_ready = NULL; 1220 } 1221