xref: /openbmc/linux/net/core/skmsg.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14 	if (msg->sg.end > msg->sg.start &&
15 	    elem_first_coalesce < msg->sg.end)
16 		return true;
17 
18 	if (msg->sg.end < msg->sg.start &&
19 	    (elem_first_coalesce > msg->sg.start ||
20 	     elem_first_coalesce < msg->sg.end))
21 		return true;
22 
23 	return false;
24 }
25 
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 		 int elem_first_coalesce)
28 {
29 	struct page_frag *pfrag = sk_page_frag(sk);
30 	int ret = 0;
31 
32 	len -= msg->sg.size;
33 	while (len > 0) {
34 		struct scatterlist *sge;
35 		u32 orig_offset;
36 		int use, i;
37 
38 		if (!sk_page_frag_refill(sk, pfrag))
39 			return -ENOMEM;
40 
41 		orig_offset = pfrag->offset;
42 		use = min_t(int, len, pfrag->size - orig_offset);
43 		if (!sk_wmem_schedule(sk, use))
44 			return -ENOMEM;
45 
46 		i = msg->sg.end;
47 		sk_msg_iter_var_prev(i);
48 		sge = &msg->sg.data[i];
49 
50 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
51 		    sg_page(sge) == pfrag->page &&
52 		    sge->offset + sge->length == orig_offset) {
53 			sge->length += use;
54 		} else {
55 			if (sk_msg_full(msg)) {
56 				ret = -ENOSPC;
57 				break;
58 			}
59 
60 			sge = &msg->sg.data[msg->sg.end];
61 			sg_unmark_end(sge);
62 			sg_set_page(sge, pfrag->page, use, orig_offset);
63 			get_page(pfrag->page);
64 			sk_msg_iter_next(msg, end);
65 		}
66 
67 		sk_mem_charge(sk, use);
68 		msg->sg.size += use;
69 		pfrag->offset += use;
70 		len -= use;
71 	}
72 
73 	return ret;
74 }
75 EXPORT_SYMBOL_GPL(sk_msg_alloc);
76 
77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
78 		 u32 off, u32 len)
79 {
80 	int i = src->sg.start;
81 	struct scatterlist *sge = sk_msg_elem(src, i);
82 	struct scatterlist *sgd = NULL;
83 	u32 sge_len, sge_off;
84 
85 	while (off) {
86 		if (sge->length > off)
87 			break;
88 		off -= sge->length;
89 		sk_msg_iter_var_next(i);
90 		if (i == src->sg.end && off)
91 			return -ENOSPC;
92 		sge = sk_msg_elem(src, i);
93 	}
94 
95 	while (len) {
96 		sge_len = sge->length - off;
97 		if (sge_len > len)
98 			sge_len = len;
99 
100 		if (dst->sg.end)
101 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
102 
103 		if (sgd &&
104 		    (sg_page(sge) == sg_page(sgd)) &&
105 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
106 			sgd->length += sge_len;
107 			dst->sg.size += sge_len;
108 		} else if (!sk_msg_full(dst)) {
109 			sge_off = sge->offset + off;
110 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
111 		} else {
112 			return -ENOSPC;
113 		}
114 
115 		off = 0;
116 		len -= sge_len;
117 		sk_mem_charge(sk, sge_len);
118 		sk_msg_iter_var_next(i);
119 		if (i == src->sg.end && len)
120 			return -ENOSPC;
121 		sge = sk_msg_elem(src, i);
122 	}
123 
124 	return 0;
125 }
126 EXPORT_SYMBOL_GPL(sk_msg_clone);
127 
128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
129 {
130 	int i = msg->sg.start;
131 
132 	do {
133 		struct scatterlist *sge = sk_msg_elem(msg, i);
134 
135 		if (bytes < sge->length) {
136 			sge->length -= bytes;
137 			sge->offset += bytes;
138 			sk_mem_uncharge(sk, bytes);
139 			break;
140 		}
141 
142 		sk_mem_uncharge(sk, sge->length);
143 		bytes -= sge->length;
144 		sge->length = 0;
145 		sge->offset = 0;
146 		sk_msg_iter_var_next(i);
147 	} while (bytes && i != msg->sg.end);
148 	msg->sg.start = i;
149 }
150 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
151 
152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
153 {
154 	int i = msg->sg.start;
155 
156 	do {
157 		struct scatterlist *sge = &msg->sg.data[i];
158 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
159 
160 		sk_mem_uncharge(sk, uncharge);
161 		bytes -= uncharge;
162 		sk_msg_iter_var_next(i);
163 	} while (i != msg->sg.end);
164 }
165 EXPORT_SYMBOL_GPL(sk_msg_return);
166 
167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
168 			    bool charge)
169 {
170 	struct scatterlist *sge = sk_msg_elem(msg, i);
171 	u32 len = sge->length;
172 
173 	/* When the skb owns the memory we free it from consume_skb path. */
174 	if (!msg->skb) {
175 		if (charge)
176 			sk_mem_uncharge(sk, len);
177 		put_page(sg_page(sge));
178 	}
179 	memset(sge, 0, sizeof(*sge));
180 	return len;
181 }
182 
183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
184 			 bool charge)
185 {
186 	struct scatterlist *sge = sk_msg_elem(msg, i);
187 	int freed = 0;
188 
189 	while (msg->sg.size) {
190 		msg->sg.size -= sge->length;
191 		freed += sk_msg_free_elem(sk, msg, i, charge);
192 		sk_msg_iter_var_next(i);
193 		sk_msg_check_to_free(msg, i, msg->sg.size);
194 		sge = sk_msg_elem(msg, i);
195 	}
196 	consume_skb(msg->skb);
197 	sk_msg_init(msg);
198 	return freed;
199 }
200 
201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
202 {
203 	return __sk_msg_free(sk, msg, msg->sg.start, false);
204 }
205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
206 
207 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
208 {
209 	return __sk_msg_free(sk, msg, msg->sg.start, true);
210 }
211 EXPORT_SYMBOL_GPL(sk_msg_free);
212 
213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
214 				  u32 bytes, bool charge)
215 {
216 	struct scatterlist *sge;
217 	u32 i = msg->sg.start;
218 
219 	while (bytes) {
220 		sge = sk_msg_elem(msg, i);
221 		if (!sge->length)
222 			break;
223 		if (bytes < sge->length) {
224 			if (charge)
225 				sk_mem_uncharge(sk, bytes);
226 			sge->length -= bytes;
227 			sge->offset += bytes;
228 			msg->sg.size -= bytes;
229 			break;
230 		}
231 
232 		msg->sg.size -= sge->length;
233 		bytes -= sge->length;
234 		sk_msg_free_elem(sk, msg, i, charge);
235 		sk_msg_iter_var_next(i);
236 		sk_msg_check_to_free(msg, i, bytes);
237 	}
238 	msg->sg.start = i;
239 }
240 
241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
242 {
243 	__sk_msg_free_partial(sk, msg, bytes, true);
244 }
245 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
246 
247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
248 				  u32 bytes)
249 {
250 	__sk_msg_free_partial(sk, msg, bytes, false);
251 }
252 
253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
254 {
255 	int trim = msg->sg.size - len;
256 	u32 i = msg->sg.end;
257 
258 	if (trim <= 0) {
259 		WARN_ON(trim < 0);
260 		return;
261 	}
262 
263 	sk_msg_iter_var_prev(i);
264 	msg->sg.size = len;
265 	while (msg->sg.data[i].length &&
266 	       trim >= msg->sg.data[i].length) {
267 		trim -= msg->sg.data[i].length;
268 		sk_msg_free_elem(sk, msg, i, true);
269 		sk_msg_iter_var_prev(i);
270 		if (!trim)
271 			goto out;
272 	}
273 
274 	msg->sg.data[i].length -= trim;
275 	sk_mem_uncharge(sk, trim);
276 	/* Adjust copybreak if it falls into the trimmed part of last buf */
277 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
278 		msg->sg.copybreak = msg->sg.data[i].length;
279 out:
280 	sk_msg_iter_var_next(i);
281 	msg->sg.end = i;
282 
283 	/* If we trim data a full sg elem before curr pointer update
284 	 * copybreak and current so that any future copy operations
285 	 * start at new copy location.
286 	 * However trimed data that has not yet been used in a copy op
287 	 * does not require an update.
288 	 */
289 	if (!msg->sg.size) {
290 		msg->sg.curr = msg->sg.start;
291 		msg->sg.copybreak = 0;
292 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
293 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
294 		sk_msg_iter_var_prev(i);
295 		msg->sg.curr = i;
296 		msg->sg.copybreak = msg->sg.data[i].length;
297 	}
298 }
299 EXPORT_SYMBOL_GPL(sk_msg_trim);
300 
301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
302 			      struct sk_msg *msg, u32 bytes)
303 {
304 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
305 	const int to_max_pages = MAX_MSG_FRAGS;
306 	struct page *pages[MAX_MSG_FRAGS];
307 	ssize_t orig, copied, use, offset;
308 
309 	orig = msg->sg.size;
310 	while (bytes > 0) {
311 		i = 0;
312 		maxpages = to_max_pages - num_elems;
313 		if (maxpages == 0) {
314 			ret = -EFAULT;
315 			goto out;
316 		}
317 
318 		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
319 					    &offset);
320 		if (copied <= 0) {
321 			ret = -EFAULT;
322 			goto out;
323 		}
324 
325 		iov_iter_advance(from, copied);
326 		bytes -= copied;
327 		msg->sg.size += copied;
328 
329 		while (copied) {
330 			use = min_t(int, copied, PAGE_SIZE - offset);
331 			sg_set_page(&msg->sg.data[msg->sg.end],
332 				    pages[i], use, offset);
333 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
334 			sk_mem_charge(sk, use);
335 
336 			offset = 0;
337 			copied -= use;
338 			sk_msg_iter_next(msg, end);
339 			num_elems++;
340 			i++;
341 		}
342 		/* When zerocopy is mixed with sk_msg_*copy* operations we
343 		 * may have a copybreak set in this case clear and prefer
344 		 * zerocopy remainder when possible.
345 		 */
346 		msg->sg.copybreak = 0;
347 		msg->sg.curr = msg->sg.end;
348 	}
349 out:
350 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
351 	 * also needs to be cleared.
352 	 */
353 	if (ret)
354 		iov_iter_revert(from, msg->sg.size - orig);
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
358 
359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
360 			     struct sk_msg *msg, u32 bytes)
361 {
362 	int ret = -ENOSPC, i = msg->sg.curr;
363 	struct scatterlist *sge;
364 	u32 copy, buf_size;
365 	void *to;
366 
367 	do {
368 		sge = sk_msg_elem(msg, i);
369 		/* This is possible if a trim operation shrunk the buffer */
370 		if (msg->sg.copybreak >= sge->length) {
371 			msg->sg.copybreak = 0;
372 			sk_msg_iter_var_next(i);
373 			if (i == msg->sg.end)
374 				break;
375 			sge = sk_msg_elem(msg, i);
376 		}
377 
378 		buf_size = sge->length - msg->sg.copybreak;
379 		copy = (buf_size > bytes) ? bytes : buf_size;
380 		to = sg_virt(sge) + msg->sg.copybreak;
381 		msg->sg.copybreak += copy;
382 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
383 			ret = copy_from_iter_nocache(to, copy, from);
384 		else
385 			ret = copy_from_iter(to, copy, from);
386 		if (ret != copy) {
387 			ret = -EFAULT;
388 			goto out;
389 		}
390 		bytes -= copy;
391 		if (!bytes)
392 			break;
393 		msg->sg.copybreak = 0;
394 		sk_msg_iter_var_next(i);
395 	} while (i != msg->sg.end);
396 out:
397 	msg->sg.curr = i;
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
401 
402 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
403 						  struct sk_buff *skb)
404 {
405 	struct sk_msg *msg;
406 
407 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
408 		return NULL;
409 
410 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
411 		return NULL;
412 
413 	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
414 	if (unlikely(!msg))
415 		return NULL;
416 
417 	sk_msg_init(msg);
418 	return msg;
419 }
420 
421 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
422 					struct sk_psock *psock,
423 					struct sock *sk,
424 					struct sk_msg *msg)
425 {
426 	int num_sge, copied;
427 
428 	/* skb linearize may fail with ENOMEM, but lets simply try again
429 	 * later if this happens. Under memory pressure we don't want to
430 	 * drop the skb. We need to linearize the skb so that the mapping
431 	 * in skb_to_sgvec can not error.
432 	 */
433 	if (skb_linearize(skb))
434 		return -EAGAIN;
435 	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
436 	if (unlikely(num_sge < 0)) {
437 		kfree(msg);
438 		return num_sge;
439 	}
440 
441 	copied = skb->len;
442 	msg->sg.start = 0;
443 	msg->sg.size = copied;
444 	msg->sg.end = num_sge;
445 	msg->skb = skb;
446 
447 	sk_psock_queue_msg(psock, msg);
448 	sk_psock_data_ready(sk, psock);
449 	return copied;
450 }
451 
452 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
453 
454 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
455 {
456 	struct sock *sk = psock->sk;
457 	struct sk_msg *msg;
458 
459 	/* If we are receiving on the same sock skb->sk is already assigned,
460 	 * skip memory accounting and owner transition seeing it already set
461 	 * correctly.
462 	 */
463 	if (unlikely(skb->sk == sk))
464 		return sk_psock_skb_ingress_self(psock, skb);
465 	msg = sk_psock_create_ingress_msg(sk, skb);
466 	if (!msg)
467 		return -EAGAIN;
468 
469 	/* This will transition ownership of the data from the socket where
470 	 * the BPF program was run initiating the redirect to the socket
471 	 * we will eventually receive this data on. The data will be released
472 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
473 	 * into user buffers.
474 	 */
475 	skb_set_owner_r(skb, sk);
476 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
477 }
478 
479 /* Puts an skb on the ingress queue of the socket already assigned to the
480  * skb. In this case we do not need to check memory limits or skb_set_owner_r
481  * because the skb is already accounted for here.
482  */
483 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
484 {
485 	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
486 	struct sock *sk = psock->sk;
487 
488 	if (unlikely(!msg))
489 		return -EAGAIN;
490 	sk_msg_init(msg);
491 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
492 }
493 
494 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
495 			       u32 off, u32 len, bool ingress)
496 {
497 	if (!ingress) {
498 		if (!sock_writeable(psock->sk))
499 			return -EAGAIN;
500 		return skb_send_sock_locked(psock->sk, skb, off, len);
501 	}
502 	return sk_psock_skb_ingress(psock, skb);
503 }
504 
505 static void sk_psock_backlog(struct work_struct *work)
506 {
507 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
508 	struct sk_psock_work_state *state = &psock->work_state;
509 	struct sk_buff *skb;
510 	bool ingress;
511 	u32 len, off;
512 	int ret;
513 
514 	/* Lock sock to avoid losing sk_socket during loop. */
515 	lock_sock(psock->sk);
516 	if (state->skb) {
517 		skb = state->skb;
518 		len = state->len;
519 		off = state->off;
520 		state->skb = NULL;
521 		goto start;
522 	}
523 
524 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
525 		len = skb->len;
526 		off = 0;
527 start:
528 		ingress = skb_bpf_ingress(skb);
529 		skb_bpf_redirect_clear(skb);
530 		do {
531 			ret = -EIO;
532 			if (likely(psock->sk->sk_socket))
533 				ret = sk_psock_handle_skb(psock, skb, off,
534 							  len, ingress);
535 			if (ret <= 0) {
536 				if (ret == -EAGAIN) {
537 					state->skb = skb;
538 					state->len = len;
539 					state->off = off;
540 					goto end;
541 				}
542 				/* Hard errors break pipe and stop xmit. */
543 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
544 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
545 				kfree_skb(skb);
546 				goto end;
547 			}
548 			off += ret;
549 			len -= ret;
550 		} while (len);
551 
552 		if (!ingress)
553 			kfree_skb(skb);
554 	}
555 end:
556 	release_sock(psock->sk);
557 }
558 
559 struct sk_psock *sk_psock_init(struct sock *sk, int node)
560 {
561 	struct sk_psock *psock;
562 	struct proto *prot;
563 
564 	write_lock_bh(&sk->sk_callback_lock);
565 
566 	if (inet_csk_has_ulp(sk)) {
567 		psock = ERR_PTR(-EINVAL);
568 		goto out;
569 	}
570 
571 	if (sk->sk_user_data) {
572 		psock = ERR_PTR(-EBUSY);
573 		goto out;
574 	}
575 
576 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
577 	if (!psock) {
578 		psock = ERR_PTR(-ENOMEM);
579 		goto out;
580 	}
581 
582 	prot = READ_ONCE(sk->sk_prot);
583 	psock->sk = sk;
584 	psock->eval = __SK_NONE;
585 	psock->sk_proto = prot;
586 	psock->saved_unhash = prot->unhash;
587 	psock->saved_close = prot->close;
588 	psock->saved_write_space = sk->sk_write_space;
589 
590 	INIT_LIST_HEAD(&psock->link);
591 	spin_lock_init(&psock->link_lock);
592 
593 	INIT_WORK(&psock->work, sk_psock_backlog);
594 	INIT_LIST_HEAD(&psock->ingress_msg);
595 	skb_queue_head_init(&psock->ingress_skb);
596 
597 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
598 	refcount_set(&psock->refcnt, 1);
599 
600 	rcu_assign_sk_user_data_nocopy(sk, psock);
601 	sock_hold(sk);
602 
603 out:
604 	write_unlock_bh(&sk->sk_callback_lock);
605 	return psock;
606 }
607 EXPORT_SYMBOL_GPL(sk_psock_init);
608 
609 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
610 {
611 	struct sk_psock_link *link;
612 
613 	spin_lock_bh(&psock->link_lock);
614 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
615 					list);
616 	if (link)
617 		list_del(&link->list);
618 	spin_unlock_bh(&psock->link_lock);
619 	return link;
620 }
621 
622 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
623 {
624 	struct sk_msg *msg, *tmp;
625 
626 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
627 		list_del(&msg->list);
628 		sk_msg_free(psock->sk, msg);
629 		kfree(msg);
630 	}
631 }
632 
633 static void sk_psock_zap_ingress(struct sk_psock *psock)
634 {
635 	struct sk_buff *skb;
636 
637 	while ((skb = __skb_dequeue(&psock->ingress_skb)) != NULL) {
638 		skb_bpf_redirect_clear(skb);
639 		kfree_skb(skb);
640 	}
641 	__sk_psock_purge_ingress_msg(psock);
642 }
643 
644 static void sk_psock_link_destroy(struct sk_psock *psock)
645 {
646 	struct sk_psock_link *link, *tmp;
647 
648 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
649 		list_del(&link->list);
650 		sk_psock_free_link(link);
651 	}
652 }
653 
654 static void sk_psock_done_strp(struct sk_psock *psock);
655 
656 static void sk_psock_destroy_deferred(struct work_struct *gc)
657 {
658 	struct sk_psock *psock = container_of(gc, struct sk_psock, gc);
659 
660 	/* No sk_callback_lock since already detached. */
661 
662 	sk_psock_done_strp(psock);
663 
664 	cancel_work_sync(&psock->work);
665 
666 	psock_progs_drop(&psock->progs);
667 
668 	sk_psock_link_destroy(psock);
669 	sk_psock_cork_free(psock);
670 	sk_psock_zap_ingress(psock);
671 
672 	if (psock->sk_redir)
673 		sock_put(psock->sk_redir);
674 	sock_put(psock->sk);
675 	kfree(psock);
676 }
677 
678 static void sk_psock_destroy(struct rcu_head *rcu)
679 {
680 	struct sk_psock *psock = container_of(rcu, struct sk_psock, rcu);
681 
682 	INIT_WORK(&psock->gc, sk_psock_destroy_deferred);
683 	schedule_work(&psock->gc);
684 }
685 
686 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
687 {
688 	sk_psock_cork_free(psock);
689 	sk_psock_zap_ingress(psock);
690 
691 	write_lock_bh(&sk->sk_callback_lock);
692 	sk_psock_restore_proto(sk, psock);
693 	rcu_assign_sk_user_data(sk, NULL);
694 	if (psock->progs.stream_parser)
695 		sk_psock_stop_strp(sk, psock);
696 	else if (psock->progs.stream_verdict)
697 		sk_psock_stop_verdict(sk, psock);
698 	write_unlock_bh(&sk->sk_callback_lock);
699 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
700 
701 	call_rcu(&psock->rcu, sk_psock_destroy);
702 }
703 EXPORT_SYMBOL_GPL(sk_psock_drop);
704 
705 static int sk_psock_map_verd(int verdict, bool redir)
706 {
707 	switch (verdict) {
708 	case SK_PASS:
709 		return redir ? __SK_REDIRECT : __SK_PASS;
710 	case SK_DROP:
711 	default:
712 		break;
713 	}
714 
715 	return __SK_DROP;
716 }
717 
718 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
719 			 struct sk_msg *msg)
720 {
721 	struct bpf_prog *prog;
722 	int ret;
723 
724 	rcu_read_lock();
725 	prog = READ_ONCE(psock->progs.msg_parser);
726 	if (unlikely(!prog)) {
727 		ret = __SK_PASS;
728 		goto out;
729 	}
730 
731 	sk_msg_compute_data_pointers(msg);
732 	msg->sk = sk;
733 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
734 	ret = sk_psock_map_verd(ret, msg->sk_redir);
735 	psock->apply_bytes = msg->apply_bytes;
736 	if (ret == __SK_REDIRECT) {
737 		if (psock->sk_redir)
738 			sock_put(psock->sk_redir);
739 		psock->sk_redir = msg->sk_redir;
740 		if (!psock->sk_redir) {
741 			ret = __SK_DROP;
742 			goto out;
743 		}
744 		sock_hold(psock->sk_redir);
745 	}
746 out:
747 	rcu_read_unlock();
748 	return ret;
749 }
750 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
751 
752 static void sk_psock_skb_redirect(struct sk_buff *skb)
753 {
754 	struct sk_psock *psock_other;
755 	struct sock *sk_other;
756 
757 	sk_other = skb_bpf_redirect_fetch(skb);
758 	/* This error is a buggy BPF program, it returned a redirect
759 	 * return code, but then didn't set a redirect interface.
760 	 */
761 	if (unlikely(!sk_other)) {
762 		kfree_skb(skb);
763 		return;
764 	}
765 	psock_other = sk_psock(sk_other);
766 	/* This error indicates the socket is being torn down or had another
767 	 * error that caused the pipe to break. We can't send a packet on
768 	 * a socket that is in this state so we drop the skb.
769 	 */
770 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD) ||
771 	    !sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
772 		kfree_skb(skb);
773 		return;
774 	}
775 
776 	skb_queue_tail(&psock_other->ingress_skb, skb);
777 	schedule_work(&psock_other->work);
778 }
779 
780 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
781 {
782 	switch (verdict) {
783 	case __SK_REDIRECT:
784 		skb_set_owner_r(skb, sk);
785 		sk_psock_skb_redirect(skb);
786 		break;
787 	case __SK_PASS:
788 	case __SK_DROP:
789 	default:
790 		break;
791 	}
792 }
793 
794 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
795 {
796 	struct bpf_prog *prog;
797 	int ret = __SK_PASS;
798 
799 	rcu_read_lock();
800 	prog = READ_ONCE(psock->progs.stream_verdict);
801 	if (likely(prog)) {
802 		/* We skip full set_owner_r here because if we do a SK_PASS
803 		 * or SK_DROP we can skip skb memory accounting and use the
804 		 * TLS context.
805 		 */
806 		skb->sk = psock->sk;
807 		skb_dst_drop(skb);
808 		skb_bpf_redirect_clear(skb);
809 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
810 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
811 		skb->sk = NULL;
812 	}
813 	sk_psock_tls_verdict_apply(skb, psock->sk, ret);
814 	rcu_read_unlock();
815 	return ret;
816 }
817 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
818 
819 static void sk_psock_verdict_apply(struct sk_psock *psock,
820 				   struct sk_buff *skb, int verdict)
821 {
822 	struct sock *sk_other;
823 	int err = -EIO;
824 
825 	switch (verdict) {
826 	case __SK_PASS:
827 		sk_other = psock->sk;
828 		if (sock_flag(sk_other, SOCK_DEAD) ||
829 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
830 			goto out_free;
831 		}
832 
833 		skb_bpf_set_ingress(skb);
834 
835 		/* If the queue is empty then we can submit directly
836 		 * into the msg queue. If its not empty we have to
837 		 * queue work otherwise we may get OOO data. Otherwise,
838 		 * if sk_psock_skb_ingress errors will be handled by
839 		 * retrying later from workqueue.
840 		 */
841 		if (skb_queue_empty(&psock->ingress_skb)) {
842 			err = sk_psock_skb_ingress_self(psock, skb);
843 		}
844 		if (err < 0) {
845 			skb_queue_tail(&psock->ingress_skb, skb);
846 			schedule_work(&psock->work);
847 		}
848 		break;
849 	case __SK_REDIRECT:
850 		sk_psock_skb_redirect(skb);
851 		break;
852 	case __SK_DROP:
853 	default:
854 out_free:
855 		kfree_skb(skb);
856 	}
857 }
858 
859 static void sk_psock_write_space(struct sock *sk)
860 {
861 	struct sk_psock *psock;
862 	void (*write_space)(struct sock *sk) = NULL;
863 
864 	rcu_read_lock();
865 	psock = sk_psock(sk);
866 	if (likely(psock)) {
867 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
868 			schedule_work(&psock->work);
869 		write_space = psock->saved_write_space;
870 	}
871 	rcu_read_unlock();
872 	if (write_space)
873 		write_space(sk);
874 }
875 
876 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
877 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
878 {
879 	struct sk_psock *psock;
880 	struct bpf_prog *prog;
881 	int ret = __SK_DROP;
882 	struct sock *sk;
883 
884 	rcu_read_lock();
885 	sk = strp->sk;
886 	psock = sk_psock(sk);
887 	if (unlikely(!psock)) {
888 		kfree_skb(skb);
889 		goto out;
890 	}
891 	skb_set_owner_r(skb, sk);
892 	prog = READ_ONCE(psock->progs.stream_verdict);
893 	if (likely(prog)) {
894 		skb_dst_drop(skb);
895 		skb_bpf_redirect_clear(skb);
896 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
897 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
898 	}
899 	sk_psock_verdict_apply(psock, skb, ret);
900 out:
901 	rcu_read_unlock();
902 }
903 
904 static int sk_psock_strp_read_done(struct strparser *strp, int err)
905 {
906 	return err;
907 }
908 
909 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
910 {
911 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
912 	struct bpf_prog *prog;
913 	int ret = skb->len;
914 
915 	rcu_read_lock();
916 	prog = READ_ONCE(psock->progs.stream_parser);
917 	if (likely(prog)) {
918 		skb->sk = psock->sk;
919 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
920 		skb->sk = NULL;
921 	}
922 	rcu_read_unlock();
923 	return ret;
924 }
925 
926 /* Called with socket lock held. */
927 static void sk_psock_strp_data_ready(struct sock *sk)
928 {
929 	struct sk_psock *psock;
930 
931 	rcu_read_lock();
932 	psock = sk_psock(sk);
933 	if (likely(psock)) {
934 		if (tls_sw_has_ctx_rx(sk)) {
935 			psock->saved_data_ready(sk);
936 		} else {
937 			write_lock_bh(&sk->sk_callback_lock);
938 			strp_data_ready(&psock->strp);
939 			write_unlock_bh(&sk->sk_callback_lock);
940 		}
941 	}
942 	rcu_read_unlock();
943 }
944 
945 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
946 {
947 	static const struct strp_callbacks cb = {
948 		.rcv_msg	= sk_psock_strp_read,
949 		.read_sock_done	= sk_psock_strp_read_done,
950 		.parse_msg	= sk_psock_strp_parse,
951 	};
952 
953 	return strp_init(&psock->strp, sk, &cb);
954 }
955 
956 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
957 {
958 	if (psock->saved_data_ready)
959 		return;
960 
961 	psock->saved_data_ready = sk->sk_data_ready;
962 	sk->sk_data_ready = sk_psock_strp_data_ready;
963 	sk->sk_write_space = sk_psock_write_space;
964 }
965 
966 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
967 {
968 	if (!psock->saved_data_ready)
969 		return;
970 
971 	sk->sk_data_ready = psock->saved_data_ready;
972 	psock->saved_data_ready = NULL;
973 	strp_stop(&psock->strp);
974 }
975 
976 static void sk_psock_done_strp(struct sk_psock *psock)
977 {
978 	/* Parser has been stopped */
979 	if (psock->progs.stream_parser)
980 		strp_done(&psock->strp);
981 }
982 #else
983 static void sk_psock_done_strp(struct sk_psock *psock)
984 {
985 }
986 #endif /* CONFIG_BPF_STREAM_PARSER */
987 
988 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
989 				 unsigned int offset, size_t orig_len)
990 {
991 	struct sock *sk = (struct sock *)desc->arg.data;
992 	struct sk_psock *psock;
993 	struct bpf_prog *prog;
994 	int ret = __SK_DROP;
995 	int len = skb->len;
996 
997 	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
998 	skb = skb_clone(skb, GFP_ATOMIC);
999 	if (!skb) {
1000 		desc->error = -ENOMEM;
1001 		return 0;
1002 	}
1003 
1004 	rcu_read_lock();
1005 	psock = sk_psock(sk);
1006 	if (unlikely(!psock)) {
1007 		len = 0;
1008 		kfree_skb(skb);
1009 		goto out;
1010 	}
1011 	skb_set_owner_r(skb, sk);
1012 	prog = READ_ONCE(psock->progs.stream_verdict);
1013 	if (likely(prog)) {
1014 		skb_dst_drop(skb);
1015 		skb_bpf_redirect_clear(skb);
1016 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1017 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1018 	}
1019 	sk_psock_verdict_apply(psock, skb, ret);
1020 out:
1021 	rcu_read_unlock();
1022 	return len;
1023 }
1024 
1025 static void sk_psock_verdict_data_ready(struct sock *sk)
1026 {
1027 	struct socket *sock = sk->sk_socket;
1028 	read_descriptor_t desc;
1029 
1030 	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1031 		return;
1032 
1033 	desc.arg.data = sk;
1034 	desc.error = 0;
1035 	desc.count = 1;
1036 
1037 	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1038 }
1039 
1040 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1041 {
1042 	if (psock->saved_data_ready)
1043 		return;
1044 
1045 	psock->saved_data_ready = sk->sk_data_ready;
1046 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1047 	sk->sk_write_space = sk_psock_write_space;
1048 }
1049 
1050 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1051 {
1052 	if (!psock->saved_data_ready)
1053 		return;
1054 
1055 	sk->sk_data_ready = psock->saved_data_ready;
1056 	psock->saved_data_ready = NULL;
1057 }
1058