xref: /openbmc/linux/net/core/skmsg.c (revision 2a598d0b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 #include <trace/events/sock.h>
12 
13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 {
15 	if (msg->sg.end > msg->sg.start &&
16 	    elem_first_coalesce < msg->sg.end)
17 		return true;
18 
19 	if (msg->sg.end < msg->sg.start &&
20 	    (elem_first_coalesce > msg->sg.start ||
21 	     elem_first_coalesce < msg->sg.end))
22 		return true;
23 
24 	return false;
25 }
26 
27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
28 		 int elem_first_coalesce)
29 {
30 	struct page_frag *pfrag = sk_page_frag(sk);
31 	u32 osize = msg->sg.size;
32 	int ret = 0;
33 
34 	len -= msg->sg.size;
35 	while (len > 0) {
36 		struct scatterlist *sge;
37 		u32 orig_offset;
38 		int use, i;
39 
40 		if (!sk_page_frag_refill(sk, pfrag)) {
41 			ret = -ENOMEM;
42 			goto msg_trim;
43 		}
44 
45 		orig_offset = pfrag->offset;
46 		use = min_t(int, len, pfrag->size - orig_offset);
47 		if (!sk_wmem_schedule(sk, use)) {
48 			ret = -ENOMEM;
49 			goto msg_trim;
50 		}
51 
52 		i = msg->sg.end;
53 		sk_msg_iter_var_prev(i);
54 		sge = &msg->sg.data[i];
55 
56 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
57 		    sg_page(sge) == pfrag->page &&
58 		    sge->offset + sge->length == orig_offset) {
59 			sge->length += use;
60 		} else {
61 			if (sk_msg_full(msg)) {
62 				ret = -ENOSPC;
63 				break;
64 			}
65 
66 			sge = &msg->sg.data[msg->sg.end];
67 			sg_unmark_end(sge);
68 			sg_set_page(sge, pfrag->page, use, orig_offset);
69 			get_page(pfrag->page);
70 			sk_msg_iter_next(msg, end);
71 		}
72 
73 		sk_mem_charge(sk, use);
74 		msg->sg.size += use;
75 		pfrag->offset += use;
76 		len -= use;
77 	}
78 
79 	return ret;
80 
81 msg_trim:
82 	sk_msg_trim(sk, msg, osize);
83 	return ret;
84 }
85 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 
87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
88 		 u32 off, u32 len)
89 {
90 	int i = src->sg.start;
91 	struct scatterlist *sge = sk_msg_elem(src, i);
92 	struct scatterlist *sgd = NULL;
93 	u32 sge_len, sge_off;
94 
95 	while (off) {
96 		if (sge->length > off)
97 			break;
98 		off -= sge->length;
99 		sk_msg_iter_var_next(i);
100 		if (i == src->sg.end && off)
101 			return -ENOSPC;
102 		sge = sk_msg_elem(src, i);
103 	}
104 
105 	while (len) {
106 		sge_len = sge->length - off;
107 		if (sge_len > len)
108 			sge_len = len;
109 
110 		if (dst->sg.end)
111 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
112 
113 		if (sgd &&
114 		    (sg_page(sge) == sg_page(sgd)) &&
115 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
116 			sgd->length += sge_len;
117 			dst->sg.size += sge_len;
118 		} else if (!sk_msg_full(dst)) {
119 			sge_off = sge->offset + off;
120 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
121 		} else {
122 			return -ENOSPC;
123 		}
124 
125 		off = 0;
126 		len -= sge_len;
127 		sk_mem_charge(sk, sge_len);
128 		sk_msg_iter_var_next(i);
129 		if (i == src->sg.end && len)
130 			return -ENOSPC;
131 		sge = sk_msg_elem(src, i);
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 
138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 {
140 	int i = msg->sg.start;
141 
142 	do {
143 		struct scatterlist *sge = sk_msg_elem(msg, i);
144 
145 		if (bytes < sge->length) {
146 			sge->length -= bytes;
147 			sge->offset += bytes;
148 			sk_mem_uncharge(sk, bytes);
149 			break;
150 		}
151 
152 		sk_mem_uncharge(sk, sge->length);
153 		bytes -= sge->length;
154 		sge->length = 0;
155 		sge->offset = 0;
156 		sk_msg_iter_var_next(i);
157 	} while (bytes && i != msg->sg.end);
158 	msg->sg.start = i;
159 }
160 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 
162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 {
164 	int i = msg->sg.start;
165 
166 	do {
167 		struct scatterlist *sge = &msg->sg.data[i];
168 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 
170 		sk_mem_uncharge(sk, uncharge);
171 		bytes -= uncharge;
172 		sk_msg_iter_var_next(i);
173 	} while (i != msg->sg.end);
174 }
175 EXPORT_SYMBOL_GPL(sk_msg_return);
176 
177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
178 			    bool charge)
179 {
180 	struct scatterlist *sge = sk_msg_elem(msg, i);
181 	u32 len = sge->length;
182 
183 	/* When the skb owns the memory we free it from consume_skb path. */
184 	if (!msg->skb) {
185 		if (charge)
186 			sk_mem_uncharge(sk, len);
187 		put_page(sg_page(sge));
188 	}
189 	memset(sge, 0, sizeof(*sge));
190 	return len;
191 }
192 
193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
194 			 bool charge)
195 {
196 	struct scatterlist *sge = sk_msg_elem(msg, i);
197 	int freed = 0;
198 
199 	while (msg->sg.size) {
200 		msg->sg.size -= sge->length;
201 		freed += sk_msg_free_elem(sk, msg, i, charge);
202 		sk_msg_iter_var_next(i);
203 		sk_msg_check_to_free(msg, i, msg->sg.size);
204 		sge = sk_msg_elem(msg, i);
205 	}
206 	consume_skb(msg->skb);
207 	sk_msg_init(msg);
208 	return freed;
209 }
210 
211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 {
213 	return __sk_msg_free(sk, msg, msg->sg.start, false);
214 }
215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 
217 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 {
219 	return __sk_msg_free(sk, msg, msg->sg.start, true);
220 }
221 EXPORT_SYMBOL_GPL(sk_msg_free);
222 
223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
224 				  u32 bytes, bool charge)
225 {
226 	struct scatterlist *sge;
227 	u32 i = msg->sg.start;
228 
229 	while (bytes) {
230 		sge = sk_msg_elem(msg, i);
231 		if (!sge->length)
232 			break;
233 		if (bytes < sge->length) {
234 			if (charge)
235 				sk_mem_uncharge(sk, bytes);
236 			sge->length -= bytes;
237 			sge->offset += bytes;
238 			msg->sg.size -= bytes;
239 			break;
240 		}
241 
242 		msg->sg.size -= sge->length;
243 		bytes -= sge->length;
244 		sk_msg_free_elem(sk, msg, i, charge);
245 		sk_msg_iter_var_next(i);
246 		sk_msg_check_to_free(msg, i, bytes);
247 	}
248 	msg->sg.start = i;
249 }
250 
251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 {
253 	__sk_msg_free_partial(sk, msg, bytes, true);
254 }
255 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 
257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
258 				  u32 bytes)
259 {
260 	__sk_msg_free_partial(sk, msg, bytes, false);
261 }
262 
263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 {
265 	int trim = msg->sg.size - len;
266 	u32 i = msg->sg.end;
267 
268 	if (trim <= 0) {
269 		WARN_ON(trim < 0);
270 		return;
271 	}
272 
273 	sk_msg_iter_var_prev(i);
274 	msg->sg.size = len;
275 	while (msg->sg.data[i].length &&
276 	       trim >= msg->sg.data[i].length) {
277 		trim -= msg->sg.data[i].length;
278 		sk_msg_free_elem(sk, msg, i, true);
279 		sk_msg_iter_var_prev(i);
280 		if (!trim)
281 			goto out;
282 	}
283 
284 	msg->sg.data[i].length -= trim;
285 	sk_mem_uncharge(sk, trim);
286 	/* Adjust copybreak if it falls into the trimmed part of last buf */
287 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
288 		msg->sg.copybreak = msg->sg.data[i].length;
289 out:
290 	sk_msg_iter_var_next(i);
291 	msg->sg.end = i;
292 
293 	/* If we trim data a full sg elem before curr pointer update
294 	 * copybreak and current so that any future copy operations
295 	 * start at new copy location.
296 	 * However trimed data that has not yet been used in a copy op
297 	 * does not require an update.
298 	 */
299 	if (!msg->sg.size) {
300 		msg->sg.curr = msg->sg.start;
301 		msg->sg.copybreak = 0;
302 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
303 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
304 		sk_msg_iter_var_prev(i);
305 		msg->sg.curr = i;
306 		msg->sg.copybreak = msg->sg.data[i].length;
307 	}
308 }
309 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 
311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
312 			      struct sk_msg *msg, u32 bytes)
313 {
314 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
315 	const int to_max_pages = MAX_MSG_FRAGS;
316 	struct page *pages[MAX_MSG_FRAGS];
317 	ssize_t orig, copied, use, offset;
318 
319 	orig = msg->sg.size;
320 	while (bytes > 0) {
321 		i = 0;
322 		maxpages = to_max_pages - num_elems;
323 		if (maxpages == 0) {
324 			ret = -EFAULT;
325 			goto out;
326 		}
327 
328 		copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
329 					    &offset);
330 		if (copied <= 0) {
331 			ret = -EFAULT;
332 			goto out;
333 		}
334 
335 		bytes -= copied;
336 		msg->sg.size += copied;
337 
338 		while (copied) {
339 			use = min_t(int, copied, PAGE_SIZE - offset);
340 			sg_set_page(&msg->sg.data[msg->sg.end],
341 				    pages[i], use, offset);
342 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
343 			sk_mem_charge(sk, use);
344 
345 			offset = 0;
346 			copied -= use;
347 			sk_msg_iter_next(msg, end);
348 			num_elems++;
349 			i++;
350 		}
351 		/* When zerocopy is mixed with sk_msg_*copy* operations we
352 		 * may have a copybreak set in this case clear and prefer
353 		 * zerocopy remainder when possible.
354 		 */
355 		msg->sg.copybreak = 0;
356 		msg->sg.curr = msg->sg.end;
357 	}
358 out:
359 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
360 	 * also needs to be cleared.
361 	 */
362 	if (ret)
363 		iov_iter_revert(from, msg->sg.size - orig);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367 
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369 			     struct sk_msg *msg, u32 bytes)
370 {
371 	int ret = -ENOSPC, i = msg->sg.curr;
372 	struct scatterlist *sge;
373 	u32 copy, buf_size;
374 	void *to;
375 
376 	do {
377 		sge = sk_msg_elem(msg, i);
378 		/* This is possible if a trim operation shrunk the buffer */
379 		if (msg->sg.copybreak >= sge->length) {
380 			msg->sg.copybreak = 0;
381 			sk_msg_iter_var_next(i);
382 			if (i == msg->sg.end)
383 				break;
384 			sge = sk_msg_elem(msg, i);
385 		}
386 
387 		buf_size = sge->length - msg->sg.copybreak;
388 		copy = (buf_size > bytes) ? bytes : buf_size;
389 		to = sg_virt(sge) + msg->sg.copybreak;
390 		msg->sg.copybreak += copy;
391 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392 			ret = copy_from_iter_nocache(to, copy, from);
393 		else
394 			ret = copy_from_iter(to, copy, from);
395 		if (ret != copy) {
396 			ret = -EFAULT;
397 			goto out;
398 		}
399 		bytes -= copy;
400 		if (!bytes)
401 			break;
402 		msg->sg.copybreak = 0;
403 		sk_msg_iter_var_next(i);
404 	} while (i != msg->sg.end);
405 out:
406 	msg->sg.curr = i;
407 	return ret;
408 }
409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410 
411 /* Receive sk_msg from psock->ingress_msg to @msg. */
412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
413 		   int len, int flags)
414 {
415 	struct iov_iter *iter = &msg->msg_iter;
416 	int peek = flags & MSG_PEEK;
417 	struct sk_msg *msg_rx;
418 	int i, copied = 0;
419 
420 	msg_rx = sk_psock_peek_msg(psock);
421 	while (copied != len) {
422 		struct scatterlist *sge;
423 
424 		if (unlikely(!msg_rx))
425 			break;
426 
427 		i = msg_rx->sg.start;
428 		do {
429 			struct page *page;
430 			int copy;
431 
432 			sge = sk_msg_elem(msg_rx, i);
433 			copy = sge->length;
434 			page = sg_page(sge);
435 			if (copied + copy > len)
436 				copy = len - copied;
437 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
438 			if (!copy) {
439 				copied = copied ? copied : -EFAULT;
440 				goto out;
441 			}
442 
443 			copied += copy;
444 			if (likely(!peek)) {
445 				sge->offset += copy;
446 				sge->length -= copy;
447 				if (!msg_rx->skb)
448 					sk_mem_uncharge(sk, copy);
449 				msg_rx->sg.size -= copy;
450 
451 				if (!sge->length) {
452 					sk_msg_iter_var_next(i);
453 					if (!msg_rx->skb)
454 						put_page(page);
455 				}
456 			} else {
457 				/* Lets not optimize peek case if copy_page_to_iter
458 				 * didn't copy the entire length lets just break.
459 				 */
460 				if (copy != sge->length)
461 					goto out;
462 				sk_msg_iter_var_next(i);
463 			}
464 
465 			if (copied == len)
466 				break;
467 		} while ((i != msg_rx->sg.end) && !sg_is_last(sge));
468 
469 		if (unlikely(peek)) {
470 			msg_rx = sk_psock_next_msg(psock, msg_rx);
471 			if (!msg_rx)
472 				break;
473 			continue;
474 		}
475 
476 		msg_rx->sg.start = i;
477 		if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
478 			msg_rx = sk_psock_dequeue_msg(psock);
479 			kfree_sk_msg(msg_rx);
480 		}
481 		msg_rx = sk_psock_peek_msg(psock);
482 	}
483 out:
484 	return copied;
485 }
486 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
487 
488 bool sk_msg_is_readable(struct sock *sk)
489 {
490 	struct sk_psock *psock;
491 	bool empty = true;
492 
493 	rcu_read_lock();
494 	psock = sk_psock(sk);
495 	if (likely(psock))
496 		empty = list_empty(&psock->ingress_msg);
497 	rcu_read_unlock();
498 	return !empty;
499 }
500 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
501 
502 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
503 {
504 	struct sk_msg *msg;
505 
506 	msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
507 	if (unlikely(!msg))
508 		return NULL;
509 	sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
510 	return msg;
511 }
512 
513 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
514 						  struct sk_buff *skb)
515 {
516 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
517 		return NULL;
518 
519 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
520 		return NULL;
521 
522 	return alloc_sk_msg(GFP_KERNEL);
523 }
524 
525 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
526 					u32 off, u32 len,
527 					struct sk_psock *psock,
528 					struct sock *sk,
529 					struct sk_msg *msg)
530 {
531 	int num_sge, copied;
532 
533 	num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
534 	if (num_sge < 0) {
535 		/* skb linearize may fail with ENOMEM, but lets simply try again
536 		 * later if this happens. Under memory pressure we don't want to
537 		 * drop the skb. We need to linearize the skb so that the mapping
538 		 * in skb_to_sgvec can not error.
539 		 */
540 		if (skb_linearize(skb))
541 			return -EAGAIN;
542 
543 		num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
544 		if (unlikely(num_sge < 0))
545 			return num_sge;
546 	}
547 
548 	copied = len;
549 	msg->sg.start = 0;
550 	msg->sg.size = copied;
551 	msg->sg.end = num_sge;
552 	msg->skb = skb;
553 
554 	sk_psock_queue_msg(psock, msg);
555 	sk_psock_data_ready(sk, psock);
556 	return copied;
557 }
558 
559 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
560 				     u32 off, u32 len);
561 
562 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
563 				u32 off, u32 len)
564 {
565 	struct sock *sk = psock->sk;
566 	struct sk_msg *msg;
567 	int err;
568 
569 	/* If we are receiving on the same sock skb->sk is already assigned,
570 	 * skip memory accounting and owner transition seeing it already set
571 	 * correctly.
572 	 */
573 	if (unlikely(skb->sk == sk))
574 		return sk_psock_skb_ingress_self(psock, skb, off, len);
575 	msg = sk_psock_create_ingress_msg(sk, skb);
576 	if (!msg)
577 		return -EAGAIN;
578 
579 	/* This will transition ownership of the data from the socket where
580 	 * the BPF program was run initiating the redirect to the socket
581 	 * we will eventually receive this data on. The data will be released
582 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
583 	 * into user buffers.
584 	 */
585 	skb_set_owner_r(skb, sk);
586 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
587 	if (err < 0)
588 		kfree(msg);
589 	return err;
590 }
591 
592 /* Puts an skb on the ingress queue of the socket already assigned to the
593  * skb. In this case we do not need to check memory limits or skb_set_owner_r
594  * because the skb is already accounted for here.
595  */
596 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
597 				     u32 off, u32 len)
598 {
599 	struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
600 	struct sock *sk = psock->sk;
601 	int err;
602 
603 	if (unlikely(!msg))
604 		return -EAGAIN;
605 	skb_set_owner_r(skb, sk);
606 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
607 	if (err < 0)
608 		kfree(msg);
609 	return err;
610 }
611 
612 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
613 			       u32 off, u32 len, bool ingress)
614 {
615 	if (!ingress) {
616 		if (!sock_writeable(psock->sk))
617 			return -EAGAIN;
618 		return skb_send_sock(psock->sk, skb, off, len);
619 	}
620 	return sk_psock_skb_ingress(psock, skb, off, len);
621 }
622 
623 static void sk_psock_skb_state(struct sk_psock *psock,
624 			       struct sk_psock_work_state *state,
625 			       int len, int off)
626 {
627 	spin_lock_bh(&psock->ingress_lock);
628 	if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
629 		state->len = len;
630 		state->off = off;
631 	}
632 	spin_unlock_bh(&psock->ingress_lock);
633 }
634 
635 static void sk_psock_backlog(struct work_struct *work)
636 {
637 	struct delayed_work *dwork = to_delayed_work(work);
638 	struct sk_psock *psock = container_of(dwork, struct sk_psock, work);
639 	struct sk_psock_work_state *state = &psock->work_state;
640 	struct sk_buff *skb = NULL;
641 	u32 len = 0, off = 0;
642 	bool ingress;
643 	int ret;
644 
645 	mutex_lock(&psock->work_mutex);
646 	if (unlikely(state->len)) {
647 		len = state->len;
648 		off = state->off;
649 	}
650 
651 	while ((skb = skb_peek(&psock->ingress_skb))) {
652 		len = skb->len;
653 		off = 0;
654 		if (skb_bpf_strparser(skb)) {
655 			struct strp_msg *stm = strp_msg(skb);
656 
657 			off = stm->offset;
658 			len = stm->full_len;
659 		}
660 		ingress = skb_bpf_ingress(skb);
661 		skb_bpf_redirect_clear(skb);
662 		do {
663 			ret = -EIO;
664 			if (!sock_flag(psock->sk, SOCK_DEAD))
665 				ret = sk_psock_handle_skb(psock, skb, off,
666 							  len, ingress);
667 			if (ret <= 0) {
668 				if (ret == -EAGAIN) {
669 					sk_psock_skb_state(psock, state, len, off);
670 
671 					/* Delay slightly to prioritize any
672 					 * other work that might be here.
673 					 */
674 					if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
675 						schedule_delayed_work(&psock->work, 1);
676 					goto end;
677 				}
678 				/* Hard errors break pipe and stop xmit. */
679 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
680 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
681 				goto end;
682 			}
683 			off += ret;
684 			len -= ret;
685 		} while (len);
686 
687 		skb = skb_dequeue(&psock->ingress_skb);
688 		if (!ingress) {
689 			kfree_skb(skb);
690 		}
691 	}
692 end:
693 	mutex_unlock(&psock->work_mutex);
694 }
695 
696 struct sk_psock *sk_psock_init(struct sock *sk, int node)
697 {
698 	struct sk_psock *psock;
699 	struct proto *prot;
700 
701 	write_lock_bh(&sk->sk_callback_lock);
702 
703 	if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
704 		psock = ERR_PTR(-EINVAL);
705 		goto out;
706 	}
707 
708 	if (sk->sk_user_data) {
709 		psock = ERR_PTR(-EBUSY);
710 		goto out;
711 	}
712 
713 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
714 	if (!psock) {
715 		psock = ERR_PTR(-ENOMEM);
716 		goto out;
717 	}
718 
719 	prot = READ_ONCE(sk->sk_prot);
720 	psock->sk = sk;
721 	psock->eval = __SK_NONE;
722 	psock->sk_proto = prot;
723 	psock->saved_unhash = prot->unhash;
724 	psock->saved_destroy = prot->destroy;
725 	psock->saved_close = prot->close;
726 	psock->saved_write_space = sk->sk_write_space;
727 
728 	INIT_LIST_HEAD(&psock->link);
729 	spin_lock_init(&psock->link_lock);
730 
731 	INIT_DELAYED_WORK(&psock->work, sk_psock_backlog);
732 	mutex_init(&psock->work_mutex);
733 	INIT_LIST_HEAD(&psock->ingress_msg);
734 	spin_lock_init(&psock->ingress_lock);
735 	skb_queue_head_init(&psock->ingress_skb);
736 
737 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
738 	refcount_set(&psock->refcnt, 1);
739 
740 	__rcu_assign_sk_user_data_with_flags(sk, psock,
741 					     SK_USER_DATA_NOCOPY |
742 					     SK_USER_DATA_PSOCK);
743 	sock_hold(sk);
744 
745 out:
746 	write_unlock_bh(&sk->sk_callback_lock);
747 	return psock;
748 }
749 EXPORT_SYMBOL_GPL(sk_psock_init);
750 
751 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
752 {
753 	struct sk_psock_link *link;
754 
755 	spin_lock_bh(&psock->link_lock);
756 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
757 					list);
758 	if (link)
759 		list_del(&link->list);
760 	spin_unlock_bh(&psock->link_lock);
761 	return link;
762 }
763 
764 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
765 {
766 	struct sk_msg *msg, *tmp;
767 
768 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
769 		list_del(&msg->list);
770 		sk_msg_free(psock->sk, msg);
771 		kfree(msg);
772 	}
773 }
774 
775 static void __sk_psock_zap_ingress(struct sk_psock *psock)
776 {
777 	struct sk_buff *skb;
778 
779 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
780 		skb_bpf_redirect_clear(skb);
781 		sock_drop(psock->sk, skb);
782 	}
783 	__sk_psock_purge_ingress_msg(psock);
784 }
785 
786 static void sk_psock_link_destroy(struct sk_psock *psock)
787 {
788 	struct sk_psock_link *link, *tmp;
789 
790 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
791 		list_del(&link->list);
792 		sk_psock_free_link(link);
793 	}
794 }
795 
796 void sk_psock_stop(struct sk_psock *psock)
797 {
798 	spin_lock_bh(&psock->ingress_lock);
799 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
800 	sk_psock_cork_free(psock);
801 	spin_unlock_bh(&psock->ingress_lock);
802 }
803 
804 static void sk_psock_done_strp(struct sk_psock *psock);
805 
806 static void sk_psock_destroy(struct work_struct *work)
807 {
808 	struct sk_psock *psock = container_of(to_rcu_work(work),
809 					      struct sk_psock, rwork);
810 	/* No sk_callback_lock since already detached. */
811 
812 	sk_psock_done_strp(psock);
813 
814 	cancel_delayed_work_sync(&psock->work);
815 	__sk_psock_zap_ingress(psock);
816 	mutex_destroy(&psock->work_mutex);
817 
818 	psock_progs_drop(&psock->progs);
819 
820 	sk_psock_link_destroy(psock);
821 	sk_psock_cork_free(psock);
822 
823 	if (psock->sk_redir)
824 		sock_put(psock->sk_redir);
825 	sock_put(psock->sk);
826 	kfree(psock);
827 }
828 
829 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
830 {
831 	write_lock_bh(&sk->sk_callback_lock);
832 	sk_psock_restore_proto(sk, psock);
833 	rcu_assign_sk_user_data(sk, NULL);
834 	if (psock->progs.stream_parser)
835 		sk_psock_stop_strp(sk, psock);
836 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
837 		sk_psock_stop_verdict(sk, psock);
838 	write_unlock_bh(&sk->sk_callback_lock);
839 
840 	sk_psock_stop(psock);
841 
842 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
843 	queue_rcu_work(system_wq, &psock->rwork);
844 }
845 EXPORT_SYMBOL_GPL(sk_psock_drop);
846 
847 static int sk_psock_map_verd(int verdict, bool redir)
848 {
849 	switch (verdict) {
850 	case SK_PASS:
851 		return redir ? __SK_REDIRECT : __SK_PASS;
852 	case SK_DROP:
853 	default:
854 		break;
855 	}
856 
857 	return __SK_DROP;
858 }
859 
860 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
861 			 struct sk_msg *msg)
862 {
863 	struct bpf_prog *prog;
864 	int ret;
865 
866 	rcu_read_lock();
867 	prog = READ_ONCE(psock->progs.msg_parser);
868 	if (unlikely(!prog)) {
869 		ret = __SK_PASS;
870 		goto out;
871 	}
872 
873 	sk_msg_compute_data_pointers(msg);
874 	msg->sk = sk;
875 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
876 	ret = sk_psock_map_verd(ret, msg->sk_redir);
877 	psock->apply_bytes = msg->apply_bytes;
878 	if (ret == __SK_REDIRECT) {
879 		if (psock->sk_redir) {
880 			sock_put(psock->sk_redir);
881 			psock->sk_redir = NULL;
882 		}
883 		if (!msg->sk_redir) {
884 			ret = __SK_DROP;
885 			goto out;
886 		}
887 		psock->redir_ingress = sk_msg_to_ingress(msg);
888 		psock->sk_redir = msg->sk_redir;
889 		sock_hold(psock->sk_redir);
890 	}
891 out:
892 	rcu_read_unlock();
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
896 
897 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
898 {
899 	struct sk_psock *psock_other;
900 	struct sock *sk_other;
901 
902 	sk_other = skb_bpf_redirect_fetch(skb);
903 	/* This error is a buggy BPF program, it returned a redirect
904 	 * return code, but then didn't set a redirect interface.
905 	 */
906 	if (unlikely(!sk_other)) {
907 		skb_bpf_redirect_clear(skb);
908 		sock_drop(from->sk, skb);
909 		return -EIO;
910 	}
911 	psock_other = sk_psock(sk_other);
912 	/* This error indicates the socket is being torn down or had another
913 	 * error that caused the pipe to break. We can't send a packet on
914 	 * a socket that is in this state so we drop the skb.
915 	 */
916 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
917 		skb_bpf_redirect_clear(skb);
918 		sock_drop(from->sk, skb);
919 		return -EIO;
920 	}
921 	spin_lock_bh(&psock_other->ingress_lock);
922 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
923 		spin_unlock_bh(&psock_other->ingress_lock);
924 		skb_bpf_redirect_clear(skb);
925 		sock_drop(from->sk, skb);
926 		return -EIO;
927 	}
928 
929 	skb_queue_tail(&psock_other->ingress_skb, skb);
930 	schedule_delayed_work(&psock_other->work, 0);
931 	spin_unlock_bh(&psock_other->ingress_lock);
932 	return 0;
933 }
934 
935 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
936 				       struct sk_psock *from, int verdict)
937 {
938 	switch (verdict) {
939 	case __SK_REDIRECT:
940 		sk_psock_skb_redirect(from, skb);
941 		break;
942 	case __SK_PASS:
943 	case __SK_DROP:
944 	default:
945 		break;
946 	}
947 }
948 
949 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
950 {
951 	struct bpf_prog *prog;
952 	int ret = __SK_PASS;
953 
954 	rcu_read_lock();
955 	prog = READ_ONCE(psock->progs.stream_verdict);
956 	if (likely(prog)) {
957 		skb->sk = psock->sk;
958 		skb_dst_drop(skb);
959 		skb_bpf_redirect_clear(skb);
960 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
961 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
962 		skb->sk = NULL;
963 	}
964 	sk_psock_tls_verdict_apply(skb, psock, ret);
965 	rcu_read_unlock();
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
969 
970 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
971 				  int verdict)
972 {
973 	struct sock *sk_other;
974 	int err = 0;
975 	u32 len, off;
976 
977 	switch (verdict) {
978 	case __SK_PASS:
979 		err = -EIO;
980 		sk_other = psock->sk;
981 		if (sock_flag(sk_other, SOCK_DEAD) ||
982 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
983 			goto out_free;
984 
985 		skb_bpf_set_ingress(skb);
986 
987 		/* If the queue is empty then we can submit directly
988 		 * into the msg queue. If its not empty we have to
989 		 * queue work otherwise we may get OOO data. Otherwise,
990 		 * if sk_psock_skb_ingress errors will be handled by
991 		 * retrying later from workqueue.
992 		 */
993 		if (skb_queue_empty(&psock->ingress_skb)) {
994 			len = skb->len;
995 			off = 0;
996 			if (skb_bpf_strparser(skb)) {
997 				struct strp_msg *stm = strp_msg(skb);
998 
999 				off = stm->offset;
1000 				len = stm->full_len;
1001 			}
1002 			err = sk_psock_skb_ingress_self(psock, skb, off, len);
1003 		}
1004 		if (err < 0) {
1005 			spin_lock_bh(&psock->ingress_lock);
1006 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1007 				skb_queue_tail(&psock->ingress_skb, skb);
1008 				schedule_delayed_work(&psock->work, 0);
1009 				err = 0;
1010 			}
1011 			spin_unlock_bh(&psock->ingress_lock);
1012 			if (err < 0)
1013 				goto out_free;
1014 		}
1015 		break;
1016 	case __SK_REDIRECT:
1017 		tcp_eat_skb(psock->sk, skb);
1018 		err = sk_psock_skb_redirect(psock, skb);
1019 		break;
1020 	case __SK_DROP:
1021 	default:
1022 out_free:
1023 		skb_bpf_redirect_clear(skb);
1024 		tcp_eat_skb(psock->sk, skb);
1025 		sock_drop(psock->sk, skb);
1026 	}
1027 
1028 	return err;
1029 }
1030 
1031 static void sk_psock_write_space(struct sock *sk)
1032 {
1033 	struct sk_psock *psock;
1034 	void (*write_space)(struct sock *sk) = NULL;
1035 
1036 	rcu_read_lock();
1037 	psock = sk_psock(sk);
1038 	if (likely(psock)) {
1039 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1040 			schedule_delayed_work(&psock->work, 0);
1041 		write_space = psock->saved_write_space;
1042 	}
1043 	rcu_read_unlock();
1044 	if (write_space)
1045 		write_space(sk);
1046 }
1047 
1048 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1049 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1050 {
1051 	struct sk_psock *psock;
1052 	struct bpf_prog *prog;
1053 	int ret = __SK_DROP;
1054 	struct sock *sk;
1055 
1056 	rcu_read_lock();
1057 	sk = strp->sk;
1058 	psock = sk_psock(sk);
1059 	if (unlikely(!psock)) {
1060 		sock_drop(sk, skb);
1061 		goto out;
1062 	}
1063 	prog = READ_ONCE(psock->progs.stream_verdict);
1064 	if (likely(prog)) {
1065 		skb->sk = sk;
1066 		skb_dst_drop(skb);
1067 		skb_bpf_redirect_clear(skb);
1068 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1069 		skb_bpf_set_strparser(skb);
1070 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1071 		skb->sk = NULL;
1072 	}
1073 	sk_psock_verdict_apply(psock, skb, ret);
1074 out:
1075 	rcu_read_unlock();
1076 }
1077 
1078 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1079 {
1080 	return err;
1081 }
1082 
1083 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1084 {
1085 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1086 	struct bpf_prog *prog;
1087 	int ret = skb->len;
1088 
1089 	rcu_read_lock();
1090 	prog = READ_ONCE(psock->progs.stream_parser);
1091 	if (likely(prog)) {
1092 		skb->sk = psock->sk;
1093 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1094 		skb->sk = NULL;
1095 	}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 
1100 /* Called with socket lock held. */
1101 static void sk_psock_strp_data_ready(struct sock *sk)
1102 {
1103 	struct sk_psock *psock;
1104 
1105 	trace_sk_data_ready(sk);
1106 
1107 	rcu_read_lock();
1108 	psock = sk_psock(sk);
1109 	if (likely(psock)) {
1110 		if (tls_sw_has_ctx_rx(sk)) {
1111 			psock->saved_data_ready(sk);
1112 		} else {
1113 			write_lock_bh(&sk->sk_callback_lock);
1114 			strp_data_ready(&psock->strp);
1115 			write_unlock_bh(&sk->sk_callback_lock);
1116 		}
1117 	}
1118 	rcu_read_unlock();
1119 }
1120 
1121 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1122 {
1123 	static const struct strp_callbacks cb = {
1124 		.rcv_msg	= sk_psock_strp_read,
1125 		.read_sock_done	= sk_psock_strp_read_done,
1126 		.parse_msg	= sk_psock_strp_parse,
1127 	};
1128 
1129 	return strp_init(&psock->strp, sk, &cb);
1130 }
1131 
1132 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1133 {
1134 	if (psock->saved_data_ready)
1135 		return;
1136 
1137 	psock->saved_data_ready = sk->sk_data_ready;
1138 	sk->sk_data_ready = sk_psock_strp_data_ready;
1139 	sk->sk_write_space = sk_psock_write_space;
1140 }
1141 
1142 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1143 {
1144 	psock_set_prog(&psock->progs.stream_parser, NULL);
1145 
1146 	if (!psock->saved_data_ready)
1147 		return;
1148 
1149 	sk->sk_data_ready = psock->saved_data_ready;
1150 	psock->saved_data_ready = NULL;
1151 	strp_stop(&psock->strp);
1152 }
1153 
1154 static void sk_psock_done_strp(struct sk_psock *psock)
1155 {
1156 	/* Parser has been stopped */
1157 	if (psock->progs.stream_parser)
1158 		strp_done(&psock->strp);
1159 }
1160 #else
1161 static void sk_psock_done_strp(struct sk_psock *psock)
1162 {
1163 }
1164 #endif /* CONFIG_BPF_STREAM_PARSER */
1165 
1166 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1167 {
1168 	struct sk_psock *psock;
1169 	struct bpf_prog *prog;
1170 	int ret = __SK_DROP;
1171 	int len = skb->len;
1172 
1173 	rcu_read_lock();
1174 	psock = sk_psock(sk);
1175 	if (unlikely(!psock)) {
1176 		len = 0;
1177 		tcp_eat_skb(sk, skb);
1178 		sock_drop(sk, skb);
1179 		goto out;
1180 	}
1181 	prog = READ_ONCE(psock->progs.stream_verdict);
1182 	if (!prog)
1183 		prog = READ_ONCE(psock->progs.skb_verdict);
1184 	if (likely(prog)) {
1185 		skb_dst_drop(skb);
1186 		skb_bpf_redirect_clear(skb);
1187 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1188 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1189 	}
1190 	ret = sk_psock_verdict_apply(psock, skb, ret);
1191 	if (ret < 0)
1192 		len = ret;
1193 out:
1194 	rcu_read_unlock();
1195 	return len;
1196 }
1197 
1198 static void sk_psock_verdict_data_ready(struct sock *sk)
1199 {
1200 	struct socket *sock = sk->sk_socket;
1201 	int copied;
1202 
1203 	trace_sk_data_ready(sk);
1204 
1205 	if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1206 		return;
1207 	copied = sock->ops->read_skb(sk, sk_psock_verdict_recv);
1208 	if (copied >= 0) {
1209 		struct sk_psock *psock;
1210 
1211 		rcu_read_lock();
1212 		psock = sk_psock(sk);
1213 		if (psock)
1214 			psock->saved_data_ready(sk);
1215 		rcu_read_unlock();
1216 	}
1217 }
1218 
1219 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1220 {
1221 	if (psock->saved_data_ready)
1222 		return;
1223 
1224 	psock->saved_data_ready = sk->sk_data_ready;
1225 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1226 	sk->sk_write_space = sk_psock_write_space;
1227 }
1228 
1229 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1230 {
1231 	psock_set_prog(&psock->progs.stream_verdict, NULL);
1232 	psock_set_prog(&psock->progs.skb_verdict, NULL);
1233 
1234 	if (!psock->saved_data_ready)
1235 		return;
1236 
1237 	sk->sk_data_ready = psock->saved_data_ready;
1238 	psock->saved_data_ready = NULL;
1239 }
1240