xref: /openbmc/linux/net/core/skmsg.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14 	if (msg->sg.end > msg->sg.start &&
15 	    elem_first_coalesce < msg->sg.end)
16 		return true;
17 
18 	if (msg->sg.end < msg->sg.start &&
19 	    (elem_first_coalesce > msg->sg.start ||
20 	     elem_first_coalesce < msg->sg.end))
21 		return true;
22 
23 	return false;
24 }
25 
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 		 int elem_first_coalesce)
28 {
29 	struct page_frag *pfrag = sk_page_frag(sk);
30 	int ret = 0;
31 
32 	len -= msg->sg.size;
33 	while (len > 0) {
34 		struct scatterlist *sge;
35 		u32 orig_offset;
36 		int use, i;
37 
38 		if (!sk_page_frag_refill(sk, pfrag))
39 			return -ENOMEM;
40 
41 		orig_offset = pfrag->offset;
42 		use = min_t(int, len, pfrag->size - orig_offset);
43 		if (!sk_wmem_schedule(sk, use))
44 			return -ENOMEM;
45 
46 		i = msg->sg.end;
47 		sk_msg_iter_var_prev(i);
48 		sge = &msg->sg.data[i];
49 
50 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
51 		    sg_page(sge) == pfrag->page &&
52 		    sge->offset + sge->length == orig_offset) {
53 			sge->length += use;
54 		} else {
55 			if (sk_msg_full(msg)) {
56 				ret = -ENOSPC;
57 				break;
58 			}
59 
60 			sge = &msg->sg.data[msg->sg.end];
61 			sg_unmark_end(sge);
62 			sg_set_page(sge, pfrag->page, use, orig_offset);
63 			get_page(pfrag->page);
64 			sk_msg_iter_next(msg, end);
65 		}
66 
67 		sk_mem_charge(sk, use);
68 		msg->sg.size += use;
69 		pfrag->offset += use;
70 		len -= use;
71 	}
72 
73 	return ret;
74 }
75 EXPORT_SYMBOL_GPL(sk_msg_alloc);
76 
77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
78 		 u32 off, u32 len)
79 {
80 	int i = src->sg.start;
81 	struct scatterlist *sge = sk_msg_elem(src, i);
82 	struct scatterlist *sgd = NULL;
83 	u32 sge_len, sge_off;
84 
85 	while (off) {
86 		if (sge->length > off)
87 			break;
88 		off -= sge->length;
89 		sk_msg_iter_var_next(i);
90 		if (i == src->sg.end && off)
91 			return -ENOSPC;
92 		sge = sk_msg_elem(src, i);
93 	}
94 
95 	while (len) {
96 		sge_len = sge->length - off;
97 		if (sge_len > len)
98 			sge_len = len;
99 
100 		if (dst->sg.end)
101 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
102 
103 		if (sgd &&
104 		    (sg_page(sge) == sg_page(sgd)) &&
105 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
106 			sgd->length += sge_len;
107 			dst->sg.size += sge_len;
108 		} else if (!sk_msg_full(dst)) {
109 			sge_off = sge->offset + off;
110 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
111 		} else {
112 			return -ENOSPC;
113 		}
114 
115 		off = 0;
116 		len -= sge_len;
117 		sk_mem_charge(sk, sge_len);
118 		sk_msg_iter_var_next(i);
119 		if (i == src->sg.end && len)
120 			return -ENOSPC;
121 		sge = sk_msg_elem(src, i);
122 	}
123 
124 	return 0;
125 }
126 EXPORT_SYMBOL_GPL(sk_msg_clone);
127 
128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
129 {
130 	int i = msg->sg.start;
131 
132 	do {
133 		struct scatterlist *sge = sk_msg_elem(msg, i);
134 
135 		if (bytes < sge->length) {
136 			sge->length -= bytes;
137 			sge->offset += bytes;
138 			sk_mem_uncharge(sk, bytes);
139 			break;
140 		}
141 
142 		sk_mem_uncharge(sk, sge->length);
143 		bytes -= sge->length;
144 		sge->length = 0;
145 		sge->offset = 0;
146 		sk_msg_iter_var_next(i);
147 	} while (bytes && i != msg->sg.end);
148 	msg->sg.start = i;
149 }
150 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
151 
152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
153 {
154 	int i = msg->sg.start;
155 
156 	do {
157 		struct scatterlist *sge = &msg->sg.data[i];
158 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
159 
160 		sk_mem_uncharge(sk, uncharge);
161 		bytes -= uncharge;
162 		sk_msg_iter_var_next(i);
163 	} while (i != msg->sg.end);
164 }
165 EXPORT_SYMBOL_GPL(sk_msg_return);
166 
167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
168 			    bool charge)
169 {
170 	struct scatterlist *sge = sk_msg_elem(msg, i);
171 	u32 len = sge->length;
172 
173 	/* When the skb owns the memory we free it from consume_skb path. */
174 	if (!msg->skb) {
175 		if (charge)
176 			sk_mem_uncharge(sk, len);
177 		put_page(sg_page(sge));
178 	}
179 	memset(sge, 0, sizeof(*sge));
180 	return len;
181 }
182 
183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
184 			 bool charge)
185 {
186 	struct scatterlist *sge = sk_msg_elem(msg, i);
187 	int freed = 0;
188 
189 	while (msg->sg.size) {
190 		msg->sg.size -= sge->length;
191 		freed += sk_msg_free_elem(sk, msg, i, charge);
192 		sk_msg_iter_var_next(i);
193 		sk_msg_check_to_free(msg, i, msg->sg.size);
194 		sge = sk_msg_elem(msg, i);
195 	}
196 	consume_skb(msg->skb);
197 	sk_msg_init(msg);
198 	return freed;
199 }
200 
201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
202 {
203 	return __sk_msg_free(sk, msg, msg->sg.start, false);
204 }
205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
206 
207 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
208 {
209 	return __sk_msg_free(sk, msg, msg->sg.start, true);
210 }
211 EXPORT_SYMBOL_GPL(sk_msg_free);
212 
213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
214 				  u32 bytes, bool charge)
215 {
216 	struct scatterlist *sge;
217 	u32 i = msg->sg.start;
218 
219 	while (bytes) {
220 		sge = sk_msg_elem(msg, i);
221 		if (!sge->length)
222 			break;
223 		if (bytes < sge->length) {
224 			if (charge)
225 				sk_mem_uncharge(sk, bytes);
226 			sge->length -= bytes;
227 			sge->offset += bytes;
228 			msg->sg.size -= bytes;
229 			break;
230 		}
231 
232 		msg->sg.size -= sge->length;
233 		bytes -= sge->length;
234 		sk_msg_free_elem(sk, msg, i, charge);
235 		sk_msg_iter_var_next(i);
236 		sk_msg_check_to_free(msg, i, bytes);
237 	}
238 	msg->sg.start = i;
239 }
240 
241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
242 {
243 	__sk_msg_free_partial(sk, msg, bytes, true);
244 }
245 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
246 
247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
248 				  u32 bytes)
249 {
250 	__sk_msg_free_partial(sk, msg, bytes, false);
251 }
252 
253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
254 {
255 	int trim = msg->sg.size - len;
256 	u32 i = msg->sg.end;
257 
258 	if (trim <= 0) {
259 		WARN_ON(trim < 0);
260 		return;
261 	}
262 
263 	sk_msg_iter_var_prev(i);
264 	msg->sg.size = len;
265 	while (msg->sg.data[i].length &&
266 	       trim >= msg->sg.data[i].length) {
267 		trim -= msg->sg.data[i].length;
268 		sk_msg_free_elem(sk, msg, i, true);
269 		sk_msg_iter_var_prev(i);
270 		if (!trim)
271 			goto out;
272 	}
273 
274 	msg->sg.data[i].length -= trim;
275 	sk_mem_uncharge(sk, trim);
276 	/* Adjust copybreak if it falls into the trimmed part of last buf */
277 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
278 		msg->sg.copybreak = msg->sg.data[i].length;
279 out:
280 	sk_msg_iter_var_next(i);
281 	msg->sg.end = i;
282 
283 	/* If we trim data a full sg elem before curr pointer update
284 	 * copybreak and current so that any future copy operations
285 	 * start at new copy location.
286 	 * However trimed data that has not yet been used in a copy op
287 	 * does not require an update.
288 	 */
289 	if (!msg->sg.size) {
290 		msg->sg.curr = msg->sg.start;
291 		msg->sg.copybreak = 0;
292 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
293 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
294 		sk_msg_iter_var_prev(i);
295 		msg->sg.curr = i;
296 		msg->sg.copybreak = msg->sg.data[i].length;
297 	}
298 }
299 EXPORT_SYMBOL_GPL(sk_msg_trim);
300 
301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
302 			      struct sk_msg *msg, u32 bytes)
303 {
304 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
305 	const int to_max_pages = MAX_MSG_FRAGS;
306 	struct page *pages[MAX_MSG_FRAGS];
307 	ssize_t orig, copied, use, offset;
308 
309 	orig = msg->sg.size;
310 	while (bytes > 0) {
311 		i = 0;
312 		maxpages = to_max_pages - num_elems;
313 		if (maxpages == 0) {
314 			ret = -EFAULT;
315 			goto out;
316 		}
317 
318 		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
319 					    &offset);
320 		if (copied <= 0) {
321 			ret = -EFAULT;
322 			goto out;
323 		}
324 
325 		iov_iter_advance(from, copied);
326 		bytes -= copied;
327 		msg->sg.size += copied;
328 
329 		while (copied) {
330 			use = min_t(int, copied, PAGE_SIZE - offset);
331 			sg_set_page(&msg->sg.data[msg->sg.end],
332 				    pages[i], use, offset);
333 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
334 			sk_mem_charge(sk, use);
335 
336 			offset = 0;
337 			copied -= use;
338 			sk_msg_iter_next(msg, end);
339 			num_elems++;
340 			i++;
341 		}
342 		/* When zerocopy is mixed with sk_msg_*copy* operations we
343 		 * may have a copybreak set in this case clear and prefer
344 		 * zerocopy remainder when possible.
345 		 */
346 		msg->sg.copybreak = 0;
347 		msg->sg.curr = msg->sg.end;
348 	}
349 out:
350 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
351 	 * also needs to be cleared.
352 	 */
353 	if (ret)
354 		iov_iter_revert(from, msg->sg.size - orig);
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
358 
359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
360 			     struct sk_msg *msg, u32 bytes)
361 {
362 	int ret = -ENOSPC, i = msg->sg.curr;
363 	struct scatterlist *sge;
364 	u32 copy, buf_size;
365 	void *to;
366 
367 	do {
368 		sge = sk_msg_elem(msg, i);
369 		/* This is possible if a trim operation shrunk the buffer */
370 		if (msg->sg.copybreak >= sge->length) {
371 			msg->sg.copybreak = 0;
372 			sk_msg_iter_var_next(i);
373 			if (i == msg->sg.end)
374 				break;
375 			sge = sk_msg_elem(msg, i);
376 		}
377 
378 		buf_size = sge->length - msg->sg.copybreak;
379 		copy = (buf_size > bytes) ? bytes : buf_size;
380 		to = sg_virt(sge) + msg->sg.copybreak;
381 		msg->sg.copybreak += copy;
382 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
383 			ret = copy_from_iter_nocache(to, copy, from);
384 		else
385 			ret = copy_from_iter(to, copy, from);
386 		if (ret != copy) {
387 			ret = -EFAULT;
388 			goto out;
389 		}
390 		bytes -= copy;
391 		if (!bytes)
392 			break;
393 		msg->sg.copybreak = 0;
394 		sk_msg_iter_var_next(i);
395 	} while (i != msg->sg.end);
396 out:
397 	msg->sg.curr = i;
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
401 
402 int sk_msg_wait_data(struct sock *sk, struct sk_psock *psock, int flags,
403 		     long timeo, int *err)
404 {
405 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
406 	int ret = 0;
407 
408 	if (sk->sk_shutdown & RCV_SHUTDOWN)
409 		return 1;
410 
411 	if (!timeo)
412 		return ret;
413 
414 	add_wait_queue(sk_sleep(sk), &wait);
415 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
416 	ret = sk_wait_event(sk, &timeo,
417 			    !list_empty(&psock->ingress_msg) ||
418 			    !skb_queue_empty(&sk->sk_receive_queue), &wait);
419 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
420 	remove_wait_queue(sk_sleep(sk), &wait);
421 	return ret;
422 }
423 EXPORT_SYMBOL_GPL(sk_msg_wait_data);
424 
425 /* Receive sk_msg from psock->ingress_msg to @msg. */
426 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
427 		   int len, int flags)
428 {
429 	struct iov_iter *iter = &msg->msg_iter;
430 	int peek = flags & MSG_PEEK;
431 	struct sk_msg *msg_rx;
432 	int i, copied = 0;
433 
434 	msg_rx = sk_psock_peek_msg(psock);
435 	while (copied != len) {
436 		struct scatterlist *sge;
437 
438 		if (unlikely(!msg_rx))
439 			break;
440 
441 		i = msg_rx->sg.start;
442 		do {
443 			struct page *page;
444 			int copy;
445 
446 			sge = sk_msg_elem(msg_rx, i);
447 			copy = sge->length;
448 			page = sg_page(sge);
449 			if (copied + copy > len)
450 				copy = len - copied;
451 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
452 			if (!copy)
453 				return copied ? copied : -EFAULT;
454 
455 			copied += copy;
456 			if (likely(!peek)) {
457 				sge->offset += copy;
458 				sge->length -= copy;
459 				if (!msg_rx->skb)
460 					sk_mem_uncharge(sk, copy);
461 				msg_rx->sg.size -= copy;
462 
463 				if (!sge->length) {
464 					sk_msg_iter_var_next(i);
465 					if (!msg_rx->skb)
466 						put_page(page);
467 				}
468 			} else {
469 				/* Lets not optimize peek case if copy_page_to_iter
470 				 * didn't copy the entire length lets just break.
471 				 */
472 				if (copy != sge->length)
473 					return copied;
474 				sk_msg_iter_var_next(i);
475 			}
476 
477 			if (copied == len)
478 				break;
479 		} while (i != msg_rx->sg.end);
480 
481 		if (unlikely(peek)) {
482 			msg_rx = sk_psock_next_msg(psock, msg_rx);
483 			if (!msg_rx)
484 				break;
485 			continue;
486 		}
487 
488 		msg_rx->sg.start = i;
489 		if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) {
490 			msg_rx = sk_psock_dequeue_msg(psock);
491 			kfree_sk_msg(msg_rx);
492 		}
493 		msg_rx = sk_psock_peek_msg(psock);
494 	}
495 
496 	return copied;
497 }
498 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
499 
500 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
501 						  struct sk_buff *skb)
502 {
503 	struct sk_msg *msg;
504 
505 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
506 		return NULL;
507 
508 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
509 		return NULL;
510 
511 	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
512 	if (unlikely(!msg))
513 		return NULL;
514 
515 	sk_msg_init(msg);
516 	return msg;
517 }
518 
519 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
520 					struct sk_psock *psock,
521 					struct sock *sk,
522 					struct sk_msg *msg)
523 {
524 	int num_sge, copied;
525 
526 	/* skb linearize may fail with ENOMEM, but lets simply try again
527 	 * later if this happens. Under memory pressure we don't want to
528 	 * drop the skb. We need to linearize the skb so that the mapping
529 	 * in skb_to_sgvec can not error.
530 	 */
531 	if (skb_linearize(skb))
532 		return -EAGAIN;
533 	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
534 	if (unlikely(num_sge < 0)) {
535 		kfree(msg);
536 		return num_sge;
537 	}
538 
539 	copied = skb->len;
540 	msg->sg.start = 0;
541 	msg->sg.size = copied;
542 	msg->sg.end = num_sge;
543 	msg->skb = skb;
544 
545 	sk_psock_queue_msg(psock, msg);
546 	sk_psock_data_ready(sk, psock);
547 	return copied;
548 }
549 
550 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
551 
552 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
553 {
554 	struct sock *sk = psock->sk;
555 	struct sk_msg *msg;
556 
557 	/* If we are receiving on the same sock skb->sk is already assigned,
558 	 * skip memory accounting and owner transition seeing it already set
559 	 * correctly.
560 	 */
561 	if (unlikely(skb->sk == sk))
562 		return sk_psock_skb_ingress_self(psock, skb);
563 	msg = sk_psock_create_ingress_msg(sk, skb);
564 	if (!msg)
565 		return -EAGAIN;
566 
567 	/* This will transition ownership of the data from the socket where
568 	 * the BPF program was run initiating the redirect to the socket
569 	 * we will eventually receive this data on. The data will be released
570 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
571 	 * into user buffers.
572 	 */
573 	skb_set_owner_r(skb, sk);
574 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
575 }
576 
577 /* Puts an skb on the ingress queue of the socket already assigned to the
578  * skb. In this case we do not need to check memory limits or skb_set_owner_r
579  * because the skb is already accounted for here.
580  */
581 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
582 {
583 	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
584 	struct sock *sk = psock->sk;
585 
586 	if (unlikely(!msg))
587 		return -EAGAIN;
588 	sk_msg_init(msg);
589 	skb_set_owner_r(skb, sk);
590 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
591 }
592 
593 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
594 			       u32 off, u32 len, bool ingress)
595 {
596 	if (!ingress) {
597 		if (!sock_writeable(psock->sk))
598 			return -EAGAIN;
599 		return skb_send_sock(psock->sk, skb, off, len);
600 	}
601 	return sk_psock_skb_ingress(psock, skb);
602 }
603 
604 static void sk_psock_backlog(struct work_struct *work)
605 {
606 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
607 	struct sk_psock_work_state *state = &psock->work_state;
608 	struct sk_buff *skb;
609 	bool ingress;
610 	u32 len, off;
611 	int ret;
612 
613 	mutex_lock(&psock->work_mutex);
614 	if (state->skb) {
615 		skb = state->skb;
616 		len = state->len;
617 		off = state->off;
618 		state->skb = NULL;
619 		goto start;
620 	}
621 
622 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
623 		len = skb->len;
624 		off = 0;
625 start:
626 		ingress = skb_bpf_ingress(skb);
627 		skb_bpf_redirect_clear(skb);
628 		do {
629 			ret = -EIO;
630 			if (!sock_flag(psock->sk, SOCK_DEAD))
631 				ret = sk_psock_handle_skb(psock, skb, off,
632 							  len, ingress);
633 			if (ret <= 0) {
634 				if (ret == -EAGAIN) {
635 					state->skb = skb;
636 					state->len = len;
637 					state->off = off;
638 					goto end;
639 				}
640 				/* Hard errors break pipe and stop xmit. */
641 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
642 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
643 				kfree_skb(skb);
644 				goto end;
645 			}
646 			off += ret;
647 			len -= ret;
648 		} while (len);
649 
650 		if (!ingress)
651 			kfree_skb(skb);
652 	}
653 end:
654 	mutex_unlock(&psock->work_mutex);
655 }
656 
657 struct sk_psock *sk_psock_init(struct sock *sk, int node)
658 {
659 	struct sk_psock *psock;
660 	struct proto *prot;
661 
662 	write_lock_bh(&sk->sk_callback_lock);
663 
664 	if (sk->sk_user_data) {
665 		psock = ERR_PTR(-EBUSY);
666 		goto out;
667 	}
668 
669 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
670 	if (!psock) {
671 		psock = ERR_PTR(-ENOMEM);
672 		goto out;
673 	}
674 
675 	prot = READ_ONCE(sk->sk_prot);
676 	psock->sk = sk;
677 	psock->eval = __SK_NONE;
678 	psock->sk_proto = prot;
679 	psock->saved_unhash = prot->unhash;
680 	psock->saved_close = prot->close;
681 	psock->saved_write_space = sk->sk_write_space;
682 
683 	INIT_LIST_HEAD(&psock->link);
684 	spin_lock_init(&psock->link_lock);
685 
686 	INIT_WORK(&psock->work, sk_psock_backlog);
687 	mutex_init(&psock->work_mutex);
688 	INIT_LIST_HEAD(&psock->ingress_msg);
689 	spin_lock_init(&psock->ingress_lock);
690 	skb_queue_head_init(&psock->ingress_skb);
691 
692 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
693 	refcount_set(&psock->refcnt, 1);
694 
695 	rcu_assign_sk_user_data_nocopy(sk, psock);
696 	sock_hold(sk);
697 
698 out:
699 	write_unlock_bh(&sk->sk_callback_lock);
700 	return psock;
701 }
702 EXPORT_SYMBOL_GPL(sk_psock_init);
703 
704 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
705 {
706 	struct sk_psock_link *link;
707 
708 	spin_lock_bh(&psock->link_lock);
709 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
710 					list);
711 	if (link)
712 		list_del(&link->list);
713 	spin_unlock_bh(&psock->link_lock);
714 	return link;
715 }
716 
717 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
718 {
719 	struct sk_msg *msg, *tmp;
720 
721 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
722 		list_del(&msg->list);
723 		sk_msg_free(psock->sk, msg);
724 		kfree(msg);
725 	}
726 }
727 
728 static void __sk_psock_zap_ingress(struct sk_psock *psock)
729 {
730 	struct sk_buff *skb;
731 
732 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
733 		skb_bpf_redirect_clear(skb);
734 		kfree_skb(skb);
735 	}
736 	__sk_psock_purge_ingress_msg(psock);
737 }
738 
739 static void sk_psock_link_destroy(struct sk_psock *psock)
740 {
741 	struct sk_psock_link *link, *tmp;
742 
743 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
744 		list_del(&link->list);
745 		sk_psock_free_link(link);
746 	}
747 }
748 
749 void sk_psock_stop(struct sk_psock *psock, bool wait)
750 {
751 	spin_lock_bh(&psock->ingress_lock);
752 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
753 	sk_psock_cork_free(psock);
754 	__sk_psock_zap_ingress(psock);
755 	spin_unlock_bh(&psock->ingress_lock);
756 
757 	if (wait)
758 		cancel_work_sync(&psock->work);
759 }
760 
761 static void sk_psock_done_strp(struct sk_psock *psock);
762 
763 static void sk_psock_destroy(struct work_struct *work)
764 {
765 	struct sk_psock *psock = container_of(to_rcu_work(work),
766 					      struct sk_psock, rwork);
767 	/* No sk_callback_lock since already detached. */
768 
769 	sk_psock_done_strp(psock);
770 
771 	cancel_work_sync(&psock->work);
772 	mutex_destroy(&psock->work_mutex);
773 
774 	psock_progs_drop(&psock->progs);
775 
776 	sk_psock_link_destroy(psock);
777 	sk_psock_cork_free(psock);
778 
779 	if (psock->sk_redir)
780 		sock_put(psock->sk_redir);
781 	sock_put(psock->sk);
782 	kfree(psock);
783 }
784 
785 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
786 {
787 	sk_psock_stop(psock, false);
788 
789 	write_lock_bh(&sk->sk_callback_lock);
790 	sk_psock_restore_proto(sk, psock);
791 	rcu_assign_sk_user_data(sk, NULL);
792 	if (psock->progs.stream_parser)
793 		sk_psock_stop_strp(sk, psock);
794 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
795 		sk_psock_stop_verdict(sk, psock);
796 	write_unlock_bh(&sk->sk_callback_lock);
797 
798 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
799 	queue_rcu_work(system_wq, &psock->rwork);
800 }
801 EXPORT_SYMBOL_GPL(sk_psock_drop);
802 
803 static int sk_psock_map_verd(int verdict, bool redir)
804 {
805 	switch (verdict) {
806 	case SK_PASS:
807 		return redir ? __SK_REDIRECT : __SK_PASS;
808 	case SK_DROP:
809 	default:
810 		break;
811 	}
812 
813 	return __SK_DROP;
814 }
815 
816 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
817 			 struct sk_msg *msg)
818 {
819 	struct bpf_prog *prog;
820 	int ret;
821 
822 	rcu_read_lock();
823 	prog = READ_ONCE(psock->progs.msg_parser);
824 	if (unlikely(!prog)) {
825 		ret = __SK_PASS;
826 		goto out;
827 	}
828 
829 	sk_msg_compute_data_pointers(msg);
830 	msg->sk = sk;
831 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
832 	ret = sk_psock_map_verd(ret, msg->sk_redir);
833 	psock->apply_bytes = msg->apply_bytes;
834 	if (ret == __SK_REDIRECT) {
835 		if (psock->sk_redir)
836 			sock_put(psock->sk_redir);
837 		psock->sk_redir = msg->sk_redir;
838 		if (!psock->sk_redir) {
839 			ret = __SK_DROP;
840 			goto out;
841 		}
842 		sock_hold(psock->sk_redir);
843 	}
844 out:
845 	rcu_read_unlock();
846 	return ret;
847 }
848 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
849 
850 static void sk_psock_skb_redirect(struct sk_buff *skb)
851 {
852 	struct sk_psock *psock_other;
853 	struct sock *sk_other;
854 
855 	sk_other = skb_bpf_redirect_fetch(skb);
856 	/* This error is a buggy BPF program, it returned a redirect
857 	 * return code, but then didn't set a redirect interface.
858 	 */
859 	if (unlikely(!sk_other)) {
860 		kfree_skb(skb);
861 		return;
862 	}
863 	psock_other = sk_psock(sk_other);
864 	/* This error indicates the socket is being torn down or had another
865 	 * error that caused the pipe to break. We can't send a packet on
866 	 * a socket that is in this state so we drop the skb.
867 	 */
868 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
869 		kfree_skb(skb);
870 		return;
871 	}
872 	spin_lock_bh(&psock_other->ingress_lock);
873 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
874 		spin_unlock_bh(&psock_other->ingress_lock);
875 		kfree_skb(skb);
876 		return;
877 	}
878 
879 	skb_queue_tail(&psock_other->ingress_skb, skb);
880 	schedule_work(&psock_other->work);
881 	spin_unlock_bh(&psock_other->ingress_lock);
882 }
883 
884 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
885 {
886 	switch (verdict) {
887 	case __SK_REDIRECT:
888 		sk_psock_skb_redirect(skb);
889 		break;
890 	case __SK_PASS:
891 	case __SK_DROP:
892 	default:
893 		break;
894 	}
895 }
896 
897 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
898 {
899 	struct bpf_prog *prog;
900 	int ret = __SK_PASS;
901 
902 	rcu_read_lock();
903 	prog = READ_ONCE(psock->progs.stream_verdict);
904 	if (likely(prog)) {
905 		skb->sk = psock->sk;
906 		skb_dst_drop(skb);
907 		skb_bpf_redirect_clear(skb);
908 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
909 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
910 		skb->sk = NULL;
911 	}
912 	sk_psock_tls_verdict_apply(skb, psock->sk, ret);
913 	rcu_read_unlock();
914 	return ret;
915 }
916 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
917 
918 static void sk_psock_verdict_apply(struct sk_psock *psock,
919 				   struct sk_buff *skb, int verdict)
920 {
921 	struct sock *sk_other;
922 	int err = -EIO;
923 
924 	switch (verdict) {
925 	case __SK_PASS:
926 		sk_other = psock->sk;
927 		if (sock_flag(sk_other, SOCK_DEAD) ||
928 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
929 			goto out_free;
930 		}
931 
932 		skb_bpf_set_ingress(skb);
933 
934 		/* If the queue is empty then we can submit directly
935 		 * into the msg queue. If its not empty we have to
936 		 * queue work otherwise we may get OOO data. Otherwise,
937 		 * if sk_psock_skb_ingress errors will be handled by
938 		 * retrying later from workqueue.
939 		 */
940 		if (skb_queue_empty(&psock->ingress_skb)) {
941 			err = sk_psock_skb_ingress_self(psock, skb);
942 		}
943 		if (err < 0) {
944 			spin_lock_bh(&psock->ingress_lock);
945 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
946 				skb_queue_tail(&psock->ingress_skb, skb);
947 				schedule_work(&psock->work);
948 			}
949 			spin_unlock_bh(&psock->ingress_lock);
950 		}
951 		break;
952 	case __SK_REDIRECT:
953 		sk_psock_skb_redirect(skb);
954 		break;
955 	case __SK_DROP:
956 	default:
957 out_free:
958 		kfree_skb(skb);
959 	}
960 }
961 
962 static void sk_psock_write_space(struct sock *sk)
963 {
964 	struct sk_psock *psock;
965 	void (*write_space)(struct sock *sk) = NULL;
966 
967 	rcu_read_lock();
968 	psock = sk_psock(sk);
969 	if (likely(psock)) {
970 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
971 			schedule_work(&psock->work);
972 		write_space = psock->saved_write_space;
973 	}
974 	rcu_read_unlock();
975 	if (write_space)
976 		write_space(sk);
977 }
978 
979 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
980 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
981 {
982 	struct sk_psock *psock;
983 	struct bpf_prog *prog;
984 	int ret = __SK_DROP;
985 	struct sock *sk;
986 
987 	rcu_read_lock();
988 	sk = strp->sk;
989 	psock = sk_psock(sk);
990 	if (unlikely(!psock)) {
991 		kfree_skb(skb);
992 		goto out;
993 	}
994 	prog = READ_ONCE(psock->progs.stream_verdict);
995 	if (likely(prog)) {
996 		skb->sk = sk;
997 		skb_dst_drop(skb);
998 		skb_bpf_redirect_clear(skb);
999 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1000 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1001 		skb->sk = NULL;
1002 	}
1003 	sk_psock_verdict_apply(psock, skb, ret);
1004 out:
1005 	rcu_read_unlock();
1006 }
1007 
1008 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1009 {
1010 	return err;
1011 }
1012 
1013 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1014 {
1015 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1016 	struct bpf_prog *prog;
1017 	int ret = skb->len;
1018 
1019 	rcu_read_lock();
1020 	prog = READ_ONCE(psock->progs.stream_parser);
1021 	if (likely(prog)) {
1022 		skb->sk = psock->sk;
1023 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1024 		skb->sk = NULL;
1025 	}
1026 	rcu_read_unlock();
1027 	return ret;
1028 }
1029 
1030 /* Called with socket lock held. */
1031 static void sk_psock_strp_data_ready(struct sock *sk)
1032 {
1033 	struct sk_psock *psock;
1034 
1035 	rcu_read_lock();
1036 	psock = sk_psock(sk);
1037 	if (likely(psock)) {
1038 		if (tls_sw_has_ctx_rx(sk)) {
1039 			psock->saved_data_ready(sk);
1040 		} else {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			strp_data_ready(&psock->strp);
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 		}
1045 	}
1046 	rcu_read_unlock();
1047 }
1048 
1049 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1050 {
1051 	static const struct strp_callbacks cb = {
1052 		.rcv_msg	= sk_psock_strp_read,
1053 		.read_sock_done	= sk_psock_strp_read_done,
1054 		.parse_msg	= sk_psock_strp_parse,
1055 	};
1056 
1057 	return strp_init(&psock->strp, sk, &cb);
1058 }
1059 
1060 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1061 {
1062 	if (psock->saved_data_ready)
1063 		return;
1064 
1065 	psock->saved_data_ready = sk->sk_data_ready;
1066 	sk->sk_data_ready = sk_psock_strp_data_ready;
1067 	sk->sk_write_space = sk_psock_write_space;
1068 }
1069 
1070 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1071 {
1072 	if (!psock->saved_data_ready)
1073 		return;
1074 
1075 	sk->sk_data_ready = psock->saved_data_ready;
1076 	psock->saved_data_ready = NULL;
1077 	strp_stop(&psock->strp);
1078 }
1079 
1080 static void sk_psock_done_strp(struct sk_psock *psock)
1081 {
1082 	/* Parser has been stopped */
1083 	if (psock->progs.stream_parser)
1084 		strp_done(&psock->strp);
1085 }
1086 #else
1087 static void sk_psock_done_strp(struct sk_psock *psock)
1088 {
1089 }
1090 #endif /* CONFIG_BPF_STREAM_PARSER */
1091 
1092 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
1093 				 unsigned int offset, size_t orig_len)
1094 {
1095 	struct sock *sk = (struct sock *)desc->arg.data;
1096 	struct sk_psock *psock;
1097 	struct bpf_prog *prog;
1098 	int ret = __SK_DROP;
1099 	int len = skb->len;
1100 
1101 	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
1102 	skb = skb_clone(skb, GFP_ATOMIC);
1103 	if (!skb) {
1104 		desc->error = -ENOMEM;
1105 		return 0;
1106 	}
1107 
1108 	rcu_read_lock();
1109 	psock = sk_psock(sk);
1110 	if (unlikely(!psock)) {
1111 		len = 0;
1112 		kfree_skb(skb);
1113 		goto out;
1114 	}
1115 	prog = READ_ONCE(psock->progs.stream_verdict);
1116 	if (!prog)
1117 		prog = READ_ONCE(psock->progs.skb_verdict);
1118 	if (likely(prog)) {
1119 		skb->sk = sk;
1120 		skb_dst_drop(skb);
1121 		skb_bpf_redirect_clear(skb);
1122 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1123 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1124 		skb->sk = NULL;
1125 	}
1126 	sk_psock_verdict_apply(psock, skb, ret);
1127 out:
1128 	rcu_read_unlock();
1129 	return len;
1130 }
1131 
1132 static void sk_psock_verdict_data_ready(struct sock *sk)
1133 {
1134 	struct socket *sock = sk->sk_socket;
1135 	read_descriptor_t desc;
1136 
1137 	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1138 		return;
1139 
1140 	desc.arg.data = sk;
1141 	desc.error = 0;
1142 	desc.count = 1;
1143 
1144 	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1145 }
1146 
1147 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1148 {
1149 	if (psock->saved_data_ready)
1150 		return;
1151 
1152 	psock->saved_data_ready = sk->sk_data_ready;
1153 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1154 	sk->sk_write_space = sk_psock_write_space;
1155 }
1156 
1157 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1158 {
1159 	if (!psock->saved_data_ready)
1160 		return;
1161 
1162 	sk->sk_data_ready = psock->saved_data_ready;
1163 	psock->saved_data_ready = NULL;
1164 }
1165