1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages2(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 bytes -= copied; 335 msg->sg.size += copied; 336 337 while (copied) { 338 use = min_t(int, copied, PAGE_SIZE - offset); 339 sg_set_page(&msg->sg.data[msg->sg.end], 340 pages[i], use, offset); 341 sg_unmark_end(&msg->sg.data[msg->sg.end]); 342 sk_mem_charge(sk, use); 343 344 offset = 0; 345 copied -= use; 346 sk_msg_iter_next(msg, end); 347 num_elems++; 348 i++; 349 } 350 /* When zerocopy is mixed with sk_msg_*copy* operations we 351 * may have a copybreak set in this case clear and prefer 352 * zerocopy remainder when possible. 353 */ 354 msg->sg.copybreak = 0; 355 msg->sg.curr = msg->sg.end; 356 } 357 out: 358 /* Revert iov_iter updates, msg will need to use 'trim' later if it 359 * also needs to be cleared. 360 */ 361 if (ret) 362 iov_iter_revert(from, msg->sg.size - orig); 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 366 367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 368 struct sk_msg *msg, u32 bytes) 369 { 370 int ret = -ENOSPC, i = msg->sg.curr; 371 struct scatterlist *sge; 372 u32 copy, buf_size; 373 void *to; 374 375 do { 376 sge = sk_msg_elem(msg, i); 377 /* This is possible if a trim operation shrunk the buffer */ 378 if (msg->sg.copybreak >= sge->length) { 379 msg->sg.copybreak = 0; 380 sk_msg_iter_var_next(i); 381 if (i == msg->sg.end) 382 break; 383 sge = sk_msg_elem(msg, i); 384 } 385 386 buf_size = sge->length - msg->sg.copybreak; 387 copy = (buf_size > bytes) ? bytes : buf_size; 388 to = sg_virt(sge) + msg->sg.copybreak; 389 msg->sg.copybreak += copy; 390 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 391 ret = copy_from_iter_nocache(to, copy, from); 392 else 393 ret = copy_from_iter(to, copy, from); 394 if (ret != copy) { 395 ret = -EFAULT; 396 goto out; 397 } 398 bytes -= copy; 399 if (!bytes) 400 break; 401 msg->sg.copybreak = 0; 402 sk_msg_iter_var_next(i); 403 } while (i != msg->sg.end); 404 out: 405 msg->sg.curr = i; 406 return ret; 407 } 408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 409 410 /* Receive sk_msg from psock->ingress_msg to @msg. */ 411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 412 int len, int flags) 413 { 414 struct iov_iter *iter = &msg->msg_iter; 415 int peek = flags & MSG_PEEK; 416 struct sk_msg *msg_rx; 417 int i, copied = 0; 418 419 msg_rx = sk_psock_peek_msg(psock); 420 while (copied != len) { 421 struct scatterlist *sge; 422 423 if (unlikely(!msg_rx)) 424 break; 425 426 i = msg_rx->sg.start; 427 do { 428 struct page *page; 429 int copy; 430 431 sge = sk_msg_elem(msg_rx, i); 432 copy = sge->length; 433 page = sg_page(sge); 434 if (copied + copy > len) 435 copy = len - copied; 436 copy = copy_page_to_iter(page, sge->offset, copy, iter); 437 if (!copy) { 438 copied = copied ? copied : -EFAULT; 439 goto out; 440 } 441 442 copied += copy; 443 if (likely(!peek)) { 444 sge->offset += copy; 445 sge->length -= copy; 446 if (!msg_rx->skb) 447 sk_mem_uncharge(sk, copy); 448 msg_rx->sg.size -= copy; 449 450 if (!sge->length) { 451 sk_msg_iter_var_next(i); 452 if (!msg_rx->skb) 453 put_page(page); 454 } 455 } else { 456 /* Lets not optimize peek case if copy_page_to_iter 457 * didn't copy the entire length lets just break. 458 */ 459 if (copy != sge->length) 460 goto out; 461 sk_msg_iter_var_next(i); 462 } 463 464 if (copied == len) 465 break; 466 } while ((i != msg_rx->sg.end) && !sg_is_last(sge)); 467 468 if (unlikely(peek)) { 469 msg_rx = sk_psock_next_msg(psock, msg_rx); 470 if (!msg_rx) 471 break; 472 continue; 473 } 474 475 msg_rx->sg.start = i; 476 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) { 477 msg_rx = sk_psock_dequeue_msg(psock); 478 kfree_sk_msg(msg_rx); 479 } 480 msg_rx = sk_psock_peek_msg(psock); 481 } 482 out: 483 if (psock->work_state.skb && copied > 0) 484 schedule_work(&psock->work); 485 return copied; 486 } 487 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 488 489 bool sk_msg_is_readable(struct sock *sk) 490 { 491 struct sk_psock *psock; 492 bool empty = true; 493 494 rcu_read_lock(); 495 psock = sk_psock(sk); 496 if (likely(psock)) 497 empty = list_empty(&psock->ingress_msg); 498 rcu_read_unlock(); 499 return !empty; 500 } 501 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 502 503 static struct sk_msg *alloc_sk_msg(gfp_t gfp) 504 { 505 struct sk_msg *msg; 506 507 msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN); 508 if (unlikely(!msg)) 509 return NULL; 510 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS); 511 return msg; 512 } 513 514 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 515 struct sk_buff *skb) 516 { 517 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 518 return NULL; 519 520 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 521 return NULL; 522 523 return alloc_sk_msg(GFP_KERNEL); 524 } 525 526 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 527 u32 off, u32 len, 528 struct sk_psock *psock, 529 struct sock *sk, 530 struct sk_msg *msg) 531 { 532 int num_sge, copied; 533 534 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 535 if (num_sge < 0) { 536 /* skb linearize may fail with ENOMEM, but lets simply try again 537 * later if this happens. Under memory pressure we don't want to 538 * drop the skb. We need to linearize the skb so that the mapping 539 * in skb_to_sgvec can not error. 540 */ 541 if (skb_linearize(skb)) 542 return -EAGAIN; 543 544 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 545 if (unlikely(num_sge < 0)) 546 return num_sge; 547 } 548 549 copied = len; 550 msg->sg.start = 0; 551 msg->sg.size = copied; 552 msg->sg.end = num_sge; 553 msg->skb = skb; 554 555 sk_psock_queue_msg(psock, msg); 556 sk_psock_data_ready(sk, psock); 557 return copied; 558 } 559 560 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 561 u32 off, u32 len); 562 563 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 564 u32 off, u32 len) 565 { 566 struct sock *sk = psock->sk; 567 struct sk_msg *msg; 568 int err; 569 570 /* If we are receiving on the same sock skb->sk is already assigned, 571 * skip memory accounting and owner transition seeing it already set 572 * correctly. 573 */ 574 if (unlikely(skb->sk == sk)) 575 return sk_psock_skb_ingress_self(psock, skb, off, len); 576 msg = sk_psock_create_ingress_msg(sk, skb); 577 if (!msg) 578 return -EAGAIN; 579 580 /* This will transition ownership of the data from the socket where 581 * the BPF program was run initiating the redirect to the socket 582 * we will eventually receive this data on. The data will be released 583 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 584 * into user buffers. 585 */ 586 skb_set_owner_r(skb, sk); 587 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 588 if (err < 0) 589 kfree(msg); 590 return err; 591 } 592 593 /* Puts an skb on the ingress queue of the socket already assigned to the 594 * skb. In this case we do not need to check memory limits or skb_set_owner_r 595 * because the skb is already accounted for here. 596 */ 597 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 598 u32 off, u32 len) 599 { 600 struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC); 601 struct sock *sk = psock->sk; 602 int err; 603 604 if (unlikely(!msg)) 605 return -EAGAIN; 606 skb_set_owner_r(skb, sk); 607 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 608 if (err < 0) 609 kfree(msg); 610 return err; 611 } 612 613 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 614 u32 off, u32 len, bool ingress) 615 { 616 if (!ingress) { 617 if (!sock_writeable(psock->sk)) 618 return -EAGAIN; 619 return skb_send_sock(psock->sk, skb, off, len); 620 } 621 return sk_psock_skb_ingress(psock, skb, off, len); 622 } 623 624 static void sk_psock_skb_state(struct sk_psock *psock, 625 struct sk_psock_work_state *state, 626 struct sk_buff *skb, 627 int len, int off) 628 { 629 spin_lock_bh(&psock->ingress_lock); 630 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 631 state->skb = skb; 632 state->len = len; 633 state->off = off; 634 } else { 635 sock_drop(psock->sk, skb); 636 } 637 spin_unlock_bh(&psock->ingress_lock); 638 } 639 640 static void sk_psock_backlog(struct work_struct *work) 641 { 642 struct sk_psock *psock = container_of(work, struct sk_psock, work); 643 struct sk_psock_work_state *state = &psock->work_state; 644 struct sk_buff *skb = NULL; 645 bool ingress; 646 u32 len, off; 647 int ret; 648 649 mutex_lock(&psock->work_mutex); 650 if (unlikely(state->skb)) { 651 spin_lock_bh(&psock->ingress_lock); 652 skb = state->skb; 653 len = state->len; 654 off = state->off; 655 state->skb = NULL; 656 spin_unlock_bh(&psock->ingress_lock); 657 } 658 if (skb) 659 goto start; 660 661 while ((skb = skb_dequeue(&psock->ingress_skb))) { 662 len = skb->len; 663 off = 0; 664 if (skb_bpf_strparser(skb)) { 665 struct strp_msg *stm = strp_msg(skb); 666 667 off = stm->offset; 668 len = stm->full_len; 669 } 670 start: 671 ingress = skb_bpf_ingress(skb); 672 skb_bpf_redirect_clear(skb); 673 do { 674 ret = -EIO; 675 if (!sock_flag(psock->sk, SOCK_DEAD)) 676 ret = sk_psock_handle_skb(psock, skb, off, 677 len, ingress); 678 if (ret <= 0) { 679 if (ret == -EAGAIN) { 680 sk_psock_skb_state(psock, state, skb, 681 len, off); 682 goto end; 683 } 684 /* Hard errors break pipe and stop xmit. */ 685 sk_psock_report_error(psock, ret ? -ret : EPIPE); 686 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 687 sock_drop(psock->sk, skb); 688 goto end; 689 } 690 off += ret; 691 len -= ret; 692 } while (len); 693 694 if (!ingress) 695 kfree_skb(skb); 696 } 697 end: 698 mutex_unlock(&psock->work_mutex); 699 } 700 701 struct sk_psock *sk_psock_init(struct sock *sk, int node) 702 { 703 struct sk_psock *psock; 704 struct proto *prot; 705 706 write_lock_bh(&sk->sk_callback_lock); 707 708 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) { 709 psock = ERR_PTR(-EINVAL); 710 goto out; 711 } 712 713 if (sk->sk_user_data) { 714 psock = ERR_PTR(-EBUSY); 715 goto out; 716 } 717 718 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 719 if (!psock) { 720 psock = ERR_PTR(-ENOMEM); 721 goto out; 722 } 723 724 prot = READ_ONCE(sk->sk_prot); 725 psock->sk = sk; 726 psock->eval = __SK_NONE; 727 psock->sk_proto = prot; 728 psock->saved_unhash = prot->unhash; 729 psock->saved_destroy = prot->destroy; 730 psock->saved_close = prot->close; 731 psock->saved_write_space = sk->sk_write_space; 732 733 INIT_LIST_HEAD(&psock->link); 734 spin_lock_init(&psock->link_lock); 735 736 INIT_WORK(&psock->work, sk_psock_backlog); 737 mutex_init(&psock->work_mutex); 738 INIT_LIST_HEAD(&psock->ingress_msg); 739 spin_lock_init(&psock->ingress_lock); 740 skb_queue_head_init(&psock->ingress_skb); 741 742 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 743 refcount_set(&psock->refcnt, 1); 744 745 __rcu_assign_sk_user_data_with_flags(sk, psock, 746 SK_USER_DATA_NOCOPY | 747 SK_USER_DATA_PSOCK); 748 sock_hold(sk); 749 750 out: 751 write_unlock_bh(&sk->sk_callback_lock); 752 return psock; 753 } 754 EXPORT_SYMBOL_GPL(sk_psock_init); 755 756 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 757 { 758 struct sk_psock_link *link; 759 760 spin_lock_bh(&psock->link_lock); 761 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 762 list); 763 if (link) 764 list_del(&link->list); 765 spin_unlock_bh(&psock->link_lock); 766 return link; 767 } 768 769 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 770 { 771 struct sk_msg *msg, *tmp; 772 773 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 774 list_del(&msg->list); 775 sk_msg_free(psock->sk, msg); 776 kfree(msg); 777 } 778 } 779 780 static void __sk_psock_zap_ingress(struct sk_psock *psock) 781 { 782 struct sk_buff *skb; 783 784 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 785 skb_bpf_redirect_clear(skb); 786 sock_drop(psock->sk, skb); 787 } 788 kfree_skb(psock->work_state.skb); 789 /* We null the skb here to ensure that calls to sk_psock_backlog 790 * do not pick up the free'd skb. 791 */ 792 psock->work_state.skb = NULL; 793 __sk_psock_purge_ingress_msg(psock); 794 } 795 796 static void sk_psock_link_destroy(struct sk_psock *psock) 797 { 798 struct sk_psock_link *link, *tmp; 799 800 list_for_each_entry_safe(link, tmp, &psock->link, list) { 801 list_del(&link->list); 802 sk_psock_free_link(link); 803 } 804 } 805 806 void sk_psock_stop(struct sk_psock *psock, bool wait) 807 { 808 spin_lock_bh(&psock->ingress_lock); 809 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 810 sk_psock_cork_free(psock); 811 __sk_psock_zap_ingress(psock); 812 spin_unlock_bh(&psock->ingress_lock); 813 814 if (wait) 815 cancel_work_sync(&psock->work); 816 } 817 818 static void sk_psock_done_strp(struct sk_psock *psock); 819 820 static void sk_psock_destroy(struct work_struct *work) 821 { 822 struct sk_psock *psock = container_of(to_rcu_work(work), 823 struct sk_psock, rwork); 824 /* No sk_callback_lock since already detached. */ 825 826 sk_psock_done_strp(psock); 827 828 cancel_work_sync(&psock->work); 829 mutex_destroy(&psock->work_mutex); 830 831 psock_progs_drop(&psock->progs); 832 833 sk_psock_link_destroy(psock); 834 sk_psock_cork_free(psock); 835 836 if (psock->sk_redir) 837 sock_put(psock->sk_redir); 838 sock_put(psock->sk); 839 kfree(psock); 840 } 841 842 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 843 { 844 write_lock_bh(&sk->sk_callback_lock); 845 sk_psock_restore_proto(sk, psock); 846 rcu_assign_sk_user_data(sk, NULL); 847 if (psock->progs.stream_parser) 848 sk_psock_stop_strp(sk, psock); 849 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 850 sk_psock_stop_verdict(sk, psock); 851 write_unlock_bh(&sk->sk_callback_lock); 852 853 sk_psock_stop(psock, false); 854 855 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 856 queue_rcu_work(system_wq, &psock->rwork); 857 } 858 EXPORT_SYMBOL_GPL(sk_psock_drop); 859 860 static int sk_psock_map_verd(int verdict, bool redir) 861 { 862 switch (verdict) { 863 case SK_PASS: 864 return redir ? __SK_REDIRECT : __SK_PASS; 865 case SK_DROP: 866 default: 867 break; 868 } 869 870 return __SK_DROP; 871 } 872 873 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 874 struct sk_msg *msg) 875 { 876 struct bpf_prog *prog; 877 int ret; 878 879 rcu_read_lock(); 880 prog = READ_ONCE(psock->progs.msg_parser); 881 if (unlikely(!prog)) { 882 ret = __SK_PASS; 883 goto out; 884 } 885 886 sk_msg_compute_data_pointers(msg); 887 msg->sk = sk; 888 ret = bpf_prog_run_pin_on_cpu(prog, msg); 889 ret = sk_psock_map_verd(ret, msg->sk_redir); 890 psock->apply_bytes = msg->apply_bytes; 891 if (ret == __SK_REDIRECT) { 892 if (psock->sk_redir) 893 sock_put(psock->sk_redir); 894 psock->sk_redir = msg->sk_redir; 895 if (!psock->sk_redir) { 896 ret = __SK_DROP; 897 goto out; 898 } 899 sock_hold(psock->sk_redir); 900 } 901 out: 902 rcu_read_unlock(); 903 return ret; 904 } 905 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 906 907 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 908 { 909 struct sk_psock *psock_other; 910 struct sock *sk_other; 911 912 sk_other = skb_bpf_redirect_fetch(skb); 913 /* This error is a buggy BPF program, it returned a redirect 914 * return code, but then didn't set a redirect interface. 915 */ 916 if (unlikely(!sk_other)) { 917 skb_bpf_redirect_clear(skb); 918 sock_drop(from->sk, skb); 919 return -EIO; 920 } 921 psock_other = sk_psock(sk_other); 922 /* This error indicates the socket is being torn down or had another 923 * error that caused the pipe to break. We can't send a packet on 924 * a socket that is in this state so we drop the skb. 925 */ 926 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 927 skb_bpf_redirect_clear(skb); 928 sock_drop(from->sk, skb); 929 return -EIO; 930 } 931 spin_lock_bh(&psock_other->ingress_lock); 932 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 933 spin_unlock_bh(&psock_other->ingress_lock); 934 skb_bpf_redirect_clear(skb); 935 sock_drop(from->sk, skb); 936 return -EIO; 937 } 938 939 skb_queue_tail(&psock_other->ingress_skb, skb); 940 schedule_work(&psock_other->work); 941 spin_unlock_bh(&psock_other->ingress_lock); 942 return 0; 943 } 944 945 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 946 struct sk_psock *from, int verdict) 947 { 948 switch (verdict) { 949 case __SK_REDIRECT: 950 sk_psock_skb_redirect(from, skb); 951 break; 952 case __SK_PASS: 953 case __SK_DROP: 954 default: 955 break; 956 } 957 } 958 959 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 960 { 961 struct bpf_prog *prog; 962 int ret = __SK_PASS; 963 964 rcu_read_lock(); 965 prog = READ_ONCE(psock->progs.stream_verdict); 966 if (likely(prog)) { 967 skb->sk = psock->sk; 968 skb_dst_drop(skb); 969 skb_bpf_redirect_clear(skb); 970 ret = bpf_prog_run_pin_on_cpu(prog, skb); 971 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 972 skb->sk = NULL; 973 } 974 sk_psock_tls_verdict_apply(skb, psock, ret); 975 rcu_read_unlock(); 976 return ret; 977 } 978 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 979 980 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 981 int verdict) 982 { 983 struct sock *sk_other; 984 int err = 0; 985 u32 len, off; 986 987 switch (verdict) { 988 case __SK_PASS: 989 err = -EIO; 990 sk_other = psock->sk; 991 if (sock_flag(sk_other, SOCK_DEAD) || 992 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 993 skb_bpf_redirect_clear(skb); 994 goto out_free; 995 } 996 997 skb_bpf_set_ingress(skb); 998 999 /* If the queue is empty then we can submit directly 1000 * into the msg queue. If its not empty we have to 1001 * queue work otherwise we may get OOO data. Otherwise, 1002 * if sk_psock_skb_ingress errors will be handled by 1003 * retrying later from workqueue. 1004 */ 1005 if (skb_queue_empty(&psock->ingress_skb)) { 1006 len = skb->len; 1007 off = 0; 1008 if (skb_bpf_strparser(skb)) { 1009 struct strp_msg *stm = strp_msg(skb); 1010 1011 off = stm->offset; 1012 len = stm->full_len; 1013 } 1014 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1015 } 1016 if (err < 0) { 1017 spin_lock_bh(&psock->ingress_lock); 1018 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1019 skb_queue_tail(&psock->ingress_skb, skb); 1020 schedule_work(&psock->work); 1021 err = 0; 1022 } 1023 spin_unlock_bh(&psock->ingress_lock); 1024 if (err < 0) { 1025 skb_bpf_redirect_clear(skb); 1026 goto out_free; 1027 } 1028 } 1029 break; 1030 case __SK_REDIRECT: 1031 err = sk_psock_skb_redirect(psock, skb); 1032 break; 1033 case __SK_DROP: 1034 default: 1035 out_free: 1036 sock_drop(psock->sk, skb); 1037 } 1038 1039 return err; 1040 } 1041 1042 static void sk_psock_write_space(struct sock *sk) 1043 { 1044 struct sk_psock *psock; 1045 void (*write_space)(struct sock *sk) = NULL; 1046 1047 rcu_read_lock(); 1048 psock = sk_psock(sk); 1049 if (likely(psock)) { 1050 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1051 schedule_work(&psock->work); 1052 write_space = psock->saved_write_space; 1053 } 1054 rcu_read_unlock(); 1055 if (write_space) 1056 write_space(sk); 1057 } 1058 1059 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1060 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1061 { 1062 struct sk_psock *psock; 1063 struct bpf_prog *prog; 1064 int ret = __SK_DROP; 1065 struct sock *sk; 1066 1067 rcu_read_lock(); 1068 sk = strp->sk; 1069 psock = sk_psock(sk); 1070 if (unlikely(!psock)) { 1071 sock_drop(sk, skb); 1072 goto out; 1073 } 1074 prog = READ_ONCE(psock->progs.stream_verdict); 1075 if (likely(prog)) { 1076 skb->sk = sk; 1077 skb_dst_drop(skb); 1078 skb_bpf_redirect_clear(skb); 1079 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1080 if (ret == SK_PASS) 1081 skb_bpf_set_strparser(skb); 1082 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1083 skb->sk = NULL; 1084 } 1085 sk_psock_verdict_apply(psock, skb, ret); 1086 out: 1087 rcu_read_unlock(); 1088 } 1089 1090 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1091 { 1092 return err; 1093 } 1094 1095 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1096 { 1097 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1098 struct bpf_prog *prog; 1099 int ret = skb->len; 1100 1101 rcu_read_lock(); 1102 prog = READ_ONCE(psock->progs.stream_parser); 1103 if (likely(prog)) { 1104 skb->sk = psock->sk; 1105 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1106 skb->sk = NULL; 1107 } 1108 rcu_read_unlock(); 1109 return ret; 1110 } 1111 1112 /* Called with socket lock held. */ 1113 static void sk_psock_strp_data_ready(struct sock *sk) 1114 { 1115 struct sk_psock *psock; 1116 1117 rcu_read_lock(); 1118 psock = sk_psock(sk); 1119 if (likely(psock)) { 1120 if (tls_sw_has_ctx_rx(sk)) { 1121 psock->saved_data_ready(sk); 1122 } else { 1123 write_lock_bh(&sk->sk_callback_lock); 1124 strp_data_ready(&psock->strp); 1125 write_unlock_bh(&sk->sk_callback_lock); 1126 } 1127 } 1128 rcu_read_unlock(); 1129 } 1130 1131 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1132 { 1133 static const struct strp_callbacks cb = { 1134 .rcv_msg = sk_psock_strp_read, 1135 .read_sock_done = sk_psock_strp_read_done, 1136 .parse_msg = sk_psock_strp_parse, 1137 }; 1138 1139 return strp_init(&psock->strp, sk, &cb); 1140 } 1141 1142 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1143 { 1144 if (psock->saved_data_ready) 1145 return; 1146 1147 psock->saved_data_ready = sk->sk_data_ready; 1148 sk->sk_data_ready = sk_psock_strp_data_ready; 1149 sk->sk_write_space = sk_psock_write_space; 1150 } 1151 1152 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1153 { 1154 psock_set_prog(&psock->progs.stream_parser, NULL); 1155 1156 if (!psock->saved_data_ready) 1157 return; 1158 1159 sk->sk_data_ready = psock->saved_data_ready; 1160 psock->saved_data_ready = NULL; 1161 strp_stop(&psock->strp); 1162 } 1163 1164 static void sk_psock_done_strp(struct sk_psock *psock) 1165 { 1166 /* Parser has been stopped */ 1167 if (psock->progs.stream_parser) 1168 strp_done(&psock->strp); 1169 } 1170 #else 1171 static void sk_psock_done_strp(struct sk_psock *psock) 1172 { 1173 } 1174 #endif /* CONFIG_BPF_STREAM_PARSER */ 1175 1176 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb) 1177 { 1178 struct sk_psock *psock; 1179 struct bpf_prog *prog; 1180 int ret = __SK_DROP; 1181 int len = skb->len; 1182 1183 skb_get(skb); 1184 1185 rcu_read_lock(); 1186 psock = sk_psock(sk); 1187 if (unlikely(!psock)) { 1188 len = 0; 1189 sock_drop(sk, skb); 1190 goto out; 1191 } 1192 prog = READ_ONCE(psock->progs.stream_verdict); 1193 if (!prog) 1194 prog = READ_ONCE(psock->progs.skb_verdict); 1195 if (likely(prog)) { 1196 skb_dst_drop(skb); 1197 skb_bpf_redirect_clear(skb); 1198 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1199 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1200 } 1201 ret = sk_psock_verdict_apply(psock, skb, ret); 1202 if (ret < 0) 1203 len = ret; 1204 out: 1205 rcu_read_unlock(); 1206 return len; 1207 } 1208 1209 static void sk_psock_verdict_data_ready(struct sock *sk) 1210 { 1211 struct socket *sock = sk->sk_socket; 1212 1213 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb)) 1214 return; 1215 sock->ops->read_skb(sk, sk_psock_verdict_recv); 1216 } 1217 1218 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1219 { 1220 if (psock->saved_data_ready) 1221 return; 1222 1223 psock->saved_data_ready = sk->sk_data_ready; 1224 sk->sk_data_ready = sk_psock_verdict_data_ready; 1225 sk->sk_write_space = sk_psock_write_space; 1226 } 1227 1228 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1229 { 1230 psock_set_prog(&psock->progs.stream_verdict, NULL); 1231 psock_set_prog(&psock->progs.skb_verdict, NULL); 1232 1233 if (!psock->saved_data_ready) 1234 return; 1235 1236 sk->sk_data_ready = psock->saved_data_ready; 1237 psock->saved_data_ready = NULL; 1238 } 1239