1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 #ifdef CONFIG_SKB_EXTENSIONS 83 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 84 #endif 85 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 86 EXPORT_SYMBOL(sysctl_max_skb_frags); 87 88 /** 89 * skb_panic - private function for out-of-line support 90 * @skb: buffer 91 * @sz: size 92 * @addr: address 93 * @msg: skb_over_panic or skb_under_panic 94 * 95 * Out-of-line support for skb_put() and skb_push(). 96 * Called via the wrapper skb_over_panic() or skb_under_panic(). 97 * Keep out of line to prevent kernel bloat. 98 * __builtin_return_address is not used because it is not always reliable. 99 */ 100 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 101 const char msg[]) 102 { 103 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 104 msg, addr, skb->len, sz, skb->head, skb->data, 105 (unsigned long)skb->tail, (unsigned long)skb->end, 106 skb->dev ? skb->dev->name : "<NULL>"); 107 BUG(); 108 } 109 110 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 111 { 112 skb_panic(skb, sz, addr, __func__); 113 } 114 115 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 116 { 117 skb_panic(skb, sz, addr, __func__); 118 } 119 120 /* 121 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 122 * the caller if emergency pfmemalloc reserves are being used. If it is and 123 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 124 * may be used. Otherwise, the packet data may be discarded until enough 125 * memory is free 126 */ 127 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 128 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 129 130 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 131 unsigned long ip, bool *pfmemalloc) 132 { 133 void *obj; 134 bool ret_pfmemalloc = false; 135 136 /* 137 * Try a regular allocation, when that fails and we're not entitled 138 * to the reserves, fail. 139 */ 140 obj = kmalloc_node_track_caller(size, 141 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 142 node); 143 if (obj || !(gfp_pfmemalloc_allowed(flags))) 144 goto out; 145 146 /* Try again but now we are using pfmemalloc reserves */ 147 ret_pfmemalloc = true; 148 obj = kmalloc_node_track_caller(size, flags, node); 149 150 out: 151 if (pfmemalloc) 152 *pfmemalloc = ret_pfmemalloc; 153 154 return obj; 155 } 156 157 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 158 * 'private' fields and also do memory statistics to find all the 159 * [BEEP] leaks. 160 * 161 */ 162 163 /** 164 * __alloc_skb - allocate a network buffer 165 * @size: size to allocate 166 * @gfp_mask: allocation mask 167 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 168 * instead of head cache and allocate a cloned (child) skb. 169 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 170 * allocations in case the data is required for writeback 171 * @node: numa node to allocate memory on 172 * 173 * Allocate a new &sk_buff. The returned buffer has no headroom and a 174 * tail room of at least size bytes. The object has a reference count 175 * of one. The return is the buffer. On a failure the return is %NULL. 176 * 177 * Buffers may only be allocated from interrupts using a @gfp_mask of 178 * %GFP_ATOMIC. 179 */ 180 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 181 int flags, int node) 182 { 183 struct kmem_cache *cache; 184 struct skb_shared_info *shinfo; 185 struct sk_buff *skb; 186 u8 *data; 187 bool pfmemalloc; 188 189 cache = (flags & SKB_ALLOC_FCLONE) 190 ? skbuff_fclone_cache : skbuff_head_cache; 191 192 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 193 gfp_mask |= __GFP_MEMALLOC; 194 195 /* Get the HEAD */ 196 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 197 if (!skb) 198 goto out; 199 prefetchw(skb); 200 201 /* We do our best to align skb_shared_info on a separate cache 202 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 203 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 204 * Both skb->head and skb_shared_info are cache line aligned. 205 */ 206 size = SKB_DATA_ALIGN(size); 207 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 208 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 209 if (!data) 210 goto nodata; 211 /* kmalloc(size) might give us more room than requested. 212 * Put skb_shared_info exactly at the end of allocated zone, 213 * to allow max possible filling before reallocation. 214 */ 215 size = SKB_WITH_OVERHEAD(ksize(data)); 216 prefetchw(data + size); 217 218 /* 219 * Only clear those fields we need to clear, not those that we will 220 * actually initialise below. Hence, don't put any more fields after 221 * the tail pointer in struct sk_buff! 222 */ 223 memset(skb, 0, offsetof(struct sk_buff, tail)); 224 /* Account for allocated memory : skb + skb->head */ 225 skb->truesize = SKB_TRUESIZE(size); 226 skb->pfmemalloc = pfmemalloc; 227 refcount_set(&skb->users, 1); 228 skb->head = data; 229 skb->data = data; 230 skb_reset_tail_pointer(skb); 231 skb->end = skb->tail + size; 232 skb->mac_header = (typeof(skb->mac_header))~0U; 233 skb->transport_header = (typeof(skb->transport_header))~0U; 234 235 /* make sure we initialize shinfo sequentially */ 236 shinfo = skb_shinfo(skb); 237 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 238 atomic_set(&shinfo->dataref, 1); 239 240 if (flags & SKB_ALLOC_FCLONE) { 241 struct sk_buff_fclones *fclones; 242 243 fclones = container_of(skb, struct sk_buff_fclones, skb1); 244 245 skb->fclone = SKB_FCLONE_ORIG; 246 refcount_set(&fclones->fclone_ref, 1); 247 248 fclones->skb2.fclone = SKB_FCLONE_CLONE; 249 } 250 out: 251 return skb; 252 nodata: 253 kmem_cache_free(cache, skb); 254 skb = NULL; 255 goto out; 256 } 257 EXPORT_SYMBOL(__alloc_skb); 258 259 /** 260 * __build_skb - build a network buffer 261 * @data: data buffer provided by caller 262 * @frag_size: size of data, or 0 if head was kmalloced 263 * 264 * Allocate a new &sk_buff. Caller provides space holding head and 265 * skb_shared_info. @data must have been allocated by kmalloc() only if 266 * @frag_size is 0, otherwise data should come from the page allocator 267 * or vmalloc() 268 * The return is the new skb buffer. 269 * On a failure the return is %NULL, and @data is not freed. 270 * Notes : 271 * Before IO, driver allocates only data buffer where NIC put incoming frame 272 * Driver should add room at head (NET_SKB_PAD) and 273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 275 * before giving packet to stack. 276 * RX rings only contains data buffers, not full skbs. 277 */ 278 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 279 { 280 struct skb_shared_info *shinfo; 281 struct sk_buff *skb; 282 unsigned int size = frag_size ? : ksize(data); 283 284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 285 if (!skb) 286 return NULL; 287 288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 289 290 memset(skb, 0, offsetof(struct sk_buff, tail)); 291 skb->truesize = SKB_TRUESIZE(size); 292 refcount_set(&skb->users, 1); 293 skb->head = data; 294 skb->data = data; 295 skb_reset_tail_pointer(skb); 296 skb->end = skb->tail + size; 297 skb->mac_header = (typeof(skb->mac_header))~0U; 298 skb->transport_header = (typeof(skb->transport_header))~0U; 299 300 /* make sure we initialize shinfo sequentially */ 301 shinfo = skb_shinfo(skb); 302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 303 atomic_set(&shinfo->dataref, 1); 304 305 return skb; 306 } 307 308 /* build_skb() is wrapper over __build_skb(), that specifically 309 * takes care of skb->head and skb->pfmemalloc 310 * This means that if @frag_size is not zero, then @data must be backed 311 * by a page fragment, not kmalloc() or vmalloc() 312 */ 313 struct sk_buff *build_skb(void *data, unsigned int frag_size) 314 { 315 struct sk_buff *skb = __build_skb(data, frag_size); 316 317 if (skb && frag_size) { 318 skb->head_frag = 1; 319 if (page_is_pfmemalloc(virt_to_head_page(data))) 320 skb->pfmemalloc = 1; 321 } 322 return skb; 323 } 324 EXPORT_SYMBOL(build_skb); 325 326 #define NAPI_SKB_CACHE_SIZE 64 327 328 struct napi_alloc_cache { 329 struct page_frag_cache page; 330 unsigned int skb_count; 331 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 332 }; 333 334 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 335 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 336 337 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 338 { 339 struct page_frag_cache *nc; 340 unsigned long flags; 341 void *data; 342 343 local_irq_save(flags); 344 nc = this_cpu_ptr(&netdev_alloc_cache); 345 data = page_frag_alloc(nc, fragsz, gfp_mask); 346 local_irq_restore(flags); 347 return data; 348 } 349 350 /** 351 * netdev_alloc_frag - allocate a page fragment 352 * @fragsz: fragment size 353 * 354 * Allocates a frag from a page for receive buffer. 355 * Uses GFP_ATOMIC allocations. 356 */ 357 void *netdev_alloc_frag(unsigned int fragsz) 358 { 359 fragsz = SKB_DATA_ALIGN(fragsz); 360 361 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 362 } 363 EXPORT_SYMBOL(netdev_alloc_frag); 364 365 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 366 { 367 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 368 369 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 370 } 371 372 void *napi_alloc_frag(unsigned int fragsz) 373 { 374 fragsz = SKB_DATA_ALIGN(fragsz); 375 376 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 377 } 378 EXPORT_SYMBOL(napi_alloc_frag); 379 380 /** 381 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 382 * @dev: network device to receive on 383 * @len: length to allocate 384 * @gfp_mask: get_free_pages mask, passed to alloc_skb 385 * 386 * Allocate a new &sk_buff and assign it a usage count of one. The 387 * buffer has NET_SKB_PAD headroom built in. Users should allocate 388 * the headroom they think they need without accounting for the 389 * built in space. The built in space is used for optimisations. 390 * 391 * %NULL is returned if there is no free memory. 392 */ 393 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 394 gfp_t gfp_mask) 395 { 396 struct page_frag_cache *nc; 397 unsigned long flags; 398 struct sk_buff *skb; 399 bool pfmemalloc; 400 void *data; 401 402 len += NET_SKB_PAD; 403 404 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 405 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 406 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 407 if (!skb) 408 goto skb_fail; 409 goto skb_success; 410 } 411 412 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 len = SKB_DATA_ALIGN(len); 414 415 if (sk_memalloc_socks()) 416 gfp_mask |= __GFP_MEMALLOC; 417 418 local_irq_save(flags); 419 420 nc = this_cpu_ptr(&netdev_alloc_cache); 421 data = page_frag_alloc(nc, len, gfp_mask); 422 pfmemalloc = nc->pfmemalloc; 423 424 local_irq_restore(flags); 425 426 if (unlikely(!data)) 427 return NULL; 428 429 skb = __build_skb(data, len); 430 if (unlikely(!skb)) { 431 skb_free_frag(data); 432 return NULL; 433 } 434 435 /* use OR instead of assignment to avoid clearing of bits in mask */ 436 if (pfmemalloc) 437 skb->pfmemalloc = 1; 438 skb->head_frag = 1; 439 440 skb_success: 441 skb_reserve(skb, NET_SKB_PAD); 442 skb->dev = dev; 443 444 skb_fail: 445 return skb; 446 } 447 EXPORT_SYMBOL(__netdev_alloc_skb); 448 449 /** 450 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 451 * @napi: napi instance this buffer was allocated for 452 * @len: length to allocate 453 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 454 * 455 * Allocate a new sk_buff for use in NAPI receive. This buffer will 456 * attempt to allocate the head from a special reserved region used 457 * only for NAPI Rx allocation. By doing this we can save several 458 * CPU cycles by avoiding having to disable and re-enable IRQs. 459 * 460 * %NULL is returned if there is no free memory. 461 */ 462 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 463 gfp_t gfp_mask) 464 { 465 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 466 struct sk_buff *skb; 467 void *data; 468 469 len += NET_SKB_PAD + NET_IP_ALIGN; 470 471 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 472 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 473 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 474 if (!skb) 475 goto skb_fail; 476 goto skb_success; 477 } 478 479 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 480 len = SKB_DATA_ALIGN(len); 481 482 if (sk_memalloc_socks()) 483 gfp_mask |= __GFP_MEMALLOC; 484 485 data = page_frag_alloc(&nc->page, len, gfp_mask); 486 if (unlikely(!data)) 487 return NULL; 488 489 skb = __build_skb(data, len); 490 if (unlikely(!skb)) { 491 skb_free_frag(data); 492 return NULL; 493 } 494 495 /* use OR instead of assignment to avoid clearing of bits in mask */ 496 if (nc->page.pfmemalloc) 497 skb->pfmemalloc = 1; 498 skb->head_frag = 1; 499 500 skb_success: 501 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 502 skb->dev = napi->dev; 503 504 skb_fail: 505 return skb; 506 } 507 EXPORT_SYMBOL(__napi_alloc_skb); 508 509 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 510 int size, unsigned int truesize) 511 { 512 skb_fill_page_desc(skb, i, page, off, size); 513 skb->len += size; 514 skb->data_len += size; 515 skb->truesize += truesize; 516 } 517 EXPORT_SYMBOL(skb_add_rx_frag); 518 519 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 520 unsigned int truesize) 521 { 522 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 523 524 skb_frag_size_add(frag, size); 525 skb->len += size; 526 skb->data_len += size; 527 skb->truesize += truesize; 528 } 529 EXPORT_SYMBOL(skb_coalesce_rx_frag); 530 531 static void skb_drop_list(struct sk_buff **listp) 532 { 533 kfree_skb_list(*listp); 534 *listp = NULL; 535 } 536 537 static inline void skb_drop_fraglist(struct sk_buff *skb) 538 { 539 skb_drop_list(&skb_shinfo(skb)->frag_list); 540 } 541 542 static void skb_clone_fraglist(struct sk_buff *skb) 543 { 544 struct sk_buff *list; 545 546 skb_walk_frags(skb, list) 547 skb_get(list); 548 } 549 550 static void skb_free_head(struct sk_buff *skb) 551 { 552 unsigned char *head = skb->head; 553 554 if (skb->head_frag) 555 skb_free_frag(head); 556 else 557 kfree(head); 558 } 559 560 static void skb_release_data(struct sk_buff *skb) 561 { 562 struct skb_shared_info *shinfo = skb_shinfo(skb); 563 int i; 564 565 if (skb->cloned && 566 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 567 &shinfo->dataref)) 568 return; 569 570 for (i = 0; i < shinfo->nr_frags; i++) 571 __skb_frag_unref(&shinfo->frags[i]); 572 573 if (shinfo->frag_list) 574 kfree_skb_list(shinfo->frag_list); 575 576 skb_zcopy_clear(skb, true); 577 skb_free_head(skb); 578 } 579 580 /* 581 * Free an skbuff by memory without cleaning the state. 582 */ 583 static void kfree_skbmem(struct sk_buff *skb) 584 { 585 struct sk_buff_fclones *fclones; 586 587 switch (skb->fclone) { 588 case SKB_FCLONE_UNAVAILABLE: 589 kmem_cache_free(skbuff_head_cache, skb); 590 return; 591 592 case SKB_FCLONE_ORIG: 593 fclones = container_of(skb, struct sk_buff_fclones, skb1); 594 595 /* We usually free the clone (TX completion) before original skb 596 * This test would have no chance to be true for the clone, 597 * while here, branch prediction will be good. 598 */ 599 if (refcount_read(&fclones->fclone_ref) == 1) 600 goto fastpath; 601 break; 602 603 default: /* SKB_FCLONE_CLONE */ 604 fclones = container_of(skb, struct sk_buff_fclones, skb2); 605 break; 606 } 607 if (!refcount_dec_and_test(&fclones->fclone_ref)) 608 return; 609 fastpath: 610 kmem_cache_free(skbuff_fclone_cache, fclones); 611 } 612 613 void skb_release_head_state(struct sk_buff *skb) 614 { 615 skb_dst_drop(skb); 616 if (skb->destructor) { 617 WARN_ON(in_irq()); 618 skb->destructor(skb); 619 } 620 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 621 nf_conntrack_put(skb_nfct(skb)); 622 #endif 623 skb_ext_put(skb); 624 } 625 626 /* Free everything but the sk_buff shell. */ 627 static void skb_release_all(struct sk_buff *skb) 628 { 629 skb_release_head_state(skb); 630 if (likely(skb->head)) 631 skb_release_data(skb); 632 } 633 634 /** 635 * __kfree_skb - private function 636 * @skb: buffer 637 * 638 * Free an sk_buff. Release anything attached to the buffer. 639 * Clean the state. This is an internal helper function. Users should 640 * always call kfree_skb 641 */ 642 643 void __kfree_skb(struct sk_buff *skb) 644 { 645 skb_release_all(skb); 646 kfree_skbmem(skb); 647 } 648 EXPORT_SYMBOL(__kfree_skb); 649 650 /** 651 * kfree_skb - free an sk_buff 652 * @skb: buffer to free 653 * 654 * Drop a reference to the buffer and free it if the usage count has 655 * hit zero. 656 */ 657 void kfree_skb(struct sk_buff *skb) 658 { 659 if (!skb_unref(skb)) 660 return; 661 662 trace_kfree_skb(skb, __builtin_return_address(0)); 663 __kfree_skb(skb); 664 } 665 EXPORT_SYMBOL(kfree_skb); 666 667 void kfree_skb_list(struct sk_buff *segs) 668 { 669 while (segs) { 670 struct sk_buff *next = segs->next; 671 672 kfree_skb(segs); 673 segs = next; 674 } 675 } 676 EXPORT_SYMBOL(kfree_skb_list); 677 678 /** 679 * skb_tx_error - report an sk_buff xmit error 680 * @skb: buffer that triggered an error 681 * 682 * Report xmit error if a device callback is tracking this skb. 683 * skb must be freed afterwards. 684 */ 685 void skb_tx_error(struct sk_buff *skb) 686 { 687 skb_zcopy_clear(skb, true); 688 } 689 EXPORT_SYMBOL(skb_tx_error); 690 691 /** 692 * consume_skb - free an skbuff 693 * @skb: buffer to free 694 * 695 * Drop a ref to the buffer and free it if the usage count has hit zero 696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 697 * is being dropped after a failure and notes that 698 */ 699 void consume_skb(struct sk_buff *skb) 700 { 701 if (!skb_unref(skb)) 702 return; 703 704 trace_consume_skb(skb); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(consume_skb); 708 709 /** 710 * consume_stateless_skb - free an skbuff, assuming it is stateless 711 * @skb: buffer to free 712 * 713 * Alike consume_skb(), but this variant assumes that this is the last 714 * skb reference and all the head states have been already dropped 715 */ 716 void __consume_stateless_skb(struct sk_buff *skb) 717 { 718 trace_consume_skb(skb); 719 skb_release_data(skb); 720 kfree_skbmem(skb); 721 } 722 723 void __kfree_skb_flush(void) 724 { 725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 726 727 /* flush skb_cache if containing objects */ 728 if (nc->skb_count) { 729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 730 nc->skb_cache); 731 nc->skb_count = 0; 732 } 733 } 734 735 static inline void _kfree_skb_defer(struct sk_buff *skb) 736 { 737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 738 739 /* drop skb->head and call any destructors for packet */ 740 skb_release_all(skb); 741 742 /* record skb to CPU local list */ 743 nc->skb_cache[nc->skb_count++] = skb; 744 745 #ifdef CONFIG_SLUB 746 /* SLUB writes into objects when freeing */ 747 prefetchw(skb); 748 #endif 749 750 /* flush skb_cache if it is filled */ 751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 753 nc->skb_cache); 754 nc->skb_count = 0; 755 } 756 } 757 void __kfree_skb_defer(struct sk_buff *skb) 758 { 759 _kfree_skb_defer(skb); 760 } 761 762 void napi_consume_skb(struct sk_buff *skb, int budget) 763 { 764 if (unlikely(!skb)) 765 return; 766 767 /* Zero budget indicate non-NAPI context called us, like netpoll */ 768 if (unlikely(!budget)) { 769 dev_consume_skb_any(skb); 770 return; 771 } 772 773 if (!skb_unref(skb)) 774 return; 775 776 /* if reaching here SKB is ready to free */ 777 trace_consume_skb(skb); 778 779 /* if SKB is a clone, don't handle this case */ 780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 781 __kfree_skb(skb); 782 return; 783 } 784 785 _kfree_skb_defer(skb); 786 } 787 EXPORT_SYMBOL(napi_consume_skb); 788 789 /* Make sure a field is enclosed inside headers_start/headers_end section */ 790 #define CHECK_SKB_FIELD(field) \ 791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 792 offsetof(struct sk_buff, headers_start)); \ 793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 794 offsetof(struct sk_buff, headers_end)); \ 795 796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 797 { 798 new->tstamp = old->tstamp; 799 /* We do not copy old->sk */ 800 new->dev = old->dev; 801 memcpy(new->cb, old->cb, sizeof(old->cb)); 802 skb_dst_copy(new, old); 803 __skb_ext_copy(new, old); 804 __nf_copy(new, old, false); 805 806 /* Note : this field could be in headers_start/headers_end section 807 * It is not yet because we do not want to have a 16 bit hole 808 */ 809 new->queue_mapping = old->queue_mapping; 810 811 memcpy(&new->headers_start, &old->headers_start, 812 offsetof(struct sk_buff, headers_end) - 813 offsetof(struct sk_buff, headers_start)); 814 CHECK_SKB_FIELD(protocol); 815 CHECK_SKB_FIELD(csum); 816 CHECK_SKB_FIELD(hash); 817 CHECK_SKB_FIELD(priority); 818 CHECK_SKB_FIELD(skb_iif); 819 CHECK_SKB_FIELD(vlan_proto); 820 CHECK_SKB_FIELD(vlan_tci); 821 CHECK_SKB_FIELD(transport_header); 822 CHECK_SKB_FIELD(network_header); 823 CHECK_SKB_FIELD(mac_header); 824 CHECK_SKB_FIELD(inner_protocol); 825 CHECK_SKB_FIELD(inner_transport_header); 826 CHECK_SKB_FIELD(inner_network_header); 827 CHECK_SKB_FIELD(inner_mac_header); 828 CHECK_SKB_FIELD(mark); 829 #ifdef CONFIG_NETWORK_SECMARK 830 CHECK_SKB_FIELD(secmark); 831 #endif 832 #ifdef CONFIG_NET_RX_BUSY_POLL 833 CHECK_SKB_FIELD(napi_id); 834 #endif 835 #ifdef CONFIG_XPS 836 CHECK_SKB_FIELD(sender_cpu); 837 #endif 838 #ifdef CONFIG_NET_SCHED 839 CHECK_SKB_FIELD(tc_index); 840 #endif 841 842 } 843 844 /* 845 * You should not add any new code to this function. Add it to 846 * __copy_skb_header above instead. 847 */ 848 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 849 { 850 #define C(x) n->x = skb->x 851 852 n->next = n->prev = NULL; 853 n->sk = NULL; 854 __copy_skb_header(n, skb); 855 856 C(len); 857 C(data_len); 858 C(mac_len); 859 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 860 n->cloned = 1; 861 n->nohdr = 0; 862 n->peeked = 0; 863 C(pfmemalloc); 864 n->destructor = NULL; 865 C(tail); 866 C(end); 867 C(head); 868 C(head_frag); 869 C(data); 870 C(truesize); 871 refcount_set(&n->users, 1); 872 873 atomic_inc(&(skb_shinfo(skb)->dataref)); 874 skb->cloned = 1; 875 876 return n; 877 #undef C 878 } 879 880 /** 881 * skb_morph - morph one skb into another 882 * @dst: the skb to receive the contents 883 * @src: the skb to supply the contents 884 * 885 * This is identical to skb_clone except that the target skb is 886 * supplied by the user. 887 * 888 * The target skb is returned upon exit. 889 */ 890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 891 { 892 skb_release_all(dst); 893 return __skb_clone(dst, src); 894 } 895 EXPORT_SYMBOL_GPL(skb_morph); 896 897 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 898 { 899 unsigned long max_pg, num_pg, new_pg, old_pg; 900 struct user_struct *user; 901 902 if (capable(CAP_IPC_LOCK) || !size) 903 return 0; 904 905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 907 user = mmp->user ? : current_user(); 908 909 do { 910 old_pg = atomic_long_read(&user->locked_vm); 911 new_pg = old_pg + num_pg; 912 if (new_pg > max_pg) 913 return -ENOBUFS; 914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 915 old_pg); 916 917 if (!mmp->user) { 918 mmp->user = get_uid(user); 919 mmp->num_pg = num_pg; 920 } else { 921 mmp->num_pg += num_pg; 922 } 923 924 return 0; 925 } 926 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 927 928 void mm_unaccount_pinned_pages(struct mmpin *mmp) 929 { 930 if (mmp->user) { 931 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 932 free_uid(mmp->user); 933 } 934 } 935 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 936 937 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 938 { 939 struct ubuf_info *uarg; 940 struct sk_buff *skb; 941 942 WARN_ON_ONCE(!in_task()); 943 944 skb = sock_omalloc(sk, 0, GFP_KERNEL); 945 if (!skb) 946 return NULL; 947 948 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 949 uarg = (void *)skb->cb; 950 uarg->mmp.user = NULL; 951 952 if (mm_account_pinned_pages(&uarg->mmp, size)) { 953 kfree_skb(skb); 954 return NULL; 955 } 956 957 uarg->callback = sock_zerocopy_callback; 958 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 959 uarg->len = 1; 960 uarg->bytelen = size; 961 uarg->zerocopy = 1; 962 refcount_set(&uarg->refcnt, 1); 963 sock_hold(sk); 964 965 return uarg; 966 } 967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 968 969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 970 { 971 return container_of((void *)uarg, struct sk_buff, cb); 972 } 973 974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 975 struct ubuf_info *uarg) 976 { 977 if (uarg) { 978 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 979 u32 bytelen, next; 980 981 /* realloc only when socket is locked (TCP, UDP cork), 982 * so uarg->len and sk_zckey access is serialized 983 */ 984 if (!sock_owned_by_user(sk)) { 985 WARN_ON_ONCE(1); 986 return NULL; 987 } 988 989 bytelen = uarg->bytelen + size; 990 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 991 /* TCP can create new skb to attach new uarg */ 992 if (sk->sk_type == SOCK_STREAM) 993 goto new_alloc; 994 return NULL; 995 } 996 997 next = (u32)atomic_read(&sk->sk_zckey); 998 if ((u32)(uarg->id + uarg->len) == next) { 999 if (mm_account_pinned_pages(&uarg->mmp, size)) 1000 return NULL; 1001 uarg->len++; 1002 uarg->bytelen = bytelen; 1003 atomic_set(&sk->sk_zckey, ++next); 1004 sock_zerocopy_get(uarg); 1005 return uarg; 1006 } 1007 } 1008 1009 new_alloc: 1010 return sock_zerocopy_alloc(sk, size); 1011 } 1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1013 1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1015 { 1016 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1017 u32 old_lo, old_hi; 1018 u64 sum_len; 1019 1020 old_lo = serr->ee.ee_info; 1021 old_hi = serr->ee.ee_data; 1022 sum_len = old_hi - old_lo + 1ULL + len; 1023 1024 if (sum_len >= (1ULL << 32)) 1025 return false; 1026 1027 if (lo != old_hi + 1) 1028 return false; 1029 1030 serr->ee.ee_data += len; 1031 return true; 1032 } 1033 1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1035 { 1036 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1037 struct sock_exterr_skb *serr; 1038 struct sock *sk = skb->sk; 1039 struct sk_buff_head *q; 1040 unsigned long flags; 1041 u32 lo, hi; 1042 u16 len; 1043 1044 mm_unaccount_pinned_pages(&uarg->mmp); 1045 1046 /* if !len, there was only 1 call, and it was aborted 1047 * so do not queue a completion notification 1048 */ 1049 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1050 goto release; 1051 1052 len = uarg->len; 1053 lo = uarg->id; 1054 hi = uarg->id + len - 1; 1055 1056 serr = SKB_EXT_ERR(skb); 1057 memset(serr, 0, sizeof(*serr)); 1058 serr->ee.ee_errno = 0; 1059 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1060 serr->ee.ee_data = hi; 1061 serr->ee.ee_info = lo; 1062 if (!success) 1063 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1064 1065 q = &sk->sk_error_queue; 1066 spin_lock_irqsave(&q->lock, flags); 1067 tail = skb_peek_tail(q); 1068 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1069 !skb_zerocopy_notify_extend(tail, lo, len)) { 1070 __skb_queue_tail(q, skb); 1071 skb = NULL; 1072 } 1073 spin_unlock_irqrestore(&q->lock, flags); 1074 1075 sk->sk_error_report(sk); 1076 1077 release: 1078 consume_skb(skb); 1079 sock_put(sk); 1080 } 1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1082 1083 void sock_zerocopy_put(struct ubuf_info *uarg) 1084 { 1085 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1086 if (uarg->callback) 1087 uarg->callback(uarg, uarg->zerocopy); 1088 else 1089 consume_skb(skb_from_uarg(uarg)); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1093 1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1095 { 1096 if (uarg) { 1097 struct sock *sk = skb_from_uarg(uarg)->sk; 1098 1099 atomic_dec(&sk->sk_zckey); 1100 uarg->len--; 1101 1102 if (have_uref) 1103 sock_zerocopy_put(uarg); 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1107 1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1109 struct iov_iter *from, size_t length); 1110 1111 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1112 { 1113 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1114 } 1115 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1116 1117 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1118 struct msghdr *msg, int len, 1119 struct ubuf_info *uarg) 1120 { 1121 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1122 struct iov_iter orig_iter = msg->msg_iter; 1123 int err, orig_len = skb->len; 1124 1125 /* An skb can only point to one uarg. This edge case happens when 1126 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1127 */ 1128 if (orig_uarg && uarg != orig_uarg) 1129 return -EEXIST; 1130 1131 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1132 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1133 struct sock *save_sk = skb->sk; 1134 1135 /* Streams do not free skb on error. Reset to prev state. */ 1136 msg->msg_iter = orig_iter; 1137 skb->sk = sk; 1138 ___pskb_trim(skb, orig_len); 1139 skb->sk = save_sk; 1140 return err; 1141 } 1142 1143 skb_zcopy_set(skb, uarg, NULL); 1144 return skb->len - orig_len; 1145 } 1146 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1147 1148 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1149 gfp_t gfp_mask) 1150 { 1151 if (skb_zcopy(orig)) { 1152 if (skb_zcopy(nskb)) { 1153 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1154 if (!gfp_mask) { 1155 WARN_ON_ONCE(1); 1156 return -ENOMEM; 1157 } 1158 if (skb_uarg(nskb) == skb_uarg(orig)) 1159 return 0; 1160 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1161 return -EIO; 1162 } 1163 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1170 * @skb: the skb to modify 1171 * @gfp_mask: allocation priority 1172 * 1173 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1174 * It will copy all frags into kernel and drop the reference 1175 * to userspace pages. 1176 * 1177 * If this function is called from an interrupt gfp_mask() must be 1178 * %GFP_ATOMIC. 1179 * 1180 * Returns 0 on success or a negative error code on failure 1181 * to allocate kernel memory to copy to. 1182 */ 1183 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1184 { 1185 int num_frags = skb_shinfo(skb)->nr_frags; 1186 struct page *page, *head = NULL; 1187 int i, new_frags; 1188 u32 d_off; 1189 1190 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1191 return -EINVAL; 1192 1193 if (!num_frags) 1194 goto release; 1195 1196 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1197 for (i = 0; i < new_frags; i++) { 1198 page = alloc_page(gfp_mask); 1199 if (!page) { 1200 while (head) { 1201 struct page *next = (struct page *)page_private(head); 1202 put_page(head); 1203 head = next; 1204 } 1205 return -ENOMEM; 1206 } 1207 set_page_private(page, (unsigned long)head); 1208 head = page; 1209 } 1210 1211 page = head; 1212 d_off = 0; 1213 for (i = 0; i < num_frags; i++) { 1214 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1215 u32 p_off, p_len, copied; 1216 struct page *p; 1217 u8 *vaddr; 1218 1219 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1220 p, p_off, p_len, copied) { 1221 u32 copy, done = 0; 1222 vaddr = kmap_atomic(p); 1223 1224 while (done < p_len) { 1225 if (d_off == PAGE_SIZE) { 1226 d_off = 0; 1227 page = (struct page *)page_private(page); 1228 } 1229 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1230 memcpy(page_address(page) + d_off, 1231 vaddr + p_off + done, copy); 1232 done += copy; 1233 d_off += copy; 1234 } 1235 kunmap_atomic(vaddr); 1236 } 1237 } 1238 1239 /* skb frags release userspace buffers */ 1240 for (i = 0; i < num_frags; i++) 1241 skb_frag_unref(skb, i); 1242 1243 /* skb frags point to kernel buffers */ 1244 for (i = 0; i < new_frags - 1; i++) { 1245 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1246 head = (struct page *)page_private(head); 1247 } 1248 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1249 skb_shinfo(skb)->nr_frags = new_frags; 1250 1251 release: 1252 skb_zcopy_clear(skb, false); 1253 return 0; 1254 } 1255 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1256 1257 /** 1258 * skb_clone - duplicate an sk_buff 1259 * @skb: buffer to clone 1260 * @gfp_mask: allocation priority 1261 * 1262 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1263 * copies share the same packet data but not structure. The new 1264 * buffer has a reference count of 1. If the allocation fails the 1265 * function returns %NULL otherwise the new buffer is returned. 1266 * 1267 * If this function is called from an interrupt gfp_mask() must be 1268 * %GFP_ATOMIC. 1269 */ 1270 1271 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1272 { 1273 struct sk_buff_fclones *fclones = container_of(skb, 1274 struct sk_buff_fclones, 1275 skb1); 1276 struct sk_buff *n; 1277 1278 if (skb_orphan_frags(skb, gfp_mask)) 1279 return NULL; 1280 1281 if (skb->fclone == SKB_FCLONE_ORIG && 1282 refcount_read(&fclones->fclone_ref) == 1) { 1283 n = &fclones->skb2; 1284 refcount_set(&fclones->fclone_ref, 2); 1285 } else { 1286 if (skb_pfmemalloc(skb)) 1287 gfp_mask |= __GFP_MEMALLOC; 1288 1289 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1290 if (!n) 1291 return NULL; 1292 1293 n->fclone = SKB_FCLONE_UNAVAILABLE; 1294 } 1295 1296 return __skb_clone(n, skb); 1297 } 1298 EXPORT_SYMBOL(skb_clone); 1299 1300 void skb_headers_offset_update(struct sk_buff *skb, int off) 1301 { 1302 /* Only adjust this if it actually is csum_start rather than csum */ 1303 if (skb->ip_summed == CHECKSUM_PARTIAL) 1304 skb->csum_start += off; 1305 /* {transport,network,mac}_header and tail are relative to skb->head */ 1306 skb->transport_header += off; 1307 skb->network_header += off; 1308 if (skb_mac_header_was_set(skb)) 1309 skb->mac_header += off; 1310 skb->inner_transport_header += off; 1311 skb->inner_network_header += off; 1312 skb->inner_mac_header += off; 1313 } 1314 EXPORT_SYMBOL(skb_headers_offset_update); 1315 1316 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1317 { 1318 __copy_skb_header(new, old); 1319 1320 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1321 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1322 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1323 } 1324 EXPORT_SYMBOL(skb_copy_header); 1325 1326 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1327 { 1328 if (skb_pfmemalloc(skb)) 1329 return SKB_ALLOC_RX; 1330 return 0; 1331 } 1332 1333 /** 1334 * skb_copy - create private copy of an sk_buff 1335 * @skb: buffer to copy 1336 * @gfp_mask: allocation priority 1337 * 1338 * Make a copy of both an &sk_buff and its data. This is used when the 1339 * caller wishes to modify the data and needs a private copy of the 1340 * data to alter. Returns %NULL on failure or the pointer to the buffer 1341 * on success. The returned buffer has a reference count of 1. 1342 * 1343 * As by-product this function converts non-linear &sk_buff to linear 1344 * one, so that &sk_buff becomes completely private and caller is allowed 1345 * to modify all the data of returned buffer. This means that this 1346 * function is not recommended for use in circumstances when only 1347 * header is going to be modified. Use pskb_copy() instead. 1348 */ 1349 1350 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1351 { 1352 int headerlen = skb_headroom(skb); 1353 unsigned int size = skb_end_offset(skb) + skb->data_len; 1354 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1355 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1356 1357 if (!n) 1358 return NULL; 1359 1360 /* Set the data pointer */ 1361 skb_reserve(n, headerlen); 1362 /* Set the tail pointer and length */ 1363 skb_put(n, skb->len); 1364 1365 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1366 1367 skb_copy_header(n, skb); 1368 return n; 1369 } 1370 EXPORT_SYMBOL(skb_copy); 1371 1372 /** 1373 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1374 * @skb: buffer to copy 1375 * @headroom: headroom of new skb 1376 * @gfp_mask: allocation priority 1377 * @fclone: if true allocate the copy of the skb from the fclone 1378 * cache instead of the head cache; it is recommended to set this 1379 * to true for the cases where the copy will likely be cloned 1380 * 1381 * Make a copy of both an &sk_buff and part of its data, located 1382 * in header. Fragmented data remain shared. This is used when 1383 * the caller wishes to modify only header of &sk_buff and needs 1384 * private copy of the header to alter. Returns %NULL on failure 1385 * or the pointer to the buffer on success. 1386 * The returned buffer has a reference count of 1. 1387 */ 1388 1389 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1390 gfp_t gfp_mask, bool fclone) 1391 { 1392 unsigned int size = skb_headlen(skb) + headroom; 1393 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1394 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1395 1396 if (!n) 1397 goto out; 1398 1399 /* Set the data pointer */ 1400 skb_reserve(n, headroom); 1401 /* Set the tail pointer and length */ 1402 skb_put(n, skb_headlen(skb)); 1403 /* Copy the bytes */ 1404 skb_copy_from_linear_data(skb, n->data, n->len); 1405 1406 n->truesize += skb->data_len; 1407 n->data_len = skb->data_len; 1408 n->len = skb->len; 1409 1410 if (skb_shinfo(skb)->nr_frags) { 1411 int i; 1412 1413 if (skb_orphan_frags(skb, gfp_mask) || 1414 skb_zerocopy_clone(n, skb, gfp_mask)) { 1415 kfree_skb(n); 1416 n = NULL; 1417 goto out; 1418 } 1419 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1420 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1421 skb_frag_ref(skb, i); 1422 } 1423 skb_shinfo(n)->nr_frags = i; 1424 } 1425 1426 if (skb_has_frag_list(skb)) { 1427 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1428 skb_clone_fraglist(n); 1429 } 1430 1431 skb_copy_header(n, skb); 1432 out: 1433 return n; 1434 } 1435 EXPORT_SYMBOL(__pskb_copy_fclone); 1436 1437 /** 1438 * pskb_expand_head - reallocate header of &sk_buff 1439 * @skb: buffer to reallocate 1440 * @nhead: room to add at head 1441 * @ntail: room to add at tail 1442 * @gfp_mask: allocation priority 1443 * 1444 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1445 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1446 * reference count of 1. Returns zero in the case of success or error, 1447 * if expansion failed. In the last case, &sk_buff is not changed. 1448 * 1449 * All the pointers pointing into skb header may change and must be 1450 * reloaded after call to this function. 1451 */ 1452 1453 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1454 gfp_t gfp_mask) 1455 { 1456 int i, osize = skb_end_offset(skb); 1457 int size = osize + nhead + ntail; 1458 long off; 1459 u8 *data; 1460 1461 BUG_ON(nhead < 0); 1462 1463 BUG_ON(skb_shared(skb)); 1464 1465 size = SKB_DATA_ALIGN(size); 1466 1467 if (skb_pfmemalloc(skb)) 1468 gfp_mask |= __GFP_MEMALLOC; 1469 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1470 gfp_mask, NUMA_NO_NODE, NULL); 1471 if (!data) 1472 goto nodata; 1473 size = SKB_WITH_OVERHEAD(ksize(data)); 1474 1475 /* Copy only real data... and, alas, header. This should be 1476 * optimized for the cases when header is void. 1477 */ 1478 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1479 1480 memcpy((struct skb_shared_info *)(data + size), 1481 skb_shinfo(skb), 1482 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1483 1484 /* 1485 * if shinfo is shared we must drop the old head gracefully, but if it 1486 * is not we can just drop the old head and let the existing refcount 1487 * be since all we did is relocate the values 1488 */ 1489 if (skb_cloned(skb)) { 1490 if (skb_orphan_frags(skb, gfp_mask)) 1491 goto nofrags; 1492 if (skb_zcopy(skb)) 1493 refcount_inc(&skb_uarg(skb)->refcnt); 1494 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1495 skb_frag_ref(skb, i); 1496 1497 if (skb_has_frag_list(skb)) 1498 skb_clone_fraglist(skb); 1499 1500 skb_release_data(skb); 1501 } else { 1502 skb_free_head(skb); 1503 } 1504 off = (data + nhead) - skb->head; 1505 1506 skb->head = data; 1507 skb->head_frag = 0; 1508 skb->data += off; 1509 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1510 skb->end = size; 1511 off = nhead; 1512 #else 1513 skb->end = skb->head + size; 1514 #endif 1515 skb->tail += off; 1516 skb_headers_offset_update(skb, nhead); 1517 skb->cloned = 0; 1518 skb->hdr_len = 0; 1519 skb->nohdr = 0; 1520 atomic_set(&skb_shinfo(skb)->dataref, 1); 1521 1522 skb_metadata_clear(skb); 1523 1524 /* It is not generally safe to change skb->truesize. 1525 * For the moment, we really care of rx path, or 1526 * when skb is orphaned (not attached to a socket). 1527 */ 1528 if (!skb->sk || skb->destructor == sock_edemux) 1529 skb->truesize += size - osize; 1530 1531 return 0; 1532 1533 nofrags: 1534 kfree(data); 1535 nodata: 1536 return -ENOMEM; 1537 } 1538 EXPORT_SYMBOL(pskb_expand_head); 1539 1540 /* Make private copy of skb with writable head and some headroom */ 1541 1542 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1543 { 1544 struct sk_buff *skb2; 1545 int delta = headroom - skb_headroom(skb); 1546 1547 if (delta <= 0) 1548 skb2 = pskb_copy(skb, GFP_ATOMIC); 1549 else { 1550 skb2 = skb_clone(skb, GFP_ATOMIC); 1551 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1552 GFP_ATOMIC)) { 1553 kfree_skb(skb2); 1554 skb2 = NULL; 1555 } 1556 } 1557 return skb2; 1558 } 1559 EXPORT_SYMBOL(skb_realloc_headroom); 1560 1561 /** 1562 * skb_copy_expand - copy and expand sk_buff 1563 * @skb: buffer to copy 1564 * @newheadroom: new free bytes at head 1565 * @newtailroom: new free bytes at tail 1566 * @gfp_mask: allocation priority 1567 * 1568 * Make a copy of both an &sk_buff and its data and while doing so 1569 * allocate additional space. 1570 * 1571 * This is used when the caller wishes to modify the data and needs a 1572 * private copy of the data to alter as well as more space for new fields. 1573 * Returns %NULL on failure or the pointer to the buffer 1574 * on success. The returned buffer has a reference count of 1. 1575 * 1576 * You must pass %GFP_ATOMIC as the allocation priority if this function 1577 * is called from an interrupt. 1578 */ 1579 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1580 int newheadroom, int newtailroom, 1581 gfp_t gfp_mask) 1582 { 1583 /* 1584 * Allocate the copy buffer 1585 */ 1586 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1587 gfp_mask, skb_alloc_rx_flag(skb), 1588 NUMA_NO_NODE); 1589 int oldheadroom = skb_headroom(skb); 1590 int head_copy_len, head_copy_off; 1591 1592 if (!n) 1593 return NULL; 1594 1595 skb_reserve(n, newheadroom); 1596 1597 /* Set the tail pointer and length */ 1598 skb_put(n, skb->len); 1599 1600 head_copy_len = oldheadroom; 1601 head_copy_off = 0; 1602 if (newheadroom <= head_copy_len) 1603 head_copy_len = newheadroom; 1604 else 1605 head_copy_off = newheadroom - head_copy_len; 1606 1607 /* Copy the linear header and data. */ 1608 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1609 skb->len + head_copy_len)); 1610 1611 skb_copy_header(n, skb); 1612 1613 skb_headers_offset_update(n, newheadroom - oldheadroom); 1614 1615 return n; 1616 } 1617 EXPORT_SYMBOL(skb_copy_expand); 1618 1619 /** 1620 * __skb_pad - zero pad the tail of an skb 1621 * @skb: buffer to pad 1622 * @pad: space to pad 1623 * @free_on_error: free buffer on error 1624 * 1625 * Ensure that a buffer is followed by a padding area that is zero 1626 * filled. Used by network drivers which may DMA or transfer data 1627 * beyond the buffer end onto the wire. 1628 * 1629 * May return error in out of memory cases. The skb is freed on error 1630 * if @free_on_error is true. 1631 */ 1632 1633 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1634 { 1635 int err; 1636 int ntail; 1637 1638 /* If the skbuff is non linear tailroom is always zero.. */ 1639 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1640 memset(skb->data+skb->len, 0, pad); 1641 return 0; 1642 } 1643 1644 ntail = skb->data_len + pad - (skb->end - skb->tail); 1645 if (likely(skb_cloned(skb) || ntail > 0)) { 1646 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1647 if (unlikely(err)) 1648 goto free_skb; 1649 } 1650 1651 /* FIXME: The use of this function with non-linear skb's really needs 1652 * to be audited. 1653 */ 1654 err = skb_linearize(skb); 1655 if (unlikely(err)) 1656 goto free_skb; 1657 1658 memset(skb->data + skb->len, 0, pad); 1659 return 0; 1660 1661 free_skb: 1662 if (free_on_error) 1663 kfree_skb(skb); 1664 return err; 1665 } 1666 EXPORT_SYMBOL(__skb_pad); 1667 1668 /** 1669 * pskb_put - add data to the tail of a potentially fragmented buffer 1670 * @skb: start of the buffer to use 1671 * @tail: tail fragment of the buffer to use 1672 * @len: amount of data to add 1673 * 1674 * This function extends the used data area of the potentially 1675 * fragmented buffer. @tail must be the last fragment of @skb -- or 1676 * @skb itself. If this would exceed the total buffer size the kernel 1677 * will panic. A pointer to the first byte of the extra data is 1678 * returned. 1679 */ 1680 1681 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1682 { 1683 if (tail != skb) { 1684 skb->data_len += len; 1685 skb->len += len; 1686 } 1687 return skb_put(tail, len); 1688 } 1689 EXPORT_SYMBOL_GPL(pskb_put); 1690 1691 /** 1692 * skb_put - add data to a buffer 1693 * @skb: buffer to use 1694 * @len: amount of data to add 1695 * 1696 * This function extends the used data area of the buffer. If this would 1697 * exceed the total buffer size the kernel will panic. A pointer to the 1698 * first byte of the extra data is returned. 1699 */ 1700 void *skb_put(struct sk_buff *skb, unsigned int len) 1701 { 1702 void *tmp = skb_tail_pointer(skb); 1703 SKB_LINEAR_ASSERT(skb); 1704 skb->tail += len; 1705 skb->len += len; 1706 if (unlikely(skb->tail > skb->end)) 1707 skb_over_panic(skb, len, __builtin_return_address(0)); 1708 return tmp; 1709 } 1710 EXPORT_SYMBOL(skb_put); 1711 1712 /** 1713 * skb_push - add data to the start of a buffer 1714 * @skb: buffer to use 1715 * @len: amount of data to add 1716 * 1717 * This function extends the used data area of the buffer at the buffer 1718 * start. If this would exceed the total buffer headroom the kernel will 1719 * panic. A pointer to the first byte of the extra data is returned. 1720 */ 1721 void *skb_push(struct sk_buff *skb, unsigned int len) 1722 { 1723 skb->data -= len; 1724 skb->len += len; 1725 if (unlikely(skb->data < skb->head)) 1726 skb_under_panic(skb, len, __builtin_return_address(0)); 1727 return skb->data; 1728 } 1729 EXPORT_SYMBOL(skb_push); 1730 1731 /** 1732 * skb_pull - remove data from the start of a buffer 1733 * @skb: buffer to use 1734 * @len: amount of data to remove 1735 * 1736 * This function removes data from the start of a buffer, returning 1737 * the memory to the headroom. A pointer to the next data in the buffer 1738 * is returned. Once the data has been pulled future pushes will overwrite 1739 * the old data. 1740 */ 1741 void *skb_pull(struct sk_buff *skb, unsigned int len) 1742 { 1743 return skb_pull_inline(skb, len); 1744 } 1745 EXPORT_SYMBOL(skb_pull); 1746 1747 /** 1748 * skb_trim - remove end from a buffer 1749 * @skb: buffer to alter 1750 * @len: new length 1751 * 1752 * Cut the length of a buffer down by removing data from the tail. If 1753 * the buffer is already under the length specified it is not modified. 1754 * The skb must be linear. 1755 */ 1756 void skb_trim(struct sk_buff *skb, unsigned int len) 1757 { 1758 if (skb->len > len) 1759 __skb_trim(skb, len); 1760 } 1761 EXPORT_SYMBOL(skb_trim); 1762 1763 /* Trims skb to length len. It can change skb pointers. 1764 */ 1765 1766 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1767 { 1768 struct sk_buff **fragp; 1769 struct sk_buff *frag; 1770 int offset = skb_headlen(skb); 1771 int nfrags = skb_shinfo(skb)->nr_frags; 1772 int i; 1773 int err; 1774 1775 if (skb_cloned(skb) && 1776 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1777 return err; 1778 1779 i = 0; 1780 if (offset >= len) 1781 goto drop_pages; 1782 1783 for (; i < nfrags; i++) { 1784 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1785 1786 if (end < len) { 1787 offset = end; 1788 continue; 1789 } 1790 1791 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1792 1793 drop_pages: 1794 skb_shinfo(skb)->nr_frags = i; 1795 1796 for (; i < nfrags; i++) 1797 skb_frag_unref(skb, i); 1798 1799 if (skb_has_frag_list(skb)) 1800 skb_drop_fraglist(skb); 1801 goto done; 1802 } 1803 1804 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1805 fragp = &frag->next) { 1806 int end = offset + frag->len; 1807 1808 if (skb_shared(frag)) { 1809 struct sk_buff *nfrag; 1810 1811 nfrag = skb_clone(frag, GFP_ATOMIC); 1812 if (unlikely(!nfrag)) 1813 return -ENOMEM; 1814 1815 nfrag->next = frag->next; 1816 consume_skb(frag); 1817 frag = nfrag; 1818 *fragp = frag; 1819 } 1820 1821 if (end < len) { 1822 offset = end; 1823 continue; 1824 } 1825 1826 if (end > len && 1827 unlikely((err = pskb_trim(frag, len - offset)))) 1828 return err; 1829 1830 if (frag->next) 1831 skb_drop_list(&frag->next); 1832 break; 1833 } 1834 1835 done: 1836 if (len > skb_headlen(skb)) { 1837 skb->data_len -= skb->len - len; 1838 skb->len = len; 1839 } else { 1840 skb->len = len; 1841 skb->data_len = 0; 1842 skb_set_tail_pointer(skb, len); 1843 } 1844 1845 if (!skb->sk || skb->destructor == sock_edemux) 1846 skb_condense(skb); 1847 return 0; 1848 } 1849 EXPORT_SYMBOL(___pskb_trim); 1850 1851 /* Note : use pskb_trim_rcsum() instead of calling this directly 1852 */ 1853 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1854 { 1855 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1856 int delta = skb->len - len; 1857 1858 skb->csum = csum_block_sub(skb->csum, 1859 skb_checksum(skb, len, delta, 0), 1860 len); 1861 } 1862 return __pskb_trim(skb, len); 1863 } 1864 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1865 1866 /** 1867 * __pskb_pull_tail - advance tail of skb header 1868 * @skb: buffer to reallocate 1869 * @delta: number of bytes to advance tail 1870 * 1871 * The function makes a sense only on a fragmented &sk_buff, 1872 * it expands header moving its tail forward and copying necessary 1873 * data from fragmented part. 1874 * 1875 * &sk_buff MUST have reference count of 1. 1876 * 1877 * Returns %NULL (and &sk_buff does not change) if pull failed 1878 * or value of new tail of skb in the case of success. 1879 * 1880 * All the pointers pointing into skb header may change and must be 1881 * reloaded after call to this function. 1882 */ 1883 1884 /* Moves tail of skb head forward, copying data from fragmented part, 1885 * when it is necessary. 1886 * 1. It may fail due to malloc failure. 1887 * 2. It may change skb pointers. 1888 * 1889 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1890 */ 1891 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1892 { 1893 /* If skb has not enough free space at tail, get new one 1894 * plus 128 bytes for future expansions. If we have enough 1895 * room at tail, reallocate without expansion only if skb is cloned. 1896 */ 1897 int i, k, eat = (skb->tail + delta) - skb->end; 1898 1899 if (eat > 0 || skb_cloned(skb)) { 1900 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1901 GFP_ATOMIC)) 1902 return NULL; 1903 } 1904 1905 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1906 skb_tail_pointer(skb), delta)); 1907 1908 /* Optimization: no fragments, no reasons to preestimate 1909 * size of pulled pages. Superb. 1910 */ 1911 if (!skb_has_frag_list(skb)) 1912 goto pull_pages; 1913 1914 /* Estimate size of pulled pages. */ 1915 eat = delta; 1916 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1917 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1918 1919 if (size >= eat) 1920 goto pull_pages; 1921 eat -= size; 1922 } 1923 1924 /* If we need update frag list, we are in troubles. 1925 * Certainly, it is possible to add an offset to skb data, 1926 * but taking into account that pulling is expected to 1927 * be very rare operation, it is worth to fight against 1928 * further bloating skb head and crucify ourselves here instead. 1929 * Pure masohism, indeed. 8)8) 1930 */ 1931 if (eat) { 1932 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1933 struct sk_buff *clone = NULL; 1934 struct sk_buff *insp = NULL; 1935 1936 do { 1937 if (list->len <= eat) { 1938 /* Eaten as whole. */ 1939 eat -= list->len; 1940 list = list->next; 1941 insp = list; 1942 } else { 1943 /* Eaten partially. */ 1944 1945 if (skb_shared(list)) { 1946 /* Sucks! We need to fork list. :-( */ 1947 clone = skb_clone(list, GFP_ATOMIC); 1948 if (!clone) 1949 return NULL; 1950 insp = list->next; 1951 list = clone; 1952 } else { 1953 /* This may be pulled without 1954 * problems. */ 1955 insp = list; 1956 } 1957 if (!pskb_pull(list, eat)) { 1958 kfree_skb(clone); 1959 return NULL; 1960 } 1961 break; 1962 } 1963 } while (eat); 1964 1965 /* Free pulled out fragments. */ 1966 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1967 skb_shinfo(skb)->frag_list = list->next; 1968 kfree_skb(list); 1969 } 1970 /* And insert new clone at head. */ 1971 if (clone) { 1972 clone->next = list; 1973 skb_shinfo(skb)->frag_list = clone; 1974 } 1975 } 1976 /* Success! Now we may commit changes to skb data. */ 1977 1978 pull_pages: 1979 eat = delta; 1980 k = 0; 1981 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1982 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1983 1984 if (size <= eat) { 1985 skb_frag_unref(skb, i); 1986 eat -= size; 1987 } else { 1988 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1989 if (eat) { 1990 skb_shinfo(skb)->frags[k].page_offset += eat; 1991 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1992 if (!i) 1993 goto end; 1994 eat = 0; 1995 } 1996 k++; 1997 } 1998 } 1999 skb_shinfo(skb)->nr_frags = k; 2000 2001 end: 2002 skb->tail += delta; 2003 skb->data_len -= delta; 2004 2005 if (!skb->data_len) 2006 skb_zcopy_clear(skb, false); 2007 2008 return skb_tail_pointer(skb); 2009 } 2010 EXPORT_SYMBOL(__pskb_pull_tail); 2011 2012 /** 2013 * skb_copy_bits - copy bits from skb to kernel buffer 2014 * @skb: source skb 2015 * @offset: offset in source 2016 * @to: destination buffer 2017 * @len: number of bytes to copy 2018 * 2019 * Copy the specified number of bytes from the source skb to the 2020 * destination buffer. 2021 * 2022 * CAUTION ! : 2023 * If its prototype is ever changed, 2024 * check arch/{*}/net/{*}.S files, 2025 * since it is called from BPF assembly code. 2026 */ 2027 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2028 { 2029 int start = skb_headlen(skb); 2030 struct sk_buff *frag_iter; 2031 int i, copy; 2032 2033 if (offset > (int)skb->len - len) 2034 goto fault; 2035 2036 /* Copy header. */ 2037 if ((copy = start - offset) > 0) { 2038 if (copy > len) 2039 copy = len; 2040 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2041 if ((len -= copy) == 0) 2042 return 0; 2043 offset += copy; 2044 to += copy; 2045 } 2046 2047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2048 int end; 2049 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2050 2051 WARN_ON(start > offset + len); 2052 2053 end = start + skb_frag_size(f); 2054 if ((copy = end - offset) > 0) { 2055 u32 p_off, p_len, copied; 2056 struct page *p; 2057 u8 *vaddr; 2058 2059 if (copy > len) 2060 copy = len; 2061 2062 skb_frag_foreach_page(f, 2063 f->page_offset + offset - start, 2064 copy, p, p_off, p_len, copied) { 2065 vaddr = kmap_atomic(p); 2066 memcpy(to + copied, vaddr + p_off, p_len); 2067 kunmap_atomic(vaddr); 2068 } 2069 2070 if ((len -= copy) == 0) 2071 return 0; 2072 offset += copy; 2073 to += copy; 2074 } 2075 start = end; 2076 } 2077 2078 skb_walk_frags(skb, frag_iter) { 2079 int end; 2080 2081 WARN_ON(start > offset + len); 2082 2083 end = start + frag_iter->len; 2084 if ((copy = end - offset) > 0) { 2085 if (copy > len) 2086 copy = len; 2087 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2088 goto fault; 2089 if ((len -= copy) == 0) 2090 return 0; 2091 offset += copy; 2092 to += copy; 2093 } 2094 start = end; 2095 } 2096 2097 if (!len) 2098 return 0; 2099 2100 fault: 2101 return -EFAULT; 2102 } 2103 EXPORT_SYMBOL(skb_copy_bits); 2104 2105 /* 2106 * Callback from splice_to_pipe(), if we need to release some pages 2107 * at the end of the spd in case we error'ed out in filling the pipe. 2108 */ 2109 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2110 { 2111 put_page(spd->pages[i]); 2112 } 2113 2114 static struct page *linear_to_page(struct page *page, unsigned int *len, 2115 unsigned int *offset, 2116 struct sock *sk) 2117 { 2118 struct page_frag *pfrag = sk_page_frag(sk); 2119 2120 if (!sk_page_frag_refill(sk, pfrag)) 2121 return NULL; 2122 2123 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2124 2125 memcpy(page_address(pfrag->page) + pfrag->offset, 2126 page_address(page) + *offset, *len); 2127 *offset = pfrag->offset; 2128 pfrag->offset += *len; 2129 2130 return pfrag->page; 2131 } 2132 2133 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2134 struct page *page, 2135 unsigned int offset) 2136 { 2137 return spd->nr_pages && 2138 spd->pages[spd->nr_pages - 1] == page && 2139 (spd->partial[spd->nr_pages - 1].offset + 2140 spd->partial[spd->nr_pages - 1].len == offset); 2141 } 2142 2143 /* 2144 * Fill page/offset/length into spd, if it can hold more pages. 2145 */ 2146 static bool spd_fill_page(struct splice_pipe_desc *spd, 2147 struct pipe_inode_info *pipe, struct page *page, 2148 unsigned int *len, unsigned int offset, 2149 bool linear, 2150 struct sock *sk) 2151 { 2152 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2153 return true; 2154 2155 if (linear) { 2156 page = linear_to_page(page, len, &offset, sk); 2157 if (!page) 2158 return true; 2159 } 2160 if (spd_can_coalesce(spd, page, offset)) { 2161 spd->partial[spd->nr_pages - 1].len += *len; 2162 return false; 2163 } 2164 get_page(page); 2165 spd->pages[spd->nr_pages] = page; 2166 spd->partial[spd->nr_pages].len = *len; 2167 spd->partial[spd->nr_pages].offset = offset; 2168 spd->nr_pages++; 2169 2170 return false; 2171 } 2172 2173 static bool __splice_segment(struct page *page, unsigned int poff, 2174 unsigned int plen, unsigned int *off, 2175 unsigned int *len, 2176 struct splice_pipe_desc *spd, bool linear, 2177 struct sock *sk, 2178 struct pipe_inode_info *pipe) 2179 { 2180 if (!*len) 2181 return true; 2182 2183 /* skip this segment if already processed */ 2184 if (*off >= plen) { 2185 *off -= plen; 2186 return false; 2187 } 2188 2189 /* ignore any bits we already processed */ 2190 poff += *off; 2191 plen -= *off; 2192 *off = 0; 2193 2194 do { 2195 unsigned int flen = min(*len, plen); 2196 2197 if (spd_fill_page(spd, pipe, page, &flen, poff, 2198 linear, sk)) 2199 return true; 2200 poff += flen; 2201 plen -= flen; 2202 *len -= flen; 2203 } while (*len && plen); 2204 2205 return false; 2206 } 2207 2208 /* 2209 * Map linear and fragment data from the skb to spd. It reports true if the 2210 * pipe is full or if we already spliced the requested length. 2211 */ 2212 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2213 unsigned int *offset, unsigned int *len, 2214 struct splice_pipe_desc *spd, struct sock *sk) 2215 { 2216 int seg; 2217 struct sk_buff *iter; 2218 2219 /* map the linear part : 2220 * If skb->head_frag is set, this 'linear' part is backed by a 2221 * fragment, and if the head is not shared with any clones then 2222 * we can avoid a copy since we own the head portion of this page. 2223 */ 2224 if (__splice_segment(virt_to_page(skb->data), 2225 (unsigned long) skb->data & (PAGE_SIZE - 1), 2226 skb_headlen(skb), 2227 offset, len, spd, 2228 skb_head_is_locked(skb), 2229 sk, pipe)) 2230 return true; 2231 2232 /* 2233 * then map the fragments 2234 */ 2235 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2236 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2237 2238 if (__splice_segment(skb_frag_page(f), 2239 f->page_offset, skb_frag_size(f), 2240 offset, len, spd, false, sk, pipe)) 2241 return true; 2242 } 2243 2244 skb_walk_frags(skb, iter) { 2245 if (*offset >= iter->len) { 2246 *offset -= iter->len; 2247 continue; 2248 } 2249 /* __skb_splice_bits() only fails if the output has no room 2250 * left, so no point in going over the frag_list for the error 2251 * case. 2252 */ 2253 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2254 return true; 2255 } 2256 2257 return false; 2258 } 2259 2260 /* 2261 * Map data from the skb to a pipe. Should handle both the linear part, 2262 * the fragments, and the frag list. 2263 */ 2264 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2265 struct pipe_inode_info *pipe, unsigned int tlen, 2266 unsigned int flags) 2267 { 2268 struct partial_page partial[MAX_SKB_FRAGS]; 2269 struct page *pages[MAX_SKB_FRAGS]; 2270 struct splice_pipe_desc spd = { 2271 .pages = pages, 2272 .partial = partial, 2273 .nr_pages_max = MAX_SKB_FRAGS, 2274 .ops = &nosteal_pipe_buf_ops, 2275 .spd_release = sock_spd_release, 2276 }; 2277 int ret = 0; 2278 2279 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2280 2281 if (spd.nr_pages) 2282 ret = splice_to_pipe(pipe, &spd); 2283 2284 return ret; 2285 } 2286 EXPORT_SYMBOL_GPL(skb_splice_bits); 2287 2288 /* Send skb data on a socket. Socket must be locked. */ 2289 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2290 int len) 2291 { 2292 unsigned int orig_len = len; 2293 struct sk_buff *head = skb; 2294 unsigned short fragidx; 2295 int slen, ret; 2296 2297 do_frag_list: 2298 2299 /* Deal with head data */ 2300 while (offset < skb_headlen(skb) && len) { 2301 struct kvec kv; 2302 struct msghdr msg; 2303 2304 slen = min_t(int, len, skb_headlen(skb) - offset); 2305 kv.iov_base = skb->data + offset; 2306 kv.iov_len = slen; 2307 memset(&msg, 0, sizeof(msg)); 2308 2309 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2310 if (ret <= 0) 2311 goto error; 2312 2313 offset += ret; 2314 len -= ret; 2315 } 2316 2317 /* All the data was skb head? */ 2318 if (!len) 2319 goto out; 2320 2321 /* Make offset relative to start of frags */ 2322 offset -= skb_headlen(skb); 2323 2324 /* Find where we are in frag list */ 2325 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2327 2328 if (offset < frag->size) 2329 break; 2330 2331 offset -= frag->size; 2332 } 2333 2334 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2335 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2336 2337 slen = min_t(size_t, len, frag->size - offset); 2338 2339 while (slen) { 2340 ret = kernel_sendpage_locked(sk, frag->page.p, 2341 frag->page_offset + offset, 2342 slen, MSG_DONTWAIT); 2343 if (ret <= 0) 2344 goto error; 2345 2346 len -= ret; 2347 offset += ret; 2348 slen -= ret; 2349 } 2350 2351 offset = 0; 2352 } 2353 2354 if (len) { 2355 /* Process any frag lists */ 2356 2357 if (skb == head) { 2358 if (skb_has_frag_list(skb)) { 2359 skb = skb_shinfo(skb)->frag_list; 2360 goto do_frag_list; 2361 } 2362 } else if (skb->next) { 2363 skb = skb->next; 2364 goto do_frag_list; 2365 } 2366 } 2367 2368 out: 2369 return orig_len - len; 2370 2371 error: 2372 return orig_len == len ? ret : orig_len - len; 2373 } 2374 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2375 2376 /** 2377 * skb_store_bits - store bits from kernel buffer to skb 2378 * @skb: destination buffer 2379 * @offset: offset in destination 2380 * @from: source buffer 2381 * @len: number of bytes to copy 2382 * 2383 * Copy the specified number of bytes from the source buffer to the 2384 * destination skb. This function handles all the messy bits of 2385 * traversing fragment lists and such. 2386 */ 2387 2388 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2389 { 2390 int start = skb_headlen(skb); 2391 struct sk_buff *frag_iter; 2392 int i, copy; 2393 2394 if (offset > (int)skb->len - len) 2395 goto fault; 2396 2397 if ((copy = start - offset) > 0) { 2398 if (copy > len) 2399 copy = len; 2400 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2401 if ((len -= copy) == 0) 2402 return 0; 2403 offset += copy; 2404 from += copy; 2405 } 2406 2407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2408 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2409 int end; 2410 2411 WARN_ON(start > offset + len); 2412 2413 end = start + skb_frag_size(frag); 2414 if ((copy = end - offset) > 0) { 2415 u32 p_off, p_len, copied; 2416 struct page *p; 2417 u8 *vaddr; 2418 2419 if (copy > len) 2420 copy = len; 2421 2422 skb_frag_foreach_page(frag, 2423 frag->page_offset + offset - start, 2424 copy, p, p_off, p_len, copied) { 2425 vaddr = kmap_atomic(p); 2426 memcpy(vaddr + p_off, from + copied, p_len); 2427 kunmap_atomic(vaddr); 2428 } 2429 2430 if ((len -= copy) == 0) 2431 return 0; 2432 offset += copy; 2433 from += copy; 2434 } 2435 start = end; 2436 } 2437 2438 skb_walk_frags(skb, frag_iter) { 2439 int end; 2440 2441 WARN_ON(start > offset + len); 2442 2443 end = start + frag_iter->len; 2444 if ((copy = end - offset) > 0) { 2445 if (copy > len) 2446 copy = len; 2447 if (skb_store_bits(frag_iter, offset - start, 2448 from, copy)) 2449 goto fault; 2450 if ((len -= copy) == 0) 2451 return 0; 2452 offset += copy; 2453 from += copy; 2454 } 2455 start = end; 2456 } 2457 if (!len) 2458 return 0; 2459 2460 fault: 2461 return -EFAULT; 2462 } 2463 EXPORT_SYMBOL(skb_store_bits); 2464 2465 /* Checksum skb data. */ 2466 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2467 __wsum csum, const struct skb_checksum_ops *ops) 2468 { 2469 int start = skb_headlen(skb); 2470 int i, copy = start - offset; 2471 struct sk_buff *frag_iter; 2472 int pos = 0; 2473 2474 /* Checksum header. */ 2475 if (copy > 0) { 2476 if (copy > len) 2477 copy = len; 2478 csum = ops->update(skb->data + offset, copy, csum); 2479 if ((len -= copy) == 0) 2480 return csum; 2481 offset += copy; 2482 pos = copy; 2483 } 2484 2485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2486 int end; 2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2488 2489 WARN_ON(start > offset + len); 2490 2491 end = start + skb_frag_size(frag); 2492 if ((copy = end - offset) > 0) { 2493 u32 p_off, p_len, copied; 2494 struct page *p; 2495 __wsum csum2; 2496 u8 *vaddr; 2497 2498 if (copy > len) 2499 copy = len; 2500 2501 skb_frag_foreach_page(frag, 2502 frag->page_offset + offset - start, 2503 copy, p, p_off, p_len, copied) { 2504 vaddr = kmap_atomic(p); 2505 csum2 = ops->update(vaddr + p_off, p_len, 0); 2506 kunmap_atomic(vaddr); 2507 csum = ops->combine(csum, csum2, pos, p_len); 2508 pos += p_len; 2509 } 2510 2511 if (!(len -= copy)) 2512 return csum; 2513 offset += copy; 2514 } 2515 start = end; 2516 } 2517 2518 skb_walk_frags(skb, frag_iter) { 2519 int end; 2520 2521 WARN_ON(start > offset + len); 2522 2523 end = start + frag_iter->len; 2524 if ((copy = end - offset) > 0) { 2525 __wsum csum2; 2526 if (copy > len) 2527 copy = len; 2528 csum2 = __skb_checksum(frag_iter, offset - start, 2529 copy, 0, ops); 2530 csum = ops->combine(csum, csum2, pos, copy); 2531 if ((len -= copy) == 0) 2532 return csum; 2533 offset += copy; 2534 pos += copy; 2535 } 2536 start = end; 2537 } 2538 BUG_ON(len); 2539 2540 return csum; 2541 } 2542 EXPORT_SYMBOL(__skb_checksum); 2543 2544 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2545 int len, __wsum csum) 2546 { 2547 const struct skb_checksum_ops ops = { 2548 .update = csum_partial_ext, 2549 .combine = csum_block_add_ext, 2550 }; 2551 2552 return __skb_checksum(skb, offset, len, csum, &ops); 2553 } 2554 EXPORT_SYMBOL(skb_checksum); 2555 2556 /* Both of above in one bottle. */ 2557 2558 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2559 u8 *to, int len, __wsum csum) 2560 { 2561 int start = skb_headlen(skb); 2562 int i, copy = start - offset; 2563 struct sk_buff *frag_iter; 2564 int pos = 0; 2565 2566 /* Copy header. */ 2567 if (copy > 0) { 2568 if (copy > len) 2569 copy = len; 2570 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2571 copy, csum); 2572 if ((len -= copy) == 0) 2573 return csum; 2574 offset += copy; 2575 to += copy; 2576 pos = copy; 2577 } 2578 2579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2580 int end; 2581 2582 WARN_ON(start > offset + len); 2583 2584 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2585 if ((copy = end - offset) > 0) { 2586 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2587 u32 p_off, p_len, copied; 2588 struct page *p; 2589 __wsum csum2; 2590 u8 *vaddr; 2591 2592 if (copy > len) 2593 copy = len; 2594 2595 skb_frag_foreach_page(frag, 2596 frag->page_offset + offset - start, 2597 copy, p, p_off, p_len, copied) { 2598 vaddr = kmap_atomic(p); 2599 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2600 to + copied, 2601 p_len, 0); 2602 kunmap_atomic(vaddr); 2603 csum = csum_block_add(csum, csum2, pos); 2604 pos += p_len; 2605 } 2606 2607 if (!(len -= copy)) 2608 return csum; 2609 offset += copy; 2610 to += copy; 2611 } 2612 start = end; 2613 } 2614 2615 skb_walk_frags(skb, frag_iter) { 2616 __wsum csum2; 2617 int end; 2618 2619 WARN_ON(start > offset + len); 2620 2621 end = start + frag_iter->len; 2622 if ((copy = end - offset) > 0) { 2623 if (copy > len) 2624 copy = len; 2625 csum2 = skb_copy_and_csum_bits(frag_iter, 2626 offset - start, 2627 to, copy, 0); 2628 csum = csum_block_add(csum, csum2, pos); 2629 if ((len -= copy) == 0) 2630 return csum; 2631 offset += copy; 2632 to += copy; 2633 pos += copy; 2634 } 2635 start = end; 2636 } 2637 BUG_ON(len); 2638 return csum; 2639 } 2640 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2641 2642 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2643 { 2644 __sum16 sum; 2645 2646 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2647 /* See comments in __skb_checksum_complete(). */ 2648 if (likely(!sum)) { 2649 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2650 !skb->csum_complete_sw) 2651 netdev_rx_csum_fault(skb->dev, skb); 2652 } 2653 if (!skb_shared(skb)) 2654 skb->csum_valid = !sum; 2655 return sum; 2656 } 2657 EXPORT_SYMBOL(__skb_checksum_complete_head); 2658 2659 /* This function assumes skb->csum already holds pseudo header's checksum, 2660 * which has been changed from the hardware checksum, for example, by 2661 * __skb_checksum_validate_complete(). And, the original skb->csum must 2662 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2663 * 2664 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2665 * zero. The new checksum is stored back into skb->csum unless the skb is 2666 * shared. 2667 */ 2668 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2669 { 2670 __wsum csum; 2671 __sum16 sum; 2672 2673 csum = skb_checksum(skb, 0, skb->len, 0); 2674 2675 sum = csum_fold(csum_add(skb->csum, csum)); 2676 /* This check is inverted, because we already knew the hardware 2677 * checksum is invalid before calling this function. So, if the 2678 * re-computed checksum is valid instead, then we have a mismatch 2679 * between the original skb->csum and skb_checksum(). This means either 2680 * the original hardware checksum is incorrect or we screw up skb->csum 2681 * when moving skb->data around. 2682 */ 2683 if (likely(!sum)) { 2684 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2685 !skb->csum_complete_sw) 2686 netdev_rx_csum_fault(skb->dev, skb); 2687 } 2688 2689 if (!skb_shared(skb)) { 2690 /* Save full packet checksum */ 2691 skb->csum = csum; 2692 skb->ip_summed = CHECKSUM_COMPLETE; 2693 skb->csum_complete_sw = 1; 2694 skb->csum_valid = !sum; 2695 } 2696 2697 return sum; 2698 } 2699 EXPORT_SYMBOL(__skb_checksum_complete); 2700 2701 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2702 { 2703 net_warn_ratelimited( 2704 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2705 __func__); 2706 return 0; 2707 } 2708 2709 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2710 int offset, int len) 2711 { 2712 net_warn_ratelimited( 2713 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2714 __func__); 2715 return 0; 2716 } 2717 2718 static const struct skb_checksum_ops default_crc32c_ops = { 2719 .update = warn_crc32c_csum_update, 2720 .combine = warn_crc32c_csum_combine, 2721 }; 2722 2723 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2724 &default_crc32c_ops; 2725 EXPORT_SYMBOL(crc32c_csum_stub); 2726 2727 /** 2728 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2729 * @from: source buffer 2730 * 2731 * Calculates the amount of linear headroom needed in the 'to' skb passed 2732 * into skb_zerocopy(). 2733 */ 2734 unsigned int 2735 skb_zerocopy_headlen(const struct sk_buff *from) 2736 { 2737 unsigned int hlen = 0; 2738 2739 if (!from->head_frag || 2740 skb_headlen(from) < L1_CACHE_BYTES || 2741 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2742 hlen = skb_headlen(from); 2743 2744 if (skb_has_frag_list(from)) 2745 hlen = from->len; 2746 2747 return hlen; 2748 } 2749 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2750 2751 /** 2752 * skb_zerocopy - Zero copy skb to skb 2753 * @to: destination buffer 2754 * @from: source buffer 2755 * @len: number of bytes to copy from source buffer 2756 * @hlen: size of linear headroom in destination buffer 2757 * 2758 * Copies up to `len` bytes from `from` to `to` by creating references 2759 * to the frags in the source buffer. 2760 * 2761 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2762 * headroom in the `to` buffer. 2763 * 2764 * Return value: 2765 * 0: everything is OK 2766 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2767 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2768 */ 2769 int 2770 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2771 { 2772 int i, j = 0; 2773 int plen = 0; /* length of skb->head fragment */ 2774 int ret; 2775 struct page *page; 2776 unsigned int offset; 2777 2778 BUG_ON(!from->head_frag && !hlen); 2779 2780 /* dont bother with small payloads */ 2781 if (len <= skb_tailroom(to)) 2782 return skb_copy_bits(from, 0, skb_put(to, len), len); 2783 2784 if (hlen) { 2785 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2786 if (unlikely(ret)) 2787 return ret; 2788 len -= hlen; 2789 } else { 2790 plen = min_t(int, skb_headlen(from), len); 2791 if (plen) { 2792 page = virt_to_head_page(from->head); 2793 offset = from->data - (unsigned char *)page_address(page); 2794 __skb_fill_page_desc(to, 0, page, offset, plen); 2795 get_page(page); 2796 j = 1; 2797 len -= plen; 2798 } 2799 } 2800 2801 to->truesize += len + plen; 2802 to->len += len + plen; 2803 to->data_len += len + plen; 2804 2805 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2806 skb_tx_error(from); 2807 return -ENOMEM; 2808 } 2809 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2810 2811 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2812 if (!len) 2813 break; 2814 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2815 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2816 len -= skb_shinfo(to)->frags[j].size; 2817 skb_frag_ref(to, j); 2818 j++; 2819 } 2820 skb_shinfo(to)->nr_frags = j; 2821 2822 return 0; 2823 } 2824 EXPORT_SYMBOL_GPL(skb_zerocopy); 2825 2826 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2827 { 2828 __wsum csum; 2829 long csstart; 2830 2831 if (skb->ip_summed == CHECKSUM_PARTIAL) 2832 csstart = skb_checksum_start_offset(skb); 2833 else 2834 csstart = skb_headlen(skb); 2835 2836 BUG_ON(csstart > skb_headlen(skb)); 2837 2838 skb_copy_from_linear_data(skb, to, csstart); 2839 2840 csum = 0; 2841 if (csstart != skb->len) 2842 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2843 skb->len - csstart, 0); 2844 2845 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2846 long csstuff = csstart + skb->csum_offset; 2847 2848 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2849 } 2850 } 2851 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2852 2853 /** 2854 * skb_dequeue - remove from the head of the queue 2855 * @list: list to dequeue from 2856 * 2857 * Remove the head of the list. The list lock is taken so the function 2858 * may be used safely with other locking list functions. The head item is 2859 * returned or %NULL if the list is empty. 2860 */ 2861 2862 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2863 { 2864 unsigned long flags; 2865 struct sk_buff *result; 2866 2867 spin_lock_irqsave(&list->lock, flags); 2868 result = __skb_dequeue(list); 2869 spin_unlock_irqrestore(&list->lock, flags); 2870 return result; 2871 } 2872 EXPORT_SYMBOL(skb_dequeue); 2873 2874 /** 2875 * skb_dequeue_tail - remove from the tail of the queue 2876 * @list: list to dequeue from 2877 * 2878 * Remove the tail of the list. The list lock is taken so the function 2879 * may be used safely with other locking list functions. The tail item is 2880 * returned or %NULL if the list is empty. 2881 */ 2882 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2883 { 2884 unsigned long flags; 2885 struct sk_buff *result; 2886 2887 spin_lock_irqsave(&list->lock, flags); 2888 result = __skb_dequeue_tail(list); 2889 spin_unlock_irqrestore(&list->lock, flags); 2890 return result; 2891 } 2892 EXPORT_SYMBOL(skb_dequeue_tail); 2893 2894 /** 2895 * skb_queue_purge - empty a list 2896 * @list: list to empty 2897 * 2898 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2899 * the list and one reference dropped. This function takes the list 2900 * lock and is atomic with respect to other list locking functions. 2901 */ 2902 void skb_queue_purge(struct sk_buff_head *list) 2903 { 2904 struct sk_buff *skb; 2905 while ((skb = skb_dequeue(list)) != NULL) 2906 kfree_skb(skb); 2907 } 2908 EXPORT_SYMBOL(skb_queue_purge); 2909 2910 /** 2911 * skb_rbtree_purge - empty a skb rbtree 2912 * @root: root of the rbtree to empty 2913 * Return value: the sum of truesizes of all purged skbs. 2914 * 2915 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2916 * the list and one reference dropped. This function does not take 2917 * any lock. Synchronization should be handled by the caller (e.g., TCP 2918 * out-of-order queue is protected by the socket lock). 2919 */ 2920 unsigned int skb_rbtree_purge(struct rb_root *root) 2921 { 2922 struct rb_node *p = rb_first(root); 2923 unsigned int sum = 0; 2924 2925 while (p) { 2926 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2927 2928 p = rb_next(p); 2929 rb_erase(&skb->rbnode, root); 2930 sum += skb->truesize; 2931 kfree_skb(skb); 2932 } 2933 return sum; 2934 } 2935 2936 /** 2937 * skb_queue_head - queue a buffer at the list head 2938 * @list: list to use 2939 * @newsk: buffer to queue 2940 * 2941 * Queue a buffer at the start of the list. This function takes the 2942 * list lock and can be used safely with other locking &sk_buff functions 2943 * safely. 2944 * 2945 * A buffer cannot be placed on two lists at the same time. 2946 */ 2947 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2948 { 2949 unsigned long flags; 2950 2951 spin_lock_irqsave(&list->lock, flags); 2952 __skb_queue_head(list, newsk); 2953 spin_unlock_irqrestore(&list->lock, flags); 2954 } 2955 EXPORT_SYMBOL(skb_queue_head); 2956 2957 /** 2958 * skb_queue_tail - queue a buffer at the list tail 2959 * @list: list to use 2960 * @newsk: buffer to queue 2961 * 2962 * Queue a buffer at the tail of the list. This function takes the 2963 * list lock and can be used safely with other locking &sk_buff functions 2964 * safely. 2965 * 2966 * A buffer cannot be placed on two lists at the same time. 2967 */ 2968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2969 { 2970 unsigned long flags; 2971 2972 spin_lock_irqsave(&list->lock, flags); 2973 __skb_queue_tail(list, newsk); 2974 spin_unlock_irqrestore(&list->lock, flags); 2975 } 2976 EXPORT_SYMBOL(skb_queue_tail); 2977 2978 /** 2979 * skb_unlink - remove a buffer from a list 2980 * @skb: buffer to remove 2981 * @list: list to use 2982 * 2983 * Remove a packet from a list. The list locks are taken and this 2984 * function is atomic with respect to other list locked calls 2985 * 2986 * You must know what list the SKB is on. 2987 */ 2988 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2989 { 2990 unsigned long flags; 2991 2992 spin_lock_irqsave(&list->lock, flags); 2993 __skb_unlink(skb, list); 2994 spin_unlock_irqrestore(&list->lock, flags); 2995 } 2996 EXPORT_SYMBOL(skb_unlink); 2997 2998 /** 2999 * skb_append - append a buffer 3000 * @old: buffer to insert after 3001 * @newsk: buffer to insert 3002 * @list: list to use 3003 * 3004 * Place a packet after a given packet in a list. The list locks are taken 3005 * and this function is atomic with respect to other list locked calls. 3006 * A buffer cannot be placed on two lists at the same time. 3007 */ 3008 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3009 { 3010 unsigned long flags; 3011 3012 spin_lock_irqsave(&list->lock, flags); 3013 __skb_queue_after(list, old, newsk); 3014 spin_unlock_irqrestore(&list->lock, flags); 3015 } 3016 EXPORT_SYMBOL(skb_append); 3017 3018 static inline void skb_split_inside_header(struct sk_buff *skb, 3019 struct sk_buff* skb1, 3020 const u32 len, const int pos) 3021 { 3022 int i; 3023 3024 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3025 pos - len); 3026 /* And move data appendix as is. */ 3027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3028 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3029 3030 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3031 skb_shinfo(skb)->nr_frags = 0; 3032 skb1->data_len = skb->data_len; 3033 skb1->len += skb1->data_len; 3034 skb->data_len = 0; 3035 skb->len = len; 3036 skb_set_tail_pointer(skb, len); 3037 } 3038 3039 static inline void skb_split_no_header(struct sk_buff *skb, 3040 struct sk_buff* skb1, 3041 const u32 len, int pos) 3042 { 3043 int i, k = 0; 3044 const int nfrags = skb_shinfo(skb)->nr_frags; 3045 3046 skb_shinfo(skb)->nr_frags = 0; 3047 skb1->len = skb1->data_len = skb->len - len; 3048 skb->len = len; 3049 skb->data_len = len - pos; 3050 3051 for (i = 0; i < nfrags; i++) { 3052 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3053 3054 if (pos + size > len) { 3055 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3056 3057 if (pos < len) { 3058 /* Split frag. 3059 * We have two variants in this case: 3060 * 1. Move all the frag to the second 3061 * part, if it is possible. F.e. 3062 * this approach is mandatory for TUX, 3063 * where splitting is expensive. 3064 * 2. Split is accurately. We make this. 3065 */ 3066 skb_frag_ref(skb, i); 3067 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3068 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3069 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3070 skb_shinfo(skb)->nr_frags++; 3071 } 3072 k++; 3073 } else 3074 skb_shinfo(skb)->nr_frags++; 3075 pos += size; 3076 } 3077 skb_shinfo(skb1)->nr_frags = k; 3078 } 3079 3080 /** 3081 * skb_split - Split fragmented skb to two parts at length len. 3082 * @skb: the buffer to split 3083 * @skb1: the buffer to receive the second part 3084 * @len: new length for skb 3085 */ 3086 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3087 { 3088 int pos = skb_headlen(skb); 3089 3090 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3091 SKBTX_SHARED_FRAG; 3092 skb_zerocopy_clone(skb1, skb, 0); 3093 if (len < pos) /* Split line is inside header. */ 3094 skb_split_inside_header(skb, skb1, len, pos); 3095 else /* Second chunk has no header, nothing to copy. */ 3096 skb_split_no_header(skb, skb1, len, pos); 3097 } 3098 EXPORT_SYMBOL(skb_split); 3099 3100 /* Shifting from/to a cloned skb is a no-go. 3101 * 3102 * Caller cannot keep skb_shinfo related pointers past calling here! 3103 */ 3104 static int skb_prepare_for_shift(struct sk_buff *skb) 3105 { 3106 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3107 } 3108 3109 /** 3110 * skb_shift - Shifts paged data partially from skb to another 3111 * @tgt: buffer into which tail data gets added 3112 * @skb: buffer from which the paged data comes from 3113 * @shiftlen: shift up to this many bytes 3114 * 3115 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3116 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3117 * It's up to caller to free skb if everything was shifted. 3118 * 3119 * If @tgt runs out of frags, the whole operation is aborted. 3120 * 3121 * Skb cannot include anything else but paged data while tgt is allowed 3122 * to have non-paged data as well. 3123 * 3124 * TODO: full sized shift could be optimized but that would need 3125 * specialized skb free'er to handle frags without up-to-date nr_frags. 3126 */ 3127 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3128 { 3129 int from, to, merge, todo; 3130 struct skb_frag_struct *fragfrom, *fragto; 3131 3132 BUG_ON(shiftlen > skb->len); 3133 3134 if (skb_headlen(skb)) 3135 return 0; 3136 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3137 return 0; 3138 3139 todo = shiftlen; 3140 from = 0; 3141 to = skb_shinfo(tgt)->nr_frags; 3142 fragfrom = &skb_shinfo(skb)->frags[from]; 3143 3144 /* Actual merge is delayed until the point when we know we can 3145 * commit all, so that we don't have to undo partial changes 3146 */ 3147 if (!to || 3148 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3149 fragfrom->page_offset)) { 3150 merge = -1; 3151 } else { 3152 merge = to - 1; 3153 3154 todo -= skb_frag_size(fragfrom); 3155 if (todo < 0) { 3156 if (skb_prepare_for_shift(skb) || 3157 skb_prepare_for_shift(tgt)) 3158 return 0; 3159 3160 /* All previous frag pointers might be stale! */ 3161 fragfrom = &skb_shinfo(skb)->frags[from]; 3162 fragto = &skb_shinfo(tgt)->frags[merge]; 3163 3164 skb_frag_size_add(fragto, shiftlen); 3165 skb_frag_size_sub(fragfrom, shiftlen); 3166 fragfrom->page_offset += shiftlen; 3167 3168 goto onlymerged; 3169 } 3170 3171 from++; 3172 } 3173 3174 /* Skip full, not-fitting skb to avoid expensive operations */ 3175 if ((shiftlen == skb->len) && 3176 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3177 return 0; 3178 3179 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3180 return 0; 3181 3182 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3183 if (to == MAX_SKB_FRAGS) 3184 return 0; 3185 3186 fragfrom = &skb_shinfo(skb)->frags[from]; 3187 fragto = &skb_shinfo(tgt)->frags[to]; 3188 3189 if (todo >= skb_frag_size(fragfrom)) { 3190 *fragto = *fragfrom; 3191 todo -= skb_frag_size(fragfrom); 3192 from++; 3193 to++; 3194 3195 } else { 3196 __skb_frag_ref(fragfrom); 3197 fragto->page = fragfrom->page; 3198 fragto->page_offset = fragfrom->page_offset; 3199 skb_frag_size_set(fragto, todo); 3200 3201 fragfrom->page_offset += todo; 3202 skb_frag_size_sub(fragfrom, todo); 3203 todo = 0; 3204 3205 to++; 3206 break; 3207 } 3208 } 3209 3210 /* Ready to "commit" this state change to tgt */ 3211 skb_shinfo(tgt)->nr_frags = to; 3212 3213 if (merge >= 0) { 3214 fragfrom = &skb_shinfo(skb)->frags[0]; 3215 fragto = &skb_shinfo(tgt)->frags[merge]; 3216 3217 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3218 __skb_frag_unref(fragfrom); 3219 } 3220 3221 /* Reposition in the original skb */ 3222 to = 0; 3223 while (from < skb_shinfo(skb)->nr_frags) 3224 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3225 skb_shinfo(skb)->nr_frags = to; 3226 3227 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3228 3229 onlymerged: 3230 /* Most likely the tgt won't ever need its checksum anymore, skb on 3231 * the other hand might need it if it needs to be resent 3232 */ 3233 tgt->ip_summed = CHECKSUM_PARTIAL; 3234 skb->ip_summed = CHECKSUM_PARTIAL; 3235 3236 /* Yak, is it really working this way? Some helper please? */ 3237 skb->len -= shiftlen; 3238 skb->data_len -= shiftlen; 3239 skb->truesize -= shiftlen; 3240 tgt->len += shiftlen; 3241 tgt->data_len += shiftlen; 3242 tgt->truesize += shiftlen; 3243 3244 return shiftlen; 3245 } 3246 3247 /** 3248 * skb_prepare_seq_read - Prepare a sequential read of skb data 3249 * @skb: the buffer to read 3250 * @from: lower offset of data to be read 3251 * @to: upper offset of data to be read 3252 * @st: state variable 3253 * 3254 * Initializes the specified state variable. Must be called before 3255 * invoking skb_seq_read() for the first time. 3256 */ 3257 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3258 unsigned int to, struct skb_seq_state *st) 3259 { 3260 st->lower_offset = from; 3261 st->upper_offset = to; 3262 st->root_skb = st->cur_skb = skb; 3263 st->frag_idx = st->stepped_offset = 0; 3264 st->frag_data = NULL; 3265 } 3266 EXPORT_SYMBOL(skb_prepare_seq_read); 3267 3268 /** 3269 * skb_seq_read - Sequentially read skb data 3270 * @consumed: number of bytes consumed by the caller so far 3271 * @data: destination pointer for data to be returned 3272 * @st: state variable 3273 * 3274 * Reads a block of skb data at @consumed relative to the 3275 * lower offset specified to skb_prepare_seq_read(). Assigns 3276 * the head of the data block to @data and returns the length 3277 * of the block or 0 if the end of the skb data or the upper 3278 * offset has been reached. 3279 * 3280 * The caller is not required to consume all of the data 3281 * returned, i.e. @consumed is typically set to the number 3282 * of bytes already consumed and the next call to 3283 * skb_seq_read() will return the remaining part of the block. 3284 * 3285 * Note 1: The size of each block of data returned can be arbitrary, 3286 * this limitation is the cost for zerocopy sequential 3287 * reads of potentially non linear data. 3288 * 3289 * Note 2: Fragment lists within fragments are not implemented 3290 * at the moment, state->root_skb could be replaced with 3291 * a stack for this purpose. 3292 */ 3293 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3294 struct skb_seq_state *st) 3295 { 3296 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3297 skb_frag_t *frag; 3298 3299 if (unlikely(abs_offset >= st->upper_offset)) { 3300 if (st->frag_data) { 3301 kunmap_atomic(st->frag_data); 3302 st->frag_data = NULL; 3303 } 3304 return 0; 3305 } 3306 3307 next_skb: 3308 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3309 3310 if (abs_offset < block_limit && !st->frag_data) { 3311 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3312 return block_limit - abs_offset; 3313 } 3314 3315 if (st->frag_idx == 0 && !st->frag_data) 3316 st->stepped_offset += skb_headlen(st->cur_skb); 3317 3318 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3319 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3320 block_limit = skb_frag_size(frag) + st->stepped_offset; 3321 3322 if (abs_offset < block_limit) { 3323 if (!st->frag_data) 3324 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3325 3326 *data = (u8 *) st->frag_data + frag->page_offset + 3327 (abs_offset - st->stepped_offset); 3328 3329 return block_limit - abs_offset; 3330 } 3331 3332 if (st->frag_data) { 3333 kunmap_atomic(st->frag_data); 3334 st->frag_data = NULL; 3335 } 3336 3337 st->frag_idx++; 3338 st->stepped_offset += skb_frag_size(frag); 3339 } 3340 3341 if (st->frag_data) { 3342 kunmap_atomic(st->frag_data); 3343 st->frag_data = NULL; 3344 } 3345 3346 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3347 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3348 st->frag_idx = 0; 3349 goto next_skb; 3350 } else if (st->cur_skb->next) { 3351 st->cur_skb = st->cur_skb->next; 3352 st->frag_idx = 0; 3353 goto next_skb; 3354 } 3355 3356 return 0; 3357 } 3358 EXPORT_SYMBOL(skb_seq_read); 3359 3360 /** 3361 * skb_abort_seq_read - Abort a sequential read of skb data 3362 * @st: state variable 3363 * 3364 * Must be called if skb_seq_read() was not called until it 3365 * returned 0. 3366 */ 3367 void skb_abort_seq_read(struct skb_seq_state *st) 3368 { 3369 if (st->frag_data) 3370 kunmap_atomic(st->frag_data); 3371 } 3372 EXPORT_SYMBOL(skb_abort_seq_read); 3373 3374 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3375 3376 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3377 struct ts_config *conf, 3378 struct ts_state *state) 3379 { 3380 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3381 } 3382 3383 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3384 { 3385 skb_abort_seq_read(TS_SKB_CB(state)); 3386 } 3387 3388 /** 3389 * skb_find_text - Find a text pattern in skb data 3390 * @skb: the buffer to look in 3391 * @from: search offset 3392 * @to: search limit 3393 * @config: textsearch configuration 3394 * 3395 * Finds a pattern in the skb data according to the specified 3396 * textsearch configuration. Use textsearch_next() to retrieve 3397 * subsequent occurrences of the pattern. Returns the offset 3398 * to the first occurrence or UINT_MAX if no match was found. 3399 */ 3400 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3401 unsigned int to, struct ts_config *config) 3402 { 3403 struct ts_state state; 3404 unsigned int ret; 3405 3406 config->get_next_block = skb_ts_get_next_block; 3407 config->finish = skb_ts_finish; 3408 3409 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3410 3411 ret = textsearch_find(config, &state); 3412 return (ret <= to - from ? ret : UINT_MAX); 3413 } 3414 EXPORT_SYMBOL(skb_find_text); 3415 3416 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3417 int offset, size_t size) 3418 { 3419 int i = skb_shinfo(skb)->nr_frags; 3420 3421 if (skb_can_coalesce(skb, i, page, offset)) { 3422 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3423 } else if (i < MAX_SKB_FRAGS) { 3424 get_page(page); 3425 skb_fill_page_desc(skb, i, page, offset, size); 3426 } else { 3427 return -EMSGSIZE; 3428 } 3429 3430 return 0; 3431 } 3432 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3433 3434 /** 3435 * skb_pull_rcsum - pull skb and update receive checksum 3436 * @skb: buffer to update 3437 * @len: length of data pulled 3438 * 3439 * This function performs an skb_pull on the packet and updates 3440 * the CHECKSUM_COMPLETE checksum. It should be used on 3441 * receive path processing instead of skb_pull unless you know 3442 * that the checksum difference is zero (e.g., a valid IP header) 3443 * or you are setting ip_summed to CHECKSUM_NONE. 3444 */ 3445 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3446 { 3447 unsigned char *data = skb->data; 3448 3449 BUG_ON(len > skb->len); 3450 __skb_pull(skb, len); 3451 skb_postpull_rcsum(skb, data, len); 3452 return skb->data; 3453 } 3454 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3455 3456 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3457 { 3458 skb_frag_t head_frag; 3459 struct page *page; 3460 3461 page = virt_to_head_page(frag_skb->head); 3462 head_frag.page.p = page; 3463 head_frag.page_offset = frag_skb->data - 3464 (unsigned char *)page_address(page); 3465 head_frag.size = skb_headlen(frag_skb); 3466 return head_frag; 3467 } 3468 3469 /** 3470 * skb_segment - Perform protocol segmentation on skb. 3471 * @head_skb: buffer to segment 3472 * @features: features for the output path (see dev->features) 3473 * 3474 * This function performs segmentation on the given skb. It returns 3475 * a pointer to the first in a list of new skbs for the segments. 3476 * In case of error it returns ERR_PTR(err). 3477 */ 3478 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3479 netdev_features_t features) 3480 { 3481 struct sk_buff *segs = NULL; 3482 struct sk_buff *tail = NULL; 3483 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3484 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3485 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3486 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3487 struct sk_buff *frag_skb = head_skb; 3488 unsigned int offset = doffset; 3489 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3490 unsigned int partial_segs = 0; 3491 unsigned int headroom; 3492 unsigned int len = head_skb->len; 3493 __be16 proto; 3494 bool csum, sg; 3495 int nfrags = skb_shinfo(head_skb)->nr_frags; 3496 int err = -ENOMEM; 3497 int i = 0; 3498 int pos; 3499 int dummy; 3500 3501 __skb_push(head_skb, doffset); 3502 proto = skb_network_protocol(head_skb, &dummy); 3503 if (unlikely(!proto)) 3504 return ERR_PTR(-EINVAL); 3505 3506 sg = !!(features & NETIF_F_SG); 3507 csum = !!can_checksum_protocol(features, proto); 3508 3509 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3510 if (!(features & NETIF_F_GSO_PARTIAL)) { 3511 struct sk_buff *iter; 3512 unsigned int frag_len; 3513 3514 if (!list_skb || 3515 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3516 goto normal; 3517 3518 /* If we get here then all the required 3519 * GSO features except frag_list are supported. 3520 * Try to split the SKB to multiple GSO SKBs 3521 * with no frag_list. 3522 * Currently we can do that only when the buffers don't 3523 * have a linear part and all the buffers except 3524 * the last are of the same length. 3525 */ 3526 frag_len = list_skb->len; 3527 skb_walk_frags(head_skb, iter) { 3528 if (frag_len != iter->len && iter->next) 3529 goto normal; 3530 if (skb_headlen(iter) && !iter->head_frag) 3531 goto normal; 3532 3533 len -= iter->len; 3534 } 3535 3536 if (len != frag_len) 3537 goto normal; 3538 } 3539 3540 /* GSO partial only requires that we trim off any excess that 3541 * doesn't fit into an MSS sized block, so take care of that 3542 * now. 3543 */ 3544 partial_segs = len / mss; 3545 if (partial_segs > 1) 3546 mss *= partial_segs; 3547 else 3548 partial_segs = 0; 3549 } 3550 3551 normal: 3552 headroom = skb_headroom(head_skb); 3553 pos = skb_headlen(head_skb); 3554 3555 do { 3556 struct sk_buff *nskb; 3557 skb_frag_t *nskb_frag; 3558 int hsize; 3559 int size; 3560 3561 if (unlikely(mss == GSO_BY_FRAGS)) { 3562 len = list_skb->len; 3563 } else { 3564 len = head_skb->len - offset; 3565 if (len > mss) 3566 len = mss; 3567 } 3568 3569 hsize = skb_headlen(head_skb) - offset; 3570 if (hsize < 0) 3571 hsize = 0; 3572 if (hsize > len || !sg) 3573 hsize = len; 3574 3575 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3576 (skb_headlen(list_skb) == len || sg)) { 3577 BUG_ON(skb_headlen(list_skb) > len); 3578 3579 i = 0; 3580 nfrags = skb_shinfo(list_skb)->nr_frags; 3581 frag = skb_shinfo(list_skb)->frags; 3582 frag_skb = list_skb; 3583 pos += skb_headlen(list_skb); 3584 3585 while (pos < offset + len) { 3586 BUG_ON(i >= nfrags); 3587 3588 size = skb_frag_size(frag); 3589 if (pos + size > offset + len) 3590 break; 3591 3592 i++; 3593 pos += size; 3594 frag++; 3595 } 3596 3597 nskb = skb_clone(list_skb, GFP_ATOMIC); 3598 list_skb = list_skb->next; 3599 3600 if (unlikely(!nskb)) 3601 goto err; 3602 3603 if (unlikely(pskb_trim(nskb, len))) { 3604 kfree_skb(nskb); 3605 goto err; 3606 } 3607 3608 hsize = skb_end_offset(nskb); 3609 if (skb_cow_head(nskb, doffset + headroom)) { 3610 kfree_skb(nskb); 3611 goto err; 3612 } 3613 3614 nskb->truesize += skb_end_offset(nskb) - hsize; 3615 skb_release_head_state(nskb); 3616 __skb_push(nskb, doffset); 3617 } else { 3618 nskb = __alloc_skb(hsize + doffset + headroom, 3619 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3620 NUMA_NO_NODE); 3621 3622 if (unlikely(!nskb)) 3623 goto err; 3624 3625 skb_reserve(nskb, headroom); 3626 __skb_put(nskb, doffset); 3627 } 3628 3629 if (segs) 3630 tail->next = nskb; 3631 else 3632 segs = nskb; 3633 tail = nskb; 3634 3635 __copy_skb_header(nskb, head_skb); 3636 3637 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3638 skb_reset_mac_len(nskb); 3639 3640 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3641 nskb->data - tnl_hlen, 3642 doffset + tnl_hlen); 3643 3644 if (nskb->len == len + doffset) 3645 goto perform_csum_check; 3646 3647 if (!sg) { 3648 if (!nskb->remcsum_offload) 3649 nskb->ip_summed = CHECKSUM_NONE; 3650 SKB_GSO_CB(nskb)->csum = 3651 skb_copy_and_csum_bits(head_skb, offset, 3652 skb_put(nskb, len), 3653 len, 0); 3654 SKB_GSO_CB(nskb)->csum_start = 3655 skb_headroom(nskb) + doffset; 3656 continue; 3657 } 3658 3659 nskb_frag = skb_shinfo(nskb)->frags; 3660 3661 skb_copy_from_linear_data_offset(head_skb, offset, 3662 skb_put(nskb, hsize), hsize); 3663 3664 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3665 SKBTX_SHARED_FRAG; 3666 3667 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3668 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3669 goto err; 3670 3671 while (pos < offset + len) { 3672 if (i >= nfrags) { 3673 i = 0; 3674 nfrags = skb_shinfo(list_skb)->nr_frags; 3675 frag = skb_shinfo(list_skb)->frags; 3676 frag_skb = list_skb; 3677 if (!skb_headlen(list_skb)) { 3678 BUG_ON(!nfrags); 3679 } else { 3680 BUG_ON(!list_skb->head_frag); 3681 3682 /* to make room for head_frag. */ 3683 i--; 3684 frag--; 3685 } 3686 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3687 skb_zerocopy_clone(nskb, frag_skb, 3688 GFP_ATOMIC)) 3689 goto err; 3690 3691 list_skb = list_skb->next; 3692 } 3693 3694 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3695 MAX_SKB_FRAGS)) { 3696 net_warn_ratelimited( 3697 "skb_segment: too many frags: %u %u\n", 3698 pos, mss); 3699 err = -EINVAL; 3700 goto err; 3701 } 3702 3703 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3704 __skb_frag_ref(nskb_frag); 3705 size = skb_frag_size(nskb_frag); 3706 3707 if (pos < offset) { 3708 nskb_frag->page_offset += offset - pos; 3709 skb_frag_size_sub(nskb_frag, offset - pos); 3710 } 3711 3712 skb_shinfo(nskb)->nr_frags++; 3713 3714 if (pos + size <= offset + len) { 3715 i++; 3716 frag++; 3717 pos += size; 3718 } else { 3719 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3720 goto skip_fraglist; 3721 } 3722 3723 nskb_frag++; 3724 } 3725 3726 skip_fraglist: 3727 nskb->data_len = len - hsize; 3728 nskb->len += nskb->data_len; 3729 nskb->truesize += nskb->data_len; 3730 3731 perform_csum_check: 3732 if (!csum) { 3733 if (skb_has_shared_frag(nskb) && 3734 __skb_linearize(nskb)) 3735 goto err; 3736 3737 if (!nskb->remcsum_offload) 3738 nskb->ip_summed = CHECKSUM_NONE; 3739 SKB_GSO_CB(nskb)->csum = 3740 skb_checksum(nskb, doffset, 3741 nskb->len - doffset, 0); 3742 SKB_GSO_CB(nskb)->csum_start = 3743 skb_headroom(nskb) + doffset; 3744 } 3745 } while ((offset += len) < head_skb->len); 3746 3747 /* Some callers want to get the end of the list. 3748 * Put it in segs->prev to avoid walking the list. 3749 * (see validate_xmit_skb_list() for example) 3750 */ 3751 segs->prev = tail; 3752 3753 if (partial_segs) { 3754 struct sk_buff *iter; 3755 int type = skb_shinfo(head_skb)->gso_type; 3756 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3757 3758 /* Update type to add partial and then remove dodgy if set */ 3759 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3760 type &= ~SKB_GSO_DODGY; 3761 3762 /* Update GSO info and prepare to start updating headers on 3763 * our way back down the stack of protocols. 3764 */ 3765 for (iter = segs; iter; iter = iter->next) { 3766 skb_shinfo(iter)->gso_size = gso_size; 3767 skb_shinfo(iter)->gso_segs = partial_segs; 3768 skb_shinfo(iter)->gso_type = type; 3769 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3770 } 3771 3772 if (tail->len - doffset <= gso_size) 3773 skb_shinfo(tail)->gso_size = 0; 3774 else if (tail != segs) 3775 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3776 } 3777 3778 /* Following permits correct backpressure, for protocols 3779 * using skb_set_owner_w(). 3780 * Idea is to tranfert ownership from head_skb to last segment. 3781 */ 3782 if (head_skb->destructor == sock_wfree) { 3783 swap(tail->truesize, head_skb->truesize); 3784 swap(tail->destructor, head_skb->destructor); 3785 swap(tail->sk, head_skb->sk); 3786 } 3787 return segs; 3788 3789 err: 3790 kfree_skb_list(segs); 3791 return ERR_PTR(err); 3792 } 3793 EXPORT_SYMBOL_GPL(skb_segment); 3794 3795 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3796 { 3797 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3798 unsigned int offset = skb_gro_offset(skb); 3799 unsigned int headlen = skb_headlen(skb); 3800 unsigned int len = skb_gro_len(skb); 3801 unsigned int delta_truesize; 3802 struct sk_buff *lp; 3803 3804 if (unlikely(p->len + len >= 65536)) 3805 return -E2BIG; 3806 3807 lp = NAPI_GRO_CB(p)->last; 3808 pinfo = skb_shinfo(lp); 3809 3810 if (headlen <= offset) { 3811 skb_frag_t *frag; 3812 skb_frag_t *frag2; 3813 int i = skbinfo->nr_frags; 3814 int nr_frags = pinfo->nr_frags + i; 3815 3816 if (nr_frags > MAX_SKB_FRAGS) 3817 goto merge; 3818 3819 offset -= headlen; 3820 pinfo->nr_frags = nr_frags; 3821 skbinfo->nr_frags = 0; 3822 3823 frag = pinfo->frags + nr_frags; 3824 frag2 = skbinfo->frags + i; 3825 do { 3826 *--frag = *--frag2; 3827 } while (--i); 3828 3829 frag->page_offset += offset; 3830 skb_frag_size_sub(frag, offset); 3831 3832 /* all fragments truesize : remove (head size + sk_buff) */ 3833 delta_truesize = skb->truesize - 3834 SKB_TRUESIZE(skb_end_offset(skb)); 3835 3836 skb->truesize -= skb->data_len; 3837 skb->len -= skb->data_len; 3838 skb->data_len = 0; 3839 3840 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3841 goto done; 3842 } else if (skb->head_frag) { 3843 int nr_frags = pinfo->nr_frags; 3844 skb_frag_t *frag = pinfo->frags + nr_frags; 3845 struct page *page = virt_to_head_page(skb->head); 3846 unsigned int first_size = headlen - offset; 3847 unsigned int first_offset; 3848 3849 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3850 goto merge; 3851 3852 first_offset = skb->data - 3853 (unsigned char *)page_address(page) + 3854 offset; 3855 3856 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3857 3858 frag->page.p = page; 3859 frag->page_offset = first_offset; 3860 skb_frag_size_set(frag, first_size); 3861 3862 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3863 /* We dont need to clear skbinfo->nr_frags here */ 3864 3865 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3866 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3867 goto done; 3868 } 3869 3870 merge: 3871 delta_truesize = skb->truesize; 3872 if (offset > headlen) { 3873 unsigned int eat = offset - headlen; 3874 3875 skbinfo->frags[0].page_offset += eat; 3876 skb_frag_size_sub(&skbinfo->frags[0], eat); 3877 skb->data_len -= eat; 3878 skb->len -= eat; 3879 offset = headlen; 3880 } 3881 3882 __skb_pull(skb, offset); 3883 3884 if (NAPI_GRO_CB(p)->last == p) 3885 skb_shinfo(p)->frag_list = skb; 3886 else 3887 NAPI_GRO_CB(p)->last->next = skb; 3888 NAPI_GRO_CB(p)->last = skb; 3889 __skb_header_release(skb); 3890 lp = p; 3891 3892 done: 3893 NAPI_GRO_CB(p)->count++; 3894 p->data_len += len; 3895 p->truesize += delta_truesize; 3896 p->len += len; 3897 if (lp != p) { 3898 lp->data_len += len; 3899 lp->truesize += delta_truesize; 3900 lp->len += len; 3901 } 3902 NAPI_GRO_CB(skb)->same_flow = 1; 3903 return 0; 3904 } 3905 EXPORT_SYMBOL_GPL(skb_gro_receive); 3906 3907 #ifdef CONFIG_SKB_EXTENSIONS 3908 #define SKB_EXT_ALIGN_VALUE 8 3909 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 3910 3911 static const u8 skb_ext_type_len[] = { 3912 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3913 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 3914 #endif 3915 #ifdef CONFIG_XFRM 3916 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 3917 #endif 3918 }; 3919 3920 static __always_inline unsigned int skb_ext_total_length(void) 3921 { 3922 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 3923 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3924 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 3925 #endif 3926 #ifdef CONFIG_XFRM 3927 skb_ext_type_len[SKB_EXT_SEC_PATH] + 3928 #endif 3929 0; 3930 } 3931 3932 static void skb_extensions_init(void) 3933 { 3934 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 3935 BUILD_BUG_ON(skb_ext_total_length() > 255); 3936 3937 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 3938 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 3939 0, 3940 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3941 NULL); 3942 } 3943 #else 3944 static void skb_extensions_init(void) {} 3945 #endif 3946 3947 void __init skb_init(void) 3948 { 3949 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3950 sizeof(struct sk_buff), 3951 0, 3952 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3953 offsetof(struct sk_buff, cb), 3954 sizeof_field(struct sk_buff, cb), 3955 NULL); 3956 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3957 sizeof(struct sk_buff_fclones), 3958 0, 3959 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3960 NULL); 3961 skb_extensions_init(); 3962 } 3963 3964 static int 3965 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3966 unsigned int recursion_level) 3967 { 3968 int start = skb_headlen(skb); 3969 int i, copy = start - offset; 3970 struct sk_buff *frag_iter; 3971 int elt = 0; 3972 3973 if (unlikely(recursion_level >= 24)) 3974 return -EMSGSIZE; 3975 3976 if (copy > 0) { 3977 if (copy > len) 3978 copy = len; 3979 sg_set_buf(sg, skb->data + offset, copy); 3980 elt++; 3981 if ((len -= copy) == 0) 3982 return elt; 3983 offset += copy; 3984 } 3985 3986 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3987 int end; 3988 3989 WARN_ON(start > offset + len); 3990 3991 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3992 if ((copy = end - offset) > 0) { 3993 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3994 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3995 return -EMSGSIZE; 3996 3997 if (copy > len) 3998 copy = len; 3999 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4000 frag->page_offset+offset-start); 4001 elt++; 4002 if (!(len -= copy)) 4003 return elt; 4004 offset += copy; 4005 } 4006 start = end; 4007 } 4008 4009 skb_walk_frags(skb, frag_iter) { 4010 int end, ret; 4011 4012 WARN_ON(start > offset + len); 4013 4014 end = start + frag_iter->len; 4015 if ((copy = end - offset) > 0) { 4016 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4017 return -EMSGSIZE; 4018 4019 if (copy > len) 4020 copy = len; 4021 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4022 copy, recursion_level + 1); 4023 if (unlikely(ret < 0)) 4024 return ret; 4025 elt += ret; 4026 if ((len -= copy) == 0) 4027 return elt; 4028 offset += copy; 4029 } 4030 start = end; 4031 } 4032 BUG_ON(len); 4033 return elt; 4034 } 4035 4036 /** 4037 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4038 * @skb: Socket buffer containing the buffers to be mapped 4039 * @sg: The scatter-gather list to map into 4040 * @offset: The offset into the buffer's contents to start mapping 4041 * @len: Length of buffer space to be mapped 4042 * 4043 * Fill the specified scatter-gather list with mappings/pointers into a 4044 * region of the buffer space attached to a socket buffer. Returns either 4045 * the number of scatterlist items used, or -EMSGSIZE if the contents 4046 * could not fit. 4047 */ 4048 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4049 { 4050 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4051 4052 if (nsg <= 0) 4053 return nsg; 4054 4055 sg_mark_end(&sg[nsg - 1]); 4056 4057 return nsg; 4058 } 4059 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4060 4061 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4062 * sglist without mark the sg which contain last skb data as the end. 4063 * So the caller can mannipulate sg list as will when padding new data after 4064 * the first call without calling sg_unmark_end to expend sg list. 4065 * 4066 * Scenario to use skb_to_sgvec_nomark: 4067 * 1. sg_init_table 4068 * 2. skb_to_sgvec_nomark(payload1) 4069 * 3. skb_to_sgvec_nomark(payload2) 4070 * 4071 * This is equivalent to: 4072 * 1. sg_init_table 4073 * 2. skb_to_sgvec(payload1) 4074 * 3. sg_unmark_end 4075 * 4. skb_to_sgvec(payload2) 4076 * 4077 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4078 * is more preferable. 4079 */ 4080 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4081 int offset, int len) 4082 { 4083 return __skb_to_sgvec(skb, sg, offset, len, 0); 4084 } 4085 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4086 4087 4088 4089 /** 4090 * skb_cow_data - Check that a socket buffer's data buffers are writable 4091 * @skb: The socket buffer to check. 4092 * @tailbits: Amount of trailing space to be added 4093 * @trailer: Returned pointer to the skb where the @tailbits space begins 4094 * 4095 * Make sure that the data buffers attached to a socket buffer are 4096 * writable. If they are not, private copies are made of the data buffers 4097 * and the socket buffer is set to use these instead. 4098 * 4099 * If @tailbits is given, make sure that there is space to write @tailbits 4100 * bytes of data beyond current end of socket buffer. @trailer will be 4101 * set to point to the skb in which this space begins. 4102 * 4103 * The number of scatterlist elements required to completely map the 4104 * COW'd and extended socket buffer will be returned. 4105 */ 4106 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4107 { 4108 int copyflag; 4109 int elt; 4110 struct sk_buff *skb1, **skb_p; 4111 4112 /* If skb is cloned or its head is paged, reallocate 4113 * head pulling out all the pages (pages are considered not writable 4114 * at the moment even if they are anonymous). 4115 */ 4116 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4117 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4118 return -ENOMEM; 4119 4120 /* Easy case. Most of packets will go this way. */ 4121 if (!skb_has_frag_list(skb)) { 4122 /* A little of trouble, not enough of space for trailer. 4123 * This should not happen, when stack is tuned to generate 4124 * good frames. OK, on miss we reallocate and reserve even more 4125 * space, 128 bytes is fair. */ 4126 4127 if (skb_tailroom(skb) < tailbits && 4128 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4129 return -ENOMEM; 4130 4131 /* Voila! */ 4132 *trailer = skb; 4133 return 1; 4134 } 4135 4136 /* Misery. We are in troubles, going to mincer fragments... */ 4137 4138 elt = 1; 4139 skb_p = &skb_shinfo(skb)->frag_list; 4140 copyflag = 0; 4141 4142 while ((skb1 = *skb_p) != NULL) { 4143 int ntail = 0; 4144 4145 /* The fragment is partially pulled by someone, 4146 * this can happen on input. Copy it and everything 4147 * after it. */ 4148 4149 if (skb_shared(skb1)) 4150 copyflag = 1; 4151 4152 /* If the skb is the last, worry about trailer. */ 4153 4154 if (skb1->next == NULL && tailbits) { 4155 if (skb_shinfo(skb1)->nr_frags || 4156 skb_has_frag_list(skb1) || 4157 skb_tailroom(skb1) < tailbits) 4158 ntail = tailbits + 128; 4159 } 4160 4161 if (copyflag || 4162 skb_cloned(skb1) || 4163 ntail || 4164 skb_shinfo(skb1)->nr_frags || 4165 skb_has_frag_list(skb1)) { 4166 struct sk_buff *skb2; 4167 4168 /* Fuck, we are miserable poor guys... */ 4169 if (ntail == 0) 4170 skb2 = skb_copy(skb1, GFP_ATOMIC); 4171 else 4172 skb2 = skb_copy_expand(skb1, 4173 skb_headroom(skb1), 4174 ntail, 4175 GFP_ATOMIC); 4176 if (unlikely(skb2 == NULL)) 4177 return -ENOMEM; 4178 4179 if (skb1->sk) 4180 skb_set_owner_w(skb2, skb1->sk); 4181 4182 /* Looking around. Are we still alive? 4183 * OK, link new skb, drop old one */ 4184 4185 skb2->next = skb1->next; 4186 *skb_p = skb2; 4187 kfree_skb(skb1); 4188 skb1 = skb2; 4189 } 4190 elt++; 4191 *trailer = skb1; 4192 skb_p = &skb1->next; 4193 } 4194 4195 return elt; 4196 } 4197 EXPORT_SYMBOL_GPL(skb_cow_data); 4198 4199 static void sock_rmem_free(struct sk_buff *skb) 4200 { 4201 struct sock *sk = skb->sk; 4202 4203 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4204 } 4205 4206 static void skb_set_err_queue(struct sk_buff *skb) 4207 { 4208 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4209 * So, it is safe to (mis)use it to mark skbs on the error queue. 4210 */ 4211 skb->pkt_type = PACKET_OUTGOING; 4212 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4213 } 4214 4215 /* 4216 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4217 */ 4218 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4219 { 4220 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4221 (unsigned int)sk->sk_rcvbuf) 4222 return -ENOMEM; 4223 4224 skb_orphan(skb); 4225 skb->sk = sk; 4226 skb->destructor = sock_rmem_free; 4227 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4228 skb_set_err_queue(skb); 4229 4230 /* before exiting rcu section, make sure dst is refcounted */ 4231 skb_dst_force(skb); 4232 4233 skb_queue_tail(&sk->sk_error_queue, skb); 4234 if (!sock_flag(sk, SOCK_DEAD)) 4235 sk->sk_error_report(sk); 4236 return 0; 4237 } 4238 EXPORT_SYMBOL(sock_queue_err_skb); 4239 4240 static bool is_icmp_err_skb(const struct sk_buff *skb) 4241 { 4242 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4243 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4244 } 4245 4246 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4247 { 4248 struct sk_buff_head *q = &sk->sk_error_queue; 4249 struct sk_buff *skb, *skb_next = NULL; 4250 bool icmp_next = false; 4251 unsigned long flags; 4252 4253 spin_lock_irqsave(&q->lock, flags); 4254 skb = __skb_dequeue(q); 4255 if (skb && (skb_next = skb_peek(q))) { 4256 icmp_next = is_icmp_err_skb(skb_next); 4257 if (icmp_next) 4258 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4259 } 4260 spin_unlock_irqrestore(&q->lock, flags); 4261 4262 if (is_icmp_err_skb(skb) && !icmp_next) 4263 sk->sk_err = 0; 4264 4265 if (skb_next) 4266 sk->sk_error_report(sk); 4267 4268 return skb; 4269 } 4270 EXPORT_SYMBOL(sock_dequeue_err_skb); 4271 4272 /** 4273 * skb_clone_sk - create clone of skb, and take reference to socket 4274 * @skb: the skb to clone 4275 * 4276 * This function creates a clone of a buffer that holds a reference on 4277 * sk_refcnt. Buffers created via this function are meant to be 4278 * returned using sock_queue_err_skb, or free via kfree_skb. 4279 * 4280 * When passing buffers allocated with this function to sock_queue_err_skb 4281 * it is necessary to wrap the call with sock_hold/sock_put in order to 4282 * prevent the socket from being released prior to being enqueued on 4283 * the sk_error_queue. 4284 */ 4285 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4286 { 4287 struct sock *sk = skb->sk; 4288 struct sk_buff *clone; 4289 4290 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4291 return NULL; 4292 4293 clone = skb_clone(skb, GFP_ATOMIC); 4294 if (!clone) { 4295 sock_put(sk); 4296 return NULL; 4297 } 4298 4299 clone->sk = sk; 4300 clone->destructor = sock_efree; 4301 4302 return clone; 4303 } 4304 EXPORT_SYMBOL(skb_clone_sk); 4305 4306 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4307 struct sock *sk, 4308 int tstype, 4309 bool opt_stats) 4310 { 4311 struct sock_exterr_skb *serr; 4312 int err; 4313 4314 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4315 4316 serr = SKB_EXT_ERR(skb); 4317 memset(serr, 0, sizeof(*serr)); 4318 serr->ee.ee_errno = ENOMSG; 4319 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4320 serr->ee.ee_info = tstype; 4321 serr->opt_stats = opt_stats; 4322 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4323 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4324 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4325 if (sk->sk_protocol == IPPROTO_TCP && 4326 sk->sk_type == SOCK_STREAM) 4327 serr->ee.ee_data -= sk->sk_tskey; 4328 } 4329 4330 err = sock_queue_err_skb(sk, skb); 4331 4332 if (err) 4333 kfree_skb(skb); 4334 } 4335 4336 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4337 { 4338 bool ret; 4339 4340 if (likely(sysctl_tstamp_allow_data || tsonly)) 4341 return true; 4342 4343 read_lock_bh(&sk->sk_callback_lock); 4344 ret = sk->sk_socket && sk->sk_socket->file && 4345 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4346 read_unlock_bh(&sk->sk_callback_lock); 4347 return ret; 4348 } 4349 4350 void skb_complete_tx_timestamp(struct sk_buff *skb, 4351 struct skb_shared_hwtstamps *hwtstamps) 4352 { 4353 struct sock *sk = skb->sk; 4354 4355 if (!skb_may_tx_timestamp(sk, false)) 4356 goto err; 4357 4358 /* Take a reference to prevent skb_orphan() from freeing the socket, 4359 * but only if the socket refcount is not zero. 4360 */ 4361 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4362 *skb_hwtstamps(skb) = *hwtstamps; 4363 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4364 sock_put(sk); 4365 return; 4366 } 4367 4368 err: 4369 kfree_skb(skb); 4370 } 4371 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4372 4373 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4374 struct skb_shared_hwtstamps *hwtstamps, 4375 struct sock *sk, int tstype) 4376 { 4377 struct sk_buff *skb; 4378 bool tsonly, opt_stats = false; 4379 4380 if (!sk) 4381 return; 4382 4383 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4384 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4385 return; 4386 4387 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4388 if (!skb_may_tx_timestamp(sk, tsonly)) 4389 return; 4390 4391 if (tsonly) { 4392 #ifdef CONFIG_INET 4393 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4394 sk->sk_protocol == IPPROTO_TCP && 4395 sk->sk_type == SOCK_STREAM) { 4396 skb = tcp_get_timestamping_opt_stats(sk); 4397 opt_stats = true; 4398 } else 4399 #endif 4400 skb = alloc_skb(0, GFP_ATOMIC); 4401 } else { 4402 skb = skb_clone(orig_skb, GFP_ATOMIC); 4403 } 4404 if (!skb) 4405 return; 4406 4407 if (tsonly) { 4408 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4409 SKBTX_ANY_TSTAMP; 4410 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4411 } 4412 4413 if (hwtstamps) 4414 *skb_hwtstamps(skb) = *hwtstamps; 4415 else 4416 skb->tstamp = ktime_get_real(); 4417 4418 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4419 } 4420 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4421 4422 void skb_tstamp_tx(struct sk_buff *orig_skb, 4423 struct skb_shared_hwtstamps *hwtstamps) 4424 { 4425 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4426 SCM_TSTAMP_SND); 4427 } 4428 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4429 4430 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4431 { 4432 struct sock *sk = skb->sk; 4433 struct sock_exterr_skb *serr; 4434 int err = 1; 4435 4436 skb->wifi_acked_valid = 1; 4437 skb->wifi_acked = acked; 4438 4439 serr = SKB_EXT_ERR(skb); 4440 memset(serr, 0, sizeof(*serr)); 4441 serr->ee.ee_errno = ENOMSG; 4442 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4443 4444 /* Take a reference to prevent skb_orphan() from freeing the socket, 4445 * but only if the socket refcount is not zero. 4446 */ 4447 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4448 err = sock_queue_err_skb(sk, skb); 4449 sock_put(sk); 4450 } 4451 if (err) 4452 kfree_skb(skb); 4453 } 4454 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4455 4456 /** 4457 * skb_partial_csum_set - set up and verify partial csum values for packet 4458 * @skb: the skb to set 4459 * @start: the number of bytes after skb->data to start checksumming. 4460 * @off: the offset from start to place the checksum. 4461 * 4462 * For untrusted partially-checksummed packets, we need to make sure the values 4463 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4464 * 4465 * This function checks and sets those values and skb->ip_summed: if this 4466 * returns false you should drop the packet. 4467 */ 4468 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4469 { 4470 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4471 u32 csum_start = skb_headroom(skb) + (u32)start; 4472 4473 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4474 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4475 start, off, skb_headroom(skb), skb_headlen(skb)); 4476 return false; 4477 } 4478 skb->ip_summed = CHECKSUM_PARTIAL; 4479 skb->csum_start = csum_start; 4480 skb->csum_offset = off; 4481 skb_set_transport_header(skb, start); 4482 return true; 4483 } 4484 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4485 4486 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4487 unsigned int max) 4488 { 4489 if (skb_headlen(skb) >= len) 4490 return 0; 4491 4492 /* If we need to pullup then pullup to the max, so we 4493 * won't need to do it again. 4494 */ 4495 if (max > skb->len) 4496 max = skb->len; 4497 4498 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4499 return -ENOMEM; 4500 4501 if (skb_headlen(skb) < len) 4502 return -EPROTO; 4503 4504 return 0; 4505 } 4506 4507 #define MAX_TCP_HDR_LEN (15 * 4) 4508 4509 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4510 typeof(IPPROTO_IP) proto, 4511 unsigned int off) 4512 { 4513 switch (proto) { 4514 int err; 4515 4516 case IPPROTO_TCP: 4517 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4518 off + MAX_TCP_HDR_LEN); 4519 if (!err && !skb_partial_csum_set(skb, off, 4520 offsetof(struct tcphdr, 4521 check))) 4522 err = -EPROTO; 4523 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4524 4525 case IPPROTO_UDP: 4526 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4527 off + sizeof(struct udphdr)); 4528 if (!err && !skb_partial_csum_set(skb, off, 4529 offsetof(struct udphdr, 4530 check))) 4531 err = -EPROTO; 4532 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4533 } 4534 4535 return ERR_PTR(-EPROTO); 4536 } 4537 4538 /* This value should be large enough to cover a tagged ethernet header plus 4539 * maximally sized IP and TCP or UDP headers. 4540 */ 4541 #define MAX_IP_HDR_LEN 128 4542 4543 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4544 { 4545 unsigned int off; 4546 bool fragment; 4547 __sum16 *csum; 4548 int err; 4549 4550 fragment = false; 4551 4552 err = skb_maybe_pull_tail(skb, 4553 sizeof(struct iphdr), 4554 MAX_IP_HDR_LEN); 4555 if (err < 0) 4556 goto out; 4557 4558 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4559 fragment = true; 4560 4561 off = ip_hdrlen(skb); 4562 4563 err = -EPROTO; 4564 4565 if (fragment) 4566 goto out; 4567 4568 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4569 if (IS_ERR(csum)) 4570 return PTR_ERR(csum); 4571 4572 if (recalculate) 4573 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4574 ip_hdr(skb)->daddr, 4575 skb->len - off, 4576 ip_hdr(skb)->protocol, 0); 4577 err = 0; 4578 4579 out: 4580 return err; 4581 } 4582 4583 /* This value should be large enough to cover a tagged ethernet header plus 4584 * an IPv6 header, all options, and a maximal TCP or UDP header. 4585 */ 4586 #define MAX_IPV6_HDR_LEN 256 4587 4588 #define OPT_HDR(type, skb, off) \ 4589 (type *)(skb_network_header(skb) + (off)) 4590 4591 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4592 { 4593 int err; 4594 u8 nexthdr; 4595 unsigned int off; 4596 unsigned int len; 4597 bool fragment; 4598 bool done; 4599 __sum16 *csum; 4600 4601 fragment = false; 4602 done = false; 4603 4604 off = sizeof(struct ipv6hdr); 4605 4606 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4607 if (err < 0) 4608 goto out; 4609 4610 nexthdr = ipv6_hdr(skb)->nexthdr; 4611 4612 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4613 while (off <= len && !done) { 4614 switch (nexthdr) { 4615 case IPPROTO_DSTOPTS: 4616 case IPPROTO_HOPOPTS: 4617 case IPPROTO_ROUTING: { 4618 struct ipv6_opt_hdr *hp; 4619 4620 err = skb_maybe_pull_tail(skb, 4621 off + 4622 sizeof(struct ipv6_opt_hdr), 4623 MAX_IPV6_HDR_LEN); 4624 if (err < 0) 4625 goto out; 4626 4627 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4628 nexthdr = hp->nexthdr; 4629 off += ipv6_optlen(hp); 4630 break; 4631 } 4632 case IPPROTO_AH: { 4633 struct ip_auth_hdr *hp; 4634 4635 err = skb_maybe_pull_tail(skb, 4636 off + 4637 sizeof(struct ip_auth_hdr), 4638 MAX_IPV6_HDR_LEN); 4639 if (err < 0) 4640 goto out; 4641 4642 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4643 nexthdr = hp->nexthdr; 4644 off += ipv6_authlen(hp); 4645 break; 4646 } 4647 case IPPROTO_FRAGMENT: { 4648 struct frag_hdr *hp; 4649 4650 err = skb_maybe_pull_tail(skb, 4651 off + 4652 sizeof(struct frag_hdr), 4653 MAX_IPV6_HDR_LEN); 4654 if (err < 0) 4655 goto out; 4656 4657 hp = OPT_HDR(struct frag_hdr, skb, off); 4658 4659 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4660 fragment = true; 4661 4662 nexthdr = hp->nexthdr; 4663 off += sizeof(struct frag_hdr); 4664 break; 4665 } 4666 default: 4667 done = true; 4668 break; 4669 } 4670 } 4671 4672 err = -EPROTO; 4673 4674 if (!done || fragment) 4675 goto out; 4676 4677 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4678 if (IS_ERR(csum)) 4679 return PTR_ERR(csum); 4680 4681 if (recalculate) 4682 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4683 &ipv6_hdr(skb)->daddr, 4684 skb->len - off, nexthdr, 0); 4685 err = 0; 4686 4687 out: 4688 return err; 4689 } 4690 4691 /** 4692 * skb_checksum_setup - set up partial checksum offset 4693 * @skb: the skb to set up 4694 * @recalculate: if true the pseudo-header checksum will be recalculated 4695 */ 4696 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4697 { 4698 int err; 4699 4700 switch (skb->protocol) { 4701 case htons(ETH_P_IP): 4702 err = skb_checksum_setup_ipv4(skb, recalculate); 4703 break; 4704 4705 case htons(ETH_P_IPV6): 4706 err = skb_checksum_setup_ipv6(skb, recalculate); 4707 break; 4708 4709 default: 4710 err = -EPROTO; 4711 break; 4712 } 4713 4714 return err; 4715 } 4716 EXPORT_SYMBOL(skb_checksum_setup); 4717 4718 /** 4719 * skb_checksum_maybe_trim - maybe trims the given skb 4720 * @skb: the skb to check 4721 * @transport_len: the data length beyond the network header 4722 * 4723 * Checks whether the given skb has data beyond the given transport length. 4724 * If so, returns a cloned skb trimmed to this transport length. 4725 * Otherwise returns the provided skb. Returns NULL in error cases 4726 * (e.g. transport_len exceeds skb length or out-of-memory). 4727 * 4728 * Caller needs to set the skb transport header and free any returned skb if it 4729 * differs from the provided skb. 4730 */ 4731 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4732 unsigned int transport_len) 4733 { 4734 struct sk_buff *skb_chk; 4735 unsigned int len = skb_transport_offset(skb) + transport_len; 4736 int ret; 4737 4738 if (skb->len < len) 4739 return NULL; 4740 else if (skb->len == len) 4741 return skb; 4742 4743 skb_chk = skb_clone(skb, GFP_ATOMIC); 4744 if (!skb_chk) 4745 return NULL; 4746 4747 ret = pskb_trim_rcsum(skb_chk, len); 4748 if (ret) { 4749 kfree_skb(skb_chk); 4750 return NULL; 4751 } 4752 4753 return skb_chk; 4754 } 4755 4756 /** 4757 * skb_checksum_trimmed - validate checksum of an skb 4758 * @skb: the skb to check 4759 * @transport_len: the data length beyond the network header 4760 * @skb_chkf: checksum function to use 4761 * 4762 * Applies the given checksum function skb_chkf to the provided skb. 4763 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4764 * 4765 * If the skb has data beyond the given transport length, then a 4766 * trimmed & cloned skb is checked and returned. 4767 * 4768 * Caller needs to set the skb transport header and free any returned skb if it 4769 * differs from the provided skb. 4770 */ 4771 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4772 unsigned int transport_len, 4773 __sum16(*skb_chkf)(struct sk_buff *skb)) 4774 { 4775 struct sk_buff *skb_chk; 4776 unsigned int offset = skb_transport_offset(skb); 4777 __sum16 ret; 4778 4779 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4780 if (!skb_chk) 4781 goto err; 4782 4783 if (!pskb_may_pull(skb_chk, offset)) 4784 goto err; 4785 4786 skb_pull_rcsum(skb_chk, offset); 4787 ret = skb_chkf(skb_chk); 4788 skb_push_rcsum(skb_chk, offset); 4789 4790 if (ret) 4791 goto err; 4792 4793 return skb_chk; 4794 4795 err: 4796 if (skb_chk && skb_chk != skb) 4797 kfree_skb(skb_chk); 4798 4799 return NULL; 4800 4801 } 4802 EXPORT_SYMBOL(skb_checksum_trimmed); 4803 4804 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4805 { 4806 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4807 skb->dev->name); 4808 } 4809 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4810 4811 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4812 { 4813 if (head_stolen) { 4814 skb_release_head_state(skb); 4815 kmem_cache_free(skbuff_head_cache, skb); 4816 } else { 4817 __kfree_skb(skb); 4818 } 4819 } 4820 EXPORT_SYMBOL(kfree_skb_partial); 4821 4822 /** 4823 * skb_try_coalesce - try to merge skb to prior one 4824 * @to: prior buffer 4825 * @from: buffer to add 4826 * @fragstolen: pointer to boolean 4827 * @delta_truesize: how much more was allocated than was requested 4828 */ 4829 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4830 bool *fragstolen, int *delta_truesize) 4831 { 4832 struct skb_shared_info *to_shinfo, *from_shinfo; 4833 int i, delta, len = from->len; 4834 4835 *fragstolen = false; 4836 4837 if (skb_cloned(to)) 4838 return false; 4839 4840 if (len <= skb_tailroom(to)) { 4841 if (len) 4842 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4843 *delta_truesize = 0; 4844 return true; 4845 } 4846 4847 to_shinfo = skb_shinfo(to); 4848 from_shinfo = skb_shinfo(from); 4849 if (to_shinfo->frag_list || from_shinfo->frag_list) 4850 return false; 4851 if (skb_zcopy(to) || skb_zcopy(from)) 4852 return false; 4853 4854 if (skb_headlen(from) != 0) { 4855 struct page *page; 4856 unsigned int offset; 4857 4858 if (to_shinfo->nr_frags + 4859 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4860 return false; 4861 4862 if (skb_head_is_locked(from)) 4863 return false; 4864 4865 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4866 4867 page = virt_to_head_page(from->head); 4868 offset = from->data - (unsigned char *)page_address(page); 4869 4870 skb_fill_page_desc(to, to_shinfo->nr_frags, 4871 page, offset, skb_headlen(from)); 4872 *fragstolen = true; 4873 } else { 4874 if (to_shinfo->nr_frags + 4875 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4876 return false; 4877 4878 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4879 } 4880 4881 WARN_ON_ONCE(delta < len); 4882 4883 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4884 from_shinfo->frags, 4885 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4886 to_shinfo->nr_frags += from_shinfo->nr_frags; 4887 4888 if (!skb_cloned(from)) 4889 from_shinfo->nr_frags = 0; 4890 4891 /* if the skb is not cloned this does nothing 4892 * since we set nr_frags to 0. 4893 */ 4894 for (i = 0; i < from_shinfo->nr_frags; i++) 4895 __skb_frag_ref(&from_shinfo->frags[i]); 4896 4897 to->truesize += delta; 4898 to->len += len; 4899 to->data_len += len; 4900 4901 *delta_truesize = delta; 4902 return true; 4903 } 4904 EXPORT_SYMBOL(skb_try_coalesce); 4905 4906 /** 4907 * skb_scrub_packet - scrub an skb 4908 * 4909 * @skb: buffer to clean 4910 * @xnet: packet is crossing netns 4911 * 4912 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4913 * into/from a tunnel. Some information have to be cleared during these 4914 * operations. 4915 * skb_scrub_packet can also be used to clean a skb before injecting it in 4916 * another namespace (@xnet == true). We have to clear all information in the 4917 * skb that could impact namespace isolation. 4918 */ 4919 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4920 { 4921 skb->pkt_type = PACKET_HOST; 4922 skb->skb_iif = 0; 4923 skb->ignore_df = 0; 4924 skb_dst_drop(skb); 4925 secpath_reset(skb); 4926 nf_reset(skb); 4927 nf_reset_trace(skb); 4928 4929 #ifdef CONFIG_NET_SWITCHDEV 4930 skb->offload_fwd_mark = 0; 4931 skb->offload_l3_fwd_mark = 0; 4932 #endif 4933 4934 if (!xnet) 4935 return; 4936 4937 ipvs_reset(skb); 4938 skb->mark = 0; 4939 skb->tstamp = 0; 4940 } 4941 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4942 4943 /** 4944 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4945 * 4946 * @skb: GSO skb 4947 * 4948 * skb_gso_transport_seglen is used to determine the real size of the 4949 * individual segments, including Layer4 headers (TCP/UDP). 4950 * 4951 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4952 */ 4953 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4954 { 4955 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4956 unsigned int thlen = 0; 4957 4958 if (skb->encapsulation) { 4959 thlen = skb_inner_transport_header(skb) - 4960 skb_transport_header(skb); 4961 4962 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4963 thlen += inner_tcp_hdrlen(skb); 4964 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4965 thlen = tcp_hdrlen(skb); 4966 } else if (unlikely(skb_is_gso_sctp(skb))) { 4967 thlen = sizeof(struct sctphdr); 4968 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4969 thlen = sizeof(struct udphdr); 4970 } 4971 /* UFO sets gso_size to the size of the fragmentation 4972 * payload, i.e. the size of the L4 (UDP) header is already 4973 * accounted for. 4974 */ 4975 return thlen + shinfo->gso_size; 4976 } 4977 4978 /** 4979 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4980 * 4981 * @skb: GSO skb 4982 * 4983 * skb_gso_network_seglen is used to determine the real size of the 4984 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4985 * 4986 * The MAC/L2 header is not accounted for. 4987 */ 4988 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4989 { 4990 unsigned int hdr_len = skb_transport_header(skb) - 4991 skb_network_header(skb); 4992 4993 return hdr_len + skb_gso_transport_seglen(skb); 4994 } 4995 4996 /** 4997 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4998 * 4999 * @skb: GSO skb 5000 * 5001 * skb_gso_mac_seglen is used to determine the real size of the 5002 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5003 * headers (TCP/UDP). 5004 */ 5005 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5006 { 5007 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5008 5009 return hdr_len + skb_gso_transport_seglen(skb); 5010 } 5011 5012 /** 5013 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5014 * 5015 * There are a couple of instances where we have a GSO skb, and we 5016 * want to determine what size it would be after it is segmented. 5017 * 5018 * We might want to check: 5019 * - L3+L4+payload size (e.g. IP forwarding) 5020 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5021 * 5022 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5023 * 5024 * @skb: GSO skb 5025 * 5026 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5027 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5028 * 5029 * @max_len: The maximum permissible length. 5030 * 5031 * Returns true if the segmented length <= max length. 5032 */ 5033 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5034 unsigned int seg_len, 5035 unsigned int max_len) { 5036 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5037 const struct sk_buff *iter; 5038 5039 if (shinfo->gso_size != GSO_BY_FRAGS) 5040 return seg_len <= max_len; 5041 5042 /* Undo this so we can re-use header sizes */ 5043 seg_len -= GSO_BY_FRAGS; 5044 5045 skb_walk_frags(skb, iter) { 5046 if (seg_len + skb_headlen(iter) > max_len) 5047 return false; 5048 } 5049 5050 return true; 5051 } 5052 5053 /** 5054 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5055 * 5056 * @skb: GSO skb 5057 * @mtu: MTU to validate against 5058 * 5059 * skb_gso_validate_network_len validates if a given skb will fit a 5060 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5061 * payload. 5062 */ 5063 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5064 { 5065 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5066 } 5067 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5068 5069 /** 5070 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5071 * 5072 * @skb: GSO skb 5073 * @len: length to validate against 5074 * 5075 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5076 * length once split, including L2, L3 and L4 headers and the payload. 5077 */ 5078 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5079 { 5080 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5081 } 5082 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5083 5084 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5085 { 5086 int mac_len; 5087 5088 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5089 kfree_skb(skb); 5090 return NULL; 5091 } 5092 5093 mac_len = skb->data - skb_mac_header(skb); 5094 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5095 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5096 mac_len - VLAN_HLEN - ETH_TLEN); 5097 } 5098 skb->mac_header += VLAN_HLEN; 5099 return skb; 5100 } 5101 5102 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5103 { 5104 struct vlan_hdr *vhdr; 5105 u16 vlan_tci; 5106 5107 if (unlikely(skb_vlan_tag_present(skb))) { 5108 /* vlan_tci is already set-up so leave this for another time */ 5109 return skb; 5110 } 5111 5112 skb = skb_share_check(skb, GFP_ATOMIC); 5113 if (unlikely(!skb)) 5114 goto err_free; 5115 5116 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5117 goto err_free; 5118 5119 vhdr = (struct vlan_hdr *)skb->data; 5120 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5121 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5122 5123 skb_pull_rcsum(skb, VLAN_HLEN); 5124 vlan_set_encap_proto(skb, vhdr); 5125 5126 skb = skb_reorder_vlan_header(skb); 5127 if (unlikely(!skb)) 5128 goto err_free; 5129 5130 skb_reset_network_header(skb); 5131 skb_reset_transport_header(skb); 5132 skb_reset_mac_len(skb); 5133 5134 return skb; 5135 5136 err_free: 5137 kfree_skb(skb); 5138 return NULL; 5139 } 5140 EXPORT_SYMBOL(skb_vlan_untag); 5141 5142 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5143 { 5144 if (!pskb_may_pull(skb, write_len)) 5145 return -ENOMEM; 5146 5147 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5148 return 0; 5149 5150 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5151 } 5152 EXPORT_SYMBOL(skb_ensure_writable); 5153 5154 /* remove VLAN header from packet and update csum accordingly. 5155 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5156 */ 5157 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5158 { 5159 struct vlan_hdr *vhdr; 5160 int offset = skb->data - skb_mac_header(skb); 5161 int err; 5162 5163 if (WARN_ONCE(offset, 5164 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5165 offset)) { 5166 return -EINVAL; 5167 } 5168 5169 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5170 if (unlikely(err)) 5171 return err; 5172 5173 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5174 5175 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5176 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5177 5178 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5179 __skb_pull(skb, VLAN_HLEN); 5180 5181 vlan_set_encap_proto(skb, vhdr); 5182 skb->mac_header += VLAN_HLEN; 5183 5184 if (skb_network_offset(skb) < ETH_HLEN) 5185 skb_set_network_header(skb, ETH_HLEN); 5186 5187 skb_reset_mac_len(skb); 5188 5189 return err; 5190 } 5191 EXPORT_SYMBOL(__skb_vlan_pop); 5192 5193 /* Pop a vlan tag either from hwaccel or from payload. 5194 * Expects skb->data at mac header. 5195 */ 5196 int skb_vlan_pop(struct sk_buff *skb) 5197 { 5198 u16 vlan_tci; 5199 __be16 vlan_proto; 5200 int err; 5201 5202 if (likely(skb_vlan_tag_present(skb))) { 5203 __vlan_hwaccel_clear_tag(skb); 5204 } else { 5205 if (unlikely(!eth_type_vlan(skb->protocol))) 5206 return 0; 5207 5208 err = __skb_vlan_pop(skb, &vlan_tci); 5209 if (err) 5210 return err; 5211 } 5212 /* move next vlan tag to hw accel tag */ 5213 if (likely(!eth_type_vlan(skb->protocol))) 5214 return 0; 5215 5216 vlan_proto = skb->protocol; 5217 err = __skb_vlan_pop(skb, &vlan_tci); 5218 if (unlikely(err)) 5219 return err; 5220 5221 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5222 return 0; 5223 } 5224 EXPORT_SYMBOL(skb_vlan_pop); 5225 5226 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5227 * Expects skb->data at mac header. 5228 */ 5229 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5230 { 5231 if (skb_vlan_tag_present(skb)) { 5232 int offset = skb->data - skb_mac_header(skb); 5233 int err; 5234 5235 if (WARN_ONCE(offset, 5236 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5237 offset)) { 5238 return -EINVAL; 5239 } 5240 5241 err = __vlan_insert_tag(skb, skb->vlan_proto, 5242 skb_vlan_tag_get(skb)); 5243 if (err) 5244 return err; 5245 5246 skb->protocol = skb->vlan_proto; 5247 skb->mac_len += VLAN_HLEN; 5248 5249 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5250 } 5251 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5252 return 0; 5253 } 5254 EXPORT_SYMBOL(skb_vlan_push); 5255 5256 /** 5257 * alloc_skb_with_frags - allocate skb with page frags 5258 * 5259 * @header_len: size of linear part 5260 * @data_len: needed length in frags 5261 * @max_page_order: max page order desired. 5262 * @errcode: pointer to error code if any 5263 * @gfp_mask: allocation mask 5264 * 5265 * This can be used to allocate a paged skb, given a maximal order for frags. 5266 */ 5267 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5268 unsigned long data_len, 5269 int max_page_order, 5270 int *errcode, 5271 gfp_t gfp_mask) 5272 { 5273 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5274 unsigned long chunk; 5275 struct sk_buff *skb; 5276 struct page *page; 5277 int i; 5278 5279 *errcode = -EMSGSIZE; 5280 /* Note this test could be relaxed, if we succeed to allocate 5281 * high order pages... 5282 */ 5283 if (npages > MAX_SKB_FRAGS) 5284 return NULL; 5285 5286 *errcode = -ENOBUFS; 5287 skb = alloc_skb(header_len, gfp_mask); 5288 if (!skb) 5289 return NULL; 5290 5291 skb->truesize += npages << PAGE_SHIFT; 5292 5293 for (i = 0; npages > 0; i++) { 5294 int order = max_page_order; 5295 5296 while (order) { 5297 if (npages >= 1 << order) { 5298 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5299 __GFP_COMP | 5300 __GFP_NOWARN, 5301 order); 5302 if (page) 5303 goto fill_page; 5304 /* Do not retry other high order allocations */ 5305 order = 1; 5306 max_page_order = 0; 5307 } 5308 order--; 5309 } 5310 page = alloc_page(gfp_mask); 5311 if (!page) 5312 goto failure; 5313 fill_page: 5314 chunk = min_t(unsigned long, data_len, 5315 PAGE_SIZE << order); 5316 skb_fill_page_desc(skb, i, page, 0, chunk); 5317 data_len -= chunk; 5318 npages -= 1 << order; 5319 } 5320 return skb; 5321 5322 failure: 5323 kfree_skb(skb); 5324 return NULL; 5325 } 5326 EXPORT_SYMBOL(alloc_skb_with_frags); 5327 5328 /* carve out the first off bytes from skb when off < headlen */ 5329 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5330 const int headlen, gfp_t gfp_mask) 5331 { 5332 int i; 5333 int size = skb_end_offset(skb); 5334 int new_hlen = headlen - off; 5335 u8 *data; 5336 5337 size = SKB_DATA_ALIGN(size); 5338 5339 if (skb_pfmemalloc(skb)) 5340 gfp_mask |= __GFP_MEMALLOC; 5341 data = kmalloc_reserve(size + 5342 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5343 gfp_mask, NUMA_NO_NODE, NULL); 5344 if (!data) 5345 return -ENOMEM; 5346 5347 size = SKB_WITH_OVERHEAD(ksize(data)); 5348 5349 /* Copy real data, and all frags */ 5350 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5351 skb->len -= off; 5352 5353 memcpy((struct skb_shared_info *)(data + size), 5354 skb_shinfo(skb), 5355 offsetof(struct skb_shared_info, 5356 frags[skb_shinfo(skb)->nr_frags])); 5357 if (skb_cloned(skb)) { 5358 /* drop the old head gracefully */ 5359 if (skb_orphan_frags(skb, gfp_mask)) { 5360 kfree(data); 5361 return -ENOMEM; 5362 } 5363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5364 skb_frag_ref(skb, i); 5365 if (skb_has_frag_list(skb)) 5366 skb_clone_fraglist(skb); 5367 skb_release_data(skb); 5368 } else { 5369 /* we can reuse existing recount- all we did was 5370 * relocate values 5371 */ 5372 skb_free_head(skb); 5373 } 5374 5375 skb->head = data; 5376 skb->data = data; 5377 skb->head_frag = 0; 5378 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5379 skb->end = size; 5380 #else 5381 skb->end = skb->head + size; 5382 #endif 5383 skb_set_tail_pointer(skb, skb_headlen(skb)); 5384 skb_headers_offset_update(skb, 0); 5385 skb->cloned = 0; 5386 skb->hdr_len = 0; 5387 skb->nohdr = 0; 5388 atomic_set(&skb_shinfo(skb)->dataref, 1); 5389 5390 return 0; 5391 } 5392 5393 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5394 5395 /* carve out the first eat bytes from skb's frag_list. May recurse into 5396 * pskb_carve() 5397 */ 5398 static int pskb_carve_frag_list(struct sk_buff *skb, 5399 struct skb_shared_info *shinfo, int eat, 5400 gfp_t gfp_mask) 5401 { 5402 struct sk_buff *list = shinfo->frag_list; 5403 struct sk_buff *clone = NULL; 5404 struct sk_buff *insp = NULL; 5405 5406 do { 5407 if (!list) { 5408 pr_err("Not enough bytes to eat. Want %d\n", eat); 5409 return -EFAULT; 5410 } 5411 if (list->len <= eat) { 5412 /* Eaten as whole. */ 5413 eat -= list->len; 5414 list = list->next; 5415 insp = list; 5416 } else { 5417 /* Eaten partially. */ 5418 if (skb_shared(list)) { 5419 clone = skb_clone(list, gfp_mask); 5420 if (!clone) 5421 return -ENOMEM; 5422 insp = list->next; 5423 list = clone; 5424 } else { 5425 /* This may be pulled without problems. */ 5426 insp = list; 5427 } 5428 if (pskb_carve(list, eat, gfp_mask) < 0) { 5429 kfree_skb(clone); 5430 return -ENOMEM; 5431 } 5432 break; 5433 } 5434 } while (eat); 5435 5436 /* Free pulled out fragments. */ 5437 while ((list = shinfo->frag_list) != insp) { 5438 shinfo->frag_list = list->next; 5439 kfree_skb(list); 5440 } 5441 /* And insert new clone at head. */ 5442 if (clone) { 5443 clone->next = list; 5444 shinfo->frag_list = clone; 5445 } 5446 return 0; 5447 } 5448 5449 /* carve off first len bytes from skb. Split line (off) is in the 5450 * non-linear part of skb 5451 */ 5452 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5453 int pos, gfp_t gfp_mask) 5454 { 5455 int i, k = 0; 5456 int size = skb_end_offset(skb); 5457 u8 *data; 5458 const int nfrags = skb_shinfo(skb)->nr_frags; 5459 struct skb_shared_info *shinfo; 5460 5461 size = SKB_DATA_ALIGN(size); 5462 5463 if (skb_pfmemalloc(skb)) 5464 gfp_mask |= __GFP_MEMALLOC; 5465 data = kmalloc_reserve(size + 5466 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5467 gfp_mask, NUMA_NO_NODE, NULL); 5468 if (!data) 5469 return -ENOMEM; 5470 5471 size = SKB_WITH_OVERHEAD(ksize(data)); 5472 5473 memcpy((struct skb_shared_info *)(data + size), 5474 skb_shinfo(skb), offsetof(struct skb_shared_info, 5475 frags[skb_shinfo(skb)->nr_frags])); 5476 if (skb_orphan_frags(skb, gfp_mask)) { 5477 kfree(data); 5478 return -ENOMEM; 5479 } 5480 shinfo = (struct skb_shared_info *)(data + size); 5481 for (i = 0; i < nfrags; i++) { 5482 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5483 5484 if (pos + fsize > off) { 5485 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5486 5487 if (pos < off) { 5488 /* Split frag. 5489 * We have two variants in this case: 5490 * 1. Move all the frag to the second 5491 * part, if it is possible. F.e. 5492 * this approach is mandatory for TUX, 5493 * where splitting is expensive. 5494 * 2. Split is accurately. We make this. 5495 */ 5496 shinfo->frags[0].page_offset += off - pos; 5497 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5498 } 5499 skb_frag_ref(skb, i); 5500 k++; 5501 } 5502 pos += fsize; 5503 } 5504 shinfo->nr_frags = k; 5505 if (skb_has_frag_list(skb)) 5506 skb_clone_fraglist(skb); 5507 5508 if (k == 0) { 5509 /* split line is in frag list */ 5510 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5511 } 5512 skb_release_data(skb); 5513 5514 skb->head = data; 5515 skb->head_frag = 0; 5516 skb->data = data; 5517 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5518 skb->end = size; 5519 #else 5520 skb->end = skb->head + size; 5521 #endif 5522 skb_reset_tail_pointer(skb); 5523 skb_headers_offset_update(skb, 0); 5524 skb->cloned = 0; 5525 skb->hdr_len = 0; 5526 skb->nohdr = 0; 5527 skb->len -= off; 5528 skb->data_len = skb->len; 5529 atomic_set(&skb_shinfo(skb)->dataref, 1); 5530 return 0; 5531 } 5532 5533 /* remove len bytes from the beginning of the skb */ 5534 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5535 { 5536 int headlen = skb_headlen(skb); 5537 5538 if (len < headlen) 5539 return pskb_carve_inside_header(skb, len, headlen, gfp); 5540 else 5541 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5542 } 5543 5544 /* Extract to_copy bytes starting at off from skb, and return this in 5545 * a new skb 5546 */ 5547 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5548 int to_copy, gfp_t gfp) 5549 { 5550 struct sk_buff *clone = skb_clone(skb, gfp); 5551 5552 if (!clone) 5553 return NULL; 5554 5555 if (pskb_carve(clone, off, gfp) < 0 || 5556 pskb_trim(clone, to_copy)) { 5557 kfree_skb(clone); 5558 return NULL; 5559 } 5560 return clone; 5561 } 5562 EXPORT_SYMBOL(pskb_extract); 5563 5564 /** 5565 * skb_condense - try to get rid of fragments/frag_list if possible 5566 * @skb: buffer 5567 * 5568 * Can be used to save memory before skb is added to a busy queue. 5569 * If packet has bytes in frags and enough tail room in skb->head, 5570 * pull all of them, so that we can free the frags right now and adjust 5571 * truesize. 5572 * Notes: 5573 * We do not reallocate skb->head thus can not fail. 5574 * Caller must re-evaluate skb->truesize if needed. 5575 */ 5576 void skb_condense(struct sk_buff *skb) 5577 { 5578 if (skb->data_len) { 5579 if (skb->data_len > skb->end - skb->tail || 5580 skb_cloned(skb)) 5581 return; 5582 5583 /* Nice, we can free page frag(s) right now */ 5584 __pskb_pull_tail(skb, skb->data_len); 5585 } 5586 /* At this point, skb->truesize might be over estimated, 5587 * because skb had a fragment, and fragments do not tell 5588 * their truesize. 5589 * When we pulled its content into skb->head, fragment 5590 * was freed, but __pskb_pull_tail() could not possibly 5591 * adjust skb->truesize, not knowing the frag truesize. 5592 */ 5593 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5594 } 5595 5596 #ifdef CONFIG_SKB_EXTENSIONS 5597 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 5598 { 5599 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 5600 } 5601 5602 static struct skb_ext *skb_ext_alloc(void) 5603 { 5604 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5605 5606 if (new) { 5607 memset(new->offset, 0, sizeof(new->offset)); 5608 refcount_set(&new->refcnt, 1); 5609 } 5610 5611 return new; 5612 } 5613 5614 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 5615 unsigned int old_active) 5616 { 5617 struct skb_ext *new; 5618 5619 if (refcount_read(&old->refcnt) == 1) 5620 return old; 5621 5622 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 5623 if (!new) 5624 return NULL; 5625 5626 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 5627 refcount_set(&new->refcnt, 1); 5628 5629 #ifdef CONFIG_XFRM 5630 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 5631 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 5632 unsigned int i; 5633 5634 for (i = 0; i < sp->len; i++) 5635 xfrm_state_hold(sp->xvec[i]); 5636 } 5637 #endif 5638 __skb_ext_put(old); 5639 return new; 5640 } 5641 5642 /** 5643 * skb_ext_add - allocate space for given extension, COW if needed 5644 * @skb: buffer 5645 * @id: extension to allocate space for 5646 * 5647 * Allocates enough space for the given extension. 5648 * If the extension is already present, a pointer to that extension 5649 * is returned. 5650 * 5651 * If the skb was cloned, COW applies and the returned memory can be 5652 * modified without changing the extension space of clones buffers. 5653 * 5654 * Returns pointer to the extension or NULL on allocation failure. 5655 */ 5656 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 5657 { 5658 struct skb_ext *new, *old = NULL; 5659 unsigned int newlen, newoff; 5660 5661 if (skb->active_extensions) { 5662 old = skb->extensions; 5663 5664 new = skb_ext_maybe_cow(old, skb->active_extensions); 5665 if (!new) 5666 return NULL; 5667 5668 if (__skb_ext_exist(new, id)) 5669 goto set_active; 5670 5671 newoff = new->chunks; 5672 } else { 5673 newoff = SKB_EXT_CHUNKSIZEOF(*new); 5674 5675 new = skb_ext_alloc(); 5676 if (!new) 5677 return NULL; 5678 } 5679 5680 newlen = newoff + skb_ext_type_len[id]; 5681 new->chunks = newlen; 5682 new->offset[id] = newoff; 5683 set_active: 5684 skb->extensions = new; 5685 skb->active_extensions |= 1 << id; 5686 return skb_ext_get_ptr(new, id); 5687 } 5688 EXPORT_SYMBOL(skb_ext_add); 5689 5690 #ifdef CONFIG_XFRM 5691 static void skb_ext_put_sp(struct sec_path *sp) 5692 { 5693 unsigned int i; 5694 5695 for (i = 0; i < sp->len; i++) 5696 xfrm_state_put(sp->xvec[i]); 5697 } 5698 #endif 5699 5700 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 5701 { 5702 struct skb_ext *ext = skb->extensions; 5703 5704 skb->active_extensions &= ~(1 << id); 5705 if (skb->active_extensions == 0) { 5706 skb->extensions = NULL; 5707 __skb_ext_put(ext); 5708 #ifdef CONFIG_XFRM 5709 } else if (id == SKB_EXT_SEC_PATH && 5710 refcount_read(&ext->refcnt) == 1) { 5711 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 5712 5713 skb_ext_put_sp(sp); 5714 sp->len = 0; 5715 #endif 5716 } 5717 } 5718 EXPORT_SYMBOL(__skb_ext_del); 5719 5720 void __skb_ext_put(struct skb_ext *ext) 5721 { 5722 /* If this is last clone, nothing can increment 5723 * it after check passes. Avoids one atomic op. 5724 */ 5725 if (refcount_read(&ext->refcnt) == 1) 5726 goto free_now; 5727 5728 if (!refcount_dec_and_test(&ext->refcnt)) 5729 return; 5730 free_now: 5731 #ifdef CONFIG_XFRM 5732 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 5733 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 5734 #endif 5735 5736 kmem_cache_free(skbuff_ext_cache, ext); 5737 } 5738 EXPORT_SYMBOL(__skb_ext_put); 5739 #endif /* CONFIG_SKB_EXTENSIONS */ 5740