1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /* The array 'drop_reasons' is auto-generated in dropreason_str.c */ 95 EXPORT_SYMBOL(drop_reasons); 96 97 /** 98 * skb_panic - private function for out-of-line support 99 * @skb: buffer 100 * @sz: size 101 * @addr: address 102 * @msg: skb_over_panic or skb_under_panic 103 * 104 * Out-of-line support for skb_put() and skb_push(). 105 * Called via the wrapper skb_over_panic() or skb_under_panic(). 106 * Keep out of line to prevent kernel bloat. 107 * __builtin_return_address is not used because it is not always reliable. 108 */ 109 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 110 const char msg[]) 111 { 112 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 113 msg, addr, skb->len, sz, skb->head, skb->data, 114 (unsigned long)skb->tail, (unsigned long)skb->end, 115 skb->dev ? skb->dev->name : "<NULL>"); 116 BUG(); 117 } 118 119 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 125 { 126 skb_panic(skb, sz, addr, __func__); 127 } 128 129 #define NAPI_SKB_CACHE_SIZE 64 130 #define NAPI_SKB_CACHE_BULK 16 131 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 132 133 struct napi_alloc_cache { 134 struct page_frag_cache page; 135 unsigned int skb_count; 136 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 137 }; 138 139 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 140 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 141 142 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 143 { 144 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 145 146 fragsz = SKB_DATA_ALIGN(fragsz); 147 148 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 149 } 150 EXPORT_SYMBOL(__napi_alloc_frag_align); 151 152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 153 { 154 void *data; 155 156 fragsz = SKB_DATA_ALIGN(fragsz); 157 if (in_hardirq() || irqs_disabled()) { 158 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 159 160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 161 } else { 162 struct napi_alloc_cache *nc; 163 164 local_bh_disable(); 165 nc = this_cpu_ptr(&napi_alloc_cache); 166 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 167 local_bh_enable(); 168 } 169 return data; 170 } 171 EXPORT_SYMBOL(__netdev_alloc_frag_align); 172 173 static struct sk_buff *napi_skb_cache_get(void) 174 { 175 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 176 struct sk_buff *skb; 177 178 if (unlikely(!nc->skb_count)) { 179 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 180 GFP_ATOMIC, 181 NAPI_SKB_CACHE_BULK, 182 nc->skb_cache); 183 if (unlikely(!nc->skb_count)) 184 return NULL; 185 } 186 187 skb = nc->skb_cache[--nc->skb_count]; 188 kasan_unpoison_object_data(skbuff_head_cache, skb); 189 190 return skb; 191 } 192 193 /* Caller must provide SKB that is memset cleared */ 194 static void __build_skb_around(struct sk_buff *skb, void *data, 195 unsigned int frag_size) 196 { 197 struct skb_shared_info *shinfo; 198 unsigned int size = frag_size ? : ksize(data); 199 200 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 201 202 /* Assumes caller memset cleared SKB */ 203 skb->truesize = SKB_TRUESIZE(size); 204 refcount_set(&skb->users, 1); 205 skb->head = data; 206 skb->data = data; 207 skb_reset_tail_pointer(skb); 208 skb_set_end_offset(skb, size); 209 skb->mac_header = (typeof(skb->mac_header))~0U; 210 skb->transport_header = (typeof(skb->transport_header))~0U; 211 skb->alloc_cpu = raw_smp_processor_id(); 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 215 atomic_set(&shinfo->dataref, 1); 216 217 skb_set_kcov_handle(skb, kcov_common_handle()); 218 } 219 220 /** 221 * __build_skb - build a network buffer 222 * @data: data buffer provided by caller 223 * @frag_size: size of data, or 0 if head was kmalloced 224 * 225 * Allocate a new &sk_buff. Caller provides space holding head and 226 * skb_shared_info. @data must have been allocated by kmalloc() only if 227 * @frag_size is 0, otherwise data should come from the page allocator 228 * or vmalloc() 229 * The return is the new skb buffer. 230 * On a failure the return is %NULL, and @data is not freed. 231 * Notes : 232 * Before IO, driver allocates only data buffer where NIC put incoming frame 233 * Driver should add room at head (NET_SKB_PAD) and 234 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 235 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 236 * before giving packet to stack. 237 * RX rings only contains data buffers, not full skbs. 238 */ 239 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 240 { 241 struct sk_buff *skb; 242 243 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 244 if (unlikely(!skb)) 245 return NULL; 246 247 memset(skb, 0, offsetof(struct sk_buff, tail)); 248 __build_skb_around(skb, data, frag_size); 249 250 return skb; 251 } 252 253 /* build_skb() is wrapper over __build_skb(), that specifically 254 * takes care of skb->head and skb->pfmemalloc 255 * This means that if @frag_size is not zero, then @data must be backed 256 * by a page fragment, not kmalloc() or vmalloc() 257 */ 258 struct sk_buff *build_skb(void *data, unsigned int frag_size) 259 { 260 struct sk_buff *skb = __build_skb(data, frag_size); 261 262 if (skb && frag_size) { 263 skb->head_frag = 1; 264 if (page_is_pfmemalloc(virt_to_head_page(data))) 265 skb->pfmemalloc = 1; 266 } 267 return skb; 268 } 269 EXPORT_SYMBOL(build_skb); 270 271 /** 272 * build_skb_around - build a network buffer around provided skb 273 * @skb: sk_buff provide by caller, must be memset cleared 274 * @data: data buffer provided by caller 275 * @frag_size: size of data, or 0 if head was kmalloced 276 */ 277 struct sk_buff *build_skb_around(struct sk_buff *skb, 278 void *data, unsigned int frag_size) 279 { 280 if (unlikely(!skb)) 281 return NULL; 282 283 __build_skb_around(skb, data, frag_size); 284 285 if (frag_size) { 286 skb->head_frag = 1; 287 if (page_is_pfmemalloc(virt_to_head_page(data))) 288 skb->pfmemalloc = 1; 289 } 290 return skb; 291 } 292 EXPORT_SYMBOL(build_skb_around); 293 294 /** 295 * __napi_build_skb - build a network buffer 296 * @data: data buffer provided by caller 297 * @frag_size: size of data, or 0 if head was kmalloced 298 * 299 * Version of __build_skb() that uses NAPI percpu caches to obtain 300 * skbuff_head instead of inplace allocation. 301 * 302 * Returns a new &sk_buff on success, %NULL on allocation failure. 303 */ 304 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 305 { 306 struct sk_buff *skb; 307 308 skb = napi_skb_cache_get(); 309 if (unlikely(!skb)) 310 return NULL; 311 312 memset(skb, 0, offsetof(struct sk_buff, tail)); 313 __build_skb_around(skb, data, frag_size); 314 315 return skb; 316 } 317 318 /** 319 * napi_build_skb - build a network buffer 320 * @data: data buffer provided by caller 321 * @frag_size: size of data, or 0 if head was kmalloced 322 * 323 * Version of __napi_build_skb() that takes care of skb->head_frag 324 * and skb->pfmemalloc when the data is a page or page fragment. 325 * 326 * Returns a new &sk_buff on success, %NULL on allocation failure. 327 */ 328 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 329 { 330 struct sk_buff *skb = __napi_build_skb(data, frag_size); 331 332 if (likely(skb) && frag_size) { 333 skb->head_frag = 1; 334 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 335 } 336 337 return skb; 338 } 339 EXPORT_SYMBOL(napi_build_skb); 340 341 /* 342 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 343 * the caller if emergency pfmemalloc reserves are being used. If it is and 344 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 345 * may be used. Otherwise, the packet data may be discarded until enough 346 * memory is free 347 */ 348 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 349 bool *pfmemalloc) 350 { 351 void *obj; 352 bool ret_pfmemalloc = false; 353 354 /* 355 * Try a regular allocation, when that fails and we're not entitled 356 * to the reserves, fail. 357 */ 358 obj = kmalloc_node_track_caller(size, 359 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 360 node); 361 if (obj || !(gfp_pfmemalloc_allowed(flags))) 362 goto out; 363 364 /* Try again but now we are using pfmemalloc reserves */ 365 ret_pfmemalloc = true; 366 obj = kmalloc_node_track_caller(size, flags, node); 367 368 out: 369 if (pfmemalloc) 370 *pfmemalloc = ret_pfmemalloc; 371 372 return obj; 373 } 374 375 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 376 * 'private' fields and also do memory statistics to find all the 377 * [BEEP] leaks. 378 * 379 */ 380 381 /** 382 * __alloc_skb - allocate a network buffer 383 * @size: size to allocate 384 * @gfp_mask: allocation mask 385 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 386 * instead of head cache and allocate a cloned (child) skb. 387 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 388 * allocations in case the data is required for writeback 389 * @node: numa node to allocate memory on 390 * 391 * Allocate a new &sk_buff. The returned buffer has no headroom and a 392 * tail room of at least size bytes. The object has a reference count 393 * of one. The return is the buffer. On a failure the return is %NULL. 394 * 395 * Buffers may only be allocated from interrupts using a @gfp_mask of 396 * %GFP_ATOMIC. 397 */ 398 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 399 int flags, int node) 400 { 401 struct kmem_cache *cache; 402 struct sk_buff *skb; 403 unsigned int osize; 404 bool pfmemalloc; 405 u8 *data; 406 407 cache = (flags & SKB_ALLOC_FCLONE) 408 ? skbuff_fclone_cache : skbuff_head_cache; 409 410 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 411 gfp_mask |= __GFP_MEMALLOC; 412 413 /* Get the HEAD */ 414 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 415 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 416 skb = napi_skb_cache_get(); 417 else 418 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 419 if (unlikely(!skb)) 420 return NULL; 421 prefetchw(skb); 422 423 /* We do our best to align skb_shared_info on a separate cache 424 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 425 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 426 * Both skb->head and skb_shared_info are cache line aligned. 427 */ 428 size = SKB_DATA_ALIGN(size); 429 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 430 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 431 if (unlikely(!data)) 432 goto nodata; 433 /* kmalloc(size) might give us more room than requested. 434 * Put skb_shared_info exactly at the end of allocated zone, 435 * to allow max possible filling before reallocation. 436 */ 437 osize = ksize(data); 438 size = SKB_WITH_OVERHEAD(osize); 439 prefetchw(data + size); 440 441 /* 442 * Only clear those fields we need to clear, not those that we will 443 * actually initialise below. Hence, don't put any more fields after 444 * the tail pointer in struct sk_buff! 445 */ 446 memset(skb, 0, offsetof(struct sk_buff, tail)); 447 __build_skb_around(skb, data, osize); 448 skb->pfmemalloc = pfmemalloc; 449 450 if (flags & SKB_ALLOC_FCLONE) { 451 struct sk_buff_fclones *fclones; 452 453 fclones = container_of(skb, struct sk_buff_fclones, skb1); 454 455 skb->fclone = SKB_FCLONE_ORIG; 456 refcount_set(&fclones->fclone_ref, 1); 457 } 458 459 return skb; 460 461 nodata: 462 kmem_cache_free(cache, skb); 463 return NULL; 464 } 465 EXPORT_SYMBOL(__alloc_skb); 466 467 /** 468 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 469 * @dev: network device to receive on 470 * @len: length to allocate 471 * @gfp_mask: get_free_pages mask, passed to alloc_skb 472 * 473 * Allocate a new &sk_buff and assign it a usage count of one. The 474 * buffer has NET_SKB_PAD headroom built in. Users should allocate 475 * the headroom they think they need without accounting for the 476 * built in space. The built in space is used for optimisations. 477 * 478 * %NULL is returned if there is no free memory. 479 */ 480 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 481 gfp_t gfp_mask) 482 { 483 struct page_frag_cache *nc; 484 struct sk_buff *skb; 485 bool pfmemalloc; 486 void *data; 487 488 len += NET_SKB_PAD; 489 490 /* If requested length is either too small or too big, 491 * we use kmalloc() for skb->head allocation. 492 */ 493 if (len <= SKB_WITH_OVERHEAD(1024) || 494 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 497 if (!skb) 498 goto skb_fail; 499 goto skb_success; 500 } 501 502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 503 len = SKB_DATA_ALIGN(len); 504 505 if (sk_memalloc_socks()) 506 gfp_mask |= __GFP_MEMALLOC; 507 508 if (in_hardirq() || irqs_disabled()) { 509 nc = this_cpu_ptr(&netdev_alloc_cache); 510 data = page_frag_alloc(nc, len, gfp_mask); 511 pfmemalloc = nc->pfmemalloc; 512 } else { 513 local_bh_disable(); 514 nc = this_cpu_ptr(&napi_alloc_cache.page); 515 data = page_frag_alloc(nc, len, gfp_mask); 516 pfmemalloc = nc->pfmemalloc; 517 local_bh_enable(); 518 } 519 520 if (unlikely(!data)) 521 return NULL; 522 523 skb = __build_skb(data, len); 524 if (unlikely(!skb)) { 525 skb_free_frag(data); 526 return NULL; 527 } 528 529 if (pfmemalloc) 530 skb->pfmemalloc = 1; 531 skb->head_frag = 1; 532 533 skb_success: 534 skb_reserve(skb, NET_SKB_PAD); 535 skb->dev = dev; 536 537 skb_fail: 538 return skb; 539 } 540 EXPORT_SYMBOL(__netdev_alloc_skb); 541 542 /** 543 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 544 * @napi: napi instance this buffer was allocated for 545 * @len: length to allocate 546 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 547 * 548 * Allocate a new sk_buff for use in NAPI receive. This buffer will 549 * attempt to allocate the head from a special reserved region used 550 * only for NAPI Rx allocation. By doing this we can save several 551 * CPU cycles by avoiding having to disable and re-enable IRQs. 552 * 553 * %NULL is returned if there is no free memory. 554 */ 555 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 556 gfp_t gfp_mask) 557 { 558 struct napi_alloc_cache *nc; 559 struct sk_buff *skb; 560 void *data; 561 562 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 563 len += NET_SKB_PAD + NET_IP_ALIGN; 564 565 /* If requested length is either too small or too big, 566 * we use kmalloc() for skb->head allocation. 567 */ 568 if (len <= SKB_WITH_OVERHEAD(1024) || 569 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 570 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 571 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 572 NUMA_NO_NODE); 573 if (!skb) 574 goto skb_fail; 575 goto skb_success; 576 } 577 578 nc = this_cpu_ptr(&napi_alloc_cache); 579 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 580 len = SKB_DATA_ALIGN(len); 581 582 if (sk_memalloc_socks()) 583 gfp_mask |= __GFP_MEMALLOC; 584 585 data = page_frag_alloc(&nc->page, len, gfp_mask); 586 if (unlikely(!data)) 587 return NULL; 588 589 skb = __napi_build_skb(data, len); 590 if (unlikely(!skb)) { 591 skb_free_frag(data); 592 return NULL; 593 } 594 595 if (nc->page.pfmemalloc) 596 skb->pfmemalloc = 1; 597 skb->head_frag = 1; 598 599 skb_success: 600 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 601 skb->dev = napi->dev; 602 603 skb_fail: 604 return skb; 605 } 606 EXPORT_SYMBOL(__napi_alloc_skb); 607 608 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 609 int size, unsigned int truesize) 610 { 611 skb_fill_page_desc(skb, i, page, off, size); 612 skb->len += size; 613 skb->data_len += size; 614 skb->truesize += truesize; 615 } 616 EXPORT_SYMBOL(skb_add_rx_frag); 617 618 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 619 unsigned int truesize) 620 { 621 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 622 623 skb_frag_size_add(frag, size); 624 skb->len += size; 625 skb->data_len += size; 626 skb->truesize += truesize; 627 } 628 EXPORT_SYMBOL(skb_coalesce_rx_frag); 629 630 static void skb_drop_list(struct sk_buff **listp) 631 { 632 kfree_skb_list(*listp); 633 *listp = NULL; 634 } 635 636 static inline void skb_drop_fraglist(struct sk_buff *skb) 637 { 638 skb_drop_list(&skb_shinfo(skb)->frag_list); 639 } 640 641 static void skb_clone_fraglist(struct sk_buff *skb) 642 { 643 struct sk_buff *list; 644 645 skb_walk_frags(skb, list) 646 skb_get(list); 647 } 648 649 static void skb_free_head(struct sk_buff *skb) 650 { 651 unsigned char *head = skb->head; 652 653 if (skb->head_frag) { 654 if (skb_pp_recycle(skb, head)) 655 return; 656 skb_free_frag(head); 657 } else { 658 kfree(head); 659 } 660 } 661 662 static void skb_release_data(struct sk_buff *skb) 663 { 664 struct skb_shared_info *shinfo = skb_shinfo(skb); 665 int i; 666 667 if (skb->cloned && 668 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 669 &shinfo->dataref)) 670 goto exit; 671 672 if (skb_zcopy(skb)) { 673 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 674 675 skb_zcopy_clear(skb, true); 676 if (skip_unref) 677 goto free_head; 678 } 679 680 for (i = 0; i < shinfo->nr_frags; i++) 681 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 682 683 free_head: 684 if (shinfo->frag_list) 685 kfree_skb_list(shinfo->frag_list); 686 687 skb_free_head(skb); 688 exit: 689 /* When we clone an SKB we copy the reycling bit. The pp_recycle 690 * bit is only set on the head though, so in order to avoid races 691 * while trying to recycle fragments on __skb_frag_unref() we need 692 * to make one SKB responsible for triggering the recycle path. 693 * So disable the recycling bit if an SKB is cloned and we have 694 * additional references to the fragmented part of the SKB. 695 * Eventually the last SKB will have the recycling bit set and it's 696 * dataref set to 0, which will trigger the recycling 697 */ 698 skb->pp_recycle = 0; 699 } 700 701 /* 702 * Free an skbuff by memory without cleaning the state. 703 */ 704 static void kfree_skbmem(struct sk_buff *skb) 705 { 706 struct sk_buff_fclones *fclones; 707 708 switch (skb->fclone) { 709 case SKB_FCLONE_UNAVAILABLE: 710 kmem_cache_free(skbuff_head_cache, skb); 711 return; 712 713 case SKB_FCLONE_ORIG: 714 fclones = container_of(skb, struct sk_buff_fclones, skb1); 715 716 /* We usually free the clone (TX completion) before original skb 717 * This test would have no chance to be true for the clone, 718 * while here, branch prediction will be good. 719 */ 720 if (refcount_read(&fclones->fclone_ref) == 1) 721 goto fastpath; 722 break; 723 724 default: /* SKB_FCLONE_CLONE */ 725 fclones = container_of(skb, struct sk_buff_fclones, skb2); 726 break; 727 } 728 if (!refcount_dec_and_test(&fclones->fclone_ref)) 729 return; 730 fastpath: 731 kmem_cache_free(skbuff_fclone_cache, fclones); 732 } 733 734 void skb_release_head_state(struct sk_buff *skb) 735 { 736 skb_dst_drop(skb); 737 if (skb->destructor) { 738 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 739 skb->destructor(skb); 740 } 741 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 742 nf_conntrack_put(skb_nfct(skb)); 743 #endif 744 skb_ext_put(skb); 745 } 746 747 /* Free everything but the sk_buff shell. */ 748 static void skb_release_all(struct sk_buff *skb) 749 { 750 skb_release_head_state(skb); 751 if (likely(skb->head)) 752 skb_release_data(skb); 753 } 754 755 /** 756 * __kfree_skb - private function 757 * @skb: buffer 758 * 759 * Free an sk_buff. Release anything attached to the buffer. 760 * Clean the state. This is an internal helper function. Users should 761 * always call kfree_skb 762 */ 763 764 void __kfree_skb(struct sk_buff *skb) 765 { 766 skb_release_all(skb); 767 kfree_skbmem(skb); 768 } 769 EXPORT_SYMBOL(__kfree_skb); 770 771 /** 772 * kfree_skb_reason - free an sk_buff with special reason 773 * @skb: buffer to free 774 * @reason: reason why this skb is dropped 775 * 776 * Drop a reference to the buffer and free it if the usage count has 777 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 778 * tracepoint. 779 */ 780 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 781 { 782 if (!skb_unref(skb)) 783 return; 784 785 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 786 787 trace_kfree_skb(skb, __builtin_return_address(0), reason); 788 __kfree_skb(skb); 789 } 790 EXPORT_SYMBOL(kfree_skb_reason); 791 792 void kfree_skb_list_reason(struct sk_buff *segs, 793 enum skb_drop_reason reason) 794 { 795 while (segs) { 796 struct sk_buff *next = segs->next; 797 798 kfree_skb_reason(segs, reason); 799 segs = next; 800 } 801 } 802 EXPORT_SYMBOL(kfree_skb_list_reason); 803 804 /* Dump skb information and contents. 805 * 806 * Must only be called from net_ratelimit()-ed paths. 807 * 808 * Dumps whole packets if full_pkt, only headers otherwise. 809 */ 810 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 811 { 812 struct skb_shared_info *sh = skb_shinfo(skb); 813 struct net_device *dev = skb->dev; 814 struct sock *sk = skb->sk; 815 struct sk_buff *list_skb; 816 bool has_mac, has_trans; 817 int headroom, tailroom; 818 int i, len, seg_len; 819 820 if (full_pkt) 821 len = skb->len; 822 else 823 len = min_t(int, skb->len, MAX_HEADER + 128); 824 825 headroom = skb_headroom(skb); 826 tailroom = skb_tailroom(skb); 827 828 has_mac = skb_mac_header_was_set(skb); 829 has_trans = skb_transport_header_was_set(skb); 830 831 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 832 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 833 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 834 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 835 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 836 level, skb->len, headroom, skb_headlen(skb), tailroom, 837 has_mac ? skb->mac_header : -1, 838 has_mac ? skb_mac_header_len(skb) : -1, 839 skb->network_header, 840 has_trans ? skb_network_header_len(skb) : -1, 841 has_trans ? skb->transport_header : -1, 842 sh->tx_flags, sh->nr_frags, 843 sh->gso_size, sh->gso_type, sh->gso_segs, 844 skb->csum, skb->ip_summed, skb->csum_complete_sw, 845 skb->csum_valid, skb->csum_level, 846 skb->hash, skb->sw_hash, skb->l4_hash, 847 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 848 849 if (dev) 850 printk("%sdev name=%s feat=%pNF\n", 851 level, dev->name, &dev->features); 852 if (sk) 853 printk("%ssk family=%hu type=%u proto=%u\n", 854 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 855 856 if (full_pkt && headroom) 857 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 858 16, 1, skb->head, headroom, false); 859 860 seg_len = min_t(int, skb_headlen(skb), len); 861 if (seg_len) 862 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 863 16, 1, skb->data, seg_len, false); 864 len -= seg_len; 865 866 if (full_pkt && tailroom) 867 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 868 16, 1, skb_tail_pointer(skb), tailroom, false); 869 870 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 871 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 872 u32 p_off, p_len, copied; 873 struct page *p; 874 u8 *vaddr; 875 876 skb_frag_foreach_page(frag, skb_frag_off(frag), 877 skb_frag_size(frag), p, p_off, p_len, 878 copied) { 879 seg_len = min_t(int, p_len, len); 880 vaddr = kmap_atomic(p); 881 print_hex_dump(level, "skb frag: ", 882 DUMP_PREFIX_OFFSET, 883 16, 1, vaddr + p_off, seg_len, false); 884 kunmap_atomic(vaddr); 885 len -= seg_len; 886 if (!len) 887 break; 888 } 889 } 890 891 if (full_pkt && skb_has_frag_list(skb)) { 892 printk("skb fraglist:\n"); 893 skb_walk_frags(skb, list_skb) 894 skb_dump(level, list_skb, true); 895 } 896 } 897 EXPORT_SYMBOL(skb_dump); 898 899 /** 900 * skb_tx_error - report an sk_buff xmit error 901 * @skb: buffer that triggered an error 902 * 903 * Report xmit error if a device callback is tracking this skb. 904 * skb must be freed afterwards. 905 */ 906 void skb_tx_error(struct sk_buff *skb) 907 { 908 if (skb) { 909 skb_zcopy_downgrade_managed(skb); 910 skb_zcopy_clear(skb, true); 911 } 912 } 913 EXPORT_SYMBOL(skb_tx_error); 914 915 #ifdef CONFIG_TRACEPOINTS 916 /** 917 * consume_skb - free an skbuff 918 * @skb: buffer to free 919 * 920 * Drop a ref to the buffer and free it if the usage count has hit zero 921 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 922 * is being dropped after a failure and notes that 923 */ 924 void consume_skb(struct sk_buff *skb) 925 { 926 if (!skb_unref(skb)) 927 return; 928 929 trace_consume_skb(skb); 930 __kfree_skb(skb); 931 } 932 EXPORT_SYMBOL(consume_skb); 933 #endif 934 935 /** 936 * __consume_stateless_skb - free an skbuff, assuming it is stateless 937 * @skb: buffer to free 938 * 939 * Alike consume_skb(), but this variant assumes that this is the last 940 * skb reference and all the head states have been already dropped 941 */ 942 void __consume_stateless_skb(struct sk_buff *skb) 943 { 944 trace_consume_skb(skb); 945 skb_release_data(skb); 946 kfree_skbmem(skb); 947 } 948 949 static void napi_skb_cache_put(struct sk_buff *skb) 950 { 951 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 952 u32 i; 953 954 kasan_poison_object_data(skbuff_head_cache, skb); 955 nc->skb_cache[nc->skb_count++] = skb; 956 957 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 958 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 959 kasan_unpoison_object_data(skbuff_head_cache, 960 nc->skb_cache[i]); 961 962 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 963 nc->skb_cache + NAPI_SKB_CACHE_HALF); 964 nc->skb_count = NAPI_SKB_CACHE_HALF; 965 } 966 } 967 968 void __kfree_skb_defer(struct sk_buff *skb) 969 { 970 skb_release_all(skb); 971 napi_skb_cache_put(skb); 972 } 973 974 void napi_skb_free_stolen_head(struct sk_buff *skb) 975 { 976 if (unlikely(skb->slow_gro)) { 977 nf_reset_ct(skb); 978 skb_dst_drop(skb); 979 skb_ext_put(skb); 980 skb_orphan(skb); 981 skb->slow_gro = 0; 982 } 983 napi_skb_cache_put(skb); 984 } 985 986 void napi_consume_skb(struct sk_buff *skb, int budget) 987 { 988 /* Zero budget indicate non-NAPI context called us, like netpoll */ 989 if (unlikely(!budget)) { 990 dev_consume_skb_any(skb); 991 return; 992 } 993 994 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 995 996 if (!skb_unref(skb)) 997 return; 998 999 /* if reaching here SKB is ready to free */ 1000 trace_consume_skb(skb); 1001 1002 /* if SKB is a clone, don't handle this case */ 1003 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1004 __kfree_skb(skb); 1005 return; 1006 } 1007 1008 skb_release_all(skb); 1009 napi_skb_cache_put(skb); 1010 } 1011 EXPORT_SYMBOL(napi_consume_skb); 1012 1013 /* Make sure a field is contained by headers group */ 1014 #define CHECK_SKB_FIELD(field) \ 1015 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1016 offsetof(struct sk_buff, headers.field)); \ 1017 1018 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1019 { 1020 new->tstamp = old->tstamp; 1021 /* We do not copy old->sk */ 1022 new->dev = old->dev; 1023 memcpy(new->cb, old->cb, sizeof(old->cb)); 1024 skb_dst_copy(new, old); 1025 __skb_ext_copy(new, old); 1026 __nf_copy(new, old, false); 1027 1028 /* Note : this field could be in the headers group. 1029 * It is not yet because we do not want to have a 16 bit hole 1030 */ 1031 new->queue_mapping = old->queue_mapping; 1032 1033 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1034 CHECK_SKB_FIELD(protocol); 1035 CHECK_SKB_FIELD(csum); 1036 CHECK_SKB_FIELD(hash); 1037 CHECK_SKB_FIELD(priority); 1038 CHECK_SKB_FIELD(skb_iif); 1039 CHECK_SKB_FIELD(vlan_proto); 1040 CHECK_SKB_FIELD(vlan_tci); 1041 CHECK_SKB_FIELD(transport_header); 1042 CHECK_SKB_FIELD(network_header); 1043 CHECK_SKB_FIELD(mac_header); 1044 CHECK_SKB_FIELD(inner_protocol); 1045 CHECK_SKB_FIELD(inner_transport_header); 1046 CHECK_SKB_FIELD(inner_network_header); 1047 CHECK_SKB_FIELD(inner_mac_header); 1048 CHECK_SKB_FIELD(mark); 1049 #ifdef CONFIG_NETWORK_SECMARK 1050 CHECK_SKB_FIELD(secmark); 1051 #endif 1052 #ifdef CONFIG_NET_RX_BUSY_POLL 1053 CHECK_SKB_FIELD(napi_id); 1054 #endif 1055 CHECK_SKB_FIELD(alloc_cpu); 1056 #ifdef CONFIG_XPS 1057 CHECK_SKB_FIELD(sender_cpu); 1058 #endif 1059 #ifdef CONFIG_NET_SCHED 1060 CHECK_SKB_FIELD(tc_index); 1061 #endif 1062 1063 } 1064 1065 /* 1066 * You should not add any new code to this function. Add it to 1067 * __copy_skb_header above instead. 1068 */ 1069 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1070 { 1071 #define C(x) n->x = skb->x 1072 1073 n->next = n->prev = NULL; 1074 n->sk = NULL; 1075 __copy_skb_header(n, skb); 1076 1077 C(len); 1078 C(data_len); 1079 C(mac_len); 1080 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1081 n->cloned = 1; 1082 n->nohdr = 0; 1083 n->peeked = 0; 1084 C(pfmemalloc); 1085 C(pp_recycle); 1086 n->destructor = NULL; 1087 C(tail); 1088 C(end); 1089 C(head); 1090 C(head_frag); 1091 C(data); 1092 C(truesize); 1093 refcount_set(&n->users, 1); 1094 1095 atomic_inc(&(skb_shinfo(skb)->dataref)); 1096 skb->cloned = 1; 1097 1098 return n; 1099 #undef C 1100 } 1101 1102 /** 1103 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1104 * @first: first sk_buff of the msg 1105 */ 1106 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1107 { 1108 struct sk_buff *n; 1109 1110 n = alloc_skb(0, GFP_ATOMIC); 1111 if (!n) 1112 return NULL; 1113 1114 n->len = first->len; 1115 n->data_len = first->len; 1116 n->truesize = first->truesize; 1117 1118 skb_shinfo(n)->frag_list = first; 1119 1120 __copy_skb_header(n, first); 1121 n->destructor = NULL; 1122 1123 return n; 1124 } 1125 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1126 1127 /** 1128 * skb_morph - morph one skb into another 1129 * @dst: the skb to receive the contents 1130 * @src: the skb to supply the contents 1131 * 1132 * This is identical to skb_clone except that the target skb is 1133 * supplied by the user. 1134 * 1135 * The target skb is returned upon exit. 1136 */ 1137 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1138 { 1139 skb_release_all(dst); 1140 return __skb_clone(dst, src); 1141 } 1142 EXPORT_SYMBOL_GPL(skb_morph); 1143 1144 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1145 { 1146 unsigned long max_pg, num_pg, new_pg, old_pg; 1147 struct user_struct *user; 1148 1149 if (capable(CAP_IPC_LOCK) || !size) 1150 return 0; 1151 1152 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1153 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1154 user = mmp->user ? : current_user(); 1155 1156 do { 1157 old_pg = atomic_long_read(&user->locked_vm); 1158 new_pg = old_pg + num_pg; 1159 if (new_pg > max_pg) 1160 return -ENOBUFS; 1161 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1162 old_pg); 1163 1164 if (!mmp->user) { 1165 mmp->user = get_uid(user); 1166 mmp->num_pg = num_pg; 1167 } else { 1168 mmp->num_pg += num_pg; 1169 } 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1174 1175 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1176 { 1177 if (mmp->user) { 1178 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1179 free_uid(mmp->user); 1180 } 1181 } 1182 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1183 1184 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1185 { 1186 struct ubuf_info *uarg; 1187 struct sk_buff *skb; 1188 1189 WARN_ON_ONCE(!in_task()); 1190 1191 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1192 if (!skb) 1193 return NULL; 1194 1195 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1196 uarg = (void *)skb->cb; 1197 uarg->mmp.user = NULL; 1198 1199 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1200 kfree_skb(skb); 1201 return NULL; 1202 } 1203 1204 uarg->callback = msg_zerocopy_callback; 1205 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1206 uarg->len = 1; 1207 uarg->bytelen = size; 1208 uarg->zerocopy = 1; 1209 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1210 refcount_set(&uarg->refcnt, 1); 1211 sock_hold(sk); 1212 1213 return uarg; 1214 } 1215 1216 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1217 { 1218 return container_of((void *)uarg, struct sk_buff, cb); 1219 } 1220 1221 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1222 struct ubuf_info *uarg) 1223 { 1224 if (uarg) { 1225 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1226 u32 bytelen, next; 1227 1228 /* there might be non MSG_ZEROCOPY users */ 1229 if (uarg->callback != msg_zerocopy_callback) 1230 return NULL; 1231 1232 /* realloc only when socket is locked (TCP, UDP cork), 1233 * so uarg->len and sk_zckey access is serialized 1234 */ 1235 if (!sock_owned_by_user(sk)) { 1236 WARN_ON_ONCE(1); 1237 return NULL; 1238 } 1239 1240 bytelen = uarg->bytelen + size; 1241 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1242 /* TCP can create new skb to attach new uarg */ 1243 if (sk->sk_type == SOCK_STREAM) 1244 goto new_alloc; 1245 return NULL; 1246 } 1247 1248 next = (u32)atomic_read(&sk->sk_zckey); 1249 if ((u32)(uarg->id + uarg->len) == next) { 1250 if (mm_account_pinned_pages(&uarg->mmp, size)) 1251 return NULL; 1252 uarg->len++; 1253 uarg->bytelen = bytelen; 1254 atomic_set(&sk->sk_zckey, ++next); 1255 1256 /* no extra ref when appending to datagram (MSG_MORE) */ 1257 if (sk->sk_type == SOCK_STREAM) 1258 net_zcopy_get(uarg); 1259 1260 return uarg; 1261 } 1262 } 1263 1264 new_alloc: 1265 return msg_zerocopy_alloc(sk, size); 1266 } 1267 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1268 1269 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1270 { 1271 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1272 u32 old_lo, old_hi; 1273 u64 sum_len; 1274 1275 old_lo = serr->ee.ee_info; 1276 old_hi = serr->ee.ee_data; 1277 sum_len = old_hi - old_lo + 1ULL + len; 1278 1279 if (sum_len >= (1ULL << 32)) 1280 return false; 1281 1282 if (lo != old_hi + 1) 1283 return false; 1284 1285 serr->ee.ee_data += len; 1286 return true; 1287 } 1288 1289 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1290 { 1291 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1292 struct sock_exterr_skb *serr; 1293 struct sock *sk = skb->sk; 1294 struct sk_buff_head *q; 1295 unsigned long flags; 1296 bool is_zerocopy; 1297 u32 lo, hi; 1298 u16 len; 1299 1300 mm_unaccount_pinned_pages(&uarg->mmp); 1301 1302 /* if !len, there was only 1 call, and it was aborted 1303 * so do not queue a completion notification 1304 */ 1305 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1306 goto release; 1307 1308 len = uarg->len; 1309 lo = uarg->id; 1310 hi = uarg->id + len - 1; 1311 is_zerocopy = uarg->zerocopy; 1312 1313 serr = SKB_EXT_ERR(skb); 1314 memset(serr, 0, sizeof(*serr)); 1315 serr->ee.ee_errno = 0; 1316 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1317 serr->ee.ee_data = hi; 1318 serr->ee.ee_info = lo; 1319 if (!is_zerocopy) 1320 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1321 1322 q = &sk->sk_error_queue; 1323 spin_lock_irqsave(&q->lock, flags); 1324 tail = skb_peek_tail(q); 1325 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1326 !skb_zerocopy_notify_extend(tail, lo, len)) { 1327 __skb_queue_tail(q, skb); 1328 skb = NULL; 1329 } 1330 spin_unlock_irqrestore(&q->lock, flags); 1331 1332 sk_error_report(sk); 1333 1334 release: 1335 consume_skb(skb); 1336 sock_put(sk); 1337 } 1338 1339 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1340 bool success) 1341 { 1342 uarg->zerocopy = uarg->zerocopy & success; 1343 1344 if (refcount_dec_and_test(&uarg->refcnt)) 1345 __msg_zerocopy_callback(uarg); 1346 } 1347 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1348 1349 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1350 { 1351 struct sock *sk = skb_from_uarg(uarg)->sk; 1352 1353 atomic_dec(&sk->sk_zckey); 1354 uarg->len--; 1355 1356 if (have_uref) 1357 msg_zerocopy_callback(NULL, uarg, true); 1358 } 1359 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1360 1361 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1362 struct msghdr *msg, int len, 1363 struct ubuf_info *uarg) 1364 { 1365 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1366 int err, orig_len = skb->len; 1367 1368 /* An skb can only point to one uarg. This edge case happens when 1369 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1370 */ 1371 if (orig_uarg && uarg != orig_uarg) 1372 return -EEXIST; 1373 1374 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1375 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1376 struct sock *save_sk = skb->sk; 1377 1378 /* Streams do not free skb on error. Reset to prev state. */ 1379 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1380 skb->sk = sk; 1381 ___pskb_trim(skb, orig_len); 1382 skb->sk = save_sk; 1383 return err; 1384 } 1385 1386 skb_zcopy_set(skb, uarg, NULL); 1387 return skb->len - orig_len; 1388 } 1389 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1390 1391 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1392 { 1393 int i; 1394 1395 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1397 skb_frag_ref(skb, i); 1398 } 1399 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1400 1401 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1402 gfp_t gfp_mask) 1403 { 1404 if (skb_zcopy(orig)) { 1405 if (skb_zcopy(nskb)) { 1406 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1407 if (!gfp_mask) { 1408 WARN_ON_ONCE(1); 1409 return -ENOMEM; 1410 } 1411 if (skb_uarg(nskb) == skb_uarg(orig)) 1412 return 0; 1413 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1414 return -EIO; 1415 } 1416 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1417 } 1418 return 0; 1419 } 1420 1421 /** 1422 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1423 * @skb: the skb to modify 1424 * @gfp_mask: allocation priority 1425 * 1426 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1427 * It will copy all frags into kernel and drop the reference 1428 * to userspace pages. 1429 * 1430 * If this function is called from an interrupt gfp_mask() must be 1431 * %GFP_ATOMIC. 1432 * 1433 * Returns 0 on success or a negative error code on failure 1434 * to allocate kernel memory to copy to. 1435 */ 1436 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1437 { 1438 int num_frags = skb_shinfo(skb)->nr_frags; 1439 struct page *page, *head = NULL; 1440 int i, new_frags; 1441 u32 d_off; 1442 1443 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1444 return -EINVAL; 1445 1446 if (!num_frags) 1447 goto release; 1448 1449 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1450 for (i = 0; i < new_frags; i++) { 1451 page = alloc_page(gfp_mask); 1452 if (!page) { 1453 while (head) { 1454 struct page *next = (struct page *)page_private(head); 1455 put_page(head); 1456 head = next; 1457 } 1458 return -ENOMEM; 1459 } 1460 set_page_private(page, (unsigned long)head); 1461 head = page; 1462 } 1463 1464 page = head; 1465 d_off = 0; 1466 for (i = 0; i < num_frags; i++) { 1467 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1468 u32 p_off, p_len, copied; 1469 struct page *p; 1470 u8 *vaddr; 1471 1472 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1473 p, p_off, p_len, copied) { 1474 u32 copy, done = 0; 1475 vaddr = kmap_atomic(p); 1476 1477 while (done < p_len) { 1478 if (d_off == PAGE_SIZE) { 1479 d_off = 0; 1480 page = (struct page *)page_private(page); 1481 } 1482 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1483 memcpy(page_address(page) + d_off, 1484 vaddr + p_off + done, copy); 1485 done += copy; 1486 d_off += copy; 1487 } 1488 kunmap_atomic(vaddr); 1489 } 1490 } 1491 1492 /* skb frags release userspace buffers */ 1493 for (i = 0; i < num_frags; i++) 1494 skb_frag_unref(skb, i); 1495 1496 /* skb frags point to kernel buffers */ 1497 for (i = 0; i < new_frags - 1; i++) { 1498 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1499 head = (struct page *)page_private(head); 1500 } 1501 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1502 skb_shinfo(skb)->nr_frags = new_frags; 1503 1504 release: 1505 skb_zcopy_clear(skb, false); 1506 return 0; 1507 } 1508 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1509 1510 /** 1511 * skb_clone - duplicate an sk_buff 1512 * @skb: buffer to clone 1513 * @gfp_mask: allocation priority 1514 * 1515 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1516 * copies share the same packet data but not structure. The new 1517 * buffer has a reference count of 1. If the allocation fails the 1518 * function returns %NULL otherwise the new buffer is returned. 1519 * 1520 * If this function is called from an interrupt gfp_mask() must be 1521 * %GFP_ATOMIC. 1522 */ 1523 1524 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1525 { 1526 struct sk_buff_fclones *fclones = container_of(skb, 1527 struct sk_buff_fclones, 1528 skb1); 1529 struct sk_buff *n; 1530 1531 if (skb_orphan_frags(skb, gfp_mask)) 1532 return NULL; 1533 1534 if (skb->fclone == SKB_FCLONE_ORIG && 1535 refcount_read(&fclones->fclone_ref) == 1) { 1536 n = &fclones->skb2; 1537 refcount_set(&fclones->fclone_ref, 2); 1538 n->fclone = SKB_FCLONE_CLONE; 1539 } else { 1540 if (skb_pfmemalloc(skb)) 1541 gfp_mask |= __GFP_MEMALLOC; 1542 1543 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1544 if (!n) 1545 return NULL; 1546 1547 n->fclone = SKB_FCLONE_UNAVAILABLE; 1548 } 1549 1550 return __skb_clone(n, skb); 1551 } 1552 EXPORT_SYMBOL(skb_clone); 1553 1554 void skb_headers_offset_update(struct sk_buff *skb, int off) 1555 { 1556 /* Only adjust this if it actually is csum_start rather than csum */ 1557 if (skb->ip_summed == CHECKSUM_PARTIAL) 1558 skb->csum_start += off; 1559 /* {transport,network,mac}_header and tail are relative to skb->head */ 1560 skb->transport_header += off; 1561 skb->network_header += off; 1562 if (skb_mac_header_was_set(skb)) 1563 skb->mac_header += off; 1564 skb->inner_transport_header += off; 1565 skb->inner_network_header += off; 1566 skb->inner_mac_header += off; 1567 } 1568 EXPORT_SYMBOL(skb_headers_offset_update); 1569 1570 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1571 { 1572 __copy_skb_header(new, old); 1573 1574 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1575 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1576 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1577 } 1578 EXPORT_SYMBOL(skb_copy_header); 1579 1580 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1581 { 1582 if (skb_pfmemalloc(skb)) 1583 return SKB_ALLOC_RX; 1584 return 0; 1585 } 1586 1587 /** 1588 * skb_copy - create private copy of an sk_buff 1589 * @skb: buffer to copy 1590 * @gfp_mask: allocation priority 1591 * 1592 * Make a copy of both an &sk_buff and its data. This is used when the 1593 * caller wishes to modify the data and needs a private copy of the 1594 * data to alter. Returns %NULL on failure or the pointer to the buffer 1595 * on success. The returned buffer has a reference count of 1. 1596 * 1597 * As by-product this function converts non-linear &sk_buff to linear 1598 * one, so that &sk_buff becomes completely private and caller is allowed 1599 * to modify all the data of returned buffer. This means that this 1600 * function is not recommended for use in circumstances when only 1601 * header is going to be modified. Use pskb_copy() instead. 1602 */ 1603 1604 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1605 { 1606 int headerlen = skb_headroom(skb); 1607 unsigned int size = skb_end_offset(skb) + skb->data_len; 1608 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1609 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1610 1611 if (!n) 1612 return NULL; 1613 1614 /* Set the data pointer */ 1615 skb_reserve(n, headerlen); 1616 /* Set the tail pointer and length */ 1617 skb_put(n, skb->len); 1618 1619 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1620 1621 skb_copy_header(n, skb); 1622 return n; 1623 } 1624 EXPORT_SYMBOL(skb_copy); 1625 1626 /** 1627 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1628 * @skb: buffer to copy 1629 * @headroom: headroom of new skb 1630 * @gfp_mask: allocation priority 1631 * @fclone: if true allocate the copy of the skb from the fclone 1632 * cache instead of the head cache; it is recommended to set this 1633 * to true for the cases where the copy will likely be cloned 1634 * 1635 * Make a copy of both an &sk_buff and part of its data, located 1636 * in header. Fragmented data remain shared. This is used when 1637 * the caller wishes to modify only header of &sk_buff and needs 1638 * private copy of the header to alter. Returns %NULL on failure 1639 * or the pointer to the buffer on success. 1640 * The returned buffer has a reference count of 1. 1641 */ 1642 1643 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1644 gfp_t gfp_mask, bool fclone) 1645 { 1646 unsigned int size = skb_headlen(skb) + headroom; 1647 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1648 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1649 1650 if (!n) 1651 goto out; 1652 1653 /* Set the data pointer */ 1654 skb_reserve(n, headroom); 1655 /* Set the tail pointer and length */ 1656 skb_put(n, skb_headlen(skb)); 1657 /* Copy the bytes */ 1658 skb_copy_from_linear_data(skb, n->data, n->len); 1659 1660 n->truesize += skb->data_len; 1661 n->data_len = skb->data_len; 1662 n->len = skb->len; 1663 1664 if (skb_shinfo(skb)->nr_frags) { 1665 int i; 1666 1667 if (skb_orphan_frags(skb, gfp_mask) || 1668 skb_zerocopy_clone(n, skb, gfp_mask)) { 1669 kfree_skb(n); 1670 n = NULL; 1671 goto out; 1672 } 1673 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1674 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1675 skb_frag_ref(skb, i); 1676 } 1677 skb_shinfo(n)->nr_frags = i; 1678 } 1679 1680 if (skb_has_frag_list(skb)) { 1681 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1682 skb_clone_fraglist(n); 1683 } 1684 1685 skb_copy_header(n, skb); 1686 out: 1687 return n; 1688 } 1689 EXPORT_SYMBOL(__pskb_copy_fclone); 1690 1691 /** 1692 * pskb_expand_head - reallocate header of &sk_buff 1693 * @skb: buffer to reallocate 1694 * @nhead: room to add at head 1695 * @ntail: room to add at tail 1696 * @gfp_mask: allocation priority 1697 * 1698 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1699 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1700 * reference count of 1. Returns zero in the case of success or error, 1701 * if expansion failed. In the last case, &sk_buff is not changed. 1702 * 1703 * All the pointers pointing into skb header may change and must be 1704 * reloaded after call to this function. 1705 */ 1706 1707 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1708 gfp_t gfp_mask) 1709 { 1710 int i, osize = skb_end_offset(skb); 1711 int size = osize + nhead + ntail; 1712 long off; 1713 u8 *data; 1714 1715 BUG_ON(nhead < 0); 1716 1717 BUG_ON(skb_shared(skb)); 1718 1719 skb_zcopy_downgrade_managed(skb); 1720 1721 size = SKB_DATA_ALIGN(size); 1722 1723 if (skb_pfmemalloc(skb)) 1724 gfp_mask |= __GFP_MEMALLOC; 1725 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1726 gfp_mask, NUMA_NO_NODE, NULL); 1727 if (!data) 1728 goto nodata; 1729 size = SKB_WITH_OVERHEAD(ksize(data)); 1730 1731 /* Copy only real data... and, alas, header. This should be 1732 * optimized for the cases when header is void. 1733 */ 1734 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1735 1736 memcpy((struct skb_shared_info *)(data + size), 1737 skb_shinfo(skb), 1738 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1739 1740 /* 1741 * if shinfo is shared we must drop the old head gracefully, but if it 1742 * is not we can just drop the old head and let the existing refcount 1743 * be since all we did is relocate the values 1744 */ 1745 if (skb_cloned(skb)) { 1746 if (skb_orphan_frags(skb, gfp_mask)) 1747 goto nofrags; 1748 if (skb_zcopy(skb)) 1749 refcount_inc(&skb_uarg(skb)->refcnt); 1750 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1751 skb_frag_ref(skb, i); 1752 1753 if (skb_has_frag_list(skb)) 1754 skb_clone_fraglist(skb); 1755 1756 skb_release_data(skb); 1757 } else { 1758 skb_free_head(skb); 1759 } 1760 off = (data + nhead) - skb->head; 1761 1762 skb->head = data; 1763 skb->head_frag = 0; 1764 skb->data += off; 1765 1766 skb_set_end_offset(skb, size); 1767 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1768 off = nhead; 1769 #endif 1770 skb->tail += off; 1771 skb_headers_offset_update(skb, nhead); 1772 skb->cloned = 0; 1773 skb->hdr_len = 0; 1774 skb->nohdr = 0; 1775 atomic_set(&skb_shinfo(skb)->dataref, 1); 1776 1777 skb_metadata_clear(skb); 1778 1779 /* It is not generally safe to change skb->truesize. 1780 * For the moment, we really care of rx path, or 1781 * when skb is orphaned (not attached to a socket). 1782 */ 1783 if (!skb->sk || skb->destructor == sock_edemux) 1784 skb->truesize += size - osize; 1785 1786 return 0; 1787 1788 nofrags: 1789 kfree(data); 1790 nodata: 1791 return -ENOMEM; 1792 } 1793 EXPORT_SYMBOL(pskb_expand_head); 1794 1795 /* Make private copy of skb with writable head and some headroom */ 1796 1797 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1798 { 1799 struct sk_buff *skb2; 1800 int delta = headroom - skb_headroom(skb); 1801 1802 if (delta <= 0) 1803 skb2 = pskb_copy(skb, GFP_ATOMIC); 1804 else { 1805 skb2 = skb_clone(skb, GFP_ATOMIC); 1806 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1807 GFP_ATOMIC)) { 1808 kfree_skb(skb2); 1809 skb2 = NULL; 1810 } 1811 } 1812 return skb2; 1813 } 1814 EXPORT_SYMBOL(skb_realloc_headroom); 1815 1816 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1817 { 1818 unsigned int saved_end_offset, saved_truesize; 1819 struct skb_shared_info *shinfo; 1820 int res; 1821 1822 saved_end_offset = skb_end_offset(skb); 1823 saved_truesize = skb->truesize; 1824 1825 res = pskb_expand_head(skb, 0, 0, pri); 1826 if (res) 1827 return res; 1828 1829 skb->truesize = saved_truesize; 1830 1831 if (likely(skb_end_offset(skb) == saved_end_offset)) 1832 return 0; 1833 1834 shinfo = skb_shinfo(skb); 1835 1836 /* We are about to change back skb->end, 1837 * we need to move skb_shinfo() to its new location. 1838 */ 1839 memmove(skb->head + saved_end_offset, 1840 shinfo, 1841 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1842 1843 skb_set_end_offset(skb, saved_end_offset); 1844 1845 return 0; 1846 } 1847 1848 /** 1849 * skb_expand_head - reallocate header of &sk_buff 1850 * @skb: buffer to reallocate 1851 * @headroom: needed headroom 1852 * 1853 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1854 * if possible; copies skb->sk to new skb as needed 1855 * and frees original skb in case of failures. 1856 * 1857 * It expect increased headroom and generates warning otherwise. 1858 */ 1859 1860 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1861 { 1862 int delta = headroom - skb_headroom(skb); 1863 int osize = skb_end_offset(skb); 1864 struct sock *sk = skb->sk; 1865 1866 if (WARN_ONCE(delta <= 0, 1867 "%s is expecting an increase in the headroom", __func__)) 1868 return skb; 1869 1870 delta = SKB_DATA_ALIGN(delta); 1871 /* pskb_expand_head() might crash, if skb is shared. */ 1872 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1873 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1874 1875 if (unlikely(!nskb)) 1876 goto fail; 1877 1878 if (sk) 1879 skb_set_owner_w(nskb, sk); 1880 consume_skb(skb); 1881 skb = nskb; 1882 } 1883 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1884 goto fail; 1885 1886 if (sk && is_skb_wmem(skb)) { 1887 delta = skb_end_offset(skb) - osize; 1888 refcount_add(delta, &sk->sk_wmem_alloc); 1889 skb->truesize += delta; 1890 } 1891 return skb; 1892 1893 fail: 1894 kfree_skb(skb); 1895 return NULL; 1896 } 1897 EXPORT_SYMBOL(skb_expand_head); 1898 1899 /** 1900 * skb_copy_expand - copy and expand sk_buff 1901 * @skb: buffer to copy 1902 * @newheadroom: new free bytes at head 1903 * @newtailroom: new free bytes at tail 1904 * @gfp_mask: allocation priority 1905 * 1906 * Make a copy of both an &sk_buff and its data and while doing so 1907 * allocate additional space. 1908 * 1909 * This is used when the caller wishes to modify the data and needs a 1910 * private copy of the data to alter as well as more space for new fields. 1911 * Returns %NULL on failure or the pointer to the buffer 1912 * on success. The returned buffer has a reference count of 1. 1913 * 1914 * You must pass %GFP_ATOMIC as the allocation priority if this function 1915 * is called from an interrupt. 1916 */ 1917 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1918 int newheadroom, int newtailroom, 1919 gfp_t gfp_mask) 1920 { 1921 /* 1922 * Allocate the copy buffer 1923 */ 1924 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1925 gfp_mask, skb_alloc_rx_flag(skb), 1926 NUMA_NO_NODE); 1927 int oldheadroom = skb_headroom(skb); 1928 int head_copy_len, head_copy_off; 1929 1930 if (!n) 1931 return NULL; 1932 1933 skb_reserve(n, newheadroom); 1934 1935 /* Set the tail pointer and length */ 1936 skb_put(n, skb->len); 1937 1938 head_copy_len = oldheadroom; 1939 head_copy_off = 0; 1940 if (newheadroom <= head_copy_len) 1941 head_copy_len = newheadroom; 1942 else 1943 head_copy_off = newheadroom - head_copy_len; 1944 1945 /* Copy the linear header and data. */ 1946 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1947 skb->len + head_copy_len)); 1948 1949 skb_copy_header(n, skb); 1950 1951 skb_headers_offset_update(n, newheadroom - oldheadroom); 1952 1953 return n; 1954 } 1955 EXPORT_SYMBOL(skb_copy_expand); 1956 1957 /** 1958 * __skb_pad - zero pad the tail of an skb 1959 * @skb: buffer to pad 1960 * @pad: space to pad 1961 * @free_on_error: free buffer on error 1962 * 1963 * Ensure that a buffer is followed by a padding area that is zero 1964 * filled. Used by network drivers which may DMA or transfer data 1965 * beyond the buffer end onto the wire. 1966 * 1967 * May return error in out of memory cases. The skb is freed on error 1968 * if @free_on_error is true. 1969 */ 1970 1971 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1972 { 1973 int err; 1974 int ntail; 1975 1976 /* If the skbuff is non linear tailroom is always zero.. */ 1977 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1978 memset(skb->data+skb->len, 0, pad); 1979 return 0; 1980 } 1981 1982 ntail = skb->data_len + pad - (skb->end - skb->tail); 1983 if (likely(skb_cloned(skb) || ntail > 0)) { 1984 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1985 if (unlikely(err)) 1986 goto free_skb; 1987 } 1988 1989 /* FIXME: The use of this function with non-linear skb's really needs 1990 * to be audited. 1991 */ 1992 err = skb_linearize(skb); 1993 if (unlikely(err)) 1994 goto free_skb; 1995 1996 memset(skb->data + skb->len, 0, pad); 1997 return 0; 1998 1999 free_skb: 2000 if (free_on_error) 2001 kfree_skb(skb); 2002 return err; 2003 } 2004 EXPORT_SYMBOL(__skb_pad); 2005 2006 /** 2007 * pskb_put - add data to the tail of a potentially fragmented buffer 2008 * @skb: start of the buffer to use 2009 * @tail: tail fragment of the buffer to use 2010 * @len: amount of data to add 2011 * 2012 * This function extends the used data area of the potentially 2013 * fragmented buffer. @tail must be the last fragment of @skb -- or 2014 * @skb itself. If this would exceed the total buffer size the kernel 2015 * will panic. A pointer to the first byte of the extra data is 2016 * returned. 2017 */ 2018 2019 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2020 { 2021 if (tail != skb) { 2022 skb->data_len += len; 2023 skb->len += len; 2024 } 2025 return skb_put(tail, len); 2026 } 2027 EXPORT_SYMBOL_GPL(pskb_put); 2028 2029 /** 2030 * skb_put - add data to a buffer 2031 * @skb: buffer to use 2032 * @len: amount of data to add 2033 * 2034 * This function extends the used data area of the buffer. If this would 2035 * exceed the total buffer size the kernel will panic. A pointer to the 2036 * first byte of the extra data is returned. 2037 */ 2038 void *skb_put(struct sk_buff *skb, unsigned int len) 2039 { 2040 void *tmp = skb_tail_pointer(skb); 2041 SKB_LINEAR_ASSERT(skb); 2042 skb->tail += len; 2043 skb->len += len; 2044 if (unlikely(skb->tail > skb->end)) 2045 skb_over_panic(skb, len, __builtin_return_address(0)); 2046 return tmp; 2047 } 2048 EXPORT_SYMBOL(skb_put); 2049 2050 /** 2051 * skb_push - add data to the start of a buffer 2052 * @skb: buffer to use 2053 * @len: amount of data to add 2054 * 2055 * This function extends the used data area of the buffer at the buffer 2056 * start. If this would exceed the total buffer headroom the kernel will 2057 * panic. A pointer to the first byte of the extra data is returned. 2058 */ 2059 void *skb_push(struct sk_buff *skb, unsigned int len) 2060 { 2061 skb->data -= len; 2062 skb->len += len; 2063 if (unlikely(skb->data < skb->head)) 2064 skb_under_panic(skb, len, __builtin_return_address(0)); 2065 return skb->data; 2066 } 2067 EXPORT_SYMBOL(skb_push); 2068 2069 /** 2070 * skb_pull - remove data from the start of a buffer 2071 * @skb: buffer to use 2072 * @len: amount of data to remove 2073 * 2074 * This function removes data from the start of a buffer, returning 2075 * the memory to the headroom. A pointer to the next data in the buffer 2076 * is returned. Once the data has been pulled future pushes will overwrite 2077 * the old data. 2078 */ 2079 void *skb_pull(struct sk_buff *skb, unsigned int len) 2080 { 2081 return skb_pull_inline(skb, len); 2082 } 2083 EXPORT_SYMBOL(skb_pull); 2084 2085 /** 2086 * skb_pull_data - remove data from the start of a buffer returning its 2087 * original position. 2088 * @skb: buffer to use 2089 * @len: amount of data to remove 2090 * 2091 * This function removes data from the start of a buffer, returning 2092 * the memory to the headroom. A pointer to the original data in the buffer 2093 * is returned after checking if there is enough data to pull. Once the 2094 * data has been pulled future pushes will overwrite the old data. 2095 */ 2096 void *skb_pull_data(struct sk_buff *skb, size_t len) 2097 { 2098 void *data = skb->data; 2099 2100 if (skb->len < len) 2101 return NULL; 2102 2103 skb_pull(skb, len); 2104 2105 return data; 2106 } 2107 EXPORT_SYMBOL(skb_pull_data); 2108 2109 /** 2110 * skb_trim - remove end from a buffer 2111 * @skb: buffer to alter 2112 * @len: new length 2113 * 2114 * Cut the length of a buffer down by removing data from the tail. If 2115 * the buffer is already under the length specified it is not modified. 2116 * The skb must be linear. 2117 */ 2118 void skb_trim(struct sk_buff *skb, unsigned int len) 2119 { 2120 if (skb->len > len) 2121 __skb_trim(skb, len); 2122 } 2123 EXPORT_SYMBOL(skb_trim); 2124 2125 /* Trims skb to length len. It can change skb pointers. 2126 */ 2127 2128 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2129 { 2130 struct sk_buff **fragp; 2131 struct sk_buff *frag; 2132 int offset = skb_headlen(skb); 2133 int nfrags = skb_shinfo(skb)->nr_frags; 2134 int i; 2135 int err; 2136 2137 if (skb_cloned(skb) && 2138 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2139 return err; 2140 2141 i = 0; 2142 if (offset >= len) 2143 goto drop_pages; 2144 2145 for (; i < nfrags; i++) { 2146 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2147 2148 if (end < len) { 2149 offset = end; 2150 continue; 2151 } 2152 2153 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2154 2155 drop_pages: 2156 skb_shinfo(skb)->nr_frags = i; 2157 2158 for (; i < nfrags; i++) 2159 skb_frag_unref(skb, i); 2160 2161 if (skb_has_frag_list(skb)) 2162 skb_drop_fraglist(skb); 2163 goto done; 2164 } 2165 2166 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2167 fragp = &frag->next) { 2168 int end = offset + frag->len; 2169 2170 if (skb_shared(frag)) { 2171 struct sk_buff *nfrag; 2172 2173 nfrag = skb_clone(frag, GFP_ATOMIC); 2174 if (unlikely(!nfrag)) 2175 return -ENOMEM; 2176 2177 nfrag->next = frag->next; 2178 consume_skb(frag); 2179 frag = nfrag; 2180 *fragp = frag; 2181 } 2182 2183 if (end < len) { 2184 offset = end; 2185 continue; 2186 } 2187 2188 if (end > len && 2189 unlikely((err = pskb_trim(frag, len - offset)))) 2190 return err; 2191 2192 if (frag->next) 2193 skb_drop_list(&frag->next); 2194 break; 2195 } 2196 2197 done: 2198 if (len > skb_headlen(skb)) { 2199 skb->data_len -= skb->len - len; 2200 skb->len = len; 2201 } else { 2202 skb->len = len; 2203 skb->data_len = 0; 2204 skb_set_tail_pointer(skb, len); 2205 } 2206 2207 if (!skb->sk || skb->destructor == sock_edemux) 2208 skb_condense(skb); 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(___pskb_trim); 2212 2213 /* Note : use pskb_trim_rcsum() instead of calling this directly 2214 */ 2215 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2216 { 2217 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2218 int delta = skb->len - len; 2219 2220 skb->csum = csum_block_sub(skb->csum, 2221 skb_checksum(skb, len, delta, 0), 2222 len); 2223 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2224 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2225 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2226 2227 if (offset + sizeof(__sum16) > hdlen) 2228 return -EINVAL; 2229 } 2230 return __pskb_trim(skb, len); 2231 } 2232 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2233 2234 /** 2235 * __pskb_pull_tail - advance tail of skb header 2236 * @skb: buffer to reallocate 2237 * @delta: number of bytes to advance tail 2238 * 2239 * The function makes a sense only on a fragmented &sk_buff, 2240 * it expands header moving its tail forward and copying necessary 2241 * data from fragmented part. 2242 * 2243 * &sk_buff MUST have reference count of 1. 2244 * 2245 * Returns %NULL (and &sk_buff does not change) if pull failed 2246 * or value of new tail of skb in the case of success. 2247 * 2248 * All the pointers pointing into skb header may change and must be 2249 * reloaded after call to this function. 2250 */ 2251 2252 /* Moves tail of skb head forward, copying data from fragmented part, 2253 * when it is necessary. 2254 * 1. It may fail due to malloc failure. 2255 * 2. It may change skb pointers. 2256 * 2257 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2258 */ 2259 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2260 { 2261 /* If skb has not enough free space at tail, get new one 2262 * plus 128 bytes for future expansions. If we have enough 2263 * room at tail, reallocate without expansion only if skb is cloned. 2264 */ 2265 int i, k, eat = (skb->tail + delta) - skb->end; 2266 2267 if (eat > 0 || skb_cloned(skb)) { 2268 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2269 GFP_ATOMIC)) 2270 return NULL; 2271 } 2272 2273 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2274 skb_tail_pointer(skb), delta)); 2275 2276 /* Optimization: no fragments, no reasons to preestimate 2277 * size of pulled pages. Superb. 2278 */ 2279 if (!skb_has_frag_list(skb)) 2280 goto pull_pages; 2281 2282 /* Estimate size of pulled pages. */ 2283 eat = delta; 2284 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2285 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2286 2287 if (size >= eat) 2288 goto pull_pages; 2289 eat -= size; 2290 } 2291 2292 /* If we need update frag list, we are in troubles. 2293 * Certainly, it is possible to add an offset to skb data, 2294 * but taking into account that pulling is expected to 2295 * be very rare operation, it is worth to fight against 2296 * further bloating skb head and crucify ourselves here instead. 2297 * Pure masohism, indeed. 8)8) 2298 */ 2299 if (eat) { 2300 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2301 struct sk_buff *clone = NULL; 2302 struct sk_buff *insp = NULL; 2303 2304 do { 2305 if (list->len <= eat) { 2306 /* Eaten as whole. */ 2307 eat -= list->len; 2308 list = list->next; 2309 insp = list; 2310 } else { 2311 /* Eaten partially. */ 2312 2313 if (skb_shared(list)) { 2314 /* Sucks! We need to fork list. :-( */ 2315 clone = skb_clone(list, GFP_ATOMIC); 2316 if (!clone) 2317 return NULL; 2318 insp = list->next; 2319 list = clone; 2320 } else { 2321 /* This may be pulled without 2322 * problems. */ 2323 insp = list; 2324 } 2325 if (!pskb_pull(list, eat)) { 2326 kfree_skb(clone); 2327 return NULL; 2328 } 2329 break; 2330 } 2331 } while (eat); 2332 2333 /* Free pulled out fragments. */ 2334 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2335 skb_shinfo(skb)->frag_list = list->next; 2336 consume_skb(list); 2337 } 2338 /* And insert new clone at head. */ 2339 if (clone) { 2340 clone->next = list; 2341 skb_shinfo(skb)->frag_list = clone; 2342 } 2343 } 2344 /* Success! Now we may commit changes to skb data. */ 2345 2346 pull_pages: 2347 eat = delta; 2348 k = 0; 2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2350 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2351 2352 if (size <= eat) { 2353 skb_frag_unref(skb, i); 2354 eat -= size; 2355 } else { 2356 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2357 2358 *frag = skb_shinfo(skb)->frags[i]; 2359 if (eat) { 2360 skb_frag_off_add(frag, eat); 2361 skb_frag_size_sub(frag, eat); 2362 if (!i) 2363 goto end; 2364 eat = 0; 2365 } 2366 k++; 2367 } 2368 } 2369 skb_shinfo(skb)->nr_frags = k; 2370 2371 end: 2372 skb->tail += delta; 2373 skb->data_len -= delta; 2374 2375 if (!skb->data_len) 2376 skb_zcopy_clear(skb, false); 2377 2378 return skb_tail_pointer(skb); 2379 } 2380 EXPORT_SYMBOL(__pskb_pull_tail); 2381 2382 /** 2383 * skb_copy_bits - copy bits from skb to kernel buffer 2384 * @skb: source skb 2385 * @offset: offset in source 2386 * @to: destination buffer 2387 * @len: number of bytes to copy 2388 * 2389 * Copy the specified number of bytes from the source skb to the 2390 * destination buffer. 2391 * 2392 * CAUTION ! : 2393 * If its prototype is ever changed, 2394 * check arch/{*}/net/{*}.S files, 2395 * since it is called from BPF assembly code. 2396 */ 2397 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2398 { 2399 int start = skb_headlen(skb); 2400 struct sk_buff *frag_iter; 2401 int i, copy; 2402 2403 if (offset > (int)skb->len - len) 2404 goto fault; 2405 2406 /* Copy header. */ 2407 if ((copy = start - offset) > 0) { 2408 if (copy > len) 2409 copy = len; 2410 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2411 if ((len -= copy) == 0) 2412 return 0; 2413 offset += copy; 2414 to += copy; 2415 } 2416 2417 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2418 int end; 2419 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2420 2421 WARN_ON(start > offset + len); 2422 2423 end = start + skb_frag_size(f); 2424 if ((copy = end - offset) > 0) { 2425 u32 p_off, p_len, copied; 2426 struct page *p; 2427 u8 *vaddr; 2428 2429 if (copy > len) 2430 copy = len; 2431 2432 skb_frag_foreach_page(f, 2433 skb_frag_off(f) + offset - start, 2434 copy, p, p_off, p_len, copied) { 2435 vaddr = kmap_atomic(p); 2436 memcpy(to + copied, vaddr + p_off, p_len); 2437 kunmap_atomic(vaddr); 2438 } 2439 2440 if ((len -= copy) == 0) 2441 return 0; 2442 offset += copy; 2443 to += copy; 2444 } 2445 start = end; 2446 } 2447 2448 skb_walk_frags(skb, frag_iter) { 2449 int end; 2450 2451 WARN_ON(start > offset + len); 2452 2453 end = start + frag_iter->len; 2454 if ((copy = end - offset) > 0) { 2455 if (copy > len) 2456 copy = len; 2457 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2458 goto fault; 2459 if ((len -= copy) == 0) 2460 return 0; 2461 offset += copy; 2462 to += copy; 2463 } 2464 start = end; 2465 } 2466 2467 if (!len) 2468 return 0; 2469 2470 fault: 2471 return -EFAULT; 2472 } 2473 EXPORT_SYMBOL(skb_copy_bits); 2474 2475 /* 2476 * Callback from splice_to_pipe(), if we need to release some pages 2477 * at the end of the spd in case we error'ed out in filling the pipe. 2478 */ 2479 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2480 { 2481 put_page(spd->pages[i]); 2482 } 2483 2484 static struct page *linear_to_page(struct page *page, unsigned int *len, 2485 unsigned int *offset, 2486 struct sock *sk) 2487 { 2488 struct page_frag *pfrag = sk_page_frag(sk); 2489 2490 if (!sk_page_frag_refill(sk, pfrag)) 2491 return NULL; 2492 2493 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2494 2495 memcpy(page_address(pfrag->page) + pfrag->offset, 2496 page_address(page) + *offset, *len); 2497 *offset = pfrag->offset; 2498 pfrag->offset += *len; 2499 2500 return pfrag->page; 2501 } 2502 2503 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2504 struct page *page, 2505 unsigned int offset) 2506 { 2507 return spd->nr_pages && 2508 spd->pages[spd->nr_pages - 1] == page && 2509 (spd->partial[spd->nr_pages - 1].offset + 2510 spd->partial[spd->nr_pages - 1].len == offset); 2511 } 2512 2513 /* 2514 * Fill page/offset/length into spd, if it can hold more pages. 2515 */ 2516 static bool spd_fill_page(struct splice_pipe_desc *spd, 2517 struct pipe_inode_info *pipe, struct page *page, 2518 unsigned int *len, unsigned int offset, 2519 bool linear, 2520 struct sock *sk) 2521 { 2522 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2523 return true; 2524 2525 if (linear) { 2526 page = linear_to_page(page, len, &offset, sk); 2527 if (!page) 2528 return true; 2529 } 2530 if (spd_can_coalesce(spd, page, offset)) { 2531 spd->partial[spd->nr_pages - 1].len += *len; 2532 return false; 2533 } 2534 get_page(page); 2535 spd->pages[spd->nr_pages] = page; 2536 spd->partial[spd->nr_pages].len = *len; 2537 spd->partial[spd->nr_pages].offset = offset; 2538 spd->nr_pages++; 2539 2540 return false; 2541 } 2542 2543 static bool __splice_segment(struct page *page, unsigned int poff, 2544 unsigned int plen, unsigned int *off, 2545 unsigned int *len, 2546 struct splice_pipe_desc *spd, bool linear, 2547 struct sock *sk, 2548 struct pipe_inode_info *pipe) 2549 { 2550 if (!*len) 2551 return true; 2552 2553 /* skip this segment if already processed */ 2554 if (*off >= plen) { 2555 *off -= plen; 2556 return false; 2557 } 2558 2559 /* ignore any bits we already processed */ 2560 poff += *off; 2561 plen -= *off; 2562 *off = 0; 2563 2564 do { 2565 unsigned int flen = min(*len, plen); 2566 2567 if (spd_fill_page(spd, pipe, page, &flen, poff, 2568 linear, sk)) 2569 return true; 2570 poff += flen; 2571 plen -= flen; 2572 *len -= flen; 2573 } while (*len && plen); 2574 2575 return false; 2576 } 2577 2578 /* 2579 * Map linear and fragment data from the skb to spd. It reports true if the 2580 * pipe is full or if we already spliced the requested length. 2581 */ 2582 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2583 unsigned int *offset, unsigned int *len, 2584 struct splice_pipe_desc *spd, struct sock *sk) 2585 { 2586 int seg; 2587 struct sk_buff *iter; 2588 2589 /* map the linear part : 2590 * If skb->head_frag is set, this 'linear' part is backed by a 2591 * fragment, and if the head is not shared with any clones then 2592 * we can avoid a copy since we own the head portion of this page. 2593 */ 2594 if (__splice_segment(virt_to_page(skb->data), 2595 (unsigned long) skb->data & (PAGE_SIZE - 1), 2596 skb_headlen(skb), 2597 offset, len, spd, 2598 skb_head_is_locked(skb), 2599 sk, pipe)) 2600 return true; 2601 2602 /* 2603 * then map the fragments 2604 */ 2605 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2606 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2607 2608 if (__splice_segment(skb_frag_page(f), 2609 skb_frag_off(f), skb_frag_size(f), 2610 offset, len, spd, false, sk, pipe)) 2611 return true; 2612 } 2613 2614 skb_walk_frags(skb, iter) { 2615 if (*offset >= iter->len) { 2616 *offset -= iter->len; 2617 continue; 2618 } 2619 /* __skb_splice_bits() only fails if the output has no room 2620 * left, so no point in going over the frag_list for the error 2621 * case. 2622 */ 2623 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2624 return true; 2625 } 2626 2627 return false; 2628 } 2629 2630 /* 2631 * Map data from the skb to a pipe. Should handle both the linear part, 2632 * the fragments, and the frag list. 2633 */ 2634 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2635 struct pipe_inode_info *pipe, unsigned int tlen, 2636 unsigned int flags) 2637 { 2638 struct partial_page partial[MAX_SKB_FRAGS]; 2639 struct page *pages[MAX_SKB_FRAGS]; 2640 struct splice_pipe_desc spd = { 2641 .pages = pages, 2642 .partial = partial, 2643 .nr_pages_max = MAX_SKB_FRAGS, 2644 .ops = &nosteal_pipe_buf_ops, 2645 .spd_release = sock_spd_release, 2646 }; 2647 int ret = 0; 2648 2649 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2650 2651 if (spd.nr_pages) 2652 ret = splice_to_pipe(pipe, &spd); 2653 2654 return ret; 2655 } 2656 EXPORT_SYMBOL_GPL(skb_splice_bits); 2657 2658 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2659 struct kvec *vec, size_t num, size_t size) 2660 { 2661 struct socket *sock = sk->sk_socket; 2662 2663 if (!sock) 2664 return -EINVAL; 2665 return kernel_sendmsg(sock, msg, vec, num, size); 2666 } 2667 2668 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2669 size_t size, int flags) 2670 { 2671 struct socket *sock = sk->sk_socket; 2672 2673 if (!sock) 2674 return -EINVAL; 2675 return kernel_sendpage(sock, page, offset, size, flags); 2676 } 2677 2678 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2679 struct kvec *vec, size_t num, size_t size); 2680 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2681 size_t size, int flags); 2682 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2683 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2684 { 2685 unsigned int orig_len = len; 2686 struct sk_buff *head = skb; 2687 unsigned short fragidx; 2688 int slen, ret; 2689 2690 do_frag_list: 2691 2692 /* Deal with head data */ 2693 while (offset < skb_headlen(skb) && len) { 2694 struct kvec kv; 2695 struct msghdr msg; 2696 2697 slen = min_t(int, len, skb_headlen(skb) - offset); 2698 kv.iov_base = skb->data + offset; 2699 kv.iov_len = slen; 2700 memset(&msg, 0, sizeof(msg)); 2701 msg.msg_flags = MSG_DONTWAIT; 2702 2703 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2704 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2705 if (ret <= 0) 2706 goto error; 2707 2708 offset += ret; 2709 len -= ret; 2710 } 2711 2712 /* All the data was skb head? */ 2713 if (!len) 2714 goto out; 2715 2716 /* Make offset relative to start of frags */ 2717 offset -= skb_headlen(skb); 2718 2719 /* Find where we are in frag list */ 2720 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2721 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2722 2723 if (offset < skb_frag_size(frag)) 2724 break; 2725 2726 offset -= skb_frag_size(frag); 2727 } 2728 2729 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2730 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2731 2732 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2733 2734 while (slen) { 2735 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2736 sendpage_unlocked, sk, 2737 skb_frag_page(frag), 2738 skb_frag_off(frag) + offset, 2739 slen, MSG_DONTWAIT); 2740 if (ret <= 0) 2741 goto error; 2742 2743 len -= ret; 2744 offset += ret; 2745 slen -= ret; 2746 } 2747 2748 offset = 0; 2749 } 2750 2751 if (len) { 2752 /* Process any frag lists */ 2753 2754 if (skb == head) { 2755 if (skb_has_frag_list(skb)) { 2756 skb = skb_shinfo(skb)->frag_list; 2757 goto do_frag_list; 2758 } 2759 } else if (skb->next) { 2760 skb = skb->next; 2761 goto do_frag_list; 2762 } 2763 } 2764 2765 out: 2766 return orig_len - len; 2767 2768 error: 2769 return orig_len == len ? ret : orig_len - len; 2770 } 2771 2772 /* Send skb data on a socket. Socket must be locked. */ 2773 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2774 int len) 2775 { 2776 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2777 kernel_sendpage_locked); 2778 } 2779 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2780 2781 /* Send skb data on a socket. Socket must be unlocked. */ 2782 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2783 { 2784 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2785 sendpage_unlocked); 2786 } 2787 2788 /** 2789 * skb_store_bits - store bits from kernel buffer to skb 2790 * @skb: destination buffer 2791 * @offset: offset in destination 2792 * @from: source buffer 2793 * @len: number of bytes to copy 2794 * 2795 * Copy the specified number of bytes from the source buffer to the 2796 * destination skb. This function handles all the messy bits of 2797 * traversing fragment lists and such. 2798 */ 2799 2800 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2801 { 2802 int start = skb_headlen(skb); 2803 struct sk_buff *frag_iter; 2804 int i, copy; 2805 2806 if (offset > (int)skb->len - len) 2807 goto fault; 2808 2809 if ((copy = start - offset) > 0) { 2810 if (copy > len) 2811 copy = len; 2812 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2813 if ((len -= copy) == 0) 2814 return 0; 2815 offset += copy; 2816 from += copy; 2817 } 2818 2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2821 int end; 2822 2823 WARN_ON(start > offset + len); 2824 2825 end = start + skb_frag_size(frag); 2826 if ((copy = end - offset) > 0) { 2827 u32 p_off, p_len, copied; 2828 struct page *p; 2829 u8 *vaddr; 2830 2831 if (copy > len) 2832 copy = len; 2833 2834 skb_frag_foreach_page(frag, 2835 skb_frag_off(frag) + offset - start, 2836 copy, p, p_off, p_len, copied) { 2837 vaddr = kmap_atomic(p); 2838 memcpy(vaddr + p_off, from + copied, p_len); 2839 kunmap_atomic(vaddr); 2840 } 2841 2842 if ((len -= copy) == 0) 2843 return 0; 2844 offset += copy; 2845 from += copy; 2846 } 2847 start = end; 2848 } 2849 2850 skb_walk_frags(skb, frag_iter) { 2851 int end; 2852 2853 WARN_ON(start > offset + len); 2854 2855 end = start + frag_iter->len; 2856 if ((copy = end - offset) > 0) { 2857 if (copy > len) 2858 copy = len; 2859 if (skb_store_bits(frag_iter, offset - start, 2860 from, copy)) 2861 goto fault; 2862 if ((len -= copy) == 0) 2863 return 0; 2864 offset += copy; 2865 from += copy; 2866 } 2867 start = end; 2868 } 2869 if (!len) 2870 return 0; 2871 2872 fault: 2873 return -EFAULT; 2874 } 2875 EXPORT_SYMBOL(skb_store_bits); 2876 2877 /* Checksum skb data. */ 2878 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2879 __wsum csum, const struct skb_checksum_ops *ops) 2880 { 2881 int start = skb_headlen(skb); 2882 int i, copy = start - offset; 2883 struct sk_buff *frag_iter; 2884 int pos = 0; 2885 2886 /* Checksum header. */ 2887 if (copy > 0) { 2888 if (copy > len) 2889 copy = len; 2890 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2891 skb->data + offset, copy, csum); 2892 if ((len -= copy) == 0) 2893 return csum; 2894 offset += copy; 2895 pos = copy; 2896 } 2897 2898 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2899 int end; 2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2901 2902 WARN_ON(start > offset + len); 2903 2904 end = start + skb_frag_size(frag); 2905 if ((copy = end - offset) > 0) { 2906 u32 p_off, p_len, copied; 2907 struct page *p; 2908 __wsum csum2; 2909 u8 *vaddr; 2910 2911 if (copy > len) 2912 copy = len; 2913 2914 skb_frag_foreach_page(frag, 2915 skb_frag_off(frag) + offset - start, 2916 copy, p, p_off, p_len, copied) { 2917 vaddr = kmap_atomic(p); 2918 csum2 = INDIRECT_CALL_1(ops->update, 2919 csum_partial_ext, 2920 vaddr + p_off, p_len, 0); 2921 kunmap_atomic(vaddr); 2922 csum = INDIRECT_CALL_1(ops->combine, 2923 csum_block_add_ext, csum, 2924 csum2, pos, p_len); 2925 pos += p_len; 2926 } 2927 2928 if (!(len -= copy)) 2929 return csum; 2930 offset += copy; 2931 } 2932 start = end; 2933 } 2934 2935 skb_walk_frags(skb, frag_iter) { 2936 int end; 2937 2938 WARN_ON(start > offset + len); 2939 2940 end = start + frag_iter->len; 2941 if ((copy = end - offset) > 0) { 2942 __wsum csum2; 2943 if (copy > len) 2944 copy = len; 2945 csum2 = __skb_checksum(frag_iter, offset - start, 2946 copy, 0, ops); 2947 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2948 csum, csum2, pos, copy); 2949 if ((len -= copy) == 0) 2950 return csum; 2951 offset += copy; 2952 pos += copy; 2953 } 2954 start = end; 2955 } 2956 BUG_ON(len); 2957 2958 return csum; 2959 } 2960 EXPORT_SYMBOL(__skb_checksum); 2961 2962 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2963 int len, __wsum csum) 2964 { 2965 const struct skb_checksum_ops ops = { 2966 .update = csum_partial_ext, 2967 .combine = csum_block_add_ext, 2968 }; 2969 2970 return __skb_checksum(skb, offset, len, csum, &ops); 2971 } 2972 EXPORT_SYMBOL(skb_checksum); 2973 2974 /* Both of above in one bottle. */ 2975 2976 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2977 u8 *to, int len) 2978 { 2979 int start = skb_headlen(skb); 2980 int i, copy = start - offset; 2981 struct sk_buff *frag_iter; 2982 int pos = 0; 2983 __wsum csum = 0; 2984 2985 /* Copy header. */ 2986 if (copy > 0) { 2987 if (copy > len) 2988 copy = len; 2989 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2990 copy); 2991 if ((len -= copy) == 0) 2992 return csum; 2993 offset += copy; 2994 to += copy; 2995 pos = copy; 2996 } 2997 2998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2999 int end; 3000 3001 WARN_ON(start > offset + len); 3002 3003 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3004 if ((copy = end - offset) > 0) { 3005 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3006 u32 p_off, p_len, copied; 3007 struct page *p; 3008 __wsum csum2; 3009 u8 *vaddr; 3010 3011 if (copy > len) 3012 copy = len; 3013 3014 skb_frag_foreach_page(frag, 3015 skb_frag_off(frag) + offset - start, 3016 copy, p, p_off, p_len, copied) { 3017 vaddr = kmap_atomic(p); 3018 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3019 to + copied, 3020 p_len); 3021 kunmap_atomic(vaddr); 3022 csum = csum_block_add(csum, csum2, pos); 3023 pos += p_len; 3024 } 3025 3026 if (!(len -= copy)) 3027 return csum; 3028 offset += copy; 3029 to += copy; 3030 } 3031 start = end; 3032 } 3033 3034 skb_walk_frags(skb, frag_iter) { 3035 __wsum csum2; 3036 int end; 3037 3038 WARN_ON(start > offset + len); 3039 3040 end = start + frag_iter->len; 3041 if ((copy = end - offset) > 0) { 3042 if (copy > len) 3043 copy = len; 3044 csum2 = skb_copy_and_csum_bits(frag_iter, 3045 offset - start, 3046 to, copy); 3047 csum = csum_block_add(csum, csum2, pos); 3048 if ((len -= copy) == 0) 3049 return csum; 3050 offset += copy; 3051 to += copy; 3052 pos += copy; 3053 } 3054 start = end; 3055 } 3056 BUG_ON(len); 3057 return csum; 3058 } 3059 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3060 3061 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3062 { 3063 __sum16 sum; 3064 3065 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3066 /* See comments in __skb_checksum_complete(). */ 3067 if (likely(!sum)) { 3068 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3069 !skb->csum_complete_sw) 3070 netdev_rx_csum_fault(skb->dev, skb); 3071 } 3072 if (!skb_shared(skb)) 3073 skb->csum_valid = !sum; 3074 return sum; 3075 } 3076 EXPORT_SYMBOL(__skb_checksum_complete_head); 3077 3078 /* This function assumes skb->csum already holds pseudo header's checksum, 3079 * which has been changed from the hardware checksum, for example, by 3080 * __skb_checksum_validate_complete(). And, the original skb->csum must 3081 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3082 * 3083 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3084 * zero. The new checksum is stored back into skb->csum unless the skb is 3085 * shared. 3086 */ 3087 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3088 { 3089 __wsum csum; 3090 __sum16 sum; 3091 3092 csum = skb_checksum(skb, 0, skb->len, 0); 3093 3094 sum = csum_fold(csum_add(skb->csum, csum)); 3095 /* This check is inverted, because we already knew the hardware 3096 * checksum is invalid before calling this function. So, if the 3097 * re-computed checksum is valid instead, then we have a mismatch 3098 * between the original skb->csum and skb_checksum(). This means either 3099 * the original hardware checksum is incorrect or we screw up skb->csum 3100 * when moving skb->data around. 3101 */ 3102 if (likely(!sum)) { 3103 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3104 !skb->csum_complete_sw) 3105 netdev_rx_csum_fault(skb->dev, skb); 3106 } 3107 3108 if (!skb_shared(skb)) { 3109 /* Save full packet checksum */ 3110 skb->csum = csum; 3111 skb->ip_summed = CHECKSUM_COMPLETE; 3112 skb->csum_complete_sw = 1; 3113 skb->csum_valid = !sum; 3114 } 3115 3116 return sum; 3117 } 3118 EXPORT_SYMBOL(__skb_checksum_complete); 3119 3120 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3121 { 3122 net_warn_ratelimited( 3123 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3124 __func__); 3125 return 0; 3126 } 3127 3128 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3129 int offset, int len) 3130 { 3131 net_warn_ratelimited( 3132 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3133 __func__); 3134 return 0; 3135 } 3136 3137 static const struct skb_checksum_ops default_crc32c_ops = { 3138 .update = warn_crc32c_csum_update, 3139 .combine = warn_crc32c_csum_combine, 3140 }; 3141 3142 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3143 &default_crc32c_ops; 3144 EXPORT_SYMBOL(crc32c_csum_stub); 3145 3146 /** 3147 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3148 * @from: source buffer 3149 * 3150 * Calculates the amount of linear headroom needed in the 'to' skb passed 3151 * into skb_zerocopy(). 3152 */ 3153 unsigned int 3154 skb_zerocopy_headlen(const struct sk_buff *from) 3155 { 3156 unsigned int hlen = 0; 3157 3158 if (!from->head_frag || 3159 skb_headlen(from) < L1_CACHE_BYTES || 3160 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3161 hlen = skb_headlen(from); 3162 if (!hlen) 3163 hlen = from->len; 3164 } 3165 3166 if (skb_has_frag_list(from)) 3167 hlen = from->len; 3168 3169 return hlen; 3170 } 3171 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3172 3173 /** 3174 * skb_zerocopy - Zero copy skb to skb 3175 * @to: destination buffer 3176 * @from: source buffer 3177 * @len: number of bytes to copy from source buffer 3178 * @hlen: size of linear headroom in destination buffer 3179 * 3180 * Copies up to `len` bytes from `from` to `to` by creating references 3181 * to the frags in the source buffer. 3182 * 3183 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3184 * headroom in the `to` buffer. 3185 * 3186 * Return value: 3187 * 0: everything is OK 3188 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3189 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3190 */ 3191 int 3192 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3193 { 3194 int i, j = 0; 3195 int plen = 0; /* length of skb->head fragment */ 3196 int ret; 3197 struct page *page; 3198 unsigned int offset; 3199 3200 BUG_ON(!from->head_frag && !hlen); 3201 3202 /* dont bother with small payloads */ 3203 if (len <= skb_tailroom(to)) 3204 return skb_copy_bits(from, 0, skb_put(to, len), len); 3205 3206 if (hlen) { 3207 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3208 if (unlikely(ret)) 3209 return ret; 3210 len -= hlen; 3211 } else { 3212 plen = min_t(int, skb_headlen(from), len); 3213 if (plen) { 3214 page = virt_to_head_page(from->head); 3215 offset = from->data - (unsigned char *)page_address(page); 3216 __skb_fill_page_desc(to, 0, page, offset, plen); 3217 get_page(page); 3218 j = 1; 3219 len -= plen; 3220 } 3221 } 3222 3223 skb_len_add(to, len + plen); 3224 3225 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3226 skb_tx_error(from); 3227 return -ENOMEM; 3228 } 3229 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3230 3231 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3232 int size; 3233 3234 if (!len) 3235 break; 3236 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3237 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3238 len); 3239 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3240 len -= size; 3241 skb_frag_ref(to, j); 3242 j++; 3243 } 3244 skb_shinfo(to)->nr_frags = j; 3245 3246 return 0; 3247 } 3248 EXPORT_SYMBOL_GPL(skb_zerocopy); 3249 3250 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3251 { 3252 __wsum csum; 3253 long csstart; 3254 3255 if (skb->ip_summed == CHECKSUM_PARTIAL) 3256 csstart = skb_checksum_start_offset(skb); 3257 else 3258 csstart = skb_headlen(skb); 3259 3260 BUG_ON(csstart > skb_headlen(skb)); 3261 3262 skb_copy_from_linear_data(skb, to, csstart); 3263 3264 csum = 0; 3265 if (csstart != skb->len) 3266 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3267 skb->len - csstart); 3268 3269 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3270 long csstuff = csstart + skb->csum_offset; 3271 3272 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3273 } 3274 } 3275 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3276 3277 /** 3278 * skb_dequeue - remove from the head of the queue 3279 * @list: list to dequeue from 3280 * 3281 * Remove the head of the list. The list lock is taken so the function 3282 * may be used safely with other locking list functions. The head item is 3283 * returned or %NULL if the list is empty. 3284 */ 3285 3286 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3287 { 3288 unsigned long flags; 3289 struct sk_buff *result; 3290 3291 spin_lock_irqsave(&list->lock, flags); 3292 result = __skb_dequeue(list); 3293 spin_unlock_irqrestore(&list->lock, flags); 3294 return result; 3295 } 3296 EXPORT_SYMBOL(skb_dequeue); 3297 3298 /** 3299 * skb_dequeue_tail - remove from the tail of the queue 3300 * @list: list to dequeue from 3301 * 3302 * Remove the tail of the list. The list lock is taken so the function 3303 * may be used safely with other locking list functions. The tail item is 3304 * returned or %NULL if the list is empty. 3305 */ 3306 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3307 { 3308 unsigned long flags; 3309 struct sk_buff *result; 3310 3311 spin_lock_irqsave(&list->lock, flags); 3312 result = __skb_dequeue_tail(list); 3313 spin_unlock_irqrestore(&list->lock, flags); 3314 return result; 3315 } 3316 EXPORT_SYMBOL(skb_dequeue_tail); 3317 3318 /** 3319 * skb_queue_purge - empty a list 3320 * @list: list to empty 3321 * 3322 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3323 * the list and one reference dropped. This function takes the list 3324 * lock and is atomic with respect to other list locking functions. 3325 */ 3326 void skb_queue_purge(struct sk_buff_head *list) 3327 { 3328 struct sk_buff *skb; 3329 while ((skb = skb_dequeue(list)) != NULL) 3330 kfree_skb(skb); 3331 } 3332 EXPORT_SYMBOL(skb_queue_purge); 3333 3334 /** 3335 * skb_rbtree_purge - empty a skb rbtree 3336 * @root: root of the rbtree to empty 3337 * Return value: the sum of truesizes of all purged skbs. 3338 * 3339 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3340 * the list and one reference dropped. This function does not take 3341 * any lock. Synchronization should be handled by the caller (e.g., TCP 3342 * out-of-order queue is protected by the socket lock). 3343 */ 3344 unsigned int skb_rbtree_purge(struct rb_root *root) 3345 { 3346 struct rb_node *p = rb_first(root); 3347 unsigned int sum = 0; 3348 3349 while (p) { 3350 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3351 3352 p = rb_next(p); 3353 rb_erase(&skb->rbnode, root); 3354 sum += skb->truesize; 3355 kfree_skb(skb); 3356 } 3357 return sum; 3358 } 3359 3360 /** 3361 * skb_queue_head - queue a buffer at the list head 3362 * @list: list to use 3363 * @newsk: buffer to queue 3364 * 3365 * Queue a buffer at the start of the list. This function takes the 3366 * list lock and can be used safely with other locking &sk_buff functions 3367 * safely. 3368 * 3369 * A buffer cannot be placed on two lists at the same time. 3370 */ 3371 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3372 { 3373 unsigned long flags; 3374 3375 spin_lock_irqsave(&list->lock, flags); 3376 __skb_queue_head(list, newsk); 3377 spin_unlock_irqrestore(&list->lock, flags); 3378 } 3379 EXPORT_SYMBOL(skb_queue_head); 3380 3381 /** 3382 * skb_queue_tail - queue a buffer at the list tail 3383 * @list: list to use 3384 * @newsk: buffer to queue 3385 * 3386 * Queue a buffer at the tail of the list. This function takes the 3387 * list lock and can be used safely with other locking &sk_buff functions 3388 * safely. 3389 * 3390 * A buffer cannot be placed on two lists at the same time. 3391 */ 3392 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3393 { 3394 unsigned long flags; 3395 3396 spin_lock_irqsave(&list->lock, flags); 3397 __skb_queue_tail(list, newsk); 3398 spin_unlock_irqrestore(&list->lock, flags); 3399 } 3400 EXPORT_SYMBOL(skb_queue_tail); 3401 3402 /** 3403 * skb_unlink - remove a buffer from a list 3404 * @skb: buffer to remove 3405 * @list: list to use 3406 * 3407 * Remove a packet from a list. The list locks are taken and this 3408 * function is atomic with respect to other list locked calls 3409 * 3410 * You must know what list the SKB is on. 3411 */ 3412 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3413 { 3414 unsigned long flags; 3415 3416 spin_lock_irqsave(&list->lock, flags); 3417 __skb_unlink(skb, list); 3418 spin_unlock_irqrestore(&list->lock, flags); 3419 } 3420 EXPORT_SYMBOL(skb_unlink); 3421 3422 /** 3423 * skb_append - append a buffer 3424 * @old: buffer to insert after 3425 * @newsk: buffer to insert 3426 * @list: list to use 3427 * 3428 * Place a packet after a given packet in a list. The list locks are taken 3429 * and this function is atomic with respect to other list locked calls. 3430 * A buffer cannot be placed on two lists at the same time. 3431 */ 3432 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3433 { 3434 unsigned long flags; 3435 3436 spin_lock_irqsave(&list->lock, flags); 3437 __skb_queue_after(list, old, newsk); 3438 spin_unlock_irqrestore(&list->lock, flags); 3439 } 3440 EXPORT_SYMBOL(skb_append); 3441 3442 static inline void skb_split_inside_header(struct sk_buff *skb, 3443 struct sk_buff* skb1, 3444 const u32 len, const int pos) 3445 { 3446 int i; 3447 3448 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3449 pos - len); 3450 /* And move data appendix as is. */ 3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3452 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3453 3454 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3455 skb_shinfo(skb)->nr_frags = 0; 3456 skb1->data_len = skb->data_len; 3457 skb1->len += skb1->data_len; 3458 skb->data_len = 0; 3459 skb->len = len; 3460 skb_set_tail_pointer(skb, len); 3461 } 3462 3463 static inline void skb_split_no_header(struct sk_buff *skb, 3464 struct sk_buff* skb1, 3465 const u32 len, int pos) 3466 { 3467 int i, k = 0; 3468 const int nfrags = skb_shinfo(skb)->nr_frags; 3469 3470 skb_shinfo(skb)->nr_frags = 0; 3471 skb1->len = skb1->data_len = skb->len - len; 3472 skb->len = len; 3473 skb->data_len = len - pos; 3474 3475 for (i = 0; i < nfrags; i++) { 3476 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3477 3478 if (pos + size > len) { 3479 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3480 3481 if (pos < len) { 3482 /* Split frag. 3483 * We have two variants in this case: 3484 * 1. Move all the frag to the second 3485 * part, if it is possible. F.e. 3486 * this approach is mandatory for TUX, 3487 * where splitting is expensive. 3488 * 2. Split is accurately. We make this. 3489 */ 3490 skb_frag_ref(skb, i); 3491 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3492 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3493 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3494 skb_shinfo(skb)->nr_frags++; 3495 } 3496 k++; 3497 } else 3498 skb_shinfo(skb)->nr_frags++; 3499 pos += size; 3500 } 3501 skb_shinfo(skb1)->nr_frags = k; 3502 } 3503 3504 /** 3505 * skb_split - Split fragmented skb to two parts at length len. 3506 * @skb: the buffer to split 3507 * @skb1: the buffer to receive the second part 3508 * @len: new length for skb 3509 */ 3510 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3511 { 3512 int pos = skb_headlen(skb); 3513 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3514 3515 skb_zcopy_downgrade_managed(skb); 3516 3517 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3518 skb_zerocopy_clone(skb1, skb, 0); 3519 if (len < pos) /* Split line is inside header. */ 3520 skb_split_inside_header(skb, skb1, len, pos); 3521 else /* Second chunk has no header, nothing to copy. */ 3522 skb_split_no_header(skb, skb1, len, pos); 3523 } 3524 EXPORT_SYMBOL(skb_split); 3525 3526 /* Shifting from/to a cloned skb is a no-go. 3527 * 3528 * Caller cannot keep skb_shinfo related pointers past calling here! 3529 */ 3530 static int skb_prepare_for_shift(struct sk_buff *skb) 3531 { 3532 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3533 } 3534 3535 /** 3536 * skb_shift - Shifts paged data partially from skb to another 3537 * @tgt: buffer into which tail data gets added 3538 * @skb: buffer from which the paged data comes from 3539 * @shiftlen: shift up to this many bytes 3540 * 3541 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3542 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3543 * It's up to caller to free skb if everything was shifted. 3544 * 3545 * If @tgt runs out of frags, the whole operation is aborted. 3546 * 3547 * Skb cannot include anything else but paged data while tgt is allowed 3548 * to have non-paged data as well. 3549 * 3550 * TODO: full sized shift could be optimized but that would need 3551 * specialized skb free'er to handle frags without up-to-date nr_frags. 3552 */ 3553 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3554 { 3555 int from, to, merge, todo; 3556 skb_frag_t *fragfrom, *fragto; 3557 3558 BUG_ON(shiftlen > skb->len); 3559 3560 if (skb_headlen(skb)) 3561 return 0; 3562 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3563 return 0; 3564 3565 todo = shiftlen; 3566 from = 0; 3567 to = skb_shinfo(tgt)->nr_frags; 3568 fragfrom = &skb_shinfo(skb)->frags[from]; 3569 3570 /* Actual merge is delayed until the point when we know we can 3571 * commit all, so that we don't have to undo partial changes 3572 */ 3573 if (!to || 3574 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3575 skb_frag_off(fragfrom))) { 3576 merge = -1; 3577 } else { 3578 merge = to - 1; 3579 3580 todo -= skb_frag_size(fragfrom); 3581 if (todo < 0) { 3582 if (skb_prepare_for_shift(skb) || 3583 skb_prepare_for_shift(tgt)) 3584 return 0; 3585 3586 /* All previous frag pointers might be stale! */ 3587 fragfrom = &skb_shinfo(skb)->frags[from]; 3588 fragto = &skb_shinfo(tgt)->frags[merge]; 3589 3590 skb_frag_size_add(fragto, shiftlen); 3591 skb_frag_size_sub(fragfrom, shiftlen); 3592 skb_frag_off_add(fragfrom, shiftlen); 3593 3594 goto onlymerged; 3595 } 3596 3597 from++; 3598 } 3599 3600 /* Skip full, not-fitting skb to avoid expensive operations */ 3601 if ((shiftlen == skb->len) && 3602 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3603 return 0; 3604 3605 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3606 return 0; 3607 3608 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3609 if (to == MAX_SKB_FRAGS) 3610 return 0; 3611 3612 fragfrom = &skb_shinfo(skb)->frags[from]; 3613 fragto = &skb_shinfo(tgt)->frags[to]; 3614 3615 if (todo >= skb_frag_size(fragfrom)) { 3616 *fragto = *fragfrom; 3617 todo -= skb_frag_size(fragfrom); 3618 from++; 3619 to++; 3620 3621 } else { 3622 __skb_frag_ref(fragfrom); 3623 skb_frag_page_copy(fragto, fragfrom); 3624 skb_frag_off_copy(fragto, fragfrom); 3625 skb_frag_size_set(fragto, todo); 3626 3627 skb_frag_off_add(fragfrom, todo); 3628 skb_frag_size_sub(fragfrom, todo); 3629 todo = 0; 3630 3631 to++; 3632 break; 3633 } 3634 } 3635 3636 /* Ready to "commit" this state change to tgt */ 3637 skb_shinfo(tgt)->nr_frags = to; 3638 3639 if (merge >= 0) { 3640 fragfrom = &skb_shinfo(skb)->frags[0]; 3641 fragto = &skb_shinfo(tgt)->frags[merge]; 3642 3643 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3644 __skb_frag_unref(fragfrom, skb->pp_recycle); 3645 } 3646 3647 /* Reposition in the original skb */ 3648 to = 0; 3649 while (from < skb_shinfo(skb)->nr_frags) 3650 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3651 skb_shinfo(skb)->nr_frags = to; 3652 3653 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3654 3655 onlymerged: 3656 /* Most likely the tgt won't ever need its checksum anymore, skb on 3657 * the other hand might need it if it needs to be resent 3658 */ 3659 tgt->ip_summed = CHECKSUM_PARTIAL; 3660 skb->ip_summed = CHECKSUM_PARTIAL; 3661 3662 skb_len_add(skb, -shiftlen); 3663 skb_len_add(tgt, shiftlen); 3664 3665 return shiftlen; 3666 } 3667 3668 /** 3669 * skb_prepare_seq_read - Prepare a sequential read of skb data 3670 * @skb: the buffer to read 3671 * @from: lower offset of data to be read 3672 * @to: upper offset of data to be read 3673 * @st: state variable 3674 * 3675 * Initializes the specified state variable. Must be called before 3676 * invoking skb_seq_read() for the first time. 3677 */ 3678 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3679 unsigned int to, struct skb_seq_state *st) 3680 { 3681 st->lower_offset = from; 3682 st->upper_offset = to; 3683 st->root_skb = st->cur_skb = skb; 3684 st->frag_idx = st->stepped_offset = 0; 3685 st->frag_data = NULL; 3686 st->frag_off = 0; 3687 } 3688 EXPORT_SYMBOL(skb_prepare_seq_read); 3689 3690 /** 3691 * skb_seq_read - Sequentially read skb data 3692 * @consumed: number of bytes consumed by the caller so far 3693 * @data: destination pointer for data to be returned 3694 * @st: state variable 3695 * 3696 * Reads a block of skb data at @consumed relative to the 3697 * lower offset specified to skb_prepare_seq_read(). Assigns 3698 * the head of the data block to @data and returns the length 3699 * of the block or 0 if the end of the skb data or the upper 3700 * offset has been reached. 3701 * 3702 * The caller is not required to consume all of the data 3703 * returned, i.e. @consumed is typically set to the number 3704 * of bytes already consumed and the next call to 3705 * skb_seq_read() will return the remaining part of the block. 3706 * 3707 * Note 1: The size of each block of data returned can be arbitrary, 3708 * this limitation is the cost for zerocopy sequential 3709 * reads of potentially non linear data. 3710 * 3711 * Note 2: Fragment lists within fragments are not implemented 3712 * at the moment, state->root_skb could be replaced with 3713 * a stack for this purpose. 3714 */ 3715 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3716 struct skb_seq_state *st) 3717 { 3718 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3719 skb_frag_t *frag; 3720 3721 if (unlikely(abs_offset >= st->upper_offset)) { 3722 if (st->frag_data) { 3723 kunmap_atomic(st->frag_data); 3724 st->frag_data = NULL; 3725 } 3726 return 0; 3727 } 3728 3729 next_skb: 3730 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3731 3732 if (abs_offset < block_limit && !st->frag_data) { 3733 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3734 return block_limit - abs_offset; 3735 } 3736 3737 if (st->frag_idx == 0 && !st->frag_data) 3738 st->stepped_offset += skb_headlen(st->cur_skb); 3739 3740 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3741 unsigned int pg_idx, pg_off, pg_sz; 3742 3743 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3744 3745 pg_idx = 0; 3746 pg_off = skb_frag_off(frag); 3747 pg_sz = skb_frag_size(frag); 3748 3749 if (skb_frag_must_loop(skb_frag_page(frag))) { 3750 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3751 pg_off = offset_in_page(pg_off + st->frag_off); 3752 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3753 PAGE_SIZE - pg_off); 3754 } 3755 3756 block_limit = pg_sz + st->stepped_offset; 3757 if (abs_offset < block_limit) { 3758 if (!st->frag_data) 3759 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3760 3761 *data = (u8 *)st->frag_data + pg_off + 3762 (abs_offset - st->stepped_offset); 3763 3764 return block_limit - abs_offset; 3765 } 3766 3767 if (st->frag_data) { 3768 kunmap_atomic(st->frag_data); 3769 st->frag_data = NULL; 3770 } 3771 3772 st->stepped_offset += pg_sz; 3773 st->frag_off += pg_sz; 3774 if (st->frag_off == skb_frag_size(frag)) { 3775 st->frag_off = 0; 3776 st->frag_idx++; 3777 } 3778 } 3779 3780 if (st->frag_data) { 3781 kunmap_atomic(st->frag_data); 3782 st->frag_data = NULL; 3783 } 3784 3785 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3786 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3787 st->frag_idx = 0; 3788 goto next_skb; 3789 } else if (st->cur_skb->next) { 3790 st->cur_skb = st->cur_skb->next; 3791 st->frag_idx = 0; 3792 goto next_skb; 3793 } 3794 3795 return 0; 3796 } 3797 EXPORT_SYMBOL(skb_seq_read); 3798 3799 /** 3800 * skb_abort_seq_read - Abort a sequential read of skb data 3801 * @st: state variable 3802 * 3803 * Must be called if skb_seq_read() was not called until it 3804 * returned 0. 3805 */ 3806 void skb_abort_seq_read(struct skb_seq_state *st) 3807 { 3808 if (st->frag_data) 3809 kunmap_atomic(st->frag_data); 3810 } 3811 EXPORT_SYMBOL(skb_abort_seq_read); 3812 3813 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3814 3815 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3816 struct ts_config *conf, 3817 struct ts_state *state) 3818 { 3819 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3820 } 3821 3822 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3823 { 3824 skb_abort_seq_read(TS_SKB_CB(state)); 3825 } 3826 3827 /** 3828 * skb_find_text - Find a text pattern in skb data 3829 * @skb: the buffer to look in 3830 * @from: search offset 3831 * @to: search limit 3832 * @config: textsearch configuration 3833 * 3834 * Finds a pattern in the skb data according to the specified 3835 * textsearch configuration. Use textsearch_next() to retrieve 3836 * subsequent occurrences of the pattern. Returns the offset 3837 * to the first occurrence or UINT_MAX if no match was found. 3838 */ 3839 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3840 unsigned int to, struct ts_config *config) 3841 { 3842 struct ts_state state; 3843 unsigned int ret; 3844 3845 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3846 3847 config->get_next_block = skb_ts_get_next_block; 3848 config->finish = skb_ts_finish; 3849 3850 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3851 3852 ret = textsearch_find(config, &state); 3853 return (ret <= to - from ? ret : UINT_MAX); 3854 } 3855 EXPORT_SYMBOL(skb_find_text); 3856 3857 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3858 int offset, size_t size) 3859 { 3860 int i = skb_shinfo(skb)->nr_frags; 3861 3862 if (skb_can_coalesce(skb, i, page, offset)) { 3863 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3864 } else if (i < MAX_SKB_FRAGS) { 3865 skb_zcopy_downgrade_managed(skb); 3866 get_page(page); 3867 skb_fill_page_desc(skb, i, page, offset, size); 3868 } else { 3869 return -EMSGSIZE; 3870 } 3871 3872 return 0; 3873 } 3874 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3875 3876 /** 3877 * skb_pull_rcsum - pull skb and update receive checksum 3878 * @skb: buffer to update 3879 * @len: length of data pulled 3880 * 3881 * This function performs an skb_pull on the packet and updates 3882 * the CHECKSUM_COMPLETE checksum. It should be used on 3883 * receive path processing instead of skb_pull unless you know 3884 * that the checksum difference is zero (e.g., a valid IP header) 3885 * or you are setting ip_summed to CHECKSUM_NONE. 3886 */ 3887 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3888 { 3889 unsigned char *data = skb->data; 3890 3891 BUG_ON(len > skb->len); 3892 __skb_pull(skb, len); 3893 skb_postpull_rcsum(skb, data, len); 3894 return skb->data; 3895 } 3896 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3897 3898 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3899 { 3900 skb_frag_t head_frag; 3901 struct page *page; 3902 3903 page = virt_to_head_page(frag_skb->head); 3904 __skb_frag_set_page(&head_frag, page); 3905 skb_frag_off_set(&head_frag, frag_skb->data - 3906 (unsigned char *)page_address(page)); 3907 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3908 return head_frag; 3909 } 3910 3911 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3912 netdev_features_t features, 3913 unsigned int offset) 3914 { 3915 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3916 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3917 unsigned int delta_truesize = 0; 3918 unsigned int delta_len = 0; 3919 struct sk_buff *tail = NULL; 3920 struct sk_buff *nskb, *tmp; 3921 int len_diff, err; 3922 3923 skb_push(skb, -skb_network_offset(skb) + offset); 3924 3925 skb_shinfo(skb)->frag_list = NULL; 3926 3927 do { 3928 nskb = list_skb; 3929 list_skb = list_skb->next; 3930 3931 err = 0; 3932 delta_truesize += nskb->truesize; 3933 if (skb_shared(nskb)) { 3934 tmp = skb_clone(nskb, GFP_ATOMIC); 3935 if (tmp) { 3936 consume_skb(nskb); 3937 nskb = tmp; 3938 err = skb_unclone(nskb, GFP_ATOMIC); 3939 } else { 3940 err = -ENOMEM; 3941 } 3942 } 3943 3944 if (!tail) 3945 skb->next = nskb; 3946 else 3947 tail->next = nskb; 3948 3949 if (unlikely(err)) { 3950 nskb->next = list_skb; 3951 goto err_linearize; 3952 } 3953 3954 tail = nskb; 3955 3956 delta_len += nskb->len; 3957 3958 skb_push(nskb, -skb_network_offset(nskb) + offset); 3959 3960 skb_release_head_state(nskb); 3961 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3962 __copy_skb_header(nskb, skb); 3963 3964 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3965 nskb->transport_header += len_diff; 3966 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3967 nskb->data - tnl_hlen, 3968 offset + tnl_hlen); 3969 3970 if (skb_needs_linearize(nskb, features) && 3971 __skb_linearize(nskb)) 3972 goto err_linearize; 3973 3974 } while (list_skb); 3975 3976 skb->truesize = skb->truesize - delta_truesize; 3977 skb->data_len = skb->data_len - delta_len; 3978 skb->len = skb->len - delta_len; 3979 3980 skb_gso_reset(skb); 3981 3982 skb->prev = tail; 3983 3984 if (skb_needs_linearize(skb, features) && 3985 __skb_linearize(skb)) 3986 goto err_linearize; 3987 3988 skb_get(skb); 3989 3990 return skb; 3991 3992 err_linearize: 3993 kfree_skb_list(skb->next); 3994 skb->next = NULL; 3995 return ERR_PTR(-ENOMEM); 3996 } 3997 EXPORT_SYMBOL_GPL(skb_segment_list); 3998 3999 /** 4000 * skb_segment - Perform protocol segmentation on skb. 4001 * @head_skb: buffer to segment 4002 * @features: features for the output path (see dev->features) 4003 * 4004 * This function performs segmentation on the given skb. It returns 4005 * a pointer to the first in a list of new skbs for the segments. 4006 * In case of error it returns ERR_PTR(err). 4007 */ 4008 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4009 netdev_features_t features) 4010 { 4011 struct sk_buff *segs = NULL; 4012 struct sk_buff *tail = NULL; 4013 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4014 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4015 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4016 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4017 struct sk_buff *frag_skb = head_skb; 4018 unsigned int offset = doffset; 4019 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4020 unsigned int partial_segs = 0; 4021 unsigned int headroom; 4022 unsigned int len = head_skb->len; 4023 __be16 proto; 4024 bool csum, sg; 4025 int nfrags = skb_shinfo(head_skb)->nr_frags; 4026 int err = -ENOMEM; 4027 int i = 0; 4028 int pos; 4029 4030 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4031 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4032 /* gso_size is untrusted, and we have a frag_list with a linear 4033 * non head_frag head. 4034 * 4035 * (we assume checking the first list_skb member suffices; 4036 * i.e if either of the list_skb members have non head_frag 4037 * head, then the first one has too). 4038 * 4039 * If head_skb's headlen does not fit requested gso_size, it 4040 * means that the frag_list members do NOT terminate on exact 4041 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4042 * sharing. Therefore we must fallback to copying the frag_list 4043 * skbs; we do so by disabling SG. 4044 */ 4045 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4046 features &= ~NETIF_F_SG; 4047 } 4048 4049 __skb_push(head_skb, doffset); 4050 proto = skb_network_protocol(head_skb, NULL); 4051 if (unlikely(!proto)) 4052 return ERR_PTR(-EINVAL); 4053 4054 sg = !!(features & NETIF_F_SG); 4055 csum = !!can_checksum_protocol(features, proto); 4056 4057 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4058 if (!(features & NETIF_F_GSO_PARTIAL)) { 4059 struct sk_buff *iter; 4060 unsigned int frag_len; 4061 4062 if (!list_skb || 4063 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4064 goto normal; 4065 4066 /* If we get here then all the required 4067 * GSO features except frag_list are supported. 4068 * Try to split the SKB to multiple GSO SKBs 4069 * with no frag_list. 4070 * Currently we can do that only when the buffers don't 4071 * have a linear part and all the buffers except 4072 * the last are of the same length. 4073 */ 4074 frag_len = list_skb->len; 4075 skb_walk_frags(head_skb, iter) { 4076 if (frag_len != iter->len && iter->next) 4077 goto normal; 4078 if (skb_headlen(iter) && !iter->head_frag) 4079 goto normal; 4080 4081 len -= iter->len; 4082 } 4083 4084 if (len != frag_len) 4085 goto normal; 4086 } 4087 4088 /* GSO partial only requires that we trim off any excess that 4089 * doesn't fit into an MSS sized block, so take care of that 4090 * now. 4091 */ 4092 partial_segs = len / mss; 4093 if (partial_segs > 1) 4094 mss *= partial_segs; 4095 else 4096 partial_segs = 0; 4097 } 4098 4099 normal: 4100 headroom = skb_headroom(head_skb); 4101 pos = skb_headlen(head_skb); 4102 4103 do { 4104 struct sk_buff *nskb; 4105 skb_frag_t *nskb_frag; 4106 int hsize; 4107 int size; 4108 4109 if (unlikely(mss == GSO_BY_FRAGS)) { 4110 len = list_skb->len; 4111 } else { 4112 len = head_skb->len - offset; 4113 if (len > mss) 4114 len = mss; 4115 } 4116 4117 hsize = skb_headlen(head_skb) - offset; 4118 4119 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4120 (skb_headlen(list_skb) == len || sg)) { 4121 BUG_ON(skb_headlen(list_skb) > len); 4122 4123 i = 0; 4124 nfrags = skb_shinfo(list_skb)->nr_frags; 4125 frag = skb_shinfo(list_skb)->frags; 4126 frag_skb = list_skb; 4127 pos += skb_headlen(list_skb); 4128 4129 while (pos < offset + len) { 4130 BUG_ON(i >= nfrags); 4131 4132 size = skb_frag_size(frag); 4133 if (pos + size > offset + len) 4134 break; 4135 4136 i++; 4137 pos += size; 4138 frag++; 4139 } 4140 4141 nskb = skb_clone(list_skb, GFP_ATOMIC); 4142 list_skb = list_skb->next; 4143 4144 if (unlikely(!nskb)) 4145 goto err; 4146 4147 if (unlikely(pskb_trim(nskb, len))) { 4148 kfree_skb(nskb); 4149 goto err; 4150 } 4151 4152 hsize = skb_end_offset(nskb); 4153 if (skb_cow_head(nskb, doffset + headroom)) { 4154 kfree_skb(nskb); 4155 goto err; 4156 } 4157 4158 nskb->truesize += skb_end_offset(nskb) - hsize; 4159 skb_release_head_state(nskb); 4160 __skb_push(nskb, doffset); 4161 } else { 4162 if (hsize < 0) 4163 hsize = 0; 4164 if (hsize > len || !sg) 4165 hsize = len; 4166 4167 nskb = __alloc_skb(hsize + doffset + headroom, 4168 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4169 NUMA_NO_NODE); 4170 4171 if (unlikely(!nskb)) 4172 goto err; 4173 4174 skb_reserve(nskb, headroom); 4175 __skb_put(nskb, doffset); 4176 } 4177 4178 if (segs) 4179 tail->next = nskb; 4180 else 4181 segs = nskb; 4182 tail = nskb; 4183 4184 __copy_skb_header(nskb, head_skb); 4185 4186 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4187 skb_reset_mac_len(nskb); 4188 4189 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4190 nskb->data - tnl_hlen, 4191 doffset + tnl_hlen); 4192 4193 if (nskb->len == len + doffset) 4194 goto perform_csum_check; 4195 4196 if (!sg) { 4197 if (!csum) { 4198 if (!nskb->remcsum_offload) 4199 nskb->ip_summed = CHECKSUM_NONE; 4200 SKB_GSO_CB(nskb)->csum = 4201 skb_copy_and_csum_bits(head_skb, offset, 4202 skb_put(nskb, 4203 len), 4204 len); 4205 SKB_GSO_CB(nskb)->csum_start = 4206 skb_headroom(nskb) + doffset; 4207 } else { 4208 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4209 goto err; 4210 } 4211 continue; 4212 } 4213 4214 nskb_frag = skb_shinfo(nskb)->frags; 4215 4216 skb_copy_from_linear_data_offset(head_skb, offset, 4217 skb_put(nskb, hsize), hsize); 4218 4219 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4220 SKBFL_SHARED_FRAG; 4221 4222 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4223 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4224 goto err; 4225 4226 while (pos < offset + len) { 4227 if (i >= nfrags) { 4228 i = 0; 4229 nfrags = skb_shinfo(list_skb)->nr_frags; 4230 frag = skb_shinfo(list_skb)->frags; 4231 frag_skb = list_skb; 4232 if (!skb_headlen(list_skb)) { 4233 BUG_ON(!nfrags); 4234 } else { 4235 BUG_ON(!list_skb->head_frag); 4236 4237 /* to make room for head_frag. */ 4238 i--; 4239 frag--; 4240 } 4241 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4242 skb_zerocopy_clone(nskb, frag_skb, 4243 GFP_ATOMIC)) 4244 goto err; 4245 4246 list_skb = list_skb->next; 4247 } 4248 4249 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4250 MAX_SKB_FRAGS)) { 4251 net_warn_ratelimited( 4252 "skb_segment: too many frags: %u %u\n", 4253 pos, mss); 4254 err = -EINVAL; 4255 goto err; 4256 } 4257 4258 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4259 __skb_frag_ref(nskb_frag); 4260 size = skb_frag_size(nskb_frag); 4261 4262 if (pos < offset) { 4263 skb_frag_off_add(nskb_frag, offset - pos); 4264 skb_frag_size_sub(nskb_frag, offset - pos); 4265 } 4266 4267 skb_shinfo(nskb)->nr_frags++; 4268 4269 if (pos + size <= offset + len) { 4270 i++; 4271 frag++; 4272 pos += size; 4273 } else { 4274 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4275 goto skip_fraglist; 4276 } 4277 4278 nskb_frag++; 4279 } 4280 4281 skip_fraglist: 4282 nskb->data_len = len - hsize; 4283 nskb->len += nskb->data_len; 4284 nskb->truesize += nskb->data_len; 4285 4286 perform_csum_check: 4287 if (!csum) { 4288 if (skb_has_shared_frag(nskb) && 4289 __skb_linearize(nskb)) 4290 goto err; 4291 4292 if (!nskb->remcsum_offload) 4293 nskb->ip_summed = CHECKSUM_NONE; 4294 SKB_GSO_CB(nskb)->csum = 4295 skb_checksum(nskb, doffset, 4296 nskb->len - doffset, 0); 4297 SKB_GSO_CB(nskb)->csum_start = 4298 skb_headroom(nskb) + doffset; 4299 } 4300 } while ((offset += len) < head_skb->len); 4301 4302 /* Some callers want to get the end of the list. 4303 * Put it in segs->prev to avoid walking the list. 4304 * (see validate_xmit_skb_list() for example) 4305 */ 4306 segs->prev = tail; 4307 4308 if (partial_segs) { 4309 struct sk_buff *iter; 4310 int type = skb_shinfo(head_skb)->gso_type; 4311 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4312 4313 /* Update type to add partial and then remove dodgy if set */ 4314 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4315 type &= ~SKB_GSO_DODGY; 4316 4317 /* Update GSO info and prepare to start updating headers on 4318 * our way back down the stack of protocols. 4319 */ 4320 for (iter = segs; iter; iter = iter->next) { 4321 skb_shinfo(iter)->gso_size = gso_size; 4322 skb_shinfo(iter)->gso_segs = partial_segs; 4323 skb_shinfo(iter)->gso_type = type; 4324 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4325 } 4326 4327 if (tail->len - doffset <= gso_size) 4328 skb_shinfo(tail)->gso_size = 0; 4329 else if (tail != segs) 4330 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4331 } 4332 4333 /* Following permits correct backpressure, for protocols 4334 * using skb_set_owner_w(). 4335 * Idea is to tranfert ownership from head_skb to last segment. 4336 */ 4337 if (head_skb->destructor == sock_wfree) { 4338 swap(tail->truesize, head_skb->truesize); 4339 swap(tail->destructor, head_skb->destructor); 4340 swap(tail->sk, head_skb->sk); 4341 } 4342 return segs; 4343 4344 err: 4345 kfree_skb_list(segs); 4346 return ERR_PTR(err); 4347 } 4348 EXPORT_SYMBOL_GPL(skb_segment); 4349 4350 #ifdef CONFIG_SKB_EXTENSIONS 4351 #define SKB_EXT_ALIGN_VALUE 8 4352 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4353 4354 static const u8 skb_ext_type_len[] = { 4355 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4356 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4357 #endif 4358 #ifdef CONFIG_XFRM 4359 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4360 #endif 4361 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4362 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4363 #endif 4364 #if IS_ENABLED(CONFIG_MPTCP) 4365 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4366 #endif 4367 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4368 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4369 #endif 4370 }; 4371 4372 static __always_inline unsigned int skb_ext_total_length(void) 4373 { 4374 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4375 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4376 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4377 #endif 4378 #ifdef CONFIG_XFRM 4379 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4380 #endif 4381 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4382 skb_ext_type_len[TC_SKB_EXT] + 4383 #endif 4384 #if IS_ENABLED(CONFIG_MPTCP) 4385 skb_ext_type_len[SKB_EXT_MPTCP] + 4386 #endif 4387 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4388 skb_ext_type_len[SKB_EXT_MCTP] + 4389 #endif 4390 0; 4391 } 4392 4393 static void skb_extensions_init(void) 4394 { 4395 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4396 BUILD_BUG_ON(skb_ext_total_length() > 255); 4397 4398 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4399 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4400 0, 4401 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4402 NULL); 4403 } 4404 #else 4405 static void skb_extensions_init(void) {} 4406 #endif 4407 4408 void __init skb_init(void) 4409 { 4410 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4411 sizeof(struct sk_buff), 4412 0, 4413 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4414 offsetof(struct sk_buff, cb), 4415 sizeof_field(struct sk_buff, cb), 4416 NULL); 4417 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4418 sizeof(struct sk_buff_fclones), 4419 0, 4420 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4421 NULL); 4422 skb_extensions_init(); 4423 } 4424 4425 static int 4426 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4427 unsigned int recursion_level) 4428 { 4429 int start = skb_headlen(skb); 4430 int i, copy = start - offset; 4431 struct sk_buff *frag_iter; 4432 int elt = 0; 4433 4434 if (unlikely(recursion_level >= 24)) 4435 return -EMSGSIZE; 4436 4437 if (copy > 0) { 4438 if (copy > len) 4439 copy = len; 4440 sg_set_buf(sg, skb->data + offset, copy); 4441 elt++; 4442 if ((len -= copy) == 0) 4443 return elt; 4444 offset += copy; 4445 } 4446 4447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4448 int end; 4449 4450 WARN_ON(start > offset + len); 4451 4452 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4453 if ((copy = end - offset) > 0) { 4454 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4455 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4456 return -EMSGSIZE; 4457 4458 if (copy > len) 4459 copy = len; 4460 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4461 skb_frag_off(frag) + offset - start); 4462 elt++; 4463 if (!(len -= copy)) 4464 return elt; 4465 offset += copy; 4466 } 4467 start = end; 4468 } 4469 4470 skb_walk_frags(skb, frag_iter) { 4471 int end, ret; 4472 4473 WARN_ON(start > offset + len); 4474 4475 end = start + frag_iter->len; 4476 if ((copy = end - offset) > 0) { 4477 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4478 return -EMSGSIZE; 4479 4480 if (copy > len) 4481 copy = len; 4482 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4483 copy, recursion_level + 1); 4484 if (unlikely(ret < 0)) 4485 return ret; 4486 elt += ret; 4487 if ((len -= copy) == 0) 4488 return elt; 4489 offset += copy; 4490 } 4491 start = end; 4492 } 4493 BUG_ON(len); 4494 return elt; 4495 } 4496 4497 /** 4498 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4499 * @skb: Socket buffer containing the buffers to be mapped 4500 * @sg: The scatter-gather list to map into 4501 * @offset: The offset into the buffer's contents to start mapping 4502 * @len: Length of buffer space to be mapped 4503 * 4504 * Fill the specified scatter-gather list with mappings/pointers into a 4505 * region of the buffer space attached to a socket buffer. Returns either 4506 * the number of scatterlist items used, or -EMSGSIZE if the contents 4507 * could not fit. 4508 */ 4509 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4510 { 4511 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4512 4513 if (nsg <= 0) 4514 return nsg; 4515 4516 sg_mark_end(&sg[nsg - 1]); 4517 4518 return nsg; 4519 } 4520 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4521 4522 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4523 * sglist without mark the sg which contain last skb data as the end. 4524 * So the caller can mannipulate sg list as will when padding new data after 4525 * the first call without calling sg_unmark_end to expend sg list. 4526 * 4527 * Scenario to use skb_to_sgvec_nomark: 4528 * 1. sg_init_table 4529 * 2. skb_to_sgvec_nomark(payload1) 4530 * 3. skb_to_sgvec_nomark(payload2) 4531 * 4532 * This is equivalent to: 4533 * 1. sg_init_table 4534 * 2. skb_to_sgvec(payload1) 4535 * 3. sg_unmark_end 4536 * 4. skb_to_sgvec(payload2) 4537 * 4538 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4539 * is more preferable. 4540 */ 4541 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4542 int offset, int len) 4543 { 4544 return __skb_to_sgvec(skb, sg, offset, len, 0); 4545 } 4546 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4547 4548 4549 4550 /** 4551 * skb_cow_data - Check that a socket buffer's data buffers are writable 4552 * @skb: The socket buffer to check. 4553 * @tailbits: Amount of trailing space to be added 4554 * @trailer: Returned pointer to the skb where the @tailbits space begins 4555 * 4556 * Make sure that the data buffers attached to a socket buffer are 4557 * writable. If they are not, private copies are made of the data buffers 4558 * and the socket buffer is set to use these instead. 4559 * 4560 * If @tailbits is given, make sure that there is space to write @tailbits 4561 * bytes of data beyond current end of socket buffer. @trailer will be 4562 * set to point to the skb in which this space begins. 4563 * 4564 * The number of scatterlist elements required to completely map the 4565 * COW'd and extended socket buffer will be returned. 4566 */ 4567 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4568 { 4569 int copyflag; 4570 int elt; 4571 struct sk_buff *skb1, **skb_p; 4572 4573 /* If skb is cloned or its head is paged, reallocate 4574 * head pulling out all the pages (pages are considered not writable 4575 * at the moment even if they are anonymous). 4576 */ 4577 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4578 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4579 return -ENOMEM; 4580 4581 /* Easy case. Most of packets will go this way. */ 4582 if (!skb_has_frag_list(skb)) { 4583 /* A little of trouble, not enough of space for trailer. 4584 * This should not happen, when stack is tuned to generate 4585 * good frames. OK, on miss we reallocate and reserve even more 4586 * space, 128 bytes is fair. */ 4587 4588 if (skb_tailroom(skb) < tailbits && 4589 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4590 return -ENOMEM; 4591 4592 /* Voila! */ 4593 *trailer = skb; 4594 return 1; 4595 } 4596 4597 /* Misery. We are in troubles, going to mincer fragments... */ 4598 4599 elt = 1; 4600 skb_p = &skb_shinfo(skb)->frag_list; 4601 copyflag = 0; 4602 4603 while ((skb1 = *skb_p) != NULL) { 4604 int ntail = 0; 4605 4606 /* The fragment is partially pulled by someone, 4607 * this can happen on input. Copy it and everything 4608 * after it. */ 4609 4610 if (skb_shared(skb1)) 4611 copyflag = 1; 4612 4613 /* If the skb is the last, worry about trailer. */ 4614 4615 if (skb1->next == NULL && tailbits) { 4616 if (skb_shinfo(skb1)->nr_frags || 4617 skb_has_frag_list(skb1) || 4618 skb_tailroom(skb1) < tailbits) 4619 ntail = tailbits + 128; 4620 } 4621 4622 if (copyflag || 4623 skb_cloned(skb1) || 4624 ntail || 4625 skb_shinfo(skb1)->nr_frags || 4626 skb_has_frag_list(skb1)) { 4627 struct sk_buff *skb2; 4628 4629 /* Fuck, we are miserable poor guys... */ 4630 if (ntail == 0) 4631 skb2 = skb_copy(skb1, GFP_ATOMIC); 4632 else 4633 skb2 = skb_copy_expand(skb1, 4634 skb_headroom(skb1), 4635 ntail, 4636 GFP_ATOMIC); 4637 if (unlikely(skb2 == NULL)) 4638 return -ENOMEM; 4639 4640 if (skb1->sk) 4641 skb_set_owner_w(skb2, skb1->sk); 4642 4643 /* Looking around. Are we still alive? 4644 * OK, link new skb, drop old one */ 4645 4646 skb2->next = skb1->next; 4647 *skb_p = skb2; 4648 kfree_skb(skb1); 4649 skb1 = skb2; 4650 } 4651 elt++; 4652 *trailer = skb1; 4653 skb_p = &skb1->next; 4654 } 4655 4656 return elt; 4657 } 4658 EXPORT_SYMBOL_GPL(skb_cow_data); 4659 4660 static void sock_rmem_free(struct sk_buff *skb) 4661 { 4662 struct sock *sk = skb->sk; 4663 4664 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4665 } 4666 4667 static void skb_set_err_queue(struct sk_buff *skb) 4668 { 4669 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4670 * So, it is safe to (mis)use it to mark skbs on the error queue. 4671 */ 4672 skb->pkt_type = PACKET_OUTGOING; 4673 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4674 } 4675 4676 /* 4677 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4678 */ 4679 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4680 { 4681 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4682 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4683 return -ENOMEM; 4684 4685 skb_orphan(skb); 4686 skb->sk = sk; 4687 skb->destructor = sock_rmem_free; 4688 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4689 skb_set_err_queue(skb); 4690 4691 /* before exiting rcu section, make sure dst is refcounted */ 4692 skb_dst_force(skb); 4693 4694 skb_queue_tail(&sk->sk_error_queue, skb); 4695 if (!sock_flag(sk, SOCK_DEAD)) 4696 sk_error_report(sk); 4697 return 0; 4698 } 4699 EXPORT_SYMBOL(sock_queue_err_skb); 4700 4701 static bool is_icmp_err_skb(const struct sk_buff *skb) 4702 { 4703 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4704 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4705 } 4706 4707 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4708 { 4709 struct sk_buff_head *q = &sk->sk_error_queue; 4710 struct sk_buff *skb, *skb_next = NULL; 4711 bool icmp_next = false; 4712 unsigned long flags; 4713 4714 spin_lock_irqsave(&q->lock, flags); 4715 skb = __skb_dequeue(q); 4716 if (skb && (skb_next = skb_peek(q))) { 4717 icmp_next = is_icmp_err_skb(skb_next); 4718 if (icmp_next) 4719 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4720 } 4721 spin_unlock_irqrestore(&q->lock, flags); 4722 4723 if (is_icmp_err_skb(skb) && !icmp_next) 4724 sk->sk_err = 0; 4725 4726 if (skb_next) 4727 sk_error_report(sk); 4728 4729 return skb; 4730 } 4731 EXPORT_SYMBOL(sock_dequeue_err_skb); 4732 4733 /** 4734 * skb_clone_sk - create clone of skb, and take reference to socket 4735 * @skb: the skb to clone 4736 * 4737 * This function creates a clone of a buffer that holds a reference on 4738 * sk_refcnt. Buffers created via this function are meant to be 4739 * returned using sock_queue_err_skb, or free via kfree_skb. 4740 * 4741 * When passing buffers allocated with this function to sock_queue_err_skb 4742 * it is necessary to wrap the call with sock_hold/sock_put in order to 4743 * prevent the socket from being released prior to being enqueued on 4744 * the sk_error_queue. 4745 */ 4746 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4747 { 4748 struct sock *sk = skb->sk; 4749 struct sk_buff *clone; 4750 4751 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4752 return NULL; 4753 4754 clone = skb_clone(skb, GFP_ATOMIC); 4755 if (!clone) { 4756 sock_put(sk); 4757 return NULL; 4758 } 4759 4760 clone->sk = sk; 4761 clone->destructor = sock_efree; 4762 4763 return clone; 4764 } 4765 EXPORT_SYMBOL(skb_clone_sk); 4766 4767 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4768 struct sock *sk, 4769 int tstype, 4770 bool opt_stats) 4771 { 4772 struct sock_exterr_skb *serr; 4773 int err; 4774 4775 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4776 4777 serr = SKB_EXT_ERR(skb); 4778 memset(serr, 0, sizeof(*serr)); 4779 serr->ee.ee_errno = ENOMSG; 4780 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4781 serr->ee.ee_info = tstype; 4782 serr->opt_stats = opt_stats; 4783 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4784 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4785 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4786 if (sk_is_tcp(sk)) 4787 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4788 } 4789 4790 err = sock_queue_err_skb(sk, skb); 4791 4792 if (err) 4793 kfree_skb(skb); 4794 } 4795 4796 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4797 { 4798 bool ret; 4799 4800 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4801 return true; 4802 4803 read_lock_bh(&sk->sk_callback_lock); 4804 ret = sk->sk_socket && sk->sk_socket->file && 4805 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4806 read_unlock_bh(&sk->sk_callback_lock); 4807 return ret; 4808 } 4809 4810 void skb_complete_tx_timestamp(struct sk_buff *skb, 4811 struct skb_shared_hwtstamps *hwtstamps) 4812 { 4813 struct sock *sk = skb->sk; 4814 4815 if (!skb_may_tx_timestamp(sk, false)) 4816 goto err; 4817 4818 /* Take a reference to prevent skb_orphan() from freeing the socket, 4819 * but only if the socket refcount is not zero. 4820 */ 4821 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4822 *skb_hwtstamps(skb) = *hwtstamps; 4823 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4824 sock_put(sk); 4825 return; 4826 } 4827 4828 err: 4829 kfree_skb(skb); 4830 } 4831 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4832 4833 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4834 const struct sk_buff *ack_skb, 4835 struct skb_shared_hwtstamps *hwtstamps, 4836 struct sock *sk, int tstype) 4837 { 4838 struct sk_buff *skb; 4839 bool tsonly, opt_stats = false; 4840 4841 if (!sk) 4842 return; 4843 4844 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4845 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4846 return; 4847 4848 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4849 if (!skb_may_tx_timestamp(sk, tsonly)) 4850 return; 4851 4852 if (tsonly) { 4853 #ifdef CONFIG_INET 4854 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4855 sk_is_tcp(sk)) { 4856 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4857 ack_skb); 4858 opt_stats = true; 4859 } else 4860 #endif 4861 skb = alloc_skb(0, GFP_ATOMIC); 4862 } else { 4863 skb = skb_clone(orig_skb, GFP_ATOMIC); 4864 } 4865 if (!skb) 4866 return; 4867 4868 if (tsonly) { 4869 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4870 SKBTX_ANY_TSTAMP; 4871 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4872 } 4873 4874 if (hwtstamps) 4875 *skb_hwtstamps(skb) = *hwtstamps; 4876 else 4877 __net_timestamp(skb); 4878 4879 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4880 } 4881 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4882 4883 void skb_tstamp_tx(struct sk_buff *orig_skb, 4884 struct skb_shared_hwtstamps *hwtstamps) 4885 { 4886 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4887 SCM_TSTAMP_SND); 4888 } 4889 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4890 4891 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4892 { 4893 struct sock *sk = skb->sk; 4894 struct sock_exterr_skb *serr; 4895 int err = 1; 4896 4897 skb->wifi_acked_valid = 1; 4898 skb->wifi_acked = acked; 4899 4900 serr = SKB_EXT_ERR(skb); 4901 memset(serr, 0, sizeof(*serr)); 4902 serr->ee.ee_errno = ENOMSG; 4903 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4904 4905 /* Take a reference to prevent skb_orphan() from freeing the socket, 4906 * but only if the socket refcount is not zero. 4907 */ 4908 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4909 err = sock_queue_err_skb(sk, skb); 4910 sock_put(sk); 4911 } 4912 if (err) 4913 kfree_skb(skb); 4914 } 4915 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4916 4917 /** 4918 * skb_partial_csum_set - set up and verify partial csum values for packet 4919 * @skb: the skb to set 4920 * @start: the number of bytes after skb->data to start checksumming. 4921 * @off: the offset from start to place the checksum. 4922 * 4923 * For untrusted partially-checksummed packets, we need to make sure the values 4924 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4925 * 4926 * This function checks and sets those values and skb->ip_summed: if this 4927 * returns false you should drop the packet. 4928 */ 4929 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4930 { 4931 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4932 u32 csum_start = skb_headroom(skb) + (u32)start; 4933 4934 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4935 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4936 start, off, skb_headroom(skb), skb_headlen(skb)); 4937 return false; 4938 } 4939 skb->ip_summed = CHECKSUM_PARTIAL; 4940 skb->csum_start = csum_start; 4941 skb->csum_offset = off; 4942 skb_set_transport_header(skb, start); 4943 return true; 4944 } 4945 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4946 4947 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4948 unsigned int max) 4949 { 4950 if (skb_headlen(skb) >= len) 4951 return 0; 4952 4953 /* If we need to pullup then pullup to the max, so we 4954 * won't need to do it again. 4955 */ 4956 if (max > skb->len) 4957 max = skb->len; 4958 4959 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4960 return -ENOMEM; 4961 4962 if (skb_headlen(skb) < len) 4963 return -EPROTO; 4964 4965 return 0; 4966 } 4967 4968 #define MAX_TCP_HDR_LEN (15 * 4) 4969 4970 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4971 typeof(IPPROTO_IP) proto, 4972 unsigned int off) 4973 { 4974 int err; 4975 4976 switch (proto) { 4977 case IPPROTO_TCP: 4978 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4979 off + MAX_TCP_HDR_LEN); 4980 if (!err && !skb_partial_csum_set(skb, off, 4981 offsetof(struct tcphdr, 4982 check))) 4983 err = -EPROTO; 4984 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4985 4986 case IPPROTO_UDP: 4987 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4988 off + sizeof(struct udphdr)); 4989 if (!err && !skb_partial_csum_set(skb, off, 4990 offsetof(struct udphdr, 4991 check))) 4992 err = -EPROTO; 4993 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4994 } 4995 4996 return ERR_PTR(-EPROTO); 4997 } 4998 4999 /* This value should be large enough to cover a tagged ethernet header plus 5000 * maximally sized IP and TCP or UDP headers. 5001 */ 5002 #define MAX_IP_HDR_LEN 128 5003 5004 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5005 { 5006 unsigned int off; 5007 bool fragment; 5008 __sum16 *csum; 5009 int err; 5010 5011 fragment = false; 5012 5013 err = skb_maybe_pull_tail(skb, 5014 sizeof(struct iphdr), 5015 MAX_IP_HDR_LEN); 5016 if (err < 0) 5017 goto out; 5018 5019 if (ip_is_fragment(ip_hdr(skb))) 5020 fragment = true; 5021 5022 off = ip_hdrlen(skb); 5023 5024 err = -EPROTO; 5025 5026 if (fragment) 5027 goto out; 5028 5029 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5030 if (IS_ERR(csum)) 5031 return PTR_ERR(csum); 5032 5033 if (recalculate) 5034 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5035 ip_hdr(skb)->daddr, 5036 skb->len - off, 5037 ip_hdr(skb)->protocol, 0); 5038 err = 0; 5039 5040 out: 5041 return err; 5042 } 5043 5044 /* This value should be large enough to cover a tagged ethernet header plus 5045 * an IPv6 header, all options, and a maximal TCP or UDP header. 5046 */ 5047 #define MAX_IPV6_HDR_LEN 256 5048 5049 #define OPT_HDR(type, skb, off) \ 5050 (type *)(skb_network_header(skb) + (off)) 5051 5052 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5053 { 5054 int err; 5055 u8 nexthdr; 5056 unsigned int off; 5057 unsigned int len; 5058 bool fragment; 5059 bool done; 5060 __sum16 *csum; 5061 5062 fragment = false; 5063 done = false; 5064 5065 off = sizeof(struct ipv6hdr); 5066 5067 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5068 if (err < 0) 5069 goto out; 5070 5071 nexthdr = ipv6_hdr(skb)->nexthdr; 5072 5073 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5074 while (off <= len && !done) { 5075 switch (nexthdr) { 5076 case IPPROTO_DSTOPTS: 5077 case IPPROTO_HOPOPTS: 5078 case IPPROTO_ROUTING: { 5079 struct ipv6_opt_hdr *hp; 5080 5081 err = skb_maybe_pull_tail(skb, 5082 off + 5083 sizeof(struct ipv6_opt_hdr), 5084 MAX_IPV6_HDR_LEN); 5085 if (err < 0) 5086 goto out; 5087 5088 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5089 nexthdr = hp->nexthdr; 5090 off += ipv6_optlen(hp); 5091 break; 5092 } 5093 case IPPROTO_AH: { 5094 struct ip_auth_hdr *hp; 5095 5096 err = skb_maybe_pull_tail(skb, 5097 off + 5098 sizeof(struct ip_auth_hdr), 5099 MAX_IPV6_HDR_LEN); 5100 if (err < 0) 5101 goto out; 5102 5103 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5104 nexthdr = hp->nexthdr; 5105 off += ipv6_authlen(hp); 5106 break; 5107 } 5108 case IPPROTO_FRAGMENT: { 5109 struct frag_hdr *hp; 5110 5111 err = skb_maybe_pull_tail(skb, 5112 off + 5113 sizeof(struct frag_hdr), 5114 MAX_IPV6_HDR_LEN); 5115 if (err < 0) 5116 goto out; 5117 5118 hp = OPT_HDR(struct frag_hdr, skb, off); 5119 5120 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5121 fragment = true; 5122 5123 nexthdr = hp->nexthdr; 5124 off += sizeof(struct frag_hdr); 5125 break; 5126 } 5127 default: 5128 done = true; 5129 break; 5130 } 5131 } 5132 5133 err = -EPROTO; 5134 5135 if (!done || fragment) 5136 goto out; 5137 5138 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5139 if (IS_ERR(csum)) 5140 return PTR_ERR(csum); 5141 5142 if (recalculate) 5143 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5144 &ipv6_hdr(skb)->daddr, 5145 skb->len - off, nexthdr, 0); 5146 err = 0; 5147 5148 out: 5149 return err; 5150 } 5151 5152 /** 5153 * skb_checksum_setup - set up partial checksum offset 5154 * @skb: the skb to set up 5155 * @recalculate: if true the pseudo-header checksum will be recalculated 5156 */ 5157 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5158 { 5159 int err; 5160 5161 switch (skb->protocol) { 5162 case htons(ETH_P_IP): 5163 err = skb_checksum_setup_ipv4(skb, recalculate); 5164 break; 5165 5166 case htons(ETH_P_IPV6): 5167 err = skb_checksum_setup_ipv6(skb, recalculate); 5168 break; 5169 5170 default: 5171 err = -EPROTO; 5172 break; 5173 } 5174 5175 return err; 5176 } 5177 EXPORT_SYMBOL(skb_checksum_setup); 5178 5179 /** 5180 * skb_checksum_maybe_trim - maybe trims the given skb 5181 * @skb: the skb to check 5182 * @transport_len: the data length beyond the network header 5183 * 5184 * Checks whether the given skb has data beyond the given transport length. 5185 * If so, returns a cloned skb trimmed to this transport length. 5186 * Otherwise returns the provided skb. Returns NULL in error cases 5187 * (e.g. transport_len exceeds skb length or out-of-memory). 5188 * 5189 * Caller needs to set the skb transport header and free any returned skb if it 5190 * differs from the provided skb. 5191 */ 5192 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5193 unsigned int transport_len) 5194 { 5195 struct sk_buff *skb_chk; 5196 unsigned int len = skb_transport_offset(skb) + transport_len; 5197 int ret; 5198 5199 if (skb->len < len) 5200 return NULL; 5201 else if (skb->len == len) 5202 return skb; 5203 5204 skb_chk = skb_clone(skb, GFP_ATOMIC); 5205 if (!skb_chk) 5206 return NULL; 5207 5208 ret = pskb_trim_rcsum(skb_chk, len); 5209 if (ret) { 5210 kfree_skb(skb_chk); 5211 return NULL; 5212 } 5213 5214 return skb_chk; 5215 } 5216 5217 /** 5218 * skb_checksum_trimmed - validate checksum of an skb 5219 * @skb: the skb to check 5220 * @transport_len: the data length beyond the network header 5221 * @skb_chkf: checksum function to use 5222 * 5223 * Applies the given checksum function skb_chkf to the provided skb. 5224 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5225 * 5226 * If the skb has data beyond the given transport length, then a 5227 * trimmed & cloned skb is checked and returned. 5228 * 5229 * Caller needs to set the skb transport header and free any returned skb if it 5230 * differs from the provided skb. 5231 */ 5232 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5233 unsigned int transport_len, 5234 __sum16(*skb_chkf)(struct sk_buff *skb)) 5235 { 5236 struct sk_buff *skb_chk; 5237 unsigned int offset = skb_transport_offset(skb); 5238 __sum16 ret; 5239 5240 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5241 if (!skb_chk) 5242 goto err; 5243 5244 if (!pskb_may_pull(skb_chk, offset)) 5245 goto err; 5246 5247 skb_pull_rcsum(skb_chk, offset); 5248 ret = skb_chkf(skb_chk); 5249 skb_push_rcsum(skb_chk, offset); 5250 5251 if (ret) 5252 goto err; 5253 5254 return skb_chk; 5255 5256 err: 5257 if (skb_chk && skb_chk != skb) 5258 kfree_skb(skb_chk); 5259 5260 return NULL; 5261 5262 } 5263 EXPORT_SYMBOL(skb_checksum_trimmed); 5264 5265 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5266 { 5267 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5268 skb->dev->name); 5269 } 5270 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5271 5272 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5273 { 5274 if (head_stolen) { 5275 skb_release_head_state(skb); 5276 kmem_cache_free(skbuff_head_cache, skb); 5277 } else { 5278 __kfree_skb(skb); 5279 } 5280 } 5281 EXPORT_SYMBOL(kfree_skb_partial); 5282 5283 /** 5284 * skb_try_coalesce - try to merge skb to prior one 5285 * @to: prior buffer 5286 * @from: buffer to add 5287 * @fragstolen: pointer to boolean 5288 * @delta_truesize: how much more was allocated than was requested 5289 */ 5290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5291 bool *fragstolen, int *delta_truesize) 5292 { 5293 struct skb_shared_info *to_shinfo, *from_shinfo; 5294 int i, delta, len = from->len; 5295 5296 *fragstolen = false; 5297 5298 if (skb_cloned(to)) 5299 return false; 5300 5301 /* In general, avoid mixing slab allocated and page_pool allocated 5302 * pages within the same SKB. However when @to is not pp_recycle and 5303 * @from is cloned, we can transition frag pages from page_pool to 5304 * reference counted. 5305 * 5306 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5307 * @from is cloned, in case the SKB is using page_pool fragment 5308 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5309 * references for cloned SKBs at the moment that would result in 5310 * inconsistent reference counts. 5311 */ 5312 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5313 return false; 5314 5315 if (len <= skb_tailroom(to)) { 5316 if (len) 5317 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5318 *delta_truesize = 0; 5319 return true; 5320 } 5321 5322 to_shinfo = skb_shinfo(to); 5323 from_shinfo = skb_shinfo(from); 5324 if (to_shinfo->frag_list || from_shinfo->frag_list) 5325 return false; 5326 if (skb_zcopy(to) || skb_zcopy(from)) 5327 return false; 5328 5329 if (skb_headlen(from) != 0) { 5330 struct page *page; 5331 unsigned int offset; 5332 5333 if (to_shinfo->nr_frags + 5334 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5335 return false; 5336 5337 if (skb_head_is_locked(from)) 5338 return false; 5339 5340 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5341 5342 page = virt_to_head_page(from->head); 5343 offset = from->data - (unsigned char *)page_address(page); 5344 5345 skb_fill_page_desc(to, to_shinfo->nr_frags, 5346 page, offset, skb_headlen(from)); 5347 *fragstolen = true; 5348 } else { 5349 if (to_shinfo->nr_frags + 5350 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5351 return false; 5352 5353 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5354 } 5355 5356 WARN_ON_ONCE(delta < len); 5357 5358 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5359 from_shinfo->frags, 5360 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5361 to_shinfo->nr_frags += from_shinfo->nr_frags; 5362 5363 if (!skb_cloned(from)) 5364 from_shinfo->nr_frags = 0; 5365 5366 /* if the skb is not cloned this does nothing 5367 * since we set nr_frags to 0. 5368 */ 5369 for (i = 0; i < from_shinfo->nr_frags; i++) 5370 __skb_frag_ref(&from_shinfo->frags[i]); 5371 5372 to->truesize += delta; 5373 to->len += len; 5374 to->data_len += len; 5375 5376 *delta_truesize = delta; 5377 return true; 5378 } 5379 EXPORT_SYMBOL(skb_try_coalesce); 5380 5381 /** 5382 * skb_scrub_packet - scrub an skb 5383 * 5384 * @skb: buffer to clean 5385 * @xnet: packet is crossing netns 5386 * 5387 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5388 * into/from a tunnel. Some information have to be cleared during these 5389 * operations. 5390 * skb_scrub_packet can also be used to clean a skb before injecting it in 5391 * another namespace (@xnet == true). We have to clear all information in the 5392 * skb that could impact namespace isolation. 5393 */ 5394 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5395 { 5396 skb->pkt_type = PACKET_HOST; 5397 skb->skb_iif = 0; 5398 skb->ignore_df = 0; 5399 skb_dst_drop(skb); 5400 skb_ext_reset(skb); 5401 nf_reset_ct(skb); 5402 nf_reset_trace(skb); 5403 5404 #ifdef CONFIG_NET_SWITCHDEV 5405 skb->offload_fwd_mark = 0; 5406 skb->offload_l3_fwd_mark = 0; 5407 #endif 5408 5409 if (!xnet) 5410 return; 5411 5412 ipvs_reset(skb); 5413 skb->mark = 0; 5414 skb_clear_tstamp(skb); 5415 } 5416 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5417 5418 /** 5419 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5420 * 5421 * @skb: GSO skb 5422 * 5423 * skb_gso_transport_seglen is used to determine the real size of the 5424 * individual segments, including Layer4 headers (TCP/UDP). 5425 * 5426 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5427 */ 5428 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5429 { 5430 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5431 unsigned int thlen = 0; 5432 5433 if (skb->encapsulation) { 5434 thlen = skb_inner_transport_header(skb) - 5435 skb_transport_header(skb); 5436 5437 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5438 thlen += inner_tcp_hdrlen(skb); 5439 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5440 thlen = tcp_hdrlen(skb); 5441 } else if (unlikely(skb_is_gso_sctp(skb))) { 5442 thlen = sizeof(struct sctphdr); 5443 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5444 thlen = sizeof(struct udphdr); 5445 } 5446 /* UFO sets gso_size to the size of the fragmentation 5447 * payload, i.e. the size of the L4 (UDP) header is already 5448 * accounted for. 5449 */ 5450 return thlen + shinfo->gso_size; 5451 } 5452 5453 /** 5454 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5455 * 5456 * @skb: GSO skb 5457 * 5458 * skb_gso_network_seglen is used to determine the real size of the 5459 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5460 * 5461 * The MAC/L2 header is not accounted for. 5462 */ 5463 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5464 { 5465 unsigned int hdr_len = skb_transport_header(skb) - 5466 skb_network_header(skb); 5467 5468 return hdr_len + skb_gso_transport_seglen(skb); 5469 } 5470 5471 /** 5472 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5473 * 5474 * @skb: GSO skb 5475 * 5476 * skb_gso_mac_seglen is used to determine the real size of the 5477 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5478 * headers (TCP/UDP). 5479 */ 5480 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5481 { 5482 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5483 5484 return hdr_len + skb_gso_transport_seglen(skb); 5485 } 5486 5487 /** 5488 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5489 * 5490 * There are a couple of instances where we have a GSO skb, and we 5491 * want to determine what size it would be after it is segmented. 5492 * 5493 * We might want to check: 5494 * - L3+L4+payload size (e.g. IP forwarding) 5495 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5496 * 5497 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5498 * 5499 * @skb: GSO skb 5500 * 5501 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5502 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5503 * 5504 * @max_len: The maximum permissible length. 5505 * 5506 * Returns true if the segmented length <= max length. 5507 */ 5508 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5509 unsigned int seg_len, 5510 unsigned int max_len) { 5511 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5512 const struct sk_buff *iter; 5513 5514 if (shinfo->gso_size != GSO_BY_FRAGS) 5515 return seg_len <= max_len; 5516 5517 /* Undo this so we can re-use header sizes */ 5518 seg_len -= GSO_BY_FRAGS; 5519 5520 skb_walk_frags(skb, iter) { 5521 if (seg_len + skb_headlen(iter) > max_len) 5522 return false; 5523 } 5524 5525 return true; 5526 } 5527 5528 /** 5529 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5530 * 5531 * @skb: GSO skb 5532 * @mtu: MTU to validate against 5533 * 5534 * skb_gso_validate_network_len validates if a given skb will fit a 5535 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5536 * payload. 5537 */ 5538 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5539 { 5540 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5541 } 5542 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5543 5544 /** 5545 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5546 * 5547 * @skb: GSO skb 5548 * @len: length to validate against 5549 * 5550 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5551 * length once split, including L2, L3 and L4 headers and the payload. 5552 */ 5553 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5554 { 5555 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5556 } 5557 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5558 5559 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5560 { 5561 int mac_len, meta_len; 5562 void *meta; 5563 5564 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5565 kfree_skb(skb); 5566 return NULL; 5567 } 5568 5569 mac_len = skb->data - skb_mac_header(skb); 5570 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5571 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5572 mac_len - VLAN_HLEN - ETH_TLEN); 5573 } 5574 5575 meta_len = skb_metadata_len(skb); 5576 if (meta_len) { 5577 meta = skb_metadata_end(skb) - meta_len; 5578 memmove(meta + VLAN_HLEN, meta, meta_len); 5579 } 5580 5581 skb->mac_header += VLAN_HLEN; 5582 return skb; 5583 } 5584 5585 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5586 { 5587 struct vlan_hdr *vhdr; 5588 u16 vlan_tci; 5589 5590 if (unlikely(skb_vlan_tag_present(skb))) { 5591 /* vlan_tci is already set-up so leave this for another time */ 5592 return skb; 5593 } 5594 5595 skb = skb_share_check(skb, GFP_ATOMIC); 5596 if (unlikely(!skb)) 5597 goto err_free; 5598 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5599 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5600 goto err_free; 5601 5602 vhdr = (struct vlan_hdr *)skb->data; 5603 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5604 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5605 5606 skb_pull_rcsum(skb, VLAN_HLEN); 5607 vlan_set_encap_proto(skb, vhdr); 5608 5609 skb = skb_reorder_vlan_header(skb); 5610 if (unlikely(!skb)) 5611 goto err_free; 5612 5613 skb_reset_network_header(skb); 5614 if (!skb_transport_header_was_set(skb)) 5615 skb_reset_transport_header(skb); 5616 skb_reset_mac_len(skb); 5617 5618 return skb; 5619 5620 err_free: 5621 kfree_skb(skb); 5622 return NULL; 5623 } 5624 EXPORT_SYMBOL(skb_vlan_untag); 5625 5626 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5627 { 5628 if (!pskb_may_pull(skb, write_len)) 5629 return -ENOMEM; 5630 5631 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5632 return 0; 5633 5634 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5635 } 5636 EXPORT_SYMBOL(skb_ensure_writable); 5637 5638 /* remove VLAN header from packet and update csum accordingly. 5639 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5640 */ 5641 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5642 { 5643 struct vlan_hdr *vhdr; 5644 int offset = skb->data - skb_mac_header(skb); 5645 int err; 5646 5647 if (WARN_ONCE(offset, 5648 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5649 offset)) { 5650 return -EINVAL; 5651 } 5652 5653 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5654 if (unlikely(err)) 5655 return err; 5656 5657 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5658 5659 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5660 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5661 5662 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5663 __skb_pull(skb, VLAN_HLEN); 5664 5665 vlan_set_encap_proto(skb, vhdr); 5666 skb->mac_header += VLAN_HLEN; 5667 5668 if (skb_network_offset(skb) < ETH_HLEN) 5669 skb_set_network_header(skb, ETH_HLEN); 5670 5671 skb_reset_mac_len(skb); 5672 5673 return err; 5674 } 5675 EXPORT_SYMBOL(__skb_vlan_pop); 5676 5677 /* Pop a vlan tag either from hwaccel or from payload. 5678 * Expects skb->data at mac header. 5679 */ 5680 int skb_vlan_pop(struct sk_buff *skb) 5681 { 5682 u16 vlan_tci; 5683 __be16 vlan_proto; 5684 int err; 5685 5686 if (likely(skb_vlan_tag_present(skb))) { 5687 __vlan_hwaccel_clear_tag(skb); 5688 } else { 5689 if (unlikely(!eth_type_vlan(skb->protocol))) 5690 return 0; 5691 5692 err = __skb_vlan_pop(skb, &vlan_tci); 5693 if (err) 5694 return err; 5695 } 5696 /* move next vlan tag to hw accel tag */ 5697 if (likely(!eth_type_vlan(skb->protocol))) 5698 return 0; 5699 5700 vlan_proto = skb->protocol; 5701 err = __skb_vlan_pop(skb, &vlan_tci); 5702 if (unlikely(err)) 5703 return err; 5704 5705 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5706 return 0; 5707 } 5708 EXPORT_SYMBOL(skb_vlan_pop); 5709 5710 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5711 * Expects skb->data at mac header. 5712 */ 5713 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5714 { 5715 if (skb_vlan_tag_present(skb)) { 5716 int offset = skb->data - skb_mac_header(skb); 5717 int err; 5718 5719 if (WARN_ONCE(offset, 5720 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5721 offset)) { 5722 return -EINVAL; 5723 } 5724 5725 err = __vlan_insert_tag(skb, skb->vlan_proto, 5726 skb_vlan_tag_get(skb)); 5727 if (err) 5728 return err; 5729 5730 skb->protocol = skb->vlan_proto; 5731 skb->mac_len += VLAN_HLEN; 5732 5733 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5734 } 5735 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5736 return 0; 5737 } 5738 EXPORT_SYMBOL(skb_vlan_push); 5739 5740 /** 5741 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5742 * 5743 * @skb: Socket buffer to modify 5744 * 5745 * Drop the Ethernet header of @skb. 5746 * 5747 * Expects that skb->data points to the mac header and that no VLAN tags are 5748 * present. 5749 * 5750 * Returns 0 on success, -errno otherwise. 5751 */ 5752 int skb_eth_pop(struct sk_buff *skb) 5753 { 5754 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5755 skb_network_offset(skb) < ETH_HLEN) 5756 return -EPROTO; 5757 5758 skb_pull_rcsum(skb, ETH_HLEN); 5759 skb_reset_mac_header(skb); 5760 skb_reset_mac_len(skb); 5761 5762 return 0; 5763 } 5764 EXPORT_SYMBOL(skb_eth_pop); 5765 5766 /** 5767 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5768 * 5769 * @skb: Socket buffer to modify 5770 * @dst: Destination MAC address of the new header 5771 * @src: Source MAC address of the new header 5772 * 5773 * Prepend @skb with a new Ethernet header. 5774 * 5775 * Expects that skb->data points to the mac header, which must be empty. 5776 * 5777 * Returns 0 on success, -errno otherwise. 5778 */ 5779 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5780 const unsigned char *src) 5781 { 5782 struct ethhdr *eth; 5783 int err; 5784 5785 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5786 return -EPROTO; 5787 5788 err = skb_cow_head(skb, sizeof(*eth)); 5789 if (err < 0) 5790 return err; 5791 5792 skb_push(skb, sizeof(*eth)); 5793 skb_reset_mac_header(skb); 5794 skb_reset_mac_len(skb); 5795 5796 eth = eth_hdr(skb); 5797 ether_addr_copy(eth->h_dest, dst); 5798 ether_addr_copy(eth->h_source, src); 5799 eth->h_proto = skb->protocol; 5800 5801 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5802 5803 return 0; 5804 } 5805 EXPORT_SYMBOL(skb_eth_push); 5806 5807 /* Update the ethertype of hdr and the skb csum value if required. */ 5808 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5809 __be16 ethertype) 5810 { 5811 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5812 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5813 5814 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5815 } 5816 5817 hdr->h_proto = ethertype; 5818 } 5819 5820 /** 5821 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5822 * the packet 5823 * 5824 * @skb: buffer 5825 * @mpls_lse: MPLS label stack entry to push 5826 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5827 * @mac_len: length of the MAC header 5828 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5829 * ethernet 5830 * 5831 * Expects skb->data at mac header. 5832 * 5833 * Returns 0 on success, -errno otherwise. 5834 */ 5835 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5836 int mac_len, bool ethernet) 5837 { 5838 struct mpls_shim_hdr *lse; 5839 int err; 5840 5841 if (unlikely(!eth_p_mpls(mpls_proto))) 5842 return -EINVAL; 5843 5844 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5845 if (skb->encapsulation) 5846 return -EINVAL; 5847 5848 err = skb_cow_head(skb, MPLS_HLEN); 5849 if (unlikely(err)) 5850 return err; 5851 5852 if (!skb->inner_protocol) { 5853 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5854 skb_set_inner_protocol(skb, skb->protocol); 5855 } 5856 5857 skb_push(skb, MPLS_HLEN); 5858 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5859 mac_len); 5860 skb_reset_mac_header(skb); 5861 skb_set_network_header(skb, mac_len); 5862 skb_reset_mac_len(skb); 5863 5864 lse = mpls_hdr(skb); 5865 lse->label_stack_entry = mpls_lse; 5866 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5867 5868 if (ethernet && mac_len >= ETH_HLEN) 5869 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5870 skb->protocol = mpls_proto; 5871 5872 return 0; 5873 } 5874 EXPORT_SYMBOL_GPL(skb_mpls_push); 5875 5876 /** 5877 * skb_mpls_pop() - pop the outermost MPLS header 5878 * 5879 * @skb: buffer 5880 * @next_proto: ethertype of header after popped MPLS header 5881 * @mac_len: length of the MAC header 5882 * @ethernet: flag to indicate if the packet is ethernet 5883 * 5884 * Expects skb->data at mac header. 5885 * 5886 * Returns 0 on success, -errno otherwise. 5887 */ 5888 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5889 bool ethernet) 5890 { 5891 int err; 5892 5893 if (unlikely(!eth_p_mpls(skb->protocol))) 5894 return 0; 5895 5896 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5897 if (unlikely(err)) 5898 return err; 5899 5900 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5901 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5902 mac_len); 5903 5904 __skb_pull(skb, MPLS_HLEN); 5905 skb_reset_mac_header(skb); 5906 skb_set_network_header(skb, mac_len); 5907 5908 if (ethernet && mac_len >= ETH_HLEN) { 5909 struct ethhdr *hdr; 5910 5911 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5912 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5913 skb_mod_eth_type(skb, hdr, next_proto); 5914 } 5915 skb->protocol = next_proto; 5916 5917 return 0; 5918 } 5919 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5920 5921 /** 5922 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5923 * 5924 * @skb: buffer 5925 * @mpls_lse: new MPLS label stack entry to update to 5926 * 5927 * Expects skb->data at mac header. 5928 * 5929 * Returns 0 on success, -errno otherwise. 5930 */ 5931 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5932 { 5933 int err; 5934 5935 if (unlikely(!eth_p_mpls(skb->protocol))) 5936 return -EINVAL; 5937 5938 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5939 if (unlikely(err)) 5940 return err; 5941 5942 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5943 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5944 5945 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5946 } 5947 5948 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5949 5950 return 0; 5951 } 5952 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5953 5954 /** 5955 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5956 * 5957 * @skb: buffer 5958 * 5959 * Expects skb->data at mac header. 5960 * 5961 * Returns 0 on success, -errno otherwise. 5962 */ 5963 int skb_mpls_dec_ttl(struct sk_buff *skb) 5964 { 5965 u32 lse; 5966 u8 ttl; 5967 5968 if (unlikely(!eth_p_mpls(skb->protocol))) 5969 return -EINVAL; 5970 5971 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5972 return -ENOMEM; 5973 5974 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5975 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5976 if (!--ttl) 5977 return -EINVAL; 5978 5979 lse &= ~MPLS_LS_TTL_MASK; 5980 lse |= ttl << MPLS_LS_TTL_SHIFT; 5981 5982 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5983 } 5984 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5985 5986 /** 5987 * alloc_skb_with_frags - allocate skb with page frags 5988 * 5989 * @header_len: size of linear part 5990 * @data_len: needed length in frags 5991 * @max_page_order: max page order desired. 5992 * @errcode: pointer to error code if any 5993 * @gfp_mask: allocation mask 5994 * 5995 * This can be used to allocate a paged skb, given a maximal order for frags. 5996 */ 5997 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5998 unsigned long data_len, 5999 int max_page_order, 6000 int *errcode, 6001 gfp_t gfp_mask) 6002 { 6003 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6004 unsigned long chunk; 6005 struct sk_buff *skb; 6006 struct page *page; 6007 int i; 6008 6009 *errcode = -EMSGSIZE; 6010 /* Note this test could be relaxed, if we succeed to allocate 6011 * high order pages... 6012 */ 6013 if (npages > MAX_SKB_FRAGS) 6014 return NULL; 6015 6016 *errcode = -ENOBUFS; 6017 skb = alloc_skb(header_len, gfp_mask); 6018 if (!skb) 6019 return NULL; 6020 6021 skb->truesize += npages << PAGE_SHIFT; 6022 6023 for (i = 0; npages > 0; i++) { 6024 int order = max_page_order; 6025 6026 while (order) { 6027 if (npages >= 1 << order) { 6028 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6029 __GFP_COMP | 6030 __GFP_NOWARN, 6031 order); 6032 if (page) 6033 goto fill_page; 6034 /* Do not retry other high order allocations */ 6035 order = 1; 6036 max_page_order = 0; 6037 } 6038 order--; 6039 } 6040 page = alloc_page(gfp_mask); 6041 if (!page) 6042 goto failure; 6043 fill_page: 6044 chunk = min_t(unsigned long, data_len, 6045 PAGE_SIZE << order); 6046 skb_fill_page_desc(skb, i, page, 0, chunk); 6047 data_len -= chunk; 6048 npages -= 1 << order; 6049 } 6050 return skb; 6051 6052 failure: 6053 kfree_skb(skb); 6054 return NULL; 6055 } 6056 EXPORT_SYMBOL(alloc_skb_with_frags); 6057 6058 /* carve out the first off bytes from skb when off < headlen */ 6059 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6060 const int headlen, gfp_t gfp_mask) 6061 { 6062 int i; 6063 int size = skb_end_offset(skb); 6064 int new_hlen = headlen - off; 6065 u8 *data; 6066 6067 size = SKB_DATA_ALIGN(size); 6068 6069 if (skb_pfmemalloc(skb)) 6070 gfp_mask |= __GFP_MEMALLOC; 6071 data = kmalloc_reserve(size + 6072 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6073 gfp_mask, NUMA_NO_NODE, NULL); 6074 if (!data) 6075 return -ENOMEM; 6076 6077 size = SKB_WITH_OVERHEAD(ksize(data)); 6078 6079 /* Copy real data, and all frags */ 6080 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6081 skb->len -= off; 6082 6083 memcpy((struct skb_shared_info *)(data + size), 6084 skb_shinfo(skb), 6085 offsetof(struct skb_shared_info, 6086 frags[skb_shinfo(skb)->nr_frags])); 6087 if (skb_cloned(skb)) { 6088 /* drop the old head gracefully */ 6089 if (skb_orphan_frags(skb, gfp_mask)) { 6090 kfree(data); 6091 return -ENOMEM; 6092 } 6093 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6094 skb_frag_ref(skb, i); 6095 if (skb_has_frag_list(skb)) 6096 skb_clone_fraglist(skb); 6097 skb_release_data(skb); 6098 } else { 6099 /* we can reuse existing recount- all we did was 6100 * relocate values 6101 */ 6102 skb_free_head(skb); 6103 } 6104 6105 skb->head = data; 6106 skb->data = data; 6107 skb->head_frag = 0; 6108 skb_set_end_offset(skb, size); 6109 skb_set_tail_pointer(skb, skb_headlen(skb)); 6110 skb_headers_offset_update(skb, 0); 6111 skb->cloned = 0; 6112 skb->hdr_len = 0; 6113 skb->nohdr = 0; 6114 atomic_set(&skb_shinfo(skb)->dataref, 1); 6115 6116 return 0; 6117 } 6118 6119 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6120 6121 /* carve out the first eat bytes from skb's frag_list. May recurse into 6122 * pskb_carve() 6123 */ 6124 static int pskb_carve_frag_list(struct sk_buff *skb, 6125 struct skb_shared_info *shinfo, int eat, 6126 gfp_t gfp_mask) 6127 { 6128 struct sk_buff *list = shinfo->frag_list; 6129 struct sk_buff *clone = NULL; 6130 struct sk_buff *insp = NULL; 6131 6132 do { 6133 if (!list) { 6134 pr_err("Not enough bytes to eat. Want %d\n", eat); 6135 return -EFAULT; 6136 } 6137 if (list->len <= eat) { 6138 /* Eaten as whole. */ 6139 eat -= list->len; 6140 list = list->next; 6141 insp = list; 6142 } else { 6143 /* Eaten partially. */ 6144 if (skb_shared(list)) { 6145 clone = skb_clone(list, gfp_mask); 6146 if (!clone) 6147 return -ENOMEM; 6148 insp = list->next; 6149 list = clone; 6150 } else { 6151 /* This may be pulled without problems. */ 6152 insp = list; 6153 } 6154 if (pskb_carve(list, eat, gfp_mask) < 0) { 6155 kfree_skb(clone); 6156 return -ENOMEM; 6157 } 6158 break; 6159 } 6160 } while (eat); 6161 6162 /* Free pulled out fragments. */ 6163 while ((list = shinfo->frag_list) != insp) { 6164 shinfo->frag_list = list->next; 6165 consume_skb(list); 6166 } 6167 /* And insert new clone at head. */ 6168 if (clone) { 6169 clone->next = list; 6170 shinfo->frag_list = clone; 6171 } 6172 return 0; 6173 } 6174 6175 /* carve off first len bytes from skb. Split line (off) is in the 6176 * non-linear part of skb 6177 */ 6178 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6179 int pos, gfp_t gfp_mask) 6180 { 6181 int i, k = 0; 6182 int size = skb_end_offset(skb); 6183 u8 *data; 6184 const int nfrags = skb_shinfo(skb)->nr_frags; 6185 struct skb_shared_info *shinfo; 6186 6187 size = SKB_DATA_ALIGN(size); 6188 6189 if (skb_pfmemalloc(skb)) 6190 gfp_mask |= __GFP_MEMALLOC; 6191 data = kmalloc_reserve(size + 6192 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6193 gfp_mask, NUMA_NO_NODE, NULL); 6194 if (!data) 6195 return -ENOMEM; 6196 6197 size = SKB_WITH_OVERHEAD(ksize(data)); 6198 6199 memcpy((struct skb_shared_info *)(data + size), 6200 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6201 if (skb_orphan_frags(skb, gfp_mask)) { 6202 kfree(data); 6203 return -ENOMEM; 6204 } 6205 shinfo = (struct skb_shared_info *)(data + size); 6206 for (i = 0; i < nfrags; i++) { 6207 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6208 6209 if (pos + fsize > off) { 6210 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6211 6212 if (pos < off) { 6213 /* Split frag. 6214 * We have two variants in this case: 6215 * 1. Move all the frag to the second 6216 * part, if it is possible. F.e. 6217 * this approach is mandatory for TUX, 6218 * where splitting is expensive. 6219 * 2. Split is accurately. We make this. 6220 */ 6221 skb_frag_off_add(&shinfo->frags[0], off - pos); 6222 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6223 } 6224 skb_frag_ref(skb, i); 6225 k++; 6226 } 6227 pos += fsize; 6228 } 6229 shinfo->nr_frags = k; 6230 if (skb_has_frag_list(skb)) 6231 skb_clone_fraglist(skb); 6232 6233 /* split line is in frag list */ 6234 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6235 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6236 if (skb_has_frag_list(skb)) 6237 kfree_skb_list(skb_shinfo(skb)->frag_list); 6238 kfree(data); 6239 return -ENOMEM; 6240 } 6241 skb_release_data(skb); 6242 6243 skb->head = data; 6244 skb->head_frag = 0; 6245 skb->data = data; 6246 skb_set_end_offset(skb, size); 6247 skb_reset_tail_pointer(skb); 6248 skb_headers_offset_update(skb, 0); 6249 skb->cloned = 0; 6250 skb->hdr_len = 0; 6251 skb->nohdr = 0; 6252 skb->len -= off; 6253 skb->data_len = skb->len; 6254 atomic_set(&skb_shinfo(skb)->dataref, 1); 6255 return 0; 6256 } 6257 6258 /* remove len bytes from the beginning of the skb */ 6259 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6260 { 6261 int headlen = skb_headlen(skb); 6262 6263 if (len < headlen) 6264 return pskb_carve_inside_header(skb, len, headlen, gfp); 6265 else 6266 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6267 } 6268 6269 /* Extract to_copy bytes starting at off from skb, and return this in 6270 * a new skb 6271 */ 6272 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6273 int to_copy, gfp_t gfp) 6274 { 6275 struct sk_buff *clone = skb_clone(skb, gfp); 6276 6277 if (!clone) 6278 return NULL; 6279 6280 if (pskb_carve(clone, off, gfp) < 0 || 6281 pskb_trim(clone, to_copy)) { 6282 kfree_skb(clone); 6283 return NULL; 6284 } 6285 return clone; 6286 } 6287 EXPORT_SYMBOL(pskb_extract); 6288 6289 /** 6290 * skb_condense - try to get rid of fragments/frag_list if possible 6291 * @skb: buffer 6292 * 6293 * Can be used to save memory before skb is added to a busy queue. 6294 * If packet has bytes in frags and enough tail room in skb->head, 6295 * pull all of them, so that we can free the frags right now and adjust 6296 * truesize. 6297 * Notes: 6298 * We do not reallocate skb->head thus can not fail. 6299 * Caller must re-evaluate skb->truesize if needed. 6300 */ 6301 void skb_condense(struct sk_buff *skb) 6302 { 6303 if (skb->data_len) { 6304 if (skb->data_len > skb->end - skb->tail || 6305 skb_cloned(skb)) 6306 return; 6307 6308 /* Nice, we can free page frag(s) right now */ 6309 __pskb_pull_tail(skb, skb->data_len); 6310 } 6311 /* At this point, skb->truesize might be over estimated, 6312 * because skb had a fragment, and fragments do not tell 6313 * their truesize. 6314 * When we pulled its content into skb->head, fragment 6315 * was freed, but __pskb_pull_tail() could not possibly 6316 * adjust skb->truesize, not knowing the frag truesize. 6317 */ 6318 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6319 } 6320 6321 #ifdef CONFIG_SKB_EXTENSIONS 6322 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6323 { 6324 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6325 } 6326 6327 /** 6328 * __skb_ext_alloc - allocate a new skb extensions storage 6329 * 6330 * @flags: See kmalloc(). 6331 * 6332 * Returns the newly allocated pointer. The pointer can later attached to a 6333 * skb via __skb_ext_set(). 6334 * Note: caller must handle the skb_ext as an opaque data. 6335 */ 6336 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6337 { 6338 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6339 6340 if (new) { 6341 memset(new->offset, 0, sizeof(new->offset)); 6342 refcount_set(&new->refcnt, 1); 6343 } 6344 6345 return new; 6346 } 6347 6348 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6349 unsigned int old_active) 6350 { 6351 struct skb_ext *new; 6352 6353 if (refcount_read(&old->refcnt) == 1) 6354 return old; 6355 6356 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6357 if (!new) 6358 return NULL; 6359 6360 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6361 refcount_set(&new->refcnt, 1); 6362 6363 #ifdef CONFIG_XFRM 6364 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6365 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6366 unsigned int i; 6367 6368 for (i = 0; i < sp->len; i++) 6369 xfrm_state_hold(sp->xvec[i]); 6370 } 6371 #endif 6372 __skb_ext_put(old); 6373 return new; 6374 } 6375 6376 /** 6377 * __skb_ext_set - attach the specified extension storage to this skb 6378 * @skb: buffer 6379 * @id: extension id 6380 * @ext: extension storage previously allocated via __skb_ext_alloc() 6381 * 6382 * Existing extensions, if any, are cleared. 6383 * 6384 * Returns the pointer to the extension. 6385 */ 6386 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6387 struct skb_ext *ext) 6388 { 6389 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6390 6391 skb_ext_put(skb); 6392 newlen = newoff + skb_ext_type_len[id]; 6393 ext->chunks = newlen; 6394 ext->offset[id] = newoff; 6395 skb->extensions = ext; 6396 skb->active_extensions = 1 << id; 6397 return skb_ext_get_ptr(ext, id); 6398 } 6399 6400 /** 6401 * skb_ext_add - allocate space for given extension, COW if needed 6402 * @skb: buffer 6403 * @id: extension to allocate space for 6404 * 6405 * Allocates enough space for the given extension. 6406 * If the extension is already present, a pointer to that extension 6407 * is returned. 6408 * 6409 * If the skb was cloned, COW applies and the returned memory can be 6410 * modified without changing the extension space of clones buffers. 6411 * 6412 * Returns pointer to the extension or NULL on allocation failure. 6413 */ 6414 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6415 { 6416 struct skb_ext *new, *old = NULL; 6417 unsigned int newlen, newoff; 6418 6419 if (skb->active_extensions) { 6420 old = skb->extensions; 6421 6422 new = skb_ext_maybe_cow(old, skb->active_extensions); 6423 if (!new) 6424 return NULL; 6425 6426 if (__skb_ext_exist(new, id)) 6427 goto set_active; 6428 6429 newoff = new->chunks; 6430 } else { 6431 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6432 6433 new = __skb_ext_alloc(GFP_ATOMIC); 6434 if (!new) 6435 return NULL; 6436 } 6437 6438 newlen = newoff + skb_ext_type_len[id]; 6439 new->chunks = newlen; 6440 new->offset[id] = newoff; 6441 set_active: 6442 skb->slow_gro = 1; 6443 skb->extensions = new; 6444 skb->active_extensions |= 1 << id; 6445 return skb_ext_get_ptr(new, id); 6446 } 6447 EXPORT_SYMBOL(skb_ext_add); 6448 6449 #ifdef CONFIG_XFRM 6450 static void skb_ext_put_sp(struct sec_path *sp) 6451 { 6452 unsigned int i; 6453 6454 for (i = 0; i < sp->len; i++) 6455 xfrm_state_put(sp->xvec[i]); 6456 } 6457 #endif 6458 6459 #ifdef CONFIG_MCTP_FLOWS 6460 static void skb_ext_put_mctp(struct mctp_flow *flow) 6461 { 6462 if (flow->key) 6463 mctp_key_unref(flow->key); 6464 } 6465 #endif 6466 6467 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6468 { 6469 struct skb_ext *ext = skb->extensions; 6470 6471 skb->active_extensions &= ~(1 << id); 6472 if (skb->active_extensions == 0) { 6473 skb->extensions = NULL; 6474 __skb_ext_put(ext); 6475 #ifdef CONFIG_XFRM 6476 } else if (id == SKB_EXT_SEC_PATH && 6477 refcount_read(&ext->refcnt) == 1) { 6478 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6479 6480 skb_ext_put_sp(sp); 6481 sp->len = 0; 6482 #endif 6483 } 6484 } 6485 EXPORT_SYMBOL(__skb_ext_del); 6486 6487 void __skb_ext_put(struct skb_ext *ext) 6488 { 6489 /* If this is last clone, nothing can increment 6490 * it after check passes. Avoids one atomic op. 6491 */ 6492 if (refcount_read(&ext->refcnt) == 1) 6493 goto free_now; 6494 6495 if (!refcount_dec_and_test(&ext->refcnt)) 6496 return; 6497 free_now: 6498 #ifdef CONFIG_XFRM 6499 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6500 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6501 #endif 6502 #ifdef CONFIG_MCTP_FLOWS 6503 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6504 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6505 #endif 6506 6507 kmem_cache_free(skbuff_ext_cache, ext); 6508 } 6509 EXPORT_SYMBOL(__skb_ext_put); 6510 #endif /* CONFIG_SKB_EXTENSIONS */ 6511 6512 /** 6513 * skb_attempt_defer_free - queue skb for remote freeing 6514 * @skb: buffer 6515 * 6516 * Put @skb in a per-cpu list, using the cpu which 6517 * allocated the skb/pages to reduce false sharing 6518 * and memory zone spinlock contention. 6519 */ 6520 void skb_attempt_defer_free(struct sk_buff *skb) 6521 { 6522 int cpu = skb->alloc_cpu; 6523 struct softnet_data *sd; 6524 unsigned long flags; 6525 unsigned int defer_max; 6526 bool kick; 6527 6528 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6529 !cpu_online(cpu) || 6530 cpu == raw_smp_processor_id()) { 6531 nodefer: __kfree_skb(skb); 6532 return; 6533 } 6534 6535 sd = &per_cpu(softnet_data, cpu); 6536 defer_max = READ_ONCE(sysctl_skb_defer_max); 6537 if (READ_ONCE(sd->defer_count) >= defer_max) 6538 goto nodefer; 6539 6540 spin_lock_irqsave(&sd->defer_lock, flags); 6541 /* Send an IPI every time queue reaches half capacity. */ 6542 kick = sd->defer_count == (defer_max >> 1); 6543 /* Paired with the READ_ONCE() few lines above */ 6544 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6545 6546 skb->next = sd->defer_list; 6547 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6548 WRITE_ONCE(sd->defer_list, skb); 6549 spin_unlock_irqrestore(&sd->defer_lock, flags); 6550 6551 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6552 * if we are unlucky enough (this seems very unlikely). 6553 */ 6554 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6555 smp_call_function_single_async(cpu, &sd->defer_csd); 6556 } 6557