xref: /openbmc/linux/net/core/skbuff.c (revision f7af616c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 
82 #include "datagram.h"
83 
84 struct kmem_cache *skbuff_head_cache __ro_after_init;
85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86 #ifdef CONFIG_SKB_EXTENSIONS
87 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88 #endif
89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90 EXPORT_SYMBOL(sysctl_max_skb_frags);
91 
92 /**
93  *	skb_panic - private function for out-of-line support
94  *	@skb:	buffer
95  *	@sz:	size
96  *	@addr:	address
97  *	@msg:	skb_over_panic or skb_under_panic
98  *
99  *	Out-of-line support for skb_put() and skb_push().
100  *	Called via the wrapper skb_over_panic() or skb_under_panic().
101  *	Keep out of line to prevent kernel bloat.
102  *	__builtin_return_address is not used because it is not always reliable.
103  */
104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 		      const char msg[])
106 {
107 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 		 msg, addr, skb->len, sz, skb->head, skb->data,
109 		 (unsigned long)skb->tail, (unsigned long)skb->end,
110 		 skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 {
116 	skb_panic(skb, sz, addr, __func__);
117 }
118 
119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 {
121 	skb_panic(skb, sz, addr, __func__);
122 }
123 
124 #define NAPI_SKB_CACHE_SIZE	64
125 #define NAPI_SKB_CACHE_BULK	16
126 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
127 
128 struct napi_alloc_cache {
129 	struct page_frag_cache page;
130 	unsigned int skb_count;
131 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
132 };
133 
134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136 
137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 				unsigned int align_mask)
139 {
140 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141 
142 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143 }
144 
145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146 {
147 	fragsz = SKB_DATA_ALIGN(fragsz);
148 
149 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150 }
151 EXPORT_SYMBOL(__napi_alloc_frag_align);
152 
153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154 {
155 	struct page_frag_cache *nc;
156 	void *data;
157 
158 	fragsz = SKB_DATA_ALIGN(fragsz);
159 	if (in_irq() || irqs_disabled()) {
160 		nc = this_cpu_ptr(&netdev_alloc_cache);
161 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 	} else {
163 		local_bh_disable();
164 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 		local_bh_enable();
166 	}
167 	return data;
168 }
169 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 
171 static struct sk_buff *napi_skb_cache_get(void)
172 {
173 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 	struct sk_buff *skb;
175 
176 	if (unlikely(!nc->skb_count))
177 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 						      GFP_ATOMIC,
179 						      NAPI_SKB_CACHE_BULK,
180 						      nc->skb_cache);
181 	if (unlikely(!nc->skb_count))
182 		return NULL;
183 
184 	skb = nc->skb_cache[--nc->skb_count];
185 	kasan_unpoison_object_data(skbuff_head_cache, skb);
186 
187 	return skb;
188 }
189 
190 /* Caller must provide SKB that is memset cleared */
191 static void __build_skb_around(struct sk_buff *skb, void *data,
192 			       unsigned int frag_size)
193 {
194 	struct skb_shared_info *shinfo;
195 	unsigned int size = frag_size ? : ksize(data);
196 
197 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 
199 	/* Assumes caller memset cleared SKB */
200 	skb->truesize = SKB_TRUESIZE(size);
201 	refcount_set(&skb->users, 1);
202 	skb->head = data;
203 	skb->data = data;
204 	skb_reset_tail_pointer(skb);
205 	skb->end = skb->tail + size;
206 	skb->mac_header = (typeof(skb->mac_header))~0U;
207 	skb->transport_header = (typeof(skb->transport_header))~0U;
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 
214 	skb_set_kcov_handle(skb, kcov_common_handle());
215 }
216 
217 /**
218  * __build_skb - build a network buffer
219  * @data: data buffer provided by caller
220  * @frag_size: size of data, or 0 if head was kmalloced
221  *
222  * Allocate a new &sk_buff. Caller provides space holding head and
223  * skb_shared_info. @data must have been allocated by kmalloc() only if
224  * @frag_size is 0, otherwise data should come from the page allocator
225  *  or vmalloc()
226  * The return is the new skb buffer.
227  * On a failure the return is %NULL, and @data is not freed.
228  * Notes :
229  *  Before IO, driver allocates only data buffer where NIC put incoming frame
230  *  Driver should add room at head (NET_SKB_PAD) and
231  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
233  *  before giving packet to stack.
234  *  RX rings only contains data buffers, not full skbs.
235  */
236 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237 {
238 	struct sk_buff *skb;
239 
240 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 	if (unlikely(!skb))
242 		return NULL;
243 
244 	memset(skb, 0, offsetof(struct sk_buff, tail));
245 	__build_skb_around(skb, data, frag_size);
246 
247 	return skb;
248 }
249 
250 /* build_skb() is wrapper over __build_skb(), that specifically
251  * takes care of skb->head and skb->pfmemalloc
252  * This means that if @frag_size is not zero, then @data must be backed
253  * by a page fragment, not kmalloc() or vmalloc()
254  */
255 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 {
257 	struct sk_buff *skb = __build_skb(data, frag_size);
258 
259 	if (skb && frag_size) {
260 		skb->head_frag = 1;
261 		if (page_is_pfmemalloc(virt_to_head_page(data)))
262 			skb->pfmemalloc = 1;
263 	}
264 	return skb;
265 }
266 EXPORT_SYMBOL(build_skb);
267 
268 /**
269  * build_skb_around - build a network buffer around provided skb
270  * @skb: sk_buff provide by caller, must be memset cleared
271  * @data: data buffer provided by caller
272  * @frag_size: size of data, or 0 if head was kmalloced
273  */
274 struct sk_buff *build_skb_around(struct sk_buff *skb,
275 				 void *data, unsigned int frag_size)
276 {
277 	if (unlikely(!skb))
278 		return NULL;
279 
280 	__build_skb_around(skb, data, frag_size);
281 
282 	if (frag_size) {
283 		skb->head_frag = 1;
284 		if (page_is_pfmemalloc(virt_to_head_page(data)))
285 			skb->pfmemalloc = 1;
286 	}
287 	return skb;
288 }
289 EXPORT_SYMBOL(build_skb_around);
290 
291 /**
292  * __napi_build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of data, or 0 if head was kmalloced
295  *
296  * Version of __build_skb() that uses NAPI percpu caches to obtain
297  * skbuff_head instead of inplace allocation.
298  *
299  * Returns a new &sk_buff on success, %NULL on allocation failure.
300  */
301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302 {
303 	struct sk_buff *skb;
304 
305 	skb = napi_skb_cache_get();
306 	if (unlikely(!skb))
307 		return NULL;
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	__build_skb_around(skb, data, frag_size);
311 
312 	return skb;
313 }
314 
315 /**
316  * napi_build_skb - build a network buffer
317  * @data: data buffer provided by caller
318  * @frag_size: size of data, or 0 if head was kmalloced
319  *
320  * Version of __napi_build_skb() that takes care of skb->head_frag
321  * and skb->pfmemalloc when the data is a page or page fragment.
322  *
323  * Returns a new &sk_buff on success, %NULL on allocation failure.
324  */
325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 
329 	if (likely(skb) && frag_size) {
330 		skb->head_frag = 1;
331 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 	}
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(napi_build_skb);
337 
338 /*
339  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340  * the caller if emergency pfmemalloc reserves are being used. If it is and
341  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342  * may be used. Otherwise, the packet data may be discarded until enough
343  * memory is free
344  */
345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 			     bool *pfmemalloc)
347 {
348 	void *obj;
349 	bool ret_pfmemalloc = false;
350 
351 	/*
352 	 * Try a regular allocation, when that fails and we're not entitled
353 	 * to the reserves, fail.
354 	 */
355 	obj = kmalloc_node_track_caller(size,
356 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 					node);
358 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 		goto out;
360 
361 	/* Try again but now we are using pfmemalloc reserves */
362 	ret_pfmemalloc = true;
363 	obj = kmalloc_node_track_caller(size, flags, node);
364 
365 out:
366 	if (pfmemalloc)
367 		*pfmemalloc = ret_pfmemalloc;
368 
369 	return obj;
370 }
371 
372 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
373  *	'private' fields and also do memory statistics to find all the
374  *	[BEEP] leaks.
375  *
376  */
377 
378 /**
379  *	__alloc_skb	-	allocate a network buffer
380  *	@size: size to allocate
381  *	@gfp_mask: allocation mask
382  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383  *		instead of head cache and allocate a cloned (child) skb.
384  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385  *		allocations in case the data is required for writeback
386  *	@node: numa node to allocate memory on
387  *
388  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
389  *	tail room of at least size bytes. The object has a reference count
390  *	of one. The return is the buffer. On a failure the return is %NULL.
391  *
392  *	Buffers may only be allocated from interrupts using a @gfp_mask of
393  *	%GFP_ATOMIC.
394  */
395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 			    int flags, int node)
397 {
398 	struct kmem_cache *cache;
399 	struct sk_buff *skb;
400 	u8 *data;
401 	bool pfmemalloc;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	size = SKB_WITH_OVERHEAD(ksize(data));
434 	prefetchw(data + size);
435 
436 	/*
437 	 * Only clear those fields we need to clear, not those that we will
438 	 * actually initialise below. Hence, don't put any more fields after
439 	 * the tail pointer in struct sk_buff!
440 	 */
441 	memset(skb, 0, offsetof(struct sk_buff, tail));
442 	__build_skb_around(skb, data, 0);
443 	skb->pfmemalloc = pfmemalloc;
444 
445 	if (flags & SKB_ALLOC_FCLONE) {
446 		struct sk_buff_fclones *fclones;
447 
448 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
449 
450 		skb->fclone = SKB_FCLONE_ORIG;
451 		refcount_set(&fclones->fclone_ref, 1);
452 
453 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 	}
455 
456 	return skb;
457 
458 nodata:
459 	kmem_cache_free(cache, skb);
460 	return NULL;
461 }
462 EXPORT_SYMBOL(__alloc_skb);
463 
464 /**
465  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
466  *	@dev: network device to receive on
467  *	@len: length to allocate
468  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
469  *
470  *	Allocate a new &sk_buff and assign it a usage count of one. The
471  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
472  *	the headroom they think they need without accounting for the
473  *	built in space. The built in space is used for optimisations.
474  *
475  *	%NULL is returned if there is no free memory.
476  */
477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 				   gfp_t gfp_mask)
479 {
480 	struct page_frag_cache *nc;
481 	struct sk_buff *skb;
482 	bool pfmemalloc;
483 	void *data;
484 
485 	len += NET_SKB_PAD;
486 
487 	/* If requested length is either too small or too big,
488 	 * we use kmalloc() for skb->head allocation.
489 	 */
490 	if (len <= SKB_WITH_OVERHEAD(1024) ||
491 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 		if (!skb)
495 			goto skb_fail;
496 		goto skb_success;
497 	}
498 
499 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 	len = SKB_DATA_ALIGN(len);
501 
502 	if (sk_memalloc_socks())
503 		gfp_mask |= __GFP_MEMALLOC;
504 
505 	if (in_irq() || irqs_disabled()) {
506 		nc = this_cpu_ptr(&netdev_alloc_cache);
507 		data = page_frag_alloc(nc, len, gfp_mask);
508 		pfmemalloc = nc->pfmemalloc;
509 	} else {
510 		local_bh_disable();
511 		nc = this_cpu_ptr(&napi_alloc_cache.page);
512 		data = page_frag_alloc(nc, len, gfp_mask);
513 		pfmemalloc = nc->pfmemalloc;
514 		local_bh_enable();
515 	}
516 
517 	if (unlikely(!data))
518 		return NULL;
519 
520 	skb = __build_skb(data, len);
521 	if (unlikely(!skb)) {
522 		skb_free_frag(data);
523 		return NULL;
524 	}
525 
526 	if (pfmemalloc)
527 		skb->pfmemalloc = 1;
528 	skb->head_frag = 1;
529 
530 skb_success:
531 	skb_reserve(skb, NET_SKB_PAD);
532 	skb->dev = dev;
533 
534 skb_fail:
535 	return skb;
536 }
537 EXPORT_SYMBOL(__netdev_alloc_skb);
538 
539 /**
540  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541  *	@napi: napi instance this buffer was allocated for
542  *	@len: length to allocate
543  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544  *
545  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
546  *	attempt to allocate the head from a special reserved region used
547  *	only for NAPI Rx allocation.  By doing this we can save several
548  *	CPU cycles by avoiding having to disable and re-enable IRQs.
549  *
550  *	%NULL is returned if there is no free memory.
551  */
552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 				 gfp_t gfp_mask)
554 {
555 	struct napi_alloc_cache *nc;
556 	struct sk_buff *skb;
557 	void *data;
558 
559 	len += NET_SKB_PAD + NET_IP_ALIGN;
560 
561 	/* If requested length is either too small or too big,
562 	 * we use kmalloc() for skb->head allocation.
563 	 */
564 	if (len <= SKB_WITH_OVERHEAD(1024) ||
565 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 				  NUMA_NO_NODE);
569 		if (!skb)
570 			goto skb_fail;
571 		goto skb_success;
572 	}
573 
574 	nc = this_cpu_ptr(&napi_alloc_cache);
575 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 	len = SKB_DATA_ALIGN(len);
577 
578 	if (sk_memalloc_socks())
579 		gfp_mask |= __GFP_MEMALLOC;
580 
581 	data = page_frag_alloc(&nc->page, len, gfp_mask);
582 	if (unlikely(!data))
583 		return NULL;
584 
585 	skb = __napi_build_skb(data, len);
586 	if (unlikely(!skb)) {
587 		skb_free_frag(data);
588 		return NULL;
589 	}
590 
591 	if (nc->page.pfmemalloc)
592 		skb->pfmemalloc = 1;
593 	skb->head_frag = 1;
594 
595 skb_success:
596 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 	skb->dev = napi->dev;
598 
599 skb_fail:
600 	return skb;
601 }
602 EXPORT_SYMBOL(__napi_alloc_skb);
603 
604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 		     int size, unsigned int truesize)
606 {
607 	skb_fill_page_desc(skb, i, page, off, size);
608 	skb->len += size;
609 	skb->data_len += size;
610 	skb->truesize += truesize;
611 }
612 EXPORT_SYMBOL(skb_add_rx_frag);
613 
614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 			  unsigned int truesize)
616 {
617 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618 
619 	skb_frag_size_add(frag, size);
620 	skb->len += size;
621 	skb->data_len += size;
622 	skb->truesize += truesize;
623 }
624 EXPORT_SYMBOL(skb_coalesce_rx_frag);
625 
626 static void skb_drop_list(struct sk_buff **listp)
627 {
628 	kfree_skb_list(*listp);
629 	*listp = NULL;
630 }
631 
632 static inline void skb_drop_fraglist(struct sk_buff *skb)
633 {
634 	skb_drop_list(&skb_shinfo(skb)->frag_list);
635 }
636 
637 static void skb_clone_fraglist(struct sk_buff *skb)
638 {
639 	struct sk_buff *list;
640 
641 	skb_walk_frags(skb, list)
642 		skb_get(list);
643 }
644 
645 static void skb_free_head(struct sk_buff *skb)
646 {
647 	unsigned char *head = skb->head;
648 
649 	if (skb->head_frag) {
650 		if (skb_pp_recycle(skb, head))
651 			return;
652 		skb_free_frag(head);
653 	} else {
654 		kfree(head);
655 	}
656 }
657 
658 static void skb_release_data(struct sk_buff *skb)
659 {
660 	struct skb_shared_info *shinfo = skb_shinfo(skb);
661 	int i;
662 
663 	if (skb->cloned &&
664 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 			      &shinfo->dataref))
666 		return;
667 
668 	skb_zcopy_clear(skb, true);
669 
670 	for (i = 0; i < shinfo->nr_frags; i++)
671 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672 
673 	if (shinfo->frag_list)
674 		kfree_skb_list(shinfo->frag_list);
675 
676 	skb_free_head(skb);
677 }
678 
679 /*
680  *	Free an skbuff by memory without cleaning the state.
681  */
682 static void kfree_skbmem(struct sk_buff *skb)
683 {
684 	struct sk_buff_fclones *fclones;
685 
686 	switch (skb->fclone) {
687 	case SKB_FCLONE_UNAVAILABLE:
688 		kmem_cache_free(skbuff_head_cache, skb);
689 		return;
690 
691 	case SKB_FCLONE_ORIG:
692 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
693 
694 		/* We usually free the clone (TX completion) before original skb
695 		 * This test would have no chance to be true for the clone,
696 		 * while here, branch prediction will be good.
697 		 */
698 		if (refcount_read(&fclones->fclone_ref) == 1)
699 			goto fastpath;
700 		break;
701 
702 	default: /* SKB_FCLONE_CLONE */
703 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
704 		break;
705 	}
706 	if (!refcount_dec_and_test(&fclones->fclone_ref))
707 		return;
708 fastpath:
709 	kmem_cache_free(skbuff_fclone_cache, fclones);
710 }
711 
712 void skb_release_head_state(struct sk_buff *skb)
713 {
714 	skb_dst_drop(skb);
715 	if (skb->destructor) {
716 		WARN_ON(in_irq());
717 		skb->destructor(skb);
718 	}
719 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
720 	nf_conntrack_put(skb_nfct(skb));
721 #endif
722 	skb_ext_put(skb);
723 }
724 
725 /* Free everything but the sk_buff shell. */
726 static void skb_release_all(struct sk_buff *skb)
727 {
728 	skb_release_head_state(skb);
729 	if (likely(skb->head))
730 		skb_release_data(skb);
731 }
732 
733 /**
734  *	__kfree_skb - private function
735  *	@skb: buffer
736  *
737  *	Free an sk_buff. Release anything attached to the buffer.
738  *	Clean the state. This is an internal helper function. Users should
739  *	always call kfree_skb
740  */
741 
742 void __kfree_skb(struct sk_buff *skb)
743 {
744 	skb_release_all(skb);
745 	kfree_skbmem(skb);
746 }
747 EXPORT_SYMBOL(__kfree_skb);
748 
749 /**
750  *	kfree_skb - free an sk_buff
751  *	@skb: buffer to free
752  *
753  *	Drop a reference to the buffer and free it if the usage count has
754  *	hit zero.
755  */
756 void kfree_skb(struct sk_buff *skb)
757 {
758 	if (!skb_unref(skb))
759 		return;
760 
761 	trace_kfree_skb(skb, __builtin_return_address(0));
762 	__kfree_skb(skb);
763 }
764 EXPORT_SYMBOL(kfree_skb);
765 
766 void kfree_skb_list(struct sk_buff *segs)
767 {
768 	while (segs) {
769 		struct sk_buff *next = segs->next;
770 
771 		kfree_skb(segs);
772 		segs = next;
773 	}
774 }
775 EXPORT_SYMBOL(kfree_skb_list);
776 
777 /* Dump skb information and contents.
778  *
779  * Must only be called from net_ratelimit()-ed paths.
780  *
781  * Dumps whole packets if full_pkt, only headers otherwise.
782  */
783 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
784 {
785 	struct skb_shared_info *sh = skb_shinfo(skb);
786 	struct net_device *dev = skb->dev;
787 	struct sock *sk = skb->sk;
788 	struct sk_buff *list_skb;
789 	bool has_mac, has_trans;
790 	int headroom, tailroom;
791 	int i, len, seg_len;
792 
793 	if (full_pkt)
794 		len = skb->len;
795 	else
796 		len = min_t(int, skb->len, MAX_HEADER + 128);
797 
798 	headroom = skb_headroom(skb);
799 	tailroom = skb_tailroom(skb);
800 
801 	has_mac = skb_mac_header_was_set(skb);
802 	has_trans = skb_transport_header_was_set(skb);
803 
804 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
805 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
806 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
807 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
808 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
809 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
810 	       has_mac ? skb->mac_header : -1,
811 	       has_mac ? skb_mac_header_len(skb) : -1,
812 	       skb->network_header,
813 	       has_trans ? skb_network_header_len(skb) : -1,
814 	       has_trans ? skb->transport_header : -1,
815 	       sh->tx_flags, sh->nr_frags,
816 	       sh->gso_size, sh->gso_type, sh->gso_segs,
817 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
818 	       skb->csum_valid, skb->csum_level,
819 	       skb->hash, skb->sw_hash, skb->l4_hash,
820 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
821 
822 	if (dev)
823 		printk("%sdev name=%s feat=0x%pNF\n",
824 		       level, dev->name, &dev->features);
825 	if (sk)
826 		printk("%ssk family=%hu type=%u proto=%u\n",
827 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
828 
829 	if (full_pkt && headroom)
830 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
831 			       16, 1, skb->head, headroom, false);
832 
833 	seg_len = min_t(int, skb_headlen(skb), len);
834 	if (seg_len)
835 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
836 			       16, 1, skb->data, seg_len, false);
837 	len -= seg_len;
838 
839 	if (full_pkt && tailroom)
840 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
841 			       16, 1, skb_tail_pointer(skb), tailroom, false);
842 
843 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
844 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
845 		u32 p_off, p_len, copied;
846 		struct page *p;
847 		u8 *vaddr;
848 
849 		skb_frag_foreach_page(frag, skb_frag_off(frag),
850 				      skb_frag_size(frag), p, p_off, p_len,
851 				      copied) {
852 			seg_len = min_t(int, p_len, len);
853 			vaddr = kmap_atomic(p);
854 			print_hex_dump(level, "skb frag:     ",
855 				       DUMP_PREFIX_OFFSET,
856 				       16, 1, vaddr + p_off, seg_len, false);
857 			kunmap_atomic(vaddr);
858 			len -= seg_len;
859 			if (!len)
860 				break;
861 		}
862 	}
863 
864 	if (full_pkt && skb_has_frag_list(skb)) {
865 		printk("skb fraglist:\n");
866 		skb_walk_frags(skb, list_skb)
867 			skb_dump(level, list_skb, true);
868 	}
869 }
870 EXPORT_SYMBOL(skb_dump);
871 
872 /**
873  *	skb_tx_error - report an sk_buff xmit error
874  *	@skb: buffer that triggered an error
875  *
876  *	Report xmit error if a device callback is tracking this skb.
877  *	skb must be freed afterwards.
878  */
879 void skb_tx_error(struct sk_buff *skb)
880 {
881 	skb_zcopy_clear(skb, true);
882 }
883 EXPORT_SYMBOL(skb_tx_error);
884 
885 #ifdef CONFIG_TRACEPOINTS
886 /**
887  *	consume_skb - free an skbuff
888  *	@skb: buffer to free
889  *
890  *	Drop a ref to the buffer and free it if the usage count has hit zero
891  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
892  *	is being dropped after a failure and notes that
893  */
894 void consume_skb(struct sk_buff *skb)
895 {
896 	if (!skb_unref(skb))
897 		return;
898 
899 	trace_consume_skb(skb);
900 	__kfree_skb(skb);
901 }
902 EXPORT_SYMBOL(consume_skb);
903 #endif
904 
905 /**
906  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
907  *	@skb: buffer to free
908  *
909  *	Alike consume_skb(), but this variant assumes that this is the last
910  *	skb reference and all the head states have been already dropped
911  */
912 void __consume_stateless_skb(struct sk_buff *skb)
913 {
914 	trace_consume_skb(skb);
915 	skb_release_data(skb);
916 	kfree_skbmem(skb);
917 }
918 
919 static void napi_skb_cache_put(struct sk_buff *skb)
920 {
921 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
922 	u32 i;
923 
924 	kasan_poison_object_data(skbuff_head_cache, skb);
925 	nc->skb_cache[nc->skb_count++] = skb;
926 
927 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
928 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
929 			kasan_unpoison_object_data(skbuff_head_cache,
930 						   nc->skb_cache[i]);
931 
932 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
933 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
934 		nc->skb_count = NAPI_SKB_CACHE_HALF;
935 	}
936 }
937 
938 void __kfree_skb_defer(struct sk_buff *skb)
939 {
940 	skb_release_all(skb);
941 	napi_skb_cache_put(skb);
942 }
943 
944 void napi_skb_free_stolen_head(struct sk_buff *skb)
945 {
946 	skb_dst_drop(skb);
947 	skb_ext_put(skb);
948 	napi_skb_cache_put(skb);
949 }
950 
951 void napi_consume_skb(struct sk_buff *skb, int budget)
952 {
953 	/* Zero budget indicate non-NAPI context called us, like netpoll */
954 	if (unlikely(!budget)) {
955 		dev_consume_skb_any(skb);
956 		return;
957 	}
958 
959 	lockdep_assert_in_softirq();
960 
961 	if (!skb_unref(skb))
962 		return;
963 
964 	/* if reaching here SKB is ready to free */
965 	trace_consume_skb(skb);
966 
967 	/* if SKB is a clone, don't handle this case */
968 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
969 		__kfree_skb(skb);
970 		return;
971 	}
972 
973 	skb_release_all(skb);
974 	napi_skb_cache_put(skb);
975 }
976 EXPORT_SYMBOL(napi_consume_skb);
977 
978 /* Make sure a field is enclosed inside headers_start/headers_end section */
979 #define CHECK_SKB_FIELD(field) \
980 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
981 		     offsetof(struct sk_buff, headers_start));	\
982 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
983 		     offsetof(struct sk_buff, headers_end));	\
984 
985 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
986 {
987 	new->tstamp		= old->tstamp;
988 	/* We do not copy old->sk */
989 	new->dev		= old->dev;
990 	memcpy(new->cb, old->cb, sizeof(old->cb));
991 	skb_dst_copy(new, old);
992 	__skb_ext_copy(new, old);
993 	__nf_copy(new, old, false);
994 
995 	/* Note : this field could be in headers_start/headers_end section
996 	 * It is not yet because we do not want to have a 16 bit hole
997 	 */
998 	new->queue_mapping = old->queue_mapping;
999 
1000 	memcpy(&new->headers_start, &old->headers_start,
1001 	       offsetof(struct sk_buff, headers_end) -
1002 	       offsetof(struct sk_buff, headers_start));
1003 	CHECK_SKB_FIELD(protocol);
1004 	CHECK_SKB_FIELD(csum);
1005 	CHECK_SKB_FIELD(hash);
1006 	CHECK_SKB_FIELD(priority);
1007 	CHECK_SKB_FIELD(skb_iif);
1008 	CHECK_SKB_FIELD(vlan_proto);
1009 	CHECK_SKB_FIELD(vlan_tci);
1010 	CHECK_SKB_FIELD(transport_header);
1011 	CHECK_SKB_FIELD(network_header);
1012 	CHECK_SKB_FIELD(mac_header);
1013 	CHECK_SKB_FIELD(inner_protocol);
1014 	CHECK_SKB_FIELD(inner_transport_header);
1015 	CHECK_SKB_FIELD(inner_network_header);
1016 	CHECK_SKB_FIELD(inner_mac_header);
1017 	CHECK_SKB_FIELD(mark);
1018 #ifdef CONFIG_NETWORK_SECMARK
1019 	CHECK_SKB_FIELD(secmark);
1020 #endif
1021 #ifdef CONFIG_NET_RX_BUSY_POLL
1022 	CHECK_SKB_FIELD(napi_id);
1023 #endif
1024 #ifdef CONFIG_XPS
1025 	CHECK_SKB_FIELD(sender_cpu);
1026 #endif
1027 #ifdef CONFIG_NET_SCHED
1028 	CHECK_SKB_FIELD(tc_index);
1029 #endif
1030 
1031 }
1032 
1033 /*
1034  * You should not add any new code to this function.  Add it to
1035  * __copy_skb_header above instead.
1036  */
1037 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1038 {
1039 #define C(x) n->x = skb->x
1040 
1041 	n->next = n->prev = NULL;
1042 	n->sk = NULL;
1043 	__copy_skb_header(n, skb);
1044 
1045 	C(len);
1046 	C(data_len);
1047 	C(mac_len);
1048 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1049 	n->cloned = 1;
1050 	n->nohdr = 0;
1051 	n->peeked = 0;
1052 	C(pfmemalloc);
1053 	C(pp_recycle);
1054 	n->destructor = NULL;
1055 	C(tail);
1056 	C(end);
1057 	C(head);
1058 	C(head_frag);
1059 	C(data);
1060 	C(truesize);
1061 	refcount_set(&n->users, 1);
1062 
1063 	atomic_inc(&(skb_shinfo(skb)->dataref));
1064 	skb->cloned = 1;
1065 
1066 	return n;
1067 #undef C
1068 }
1069 
1070 /**
1071  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1072  * @first: first sk_buff of the msg
1073  */
1074 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1075 {
1076 	struct sk_buff *n;
1077 
1078 	n = alloc_skb(0, GFP_ATOMIC);
1079 	if (!n)
1080 		return NULL;
1081 
1082 	n->len = first->len;
1083 	n->data_len = first->len;
1084 	n->truesize = first->truesize;
1085 
1086 	skb_shinfo(n)->frag_list = first;
1087 
1088 	__copy_skb_header(n, first);
1089 	n->destructor = NULL;
1090 
1091 	return n;
1092 }
1093 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1094 
1095 /**
1096  *	skb_morph	-	morph one skb into another
1097  *	@dst: the skb to receive the contents
1098  *	@src: the skb to supply the contents
1099  *
1100  *	This is identical to skb_clone except that the target skb is
1101  *	supplied by the user.
1102  *
1103  *	The target skb is returned upon exit.
1104  */
1105 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1106 {
1107 	skb_release_all(dst);
1108 	return __skb_clone(dst, src);
1109 }
1110 EXPORT_SYMBOL_GPL(skb_morph);
1111 
1112 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1113 {
1114 	unsigned long max_pg, num_pg, new_pg, old_pg;
1115 	struct user_struct *user;
1116 
1117 	if (capable(CAP_IPC_LOCK) || !size)
1118 		return 0;
1119 
1120 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1121 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1122 	user = mmp->user ? : current_user();
1123 
1124 	do {
1125 		old_pg = atomic_long_read(&user->locked_vm);
1126 		new_pg = old_pg + num_pg;
1127 		if (new_pg > max_pg)
1128 			return -ENOBUFS;
1129 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1130 		 old_pg);
1131 
1132 	if (!mmp->user) {
1133 		mmp->user = get_uid(user);
1134 		mmp->num_pg = num_pg;
1135 	} else {
1136 		mmp->num_pg += num_pg;
1137 	}
1138 
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1142 
1143 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1144 {
1145 	if (mmp->user) {
1146 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1147 		free_uid(mmp->user);
1148 	}
1149 }
1150 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1151 
1152 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1153 {
1154 	struct ubuf_info *uarg;
1155 	struct sk_buff *skb;
1156 
1157 	WARN_ON_ONCE(!in_task());
1158 
1159 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1160 	if (!skb)
1161 		return NULL;
1162 
1163 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1164 	uarg = (void *)skb->cb;
1165 	uarg->mmp.user = NULL;
1166 
1167 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1168 		kfree_skb(skb);
1169 		return NULL;
1170 	}
1171 
1172 	uarg->callback = msg_zerocopy_callback;
1173 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1174 	uarg->len = 1;
1175 	uarg->bytelen = size;
1176 	uarg->zerocopy = 1;
1177 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1178 	refcount_set(&uarg->refcnt, 1);
1179 	sock_hold(sk);
1180 
1181 	return uarg;
1182 }
1183 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1184 
1185 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1186 {
1187 	return container_of((void *)uarg, struct sk_buff, cb);
1188 }
1189 
1190 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1191 				       struct ubuf_info *uarg)
1192 {
1193 	if (uarg) {
1194 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1195 		u32 bytelen, next;
1196 
1197 		/* realloc only when socket is locked (TCP, UDP cork),
1198 		 * so uarg->len and sk_zckey access is serialized
1199 		 */
1200 		if (!sock_owned_by_user(sk)) {
1201 			WARN_ON_ONCE(1);
1202 			return NULL;
1203 		}
1204 
1205 		bytelen = uarg->bytelen + size;
1206 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1207 			/* TCP can create new skb to attach new uarg */
1208 			if (sk->sk_type == SOCK_STREAM)
1209 				goto new_alloc;
1210 			return NULL;
1211 		}
1212 
1213 		next = (u32)atomic_read(&sk->sk_zckey);
1214 		if ((u32)(uarg->id + uarg->len) == next) {
1215 			if (mm_account_pinned_pages(&uarg->mmp, size))
1216 				return NULL;
1217 			uarg->len++;
1218 			uarg->bytelen = bytelen;
1219 			atomic_set(&sk->sk_zckey, ++next);
1220 
1221 			/* no extra ref when appending to datagram (MSG_MORE) */
1222 			if (sk->sk_type == SOCK_STREAM)
1223 				net_zcopy_get(uarg);
1224 
1225 			return uarg;
1226 		}
1227 	}
1228 
1229 new_alloc:
1230 	return msg_zerocopy_alloc(sk, size);
1231 }
1232 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1233 
1234 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1235 {
1236 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1237 	u32 old_lo, old_hi;
1238 	u64 sum_len;
1239 
1240 	old_lo = serr->ee.ee_info;
1241 	old_hi = serr->ee.ee_data;
1242 	sum_len = old_hi - old_lo + 1ULL + len;
1243 
1244 	if (sum_len >= (1ULL << 32))
1245 		return false;
1246 
1247 	if (lo != old_hi + 1)
1248 		return false;
1249 
1250 	serr->ee.ee_data += len;
1251 	return true;
1252 }
1253 
1254 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1255 {
1256 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1257 	struct sock_exterr_skb *serr;
1258 	struct sock *sk = skb->sk;
1259 	struct sk_buff_head *q;
1260 	unsigned long flags;
1261 	u32 lo, hi;
1262 	u16 len;
1263 
1264 	mm_unaccount_pinned_pages(&uarg->mmp);
1265 
1266 	/* if !len, there was only 1 call, and it was aborted
1267 	 * so do not queue a completion notification
1268 	 */
1269 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1270 		goto release;
1271 
1272 	len = uarg->len;
1273 	lo = uarg->id;
1274 	hi = uarg->id + len - 1;
1275 
1276 	serr = SKB_EXT_ERR(skb);
1277 	memset(serr, 0, sizeof(*serr));
1278 	serr->ee.ee_errno = 0;
1279 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1280 	serr->ee.ee_data = hi;
1281 	serr->ee.ee_info = lo;
1282 	if (!uarg->zerocopy)
1283 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1284 
1285 	q = &sk->sk_error_queue;
1286 	spin_lock_irqsave(&q->lock, flags);
1287 	tail = skb_peek_tail(q);
1288 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1289 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1290 		__skb_queue_tail(q, skb);
1291 		skb = NULL;
1292 	}
1293 	spin_unlock_irqrestore(&q->lock, flags);
1294 
1295 	sk->sk_error_report(sk);
1296 
1297 release:
1298 	consume_skb(skb);
1299 	sock_put(sk);
1300 }
1301 
1302 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1303 			   bool success)
1304 {
1305 	uarg->zerocopy = uarg->zerocopy & success;
1306 
1307 	if (refcount_dec_and_test(&uarg->refcnt))
1308 		__msg_zerocopy_callback(uarg);
1309 }
1310 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1311 
1312 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1313 {
1314 	struct sock *sk = skb_from_uarg(uarg)->sk;
1315 
1316 	atomic_dec(&sk->sk_zckey);
1317 	uarg->len--;
1318 
1319 	if (have_uref)
1320 		msg_zerocopy_callback(NULL, uarg, true);
1321 }
1322 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1323 
1324 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1325 {
1326 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1327 }
1328 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1329 
1330 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1331 			     struct msghdr *msg, int len,
1332 			     struct ubuf_info *uarg)
1333 {
1334 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1335 	struct iov_iter orig_iter = msg->msg_iter;
1336 	int err, orig_len = skb->len;
1337 
1338 	/* An skb can only point to one uarg. This edge case happens when
1339 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1340 	 */
1341 	if (orig_uarg && uarg != orig_uarg)
1342 		return -EEXIST;
1343 
1344 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1345 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1346 		struct sock *save_sk = skb->sk;
1347 
1348 		/* Streams do not free skb on error. Reset to prev state. */
1349 		msg->msg_iter = orig_iter;
1350 		skb->sk = sk;
1351 		___pskb_trim(skb, orig_len);
1352 		skb->sk = save_sk;
1353 		return err;
1354 	}
1355 
1356 	skb_zcopy_set(skb, uarg, NULL);
1357 	return skb->len - orig_len;
1358 }
1359 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1360 
1361 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1362 			      gfp_t gfp_mask)
1363 {
1364 	if (skb_zcopy(orig)) {
1365 		if (skb_zcopy(nskb)) {
1366 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1367 			if (!gfp_mask) {
1368 				WARN_ON_ONCE(1);
1369 				return -ENOMEM;
1370 			}
1371 			if (skb_uarg(nskb) == skb_uarg(orig))
1372 				return 0;
1373 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1374 				return -EIO;
1375 		}
1376 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1377 	}
1378 	return 0;
1379 }
1380 
1381 /**
1382  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1383  *	@skb: the skb to modify
1384  *	@gfp_mask: allocation priority
1385  *
1386  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1387  *	It will copy all frags into kernel and drop the reference
1388  *	to userspace pages.
1389  *
1390  *	If this function is called from an interrupt gfp_mask() must be
1391  *	%GFP_ATOMIC.
1392  *
1393  *	Returns 0 on success or a negative error code on failure
1394  *	to allocate kernel memory to copy to.
1395  */
1396 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1397 {
1398 	int num_frags = skb_shinfo(skb)->nr_frags;
1399 	struct page *page, *head = NULL;
1400 	int i, new_frags;
1401 	u32 d_off;
1402 
1403 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1404 		return -EINVAL;
1405 
1406 	if (!num_frags)
1407 		goto release;
1408 
1409 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1410 	for (i = 0; i < new_frags; i++) {
1411 		page = alloc_page(gfp_mask);
1412 		if (!page) {
1413 			while (head) {
1414 				struct page *next = (struct page *)page_private(head);
1415 				put_page(head);
1416 				head = next;
1417 			}
1418 			return -ENOMEM;
1419 		}
1420 		set_page_private(page, (unsigned long)head);
1421 		head = page;
1422 	}
1423 
1424 	page = head;
1425 	d_off = 0;
1426 	for (i = 0; i < num_frags; i++) {
1427 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1428 		u32 p_off, p_len, copied;
1429 		struct page *p;
1430 		u8 *vaddr;
1431 
1432 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1433 				      p, p_off, p_len, copied) {
1434 			u32 copy, done = 0;
1435 			vaddr = kmap_atomic(p);
1436 
1437 			while (done < p_len) {
1438 				if (d_off == PAGE_SIZE) {
1439 					d_off = 0;
1440 					page = (struct page *)page_private(page);
1441 				}
1442 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1443 				memcpy(page_address(page) + d_off,
1444 				       vaddr + p_off + done, copy);
1445 				done += copy;
1446 				d_off += copy;
1447 			}
1448 			kunmap_atomic(vaddr);
1449 		}
1450 	}
1451 
1452 	/* skb frags release userspace buffers */
1453 	for (i = 0; i < num_frags; i++)
1454 		skb_frag_unref(skb, i);
1455 
1456 	/* skb frags point to kernel buffers */
1457 	for (i = 0; i < new_frags - 1; i++) {
1458 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1459 		head = (struct page *)page_private(head);
1460 	}
1461 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1462 	skb_shinfo(skb)->nr_frags = new_frags;
1463 
1464 release:
1465 	skb_zcopy_clear(skb, false);
1466 	return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1469 
1470 /**
1471  *	skb_clone	-	duplicate an sk_buff
1472  *	@skb: buffer to clone
1473  *	@gfp_mask: allocation priority
1474  *
1475  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1476  *	copies share the same packet data but not structure. The new
1477  *	buffer has a reference count of 1. If the allocation fails the
1478  *	function returns %NULL otherwise the new buffer is returned.
1479  *
1480  *	If this function is called from an interrupt gfp_mask() must be
1481  *	%GFP_ATOMIC.
1482  */
1483 
1484 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1485 {
1486 	struct sk_buff_fclones *fclones = container_of(skb,
1487 						       struct sk_buff_fclones,
1488 						       skb1);
1489 	struct sk_buff *n;
1490 
1491 	if (skb_orphan_frags(skb, gfp_mask))
1492 		return NULL;
1493 
1494 	if (skb->fclone == SKB_FCLONE_ORIG &&
1495 	    refcount_read(&fclones->fclone_ref) == 1) {
1496 		n = &fclones->skb2;
1497 		refcount_set(&fclones->fclone_ref, 2);
1498 	} else {
1499 		if (skb_pfmemalloc(skb))
1500 			gfp_mask |= __GFP_MEMALLOC;
1501 
1502 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1503 		if (!n)
1504 			return NULL;
1505 
1506 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1507 	}
1508 
1509 	return __skb_clone(n, skb);
1510 }
1511 EXPORT_SYMBOL(skb_clone);
1512 
1513 void skb_headers_offset_update(struct sk_buff *skb, int off)
1514 {
1515 	/* Only adjust this if it actually is csum_start rather than csum */
1516 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1517 		skb->csum_start += off;
1518 	/* {transport,network,mac}_header and tail are relative to skb->head */
1519 	skb->transport_header += off;
1520 	skb->network_header   += off;
1521 	if (skb_mac_header_was_set(skb))
1522 		skb->mac_header += off;
1523 	skb->inner_transport_header += off;
1524 	skb->inner_network_header += off;
1525 	skb->inner_mac_header += off;
1526 }
1527 EXPORT_SYMBOL(skb_headers_offset_update);
1528 
1529 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1530 {
1531 	__copy_skb_header(new, old);
1532 
1533 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1534 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1535 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1536 }
1537 EXPORT_SYMBOL(skb_copy_header);
1538 
1539 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1540 {
1541 	if (skb_pfmemalloc(skb))
1542 		return SKB_ALLOC_RX;
1543 	return 0;
1544 }
1545 
1546 /**
1547  *	skb_copy	-	create private copy of an sk_buff
1548  *	@skb: buffer to copy
1549  *	@gfp_mask: allocation priority
1550  *
1551  *	Make a copy of both an &sk_buff and its data. This is used when the
1552  *	caller wishes to modify the data and needs a private copy of the
1553  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1554  *	on success. The returned buffer has a reference count of 1.
1555  *
1556  *	As by-product this function converts non-linear &sk_buff to linear
1557  *	one, so that &sk_buff becomes completely private and caller is allowed
1558  *	to modify all the data of returned buffer. This means that this
1559  *	function is not recommended for use in circumstances when only
1560  *	header is going to be modified. Use pskb_copy() instead.
1561  */
1562 
1563 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1564 {
1565 	int headerlen = skb_headroom(skb);
1566 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1567 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1568 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1569 
1570 	if (!n)
1571 		return NULL;
1572 
1573 	/* Set the data pointer */
1574 	skb_reserve(n, headerlen);
1575 	/* Set the tail pointer and length */
1576 	skb_put(n, skb->len);
1577 
1578 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1579 
1580 	skb_copy_header(n, skb);
1581 	return n;
1582 }
1583 EXPORT_SYMBOL(skb_copy);
1584 
1585 /**
1586  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1587  *	@skb: buffer to copy
1588  *	@headroom: headroom of new skb
1589  *	@gfp_mask: allocation priority
1590  *	@fclone: if true allocate the copy of the skb from the fclone
1591  *	cache instead of the head cache; it is recommended to set this
1592  *	to true for the cases where the copy will likely be cloned
1593  *
1594  *	Make a copy of both an &sk_buff and part of its data, located
1595  *	in header. Fragmented data remain shared. This is used when
1596  *	the caller wishes to modify only header of &sk_buff and needs
1597  *	private copy of the header to alter. Returns %NULL on failure
1598  *	or the pointer to the buffer on success.
1599  *	The returned buffer has a reference count of 1.
1600  */
1601 
1602 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1603 				   gfp_t gfp_mask, bool fclone)
1604 {
1605 	unsigned int size = skb_headlen(skb) + headroom;
1606 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1607 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1608 
1609 	if (!n)
1610 		goto out;
1611 
1612 	/* Set the data pointer */
1613 	skb_reserve(n, headroom);
1614 	/* Set the tail pointer and length */
1615 	skb_put(n, skb_headlen(skb));
1616 	/* Copy the bytes */
1617 	skb_copy_from_linear_data(skb, n->data, n->len);
1618 
1619 	n->truesize += skb->data_len;
1620 	n->data_len  = skb->data_len;
1621 	n->len	     = skb->len;
1622 
1623 	if (skb_shinfo(skb)->nr_frags) {
1624 		int i;
1625 
1626 		if (skb_orphan_frags(skb, gfp_mask) ||
1627 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1628 			kfree_skb(n);
1629 			n = NULL;
1630 			goto out;
1631 		}
1632 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1633 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1634 			skb_frag_ref(skb, i);
1635 		}
1636 		skb_shinfo(n)->nr_frags = i;
1637 	}
1638 
1639 	if (skb_has_frag_list(skb)) {
1640 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1641 		skb_clone_fraglist(n);
1642 	}
1643 
1644 	skb_copy_header(n, skb);
1645 out:
1646 	return n;
1647 }
1648 EXPORT_SYMBOL(__pskb_copy_fclone);
1649 
1650 /**
1651  *	pskb_expand_head - reallocate header of &sk_buff
1652  *	@skb: buffer to reallocate
1653  *	@nhead: room to add at head
1654  *	@ntail: room to add at tail
1655  *	@gfp_mask: allocation priority
1656  *
1657  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1658  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1659  *	reference count of 1. Returns zero in the case of success or error,
1660  *	if expansion failed. In the last case, &sk_buff is not changed.
1661  *
1662  *	All the pointers pointing into skb header may change and must be
1663  *	reloaded after call to this function.
1664  */
1665 
1666 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1667 		     gfp_t gfp_mask)
1668 {
1669 	int i, osize = skb_end_offset(skb);
1670 	int size = osize + nhead + ntail;
1671 	long off;
1672 	u8 *data;
1673 
1674 	BUG_ON(nhead < 0);
1675 
1676 	BUG_ON(skb_shared(skb));
1677 
1678 	size = SKB_DATA_ALIGN(size);
1679 
1680 	if (skb_pfmemalloc(skb))
1681 		gfp_mask |= __GFP_MEMALLOC;
1682 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1683 			       gfp_mask, NUMA_NO_NODE, NULL);
1684 	if (!data)
1685 		goto nodata;
1686 	size = SKB_WITH_OVERHEAD(ksize(data));
1687 
1688 	/* Copy only real data... and, alas, header. This should be
1689 	 * optimized for the cases when header is void.
1690 	 */
1691 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1692 
1693 	memcpy((struct skb_shared_info *)(data + size),
1694 	       skb_shinfo(skb),
1695 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1696 
1697 	/*
1698 	 * if shinfo is shared we must drop the old head gracefully, but if it
1699 	 * is not we can just drop the old head and let the existing refcount
1700 	 * be since all we did is relocate the values
1701 	 */
1702 	if (skb_cloned(skb)) {
1703 		if (skb_orphan_frags(skb, gfp_mask))
1704 			goto nofrags;
1705 		if (skb_zcopy(skb))
1706 			refcount_inc(&skb_uarg(skb)->refcnt);
1707 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1708 			skb_frag_ref(skb, i);
1709 
1710 		if (skb_has_frag_list(skb))
1711 			skb_clone_fraglist(skb);
1712 
1713 		skb_release_data(skb);
1714 	} else {
1715 		skb_free_head(skb);
1716 	}
1717 	off = (data + nhead) - skb->head;
1718 
1719 	skb->head     = data;
1720 	skb->head_frag = 0;
1721 	skb->data    += off;
1722 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1723 	skb->end      = size;
1724 	off           = nhead;
1725 #else
1726 	skb->end      = skb->head + size;
1727 #endif
1728 	skb->tail	      += off;
1729 	skb_headers_offset_update(skb, nhead);
1730 	skb->cloned   = 0;
1731 	skb->hdr_len  = 0;
1732 	skb->nohdr    = 0;
1733 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1734 
1735 	skb_metadata_clear(skb);
1736 
1737 	/* It is not generally safe to change skb->truesize.
1738 	 * For the moment, we really care of rx path, or
1739 	 * when skb is orphaned (not attached to a socket).
1740 	 */
1741 	if (!skb->sk || skb->destructor == sock_edemux)
1742 		skb->truesize += size - osize;
1743 
1744 	return 0;
1745 
1746 nofrags:
1747 	kfree(data);
1748 nodata:
1749 	return -ENOMEM;
1750 }
1751 EXPORT_SYMBOL(pskb_expand_head);
1752 
1753 /* Make private copy of skb with writable head and some headroom */
1754 
1755 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1756 {
1757 	struct sk_buff *skb2;
1758 	int delta = headroom - skb_headroom(skb);
1759 
1760 	if (delta <= 0)
1761 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1762 	else {
1763 		skb2 = skb_clone(skb, GFP_ATOMIC);
1764 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1765 					     GFP_ATOMIC)) {
1766 			kfree_skb(skb2);
1767 			skb2 = NULL;
1768 		}
1769 	}
1770 	return skb2;
1771 }
1772 EXPORT_SYMBOL(skb_realloc_headroom);
1773 
1774 /**
1775  *	skb_copy_expand	-	copy and expand sk_buff
1776  *	@skb: buffer to copy
1777  *	@newheadroom: new free bytes at head
1778  *	@newtailroom: new free bytes at tail
1779  *	@gfp_mask: allocation priority
1780  *
1781  *	Make a copy of both an &sk_buff and its data and while doing so
1782  *	allocate additional space.
1783  *
1784  *	This is used when the caller wishes to modify the data and needs a
1785  *	private copy of the data to alter as well as more space for new fields.
1786  *	Returns %NULL on failure or the pointer to the buffer
1787  *	on success. The returned buffer has a reference count of 1.
1788  *
1789  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1790  *	is called from an interrupt.
1791  */
1792 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1793 				int newheadroom, int newtailroom,
1794 				gfp_t gfp_mask)
1795 {
1796 	/*
1797 	 *	Allocate the copy buffer
1798 	 */
1799 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1800 					gfp_mask, skb_alloc_rx_flag(skb),
1801 					NUMA_NO_NODE);
1802 	int oldheadroom = skb_headroom(skb);
1803 	int head_copy_len, head_copy_off;
1804 
1805 	if (!n)
1806 		return NULL;
1807 
1808 	skb_reserve(n, newheadroom);
1809 
1810 	/* Set the tail pointer and length */
1811 	skb_put(n, skb->len);
1812 
1813 	head_copy_len = oldheadroom;
1814 	head_copy_off = 0;
1815 	if (newheadroom <= head_copy_len)
1816 		head_copy_len = newheadroom;
1817 	else
1818 		head_copy_off = newheadroom - head_copy_len;
1819 
1820 	/* Copy the linear header and data. */
1821 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1822 			     skb->len + head_copy_len));
1823 
1824 	skb_copy_header(n, skb);
1825 
1826 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1827 
1828 	return n;
1829 }
1830 EXPORT_SYMBOL(skb_copy_expand);
1831 
1832 /**
1833  *	__skb_pad		-	zero pad the tail of an skb
1834  *	@skb: buffer to pad
1835  *	@pad: space to pad
1836  *	@free_on_error: free buffer on error
1837  *
1838  *	Ensure that a buffer is followed by a padding area that is zero
1839  *	filled. Used by network drivers which may DMA or transfer data
1840  *	beyond the buffer end onto the wire.
1841  *
1842  *	May return error in out of memory cases. The skb is freed on error
1843  *	if @free_on_error is true.
1844  */
1845 
1846 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1847 {
1848 	int err;
1849 	int ntail;
1850 
1851 	/* If the skbuff is non linear tailroom is always zero.. */
1852 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1853 		memset(skb->data+skb->len, 0, pad);
1854 		return 0;
1855 	}
1856 
1857 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1858 	if (likely(skb_cloned(skb) || ntail > 0)) {
1859 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1860 		if (unlikely(err))
1861 			goto free_skb;
1862 	}
1863 
1864 	/* FIXME: The use of this function with non-linear skb's really needs
1865 	 * to be audited.
1866 	 */
1867 	err = skb_linearize(skb);
1868 	if (unlikely(err))
1869 		goto free_skb;
1870 
1871 	memset(skb->data + skb->len, 0, pad);
1872 	return 0;
1873 
1874 free_skb:
1875 	if (free_on_error)
1876 		kfree_skb(skb);
1877 	return err;
1878 }
1879 EXPORT_SYMBOL(__skb_pad);
1880 
1881 /**
1882  *	pskb_put - add data to the tail of a potentially fragmented buffer
1883  *	@skb: start of the buffer to use
1884  *	@tail: tail fragment of the buffer to use
1885  *	@len: amount of data to add
1886  *
1887  *	This function extends the used data area of the potentially
1888  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1889  *	@skb itself. If this would exceed the total buffer size the kernel
1890  *	will panic. A pointer to the first byte of the extra data is
1891  *	returned.
1892  */
1893 
1894 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1895 {
1896 	if (tail != skb) {
1897 		skb->data_len += len;
1898 		skb->len += len;
1899 	}
1900 	return skb_put(tail, len);
1901 }
1902 EXPORT_SYMBOL_GPL(pskb_put);
1903 
1904 /**
1905  *	skb_put - add data to a buffer
1906  *	@skb: buffer to use
1907  *	@len: amount of data to add
1908  *
1909  *	This function extends the used data area of the buffer. If this would
1910  *	exceed the total buffer size the kernel will panic. A pointer to the
1911  *	first byte of the extra data is returned.
1912  */
1913 void *skb_put(struct sk_buff *skb, unsigned int len)
1914 {
1915 	void *tmp = skb_tail_pointer(skb);
1916 	SKB_LINEAR_ASSERT(skb);
1917 	skb->tail += len;
1918 	skb->len  += len;
1919 	if (unlikely(skb->tail > skb->end))
1920 		skb_over_panic(skb, len, __builtin_return_address(0));
1921 	return tmp;
1922 }
1923 EXPORT_SYMBOL(skb_put);
1924 
1925 /**
1926  *	skb_push - add data to the start of a buffer
1927  *	@skb: buffer to use
1928  *	@len: amount of data to add
1929  *
1930  *	This function extends the used data area of the buffer at the buffer
1931  *	start. If this would exceed the total buffer headroom the kernel will
1932  *	panic. A pointer to the first byte of the extra data is returned.
1933  */
1934 void *skb_push(struct sk_buff *skb, unsigned int len)
1935 {
1936 	skb->data -= len;
1937 	skb->len  += len;
1938 	if (unlikely(skb->data < skb->head))
1939 		skb_under_panic(skb, len, __builtin_return_address(0));
1940 	return skb->data;
1941 }
1942 EXPORT_SYMBOL(skb_push);
1943 
1944 /**
1945  *	skb_pull - remove data from the start of a buffer
1946  *	@skb: buffer to use
1947  *	@len: amount of data to remove
1948  *
1949  *	This function removes data from the start of a buffer, returning
1950  *	the memory to the headroom. A pointer to the next data in the buffer
1951  *	is returned. Once the data has been pulled future pushes will overwrite
1952  *	the old data.
1953  */
1954 void *skb_pull(struct sk_buff *skb, unsigned int len)
1955 {
1956 	return skb_pull_inline(skb, len);
1957 }
1958 EXPORT_SYMBOL(skb_pull);
1959 
1960 /**
1961  *	skb_trim - remove end from a buffer
1962  *	@skb: buffer to alter
1963  *	@len: new length
1964  *
1965  *	Cut the length of a buffer down by removing data from the tail. If
1966  *	the buffer is already under the length specified it is not modified.
1967  *	The skb must be linear.
1968  */
1969 void skb_trim(struct sk_buff *skb, unsigned int len)
1970 {
1971 	if (skb->len > len)
1972 		__skb_trim(skb, len);
1973 }
1974 EXPORT_SYMBOL(skb_trim);
1975 
1976 /* Trims skb to length len. It can change skb pointers.
1977  */
1978 
1979 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1980 {
1981 	struct sk_buff **fragp;
1982 	struct sk_buff *frag;
1983 	int offset = skb_headlen(skb);
1984 	int nfrags = skb_shinfo(skb)->nr_frags;
1985 	int i;
1986 	int err;
1987 
1988 	if (skb_cloned(skb) &&
1989 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1990 		return err;
1991 
1992 	i = 0;
1993 	if (offset >= len)
1994 		goto drop_pages;
1995 
1996 	for (; i < nfrags; i++) {
1997 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1998 
1999 		if (end < len) {
2000 			offset = end;
2001 			continue;
2002 		}
2003 
2004 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2005 
2006 drop_pages:
2007 		skb_shinfo(skb)->nr_frags = i;
2008 
2009 		for (; i < nfrags; i++)
2010 			skb_frag_unref(skb, i);
2011 
2012 		if (skb_has_frag_list(skb))
2013 			skb_drop_fraglist(skb);
2014 		goto done;
2015 	}
2016 
2017 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2018 	     fragp = &frag->next) {
2019 		int end = offset + frag->len;
2020 
2021 		if (skb_shared(frag)) {
2022 			struct sk_buff *nfrag;
2023 
2024 			nfrag = skb_clone(frag, GFP_ATOMIC);
2025 			if (unlikely(!nfrag))
2026 				return -ENOMEM;
2027 
2028 			nfrag->next = frag->next;
2029 			consume_skb(frag);
2030 			frag = nfrag;
2031 			*fragp = frag;
2032 		}
2033 
2034 		if (end < len) {
2035 			offset = end;
2036 			continue;
2037 		}
2038 
2039 		if (end > len &&
2040 		    unlikely((err = pskb_trim(frag, len - offset))))
2041 			return err;
2042 
2043 		if (frag->next)
2044 			skb_drop_list(&frag->next);
2045 		break;
2046 	}
2047 
2048 done:
2049 	if (len > skb_headlen(skb)) {
2050 		skb->data_len -= skb->len - len;
2051 		skb->len       = len;
2052 	} else {
2053 		skb->len       = len;
2054 		skb->data_len  = 0;
2055 		skb_set_tail_pointer(skb, len);
2056 	}
2057 
2058 	if (!skb->sk || skb->destructor == sock_edemux)
2059 		skb_condense(skb);
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL(___pskb_trim);
2063 
2064 /* Note : use pskb_trim_rcsum() instead of calling this directly
2065  */
2066 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2067 {
2068 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2069 		int delta = skb->len - len;
2070 
2071 		skb->csum = csum_block_sub(skb->csum,
2072 					   skb_checksum(skb, len, delta, 0),
2073 					   len);
2074 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2075 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2076 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2077 
2078 		if (offset + sizeof(__sum16) > hdlen)
2079 			return -EINVAL;
2080 	}
2081 	return __pskb_trim(skb, len);
2082 }
2083 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2084 
2085 /**
2086  *	__pskb_pull_tail - advance tail of skb header
2087  *	@skb: buffer to reallocate
2088  *	@delta: number of bytes to advance tail
2089  *
2090  *	The function makes a sense only on a fragmented &sk_buff,
2091  *	it expands header moving its tail forward and copying necessary
2092  *	data from fragmented part.
2093  *
2094  *	&sk_buff MUST have reference count of 1.
2095  *
2096  *	Returns %NULL (and &sk_buff does not change) if pull failed
2097  *	or value of new tail of skb in the case of success.
2098  *
2099  *	All the pointers pointing into skb header may change and must be
2100  *	reloaded after call to this function.
2101  */
2102 
2103 /* Moves tail of skb head forward, copying data from fragmented part,
2104  * when it is necessary.
2105  * 1. It may fail due to malloc failure.
2106  * 2. It may change skb pointers.
2107  *
2108  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2109  */
2110 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2111 {
2112 	/* If skb has not enough free space at tail, get new one
2113 	 * plus 128 bytes for future expansions. If we have enough
2114 	 * room at tail, reallocate without expansion only if skb is cloned.
2115 	 */
2116 	int i, k, eat = (skb->tail + delta) - skb->end;
2117 
2118 	if (eat > 0 || skb_cloned(skb)) {
2119 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2120 				     GFP_ATOMIC))
2121 			return NULL;
2122 	}
2123 
2124 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2125 			     skb_tail_pointer(skb), delta));
2126 
2127 	/* Optimization: no fragments, no reasons to preestimate
2128 	 * size of pulled pages. Superb.
2129 	 */
2130 	if (!skb_has_frag_list(skb))
2131 		goto pull_pages;
2132 
2133 	/* Estimate size of pulled pages. */
2134 	eat = delta;
2135 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2136 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2137 
2138 		if (size >= eat)
2139 			goto pull_pages;
2140 		eat -= size;
2141 	}
2142 
2143 	/* If we need update frag list, we are in troubles.
2144 	 * Certainly, it is possible to add an offset to skb data,
2145 	 * but taking into account that pulling is expected to
2146 	 * be very rare operation, it is worth to fight against
2147 	 * further bloating skb head and crucify ourselves here instead.
2148 	 * Pure masohism, indeed. 8)8)
2149 	 */
2150 	if (eat) {
2151 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2152 		struct sk_buff *clone = NULL;
2153 		struct sk_buff *insp = NULL;
2154 
2155 		do {
2156 			if (list->len <= eat) {
2157 				/* Eaten as whole. */
2158 				eat -= list->len;
2159 				list = list->next;
2160 				insp = list;
2161 			} else {
2162 				/* Eaten partially. */
2163 
2164 				if (skb_shared(list)) {
2165 					/* Sucks! We need to fork list. :-( */
2166 					clone = skb_clone(list, GFP_ATOMIC);
2167 					if (!clone)
2168 						return NULL;
2169 					insp = list->next;
2170 					list = clone;
2171 				} else {
2172 					/* This may be pulled without
2173 					 * problems. */
2174 					insp = list;
2175 				}
2176 				if (!pskb_pull(list, eat)) {
2177 					kfree_skb(clone);
2178 					return NULL;
2179 				}
2180 				break;
2181 			}
2182 		} while (eat);
2183 
2184 		/* Free pulled out fragments. */
2185 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2186 			skb_shinfo(skb)->frag_list = list->next;
2187 			kfree_skb(list);
2188 		}
2189 		/* And insert new clone at head. */
2190 		if (clone) {
2191 			clone->next = list;
2192 			skb_shinfo(skb)->frag_list = clone;
2193 		}
2194 	}
2195 	/* Success! Now we may commit changes to skb data. */
2196 
2197 pull_pages:
2198 	eat = delta;
2199 	k = 0;
2200 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2201 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2202 
2203 		if (size <= eat) {
2204 			skb_frag_unref(skb, i);
2205 			eat -= size;
2206 		} else {
2207 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2208 
2209 			*frag = skb_shinfo(skb)->frags[i];
2210 			if (eat) {
2211 				skb_frag_off_add(frag, eat);
2212 				skb_frag_size_sub(frag, eat);
2213 				if (!i)
2214 					goto end;
2215 				eat = 0;
2216 			}
2217 			k++;
2218 		}
2219 	}
2220 	skb_shinfo(skb)->nr_frags = k;
2221 
2222 end:
2223 	skb->tail     += delta;
2224 	skb->data_len -= delta;
2225 
2226 	if (!skb->data_len)
2227 		skb_zcopy_clear(skb, false);
2228 
2229 	return skb_tail_pointer(skb);
2230 }
2231 EXPORT_SYMBOL(__pskb_pull_tail);
2232 
2233 /**
2234  *	skb_copy_bits - copy bits from skb to kernel buffer
2235  *	@skb: source skb
2236  *	@offset: offset in source
2237  *	@to: destination buffer
2238  *	@len: number of bytes to copy
2239  *
2240  *	Copy the specified number of bytes from the source skb to the
2241  *	destination buffer.
2242  *
2243  *	CAUTION ! :
2244  *		If its prototype is ever changed,
2245  *		check arch/{*}/net/{*}.S files,
2246  *		since it is called from BPF assembly code.
2247  */
2248 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2249 {
2250 	int start = skb_headlen(skb);
2251 	struct sk_buff *frag_iter;
2252 	int i, copy;
2253 
2254 	if (offset > (int)skb->len - len)
2255 		goto fault;
2256 
2257 	/* Copy header. */
2258 	if ((copy = start - offset) > 0) {
2259 		if (copy > len)
2260 			copy = len;
2261 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2262 		if ((len -= copy) == 0)
2263 			return 0;
2264 		offset += copy;
2265 		to     += copy;
2266 	}
2267 
2268 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2269 		int end;
2270 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2271 
2272 		WARN_ON(start > offset + len);
2273 
2274 		end = start + skb_frag_size(f);
2275 		if ((copy = end - offset) > 0) {
2276 			u32 p_off, p_len, copied;
2277 			struct page *p;
2278 			u8 *vaddr;
2279 
2280 			if (copy > len)
2281 				copy = len;
2282 
2283 			skb_frag_foreach_page(f,
2284 					      skb_frag_off(f) + offset - start,
2285 					      copy, p, p_off, p_len, copied) {
2286 				vaddr = kmap_atomic(p);
2287 				memcpy(to + copied, vaddr + p_off, p_len);
2288 				kunmap_atomic(vaddr);
2289 			}
2290 
2291 			if ((len -= copy) == 0)
2292 				return 0;
2293 			offset += copy;
2294 			to     += copy;
2295 		}
2296 		start = end;
2297 	}
2298 
2299 	skb_walk_frags(skb, frag_iter) {
2300 		int end;
2301 
2302 		WARN_ON(start > offset + len);
2303 
2304 		end = start + frag_iter->len;
2305 		if ((copy = end - offset) > 0) {
2306 			if (copy > len)
2307 				copy = len;
2308 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2309 				goto fault;
2310 			if ((len -= copy) == 0)
2311 				return 0;
2312 			offset += copy;
2313 			to     += copy;
2314 		}
2315 		start = end;
2316 	}
2317 
2318 	if (!len)
2319 		return 0;
2320 
2321 fault:
2322 	return -EFAULT;
2323 }
2324 EXPORT_SYMBOL(skb_copy_bits);
2325 
2326 /*
2327  * Callback from splice_to_pipe(), if we need to release some pages
2328  * at the end of the spd in case we error'ed out in filling the pipe.
2329  */
2330 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2331 {
2332 	put_page(spd->pages[i]);
2333 }
2334 
2335 static struct page *linear_to_page(struct page *page, unsigned int *len,
2336 				   unsigned int *offset,
2337 				   struct sock *sk)
2338 {
2339 	struct page_frag *pfrag = sk_page_frag(sk);
2340 
2341 	if (!sk_page_frag_refill(sk, pfrag))
2342 		return NULL;
2343 
2344 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2345 
2346 	memcpy(page_address(pfrag->page) + pfrag->offset,
2347 	       page_address(page) + *offset, *len);
2348 	*offset = pfrag->offset;
2349 	pfrag->offset += *len;
2350 
2351 	return pfrag->page;
2352 }
2353 
2354 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2355 			     struct page *page,
2356 			     unsigned int offset)
2357 {
2358 	return	spd->nr_pages &&
2359 		spd->pages[spd->nr_pages - 1] == page &&
2360 		(spd->partial[spd->nr_pages - 1].offset +
2361 		 spd->partial[spd->nr_pages - 1].len == offset);
2362 }
2363 
2364 /*
2365  * Fill page/offset/length into spd, if it can hold more pages.
2366  */
2367 static bool spd_fill_page(struct splice_pipe_desc *spd,
2368 			  struct pipe_inode_info *pipe, struct page *page,
2369 			  unsigned int *len, unsigned int offset,
2370 			  bool linear,
2371 			  struct sock *sk)
2372 {
2373 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2374 		return true;
2375 
2376 	if (linear) {
2377 		page = linear_to_page(page, len, &offset, sk);
2378 		if (!page)
2379 			return true;
2380 	}
2381 	if (spd_can_coalesce(spd, page, offset)) {
2382 		spd->partial[spd->nr_pages - 1].len += *len;
2383 		return false;
2384 	}
2385 	get_page(page);
2386 	spd->pages[spd->nr_pages] = page;
2387 	spd->partial[spd->nr_pages].len = *len;
2388 	spd->partial[spd->nr_pages].offset = offset;
2389 	spd->nr_pages++;
2390 
2391 	return false;
2392 }
2393 
2394 static bool __splice_segment(struct page *page, unsigned int poff,
2395 			     unsigned int plen, unsigned int *off,
2396 			     unsigned int *len,
2397 			     struct splice_pipe_desc *spd, bool linear,
2398 			     struct sock *sk,
2399 			     struct pipe_inode_info *pipe)
2400 {
2401 	if (!*len)
2402 		return true;
2403 
2404 	/* skip this segment if already processed */
2405 	if (*off >= plen) {
2406 		*off -= plen;
2407 		return false;
2408 	}
2409 
2410 	/* ignore any bits we already processed */
2411 	poff += *off;
2412 	plen -= *off;
2413 	*off = 0;
2414 
2415 	do {
2416 		unsigned int flen = min(*len, plen);
2417 
2418 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2419 				  linear, sk))
2420 			return true;
2421 		poff += flen;
2422 		plen -= flen;
2423 		*len -= flen;
2424 	} while (*len && plen);
2425 
2426 	return false;
2427 }
2428 
2429 /*
2430  * Map linear and fragment data from the skb to spd. It reports true if the
2431  * pipe is full or if we already spliced the requested length.
2432  */
2433 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2434 			      unsigned int *offset, unsigned int *len,
2435 			      struct splice_pipe_desc *spd, struct sock *sk)
2436 {
2437 	int seg;
2438 	struct sk_buff *iter;
2439 
2440 	/* map the linear part :
2441 	 * If skb->head_frag is set, this 'linear' part is backed by a
2442 	 * fragment, and if the head is not shared with any clones then
2443 	 * we can avoid a copy since we own the head portion of this page.
2444 	 */
2445 	if (__splice_segment(virt_to_page(skb->data),
2446 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2447 			     skb_headlen(skb),
2448 			     offset, len, spd,
2449 			     skb_head_is_locked(skb),
2450 			     sk, pipe))
2451 		return true;
2452 
2453 	/*
2454 	 * then map the fragments
2455 	 */
2456 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2457 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2458 
2459 		if (__splice_segment(skb_frag_page(f),
2460 				     skb_frag_off(f), skb_frag_size(f),
2461 				     offset, len, spd, false, sk, pipe))
2462 			return true;
2463 	}
2464 
2465 	skb_walk_frags(skb, iter) {
2466 		if (*offset >= iter->len) {
2467 			*offset -= iter->len;
2468 			continue;
2469 		}
2470 		/* __skb_splice_bits() only fails if the output has no room
2471 		 * left, so no point in going over the frag_list for the error
2472 		 * case.
2473 		 */
2474 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2475 			return true;
2476 	}
2477 
2478 	return false;
2479 }
2480 
2481 /*
2482  * Map data from the skb to a pipe. Should handle both the linear part,
2483  * the fragments, and the frag list.
2484  */
2485 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2486 		    struct pipe_inode_info *pipe, unsigned int tlen,
2487 		    unsigned int flags)
2488 {
2489 	struct partial_page partial[MAX_SKB_FRAGS];
2490 	struct page *pages[MAX_SKB_FRAGS];
2491 	struct splice_pipe_desc spd = {
2492 		.pages = pages,
2493 		.partial = partial,
2494 		.nr_pages_max = MAX_SKB_FRAGS,
2495 		.ops = &nosteal_pipe_buf_ops,
2496 		.spd_release = sock_spd_release,
2497 	};
2498 	int ret = 0;
2499 
2500 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2501 
2502 	if (spd.nr_pages)
2503 		ret = splice_to_pipe(pipe, &spd);
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(skb_splice_bits);
2508 
2509 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2510 			    struct kvec *vec, size_t num, size_t size)
2511 {
2512 	struct socket *sock = sk->sk_socket;
2513 
2514 	if (!sock)
2515 		return -EINVAL;
2516 	return kernel_sendmsg(sock, msg, vec, num, size);
2517 }
2518 
2519 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2520 			     size_t size, int flags)
2521 {
2522 	struct socket *sock = sk->sk_socket;
2523 
2524 	if (!sock)
2525 		return -EINVAL;
2526 	return kernel_sendpage(sock, page, offset, size, flags);
2527 }
2528 
2529 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2530 			    struct kvec *vec, size_t num, size_t size);
2531 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2532 			     size_t size, int flags);
2533 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2534 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2535 {
2536 	unsigned int orig_len = len;
2537 	struct sk_buff *head = skb;
2538 	unsigned short fragidx;
2539 	int slen, ret;
2540 
2541 do_frag_list:
2542 
2543 	/* Deal with head data */
2544 	while (offset < skb_headlen(skb) && len) {
2545 		struct kvec kv;
2546 		struct msghdr msg;
2547 
2548 		slen = min_t(int, len, skb_headlen(skb) - offset);
2549 		kv.iov_base = skb->data + offset;
2550 		kv.iov_len = slen;
2551 		memset(&msg, 0, sizeof(msg));
2552 		msg.msg_flags = MSG_DONTWAIT;
2553 
2554 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2555 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2556 		if (ret <= 0)
2557 			goto error;
2558 
2559 		offset += ret;
2560 		len -= ret;
2561 	}
2562 
2563 	/* All the data was skb head? */
2564 	if (!len)
2565 		goto out;
2566 
2567 	/* Make offset relative to start of frags */
2568 	offset -= skb_headlen(skb);
2569 
2570 	/* Find where we are in frag list */
2571 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2572 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2573 
2574 		if (offset < skb_frag_size(frag))
2575 			break;
2576 
2577 		offset -= skb_frag_size(frag);
2578 	}
2579 
2580 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2581 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2582 
2583 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2584 
2585 		while (slen) {
2586 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2587 					      sendpage_unlocked, sk,
2588 					      skb_frag_page(frag),
2589 					      skb_frag_off(frag) + offset,
2590 					      slen, MSG_DONTWAIT);
2591 			if (ret <= 0)
2592 				goto error;
2593 
2594 			len -= ret;
2595 			offset += ret;
2596 			slen -= ret;
2597 		}
2598 
2599 		offset = 0;
2600 	}
2601 
2602 	if (len) {
2603 		/* Process any frag lists */
2604 
2605 		if (skb == head) {
2606 			if (skb_has_frag_list(skb)) {
2607 				skb = skb_shinfo(skb)->frag_list;
2608 				goto do_frag_list;
2609 			}
2610 		} else if (skb->next) {
2611 			skb = skb->next;
2612 			goto do_frag_list;
2613 		}
2614 	}
2615 
2616 out:
2617 	return orig_len - len;
2618 
2619 error:
2620 	return orig_len == len ? ret : orig_len - len;
2621 }
2622 
2623 /* Send skb data on a socket. Socket must be locked. */
2624 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2625 			 int len)
2626 {
2627 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2628 			       kernel_sendpage_locked);
2629 }
2630 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2631 
2632 /* Send skb data on a socket. Socket must be unlocked. */
2633 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2634 {
2635 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2636 			       sendpage_unlocked);
2637 }
2638 
2639 /**
2640  *	skb_store_bits - store bits from kernel buffer to skb
2641  *	@skb: destination buffer
2642  *	@offset: offset in destination
2643  *	@from: source buffer
2644  *	@len: number of bytes to copy
2645  *
2646  *	Copy the specified number of bytes from the source buffer to the
2647  *	destination skb.  This function handles all the messy bits of
2648  *	traversing fragment lists and such.
2649  */
2650 
2651 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2652 {
2653 	int start = skb_headlen(skb);
2654 	struct sk_buff *frag_iter;
2655 	int i, copy;
2656 
2657 	if (offset > (int)skb->len - len)
2658 		goto fault;
2659 
2660 	if ((copy = start - offset) > 0) {
2661 		if (copy > len)
2662 			copy = len;
2663 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2664 		if ((len -= copy) == 0)
2665 			return 0;
2666 		offset += copy;
2667 		from += copy;
2668 	}
2669 
2670 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2671 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2672 		int end;
2673 
2674 		WARN_ON(start > offset + len);
2675 
2676 		end = start + skb_frag_size(frag);
2677 		if ((copy = end - offset) > 0) {
2678 			u32 p_off, p_len, copied;
2679 			struct page *p;
2680 			u8 *vaddr;
2681 
2682 			if (copy > len)
2683 				copy = len;
2684 
2685 			skb_frag_foreach_page(frag,
2686 					      skb_frag_off(frag) + offset - start,
2687 					      copy, p, p_off, p_len, copied) {
2688 				vaddr = kmap_atomic(p);
2689 				memcpy(vaddr + p_off, from + copied, p_len);
2690 				kunmap_atomic(vaddr);
2691 			}
2692 
2693 			if ((len -= copy) == 0)
2694 				return 0;
2695 			offset += copy;
2696 			from += copy;
2697 		}
2698 		start = end;
2699 	}
2700 
2701 	skb_walk_frags(skb, frag_iter) {
2702 		int end;
2703 
2704 		WARN_ON(start > offset + len);
2705 
2706 		end = start + frag_iter->len;
2707 		if ((copy = end - offset) > 0) {
2708 			if (copy > len)
2709 				copy = len;
2710 			if (skb_store_bits(frag_iter, offset - start,
2711 					   from, copy))
2712 				goto fault;
2713 			if ((len -= copy) == 0)
2714 				return 0;
2715 			offset += copy;
2716 			from += copy;
2717 		}
2718 		start = end;
2719 	}
2720 	if (!len)
2721 		return 0;
2722 
2723 fault:
2724 	return -EFAULT;
2725 }
2726 EXPORT_SYMBOL(skb_store_bits);
2727 
2728 /* Checksum skb data. */
2729 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2730 		      __wsum csum, const struct skb_checksum_ops *ops)
2731 {
2732 	int start = skb_headlen(skb);
2733 	int i, copy = start - offset;
2734 	struct sk_buff *frag_iter;
2735 	int pos = 0;
2736 
2737 	/* Checksum header. */
2738 	if (copy > 0) {
2739 		if (copy > len)
2740 			copy = len;
2741 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2742 				       skb->data + offset, copy, csum);
2743 		if ((len -= copy) == 0)
2744 			return csum;
2745 		offset += copy;
2746 		pos	= copy;
2747 	}
2748 
2749 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 		int end;
2751 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2752 
2753 		WARN_ON(start > offset + len);
2754 
2755 		end = start + skb_frag_size(frag);
2756 		if ((copy = end - offset) > 0) {
2757 			u32 p_off, p_len, copied;
2758 			struct page *p;
2759 			__wsum csum2;
2760 			u8 *vaddr;
2761 
2762 			if (copy > len)
2763 				copy = len;
2764 
2765 			skb_frag_foreach_page(frag,
2766 					      skb_frag_off(frag) + offset - start,
2767 					      copy, p, p_off, p_len, copied) {
2768 				vaddr = kmap_atomic(p);
2769 				csum2 = INDIRECT_CALL_1(ops->update,
2770 							csum_partial_ext,
2771 							vaddr + p_off, p_len, 0);
2772 				kunmap_atomic(vaddr);
2773 				csum = INDIRECT_CALL_1(ops->combine,
2774 						       csum_block_add_ext, csum,
2775 						       csum2, pos, p_len);
2776 				pos += p_len;
2777 			}
2778 
2779 			if (!(len -= copy))
2780 				return csum;
2781 			offset += copy;
2782 		}
2783 		start = end;
2784 	}
2785 
2786 	skb_walk_frags(skb, frag_iter) {
2787 		int end;
2788 
2789 		WARN_ON(start > offset + len);
2790 
2791 		end = start + frag_iter->len;
2792 		if ((copy = end - offset) > 0) {
2793 			__wsum csum2;
2794 			if (copy > len)
2795 				copy = len;
2796 			csum2 = __skb_checksum(frag_iter, offset - start,
2797 					       copy, 0, ops);
2798 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2799 					       csum, csum2, pos, copy);
2800 			if ((len -= copy) == 0)
2801 				return csum;
2802 			offset += copy;
2803 			pos    += copy;
2804 		}
2805 		start = end;
2806 	}
2807 	BUG_ON(len);
2808 
2809 	return csum;
2810 }
2811 EXPORT_SYMBOL(__skb_checksum);
2812 
2813 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2814 		    int len, __wsum csum)
2815 {
2816 	const struct skb_checksum_ops ops = {
2817 		.update  = csum_partial_ext,
2818 		.combine = csum_block_add_ext,
2819 	};
2820 
2821 	return __skb_checksum(skb, offset, len, csum, &ops);
2822 }
2823 EXPORT_SYMBOL(skb_checksum);
2824 
2825 /* Both of above in one bottle. */
2826 
2827 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2828 				    u8 *to, int len)
2829 {
2830 	int start = skb_headlen(skb);
2831 	int i, copy = start - offset;
2832 	struct sk_buff *frag_iter;
2833 	int pos = 0;
2834 	__wsum csum = 0;
2835 
2836 	/* Copy header. */
2837 	if (copy > 0) {
2838 		if (copy > len)
2839 			copy = len;
2840 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2841 						 copy);
2842 		if ((len -= copy) == 0)
2843 			return csum;
2844 		offset += copy;
2845 		to     += copy;
2846 		pos	= copy;
2847 	}
2848 
2849 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2850 		int end;
2851 
2852 		WARN_ON(start > offset + len);
2853 
2854 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2855 		if ((copy = end - offset) > 0) {
2856 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2857 			u32 p_off, p_len, copied;
2858 			struct page *p;
2859 			__wsum csum2;
2860 			u8 *vaddr;
2861 
2862 			if (copy > len)
2863 				copy = len;
2864 
2865 			skb_frag_foreach_page(frag,
2866 					      skb_frag_off(frag) + offset - start,
2867 					      copy, p, p_off, p_len, copied) {
2868 				vaddr = kmap_atomic(p);
2869 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2870 								  to + copied,
2871 								  p_len);
2872 				kunmap_atomic(vaddr);
2873 				csum = csum_block_add(csum, csum2, pos);
2874 				pos += p_len;
2875 			}
2876 
2877 			if (!(len -= copy))
2878 				return csum;
2879 			offset += copy;
2880 			to     += copy;
2881 		}
2882 		start = end;
2883 	}
2884 
2885 	skb_walk_frags(skb, frag_iter) {
2886 		__wsum csum2;
2887 		int end;
2888 
2889 		WARN_ON(start > offset + len);
2890 
2891 		end = start + frag_iter->len;
2892 		if ((copy = end - offset) > 0) {
2893 			if (copy > len)
2894 				copy = len;
2895 			csum2 = skb_copy_and_csum_bits(frag_iter,
2896 						       offset - start,
2897 						       to, copy);
2898 			csum = csum_block_add(csum, csum2, pos);
2899 			if ((len -= copy) == 0)
2900 				return csum;
2901 			offset += copy;
2902 			to     += copy;
2903 			pos    += copy;
2904 		}
2905 		start = end;
2906 	}
2907 	BUG_ON(len);
2908 	return csum;
2909 }
2910 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2911 
2912 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2913 {
2914 	__sum16 sum;
2915 
2916 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2917 	/* See comments in __skb_checksum_complete(). */
2918 	if (likely(!sum)) {
2919 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2920 		    !skb->csum_complete_sw)
2921 			netdev_rx_csum_fault(skb->dev, skb);
2922 	}
2923 	if (!skb_shared(skb))
2924 		skb->csum_valid = !sum;
2925 	return sum;
2926 }
2927 EXPORT_SYMBOL(__skb_checksum_complete_head);
2928 
2929 /* This function assumes skb->csum already holds pseudo header's checksum,
2930  * which has been changed from the hardware checksum, for example, by
2931  * __skb_checksum_validate_complete(). And, the original skb->csum must
2932  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2933  *
2934  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2935  * zero. The new checksum is stored back into skb->csum unless the skb is
2936  * shared.
2937  */
2938 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2939 {
2940 	__wsum csum;
2941 	__sum16 sum;
2942 
2943 	csum = skb_checksum(skb, 0, skb->len, 0);
2944 
2945 	sum = csum_fold(csum_add(skb->csum, csum));
2946 	/* This check is inverted, because we already knew the hardware
2947 	 * checksum is invalid before calling this function. So, if the
2948 	 * re-computed checksum is valid instead, then we have a mismatch
2949 	 * between the original skb->csum and skb_checksum(). This means either
2950 	 * the original hardware checksum is incorrect or we screw up skb->csum
2951 	 * when moving skb->data around.
2952 	 */
2953 	if (likely(!sum)) {
2954 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2955 		    !skb->csum_complete_sw)
2956 			netdev_rx_csum_fault(skb->dev, skb);
2957 	}
2958 
2959 	if (!skb_shared(skb)) {
2960 		/* Save full packet checksum */
2961 		skb->csum = csum;
2962 		skb->ip_summed = CHECKSUM_COMPLETE;
2963 		skb->csum_complete_sw = 1;
2964 		skb->csum_valid = !sum;
2965 	}
2966 
2967 	return sum;
2968 }
2969 EXPORT_SYMBOL(__skb_checksum_complete);
2970 
2971 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2972 {
2973 	net_warn_ratelimited(
2974 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2975 		__func__);
2976 	return 0;
2977 }
2978 
2979 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2980 				       int offset, int len)
2981 {
2982 	net_warn_ratelimited(
2983 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2984 		__func__);
2985 	return 0;
2986 }
2987 
2988 static const struct skb_checksum_ops default_crc32c_ops = {
2989 	.update  = warn_crc32c_csum_update,
2990 	.combine = warn_crc32c_csum_combine,
2991 };
2992 
2993 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2994 	&default_crc32c_ops;
2995 EXPORT_SYMBOL(crc32c_csum_stub);
2996 
2997  /**
2998  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2999  *	@from: source buffer
3000  *
3001  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3002  *	into skb_zerocopy().
3003  */
3004 unsigned int
3005 skb_zerocopy_headlen(const struct sk_buff *from)
3006 {
3007 	unsigned int hlen = 0;
3008 
3009 	if (!from->head_frag ||
3010 	    skb_headlen(from) < L1_CACHE_BYTES ||
3011 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3012 		hlen = skb_headlen(from);
3013 
3014 	if (skb_has_frag_list(from))
3015 		hlen = from->len;
3016 
3017 	return hlen;
3018 }
3019 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3020 
3021 /**
3022  *	skb_zerocopy - Zero copy skb to skb
3023  *	@to: destination buffer
3024  *	@from: source buffer
3025  *	@len: number of bytes to copy from source buffer
3026  *	@hlen: size of linear headroom in destination buffer
3027  *
3028  *	Copies up to `len` bytes from `from` to `to` by creating references
3029  *	to the frags in the source buffer.
3030  *
3031  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3032  *	headroom in the `to` buffer.
3033  *
3034  *	Return value:
3035  *	0: everything is OK
3036  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3037  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3038  */
3039 int
3040 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3041 {
3042 	int i, j = 0;
3043 	int plen = 0; /* length of skb->head fragment */
3044 	int ret;
3045 	struct page *page;
3046 	unsigned int offset;
3047 
3048 	BUG_ON(!from->head_frag && !hlen);
3049 
3050 	/* dont bother with small payloads */
3051 	if (len <= skb_tailroom(to))
3052 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3053 
3054 	if (hlen) {
3055 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3056 		if (unlikely(ret))
3057 			return ret;
3058 		len -= hlen;
3059 	} else {
3060 		plen = min_t(int, skb_headlen(from), len);
3061 		if (plen) {
3062 			page = virt_to_head_page(from->head);
3063 			offset = from->data - (unsigned char *)page_address(page);
3064 			__skb_fill_page_desc(to, 0, page, offset, plen);
3065 			get_page(page);
3066 			j = 1;
3067 			len -= plen;
3068 		}
3069 	}
3070 
3071 	to->truesize += len + plen;
3072 	to->len += len + plen;
3073 	to->data_len += len + plen;
3074 
3075 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3076 		skb_tx_error(from);
3077 		return -ENOMEM;
3078 	}
3079 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3080 
3081 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3082 		int size;
3083 
3084 		if (!len)
3085 			break;
3086 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3087 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3088 					len);
3089 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3090 		len -= size;
3091 		skb_frag_ref(to, j);
3092 		j++;
3093 	}
3094 	skb_shinfo(to)->nr_frags = j;
3095 
3096 	return 0;
3097 }
3098 EXPORT_SYMBOL_GPL(skb_zerocopy);
3099 
3100 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3101 {
3102 	__wsum csum;
3103 	long csstart;
3104 
3105 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3106 		csstart = skb_checksum_start_offset(skb);
3107 	else
3108 		csstart = skb_headlen(skb);
3109 
3110 	BUG_ON(csstart > skb_headlen(skb));
3111 
3112 	skb_copy_from_linear_data(skb, to, csstart);
3113 
3114 	csum = 0;
3115 	if (csstart != skb->len)
3116 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3117 					      skb->len - csstart);
3118 
3119 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3120 		long csstuff = csstart + skb->csum_offset;
3121 
3122 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3123 	}
3124 }
3125 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3126 
3127 /**
3128  *	skb_dequeue - remove from the head of the queue
3129  *	@list: list to dequeue from
3130  *
3131  *	Remove the head of the list. The list lock is taken so the function
3132  *	may be used safely with other locking list functions. The head item is
3133  *	returned or %NULL if the list is empty.
3134  */
3135 
3136 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3137 {
3138 	unsigned long flags;
3139 	struct sk_buff *result;
3140 
3141 	spin_lock_irqsave(&list->lock, flags);
3142 	result = __skb_dequeue(list);
3143 	spin_unlock_irqrestore(&list->lock, flags);
3144 	return result;
3145 }
3146 EXPORT_SYMBOL(skb_dequeue);
3147 
3148 /**
3149  *	skb_dequeue_tail - remove from the tail of the queue
3150  *	@list: list to dequeue from
3151  *
3152  *	Remove the tail of the list. The list lock is taken so the function
3153  *	may be used safely with other locking list functions. The tail item is
3154  *	returned or %NULL if the list is empty.
3155  */
3156 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3157 {
3158 	unsigned long flags;
3159 	struct sk_buff *result;
3160 
3161 	spin_lock_irqsave(&list->lock, flags);
3162 	result = __skb_dequeue_tail(list);
3163 	spin_unlock_irqrestore(&list->lock, flags);
3164 	return result;
3165 }
3166 EXPORT_SYMBOL(skb_dequeue_tail);
3167 
3168 /**
3169  *	skb_queue_purge - empty a list
3170  *	@list: list to empty
3171  *
3172  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3173  *	the list and one reference dropped. This function takes the list
3174  *	lock and is atomic with respect to other list locking functions.
3175  */
3176 void skb_queue_purge(struct sk_buff_head *list)
3177 {
3178 	struct sk_buff *skb;
3179 	while ((skb = skb_dequeue(list)) != NULL)
3180 		kfree_skb(skb);
3181 }
3182 EXPORT_SYMBOL(skb_queue_purge);
3183 
3184 /**
3185  *	skb_rbtree_purge - empty a skb rbtree
3186  *	@root: root of the rbtree to empty
3187  *	Return value: the sum of truesizes of all purged skbs.
3188  *
3189  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3190  *	the list and one reference dropped. This function does not take
3191  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3192  *	out-of-order queue is protected by the socket lock).
3193  */
3194 unsigned int skb_rbtree_purge(struct rb_root *root)
3195 {
3196 	struct rb_node *p = rb_first(root);
3197 	unsigned int sum = 0;
3198 
3199 	while (p) {
3200 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3201 
3202 		p = rb_next(p);
3203 		rb_erase(&skb->rbnode, root);
3204 		sum += skb->truesize;
3205 		kfree_skb(skb);
3206 	}
3207 	return sum;
3208 }
3209 
3210 /**
3211  *	skb_queue_head - queue a buffer at the list head
3212  *	@list: list to use
3213  *	@newsk: buffer to queue
3214  *
3215  *	Queue a buffer at the start of the list. This function takes the
3216  *	list lock and can be used safely with other locking &sk_buff functions
3217  *	safely.
3218  *
3219  *	A buffer cannot be placed on two lists at the same time.
3220  */
3221 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3222 {
3223 	unsigned long flags;
3224 
3225 	spin_lock_irqsave(&list->lock, flags);
3226 	__skb_queue_head(list, newsk);
3227 	spin_unlock_irqrestore(&list->lock, flags);
3228 }
3229 EXPORT_SYMBOL(skb_queue_head);
3230 
3231 /**
3232  *	skb_queue_tail - queue a buffer at the list tail
3233  *	@list: list to use
3234  *	@newsk: buffer to queue
3235  *
3236  *	Queue a buffer at the tail of the list. This function takes the
3237  *	list lock and can be used safely with other locking &sk_buff functions
3238  *	safely.
3239  *
3240  *	A buffer cannot be placed on two lists at the same time.
3241  */
3242 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3243 {
3244 	unsigned long flags;
3245 
3246 	spin_lock_irqsave(&list->lock, flags);
3247 	__skb_queue_tail(list, newsk);
3248 	spin_unlock_irqrestore(&list->lock, flags);
3249 }
3250 EXPORT_SYMBOL(skb_queue_tail);
3251 
3252 /**
3253  *	skb_unlink	-	remove a buffer from a list
3254  *	@skb: buffer to remove
3255  *	@list: list to use
3256  *
3257  *	Remove a packet from a list. The list locks are taken and this
3258  *	function is atomic with respect to other list locked calls
3259  *
3260  *	You must know what list the SKB is on.
3261  */
3262 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3263 {
3264 	unsigned long flags;
3265 
3266 	spin_lock_irqsave(&list->lock, flags);
3267 	__skb_unlink(skb, list);
3268 	spin_unlock_irqrestore(&list->lock, flags);
3269 }
3270 EXPORT_SYMBOL(skb_unlink);
3271 
3272 /**
3273  *	skb_append	-	append a buffer
3274  *	@old: buffer to insert after
3275  *	@newsk: buffer to insert
3276  *	@list: list to use
3277  *
3278  *	Place a packet after a given packet in a list. The list locks are taken
3279  *	and this function is atomic with respect to other list locked calls.
3280  *	A buffer cannot be placed on two lists at the same time.
3281  */
3282 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3283 {
3284 	unsigned long flags;
3285 
3286 	spin_lock_irqsave(&list->lock, flags);
3287 	__skb_queue_after(list, old, newsk);
3288 	spin_unlock_irqrestore(&list->lock, flags);
3289 }
3290 EXPORT_SYMBOL(skb_append);
3291 
3292 static inline void skb_split_inside_header(struct sk_buff *skb,
3293 					   struct sk_buff* skb1,
3294 					   const u32 len, const int pos)
3295 {
3296 	int i;
3297 
3298 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3299 					 pos - len);
3300 	/* And move data appendix as is. */
3301 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3302 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3303 
3304 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3305 	skb_shinfo(skb)->nr_frags  = 0;
3306 	skb1->data_len		   = skb->data_len;
3307 	skb1->len		   += skb1->data_len;
3308 	skb->data_len		   = 0;
3309 	skb->len		   = len;
3310 	skb_set_tail_pointer(skb, len);
3311 }
3312 
3313 static inline void skb_split_no_header(struct sk_buff *skb,
3314 				       struct sk_buff* skb1,
3315 				       const u32 len, int pos)
3316 {
3317 	int i, k = 0;
3318 	const int nfrags = skb_shinfo(skb)->nr_frags;
3319 
3320 	skb_shinfo(skb)->nr_frags = 0;
3321 	skb1->len		  = skb1->data_len = skb->len - len;
3322 	skb->len		  = len;
3323 	skb->data_len		  = len - pos;
3324 
3325 	for (i = 0; i < nfrags; i++) {
3326 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3327 
3328 		if (pos + size > len) {
3329 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3330 
3331 			if (pos < len) {
3332 				/* Split frag.
3333 				 * We have two variants in this case:
3334 				 * 1. Move all the frag to the second
3335 				 *    part, if it is possible. F.e.
3336 				 *    this approach is mandatory for TUX,
3337 				 *    where splitting is expensive.
3338 				 * 2. Split is accurately. We make this.
3339 				 */
3340 				skb_frag_ref(skb, i);
3341 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3342 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3343 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3344 				skb_shinfo(skb)->nr_frags++;
3345 			}
3346 			k++;
3347 		} else
3348 			skb_shinfo(skb)->nr_frags++;
3349 		pos += size;
3350 	}
3351 	skb_shinfo(skb1)->nr_frags = k;
3352 }
3353 
3354 /**
3355  * skb_split - Split fragmented skb to two parts at length len.
3356  * @skb: the buffer to split
3357  * @skb1: the buffer to receive the second part
3358  * @len: new length for skb
3359  */
3360 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3361 {
3362 	int pos = skb_headlen(skb);
3363 
3364 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3365 	skb_zerocopy_clone(skb1, skb, 0);
3366 	if (len < pos)	/* Split line is inside header. */
3367 		skb_split_inside_header(skb, skb1, len, pos);
3368 	else		/* Second chunk has no header, nothing to copy. */
3369 		skb_split_no_header(skb, skb1, len, pos);
3370 }
3371 EXPORT_SYMBOL(skb_split);
3372 
3373 /* Shifting from/to a cloned skb is a no-go.
3374  *
3375  * Caller cannot keep skb_shinfo related pointers past calling here!
3376  */
3377 static int skb_prepare_for_shift(struct sk_buff *skb)
3378 {
3379 	int ret = 0;
3380 
3381 	if (skb_cloned(skb)) {
3382 		/* Save and restore truesize: pskb_expand_head() may reallocate
3383 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3384 		 * cannot change truesize at this point.
3385 		 */
3386 		unsigned int save_truesize = skb->truesize;
3387 
3388 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3389 		skb->truesize = save_truesize;
3390 	}
3391 	return ret;
3392 }
3393 
3394 /**
3395  * skb_shift - Shifts paged data partially from skb to another
3396  * @tgt: buffer into which tail data gets added
3397  * @skb: buffer from which the paged data comes from
3398  * @shiftlen: shift up to this many bytes
3399  *
3400  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3401  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3402  * It's up to caller to free skb if everything was shifted.
3403  *
3404  * If @tgt runs out of frags, the whole operation is aborted.
3405  *
3406  * Skb cannot include anything else but paged data while tgt is allowed
3407  * to have non-paged data as well.
3408  *
3409  * TODO: full sized shift could be optimized but that would need
3410  * specialized skb free'er to handle frags without up-to-date nr_frags.
3411  */
3412 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3413 {
3414 	int from, to, merge, todo;
3415 	skb_frag_t *fragfrom, *fragto;
3416 
3417 	BUG_ON(shiftlen > skb->len);
3418 
3419 	if (skb_headlen(skb))
3420 		return 0;
3421 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3422 		return 0;
3423 
3424 	todo = shiftlen;
3425 	from = 0;
3426 	to = skb_shinfo(tgt)->nr_frags;
3427 	fragfrom = &skb_shinfo(skb)->frags[from];
3428 
3429 	/* Actual merge is delayed until the point when we know we can
3430 	 * commit all, so that we don't have to undo partial changes
3431 	 */
3432 	if (!to ||
3433 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3434 			      skb_frag_off(fragfrom))) {
3435 		merge = -1;
3436 	} else {
3437 		merge = to - 1;
3438 
3439 		todo -= skb_frag_size(fragfrom);
3440 		if (todo < 0) {
3441 			if (skb_prepare_for_shift(skb) ||
3442 			    skb_prepare_for_shift(tgt))
3443 				return 0;
3444 
3445 			/* All previous frag pointers might be stale! */
3446 			fragfrom = &skb_shinfo(skb)->frags[from];
3447 			fragto = &skb_shinfo(tgt)->frags[merge];
3448 
3449 			skb_frag_size_add(fragto, shiftlen);
3450 			skb_frag_size_sub(fragfrom, shiftlen);
3451 			skb_frag_off_add(fragfrom, shiftlen);
3452 
3453 			goto onlymerged;
3454 		}
3455 
3456 		from++;
3457 	}
3458 
3459 	/* Skip full, not-fitting skb to avoid expensive operations */
3460 	if ((shiftlen == skb->len) &&
3461 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3462 		return 0;
3463 
3464 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3465 		return 0;
3466 
3467 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3468 		if (to == MAX_SKB_FRAGS)
3469 			return 0;
3470 
3471 		fragfrom = &skb_shinfo(skb)->frags[from];
3472 		fragto = &skb_shinfo(tgt)->frags[to];
3473 
3474 		if (todo >= skb_frag_size(fragfrom)) {
3475 			*fragto = *fragfrom;
3476 			todo -= skb_frag_size(fragfrom);
3477 			from++;
3478 			to++;
3479 
3480 		} else {
3481 			__skb_frag_ref(fragfrom);
3482 			skb_frag_page_copy(fragto, fragfrom);
3483 			skb_frag_off_copy(fragto, fragfrom);
3484 			skb_frag_size_set(fragto, todo);
3485 
3486 			skb_frag_off_add(fragfrom, todo);
3487 			skb_frag_size_sub(fragfrom, todo);
3488 			todo = 0;
3489 
3490 			to++;
3491 			break;
3492 		}
3493 	}
3494 
3495 	/* Ready to "commit" this state change to tgt */
3496 	skb_shinfo(tgt)->nr_frags = to;
3497 
3498 	if (merge >= 0) {
3499 		fragfrom = &skb_shinfo(skb)->frags[0];
3500 		fragto = &skb_shinfo(tgt)->frags[merge];
3501 
3502 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3503 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3504 	}
3505 
3506 	/* Reposition in the original skb */
3507 	to = 0;
3508 	while (from < skb_shinfo(skb)->nr_frags)
3509 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3510 	skb_shinfo(skb)->nr_frags = to;
3511 
3512 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3513 
3514 onlymerged:
3515 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3516 	 * the other hand might need it if it needs to be resent
3517 	 */
3518 	tgt->ip_summed = CHECKSUM_PARTIAL;
3519 	skb->ip_summed = CHECKSUM_PARTIAL;
3520 
3521 	/* Yak, is it really working this way? Some helper please? */
3522 	skb->len -= shiftlen;
3523 	skb->data_len -= shiftlen;
3524 	skb->truesize -= shiftlen;
3525 	tgt->len += shiftlen;
3526 	tgt->data_len += shiftlen;
3527 	tgt->truesize += shiftlen;
3528 
3529 	return shiftlen;
3530 }
3531 
3532 /**
3533  * skb_prepare_seq_read - Prepare a sequential read of skb data
3534  * @skb: the buffer to read
3535  * @from: lower offset of data to be read
3536  * @to: upper offset of data to be read
3537  * @st: state variable
3538  *
3539  * Initializes the specified state variable. Must be called before
3540  * invoking skb_seq_read() for the first time.
3541  */
3542 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3543 			  unsigned int to, struct skb_seq_state *st)
3544 {
3545 	st->lower_offset = from;
3546 	st->upper_offset = to;
3547 	st->root_skb = st->cur_skb = skb;
3548 	st->frag_idx = st->stepped_offset = 0;
3549 	st->frag_data = NULL;
3550 	st->frag_off = 0;
3551 }
3552 EXPORT_SYMBOL(skb_prepare_seq_read);
3553 
3554 /**
3555  * skb_seq_read - Sequentially read skb data
3556  * @consumed: number of bytes consumed by the caller so far
3557  * @data: destination pointer for data to be returned
3558  * @st: state variable
3559  *
3560  * Reads a block of skb data at @consumed relative to the
3561  * lower offset specified to skb_prepare_seq_read(). Assigns
3562  * the head of the data block to @data and returns the length
3563  * of the block or 0 if the end of the skb data or the upper
3564  * offset has been reached.
3565  *
3566  * The caller is not required to consume all of the data
3567  * returned, i.e. @consumed is typically set to the number
3568  * of bytes already consumed and the next call to
3569  * skb_seq_read() will return the remaining part of the block.
3570  *
3571  * Note 1: The size of each block of data returned can be arbitrary,
3572  *       this limitation is the cost for zerocopy sequential
3573  *       reads of potentially non linear data.
3574  *
3575  * Note 2: Fragment lists within fragments are not implemented
3576  *       at the moment, state->root_skb could be replaced with
3577  *       a stack for this purpose.
3578  */
3579 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3580 			  struct skb_seq_state *st)
3581 {
3582 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3583 	skb_frag_t *frag;
3584 
3585 	if (unlikely(abs_offset >= st->upper_offset)) {
3586 		if (st->frag_data) {
3587 			kunmap_atomic(st->frag_data);
3588 			st->frag_data = NULL;
3589 		}
3590 		return 0;
3591 	}
3592 
3593 next_skb:
3594 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3595 
3596 	if (abs_offset < block_limit && !st->frag_data) {
3597 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3598 		return block_limit - abs_offset;
3599 	}
3600 
3601 	if (st->frag_idx == 0 && !st->frag_data)
3602 		st->stepped_offset += skb_headlen(st->cur_skb);
3603 
3604 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3605 		unsigned int pg_idx, pg_off, pg_sz;
3606 
3607 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3608 
3609 		pg_idx = 0;
3610 		pg_off = skb_frag_off(frag);
3611 		pg_sz = skb_frag_size(frag);
3612 
3613 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3614 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3615 			pg_off = offset_in_page(pg_off + st->frag_off);
3616 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3617 						    PAGE_SIZE - pg_off);
3618 		}
3619 
3620 		block_limit = pg_sz + st->stepped_offset;
3621 		if (abs_offset < block_limit) {
3622 			if (!st->frag_data)
3623 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3624 
3625 			*data = (u8 *)st->frag_data + pg_off +
3626 				(abs_offset - st->stepped_offset);
3627 
3628 			return block_limit - abs_offset;
3629 		}
3630 
3631 		if (st->frag_data) {
3632 			kunmap_atomic(st->frag_data);
3633 			st->frag_data = NULL;
3634 		}
3635 
3636 		st->stepped_offset += pg_sz;
3637 		st->frag_off += pg_sz;
3638 		if (st->frag_off == skb_frag_size(frag)) {
3639 			st->frag_off = 0;
3640 			st->frag_idx++;
3641 		}
3642 	}
3643 
3644 	if (st->frag_data) {
3645 		kunmap_atomic(st->frag_data);
3646 		st->frag_data = NULL;
3647 	}
3648 
3649 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3650 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3651 		st->frag_idx = 0;
3652 		goto next_skb;
3653 	} else if (st->cur_skb->next) {
3654 		st->cur_skb = st->cur_skb->next;
3655 		st->frag_idx = 0;
3656 		goto next_skb;
3657 	}
3658 
3659 	return 0;
3660 }
3661 EXPORT_SYMBOL(skb_seq_read);
3662 
3663 /**
3664  * skb_abort_seq_read - Abort a sequential read of skb data
3665  * @st: state variable
3666  *
3667  * Must be called if skb_seq_read() was not called until it
3668  * returned 0.
3669  */
3670 void skb_abort_seq_read(struct skb_seq_state *st)
3671 {
3672 	if (st->frag_data)
3673 		kunmap_atomic(st->frag_data);
3674 }
3675 EXPORT_SYMBOL(skb_abort_seq_read);
3676 
3677 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3678 
3679 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3680 					  struct ts_config *conf,
3681 					  struct ts_state *state)
3682 {
3683 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3684 }
3685 
3686 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3687 {
3688 	skb_abort_seq_read(TS_SKB_CB(state));
3689 }
3690 
3691 /**
3692  * skb_find_text - Find a text pattern in skb data
3693  * @skb: the buffer to look in
3694  * @from: search offset
3695  * @to: search limit
3696  * @config: textsearch configuration
3697  *
3698  * Finds a pattern in the skb data according to the specified
3699  * textsearch configuration. Use textsearch_next() to retrieve
3700  * subsequent occurrences of the pattern. Returns the offset
3701  * to the first occurrence or UINT_MAX if no match was found.
3702  */
3703 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3704 			   unsigned int to, struct ts_config *config)
3705 {
3706 	struct ts_state state;
3707 	unsigned int ret;
3708 
3709 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3710 
3711 	config->get_next_block = skb_ts_get_next_block;
3712 	config->finish = skb_ts_finish;
3713 
3714 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3715 
3716 	ret = textsearch_find(config, &state);
3717 	return (ret <= to - from ? ret : UINT_MAX);
3718 }
3719 EXPORT_SYMBOL(skb_find_text);
3720 
3721 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3722 			 int offset, size_t size)
3723 {
3724 	int i = skb_shinfo(skb)->nr_frags;
3725 
3726 	if (skb_can_coalesce(skb, i, page, offset)) {
3727 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3728 	} else if (i < MAX_SKB_FRAGS) {
3729 		get_page(page);
3730 		skb_fill_page_desc(skb, i, page, offset, size);
3731 	} else {
3732 		return -EMSGSIZE;
3733 	}
3734 
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3738 
3739 /**
3740  *	skb_pull_rcsum - pull skb and update receive checksum
3741  *	@skb: buffer to update
3742  *	@len: length of data pulled
3743  *
3744  *	This function performs an skb_pull on the packet and updates
3745  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3746  *	receive path processing instead of skb_pull unless you know
3747  *	that the checksum difference is zero (e.g., a valid IP header)
3748  *	or you are setting ip_summed to CHECKSUM_NONE.
3749  */
3750 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3751 {
3752 	unsigned char *data = skb->data;
3753 
3754 	BUG_ON(len > skb->len);
3755 	__skb_pull(skb, len);
3756 	skb_postpull_rcsum(skb, data, len);
3757 	return skb->data;
3758 }
3759 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3760 
3761 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3762 {
3763 	skb_frag_t head_frag;
3764 	struct page *page;
3765 
3766 	page = virt_to_head_page(frag_skb->head);
3767 	__skb_frag_set_page(&head_frag, page);
3768 	skb_frag_off_set(&head_frag, frag_skb->data -
3769 			 (unsigned char *)page_address(page));
3770 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3771 	return head_frag;
3772 }
3773 
3774 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3775 				 netdev_features_t features,
3776 				 unsigned int offset)
3777 {
3778 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3779 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3780 	unsigned int delta_truesize = 0;
3781 	unsigned int delta_len = 0;
3782 	struct sk_buff *tail = NULL;
3783 	struct sk_buff *nskb, *tmp;
3784 	int err;
3785 
3786 	skb_push(skb, -skb_network_offset(skb) + offset);
3787 
3788 	skb_shinfo(skb)->frag_list = NULL;
3789 
3790 	do {
3791 		nskb = list_skb;
3792 		list_skb = list_skb->next;
3793 
3794 		err = 0;
3795 		if (skb_shared(nskb)) {
3796 			tmp = skb_clone(nskb, GFP_ATOMIC);
3797 			if (tmp) {
3798 				consume_skb(nskb);
3799 				nskb = tmp;
3800 				err = skb_unclone(nskb, GFP_ATOMIC);
3801 			} else {
3802 				err = -ENOMEM;
3803 			}
3804 		}
3805 
3806 		if (!tail)
3807 			skb->next = nskb;
3808 		else
3809 			tail->next = nskb;
3810 
3811 		if (unlikely(err)) {
3812 			nskb->next = list_skb;
3813 			goto err_linearize;
3814 		}
3815 
3816 		tail = nskb;
3817 
3818 		delta_len += nskb->len;
3819 		delta_truesize += nskb->truesize;
3820 
3821 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3822 
3823 		skb_release_head_state(nskb);
3824 		 __copy_skb_header(nskb, skb);
3825 
3826 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3827 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3828 						 nskb->data - tnl_hlen,
3829 						 offset + tnl_hlen);
3830 
3831 		if (skb_needs_linearize(nskb, features) &&
3832 		    __skb_linearize(nskb))
3833 			goto err_linearize;
3834 
3835 	} while (list_skb);
3836 
3837 	skb->truesize = skb->truesize - delta_truesize;
3838 	skb->data_len = skb->data_len - delta_len;
3839 	skb->len = skb->len - delta_len;
3840 
3841 	skb_gso_reset(skb);
3842 
3843 	skb->prev = tail;
3844 
3845 	if (skb_needs_linearize(skb, features) &&
3846 	    __skb_linearize(skb))
3847 		goto err_linearize;
3848 
3849 	skb_get(skb);
3850 
3851 	return skb;
3852 
3853 err_linearize:
3854 	kfree_skb_list(skb->next);
3855 	skb->next = NULL;
3856 	return ERR_PTR(-ENOMEM);
3857 }
3858 EXPORT_SYMBOL_GPL(skb_segment_list);
3859 
3860 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3861 {
3862 	if (unlikely(p->len + skb->len >= 65536))
3863 		return -E2BIG;
3864 
3865 	if (NAPI_GRO_CB(p)->last == p)
3866 		skb_shinfo(p)->frag_list = skb;
3867 	else
3868 		NAPI_GRO_CB(p)->last->next = skb;
3869 
3870 	skb_pull(skb, skb_gro_offset(skb));
3871 
3872 	NAPI_GRO_CB(p)->last = skb;
3873 	NAPI_GRO_CB(p)->count++;
3874 	p->data_len += skb->len;
3875 	p->truesize += skb->truesize;
3876 	p->len += skb->len;
3877 
3878 	NAPI_GRO_CB(skb)->same_flow = 1;
3879 
3880 	return 0;
3881 }
3882 
3883 /**
3884  *	skb_segment - Perform protocol segmentation on skb.
3885  *	@head_skb: buffer to segment
3886  *	@features: features for the output path (see dev->features)
3887  *
3888  *	This function performs segmentation on the given skb.  It returns
3889  *	a pointer to the first in a list of new skbs for the segments.
3890  *	In case of error it returns ERR_PTR(err).
3891  */
3892 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3893 			    netdev_features_t features)
3894 {
3895 	struct sk_buff *segs = NULL;
3896 	struct sk_buff *tail = NULL;
3897 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3898 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3899 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3900 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3901 	struct sk_buff *frag_skb = head_skb;
3902 	unsigned int offset = doffset;
3903 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3904 	unsigned int partial_segs = 0;
3905 	unsigned int headroom;
3906 	unsigned int len = head_skb->len;
3907 	__be16 proto;
3908 	bool csum, sg;
3909 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3910 	int err = -ENOMEM;
3911 	int i = 0;
3912 	int pos;
3913 
3914 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3915 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3916 		/* gso_size is untrusted, and we have a frag_list with a linear
3917 		 * non head_frag head.
3918 		 *
3919 		 * (we assume checking the first list_skb member suffices;
3920 		 * i.e if either of the list_skb members have non head_frag
3921 		 * head, then the first one has too).
3922 		 *
3923 		 * If head_skb's headlen does not fit requested gso_size, it
3924 		 * means that the frag_list members do NOT terminate on exact
3925 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3926 		 * sharing. Therefore we must fallback to copying the frag_list
3927 		 * skbs; we do so by disabling SG.
3928 		 */
3929 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3930 			features &= ~NETIF_F_SG;
3931 	}
3932 
3933 	__skb_push(head_skb, doffset);
3934 	proto = skb_network_protocol(head_skb, NULL);
3935 	if (unlikely(!proto))
3936 		return ERR_PTR(-EINVAL);
3937 
3938 	sg = !!(features & NETIF_F_SG);
3939 	csum = !!can_checksum_protocol(features, proto);
3940 
3941 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3942 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3943 			struct sk_buff *iter;
3944 			unsigned int frag_len;
3945 
3946 			if (!list_skb ||
3947 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3948 				goto normal;
3949 
3950 			/* If we get here then all the required
3951 			 * GSO features except frag_list are supported.
3952 			 * Try to split the SKB to multiple GSO SKBs
3953 			 * with no frag_list.
3954 			 * Currently we can do that only when the buffers don't
3955 			 * have a linear part and all the buffers except
3956 			 * the last are of the same length.
3957 			 */
3958 			frag_len = list_skb->len;
3959 			skb_walk_frags(head_skb, iter) {
3960 				if (frag_len != iter->len && iter->next)
3961 					goto normal;
3962 				if (skb_headlen(iter) && !iter->head_frag)
3963 					goto normal;
3964 
3965 				len -= iter->len;
3966 			}
3967 
3968 			if (len != frag_len)
3969 				goto normal;
3970 		}
3971 
3972 		/* GSO partial only requires that we trim off any excess that
3973 		 * doesn't fit into an MSS sized block, so take care of that
3974 		 * now.
3975 		 */
3976 		partial_segs = len / mss;
3977 		if (partial_segs > 1)
3978 			mss *= partial_segs;
3979 		else
3980 			partial_segs = 0;
3981 	}
3982 
3983 normal:
3984 	headroom = skb_headroom(head_skb);
3985 	pos = skb_headlen(head_skb);
3986 
3987 	do {
3988 		struct sk_buff *nskb;
3989 		skb_frag_t *nskb_frag;
3990 		int hsize;
3991 		int size;
3992 
3993 		if (unlikely(mss == GSO_BY_FRAGS)) {
3994 			len = list_skb->len;
3995 		} else {
3996 			len = head_skb->len - offset;
3997 			if (len > mss)
3998 				len = mss;
3999 		}
4000 
4001 		hsize = skb_headlen(head_skb) - offset;
4002 
4003 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4004 		    (skb_headlen(list_skb) == len || sg)) {
4005 			BUG_ON(skb_headlen(list_skb) > len);
4006 
4007 			i = 0;
4008 			nfrags = skb_shinfo(list_skb)->nr_frags;
4009 			frag = skb_shinfo(list_skb)->frags;
4010 			frag_skb = list_skb;
4011 			pos += skb_headlen(list_skb);
4012 
4013 			while (pos < offset + len) {
4014 				BUG_ON(i >= nfrags);
4015 
4016 				size = skb_frag_size(frag);
4017 				if (pos + size > offset + len)
4018 					break;
4019 
4020 				i++;
4021 				pos += size;
4022 				frag++;
4023 			}
4024 
4025 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4026 			list_skb = list_skb->next;
4027 
4028 			if (unlikely(!nskb))
4029 				goto err;
4030 
4031 			if (unlikely(pskb_trim(nskb, len))) {
4032 				kfree_skb(nskb);
4033 				goto err;
4034 			}
4035 
4036 			hsize = skb_end_offset(nskb);
4037 			if (skb_cow_head(nskb, doffset + headroom)) {
4038 				kfree_skb(nskb);
4039 				goto err;
4040 			}
4041 
4042 			nskb->truesize += skb_end_offset(nskb) - hsize;
4043 			skb_release_head_state(nskb);
4044 			__skb_push(nskb, doffset);
4045 		} else {
4046 			if (hsize < 0)
4047 				hsize = 0;
4048 			if (hsize > len || !sg)
4049 				hsize = len;
4050 
4051 			nskb = __alloc_skb(hsize + doffset + headroom,
4052 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4053 					   NUMA_NO_NODE);
4054 
4055 			if (unlikely(!nskb))
4056 				goto err;
4057 
4058 			skb_reserve(nskb, headroom);
4059 			__skb_put(nskb, doffset);
4060 		}
4061 
4062 		if (segs)
4063 			tail->next = nskb;
4064 		else
4065 			segs = nskb;
4066 		tail = nskb;
4067 
4068 		__copy_skb_header(nskb, head_skb);
4069 
4070 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4071 		skb_reset_mac_len(nskb);
4072 
4073 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4074 						 nskb->data - tnl_hlen,
4075 						 doffset + tnl_hlen);
4076 
4077 		if (nskb->len == len + doffset)
4078 			goto perform_csum_check;
4079 
4080 		if (!sg) {
4081 			if (!csum) {
4082 				if (!nskb->remcsum_offload)
4083 					nskb->ip_summed = CHECKSUM_NONE;
4084 				SKB_GSO_CB(nskb)->csum =
4085 					skb_copy_and_csum_bits(head_skb, offset,
4086 							       skb_put(nskb,
4087 								       len),
4088 							       len);
4089 				SKB_GSO_CB(nskb)->csum_start =
4090 					skb_headroom(nskb) + doffset;
4091 			} else {
4092 				skb_copy_bits(head_skb, offset,
4093 					      skb_put(nskb, len),
4094 					      len);
4095 			}
4096 			continue;
4097 		}
4098 
4099 		nskb_frag = skb_shinfo(nskb)->frags;
4100 
4101 		skb_copy_from_linear_data_offset(head_skb, offset,
4102 						 skb_put(nskb, hsize), hsize);
4103 
4104 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4105 					   SKBFL_SHARED_FRAG;
4106 
4107 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4108 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4109 			goto err;
4110 
4111 		while (pos < offset + len) {
4112 			if (i >= nfrags) {
4113 				i = 0;
4114 				nfrags = skb_shinfo(list_skb)->nr_frags;
4115 				frag = skb_shinfo(list_skb)->frags;
4116 				frag_skb = list_skb;
4117 				if (!skb_headlen(list_skb)) {
4118 					BUG_ON(!nfrags);
4119 				} else {
4120 					BUG_ON(!list_skb->head_frag);
4121 
4122 					/* to make room for head_frag. */
4123 					i--;
4124 					frag--;
4125 				}
4126 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4127 				    skb_zerocopy_clone(nskb, frag_skb,
4128 						       GFP_ATOMIC))
4129 					goto err;
4130 
4131 				list_skb = list_skb->next;
4132 			}
4133 
4134 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4135 				     MAX_SKB_FRAGS)) {
4136 				net_warn_ratelimited(
4137 					"skb_segment: too many frags: %u %u\n",
4138 					pos, mss);
4139 				err = -EINVAL;
4140 				goto err;
4141 			}
4142 
4143 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4144 			__skb_frag_ref(nskb_frag);
4145 			size = skb_frag_size(nskb_frag);
4146 
4147 			if (pos < offset) {
4148 				skb_frag_off_add(nskb_frag, offset - pos);
4149 				skb_frag_size_sub(nskb_frag, offset - pos);
4150 			}
4151 
4152 			skb_shinfo(nskb)->nr_frags++;
4153 
4154 			if (pos + size <= offset + len) {
4155 				i++;
4156 				frag++;
4157 				pos += size;
4158 			} else {
4159 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4160 				goto skip_fraglist;
4161 			}
4162 
4163 			nskb_frag++;
4164 		}
4165 
4166 skip_fraglist:
4167 		nskb->data_len = len - hsize;
4168 		nskb->len += nskb->data_len;
4169 		nskb->truesize += nskb->data_len;
4170 
4171 perform_csum_check:
4172 		if (!csum) {
4173 			if (skb_has_shared_frag(nskb) &&
4174 			    __skb_linearize(nskb))
4175 				goto err;
4176 
4177 			if (!nskb->remcsum_offload)
4178 				nskb->ip_summed = CHECKSUM_NONE;
4179 			SKB_GSO_CB(nskb)->csum =
4180 				skb_checksum(nskb, doffset,
4181 					     nskb->len - doffset, 0);
4182 			SKB_GSO_CB(nskb)->csum_start =
4183 				skb_headroom(nskb) + doffset;
4184 		}
4185 	} while ((offset += len) < head_skb->len);
4186 
4187 	/* Some callers want to get the end of the list.
4188 	 * Put it in segs->prev to avoid walking the list.
4189 	 * (see validate_xmit_skb_list() for example)
4190 	 */
4191 	segs->prev = tail;
4192 
4193 	if (partial_segs) {
4194 		struct sk_buff *iter;
4195 		int type = skb_shinfo(head_skb)->gso_type;
4196 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4197 
4198 		/* Update type to add partial and then remove dodgy if set */
4199 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4200 		type &= ~SKB_GSO_DODGY;
4201 
4202 		/* Update GSO info and prepare to start updating headers on
4203 		 * our way back down the stack of protocols.
4204 		 */
4205 		for (iter = segs; iter; iter = iter->next) {
4206 			skb_shinfo(iter)->gso_size = gso_size;
4207 			skb_shinfo(iter)->gso_segs = partial_segs;
4208 			skb_shinfo(iter)->gso_type = type;
4209 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4210 		}
4211 
4212 		if (tail->len - doffset <= gso_size)
4213 			skb_shinfo(tail)->gso_size = 0;
4214 		else if (tail != segs)
4215 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4216 	}
4217 
4218 	/* Following permits correct backpressure, for protocols
4219 	 * using skb_set_owner_w().
4220 	 * Idea is to tranfert ownership from head_skb to last segment.
4221 	 */
4222 	if (head_skb->destructor == sock_wfree) {
4223 		swap(tail->truesize, head_skb->truesize);
4224 		swap(tail->destructor, head_skb->destructor);
4225 		swap(tail->sk, head_skb->sk);
4226 	}
4227 	return segs;
4228 
4229 err:
4230 	kfree_skb_list(segs);
4231 	return ERR_PTR(err);
4232 }
4233 EXPORT_SYMBOL_GPL(skb_segment);
4234 
4235 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4236 {
4237 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4238 	unsigned int offset = skb_gro_offset(skb);
4239 	unsigned int headlen = skb_headlen(skb);
4240 	unsigned int len = skb_gro_len(skb);
4241 	unsigned int delta_truesize;
4242 	struct sk_buff *lp;
4243 
4244 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4245 		return -E2BIG;
4246 
4247 	lp = NAPI_GRO_CB(p)->last;
4248 	pinfo = skb_shinfo(lp);
4249 
4250 	if (headlen <= offset) {
4251 		skb_frag_t *frag;
4252 		skb_frag_t *frag2;
4253 		int i = skbinfo->nr_frags;
4254 		int nr_frags = pinfo->nr_frags + i;
4255 
4256 		if (nr_frags > MAX_SKB_FRAGS)
4257 			goto merge;
4258 
4259 		offset -= headlen;
4260 		pinfo->nr_frags = nr_frags;
4261 		skbinfo->nr_frags = 0;
4262 
4263 		frag = pinfo->frags + nr_frags;
4264 		frag2 = skbinfo->frags + i;
4265 		do {
4266 			*--frag = *--frag2;
4267 		} while (--i);
4268 
4269 		skb_frag_off_add(frag, offset);
4270 		skb_frag_size_sub(frag, offset);
4271 
4272 		/* all fragments truesize : remove (head size + sk_buff) */
4273 		delta_truesize = skb->truesize -
4274 				 SKB_TRUESIZE(skb_end_offset(skb));
4275 
4276 		skb->truesize -= skb->data_len;
4277 		skb->len -= skb->data_len;
4278 		skb->data_len = 0;
4279 
4280 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4281 		goto done;
4282 	} else if (skb->head_frag) {
4283 		int nr_frags = pinfo->nr_frags;
4284 		skb_frag_t *frag = pinfo->frags + nr_frags;
4285 		struct page *page = virt_to_head_page(skb->head);
4286 		unsigned int first_size = headlen - offset;
4287 		unsigned int first_offset;
4288 
4289 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4290 			goto merge;
4291 
4292 		first_offset = skb->data -
4293 			       (unsigned char *)page_address(page) +
4294 			       offset;
4295 
4296 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4297 
4298 		__skb_frag_set_page(frag, page);
4299 		skb_frag_off_set(frag, first_offset);
4300 		skb_frag_size_set(frag, first_size);
4301 
4302 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4303 		/* We dont need to clear skbinfo->nr_frags here */
4304 
4305 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4306 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4307 		goto done;
4308 	}
4309 
4310 merge:
4311 	delta_truesize = skb->truesize;
4312 	if (offset > headlen) {
4313 		unsigned int eat = offset - headlen;
4314 
4315 		skb_frag_off_add(&skbinfo->frags[0], eat);
4316 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4317 		skb->data_len -= eat;
4318 		skb->len -= eat;
4319 		offset = headlen;
4320 	}
4321 
4322 	__skb_pull(skb, offset);
4323 
4324 	if (NAPI_GRO_CB(p)->last == p)
4325 		skb_shinfo(p)->frag_list = skb;
4326 	else
4327 		NAPI_GRO_CB(p)->last->next = skb;
4328 	NAPI_GRO_CB(p)->last = skb;
4329 	__skb_header_release(skb);
4330 	lp = p;
4331 
4332 done:
4333 	NAPI_GRO_CB(p)->count++;
4334 	p->data_len += len;
4335 	p->truesize += delta_truesize;
4336 	p->len += len;
4337 	if (lp != p) {
4338 		lp->data_len += len;
4339 		lp->truesize += delta_truesize;
4340 		lp->len += len;
4341 	}
4342 	NAPI_GRO_CB(skb)->same_flow = 1;
4343 	return 0;
4344 }
4345 
4346 #ifdef CONFIG_SKB_EXTENSIONS
4347 #define SKB_EXT_ALIGN_VALUE	8
4348 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4349 
4350 static const u8 skb_ext_type_len[] = {
4351 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4352 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4353 #endif
4354 #ifdef CONFIG_XFRM
4355 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4356 #endif
4357 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4358 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4359 #endif
4360 #if IS_ENABLED(CONFIG_MPTCP)
4361 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4362 #endif
4363 };
4364 
4365 static __always_inline unsigned int skb_ext_total_length(void)
4366 {
4367 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4368 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4369 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4370 #endif
4371 #ifdef CONFIG_XFRM
4372 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4373 #endif
4374 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4375 		skb_ext_type_len[TC_SKB_EXT] +
4376 #endif
4377 #if IS_ENABLED(CONFIG_MPTCP)
4378 		skb_ext_type_len[SKB_EXT_MPTCP] +
4379 #endif
4380 		0;
4381 }
4382 
4383 static void skb_extensions_init(void)
4384 {
4385 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4386 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4387 
4388 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4389 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4390 					     0,
4391 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4392 					     NULL);
4393 }
4394 #else
4395 static void skb_extensions_init(void) {}
4396 #endif
4397 
4398 void __init skb_init(void)
4399 {
4400 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4401 					      sizeof(struct sk_buff),
4402 					      0,
4403 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4404 					      offsetof(struct sk_buff, cb),
4405 					      sizeof_field(struct sk_buff, cb),
4406 					      NULL);
4407 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4408 						sizeof(struct sk_buff_fclones),
4409 						0,
4410 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4411 						NULL);
4412 	skb_extensions_init();
4413 }
4414 
4415 static int
4416 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4417 	       unsigned int recursion_level)
4418 {
4419 	int start = skb_headlen(skb);
4420 	int i, copy = start - offset;
4421 	struct sk_buff *frag_iter;
4422 	int elt = 0;
4423 
4424 	if (unlikely(recursion_level >= 24))
4425 		return -EMSGSIZE;
4426 
4427 	if (copy > 0) {
4428 		if (copy > len)
4429 			copy = len;
4430 		sg_set_buf(sg, skb->data + offset, copy);
4431 		elt++;
4432 		if ((len -= copy) == 0)
4433 			return elt;
4434 		offset += copy;
4435 	}
4436 
4437 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4438 		int end;
4439 
4440 		WARN_ON(start > offset + len);
4441 
4442 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4443 		if ((copy = end - offset) > 0) {
4444 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4445 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4446 				return -EMSGSIZE;
4447 
4448 			if (copy > len)
4449 				copy = len;
4450 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4451 				    skb_frag_off(frag) + offset - start);
4452 			elt++;
4453 			if (!(len -= copy))
4454 				return elt;
4455 			offset += copy;
4456 		}
4457 		start = end;
4458 	}
4459 
4460 	skb_walk_frags(skb, frag_iter) {
4461 		int end, ret;
4462 
4463 		WARN_ON(start > offset + len);
4464 
4465 		end = start + frag_iter->len;
4466 		if ((copy = end - offset) > 0) {
4467 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4468 				return -EMSGSIZE;
4469 
4470 			if (copy > len)
4471 				copy = len;
4472 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4473 					      copy, recursion_level + 1);
4474 			if (unlikely(ret < 0))
4475 				return ret;
4476 			elt += ret;
4477 			if ((len -= copy) == 0)
4478 				return elt;
4479 			offset += copy;
4480 		}
4481 		start = end;
4482 	}
4483 	BUG_ON(len);
4484 	return elt;
4485 }
4486 
4487 /**
4488  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4489  *	@skb: Socket buffer containing the buffers to be mapped
4490  *	@sg: The scatter-gather list to map into
4491  *	@offset: The offset into the buffer's contents to start mapping
4492  *	@len: Length of buffer space to be mapped
4493  *
4494  *	Fill the specified scatter-gather list with mappings/pointers into a
4495  *	region of the buffer space attached to a socket buffer. Returns either
4496  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4497  *	could not fit.
4498  */
4499 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4500 {
4501 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4502 
4503 	if (nsg <= 0)
4504 		return nsg;
4505 
4506 	sg_mark_end(&sg[nsg - 1]);
4507 
4508 	return nsg;
4509 }
4510 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4511 
4512 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4513  * sglist without mark the sg which contain last skb data as the end.
4514  * So the caller can mannipulate sg list as will when padding new data after
4515  * the first call without calling sg_unmark_end to expend sg list.
4516  *
4517  * Scenario to use skb_to_sgvec_nomark:
4518  * 1. sg_init_table
4519  * 2. skb_to_sgvec_nomark(payload1)
4520  * 3. skb_to_sgvec_nomark(payload2)
4521  *
4522  * This is equivalent to:
4523  * 1. sg_init_table
4524  * 2. skb_to_sgvec(payload1)
4525  * 3. sg_unmark_end
4526  * 4. skb_to_sgvec(payload2)
4527  *
4528  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4529  * is more preferable.
4530  */
4531 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4532 			int offset, int len)
4533 {
4534 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4535 }
4536 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4537 
4538 
4539 
4540 /**
4541  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4542  *	@skb: The socket buffer to check.
4543  *	@tailbits: Amount of trailing space to be added
4544  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4545  *
4546  *	Make sure that the data buffers attached to a socket buffer are
4547  *	writable. If they are not, private copies are made of the data buffers
4548  *	and the socket buffer is set to use these instead.
4549  *
4550  *	If @tailbits is given, make sure that there is space to write @tailbits
4551  *	bytes of data beyond current end of socket buffer.  @trailer will be
4552  *	set to point to the skb in which this space begins.
4553  *
4554  *	The number of scatterlist elements required to completely map the
4555  *	COW'd and extended socket buffer will be returned.
4556  */
4557 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4558 {
4559 	int copyflag;
4560 	int elt;
4561 	struct sk_buff *skb1, **skb_p;
4562 
4563 	/* If skb is cloned or its head is paged, reallocate
4564 	 * head pulling out all the pages (pages are considered not writable
4565 	 * at the moment even if they are anonymous).
4566 	 */
4567 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4568 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4569 		return -ENOMEM;
4570 
4571 	/* Easy case. Most of packets will go this way. */
4572 	if (!skb_has_frag_list(skb)) {
4573 		/* A little of trouble, not enough of space for trailer.
4574 		 * This should not happen, when stack is tuned to generate
4575 		 * good frames. OK, on miss we reallocate and reserve even more
4576 		 * space, 128 bytes is fair. */
4577 
4578 		if (skb_tailroom(skb) < tailbits &&
4579 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4580 			return -ENOMEM;
4581 
4582 		/* Voila! */
4583 		*trailer = skb;
4584 		return 1;
4585 	}
4586 
4587 	/* Misery. We are in troubles, going to mincer fragments... */
4588 
4589 	elt = 1;
4590 	skb_p = &skb_shinfo(skb)->frag_list;
4591 	copyflag = 0;
4592 
4593 	while ((skb1 = *skb_p) != NULL) {
4594 		int ntail = 0;
4595 
4596 		/* The fragment is partially pulled by someone,
4597 		 * this can happen on input. Copy it and everything
4598 		 * after it. */
4599 
4600 		if (skb_shared(skb1))
4601 			copyflag = 1;
4602 
4603 		/* If the skb is the last, worry about trailer. */
4604 
4605 		if (skb1->next == NULL && tailbits) {
4606 			if (skb_shinfo(skb1)->nr_frags ||
4607 			    skb_has_frag_list(skb1) ||
4608 			    skb_tailroom(skb1) < tailbits)
4609 				ntail = tailbits + 128;
4610 		}
4611 
4612 		if (copyflag ||
4613 		    skb_cloned(skb1) ||
4614 		    ntail ||
4615 		    skb_shinfo(skb1)->nr_frags ||
4616 		    skb_has_frag_list(skb1)) {
4617 			struct sk_buff *skb2;
4618 
4619 			/* Fuck, we are miserable poor guys... */
4620 			if (ntail == 0)
4621 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4622 			else
4623 				skb2 = skb_copy_expand(skb1,
4624 						       skb_headroom(skb1),
4625 						       ntail,
4626 						       GFP_ATOMIC);
4627 			if (unlikely(skb2 == NULL))
4628 				return -ENOMEM;
4629 
4630 			if (skb1->sk)
4631 				skb_set_owner_w(skb2, skb1->sk);
4632 
4633 			/* Looking around. Are we still alive?
4634 			 * OK, link new skb, drop old one */
4635 
4636 			skb2->next = skb1->next;
4637 			*skb_p = skb2;
4638 			kfree_skb(skb1);
4639 			skb1 = skb2;
4640 		}
4641 		elt++;
4642 		*trailer = skb1;
4643 		skb_p = &skb1->next;
4644 	}
4645 
4646 	return elt;
4647 }
4648 EXPORT_SYMBOL_GPL(skb_cow_data);
4649 
4650 static void sock_rmem_free(struct sk_buff *skb)
4651 {
4652 	struct sock *sk = skb->sk;
4653 
4654 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4655 }
4656 
4657 static void skb_set_err_queue(struct sk_buff *skb)
4658 {
4659 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4660 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4661 	 */
4662 	skb->pkt_type = PACKET_OUTGOING;
4663 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4664 }
4665 
4666 /*
4667  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4668  */
4669 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4670 {
4671 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4672 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4673 		return -ENOMEM;
4674 
4675 	skb_orphan(skb);
4676 	skb->sk = sk;
4677 	skb->destructor = sock_rmem_free;
4678 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4679 	skb_set_err_queue(skb);
4680 
4681 	/* before exiting rcu section, make sure dst is refcounted */
4682 	skb_dst_force(skb);
4683 
4684 	skb_queue_tail(&sk->sk_error_queue, skb);
4685 	if (!sock_flag(sk, SOCK_DEAD))
4686 		sk->sk_error_report(sk);
4687 	return 0;
4688 }
4689 EXPORT_SYMBOL(sock_queue_err_skb);
4690 
4691 static bool is_icmp_err_skb(const struct sk_buff *skb)
4692 {
4693 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4694 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4695 }
4696 
4697 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4698 {
4699 	struct sk_buff_head *q = &sk->sk_error_queue;
4700 	struct sk_buff *skb, *skb_next = NULL;
4701 	bool icmp_next = false;
4702 	unsigned long flags;
4703 
4704 	spin_lock_irqsave(&q->lock, flags);
4705 	skb = __skb_dequeue(q);
4706 	if (skb && (skb_next = skb_peek(q))) {
4707 		icmp_next = is_icmp_err_skb(skb_next);
4708 		if (icmp_next)
4709 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4710 	}
4711 	spin_unlock_irqrestore(&q->lock, flags);
4712 
4713 	if (is_icmp_err_skb(skb) && !icmp_next)
4714 		sk->sk_err = 0;
4715 
4716 	if (skb_next)
4717 		sk->sk_error_report(sk);
4718 
4719 	return skb;
4720 }
4721 EXPORT_SYMBOL(sock_dequeue_err_skb);
4722 
4723 /**
4724  * skb_clone_sk - create clone of skb, and take reference to socket
4725  * @skb: the skb to clone
4726  *
4727  * This function creates a clone of a buffer that holds a reference on
4728  * sk_refcnt.  Buffers created via this function are meant to be
4729  * returned using sock_queue_err_skb, or free via kfree_skb.
4730  *
4731  * When passing buffers allocated with this function to sock_queue_err_skb
4732  * it is necessary to wrap the call with sock_hold/sock_put in order to
4733  * prevent the socket from being released prior to being enqueued on
4734  * the sk_error_queue.
4735  */
4736 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4737 {
4738 	struct sock *sk = skb->sk;
4739 	struct sk_buff *clone;
4740 
4741 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4742 		return NULL;
4743 
4744 	clone = skb_clone(skb, GFP_ATOMIC);
4745 	if (!clone) {
4746 		sock_put(sk);
4747 		return NULL;
4748 	}
4749 
4750 	clone->sk = sk;
4751 	clone->destructor = sock_efree;
4752 
4753 	return clone;
4754 }
4755 EXPORT_SYMBOL(skb_clone_sk);
4756 
4757 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4758 					struct sock *sk,
4759 					int tstype,
4760 					bool opt_stats)
4761 {
4762 	struct sock_exterr_skb *serr;
4763 	int err;
4764 
4765 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4766 
4767 	serr = SKB_EXT_ERR(skb);
4768 	memset(serr, 0, sizeof(*serr));
4769 	serr->ee.ee_errno = ENOMSG;
4770 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4771 	serr->ee.ee_info = tstype;
4772 	serr->opt_stats = opt_stats;
4773 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4774 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4775 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4776 		if (sk->sk_protocol == IPPROTO_TCP &&
4777 		    sk->sk_type == SOCK_STREAM)
4778 			serr->ee.ee_data -= sk->sk_tskey;
4779 	}
4780 
4781 	err = sock_queue_err_skb(sk, skb);
4782 
4783 	if (err)
4784 		kfree_skb(skb);
4785 }
4786 
4787 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4788 {
4789 	bool ret;
4790 
4791 	if (likely(sysctl_tstamp_allow_data || tsonly))
4792 		return true;
4793 
4794 	read_lock_bh(&sk->sk_callback_lock);
4795 	ret = sk->sk_socket && sk->sk_socket->file &&
4796 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4797 	read_unlock_bh(&sk->sk_callback_lock);
4798 	return ret;
4799 }
4800 
4801 void skb_complete_tx_timestamp(struct sk_buff *skb,
4802 			       struct skb_shared_hwtstamps *hwtstamps)
4803 {
4804 	struct sock *sk = skb->sk;
4805 
4806 	if (!skb_may_tx_timestamp(sk, false))
4807 		goto err;
4808 
4809 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4810 	 * but only if the socket refcount is not zero.
4811 	 */
4812 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4813 		*skb_hwtstamps(skb) = *hwtstamps;
4814 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4815 		sock_put(sk);
4816 		return;
4817 	}
4818 
4819 err:
4820 	kfree_skb(skb);
4821 }
4822 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4823 
4824 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4825 		     const struct sk_buff *ack_skb,
4826 		     struct skb_shared_hwtstamps *hwtstamps,
4827 		     struct sock *sk, int tstype)
4828 {
4829 	struct sk_buff *skb;
4830 	bool tsonly, opt_stats = false;
4831 
4832 	if (!sk)
4833 		return;
4834 
4835 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4836 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4837 		return;
4838 
4839 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4840 	if (!skb_may_tx_timestamp(sk, tsonly))
4841 		return;
4842 
4843 	if (tsonly) {
4844 #ifdef CONFIG_INET
4845 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4846 		    sk->sk_protocol == IPPROTO_TCP &&
4847 		    sk->sk_type == SOCK_STREAM) {
4848 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4849 							     ack_skb);
4850 			opt_stats = true;
4851 		} else
4852 #endif
4853 			skb = alloc_skb(0, GFP_ATOMIC);
4854 	} else {
4855 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4856 	}
4857 	if (!skb)
4858 		return;
4859 
4860 	if (tsonly) {
4861 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4862 					     SKBTX_ANY_TSTAMP;
4863 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4864 	}
4865 
4866 	if (hwtstamps)
4867 		*skb_hwtstamps(skb) = *hwtstamps;
4868 	else
4869 		skb->tstamp = ktime_get_real();
4870 
4871 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4872 }
4873 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4874 
4875 void skb_tstamp_tx(struct sk_buff *orig_skb,
4876 		   struct skb_shared_hwtstamps *hwtstamps)
4877 {
4878 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4879 			       SCM_TSTAMP_SND);
4880 }
4881 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4882 
4883 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4884 {
4885 	struct sock *sk = skb->sk;
4886 	struct sock_exterr_skb *serr;
4887 	int err = 1;
4888 
4889 	skb->wifi_acked_valid = 1;
4890 	skb->wifi_acked = acked;
4891 
4892 	serr = SKB_EXT_ERR(skb);
4893 	memset(serr, 0, sizeof(*serr));
4894 	serr->ee.ee_errno = ENOMSG;
4895 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4896 
4897 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4898 	 * but only if the socket refcount is not zero.
4899 	 */
4900 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4901 		err = sock_queue_err_skb(sk, skb);
4902 		sock_put(sk);
4903 	}
4904 	if (err)
4905 		kfree_skb(skb);
4906 }
4907 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4908 
4909 /**
4910  * skb_partial_csum_set - set up and verify partial csum values for packet
4911  * @skb: the skb to set
4912  * @start: the number of bytes after skb->data to start checksumming.
4913  * @off: the offset from start to place the checksum.
4914  *
4915  * For untrusted partially-checksummed packets, we need to make sure the values
4916  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4917  *
4918  * This function checks and sets those values and skb->ip_summed: if this
4919  * returns false you should drop the packet.
4920  */
4921 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4922 {
4923 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4924 	u32 csum_start = skb_headroom(skb) + (u32)start;
4925 
4926 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4927 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4928 				     start, off, skb_headroom(skb), skb_headlen(skb));
4929 		return false;
4930 	}
4931 	skb->ip_summed = CHECKSUM_PARTIAL;
4932 	skb->csum_start = csum_start;
4933 	skb->csum_offset = off;
4934 	skb_set_transport_header(skb, start);
4935 	return true;
4936 }
4937 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4938 
4939 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4940 			       unsigned int max)
4941 {
4942 	if (skb_headlen(skb) >= len)
4943 		return 0;
4944 
4945 	/* If we need to pullup then pullup to the max, so we
4946 	 * won't need to do it again.
4947 	 */
4948 	if (max > skb->len)
4949 		max = skb->len;
4950 
4951 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4952 		return -ENOMEM;
4953 
4954 	if (skb_headlen(skb) < len)
4955 		return -EPROTO;
4956 
4957 	return 0;
4958 }
4959 
4960 #define MAX_TCP_HDR_LEN (15 * 4)
4961 
4962 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4963 				      typeof(IPPROTO_IP) proto,
4964 				      unsigned int off)
4965 {
4966 	int err;
4967 
4968 	switch (proto) {
4969 	case IPPROTO_TCP:
4970 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4971 					  off + MAX_TCP_HDR_LEN);
4972 		if (!err && !skb_partial_csum_set(skb, off,
4973 						  offsetof(struct tcphdr,
4974 							   check)))
4975 			err = -EPROTO;
4976 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4977 
4978 	case IPPROTO_UDP:
4979 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4980 					  off + sizeof(struct udphdr));
4981 		if (!err && !skb_partial_csum_set(skb, off,
4982 						  offsetof(struct udphdr,
4983 							   check)))
4984 			err = -EPROTO;
4985 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4986 	}
4987 
4988 	return ERR_PTR(-EPROTO);
4989 }
4990 
4991 /* This value should be large enough to cover a tagged ethernet header plus
4992  * maximally sized IP and TCP or UDP headers.
4993  */
4994 #define MAX_IP_HDR_LEN 128
4995 
4996 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4997 {
4998 	unsigned int off;
4999 	bool fragment;
5000 	__sum16 *csum;
5001 	int err;
5002 
5003 	fragment = false;
5004 
5005 	err = skb_maybe_pull_tail(skb,
5006 				  sizeof(struct iphdr),
5007 				  MAX_IP_HDR_LEN);
5008 	if (err < 0)
5009 		goto out;
5010 
5011 	if (ip_is_fragment(ip_hdr(skb)))
5012 		fragment = true;
5013 
5014 	off = ip_hdrlen(skb);
5015 
5016 	err = -EPROTO;
5017 
5018 	if (fragment)
5019 		goto out;
5020 
5021 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5022 	if (IS_ERR(csum))
5023 		return PTR_ERR(csum);
5024 
5025 	if (recalculate)
5026 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5027 					   ip_hdr(skb)->daddr,
5028 					   skb->len - off,
5029 					   ip_hdr(skb)->protocol, 0);
5030 	err = 0;
5031 
5032 out:
5033 	return err;
5034 }
5035 
5036 /* This value should be large enough to cover a tagged ethernet header plus
5037  * an IPv6 header, all options, and a maximal TCP or UDP header.
5038  */
5039 #define MAX_IPV6_HDR_LEN 256
5040 
5041 #define OPT_HDR(type, skb, off) \
5042 	(type *)(skb_network_header(skb) + (off))
5043 
5044 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5045 {
5046 	int err;
5047 	u8 nexthdr;
5048 	unsigned int off;
5049 	unsigned int len;
5050 	bool fragment;
5051 	bool done;
5052 	__sum16 *csum;
5053 
5054 	fragment = false;
5055 	done = false;
5056 
5057 	off = sizeof(struct ipv6hdr);
5058 
5059 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5060 	if (err < 0)
5061 		goto out;
5062 
5063 	nexthdr = ipv6_hdr(skb)->nexthdr;
5064 
5065 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5066 	while (off <= len && !done) {
5067 		switch (nexthdr) {
5068 		case IPPROTO_DSTOPTS:
5069 		case IPPROTO_HOPOPTS:
5070 		case IPPROTO_ROUTING: {
5071 			struct ipv6_opt_hdr *hp;
5072 
5073 			err = skb_maybe_pull_tail(skb,
5074 						  off +
5075 						  sizeof(struct ipv6_opt_hdr),
5076 						  MAX_IPV6_HDR_LEN);
5077 			if (err < 0)
5078 				goto out;
5079 
5080 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5081 			nexthdr = hp->nexthdr;
5082 			off += ipv6_optlen(hp);
5083 			break;
5084 		}
5085 		case IPPROTO_AH: {
5086 			struct ip_auth_hdr *hp;
5087 
5088 			err = skb_maybe_pull_tail(skb,
5089 						  off +
5090 						  sizeof(struct ip_auth_hdr),
5091 						  MAX_IPV6_HDR_LEN);
5092 			if (err < 0)
5093 				goto out;
5094 
5095 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5096 			nexthdr = hp->nexthdr;
5097 			off += ipv6_authlen(hp);
5098 			break;
5099 		}
5100 		case IPPROTO_FRAGMENT: {
5101 			struct frag_hdr *hp;
5102 
5103 			err = skb_maybe_pull_tail(skb,
5104 						  off +
5105 						  sizeof(struct frag_hdr),
5106 						  MAX_IPV6_HDR_LEN);
5107 			if (err < 0)
5108 				goto out;
5109 
5110 			hp = OPT_HDR(struct frag_hdr, skb, off);
5111 
5112 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5113 				fragment = true;
5114 
5115 			nexthdr = hp->nexthdr;
5116 			off += sizeof(struct frag_hdr);
5117 			break;
5118 		}
5119 		default:
5120 			done = true;
5121 			break;
5122 		}
5123 	}
5124 
5125 	err = -EPROTO;
5126 
5127 	if (!done || fragment)
5128 		goto out;
5129 
5130 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5131 	if (IS_ERR(csum))
5132 		return PTR_ERR(csum);
5133 
5134 	if (recalculate)
5135 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5136 					 &ipv6_hdr(skb)->daddr,
5137 					 skb->len - off, nexthdr, 0);
5138 	err = 0;
5139 
5140 out:
5141 	return err;
5142 }
5143 
5144 /**
5145  * skb_checksum_setup - set up partial checksum offset
5146  * @skb: the skb to set up
5147  * @recalculate: if true the pseudo-header checksum will be recalculated
5148  */
5149 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5150 {
5151 	int err;
5152 
5153 	switch (skb->protocol) {
5154 	case htons(ETH_P_IP):
5155 		err = skb_checksum_setup_ipv4(skb, recalculate);
5156 		break;
5157 
5158 	case htons(ETH_P_IPV6):
5159 		err = skb_checksum_setup_ipv6(skb, recalculate);
5160 		break;
5161 
5162 	default:
5163 		err = -EPROTO;
5164 		break;
5165 	}
5166 
5167 	return err;
5168 }
5169 EXPORT_SYMBOL(skb_checksum_setup);
5170 
5171 /**
5172  * skb_checksum_maybe_trim - maybe trims the given skb
5173  * @skb: the skb to check
5174  * @transport_len: the data length beyond the network header
5175  *
5176  * Checks whether the given skb has data beyond the given transport length.
5177  * If so, returns a cloned skb trimmed to this transport length.
5178  * Otherwise returns the provided skb. Returns NULL in error cases
5179  * (e.g. transport_len exceeds skb length or out-of-memory).
5180  *
5181  * Caller needs to set the skb transport header and free any returned skb if it
5182  * differs from the provided skb.
5183  */
5184 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5185 					       unsigned int transport_len)
5186 {
5187 	struct sk_buff *skb_chk;
5188 	unsigned int len = skb_transport_offset(skb) + transport_len;
5189 	int ret;
5190 
5191 	if (skb->len < len)
5192 		return NULL;
5193 	else if (skb->len == len)
5194 		return skb;
5195 
5196 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5197 	if (!skb_chk)
5198 		return NULL;
5199 
5200 	ret = pskb_trim_rcsum(skb_chk, len);
5201 	if (ret) {
5202 		kfree_skb(skb_chk);
5203 		return NULL;
5204 	}
5205 
5206 	return skb_chk;
5207 }
5208 
5209 /**
5210  * skb_checksum_trimmed - validate checksum of an skb
5211  * @skb: the skb to check
5212  * @transport_len: the data length beyond the network header
5213  * @skb_chkf: checksum function to use
5214  *
5215  * Applies the given checksum function skb_chkf to the provided skb.
5216  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5217  *
5218  * If the skb has data beyond the given transport length, then a
5219  * trimmed & cloned skb is checked and returned.
5220  *
5221  * Caller needs to set the skb transport header and free any returned skb if it
5222  * differs from the provided skb.
5223  */
5224 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5225 				     unsigned int transport_len,
5226 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5227 {
5228 	struct sk_buff *skb_chk;
5229 	unsigned int offset = skb_transport_offset(skb);
5230 	__sum16 ret;
5231 
5232 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5233 	if (!skb_chk)
5234 		goto err;
5235 
5236 	if (!pskb_may_pull(skb_chk, offset))
5237 		goto err;
5238 
5239 	skb_pull_rcsum(skb_chk, offset);
5240 	ret = skb_chkf(skb_chk);
5241 	skb_push_rcsum(skb_chk, offset);
5242 
5243 	if (ret)
5244 		goto err;
5245 
5246 	return skb_chk;
5247 
5248 err:
5249 	if (skb_chk && skb_chk != skb)
5250 		kfree_skb(skb_chk);
5251 
5252 	return NULL;
5253 
5254 }
5255 EXPORT_SYMBOL(skb_checksum_trimmed);
5256 
5257 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5258 {
5259 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5260 			     skb->dev->name);
5261 }
5262 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5263 
5264 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5265 {
5266 	if (head_stolen) {
5267 		skb_release_head_state(skb);
5268 		kmem_cache_free(skbuff_head_cache, skb);
5269 	} else {
5270 		__kfree_skb(skb);
5271 	}
5272 }
5273 EXPORT_SYMBOL(kfree_skb_partial);
5274 
5275 /**
5276  * skb_try_coalesce - try to merge skb to prior one
5277  * @to: prior buffer
5278  * @from: buffer to add
5279  * @fragstolen: pointer to boolean
5280  * @delta_truesize: how much more was allocated than was requested
5281  */
5282 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5283 		      bool *fragstolen, int *delta_truesize)
5284 {
5285 	struct skb_shared_info *to_shinfo, *from_shinfo;
5286 	int i, delta, len = from->len;
5287 
5288 	*fragstolen = false;
5289 
5290 	if (skb_cloned(to))
5291 		return false;
5292 
5293 	/* The page pool signature of struct page will eventually figure out
5294 	 * which pages can be recycled or not but for now let's prohibit slab
5295 	 * allocated and page_pool allocated SKBs from being coalesced.
5296 	 */
5297 	if (to->pp_recycle != from->pp_recycle)
5298 		return false;
5299 
5300 	if (len <= skb_tailroom(to)) {
5301 		if (len)
5302 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5303 		*delta_truesize = 0;
5304 		return true;
5305 	}
5306 
5307 	to_shinfo = skb_shinfo(to);
5308 	from_shinfo = skb_shinfo(from);
5309 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5310 		return false;
5311 	if (skb_zcopy(to) || skb_zcopy(from))
5312 		return false;
5313 
5314 	if (skb_headlen(from) != 0) {
5315 		struct page *page;
5316 		unsigned int offset;
5317 
5318 		if (to_shinfo->nr_frags +
5319 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5320 			return false;
5321 
5322 		if (skb_head_is_locked(from))
5323 			return false;
5324 
5325 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5326 
5327 		page = virt_to_head_page(from->head);
5328 		offset = from->data - (unsigned char *)page_address(page);
5329 
5330 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5331 				   page, offset, skb_headlen(from));
5332 		*fragstolen = true;
5333 	} else {
5334 		if (to_shinfo->nr_frags +
5335 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5336 			return false;
5337 
5338 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5339 	}
5340 
5341 	WARN_ON_ONCE(delta < len);
5342 
5343 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5344 	       from_shinfo->frags,
5345 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5346 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5347 
5348 	if (!skb_cloned(from))
5349 		from_shinfo->nr_frags = 0;
5350 
5351 	/* if the skb is not cloned this does nothing
5352 	 * since we set nr_frags to 0.
5353 	 */
5354 	for (i = 0; i < from_shinfo->nr_frags; i++)
5355 		__skb_frag_ref(&from_shinfo->frags[i]);
5356 
5357 	to->truesize += delta;
5358 	to->len += len;
5359 	to->data_len += len;
5360 
5361 	*delta_truesize = delta;
5362 	return true;
5363 }
5364 EXPORT_SYMBOL(skb_try_coalesce);
5365 
5366 /**
5367  * skb_scrub_packet - scrub an skb
5368  *
5369  * @skb: buffer to clean
5370  * @xnet: packet is crossing netns
5371  *
5372  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5373  * into/from a tunnel. Some information have to be cleared during these
5374  * operations.
5375  * skb_scrub_packet can also be used to clean a skb before injecting it in
5376  * another namespace (@xnet == true). We have to clear all information in the
5377  * skb that could impact namespace isolation.
5378  */
5379 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5380 {
5381 	skb->pkt_type = PACKET_HOST;
5382 	skb->skb_iif = 0;
5383 	skb->ignore_df = 0;
5384 	skb_dst_drop(skb);
5385 	skb_ext_reset(skb);
5386 	nf_reset_ct(skb);
5387 	nf_reset_trace(skb);
5388 
5389 #ifdef CONFIG_NET_SWITCHDEV
5390 	skb->offload_fwd_mark = 0;
5391 	skb->offload_l3_fwd_mark = 0;
5392 #endif
5393 
5394 	if (!xnet)
5395 		return;
5396 
5397 	ipvs_reset(skb);
5398 	skb->mark = 0;
5399 	skb->tstamp = 0;
5400 }
5401 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5402 
5403 /**
5404  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5405  *
5406  * @skb: GSO skb
5407  *
5408  * skb_gso_transport_seglen is used to determine the real size of the
5409  * individual segments, including Layer4 headers (TCP/UDP).
5410  *
5411  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5412  */
5413 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5414 {
5415 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5416 	unsigned int thlen = 0;
5417 
5418 	if (skb->encapsulation) {
5419 		thlen = skb_inner_transport_header(skb) -
5420 			skb_transport_header(skb);
5421 
5422 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5423 			thlen += inner_tcp_hdrlen(skb);
5424 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5425 		thlen = tcp_hdrlen(skb);
5426 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5427 		thlen = sizeof(struct sctphdr);
5428 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5429 		thlen = sizeof(struct udphdr);
5430 	}
5431 	/* UFO sets gso_size to the size of the fragmentation
5432 	 * payload, i.e. the size of the L4 (UDP) header is already
5433 	 * accounted for.
5434 	 */
5435 	return thlen + shinfo->gso_size;
5436 }
5437 
5438 /**
5439  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5440  *
5441  * @skb: GSO skb
5442  *
5443  * skb_gso_network_seglen is used to determine the real size of the
5444  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5445  *
5446  * The MAC/L2 header is not accounted for.
5447  */
5448 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5449 {
5450 	unsigned int hdr_len = skb_transport_header(skb) -
5451 			       skb_network_header(skb);
5452 
5453 	return hdr_len + skb_gso_transport_seglen(skb);
5454 }
5455 
5456 /**
5457  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5458  *
5459  * @skb: GSO skb
5460  *
5461  * skb_gso_mac_seglen is used to determine the real size of the
5462  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5463  * headers (TCP/UDP).
5464  */
5465 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5466 {
5467 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5468 
5469 	return hdr_len + skb_gso_transport_seglen(skb);
5470 }
5471 
5472 /**
5473  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5474  *
5475  * There are a couple of instances where we have a GSO skb, and we
5476  * want to determine what size it would be after it is segmented.
5477  *
5478  * We might want to check:
5479  * -    L3+L4+payload size (e.g. IP forwarding)
5480  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5481  *
5482  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5483  *
5484  * @skb: GSO skb
5485  *
5486  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5487  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5488  *
5489  * @max_len: The maximum permissible length.
5490  *
5491  * Returns true if the segmented length <= max length.
5492  */
5493 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5494 				      unsigned int seg_len,
5495 				      unsigned int max_len) {
5496 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5497 	const struct sk_buff *iter;
5498 
5499 	if (shinfo->gso_size != GSO_BY_FRAGS)
5500 		return seg_len <= max_len;
5501 
5502 	/* Undo this so we can re-use header sizes */
5503 	seg_len -= GSO_BY_FRAGS;
5504 
5505 	skb_walk_frags(skb, iter) {
5506 		if (seg_len + skb_headlen(iter) > max_len)
5507 			return false;
5508 	}
5509 
5510 	return true;
5511 }
5512 
5513 /**
5514  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5515  *
5516  * @skb: GSO skb
5517  * @mtu: MTU to validate against
5518  *
5519  * skb_gso_validate_network_len validates if a given skb will fit a
5520  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5521  * payload.
5522  */
5523 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5524 {
5525 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5526 }
5527 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5528 
5529 /**
5530  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5531  *
5532  * @skb: GSO skb
5533  * @len: length to validate against
5534  *
5535  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5536  * length once split, including L2, L3 and L4 headers and the payload.
5537  */
5538 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5539 {
5540 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5541 }
5542 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5543 
5544 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5545 {
5546 	int mac_len, meta_len;
5547 	void *meta;
5548 
5549 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5550 		kfree_skb(skb);
5551 		return NULL;
5552 	}
5553 
5554 	mac_len = skb->data - skb_mac_header(skb);
5555 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5556 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5557 			mac_len - VLAN_HLEN - ETH_TLEN);
5558 	}
5559 
5560 	meta_len = skb_metadata_len(skb);
5561 	if (meta_len) {
5562 		meta = skb_metadata_end(skb) - meta_len;
5563 		memmove(meta + VLAN_HLEN, meta, meta_len);
5564 	}
5565 
5566 	skb->mac_header += VLAN_HLEN;
5567 	return skb;
5568 }
5569 
5570 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5571 {
5572 	struct vlan_hdr *vhdr;
5573 	u16 vlan_tci;
5574 
5575 	if (unlikely(skb_vlan_tag_present(skb))) {
5576 		/* vlan_tci is already set-up so leave this for another time */
5577 		return skb;
5578 	}
5579 
5580 	skb = skb_share_check(skb, GFP_ATOMIC);
5581 	if (unlikely(!skb))
5582 		goto err_free;
5583 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5584 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5585 		goto err_free;
5586 
5587 	vhdr = (struct vlan_hdr *)skb->data;
5588 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5589 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5590 
5591 	skb_pull_rcsum(skb, VLAN_HLEN);
5592 	vlan_set_encap_proto(skb, vhdr);
5593 
5594 	skb = skb_reorder_vlan_header(skb);
5595 	if (unlikely(!skb))
5596 		goto err_free;
5597 
5598 	skb_reset_network_header(skb);
5599 	if (!skb_transport_header_was_set(skb))
5600 		skb_reset_transport_header(skb);
5601 	skb_reset_mac_len(skb);
5602 
5603 	return skb;
5604 
5605 err_free:
5606 	kfree_skb(skb);
5607 	return NULL;
5608 }
5609 EXPORT_SYMBOL(skb_vlan_untag);
5610 
5611 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5612 {
5613 	if (!pskb_may_pull(skb, write_len))
5614 		return -ENOMEM;
5615 
5616 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5617 		return 0;
5618 
5619 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5620 }
5621 EXPORT_SYMBOL(skb_ensure_writable);
5622 
5623 /* remove VLAN header from packet and update csum accordingly.
5624  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5625  */
5626 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5627 {
5628 	struct vlan_hdr *vhdr;
5629 	int offset = skb->data - skb_mac_header(skb);
5630 	int err;
5631 
5632 	if (WARN_ONCE(offset,
5633 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5634 		      offset)) {
5635 		return -EINVAL;
5636 	}
5637 
5638 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5639 	if (unlikely(err))
5640 		return err;
5641 
5642 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5643 
5644 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5645 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5646 
5647 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5648 	__skb_pull(skb, VLAN_HLEN);
5649 
5650 	vlan_set_encap_proto(skb, vhdr);
5651 	skb->mac_header += VLAN_HLEN;
5652 
5653 	if (skb_network_offset(skb) < ETH_HLEN)
5654 		skb_set_network_header(skb, ETH_HLEN);
5655 
5656 	skb_reset_mac_len(skb);
5657 
5658 	return err;
5659 }
5660 EXPORT_SYMBOL(__skb_vlan_pop);
5661 
5662 /* Pop a vlan tag either from hwaccel or from payload.
5663  * Expects skb->data at mac header.
5664  */
5665 int skb_vlan_pop(struct sk_buff *skb)
5666 {
5667 	u16 vlan_tci;
5668 	__be16 vlan_proto;
5669 	int err;
5670 
5671 	if (likely(skb_vlan_tag_present(skb))) {
5672 		__vlan_hwaccel_clear_tag(skb);
5673 	} else {
5674 		if (unlikely(!eth_type_vlan(skb->protocol)))
5675 			return 0;
5676 
5677 		err = __skb_vlan_pop(skb, &vlan_tci);
5678 		if (err)
5679 			return err;
5680 	}
5681 	/* move next vlan tag to hw accel tag */
5682 	if (likely(!eth_type_vlan(skb->protocol)))
5683 		return 0;
5684 
5685 	vlan_proto = skb->protocol;
5686 	err = __skb_vlan_pop(skb, &vlan_tci);
5687 	if (unlikely(err))
5688 		return err;
5689 
5690 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5691 	return 0;
5692 }
5693 EXPORT_SYMBOL(skb_vlan_pop);
5694 
5695 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5696  * Expects skb->data at mac header.
5697  */
5698 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5699 {
5700 	if (skb_vlan_tag_present(skb)) {
5701 		int offset = skb->data - skb_mac_header(skb);
5702 		int err;
5703 
5704 		if (WARN_ONCE(offset,
5705 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5706 			      offset)) {
5707 			return -EINVAL;
5708 		}
5709 
5710 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5711 					skb_vlan_tag_get(skb));
5712 		if (err)
5713 			return err;
5714 
5715 		skb->protocol = skb->vlan_proto;
5716 		skb->mac_len += VLAN_HLEN;
5717 
5718 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5719 	}
5720 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5721 	return 0;
5722 }
5723 EXPORT_SYMBOL(skb_vlan_push);
5724 
5725 /**
5726  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5727  *
5728  * @skb: Socket buffer to modify
5729  *
5730  * Drop the Ethernet header of @skb.
5731  *
5732  * Expects that skb->data points to the mac header and that no VLAN tags are
5733  * present.
5734  *
5735  * Returns 0 on success, -errno otherwise.
5736  */
5737 int skb_eth_pop(struct sk_buff *skb)
5738 {
5739 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5740 	    skb_network_offset(skb) < ETH_HLEN)
5741 		return -EPROTO;
5742 
5743 	skb_pull_rcsum(skb, ETH_HLEN);
5744 	skb_reset_mac_header(skb);
5745 	skb_reset_mac_len(skb);
5746 
5747 	return 0;
5748 }
5749 EXPORT_SYMBOL(skb_eth_pop);
5750 
5751 /**
5752  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5753  *
5754  * @skb: Socket buffer to modify
5755  * @dst: Destination MAC address of the new header
5756  * @src: Source MAC address of the new header
5757  *
5758  * Prepend @skb with a new Ethernet header.
5759  *
5760  * Expects that skb->data points to the mac header, which must be empty.
5761  *
5762  * Returns 0 on success, -errno otherwise.
5763  */
5764 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5765 		 const unsigned char *src)
5766 {
5767 	struct ethhdr *eth;
5768 	int err;
5769 
5770 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5771 		return -EPROTO;
5772 
5773 	err = skb_cow_head(skb, sizeof(*eth));
5774 	if (err < 0)
5775 		return err;
5776 
5777 	skb_push(skb, sizeof(*eth));
5778 	skb_reset_mac_header(skb);
5779 	skb_reset_mac_len(skb);
5780 
5781 	eth = eth_hdr(skb);
5782 	ether_addr_copy(eth->h_dest, dst);
5783 	ether_addr_copy(eth->h_source, src);
5784 	eth->h_proto = skb->protocol;
5785 
5786 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5787 
5788 	return 0;
5789 }
5790 EXPORT_SYMBOL(skb_eth_push);
5791 
5792 /* Update the ethertype of hdr and the skb csum value if required. */
5793 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5794 			     __be16 ethertype)
5795 {
5796 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5797 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5798 
5799 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5800 	}
5801 
5802 	hdr->h_proto = ethertype;
5803 }
5804 
5805 /**
5806  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5807  *                   the packet
5808  *
5809  * @skb: buffer
5810  * @mpls_lse: MPLS label stack entry to push
5811  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5812  * @mac_len: length of the MAC header
5813  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5814  *            ethernet
5815  *
5816  * Expects skb->data at mac header.
5817  *
5818  * Returns 0 on success, -errno otherwise.
5819  */
5820 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5821 		  int mac_len, bool ethernet)
5822 {
5823 	struct mpls_shim_hdr *lse;
5824 	int err;
5825 
5826 	if (unlikely(!eth_p_mpls(mpls_proto)))
5827 		return -EINVAL;
5828 
5829 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5830 	if (skb->encapsulation)
5831 		return -EINVAL;
5832 
5833 	err = skb_cow_head(skb, MPLS_HLEN);
5834 	if (unlikely(err))
5835 		return err;
5836 
5837 	if (!skb->inner_protocol) {
5838 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5839 		skb_set_inner_protocol(skb, skb->protocol);
5840 	}
5841 
5842 	skb_push(skb, MPLS_HLEN);
5843 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5844 		mac_len);
5845 	skb_reset_mac_header(skb);
5846 	skb_set_network_header(skb, mac_len);
5847 	skb_reset_mac_len(skb);
5848 
5849 	lse = mpls_hdr(skb);
5850 	lse->label_stack_entry = mpls_lse;
5851 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5852 
5853 	if (ethernet && mac_len >= ETH_HLEN)
5854 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5855 	skb->protocol = mpls_proto;
5856 
5857 	return 0;
5858 }
5859 EXPORT_SYMBOL_GPL(skb_mpls_push);
5860 
5861 /**
5862  * skb_mpls_pop() - pop the outermost MPLS header
5863  *
5864  * @skb: buffer
5865  * @next_proto: ethertype of header after popped MPLS header
5866  * @mac_len: length of the MAC header
5867  * @ethernet: flag to indicate if the packet is ethernet
5868  *
5869  * Expects skb->data at mac header.
5870  *
5871  * Returns 0 on success, -errno otherwise.
5872  */
5873 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5874 		 bool ethernet)
5875 {
5876 	int err;
5877 
5878 	if (unlikely(!eth_p_mpls(skb->protocol)))
5879 		return 0;
5880 
5881 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5882 	if (unlikely(err))
5883 		return err;
5884 
5885 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5886 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5887 		mac_len);
5888 
5889 	__skb_pull(skb, MPLS_HLEN);
5890 	skb_reset_mac_header(skb);
5891 	skb_set_network_header(skb, mac_len);
5892 
5893 	if (ethernet && mac_len >= ETH_HLEN) {
5894 		struct ethhdr *hdr;
5895 
5896 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5897 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5898 		skb_mod_eth_type(skb, hdr, next_proto);
5899 	}
5900 	skb->protocol = next_proto;
5901 
5902 	return 0;
5903 }
5904 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5905 
5906 /**
5907  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5908  *
5909  * @skb: buffer
5910  * @mpls_lse: new MPLS label stack entry to update to
5911  *
5912  * Expects skb->data at mac header.
5913  *
5914  * Returns 0 on success, -errno otherwise.
5915  */
5916 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5917 {
5918 	int err;
5919 
5920 	if (unlikely(!eth_p_mpls(skb->protocol)))
5921 		return -EINVAL;
5922 
5923 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5924 	if (unlikely(err))
5925 		return err;
5926 
5927 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5928 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5929 
5930 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5931 	}
5932 
5933 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5934 
5935 	return 0;
5936 }
5937 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5938 
5939 /**
5940  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5941  *
5942  * @skb: buffer
5943  *
5944  * Expects skb->data at mac header.
5945  *
5946  * Returns 0 on success, -errno otherwise.
5947  */
5948 int skb_mpls_dec_ttl(struct sk_buff *skb)
5949 {
5950 	u32 lse;
5951 	u8 ttl;
5952 
5953 	if (unlikely(!eth_p_mpls(skb->protocol)))
5954 		return -EINVAL;
5955 
5956 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5957 		return -ENOMEM;
5958 
5959 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5960 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5961 	if (!--ttl)
5962 		return -EINVAL;
5963 
5964 	lse &= ~MPLS_LS_TTL_MASK;
5965 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5966 
5967 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5968 }
5969 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5970 
5971 /**
5972  * alloc_skb_with_frags - allocate skb with page frags
5973  *
5974  * @header_len: size of linear part
5975  * @data_len: needed length in frags
5976  * @max_page_order: max page order desired.
5977  * @errcode: pointer to error code if any
5978  * @gfp_mask: allocation mask
5979  *
5980  * This can be used to allocate a paged skb, given a maximal order for frags.
5981  */
5982 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5983 				     unsigned long data_len,
5984 				     int max_page_order,
5985 				     int *errcode,
5986 				     gfp_t gfp_mask)
5987 {
5988 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5989 	unsigned long chunk;
5990 	struct sk_buff *skb;
5991 	struct page *page;
5992 	int i;
5993 
5994 	*errcode = -EMSGSIZE;
5995 	/* Note this test could be relaxed, if we succeed to allocate
5996 	 * high order pages...
5997 	 */
5998 	if (npages > MAX_SKB_FRAGS)
5999 		return NULL;
6000 
6001 	*errcode = -ENOBUFS;
6002 	skb = alloc_skb(header_len, gfp_mask);
6003 	if (!skb)
6004 		return NULL;
6005 
6006 	skb->truesize += npages << PAGE_SHIFT;
6007 
6008 	for (i = 0; npages > 0; i++) {
6009 		int order = max_page_order;
6010 
6011 		while (order) {
6012 			if (npages >= 1 << order) {
6013 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6014 						   __GFP_COMP |
6015 						   __GFP_NOWARN,
6016 						   order);
6017 				if (page)
6018 					goto fill_page;
6019 				/* Do not retry other high order allocations */
6020 				order = 1;
6021 				max_page_order = 0;
6022 			}
6023 			order--;
6024 		}
6025 		page = alloc_page(gfp_mask);
6026 		if (!page)
6027 			goto failure;
6028 fill_page:
6029 		chunk = min_t(unsigned long, data_len,
6030 			      PAGE_SIZE << order);
6031 		skb_fill_page_desc(skb, i, page, 0, chunk);
6032 		data_len -= chunk;
6033 		npages -= 1 << order;
6034 	}
6035 	return skb;
6036 
6037 failure:
6038 	kfree_skb(skb);
6039 	return NULL;
6040 }
6041 EXPORT_SYMBOL(alloc_skb_with_frags);
6042 
6043 /* carve out the first off bytes from skb when off < headlen */
6044 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6045 				    const int headlen, gfp_t gfp_mask)
6046 {
6047 	int i;
6048 	int size = skb_end_offset(skb);
6049 	int new_hlen = headlen - off;
6050 	u8 *data;
6051 
6052 	size = SKB_DATA_ALIGN(size);
6053 
6054 	if (skb_pfmemalloc(skb))
6055 		gfp_mask |= __GFP_MEMALLOC;
6056 	data = kmalloc_reserve(size +
6057 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6058 			       gfp_mask, NUMA_NO_NODE, NULL);
6059 	if (!data)
6060 		return -ENOMEM;
6061 
6062 	size = SKB_WITH_OVERHEAD(ksize(data));
6063 
6064 	/* Copy real data, and all frags */
6065 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6066 	skb->len -= off;
6067 
6068 	memcpy((struct skb_shared_info *)(data + size),
6069 	       skb_shinfo(skb),
6070 	       offsetof(struct skb_shared_info,
6071 			frags[skb_shinfo(skb)->nr_frags]));
6072 	if (skb_cloned(skb)) {
6073 		/* drop the old head gracefully */
6074 		if (skb_orphan_frags(skb, gfp_mask)) {
6075 			kfree(data);
6076 			return -ENOMEM;
6077 		}
6078 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6079 			skb_frag_ref(skb, i);
6080 		if (skb_has_frag_list(skb))
6081 			skb_clone_fraglist(skb);
6082 		skb_release_data(skb);
6083 	} else {
6084 		/* we can reuse existing recount- all we did was
6085 		 * relocate values
6086 		 */
6087 		skb_free_head(skb);
6088 	}
6089 
6090 	skb->head = data;
6091 	skb->data = data;
6092 	skb->head_frag = 0;
6093 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6094 	skb->end = size;
6095 #else
6096 	skb->end = skb->head + size;
6097 #endif
6098 	skb_set_tail_pointer(skb, skb_headlen(skb));
6099 	skb_headers_offset_update(skb, 0);
6100 	skb->cloned = 0;
6101 	skb->hdr_len = 0;
6102 	skb->nohdr = 0;
6103 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6104 
6105 	return 0;
6106 }
6107 
6108 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6109 
6110 /* carve out the first eat bytes from skb's frag_list. May recurse into
6111  * pskb_carve()
6112  */
6113 static int pskb_carve_frag_list(struct sk_buff *skb,
6114 				struct skb_shared_info *shinfo, int eat,
6115 				gfp_t gfp_mask)
6116 {
6117 	struct sk_buff *list = shinfo->frag_list;
6118 	struct sk_buff *clone = NULL;
6119 	struct sk_buff *insp = NULL;
6120 
6121 	do {
6122 		if (!list) {
6123 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6124 			return -EFAULT;
6125 		}
6126 		if (list->len <= eat) {
6127 			/* Eaten as whole. */
6128 			eat -= list->len;
6129 			list = list->next;
6130 			insp = list;
6131 		} else {
6132 			/* Eaten partially. */
6133 			if (skb_shared(list)) {
6134 				clone = skb_clone(list, gfp_mask);
6135 				if (!clone)
6136 					return -ENOMEM;
6137 				insp = list->next;
6138 				list = clone;
6139 			} else {
6140 				/* This may be pulled without problems. */
6141 				insp = list;
6142 			}
6143 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6144 				kfree_skb(clone);
6145 				return -ENOMEM;
6146 			}
6147 			break;
6148 		}
6149 	} while (eat);
6150 
6151 	/* Free pulled out fragments. */
6152 	while ((list = shinfo->frag_list) != insp) {
6153 		shinfo->frag_list = list->next;
6154 		kfree_skb(list);
6155 	}
6156 	/* And insert new clone at head. */
6157 	if (clone) {
6158 		clone->next = list;
6159 		shinfo->frag_list = clone;
6160 	}
6161 	return 0;
6162 }
6163 
6164 /* carve off first len bytes from skb. Split line (off) is in the
6165  * non-linear part of skb
6166  */
6167 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6168 				       int pos, gfp_t gfp_mask)
6169 {
6170 	int i, k = 0;
6171 	int size = skb_end_offset(skb);
6172 	u8 *data;
6173 	const int nfrags = skb_shinfo(skb)->nr_frags;
6174 	struct skb_shared_info *shinfo;
6175 
6176 	size = SKB_DATA_ALIGN(size);
6177 
6178 	if (skb_pfmemalloc(skb))
6179 		gfp_mask |= __GFP_MEMALLOC;
6180 	data = kmalloc_reserve(size +
6181 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6182 			       gfp_mask, NUMA_NO_NODE, NULL);
6183 	if (!data)
6184 		return -ENOMEM;
6185 
6186 	size = SKB_WITH_OVERHEAD(ksize(data));
6187 
6188 	memcpy((struct skb_shared_info *)(data + size),
6189 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6190 	if (skb_orphan_frags(skb, gfp_mask)) {
6191 		kfree(data);
6192 		return -ENOMEM;
6193 	}
6194 	shinfo = (struct skb_shared_info *)(data + size);
6195 	for (i = 0; i < nfrags; i++) {
6196 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6197 
6198 		if (pos + fsize > off) {
6199 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6200 
6201 			if (pos < off) {
6202 				/* Split frag.
6203 				 * We have two variants in this case:
6204 				 * 1. Move all the frag to the second
6205 				 *    part, if it is possible. F.e.
6206 				 *    this approach is mandatory for TUX,
6207 				 *    where splitting is expensive.
6208 				 * 2. Split is accurately. We make this.
6209 				 */
6210 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6211 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6212 			}
6213 			skb_frag_ref(skb, i);
6214 			k++;
6215 		}
6216 		pos += fsize;
6217 	}
6218 	shinfo->nr_frags = k;
6219 	if (skb_has_frag_list(skb))
6220 		skb_clone_fraglist(skb);
6221 
6222 	/* split line is in frag list */
6223 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6224 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6225 		if (skb_has_frag_list(skb))
6226 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6227 		kfree(data);
6228 		return -ENOMEM;
6229 	}
6230 	skb_release_data(skb);
6231 
6232 	skb->head = data;
6233 	skb->head_frag = 0;
6234 	skb->data = data;
6235 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6236 	skb->end = size;
6237 #else
6238 	skb->end = skb->head + size;
6239 #endif
6240 	skb_reset_tail_pointer(skb);
6241 	skb_headers_offset_update(skb, 0);
6242 	skb->cloned   = 0;
6243 	skb->hdr_len  = 0;
6244 	skb->nohdr    = 0;
6245 	skb->len -= off;
6246 	skb->data_len = skb->len;
6247 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6248 	return 0;
6249 }
6250 
6251 /* remove len bytes from the beginning of the skb */
6252 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6253 {
6254 	int headlen = skb_headlen(skb);
6255 
6256 	if (len < headlen)
6257 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6258 	else
6259 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6260 }
6261 
6262 /* Extract to_copy bytes starting at off from skb, and return this in
6263  * a new skb
6264  */
6265 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6266 			     int to_copy, gfp_t gfp)
6267 {
6268 	struct sk_buff  *clone = skb_clone(skb, gfp);
6269 
6270 	if (!clone)
6271 		return NULL;
6272 
6273 	if (pskb_carve(clone, off, gfp) < 0 ||
6274 	    pskb_trim(clone, to_copy)) {
6275 		kfree_skb(clone);
6276 		return NULL;
6277 	}
6278 	return clone;
6279 }
6280 EXPORT_SYMBOL(pskb_extract);
6281 
6282 /**
6283  * skb_condense - try to get rid of fragments/frag_list if possible
6284  * @skb: buffer
6285  *
6286  * Can be used to save memory before skb is added to a busy queue.
6287  * If packet has bytes in frags and enough tail room in skb->head,
6288  * pull all of them, so that we can free the frags right now and adjust
6289  * truesize.
6290  * Notes:
6291  *	We do not reallocate skb->head thus can not fail.
6292  *	Caller must re-evaluate skb->truesize if needed.
6293  */
6294 void skb_condense(struct sk_buff *skb)
6295 {
6296 	if (skb->data_len) {
6297 		if (skb->data_len > skb->end - skb->tail ||
6298 		    skb_cloned(skb))
6299 			return;
6300 
6301 		/* Nice, we can free page frag(s) right now */
6302 		__pskb_pull_tail(skb, skb->data_len);
6303 	}
6304 	/* At this point, skb->truesize might be over estimated,
6305 	 * because skb had a fragment, and fragments do not tell
6306 	 * their truesize.
6307 	 * When we pulled its content into skb->head, fragment
6308 	 * was freed, but __pskb_pull_tail() could not possibly
6309 	 * adjust skb->truesize, not knowing the frag truesize.
6310 	 */
6311 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6312 }
6313 
6314 #ifdef CONFIG_SKB_EXTENSIONS
6315 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6316 {
6317 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6318 }
6319 
6320 /**
6321  * __skb_ext_alloc - allocate a new skb extensions storage
6322  *
6323  * @flags: See kmalloc().
6324  *
6325  * Returns the newly allocated pointer. The pointer can later attached to a
6326  * skb via __skb_ext_set().
6327  * Note: caller must handle the skb_ext as an opaque data.
6328  */
6329 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6330 {
6331 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6332 
6333 	if (new) {
6334 		memset(new->offset, 0, sizeof(new->offset));
6335 		refcount_set(&new->refcnt, 1);
6336 	}
6337 
6338 	return new;
6339 }
6340 
6341 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6342 					 unsigned int old_active)
6343 {
6344 	struct skb_ext *new;
6345 
6346 	if (refcount_read(&old->refcnt) == 1)
6347 		return old;
6348 
6349 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6350 	if (!new)
6351 		return NULL;
6352 
6353 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6354 	refcount_set(&new->refcnt, 1);
6355 
6356 #ifdef CONFIG_XFRM
6357 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6358 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6359 		unsigned int i;
6360 
6361 		for (i = 0; i < sp->len; i++)
6362 			xfrm_state_hold(sp->xvec[i]);
6363 	}
6364 #endif
6365 	__skb_ext_put(old);
6366 	return new;
6367 }
6368 
6369 /**
6370  * __skb_ext_set - attach the specified extension storage to this skb
6371  * @skb: buffer
6372  * @id: extension id
6373  * @ext: extension storage previously allocated via __skb_ext_alloc()
6374  *
6375  * Existing extensions, if any, are cleared.
6376  *
6377  * Returns the pointer to the extension.
6378  */
6379 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6380 		    struct skb_ext *ext)
6381 {
6382 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6383 
6384 	skb_ext_put(skb);
6385 	newlen = newoff + skb_ext_type_len[id];
6386 	ext->chunks = newlen;
6387 	ext->offset[id] = newoff;
6388 	skb->extensions = ext;
6389 	skb->active_extensions = 1 << id;
6390 	return skb_ext_get_ptr(ext, id);
6391 }
6392 
6393 /**
6394  * skb_ext_add - allocate space for given extension, COW if needed
6395  * @skb: buffer
6396  * @id: extension to allocate space for
6397  *
6398  * Allocates enough space for the given extension.
6399  * If the extension is already present, a pointer to that extension
6400  * is returned.
6401  *
6402  * If the skb was cloned, COW applies and the returned memory can be
6403  * modified without changing the extension space of clones buffers.
6404  *
6405  * Returns pointer to the extension or NULL on allocation failure.
6406  */
6407 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6408 {
6409 	struct skb_ext *new, *old = NULL;
6410 	unsigned int newlen, newoff;
6411 
6412 	if (skb->active_extensions) {
6413 		old = skb->extensions;
6414 
6415 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6416 		if (!new)
6417 			return NULL;
6418 
6419 		if (__skb_ext_exist(new, id))
6420 			goto set_active;
6421 
6422 		newoff = new->chunks;
6423 	} else {
6424 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6425 
6426 		new = __skb_ext_alloc(GFP_ATOMIC);
6427 		if (!new)
6428 			return NULL;
6429 	}
6430 
6431 	newlen = newoff + skb_ext_type_len[id];
6432 	new->chunks = newlen;
6433 	new->offset[id] = newoff;
6434 set_active:
6435 	skb->extensions = new;
6436 	skb->active_extensions |= 1 << id;
6437 	return skb_ext_get_ptr(new, id);
6438 }
6439 EXPORT_SYMBOL(skb_ext_add);
6440 
6441 #ifdef CONFIG_XFRM
6442 static void skb_ext_put_sp(struct sec_path *sp)
6443 {
6444 	unsigned int i;
6445 
6446 	for (i = 0; i < sp->len; i++)
6447 		xfrm_state_put(sp->xvec[i]);
6448 }
6449 #endif
6450 
6451 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6452 {
6453 	struct skb_ext *ext = skb->extensions;
6454 
6455 	skb->active_extensions &= ~(1 << id);
6456 	if (skb->active_extensions == 0) {
6457 		skb->extensions = NULL;
6458 		__skb_ext_put(ext);
6459 #ifdef CONFIG_XFRM
6460 	} else if (id == SKB_EXT_SEC_PATH &&
6461 		   refcount_read(&ext->refcnt) == 1) {
6462 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6463 
6464 		skb_ext_put_sp(sp);
6465 		sp->len = 0;
6466 #endif
6467 	}
6468 }
6469 EXPORT_SYMBOL(__skb_ext_del);
6470 
6471 void __skb_ext_put(struct skb_ext *ext)
6472 {
6473 	/* If this is last clone, nothing can increment
6474 	 * it after check passes.  Avoids one atomic op.
6475 	 */
6476 	if (refcount_read(&ext->refcnt) == 1)
6477 		goto free_now;
6478 
6479 	if (!refcount_dec_and_test(&ext->refcnt))
6480 		return;
6481 free_now:
6482 #ifdef CONFIG_XFRM
6483 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6484 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6485 #endif
6486 
6487 	kmem_cache_free(skbuff_ext_cache, ext);
6488 }
6489 EXPORT_SYMBOL(__skb_ext_put);
6490 #endif /* CONFIG_SKB_EXTENSIONS */
6491