xref: /openbmc/linux/net/core/skbuff.c (revision f79e4d5f)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	C(pfmemalloc);
862 	n->destructor = NULL;
863 	C(tail);
864 	C(end);
865 	C(head);
866 	C(head_frag);
867 	C(data);
868 	C(truesize);
869 	refcount_set(&n->users, 1);
870 
871 	atomic_inc(&(skb_shinfo(skb)->dataref));
872 	skb->cloned = 1;
873 
874 	return n;
875 #undef C
876 }
877 
878 /**
879  *	skb_morph	-	morph one skb into another
880  *	@dst: the skb to receive the contents
881  *	@src: the skb to supply the contents
882  *
883  *	This is identical to skb_clone except that the target skb is
884  *	supplied by the user.
885  *
886  *	The target skb is returned upon exit.
887  */
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 {
890 	skb_release_all(dst);
891 	return __skb_clone(dst, src);
892 }
893 EXPORT_SYMBOL_GPL(skb_morph);
894 
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 {
897 	unsigned long max_pg, num_pg, new_pg, old_pg;
898 	struct user_struct *user;
899 
900 	if (capable(CAP_IPC_LOCK) || !size)
901 		return 0;
902 
903 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
904 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 	user = mmp->user ? : current_user();
906 
907 	do {
908 		old_pg = atomic_long_read(&user->locked_vm);
909 		new_pg = old_pg + num_pg;
910 		if (new_pg > max_pg)
911 			return -ENOBUFS;
912 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 		 old_pg);
914 
915 	if (!mmp->user) {
916 		mmp->user = get_uid(user);
917 		mmp->num_pg = num_pg;
918 	} else {
919 		mmp->num_pg += num_pg;
920 	}
921 
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925 
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
927 {
928 	if (mmp->user) {
929 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 		free_uid(mmp->user);
931 	}
932 }
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	if (!sock_flag(sk, SOCK_ZEROCOPY))
943 		return NULL;
944 
945 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 	if (!skb)
947 		return NULL;
948 
949 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 	uarg = (void *)skb->cb;
951 	uarg->mmp.user = NULL;
952 
953 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 		kfree_skb(skb);
955 		return NULL;
956 	}
957 
958 	uarg->callback = sock_zerocopy_callback;
959 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 	uarg->len = 1;
961 	uarg->bytelen = size;
962 	uarg->zerocopy = 1;
963 	refcount_set(&uarg->refcnt, 1);
964 	sock_hold(sk);
965 
966 	return uarg;
967 }
968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969 
970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971 {
972 	return container_of((void *)uarg, struct sk_buff, cb);
973 }
974 
975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 					struct ubuf_info *uarg)
977 {
978 	if (uarg) {
979 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
980 		u32 bytelen, next;
981 
982 		/* realloc only when socket is locked (TCP, UDP cork),
983 		 * so uarg->len and sk_zckey access is serialized
984 		 */
985 		if (!sock_owned_by_user(sk)) {
986 			WARN_ON_ONCE(1);
987 			return NULL;
988 		}
989 
990 		bytelen = uarg->bytelen + size;
991 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 			/* TCP can create new skb to attach new uarg */
993 			if (sk->sk_type == SOCK_STREAM)
994 				goto new_alloc;
995 			return NULL;
996 		}
997 
998 		next = (u32)atomic_read(&sk->sk_zckey);
999 		if ((u32)(uarg->id + uarg->len) == next) {
1000 			if (mm_account_pinned_pages(&uarg->mmp, size))
1001 				return NULL;
1002 			uarg->len++;
1003 			uarg->bytelen = bytelen;
1004 			atomic_set(&sk->sk_zckey, ++next);
1005 			sock_zerocopy_get(uarg);
1006 			return uarg;
1007 		}
1008 	}
1009 
1010 new_alloc:
1011 	return sock_zerocopy_alloc(sk, size);
1012 }
1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014 
1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016 {
1017 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 	u32 old_lo, old_hi;
1019 	u64 sum_len;
1020 
1021 	old_lo = serr->ee.ee_info;
1022 	old_hi = serr->ee.ee_data;
1023 	sum_len = old_hi - old_lo + 1ULL + len;
1024 
1025 	if (sum_len >= (1ULL << 32))
1026 		return false;
1027 
1028 	if (lo != old_hi + 1)
1029 		return false;
1030 
1031 	serr->ee.ee_data += len;
1032 	return true;
1033 }
1034 
1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036 {
1037 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 	struct sock_exterr_skb *serr;
1039 	struct sock *sk = skb->sk;
1040 	struct sk_buff_head *q;
1041 	unsigned long flags;
1042 	u32 lo, hi;
1043 	u16 len;
1044 
1045 	mm_unaccount_pinned_pages(&uarg->mmp);
1046 
1047 	/* if !len, there was only 1 call, and it was aborted
1048 	 * so do not queue a completion notification
1049 	 */
1050 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 		goto release;
1052 
1053 	len = uarg->len;
1054 	lo = uarg->id;
1055 	hi = uarg->id + len - 1;
1056 
1057 	serr = SKB_EXT_ERR(skb);
1058 	memset(serr, 0, sizeof(*serr));
1059 	serr->ee.ee_errno = 0;
1060 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 	serr->ee.ee_data = hi;
1062 	serr->ee.ee_info = lo;
1063 	if (!success)
1064 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065 
1066 	q = &sk->sk_error_queue;
1067 	spin_lock_irqsave(&q->lock, flags);
1068 	tail = skb_peek_tail(q);
1069 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 		__skb_queue_tail(q, skb);
1072 		skb = NULL;
1073 	}
1074 	spin_unlock_irqrestore(&q->lock, flags);
1075 
1076 	sk->sk_error_report(sk);
1077 
1078 release:
1079 	consume_skb(skb);
1080 	sock_put(sk);
1081 }
1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083 
1084 void sock_zerocopy_put(struct ubuf_info *uarg)
1085 {
1086 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 		if (uarg->callback)
1088 			uarg->callback(uarg, uarg->zerocopy);
1089 		else
1090 			consume_skb(skb_from_uarg(uarg));
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094 
1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096 {
1097 	if (uarg) {
1098 		struct sock *sk = skb_from_uarg(uarg)->sk;
1099 
1100 		atomic_dec(&sk->sk_zckey);
1101 		uarg->len--;
1102 
1103 		sock_zerocopy_put(uarg);
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107 
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 				   struct iov_iter *from, size_t length);
1110 
1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 			     struct msghdr *msg, int len,
1113 			     struct ubuf_info *uarg)
1114 {
1115 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 	struct iov_iter orig_iter = msg->msg_iter;
1117 	int err, orig_len = skb->len;
1118 
1119 	/* An skb can only point to one uarg. This edge case happens when
1120 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 	 */
1122 	if (orig_uarg && uarg != orig_uarg)
1123 		return -EEXIST;
1124 
1125 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 		struct sock *save_sk = skb->sk;
1128 
1129 		/* Streams do not free skb on error. Reset to prev state. */
1130 		msg->msg_iter = orig_iter;
1131 		skb->sk = sk;
1132 		___pskb_trim(skb, orig_len);
1133 		skb->sk = save_sk;
1134 		return err;
1135 	}
1136 
1137 	skb_zcopy_set(skb, uarg);
1138 	return skb->len - orig_len;
1139 }
1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1141 
1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 			      gfp_t gfp_mask)
1144 {
1145 	if (skb_zcopy(orig)) {
1146 		if (skb_zcopy(nskb)) {
1147 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 			if (!gfp_mask) {
1149 				WARN_ON_ONCE(1);
1150 				return -ENOMEM;
1151 			}
1152 			if (skb_uarg(nskb) == skb_uarg(orig))
1153 				return 0;
1154 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 				return -EIO;
1156 		}
1157 		skb_zcopy_set(nskb, skb_uarg(orig));
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1164  *	@skb: the skb to modify
1165  *	@gfp_mask: allocation priority
1166  *
1167  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1168  *	It will copy all frags into kernel and drop the reference
1169  *	to userspace pages.
1170  *
1171  *	If this function is called from an interrupt gfp_mask() must be
1172  *	%GFP_ATOMIC.
1173  *
1174  *	Returns 0 on success or a negative error code on failure
1175  *	to allocate kernel memory to copy to.
1176  */
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1178 {
1179 	int num_frags = skb_shinfo(skb)->nr_frags;
1180 	struct page *page, *head = NULL;
1181 	int i, new_frags;
1182 	u32 d_off;
1183 
1184 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1185 		return -EINVAL;
1186 
1187 	if (!num_frags)
1188 		goto release;
1189 
1190 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 	for (i = 0; i < new_frags; i++) {
1192 		page = alloc_page(gfp_mask);
1193 		if (!page) {
1194 			while (head) {
1195 				struct page *next = (struct page *)page_private(head);
1196 				put_page(head);
1197 				head = next;
1198 			}
1199 			return -ENOMEM;
1200 		}
1201 		set_page_private(page, (unsigned long)head);
1202 		head = page;
1203 	}
1204 
1205 	page = head;
1206 	d_off = 0;
1207 	for (i = 0; i < num_frags; i++) {
1208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 		u32 p_off, p_len, copied;
1210 		struct page *p;
1211 		u8 *vaddr;
1212 
1213 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 				      p, p_off, p_len, copied) {
1215 			u32 copy, done = 0;
1216 			vaddr = kmap_atomic(p);
1217 
1218 			while (done < p_len) {
1219 				if (d_off == PAGE_SIZE) {
1220 					d_off = 0;
1221 					page = (struct page *)page_private(page);
1222 				}
1223 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 				memcpy(page_address(page) + d_off,
1225 				       vaddr + p_off + done, copy);
1226 				done += copy;
1227 				d_off += copy;
1228 			}
1229 			kunmap_atomic(vaddr);
1230 		}
1231 	}
1232 
1233 	/* skb frags release userspace buffers */
1234 	for (i = 0; i < num_frags; i++)
1235 		skb_frag_unref(skb, i);
1236 
1237 	/* skb frags point to kernel buffers */
1238 	for (i = 0; i < new_frags - 1; i++) {
1239 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 		head = (struct page *)page_private(head);
1241 	}
1242 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 	skb_shinfo(skb)->nr_frags = new_frags;
1244 
1245 release:
1246 	skb_zcopy_clear(skb, false);
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1250 
1251 /**
1252  *	skb_clone	-	duplicate an sk_buff
1253  *	@skb: buffer to clone
1254  *	@gfp_mask: allocation priority
1255  *
1256  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1257  *	copies share the same packet data but not structure. The new
1258  *	buffer has a reference count of 1. If the allocation fails the
1259  *	function returns %NULL otherwise the new buffer is returned.
1260  *
1261  *	If this function is called from an interrupt gfp_mask() must be
1262  *	%GFP_ATOMIC.
1263  */
1264 
1265 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1266 {
1267 	struct sk_buff_fclones *fclones = container_of(skb,
1268 						       struct sk_buff_fclones,
1269 						       skb1);
1270 	struct sk_buff *n;
1271 
1272 	if (skb_orphan_frags(skb, gfp_mask))
1273 		return NULL;
1274 
1275 	if (skb->fclone == SKB_FCLONE_ORIG &&
1276 	    refcount_read(&fclones->fclone_ref) == 1) {
1277 		n = &fclones->skb2;
1278 		refcount_set(&fclones->fclone_ref, 2);
1279 	} else {
1280 		if (skb_pfmemalloc(skb))
1281 			gfp_mask |= __GFP_MEMALLOC;
1282 
1283 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1284 		if (!n)
1285 			return NULL;
1286 
1287 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1288 	}
1289 
1290 	return __skb_clone(n, skb);
1291 }
1292 EXPORT_SYMBOL(skb_clone);
1293 
1294 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1295 {
1296 	/* Only adjust this if it actually is csum_start rather than csum */
1297 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 		skb->csum_start += off;
1299 	/* {transport,network,mac}_header and tail are relative to skb->head */
1300 	skb->transport_header += off;
1301 	skb->network_header   += off;
1302 	if (skb_mac_header_was_set(skb))
1303 		skb->mac_header += off;
1304 	skb->inner_transport_header += off;
1305 	skb->inner_network_header += off;
1306 	skb->inner_mac_header += off;
1307 }
1308 
1309 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1310 {
1311 	__copy_skb_header(new, old);
1312 
1313 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1314 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1315 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1316 }
1317 EXPORT_SYMBOL(skb_copy_header);
1318 
1319 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1320 {
1321 	if (skb_pfmemalloc(skb))
1322 		return SKB_ALLOC_RX;
1323 	return 0;
1324 }
1325 
1326 /**
1327  *	skb_copy	-	create private copy of an sk_buff
1328  *	@skb: buffer to copy
1329  *	@gfp_mask: allocation priority
1330  *
1331  *	Make a copy of both an &sk_buff and its data. This is used when the
1332  *	caller wishes to modify the data and needs a private copy of the
1333  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1334  *	on success. The returned buffer has a reference count of 1.
1335  *
1336  *	As by-product this function converts non-linear &sk_buff to linear
1337  *	one, so that &sk_buff becomes completely private and caller is allowed
1338  *	to modify all the data of returned buffer. This means that this
1339  *	function is not recommended for use in circumstances when only
1340  *	header is going to be modified. Use pskb_copy() instead.
1341  */
1342 
1343 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1344 {
1345 	int headerlen = skb_headroom(skb);
1346 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1347 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1348 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1349 
1350 	if (!n)
1351 		return NULL;
1352 
1353 	/* Set the data pointer */
1354 	skb_reserve(n, headerlen);
1355 	/* Set the tail pointer and length */
1356 	skb_put(n, skb->len);
1357 
1358 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1359 
1360 	skb_copy_header(n, skb);
1361 	return n;
1362 }
1363 EXPORT_SYMBOL(skb_copy);
1364 
1365 /**
1366  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1367  *	@skb: buffer to copy
1368  *	@headroom: headroom of new skb
1369  *	@gfp_mask: allocation priority
1370  *	@fclone: if true allocate the copy of the skb from the fclone
1371  *	cache instead of the head cache; it is recommended to set this
1372  *	to true for the cases where the copy will likely be cloned
1373  *
1374  *	Make a copy of both an &sk_buff and part of its data, located
1375  *	in header. Fragmented data remain shared. This is used when
1376  *	the caller wishes to modify only header of &sk_buff and needs
1377  *	private copy of the header to alter. Returns %NULL on failure
1378  *	or the pointer to the buffer on success.
1379  *	The returned buffer has a reference count of 1.
1380  */
1381 
1382 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1383 				   gfp_t gfp_mask, bool fclone)
1384 {
1385 	unsigned int size = skb_headlen(skb) + headroom;
1386 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1387 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1388 
1389 	if (!n)
1390 		goto out;
1391 
1392 	/* Set the data pointer */
1393 	skb_reserve(n, headroom);
1394 	/* Set the tail pointer and length */
1395 	skb_put(n, skb_headlen(skb));
1396 	/* Copy the bytes */
1397 	skb_copy_from_linear_data(skb, n->data, n->len);
1398 
1399 	n->truesize += skb->data_len;
1400 	n->data_len  = skb->data_len;
1401 	n->len	     = skb->len;
1402 
1403 	if (skb_shinfo(skb)->nr_frags) {
1404 		int i;
1405 
1406 		if (skb_orphan_frags(skb, gfp_mask) ||
1407 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1408 			kfree_skb(n);
1409 			n = NULL;
1410 			goto out;
1411 		}
1412 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1413 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1414 			skb_frag_ref(skb, i);
1415 		}
1416 		skb_shinfo(n)->nr_frags = i;
1417 	}
1418 
1419 	if (skb_has_frag_list(skb)) {
1420 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1421 		skb_clone_fraglist(n);
1422 	}
1423 
1424 	skb_copy_header(n, skb);
1425 out:
1426 	return n;
1427 }
1428 EXPORT_SYMBOL(__pskb_copy_fclone);
1429 
1430 /**
1431  *	pskb_expand_head - reallocate header of &sk_buff
1432  *	@skb: buffer to reallocate
1433  *	@nhead: room to add at head
1434  *	@ntail: room to add at tail
1435  *	@gfp_mask: allocation priority
1436  *
1437  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1438  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1439  *	reference count of 1. Returns zero in the case of success or error,
1440  *	if expansion failed. In the last case, &sk_buff is not changed.
1441  *
1442  *	All the pointers pointing into skb header may change and must be
1443  *	reloaded after call to this function.
1444  */
1445 
1446 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1447 		     gfp_t gfp_mask)
1448 {
1449 	int i, osize = skb_end_offset(skb);
1450 	int size = osize + nhead + ntail;
1451 	long off;
1452 	u8 *data;
1453 
1454 	BUG_ON(nhead < 0);
1455 
1456 	BUG_ON(skb_shared(skb));
1457 
1458 	size = SKB_DATA_ALIGN(size);
1459 
1460 	if (skb_pfmemalloc(skb))
1461 		gfp_mask |= __GFP_MEMALLOC;
1462 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1463 			       gfp_mask, NUMA_NO_NODE, NULL);
1464 	if (!data)
1465 		goto nodata;
1466 	size = SKB_WITH_OVERHEAD(ksize(data));
1467 
1468 	/* Copy only real data... and, alas, header. This should be
1469 	 * optimized for the cases when header is void.
1470 	 */
1471 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1472 
1473 	memcpy((struct skb_shared_info *)(data + size),
1474 	       skb_shinfo(skb),
1475 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1476 
1477 	/*
1478 	 * if shinfo is shared we must drop the old head gracefully, but if it
1479 	 * is not we can just drop the old head and let the existing refcount
1480 	 * be since all we did is relocate the values
1481 	 */
1482 	if (skb_cloned(skb)) {
1483 		if (skb_orphan_frags(skb, gfp_mask))
1484 			goto nofrags;
1485 		if (skb_zcopy(skb))
1486 			refcount_inc(&skb_uarg(skb)->refcnt);
1487 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1488 			skb_frag_ref(skb, i);
1489 
1490 		if (skb_has_frag_list(skb))
1491 			skb_clone_fraglist(skb);
1492 
1493 		skb_release_data(skb);
1494 	} else {
1495 		skb_free_head(skb);
1496 	}
1497 	off = (data + nhead) - skb->head;
1498 
1499 	skb->head     = data;
1500 	skb->head_frag = 0;
1501 	skb->data    += off;
1502 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1503 	skb->end      = size;
1504 	off           = nhead;
1505 #else
1506 	skb->end      = skb->head + size;
1507 #endif
1508 	skb->tail	      += off;
1509 	skb_headers_offset_update(skb, nhead);
1510 	skb->cloned   = 0;
1511 	skb->hdr_len  = 0;
1512 	skb->nohdr    = 0;
1513 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1514 
1515 	skb_metadata_clear(skb);
1516 
1517 	/* It is not generally safe to change skb->truesize.
1518 	 * For the moment, we really care of rx path, or
1519 	 * when skb is orphaned (not attached to a socket).
1520 	 */
1521 	if (!skb->sk || skb->destructor == sock_edemux)
1522 		skb->truesize += size - osize;
1523 
1524 	return 0;
1525 
1526 nofrags:
1527 	kfree(data);
1528 nodata:
1529 	return -ENOMEM;
1530 }
1531 EXPORT_SYMBOL(pskb_expand_head);
1532 
1533 /* Make private copy of skb with writable head and some headroom */
1534 
1535 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1536 {
1537 	struct sk_buff *skb2;
1538 	int delta = headroom - skb_headroom(skb);
1539 
1540 	if (delta <= 0)
1541 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1542 	else {
1543 		skb2 = skb_clone(skb, GFP_ATOMIC);
1544 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1545 					     GFP_ATOMIC)) {
1546 			kfree_skb(skb2);
1547 			skb2 = NULL;
1548 		}
1549 	}
1550 	return skb2;
1551 }
1552 EXPORT_SYMBOL(skb_realloc_headroom);
1553 
1554 /**
1555  *	skb_copy_expand	-	copy and expand sk_buff
1556  *	@skb: buffer to copy
1557  *	@newheadroom: new free bytes at head
1558  *	@newtailroom: new free bytes at tail
1559  *	@gfp_mask: allocation priority
1560  *
1561  *	Make a copy of both an &sk_buff and its data and while doing so
1562  *	allocate additional space.
1563  *
1564  *	This is used when the caller wishes to modify the data and needs a
1565  *	private copy of the data to alter as well as more space for new fields.
1566  *	Returns %NULL on failure or the pointer to the buffer
1567  *	on success. The returned buffer has a reference count of 1.
1568  *
1569  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1570  *	is called from an interrupt.
1571  */
1572 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1573 				int newheadroom, int newtailroom,
1574 				gfp_t gfp_mask)
1575 {
1576 	/*
1577 	 *	Allocate the copy buffer
1578 	 */
1579 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1580 					gfp_mask, skb_alloc_rx_flag(skb),
1581 					NUMA_NO_NODE);
1582 	int oldheadroom = skb_headroom(skb);
1583 	int head_copy_len, head_copy_off;
1584 
1585 	if (!n)
1586 		return NULL;
1587 
1588 	skb_reserve(n, newheadroom);
1589 
1590 	/* Set the tail pointer and length */
1591 	skb_put(n, skb->len);
1592 
1593 	head_copy_len = oldheadroom;
1594 	head_copy_off = 0;
1595 	if (newheadroom <= head_copy_len)
1596 		head_copy_len = newheadroom;
1597 	else
1598 		head_copy_off = newheadroom - head_copy_len;
1599 
1600 	/* Copy the linear header and data. */
1601 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1602 			     skb->len + head_copy_len));
1603 
1604 	skb_copy_header(n, skb);
1605 
1606 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1607 
1608 	return n;
1609 }
1610 EXPORT_SYMBOL(skb_copy_expand);
1611 
1612 /**
1613  *	__skb_pad		-	zero pad the tail of an skb
1614  *	@skb: buffer to pad
1615  *	@pad: space to pad
1616  *	@free_on_error: free buffer on error
1617  *
1618  *	Ensure that a buffer is followed by a padding area that is zero
1619  *	filled. Used by network drivers which may DMA or transfer data
1620  *	beyond the buffer end onto the wire.
1621  *
1622  *	May return error in out of memory cases. The skb is freed on error
1623  *	if @free_on_error is true.
1624  */
1625 
1626 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1627 {
1628 	int err;
1629 	int ntail;
1630 
1631 	/* If the skbuff is non linear tailroom is always zero.. */
1632 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1633 		memset(skb->data+skb->len, 0, pad);
1634 		return 0;
1635 	}
1636 
1637 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1638 	if (likely(skb_cloned(skb) || ntail > 0)) {
1639 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1640 		if (unlikely(err))
1641 			goto free_skb;
1642 	}
1643 
1644 	/* FIXME: The use of this function with non-linear skb's really needs
1645 	 * to be audited.
1646 	 */
1647 	err = skb_linearize(skb);
1648 	if (unlikely(err))
1649 		goto free_skb;
1650 
1651 	memset(skb->data + skb->len, 0, pad);
1652 	return 0;
1653 
1654 free_skb:
1655 	if (free_on_error)
1656 		kfree_skb(skb);
1657 	return err;
1658 }
1659 EXPORT_SYMBOL(__skb_pad);
1660 
1661 /**
1662  *	pskb_put - add data to the tail of a potentially fragmented buffer
1663  *	@skb: start of the buffer to use
1664  *	@tail: tail fragment of the buffer to use
1665  *	@len: amount of data to add
1666  *
1667  *	This function extends the used data area of the potentially
1668  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1669  *	@skb itself. If this would exceed the total buffer size the kernel
1670  *	will panic. A pointer to the first byte of the extra data is
1671  *	returned.
1672  */
1673 
1674 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1675 {
1676 	if (tail != skb) {
1677 		skb->data_len += len;
1678 		skb->len += len;
1679 	}
1680 	return skb_put(tail, len);
1681 }
1682 EXPORT_SYMBOL_GPL(pskb_put);
1683 
1684 /**
1685  *	skb_put - add data to a buffer
1686  *	@skb: buffer to use
1687  *	@len: amount of data to add
1688  *
1689  *	This function extends the used data area of the buffer. If this would
1690  *	exceed the total buffer size the kernel will panic. A pointer to the
1691  *	first byte of the extra data is returned.
1692  */
1693 void *skb_put(struct sk_buff *skb, unsigned int len)
1694 {
1695 	void *tmp = skb_tail_pointer(skb);
1696 	SKB_LINEAR_ASSERT(skb);
1697 	skb->tail += len;
1698 	skb->len  += len;
1699 	if (unlikely(skb->tail > skb->end))
1700 		skb_over_panic(skb, len, __builtin_return_address(0));
1701 	return tmp;
1702 }
1703 EXPORT_SYMBOL(skb_put);
1704 
1705 /**
1706  *	skb_push - add data to the start of a buffer
1707  *	@skb: buffer to use
1708  *	@len: amount of data to add
1709  *
1710  *	This function extends the used data area of the buffer at the buffer
1711  *	start. If this would exceed the total buffer headroom the kernel will
1712  *	panic. A pointer to the first byte of the extra data is returned.
1713  */
1714 void *skb_push(struct sk_buff *skb, unsigned int len)
1715 {
1716 	skb->data -= len;
1717 	skb->len  += len;
1718 	if (unlikely(skb->data<skb->head))
1719 		skb_under_panic(skb, len, __builtin_return_address(0));
1720 	return skb->data;
1721 }
1722 EXPORT_SYMBOL(skb_push);
1723 
1724 /**
1725  *	skb_pull - remove data from the start of a buffer
1726  *	@skb: buffer to use
1727  *	@len: amount of data to remove
1728  *
1729  *	This function removes data from the start of a buffer, returning
1730  *	the memory to the headroom. A pointer to the next data in the buffer
1731  *	is returned. Once the data has been pulled future pushes will overwrite
1732  *	the old data.
1733  */
1734 void *skb_pull(struct sk_buff *skb, unsigned int len)
1735 {
1736 	return skb_pull_inline(skb, len);
1737 }
1738 EXPORT_SYMBOL(skb_pull);
1739 
1740 /**
1741  *	skb_trim - remove end from a buffer
1742  *	@skb: buffer to alter
1743  *	@len: new length
1744  *
1745  *	Cut the length of a buffer down by removing data from the tail. If
1746  *	the buffer is already under the length specified it is not modified.
1747  *	The skb must be linear.
1748  */
1749 void skb_trim(struct sk_buff *skb, unsigned int len)
1750 {
1751 	if (skb->len > len)
1752 		__skb_trim(skb, len);
1753 }
1754 EXPORT_SYMBOL(skb_trim);
1755 
1756 /* Trims skb to length len. It can change skb pointers.
1757  */
1758 
1759 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1760 {
1761 	struct sk_buff **fragp;
1762 	struct sk_buff *frag;
1763 	int offset = skb_headlen(skb);
1764 	int nfrags = skb_shinfo(skb)->nr_frags;
1765 	int i;
1766 	int err;
1767 
1768 	if (skb_cloned(skb) &&
1769 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1770 		return err;
1771 
1772 	i = 0;
1773 	if (offset >= len)
1774 		goto drop_pages;
1775 
1776 	for (; i < nfrags; i++) {
1777 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1778 
1779 		if (end < len) {
1780 			offset = end;
1781 			continue;
1782 		}
1783 
1784 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1785 
1786 drop_pages:
1787 		skb_shinfo(skb)->nr_frags = i;
1788 
1789 		for (; i < nfrags; i++)
1790 			skb_frag_unref(skb, i);
1791 
1792 		if (skb_has_frag_list(skb))
1793 			skb_drop_fraglist(skb);
1794 		goto done;
1795 	}
1796 
1797 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1798 	     fragp = &frag->next) {
1799 		int end = offset + frag->len;
1800 
1801 		if (skb_shared(frag)) {
1802 			struct sk_buff *nfrag;
1803 
1804 			nfrag = skb_clone(frag, GFP_ATOMIC);
1805 			if (unlikely(!nfrag))
1806 				return -ENOMEM;
1807 
1808 			nfrag->next = frag->next;
1809 			consume_skb(frag);
1810 			frag = nfrag;
1811 			*fragp = frag;
1812 		}
1813 
1814 		if (end < len) {
1815 			offset = end;
1816 			continue;
1817 		}
1818 
1819 		if (end > len &&
1820 		    unlikely((err = pskb_trim(frag, len - offset))))
1821 			return err;
1822 
1823 		if (frag->next)
1824 			skb_drop_list(&frag->next);
1825 		break;
1826 	}
1827 
1828 done:
1829 	if (len > skb_headlen(skb)) {
1830 		skb->data_len -= skb->len - len;
1831 		skb->len       = len;
1832 	} else {
1833 		skb->len       = len;
1834 		skb->data_len  = 0;
1835 		skb_set_tail_pointer(skb, len);
1836 	}
1837 
1838 	if (!skb->sk || skb->destructor == sock_edemux)
1839 		skb_condense(skb);
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL(___pskb_trim);
1843 
1844 /* Note : use pskb_trim_rcsum() instead of calling this directly
1845  */
1846 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1847 {
1848 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1849 		int delta = skb->len - len;
1850 
1851 		skb->csum = csum_sub(skb->csum,
1852 				     skb_checksum(skb, len, delta, 0));
1853 	}
1854 	return __pskb_trim(skb, len);
1855 }
1856 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1857 
1858 /**
1859  *	__pskb_pull_tail - advance tail of skb header
1860  *	@skb: buffer to reallocate
1861  *	@delta: number of bytes to advance tail
1862  *
1863  *	The function makes a sense only on a fragmented &sk_buff,
1864  *	it expands header moving its tail forward and copying necessary
1865  *	data from fragmented part.
1866  *
1867  *	&sk_buff MUST have reference count of 1.
1868  *
1869  *	Returns %NULL (and &sk_buff does not change) if pull failed
1870  *	or value of new tail of skb in the case of success.
1871  *
1872  *	All the pointers pointing into skb header may change and must be
1873  *	reloaded after call to this function.
1874  */
1875 
1876 /* Moves tail of skb head forward, copying data from fragmented part,
1877  * when it is necessary.
1878  * 1. It may fail due to malloc failure.
1879  * 2. It may change skb pointers.
1880  *
1881  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1882  */
1883 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1884 {
1885 	/* If skb has not enough free space at tail, get new one
1886 	 * plus 128 bytes for future expansions. If we have enough
1887 	 * room at tail, reallocate without expansion only if skb is cloned.
1888 	 */
1889 	int i, k, eat = (skb->tail + delta) - skb->end;
1890 
1891 	if (eat > 0 || skb_cloned(skb)) {
1892 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1893 				     GFP_ATOMIC))
1894 			return NULL;
1895 	}
1896 
1897 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1898 			     skb_tail_pointer(skb), delta));
1899 
1900 	/* Optimization: no fragments, no reasons to preestimate
1901 	 * size of pulled pages. Superb.
1902 	 */
1903 	if (!skb_has_frag_list(skb))
1904 		goto pull_pages;
1905 
1906 	/* Estimate size of pulled pages. */
1907 	eat = delta;
1908 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1909 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1910 
1911 		if (size >= eat)
1912 			goto pull_pages;
1913 		eat -= size;
1914 	}
1915 
1916 	/* If we need update frag list, we are in troubles.
1917 	 * Certainly, it is possible to add an offset to skb data,
1918 	 * but taking into account that pulling is expected to
1919 	 * be very rare operation, it is worth to fight against
1920 	 * further bloating skb head and crucify ourselves here instead.
1921 	 * Pure masohism, indeed. 8)8)
1922 	 */
1923 	if (eat) {
1924 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1925 		struct sk_buff *clone = NULL;
1926 		struct sk_buff *insp = NULL;
1927 
1928 		do {
1929 			BUG_ON(!list);
1930 
1931 			if (list->len <= eat) {
1932 				/* Eaten as whole. */
1933 				eat -= list->len;
1934 				list = list->next;
1935 				insp = list;
1936 			} else {
1937 				/* Eaten partially. */
1938 
1939 				if (skb_shared(list)) {
1940 					/* Sucks! We need to fork list. :-( */
1941 					clone = skb_clone(list, GFP_ATOMIC);
1942 					if (!clone)
1943 						return NULL;
1944 					insp = list->next;
1945 					list = clone;
1946 				} else {
1947 					/* This may be pulled without
1948 					 * problems. */
1949 					insp = list;
1950 				}
1951 				if (!pskb_pull(list, eat)) {
1952 					kfree_skb(clone);
1953 					return NULL;
1954 				}
1955 				break;
1956 			}
1957 		} while (eat);
1958 
1959 		/* Free pulled out fragments. */
1960 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1961 			skb_shinfo(skb)->frag_list = list->next;
1962 			kfree_skb(list);
1963 		}
1964 		/* And insert new clone at head. */
1965 		if (clone) {
1966 			clone->next = list;
1967 			skb_shinfo(skb)->frag_list = clone;
1968 		}
1969 	}
1970 	/* Success! Now we may commit changes to skb data. */
1971 
1972 pull_pages:
1973 	eat = delta;
1974 	k = 0;
1975 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1976 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1977 
1978 		if (size <= eat) {
1979 			skb_frag_unref(skb, i);
1980 			eat -= size;
1981 		} else {
1982 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1983 			if (eat) {
1984 				skb_shinfo(skb)->frags[k].page_offset += eat;
1985 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1986 				if (!i)
1987 					goto end;
1988 				eat = 0;
1989 			}
1990 			k++;
1991 		}
1992 	}
1993 	skb_shinfo(skb)->nr_frags = k;
1994 
1995 end:
1996 	skb->tail     += delta;
1997 	skb->data_len -= delta;
1998 
1999 	if (!skb->data_len)
2000 		skb_zcopy_clear(skb, false);
2001 
2002 	return skb_tail_pointer(skb);
2003 }
2004 EXPORT_SYMBOL(__pskb_pull_tail);
2005 
2006 /**
2007  *	skb_copy_bits - copy bits from skb to kernel buffer
2008  *	@skb: source skb
2009  *	@offset: offset in source
2010  *	@to: destination buffer
2011  *	@len: number of bytes to copy
2012  *
2013  *	Copy the specified number of bytes from the source skb to the
2014  *	destination buffer.
2015  *
2016  *	CAUTION ! :
2017  *		If its prototype is ever changed,
2018  *		check arch/{*}/net/{*}.S files,
2019  *		since it is called from BPF assembly code.
2020  */
2021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2022 {
2023 	int start = skb_headlen(skb);
2024 	struct sk_buff *frag_iter;
2025 	int i, copy;
2026 
2027 	if (offset > (int)skb->len - len)
2028 		goto fault;
2029 
2030 	/* Copy header. */
2031 	if ((copy = start - offset) > 0) {
2032 		if (copy > len)
2033 			copy = len;
2034 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2035 		if ((len -= copy) == 0)
2036 			return 0;
2037 		offset += copy;
2038 		to     += copy;
2039 	}
2040 
2041 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2042 		int end;
2043 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + skb_frag_size(f);
2048 		if ((copy = end - offset) > 0) {
2049 			u32 p_off, p_len, copied;
2050 			struct page *p;
2051 			u8 *vaddr;
2052 
2053 			if (copy > len)
2054 				copy = len;
2055 
2056 			skb_frag_foreach_page(f,
2057 					      f->page_offset + offset - start,
2058 					      copy, p, p_off, p_len, copied) {
2059 				vaddr = kmap_atomic(p);
2060 				memcpy(to + copied, vaddr + p_off, p_len);
2061 				kunmap_atomic(vaddr);
2062 			}
2063 
2064 			if ((len -= copy) == 0)
2065 				return 0;
2066 			offset += copy;
2067 			to     += copy;
2068 		}
2069 		start = end;
2070 	}
2071 
2072 	skb_walk_frags(skb, frag_iter) {
2073 		int end;
2074 
2075 		WARN_ON(start > offset + len);
2076 
2077 		end = start + frag_iter->len;
2078 		if ((copy = end - offset) > 0) {
2079 			if (copy > len)
2080 				copy = len;
2081 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2082 				goto fault;
2083 			if ((len -= copy) == 0)
2084 				return 0;
2085 			offset += copy;
2086 			to     += copy;
2087 		}
2088 		start = end;
2089 	}
2090 
2091 	if (!len)
2092 		return 0;
2093 
2094 fault:
2095 	return -EFAULT;
2096 }
2097 EXPORT_SYMBOL(skb_copy_bits);
2098 
2099 /*
2100  * Callback from splice_to_pipe(), if we need to release some pages
2101  * at the end of the spd in case we error'ed out in filling the pipe.
2102  */
2103 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2104 {
2105 	put_page(spd->pages[i]);
2106 }
2107 
2108 static struct page *linear_to_page(struct page *page, unsigned int *len,
2109 				   unsigned int *offset,
2110 				   struct sock *sk)
2111 {
2112 	struct page_frag *pfrag = sk_page_frag(sk);
2113 
2114 	if (!sk_page_frag_refill(sk, pfrag))
2115 		return NULL;
2116 
2117 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2118 
2119 	memcpy(page_address(pfrag->page) + pfrag->offset,
2120 	       page_address(page) + *offset, *len);
2121 	*offset = pfrag->offset;
2122 	pfrag->offset += *len;
2123 
2124 	return pfrag->page;
2125 }
2126 
2127 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2128 			     struct page *page,
2129 			     unsigned int offset)
2130 {
2131 	return	spd->nr_pages &&
2132 		spd->pages[spd->nr_pages - 1] == page &&
2133 		(spd->partial[spd->nr_pages - 1].offset +
2134 		 spd->partial[spd->nr_pages - 1].len == offset);
2135 }
2136 
2137 /*
2138  * Fill page/offset/length into spd, if it can hold more pages.
2139  */
2140 static bool spd_fill_page(struct splice_pipe_desc *spd,
2141 			  struct pipe_inode_info *pipe, struct page *page,
2142 			  unsigned int *len, unsigned int offset,
2143 			  bool linear,
2144 			  struct sock *sk)
2145 {
2146 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2147 		return true;
2148 
2149 	if (linear) {
2150 		page = linear_to_page(page, len, &offset, sk);
2151 		if (!page)
2152 			return true;
2153 	}
2154 	if (spd_can_coalesce(spd, page, offset)) {
2155 		spd->partial[spd->nr_pages - 1].len += *len;
2156 		return false;
2157 	}
2158 	get_page(page);
2159 	spd->pages[spd->nr_pages] = page;
2160 	spd->partial[spd->nr_pages].len = *len;
2161 	spd->partial[spd->nr_pages].offset = offset;
2162 	spd->nr_pages++;
2163 
2164 	return false;
2165 }
2166 
2167 static bool __splice_segment(struct page *page, unsigned int poff,
2168 			     unsigned int plen, unsigned int *off,
2169 			     unsigned int *len,
2170 			     struct splice_pipe_desc *spd, bool linear,
2171 			     struct sock *sk,
2172 			     struct pipe_inode_info *pipe)
2173 {
2174 	if (!*len)
2175 		return true;
2176 
2177 	/* skip this segment if already processed */
2178 	if (*off >= plen) {
2179 		*off -= plen;
2180 		return false;
2181 	}
2182 
2183 	/* ignore any bits we already processed */
2184 	poff += *off;
2185 	plen -= *off;
2186 	*off = 0;
2187 
2188 	do {
2189 		unsigned int flen = min(*len, plen);
2190 
2191 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2192 				  linear, sk))
2193 			return true;
2194 		poff += flen;
2195 		plen -= flen;
2196 		*len -= flen;
2197 	} while (*len && plen);
2198 
2199 	return false;
2200 }
2201 
2202 /*
2203  * Map linear and fragment data from the skb to spd. It reports true if the
2204  * pipe is full or if we already spliced the requested length.
2205  */
2206 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2207 			      unsigned int *offset, unsigned int *len,
2208 			      struct splice_pipe_desc *spd, struct sock *sk)
2209 {
2210 	int seg;
2211 	struct sk_buff *iter;
2212 
2213 	/* map the linear part :
2214 	 * If skb->head_frag is set, this 'linear' part is backed by a
2215 	 * fragment, and if the head is not shared with any clones then
2216 	 * we can avoid a copy since we own the head portion of this page.
2217 	 */
2218 	if (__splice_segment(virt_to_page(skb->data),
2219 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2220 			     skb_headlen(skb),
2221 			     offset, len, spd,
2222 			     skb_head_is_locked(skb),
2223 			     sk, pipe))
2224 		return true;
2225 
2226 	/*
2227 	 * then map the fragments
2228 	 */
2229 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2230 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2231 
2232 		if (__splice_segment(skb_frag_page(f),
2233 				     f->page_offset, skb_frag_size(f),
2234 				     offset, len, spd, false, sk, pipe))
2235 			return true;
2236 	}
2237 
2238 	skb_walk_frags(skb, iter) {
2239 		if (*offset >= iter->len) {
2240 			*offset -= iter->len;
2241 			continue;
2242 		}
2243 		/* __skb_splice_bits() only fails if the output has no room
2244 		 * left, so no point in going over the frag_list for the error
2245 		 * case.
2246 		 */
2247 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2248 			return true;
2249 	}
2250 
2251 	return false;
2252 }
2253 
2254 /*
2255  * Map data from the skb to a pipe. Should handle both the linear part,
2256  * the fragments, and the frag list.
2257  */
2258 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2259 		    struct pipe_inode_info *pipe, unsigned int tlen,
2260 		    unsigned int flags)
2261 {
2262 	struct partial_page partial[MAX_SKB_FRAGS];
2263 	struct page *pages[MAX_SKB_FRAGS];
2264 	struct splice_pipe_desc spd = {
2265 		.pages = pages,
2266 		.partial = partial,
2267 		.nr_pages_max = MAX_SKB_FRAGS,
2268 		.ops = &nosteal_pipe_buf_ops,
2269 		.spd_release = sock_spd_release,
2270 	};
2271 	int ret = 0;
2272 
2273 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2274 
2275 	if (spd.nr_pages)
2276 		ret = splice_to_pipe(pipe, &spd);
2277 
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(skb_splice_bits);
2281 
2282 /* Send skb data on a socket. Socket must be locked. */
2283 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2284 			 int len)
2285 {
2286 	unsigned int orig_len = len;
2287 	struct sk_buff *head = skb;
2288 	unsigned short fragidx;
2289 	int slen, ret;
2290 
2291 do_frag_list:
2292 
2293 	/* Deal with head data */
2294 	while (offset < skb_headlen(skb) && len) {
2295 		struct kvec kv;
2296 		struct msghdr msg;
2297 
2298 		slen = min_t(int, len, skb_headlen(skb) - offset);
2299 		kv.iov_base = skb->data + offset;
2300 		kv.iov_len = slen;
2301 		memset(&msg, 0, sizeof(msg));
2302 
2303 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2304 		if (ret <= 0)
2305 			goto error;
2306 
2307 		offset += ret;
2308 		len -= ret;
2309 	}
2310 
2311 	/* All the data was skb head? */
2312 	if (!len)
2313 		goto out;
2314 
2315 	/* Make offset relative to start of frags */
2316 	offset -= skb_headlen(skb);
2317 
2318 	/* Find where we are in frag list */
2319 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2320 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2321 
2322 		if (offset < frag->size)
2323 			break;
2324 
2325 		offset -= frag->size;
2326 	}
2327 
2328 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2329 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2330 
2331 		slen = min_t(size_t, len, frag->size - offset);
2332 
2333 		while (slen) {
2334 			ret = kernel_sendpage_locked(sk, frag->page.p,
2335 						     frag->page_offset + offset,
2336 						     slen, MSG_DONTWAIT);
2337 			if (ret <= 0)
2338 				goto error;
2339 
2340 			len -= ret;
2341 			offset += ret;
2342 			slen -= ret;
2343 		}
2344 
2345 		offset = 0;
2346 	}
2347 
2348 	if (len) {
2349 		/* Process any frag lists */
2350 
2351 		if (skb == head) {
2352 			if (skb_has_frag_list(skb)) {
2353 				skb = skb_shinfo(skb)->frag_list;
2354 				goto do_frag_list;
2355 			}
2356 		} else if (skb->next) {
2357 			skb = skb->next;
2358 			goto do_frag_list;
2359 		}
2360 	}
2361 
2362 out:
2363 	return orig_len - len;
2364 
2365 error:
2366 	return orig_len == len ? ret : orig_len - len;
2367 }
2368 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2369 
2370 /* Send skb data on a socket. */
2371 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2372 {
2373 	int ret = 0;
2374 
2375 	lock_sock(sk);
2376 	ret = skb_send_sock_locked(sk, skb, offset, len);
2377 	release_sock(sk);
2378 
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(skb_send_sock);
2382 
2383 /**
2384  *	skb_store_bits - store bits from kernel buffer to skb
2385  *	@skb: destination buffer
2386  *	@offset: offset in destination
2387  *	@from: source buffer
2388  *	@len: number of bytes to copy
2389  *
2390  *	Copy the specified number of bytes from the source buffer to the
2391  *	destination skb.  This function handles all the messy bits of
2392  *	traversing fragment lists and such.
2393  */
2394 
2395 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2396 {
2397 	int start = skb_headlen(skb);
2398 	struct sk_buff *frag_iter;
2399 	int i, copy;
2400 
2401 	if (offset > (int)skb->len - len)
2402 		goto fault;
2403 
2404 	if ((copy = start - offset) > 0) {
2405 		if (copy > len)
2406 			copy = len;
2407 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2408 		if ((len -= copy) == 0)
2409 			return 0;
2410 		offset += copy;
2411 		from += copy;
2412 	}
2413 
2414 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2415 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2416 		int end;
2417 
2418 		WARN_ON(start > offset + len);
2419 
2420 		end = start + skb_frag_size(frag);
2421 		if ((copy = end - offset) > 0) {
2422 			u32 p_off, p_len, copied;
2423 			struct page *p;
2424 			u8 *vaddr;
2425 
2426 			if (copy > len)
2427 				copy = len;
2428 
2429 			skb_frag_foreach_page(frag,
2430 					      frag->page_offset + offset - start,
2431 					      copy, p, p_off, p_len, copied) {
2432 				vaddr = kmap_atomic(p);
2433 				memcpy(vaddr + p_off, from + copied, p_len);
2434 				kunmap_atomic(vaddr);
2435 			}
2436 
2437 			if ((len -= copy) == 0)
2438 				return 0;
2439 			offset += copy;
2440 			from += copy;
2441 		}
2442 		start = end;
2443 	}
2444 
2445 	skb_walk_frags(skb, frag_iter) {
2446 		int end;
2447 
2448 		WARN_ON(start > offset + len);
2449 
2450 		end = start + frag_iter->len;
2451 		if ((copy = end - offset) > 0) {
2452 			if (copy > len)
2453 				copy = len;
2454 			if (skb_store_bits(frag_iter, offset - start,
2455 					   from, copy))
2456 				goto fault;
2457 			if ((len -= copy) == 0)
2458 				return 0;
2459 			offset += copy;
2460 			from += copy;
2461 		}
2462 		start = end;
2463 	}
2464 	if (!len)
2465 		return 0;
2466 
2467 fault:
2468 	return -EFAULT;
2469 }
2470 EXPORT_SYMBOL(skb_store_bits);
2471 
2472 /* Checksum skb data. */
2473 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2474 		      __wsum csum, const struct skb_checksum_ops *ops)
2475 {
2476 	int start = skb_headlen(skb);
2477 	int i, copy = start - offset;
2478 	struct sk_buff *frag_iter;
2479 	int pos = 0;
2480 
2481 	/* Checksum header. */
2482 	if (copy > 0) {
2483 		if (copy > len)
2484 			copy = len;
2485 		csum = ops->update(skb->data + offset, copy, csum);
2486 		if ((len -= copy) == 0)
2487 			return csum;
2488 		offset += copy;
2489 		pos	= copy;
2490 	}
2491 
2492 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2493 		int end;
2494 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2495 
2496 		WARN_ON(start > offset + len);
2497 
2498 		end = start + skb_frag_size(frag);
2499 		if ((copy = end - offset) > 0) {
2500 			u32 p_off, p_len, copied;
2501 			struct page *p;
2502 			__wsum csum2;
2503 			u8 *vaddr;
2504 
2505 			if (copy > len)
2506 				copy = len;
2507 
2508 			skb_frag_foreach_page(frag,
2509 					      frag->page_offset + offset - start,
2510 					      copy, p, p_off, p_len, copied) {
2511 				vaddr = kmap_atomic(p);
2512 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2513 				kunmap_atomic(vaddr);
2514 				csum = ops->combine(csum, csum2, pos, p_len);
2515 				pos += p_len;
2516 			}
2517 
2518 			if (!(len -= copy))
2519 				return csum;
2520 			offset += copy;
2521 		}
2522 		start = end;
2523 	}
2524 
2525 	skb_walk_frags(skb, frag_iter) {
2526 		int end;
2527 
2528 		WARN_ON(start > offset + len);
2529 
2530 		end = start + frag_iter->len;
2531 		if ((copy = end - offset) > 0) {
2532 			__wsum csum2;
2533 			if (copy > len)
2534 				copy = len;
2535 			csum2 = __skb_checksum(frag_iter, offset - start,
2536 					       copy, 0, ops);
2537 			csum = ops->combine(csum, csum2, pos, copy);
2538 			if ((len -= copy) == 0)
2539 				return csum;
2540 			offset += copy;
2541 			pos    += copy;
2542 		}
2543 		start = end;
2544 	}
2545 	BUG_ON(len);
2546 
2547 	return csum;
2548 }
2549 EXPORT_SYMBOL(__skb_checksum);
2550 
2551 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2552 		    int len, __wsum csum)
2553 {
2554 	const struct skb_checksum_ops ops = {
2555 		.update  = csum_partial_ext,
2556 		.combine = csum_block_add_ext,
2557 	};
2558 
2559 	return __skb_checksum(skb, offset, len, csum, &ops);
2560 }
2561 EXPORT_SYMBOL(skb_checksum);
2562 
2563 /* Both of above in one bottle. */
2564 
2565 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2566 				    u8 *to, int len, __wsum csum)
2567 {
2568 	int start = skb_headlen(skb);
2569 	int i, copy = start - offset;
2570 	struct sk_buff *frag_iter;
2571 	int pos = 0;
2572 
2573 	/* Copy header. */
2574 	if (copy > 0) {
2575 		if (copy > len)
2576 			copy = len;
2577 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2578 						 copy, csum);
2579 		if ((len -= copy) == 0)
2580 			return csum;
2581 		offset += copy;
2582 		to     += copy;
2583 		pos	= copy;
2584 	}
2585 
2586 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2587 		int end;
2588 
2589 		WARN_ON(start > offset + len);
2590 
2591 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2592 		if ((copy = end - offset) > 0) {
2593 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594 			u32 p_off, p_len, copied;
2595 			struct page *p;
2596 			__wsum csum2;
2597 			u8 *vaddr;
2598 
2599 			if (copy > len)
2600 				copy = len;
2601 
2602 			skb_frag_foreach_page(frag,
2603 					      frag->page_offset + offset - start,
2604 					      copy, p, p_off, p_len, copied) {
2605 				vaddr = kmap_atomic(p);
2606 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2607 								  to + copied,
2608 								  p_len, 0);
2609 				kunmap_atomic(vaddr);
2610 				csum = csum_block_add(csum, csum2, pos);
2611 				pos += p_len;
2612 			}
2613 
2614 			if (!(len -= copy))
2615 				return csum;
2616 			offset += copy;
2617 			to     += copy;
2618 		}
2619 		start = end;
2620 	}
2621 
2622 	skb_walk_frags(skb, frag_iter) {
2623 		__wsum csum2;
2624 		int end;
2625 
2626 		WARN_ON(start > offset + len);
2627 
2628 		end = start + frag_iter->len;
2629 		if ((copy = end - offset) > 0) {
2630 			if (copy > len)
2631 				copy = len;
2632 			csum2 = skb_copy_and_csum_bits(frag_iter,
2633 						       offset - start,
2634 						       to, copy, 0);
2635 			csum = csum_block_add(csum, csum2, pos);
2636 			if ((len -= copy) == 0)
2637 				return csum;
2638 			offset += copy;
2639 			to     += copy;
2640 			pos    += copy;
2641 		}
2642 		start = end;
2643 	}
2644 	BUG_ON(len);
2645 	return csum;
2646 }
2647 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2648 
2649 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2650 {
2651 	net_warn_ratelimited(
2652 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2653 		__func__);
2654 	return 0;
2655 }
2656 
2657 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2658 				       int offset, int len)
2659 {
2660 	net_warn_ratelimited(
2661 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2662 		__func__);
2663 	return 0;
2664 }
2665 
2666 static const struct skb_checksum_ops default_crc32c_ops = {
2667 	.update  = warn_crc32c_csum_update,
2668 	.combine = warn_crc32c_csum_combine,
2669 };
2670 
2671 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2672 	&default_crc32c_ops;
2673 EXPORT_SYMBOL(crc32c_csum_stub);
2674 
2675  /**
2676  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2677  *	@from: source buffer
2678  *
2679  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2680  *	into skb_zerocopy().
2681  */
2682 unsigned int
2683 skb_zerocopy_headlen(const struct sk_buff *from)
2684 {
2685 	unsigned int hlen = 0;
2686 
2687 	if (!from->head_frag ||
2688 	    skb_headlen(from) < L1_CACHE_BYTES ||
2689 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2690 		hlen = skb_headlen(from);
2691 
2692 	if (skb_has_frag_list(from))
2693 		hlen = from->len;
2694 
2695 	return hlen;
2696 }
2697 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2698 
2699 /**
2700  *	skb_zerocopy - Zero copy skb to skb
2701  *	@to: destination buffer
2702  *	@from: source buffer
2703  *	@len: number of bytes to copy from source buffer
2704  *	@hlen: size of linear headroom in destination buffer
2705  *
2706  *	Copies up to `len` bytes from `from` to `to` by creating references
2707  *	to the frags in the source buffer.
2708  *
2709  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2710  *	headroom in the `to` buffer.
2711  *
2712  *	Return value:
2713  *	0: everything is OK
2714  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2715  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2716  */
2717 int
2718 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2719 {
2720 	int i, j = 0;
2721 	int plen = 0; /* length of skb->head fragment */
2722 	int ret;
2723 	struct page *page;
2724 	unsigned int offset;
2725 
2726 	BUG_ON(!from->head_frag && !hlen);
2727 
2728 	/* dont bother with small payloads */
2729 	if (len <= skb_tailroom(to))
2730 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2731 
2732 	if (hlen) {
2733 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2734 		if (unlikely(ret))
2735 			return ret;
2736 		len -= hlen;
2737 	} else {
2738 		plen = min_t(int, skb_headlen(from), len);
2739 		if (plen) {
2740 			page = virt_to_head_page(from->head);
2741 			offset = from->data - (unsigned char *)page_address(page);
2742 			__skb_fill_page_desc(to, 0, page, offset, plen);
2743 			get_page(page);
2744 			j = 1;
2745 			len -= plen;
2746 		}
2747 	}
2748 
2749 	to->truesize += len + plen;
2750 	to->len += len + plen;
2751 	to->data_len += len + plen;
2752 
2753 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2754 		skb_tx_error(from);
2755 		return -ENOMEM;
2756 	}
2757 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2758 
2759 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2760 		if (!len)
2761 			break;
2762 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2763 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2764 		len -= skb_shinfo(to)->frags[j].size;
2765 		skb_frag_ref(to, j);
2766 		j++;
2767 	}
2768 	skb_shinfo(to)->nr_frags = j;
2769 
2770 	return 0;
2771 }
2772 EXPORT_SYMBOL_GPL(skb_zerocopy);
2773 
2774 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2775 {
2776 	__wsum csum;
2777 	long csstart;
2778 
2779 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2780 		csstart = skb_checksum_start_offset(skb);
2781 	else
2782 		csstart = skb_headlen(skb);
2783 
2784 	BUG_ON(csstart > skb_headlen(skb));
2785 
2786 	skb_copy_from_linear_data(skb, to, csstart);
2787 
2788 	csum = 0;
2789 	if (csstart != skb->len)
2790 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2791 					      skb->len - csstart, 0);
2792 
2793 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2794 		long csstuff = csstart + skb->csum_offset;
2795 
2796 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2797 	}
2798 }
2799 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2800 
2801 /**
2802  *	skb_dequeue - remove from the head of the queue
2803  *	@list: list to dequeue from
2804  *
2805  *	Remove the head of the list. The list lock is taken so the function
2806  *	may be used safely with other locking list functions. The head item is
2807  *	returned or %NULL if the list is empty.
2808  */
2809 
2810 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2811 {
2812 	unsigned long flags;
2813 	struct sk_buff *result;
2814 
2815 	spin_lock_irqsave(&list->lock, flags);
2816 	result = __skb_dequeue(list);
2817 	spin_unlock_irqrestore(&list->lock, flags);
2818 	return result;
2819 }
2820 EXPORT_SYMBOL(skb_dequeue);
2821 
2822 /**
2823  *	skb_dequeue_tail - remove from the tail of the queue
2824  *	@list: list to dequeue from
2825  *
2826  *	Remove the tail of the list. The list lock is taken so the function
2827  *	may be used safely with other locking list functions. The tail item is
2828  *	returned or %NULL if the list is empty.
2829  */
2830 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2831 {
2832 	unsigned long flags;
2833 	struct sk_buff *result;
2834 
2835 	spin_lock_irqsave(&list->lock, flags);
2836 	result = __skb_dequeue_tail(list);
2837 	spin_unlock_irqrestore(&list->lock, flags);
2838 	return result;
2839 }
2840 EXPORT_SYMBOL(skb_dequeue_tail);
2841 
2842 /**
2843  *	skb_queue_purge - empty a list
2844  *	@list: list to empty
2845  *
2846  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2847  *	the list and one reference dropped. This function takes the list
2848  *	lock and is atomic with respect to other list locking functions.
2849  */
2850 void skb_queue_purge(struct sk_buff_head *list)
2851 {
2852 	struct sk_buff *skb;
2853 	while ((skb = skb_dequeue(list)) != NULL)
2854 		kfree_skb(skb);
2855 }
2856 EXPORT_SYMBOL(skb_queue_purge);
2857 
2858 /**
2859  *	skb_rbtree_purge - empty a skb rbtree
2860  *	@root: root of the rbtree to empty
2861  *
2862  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2863  *	the list and one reference dropped. This function does not take
2864  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2865  *	out-of-order queue is protected by the socket lock).
2866  */
2867 void skb_rbtree_purge(struct rb_root *root)
2868 {
2869 	struct rb_node *p = rb_first(root);
2870 
2871 	while (p) {
2872 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2873 
2874 		p = rb_next(p);
2875 		rb_erase(&skb->rbnode, root);
2876 		kfree_skb(skb);
2877 	}
2878 }
2879 
2880 /**
2881  *	skb_queue_head - queue a buffer at the list head
2882  *	@list: list to use
2883  *	@newsk: buffer to queue
2884  *
2885  *	Queue a buffer at the start of the list. This function takes the
2886  *	list lock and can be used safely with other locking &sk_buff functions
2887  *	safely.
2888  *
2889  *	A buffer cannot be placed on two lists at the same time.
2890  */
2891 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2892 {
2893 	unsigned long flags;
2894 
2895 	spin_lock_irqsave(&list->lock, flags);
2896 	__skb_queue_head(list, newsk);
2897 	spin_unlock_irqrestore(&list->lock, flags);
2898 }
2899 EXPORT_SYMBOL(skb_queue_head);
2900 
2901 /**
2902  *	skb_queue_tail - queue a buffer at the list tail
2903  *	@list: list to use
2904  *	@newsk: buffer to queue
2905  *
2906  *	Queue a buffer at the tail of the list. This function takes the
2907  *	list lock and can be used safely with other locking &sk_buff functions
2908  *	safely.
2909  *
2910  *	A buffer cannot be placed on two lists at the same time.
2911  */
2912 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2913 {
2914 	unsigned long flags;
2915 
2916 	spin_lock_irqsave(&list->lock, flags);
2917 	__skb_queue_tail(list, newsk);
2918 	spin_unlock_irqrestore(&list->lock, flags);
2919 }
2920 EXPORT_SYMBOL(skb_queue_tail);
2921 
2922 /**
2923  *	skb_unlink	-	remove a buffer from a list
2924  *	@skb: buffer to remove
2925  *	@list: list to use
2926  *
2927  *	Remove a packet from a list. The list locks are taken and this
2928  *	function is atomic with respect to other list locked calls
2929  *
2930  *	You must know what list the SKB is on.
2931  */
2932 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2933 {
2934 	unsigned long flags;
2935 
2936 	spin_lock_irqsave(&list->lock, flags);
2937 	__skb_unlink(skb, list);
2938 	spin_unlock_irqrestore(&list->lock, flags);
2939 }
2940 EXPORT_SYMBOL(skb_unlink);
2941 
2942 /**
2943  *	skb_append	-	append a buffer
2944  *	@old: buffer to insert after
2945  *	@newsk: buffer to insert
2946  *	@list: list to use
2947  *
2948  *	Place a packet after a given packet in a list. The list locks are taken
2949  *	and this function is atomic with respect to other list locked calls.
2950  *	A buffer cannot be placed on two lists at the same time.
2951  */
2952 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2953 {
2954 	unsigned long flags;
2955 
2956 	spin_lock_irqsave(&list->lock, flags);
2957 	__skb_queue_after(list, old, newsk);
2958 	spin_unlock_irqrestore(&list->lock, flags);
2959 }
2960 EXPORT_SYMBOL(skb_append);
2961 
2962 /**
2963  *	skb_insert	-	insert a buffer
2964  *	@old: buffer to insert before
2965  *	@newsk: buffer to insert
2966  *	@list: list to use
2967  *
2968  *	Place a packet before a given packet in a list. The list locks are
2969  * 	taken and this function is atomic with respect to other list locked
2970  *	calls.
2971  *
2972  *	A buffer cannot be placed on two lists at the same time.
2973  */
2974 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2975 {
2976 	unsigned long flags;
2977 
2978 	spin_lock_irqsave(&list->lock, flags);
2979 	__skb_insert(newsk, old->prev, old, list);
2980 	spin_unlock_irqrestore(&list->lock, flags);
2981 }
2982 EXPORT_SYMBOL(skb_insert);
2983 
2984 static inline void skb_split_inside_header(struct sk_buff *skb,
2985 					   struct sk_buff* skb1,
2986 					   const u32 len, const int pos)
2987 {
2988 	int i;
2989 
2990 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2991 					 pos - len);
2992 	/* And move data appendix as is. */
2993 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2994 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2995 
2996 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2997 	skb_shinfo(skb)->nr_frags  = 0;
2998 	skb1->data_len		   = skb->data_len;
2999 	skb1->len		   += skb1->data_len;
3000 	skb->data_len		   = 0;
3001 	skb->len		   = len;
3002 	skb_set_tail_pointer(skb, len);
3003 }
3004 
3005 static inline void skb_split_no_header(struct sk_buff *skb,
3006 				       struct sk_buff* skb1,
3007 				       const u32 len, int pos)
3008 {
3009 	int i, k = 0;
3010 	const int nfrags = skb_shinfo(skb)->nr_frags;
3011 
3012 	skb_shinfo(skb)->nr_frags = 0;
3013 	skb1->len		  = skb1->data_len = skb->len - len;
3014 	skb->len		  = len;
3015 	skb->data_len		  = len - pos;
3016 
3017 	for (i = 0; i < nfrags; i++) {
3018 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3019 
3020 		if (pos + size > len) {
3021 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3022 
3023 			if (pos < len) {
3024 				/* Split frag.
3025 				 * We have two variants in this case:
3026 				 * 1. Move all the frag to the second
3027 				 *    part, if it is possible. F.e.
3028 				 *    this approach is mandatory for TUX,
3029 				 *    where splitting is expensive.
3030 				 * 2. Split is accurately. We make this.
3031 				 */
3032 				skb_frag_ref(skb, i);
3033 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3034 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3035 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3036 				skb_shinfo(skb)->nr_frags++;
3037 			}
3038 			k++;
3039 		} else
3040 			skb_shinfo(skb)->nr_frags++;
3041 		pos += size;
3042 	}
3043 	skb_shinfo(skb1)->nr_frags = k;
3044 }
3045 
3046 /**
3047  * skb_split - Split fragmented skb to two parts at length len.
3048  * @skb: the buffer to split
3049  * @skb1: the buffer to receive the second part
3050  * @len: new length for skb
3051  */
3052 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3053 {
3054 	int pos = skb_headlen(skb);
3055 
3056 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3057 				      SKBTX_SHARED_FRAG;
3058 	skb_zerocopy_clone(skb1, skb, 0);
3059 	if (len < pos)	/* Split line is inside header. */
3060 		skb_split_inside_header(skb, skb1, len, pos);
3061 	else		/* Second chunk has no header, nothing to copy. */
3062 		skb_split_no_header(skb, skb1, len, pos);
3063 }
3064 EXPORT_SYMBOL(skb_split);
3065 
3066 /* Shifting from/to a cloned skb is a no-go.
3067  *
3068  * Caller cannot keep skb_shinfo related pointers past calling here!
3069  */
3070 static int skb_prepare_for_shift(struct sk_buff *skb)
3071 {
3072 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3073 }
3074 
3075 /**
3076  * skb_shift - Shifts paged data partially from skb to another
3077  * @tgt: buffer into which tail data gets added
3078  * @skb: buffer from which the paged data comes from
3079  * @shiftlen: shift up to this many bytes
3080  *
3081  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3082  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3083  * It's up to caller to free skb if everything was shifted.
3084  *
3085  * If @tgt runs out of frags, the whole operation is aborted.
3086  *
3087  * Skb cannot include anything else but paged data while tgt is allowed
3088  * to have non-paged data as well.
3089  *
3090  * TODO: full sized shift could be optimized but that would need
3091  * specialized skb free'er to handle frags without up-to-date nr_frags.
3092  */
3093 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3094 {
3095 	int from, to, merge, todo;
3096 	struct skb_frag_struct *fragfrom, *fragto;
3097 
3098 	BUG_ON(shiftlen > skb->len);
3099 
3100 	if (skb_headlen(skb))
3101 		return 0;
3102 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3103 		return 0;
3104 
3105 	todo = shiftlen;
3106 	from = 0;
3107 	to = skb_shinfo(tgt)->nr_frags;
3108 	fragfrom = &skb_shinfo(skb)->frags[from];
3109 
3110 	/* Actual merge is delayed until the point when we know we can
3111 	 * commit all, so that we don't have to undo partial changes
3112 	 */
3113 	if (!to ||
3114 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3115 			      fragfrom->page_offset)) {
3116 		merge = -1;
3117 	} else {
3118 		merge = to - 1;
3119 
3120 		todo -= skb_frag_size(fragfrom);
3121 		if (todo < 0) {
3122 			if (skb_prepare_for_shift(skb) ||
3123 			    skb_prepare_for_shift(tgt))
3124 				return 0;
3125 
3126 			/* All previous frag pointers might be stale! */
3127 			fragfrom = &skb_shinfo(skb)->frags[from];
3128 			fragto = &skb_shinfo(tgt)->frags[merge];
3129 
3130 			skb_frag_size_add(fragto, shiftlen);
3131 			skb_frag_size_sub(fragfrom, shiftlen);
3132 			fragfrom->page_offset += shiftlen;
3133 
3134 			goto onlymerged;
3135 		}
3136 
3137 		from++;
3138 	}
3139 
3140 	/* Skip full, not-fitting skb to avoid expensive operations */
3141 	if ((shiftlen == skb->len) &&
3142 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3143 		return 0;
3144 
3145 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3146 		return 0;
3147 
3148 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3149 		if (to == MAX_SKB_FRAGS)
3150 			return 0;
3151 
3152 		fragfrom = &skb_shinfo(skb)->frags[from];
3153 		fragto = &skb_shinfo(tgt)->frags[to];
3154 
3155 		if (todo >= skb_frag_size(fragfrom)) {
3156 			*fragto = *fragfrom;
3157 			todo -= skb_frag_size(fragfrom);
3158 			from++;
3159 			to++;
3160 
3161 		} else {
3162 			__skb_frag_ref(fragfrom);
3163 			fragto->page = fragfrom->page;
3164 			fragto->page_offset = fragfrom->page_offset;
3165 			skb_frag_size_set(fragto, todo);
3166 
3167 			fragfrom->page_offset += todo;
3168 			skb_frag_size_sub(fragfrom, todo);
3169 			todo = 0;
3170 
3171 			to++;
3172 			break;
3173 		}
3174 	}
3175 
3176 	/* Ready to "commit" this state change to tgt */
3177 	skb_shinfo(tgt)->nr_frags = to;
3178 
3179 	if (merge >= 0) {
3180 		fragfrom = &skb_shinfo(skb)->frags[0];
3181 		fragto = &skb_shinfo(tgt)->frags[merge];
3182 
3183 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3184 		__skb_frag_unref(fragfrom);
3185 	}
3186 
3187 	/* Reposition in the original skb */
3188 	to = 0;
3189 	while (from < skb_shinfo(skb)->nr_frags)
3190 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3191 	skb_shinfo(skb)->nr_frags = to;
3192 
3193 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3194 
3195 onlymerged:
3196 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3197 	 * the other hand might need it if it needs to be resent
3198 	 */
3199 	tgt->ip_summed = CHECKSUM_PARTIAL;
3200 	skb->ip_summed = CHECKSUM_PARTIAL;
3201 
3202 	/* Yak, is it really working this way? Some helper please? */
3203 	skb->len -= shiftlen;
3204 	skb->data_len -= shiftlen;
3205 	skb->truesize -= shiftlen;
3206 	tgt->len += shiftlen;
3207 	tgt->data_len += shiftlen;
3208 	tgt->truesize += shiftlen;
3209 
3210 	return shiftlen;
3211 }
3212 
3213 /**
3214  * skb_prepare_seq_read - Prepare a sequential read of skb data
3215  * @skb: the buffer to read
3216  * @from: lower offset of data to be read
3217  * @to: upper offset of data to be read
3218  * @st: state variable
3219  *
3220  * Initializes the specified state variable. Must be called before
3221  * invoking skb_seq_read() for the first time.
3222  */
3223 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3224 			  unsigned int to, struct skb_seq_state *st)
3225 {
3226 	st->lower_offset = from;
3227 	st->upper_offset = to;
3228 	st->root_skb = st->cur_skb = skb;
3229 	st->frag_idx = st->stepped_offset = 0;
3230 	st->frag_data = NULL;
3231 }
3232 EXPORT_SYMBOL(skb_prepare_seq_read);
3233 
3234 /**
3235  * skb_seq_read - Sequentially read skb data
3236  * @consumed: number of bytes consumed by the caller so far
3237  * @data: destination pointer for data to be returned
3238  * @st: state variable
3239  *
3240  * Reads a block of skb data at @consumed relative to the
3241  * lower offset specified to skb_prepare_seq_read(). Assigns
3242  * the head of the data block to @data and returns the length
3243  * of the block or 0 if the end of the skb data or the upper
3244  * offset has been reached.
3245  *
3246  * The caller is not required to consume all of the data
3247  * returned, i.e. @consumed is typically set to the number
3248  * of bytes already consumed and the next call to
3249  * skb_seq_read() will return the remaining part of the block.
3250  *
3251  * Note 1: The size of each block of data returned can be arbitrary,
3252  *       this limitation is the cost for zerocopy sequential
3253  *       reads of potentially non linear data.
3254  *
3255  * Note 2: Fragment lists within fragments are not implemented
3256  *       at the moment, state->root_skb could be replaced with
3257  *       a stack for this purpose.
3258  */
3259 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3260 			  struct skb_seq_state *st)
3261 {
3262 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3263 	skb_frag_t *frag;
3264 
3265 	if (unlikely(abs_offset >= st->upper_offset)) {
3266 		if (st->frag_data) {
3267 			kunmap_atomic(st->frag_data);
3268 			st->frag_data = NULL;
3269 		}
3270 		return 0;
3271 	}
3272 
3273 next_skb:
3274 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3275 
3276 	if (abs_offset < block_limit && !st->frag_data) {
3277 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3278 		return block_limit - abs_offset;
3279 	}
3280 
3281 	if (st->frag_idx == 0 && !st->frag_data)
3282 		st->stepped_offset += skb_headlen(st->cur_skb);
3283 
3284 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3285 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3286 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3287 
3288 		if (abs_offset < block_limit) {
3289 			if (!st->frag_data)
3290 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3291 
3292 			*data = (u8 *) st->frag_data + frag->page_offset +
3293 				(abs_offset - st->stepped_offset);
3294 
3295 			return block_limit - abs_offset;
3296 		}
3297 
3298 		if (st->frag_data) {
3299 			kunmap_atomic(st->frag_data);
3300 			st->frag_data = NULL;
3301 		}
3302 
3303 		st->frag_idx++;
3304 		st->stepped_offset += skb_frag_size(frag);
3305 	}
3306 
3307 	if (st->frag_data) {
3308 		kunmap_atomic(st->frag_data);
3309 		st->frag_data = NULL;
3310 	}
3311 
3312 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3313 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3314 		st->frag_idx = 0;
3315 		goto next_skb;
3316 	} else if (st->cur_skb->next) {
3317 		st->cur_skb = st->cur_skb->next;
3318 		st->frag_idx = 0;
3319 		goto next_skb;
3320 	}
3321 
3322 	return 0;
3323 }
3324 EXPORT_SYMBOL(skb_seq_read);
3325 
3326 /**
3327  * skb_abort_seq_read - Abort a sequential read of skb data
3328  * @st: state variable
3329  *
3330  * Must be called if skb_seq_read() was not called until it
3331  * returned 0.
3332  */
3333 void skb_abort_seq_read(struct skb_seq_state *st)
3334 {
3335 	if (st->frag_data)
3336 		kunmap_atomic(st->frag_data);
3337 }
3338 EXPORT_SYMBOL(skb_abort_seq_read);
3339 
3340 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3341 
3342 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3343 					  struct ts_config *conf,
3344 					  struct ts_state *state)
3345 {
3346 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3347 }
3348 
3349 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3350 {
3351 	skb_abort_seq_read(TS_SKB_CB(state));
3352 }
3353 
3354 /**
3355  * skb_find_text - Find a text pattern in skb data
3356  * @skb: the buffer to look in
3357  * @from: search offset
3358  * @to: search limit
3359  * @config: textsearch configuration
3360  *
3361  * Finds a pattern in the skb data according to the specified
3362  * textsearch configuration. Use textsearch_next() to retrieve
3363  * subsequent occurrences of the pattern. Returns the offset
3364  * to the first occurrence or UINT_MAX if no match was found.
3365  */
3366 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3367 			   unsigned int to, struct ts_config *config)
3368 {
3369 	struct ts_state state;
3370 	unsigned int ret;
3371 
3372 	config->get_next_block = skb_ts_get_next_block;
3373 	config->finish = skb_ts_finish;
3374 
3375 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3376 
3377 	ret = textsearch_find(config, &state);
3378 	return (ret <= to - from ? ret : UINT_MAX);
3379 }
3380 EXPORT_SYMBOL(skb_find_text);
3381 
3382 /**
3383  * skb_append_datato_frags - append the user data to a skb
3384  * @sk: sock  structure
3385  * @skb: skb structure to be appended with user data.
3386  * @getfrag: call back function to be used for getting the user data
3387  * @from: pointer to user message iov
3388  * @length: length of the iov message
3389  *
3390  * Description: This procedure append the user data in the fragment part
3391  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3392  */
3393 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3394 			int (*getfrag)(void *from, char *to, int offset,
3395 					int len, int odd, struct sk_buff *skb),
3396 			void *from, int length)
3397 {
3398 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3399 	int copy;
3400 	int offset = 0;
3401 	int ret;
3402 	struct page_frag *pfrag = &current->task_frag;
3403 
3404 	do {
3405 		/* Return error if we don't have space for new frag */
3406 		if (frg_cnt >= MAX_SKB_FRAGS)
3407 			return -EMSGSIZE;
3408 
3409 		if (!sk_page_frag_refill(sk, pfrag))
3410 			return -ENOMEM;
3411 
3412 		/* copy the user data to page */
3413 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3414 
3415 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3416 			      offset, copy, 0, skb);
3417 		if (ret < 0)
3418 			return -EFAULT;
3419 
3420 		/* copy was successful so update the size parameters */
3421 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3422 				   copy);
3423 		frg_cnt++;
3424 		pfrag->offset += copy;
3425 		get_page(pfrag->page);
3426 
3427 		skb->truesize += copy;
3428 		refcount_add(copy, &sk->sk_wmem_alloc);
3429 		skb->len += copy;
3430 		skb->data_len += copy;
3431 		offset += copy;
3432 		length -= copy;
3433 
3434 	} while (length > 0);
3435 
3436 	return 0;
3437 }
3438 EXPORT_SYMBOL(skb_append_datato_frags);
3439 
3440 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3441 			 int offset, size_t size)
3442 {
3443 	int i = skb_shinfo(skb)->nr_frags;
3444 
3445 	if (skb_can_coalesce(skb, i, page, offset)) {
3446 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3447 	} else if (i < MAX_SKB_FRAGS) {
3448 		get_page(page);
3449 		skb_fill_page_desc(skb, i, page, offset, size);
3450 	} else {
3451 		return -EMSGSIZE;
3452 	}
3453 
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3457 
3458 /**
3459  *	skb_pull_rcsum - pull skb and update receive checksum
3460  *	@skb: buffer to update
3461  *	@len: length of data pulled
3462  *
3463  *	This function performs an skb_pull on the packet and updates
3464  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3465  *	receive path processing instead of skb_pull unless you know
3466  *	that the checksum difference is zero (e.g., a valid IP header)
3467  *	or you are setting ip_summed to CHECKSUM_NONE.
3468  */
3469 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3470 {
3471 	unsigned char *data = skb->data;
3472 
3473 	BUG_ON(len > skb->len);
3474 	__skb_pull(skb, len);
3475 	skb_postpull_rcsum(skb, data, len);
3476 	return skb->data;
3477 }
3478 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3479 
3480 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3481 {
3482 	skb_frag_t head_frag;
3483 	struct page *page;
3484 
3485 	page = virt_to_head_page(frag_skb->head);
3486 	head_frag.page.p = page;
3487 	head_frag.page_offset = frag_skb->data -
3488 		(unsigned char *)page_address(page);
3489 	head_frag.size = skb_headlen(frag_skb);
3490 	return head_frag;
3491 }
3492 
3493 /**
3494  *	skb_segment - Perform protocol segmentation on skb.
3495  *	@head_skb: buffer to segment
3496  *	@features: features for the output path (see dev->features)
3497  *
3498  *	This function performs segmentation on the given skb.  It returns
3499  *	a pointer to the first in a list of new skbs for the segments.
3500  *	In case of error it returns ERR_PTR(err).
3501  */
3502 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3503 			    netdev_features_t features)
3504 {
3505 	struct sk_buff *segs = NULL;
3506 	struct sk_buff *tail = NULL;
3507 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3508 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3509 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3510 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3511 	struct sk_buff *frag_skb = head_skb;
3512 	unsigned int offset = doffset;
3513 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3514 	unsigned int partial_segs = 0;
3515 	unsigned int headroom;
3516 	unsigned int len = head_skb->len;
3517 	__be16 proto;
3518 	bool csum, sg;
3519 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3520 	int err = -ENOMEM;
3521 	int i = 0;
3522 	int pos;
3523 	int dummy;
3524 
3525 	__skb_push(head_skb, doffset);
3526 	proto = skb_network_protocol(head_skb, &dummy);
3527 	if (unlikely(!proto))
3528 		return ERR_PTR(-EINVAL);
3529 
3530 	sg = !!(features & NETIF_F_SG);
3531 	csum = !!can_checksum_protocol(features, proto);
3532 
3533 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3534 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3535 			struct sk_buff *iter;
3536 			unsigned int frag_len;
3537 
3538 			if (!list_skb ||
3539 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3540 				goto normal;
3541 
3542 			/* If we get here then all the required
3543 			 * GSO features except frag_list are supported.
3544 			 * Try to split the SKB to multiple GSO SKBs
3545 			 * with no frag_list.
3546 			 * Currently we can do that only when the buffers don't
3547 			 * have a linear part and all the buffers except
3548 			 * the last are of the same length.
3549 			 */
3550 			frag_len = list_skb->len;
3551 			skb_walk_frags(head_skb, iter) {
3552 				if (frag_len != iter->len && iter->next)
3553 					goto normal;
3554 				if (skb_headlen(iter) && !iter->head_frag)
3555 					goto normal;
3556 
3557 				len -= iter->len;
3558 			}
3559 
3560 			if (len != frag_len)
3561 				goto normal;
3562 		}
3563 
3564 		/* GSO partial only requires that we trim off any excess that
3565 		 * doesn't fit into an MSS sized block, so take care of that
3566 		 * now.
3567 		 */
3568 		partial_segs = len / mss;
3569 		if (partial_segs > 1)
3570 			mss *= partial_segs;
3571 		else
3572 			partial_segs = 0;
3573 	}
3574 
3575 normal:
3576 	headroom = skb_headroom(head_skb);
3577 	pos = skb_headlen(head_skb);
3578 
3579 	do {
3580 		struct sk_buff *nskb;
3581 		skb_frag_t *nskb_frag;
3582 		int hsize;
3583 		int size;
3584 
3585 		if (unlikely(mss == GSO_BY_FRAGS)) {
3586 			len = list_skb->len;
3587 		} else {
3588 			len = head_skb->len - offset;
3589 			if (len > mss)
3590 				len = mss;
3591 		}
3592 
3593 		hsize = skb_headlen(head_skb) - offset;
3594 		if (hsize < 0)
3595 			hsize = 0;
3596 		if (hsize > len || !sg)
3597 			hsize = len;
3598 
3599 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3600 		    (skb_headlen(list_skb) == len || sg)) {
3601 			BUG_ON(skb_headlen(list_skb) > len);
3602 
3603 			i = 0;
3604 			nfrags = skb_shinfo(list_skb)->nr_frags;
3605 			frag = skb_shinfo(list_skb)->frags;
3606 			frag_skb = list_skb;
3607 			pos += skb_headlen(list_skb);
3608 
3609 			while (pos < offset + len) {
3610 				BUG_ON(i >= nfrags);
3611 
3612 				size = skb_frag_size(frag);
3613 				if (pos + size > offset + len)
3614 					break;
3615 
3616 				i++;
3617 				pos += size;
3618 				frag++;
3619 			}
3620 
3621 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3622 			list_skb = list_skb->next;
3623 
3624 			if (unlikely(!nskb))
3625 				goto err;
3626 
3627 			if (unlikely(pskb_trim(nskb, len))) {
3628 				kfree_skb(nskb);
3629 				goto err;
3630 			}
3631 
3632 			hsize = skb_end_offset(nskb);
3633 			if (skb_cow_head(nskb, doffset + headroom)) {
3634 				kfree_skb(nskb);
3635 				goto err;
3636 			}
3637 
3638 			nskb->truesize += skb_end_offset(nskb) - hsize;
3639 			skb_release_head_state(nskb);
3640 			__skb_push(nskb, doffset);
3641 		} else {
3642 			nskb = __alloc_skb(hsize + doffset + headroom,
3643 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3644 					   NUMA_NO_NODE);
3645 
3646 			if (unlikely(!nskb))
3647 				goto err;
3648 
3649 			skb_reserve(nskb, headroom);
3650 			__skb_put(nskb, doffset);
3651 		}
3652 
3653 		if (segs)
3654 			tail->next = nskb;
3655 		else
3656 			segs = nskb;
3657 		tail = nskb;
3658 
3659 		__copy_skb_header(nskb, head_skb);
3660 
3661 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3662 		skb_reset_mac_len(nskb);
3663 
3664 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3665 						 nskb->data - tnl_hlen,
3666 						 doffset + tnl_hlen);
3667 
3668 		if (nskb->len == len + doffset)
3669 			goto perform_csum_check;
3670 
3671 		if (!sg) {
3672 			if (!nskb->remcsum_offload)
3673 				nskb->ip_summed = CHECKSUM_NONE;
3674 			SKB_GSO_CB(nskb)->csum =
3675 				skb_copy_and_csum_bits(head_skb, offset,
3676 						       skb_put(nskb, len),
3677 						       len, 0);
3678 			SKB_GSO_CB(nskb)->csum_start =
3679 				skb_headroom(nskb) + doffset;
3680 			continue;
3681 		}
3682 
3683 		nskb_frag = skb_shinfo(nskb)->frags;
3684 
3685 		skb_copy_from_linear_data_offset(head_skb, offset,
3686 						 skb_put(nskb, hsize), hsize);
3687 
3688 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3689 					      SKBTX_SHARED_FRAG;
3690 
3691 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3692 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3693 			goto err;
3694 
3695 		while (pos < offset + len) {
3696 			if (i >= nfrags) {
3697 				i = 0;
3698 				nfrags = skb_shinfo(list_skb)->nr_frags;
3699 				frag = skb_shinfo(list_skb)->frags;
3700 				frag_skb = list_skb;
3701 				if (!skb_headlen(list_skb)) {
3702 					BUG_ON(!nfrags);
3703 				} else {
3704 					BUG_ON(!list_skb->head_frag);
3705 
3706 					/* to make room for head_frag. */
3707 					i--;
3708 					frag--;
3709 				}
3710 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3711 				    skb_zerocopy_clone(nskb, frag_skb,
3712 						       GFP_ATOMIC))
3713 					goto err;
3714 
3715 				list_skb = list_skb->next;
3716 			}
3717 
3718 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3719 				     MAX_SKB_FRAGS)) {
3720 				net_warn_ratelimited(
3721 					"skb_segment: too many frags: %u %u\n",
3722 					pos, mss);
3723 				err = -EINVAL;
3724 				goto err;
3725 			}
3726 
3727 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3728 			__skb_frag_ref(nskb_frag);
3729 			size = skb_frag_size(nskb_frag);
3730 
3731 			if (pos < offset) {
3732 				nskb_frag->page_offset += offset - pos;
3733 				skb_frag_size_sub(nskb_frag, offset - pos);
3734 			}
3735 
3736 			skb_shinfo(nskb)->nr_frags++;
3737 
3738 			if (pos + size <= offset + len) {
3739 				i++;
3740 				frag++;
3741 				pos += size;
3742 			} else {
3743 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3744 				goto skip_fraglist;
3745 			}
3746 
3747 			nskb_frag++;
3748 		}
3749 
3750 skip_fraglist:
3751 		nskb->data_len = len - hsize;
3752 		nskb->len += nskb->data_len;
3753 		nskb->truesize += nskb->data_len;
3754 
3755 perform_csum_check:
3756 		if (!csum) {
3757 			if (skb_has_shared_frag(nskb) &&
3758 			    __skb_linearize(nskb))
3759 				goto err;
3760 
3761 			if (!nskb->remcsum_offload)
3762 				nskb->ip_summed = CHECKSUM_NONE;
3763 			SKB_GSO_CB(nskb)->csum =
3764 				skb_checksum(nskb, doffset,
3765 					     nskb->len - doffset, 0);
3766 			SKB_GSO_CB(nskb)->csum_start =
3767 				skb_headroom(nskb) + doffset;
3768 		}
3769 	} while ((offset += len) < head_skb->len);
3770 
3771 	/* Some callers want to get the end of the list.
3772 	 * Put it in segs->prev to avoid walking the list.
3773 	 * (see validate_xmit_skb_list() for example)
3774 	 */
3775 	segs->prev = tail;
3776 
3777 	if (partial_segs) {
3778 		struct sk_buff *iter;
3779 		int type = skb_shinfo(head_skb)->gso_type;
3780 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3781 
3782 		/* Update type to add partial and then remove dodgy if set */
3783 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3784 		type &= ~SKB_GSO_DODGY;
3785 
3786 		/* Update GSO info and prepare to start updating headers on
3787 		 * our way back down the stack of protocols.
3788 		 */
3789 		for (iter = segs; iter; iter = iter->next) {
3790 			skb_shinfo(iter)->gso_size = gso_size;
3791 			skb_shinfo(iter)->gso_segs = partial_segs;
3792 			skb_shinfo(iter)->gso_type = type;
3793 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3794 		}
3795 
3796 		if (tail->len - doffset <= gso_size)
3797 			skb_shinfo(tail)->gso_size = 0;
3798 		else if (tail != segs)
3799 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3800 	}
3801 
3802 	/* Following permits correct backpressure, for protocols
3803 	 * using skb_set_owner_w().
3804 	 * Idea is to tranfert ownership from head_skb to last segment.
3805 	 */
3806 	if (head_skb->destructor == sock_wfree) {
3807 		swap(tail->truesize, head_skb->truesize);
3808 		swap(tail->destructor, head_skb->destructor);
3809 		swap(tail->sk, head_skb->sk);
3810 	}
3811 	return segs;
3812 
3813 err:
3814 	kfree_skb_list(segs);
3815 	return ERR_PTR(err);
3816 }
3817 EXPORT_SYMBOL_GPL(skb_segment);
3818 
3819 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3820 {
3821 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3822 	unsigned int offset = skb_gro_offset(skb);
3823 	unsigned int headlen = skb_headlen(skb);
3824 	unsigned int len = skb_gro_len(skb);
3825 	struct sk_buff *lp, *p = *head;
3826 	unsigned int delta_truesize;
3827 
3828 	if (unlikely(p->len + len >= 65536))
3829 		return -E2BIG;
3830 
3831 	lp = NAPI_GRO_CB(p)->last;
3832 	pinfo = skb_shinfo(lp);
3833 
3834 	if (headlen <= offset) {
3835 		skb_frag_t *frag;
3836 		skb_frag_t *frag2;
3837 		int i = skbinfo->nr_frags;
3838 		int nr_frags = pinfo->nr_frags + i;
3839 
3840 		if (nr_frags > MAX_SKB_FRAGS)
3841 			goto merge;
3842 
3843 		offset -= headlen;
3844 		pinfo->nr_frags = nr_frags;
3845 		skbinfo->nr_frags = 0;
3846 
3847 		frag = pinfo->frags + nr_frags;
3848 		frag2 = skbinfo->frags + i;
3849 		do {
3850 			*--frag = *--frag2;
3851 		} while (--i);
3852 
3853 		frag->page_offset += offset;
3854 		skb_frag_size_sub(frag, offset);
3855 
3856 		/* all fragments truesize : remove (head size + sk_buff) */
3857 		delta_truesize = skb->truesize -
3858 				 SKB_TRUESIZE(skb_end_offset(skb));
3859 
3860 		skb->truesize -= skb->data_len;
3861 		skb->len -= skb->data_len;
3862 		skb->data_len = 0;
3863 
3864 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3865 		goto done;
3866 	} else if (skb->head_frag) {
3867 		int nr_frags = pinfo->nr_frags;
3868 		skb_frag_t *frag = pinfo->frags + nr_frags;
3869 		struct page *page = virt_to_head_page(skb->head);
3870 		unsigned int first_size = headlen - offset;
3871 		unsigned int first_offset;
3872 
3873 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3874 			goto merge;
3875 
3876 		first_offset = skb->data -
3877 			       (unsigned char *)page_address(page) +
3878 			       offset;
3879 
3880 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3881 
3882 		frag->page.p	  = page;
3883 		frag->page_offset = first_offset;
3884 		skb_frag_size_set(frag, first_size);
3885 
3886 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3887 		/* We dont need to clear skbinfo->nr_frags here */
3888 
3889 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3890 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3891 		goto done;
3892 	}
3893 
3894 merge:
3895 	delta_truesize = skb->truesize;
3896 	if (offset > headlen) {
3897 		unsigned int eat = offset - headlen;
3898 
3899 		skbinfo->frags[0].page_offset += eat;
3900 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3901 		skb->data_len -= eat;
3902 		skb->len -= eat;
3903 		offset = headlen;
3904 	}
3905 
3906 	__skb_pull(skb, offset);
3907 
3908 	if (NAPI_GRO_CB(p)->last == p)
3909 		skb_shinfo(p)->frag_list = skb;
3910 	else
3911 		NAPI_GRO_CB(p)->last->next = skb;
3912 	NAPI_GRO_CB(p)->last = skb;
3913 	__skb_header_release(skb);
3914 	lp = p;
3915 
3916 done:
3917 	NAPI_GRO_CB(p)->count++;
3918 	p->data_len += len;
3919 	p->truesize += delta_truesize;
3920 	p->len += len;
3921 	if (lp != p) {
3922 		lp->data_len += len;
3923 		lp->truesize += delta_truesize;
3924 		lp->len += len;
3925 	}
3926 	NAPI_GRO_CB(skb)->same_flow = 1;
3927 	return 0;
3928 }
3929 EXPORT_SYMBOL_GPL(skb_gro_receive);
3930 
3931 void __init skb_init(void)
3932 {
3933 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3934 					      sizeof(struct sk_buff),
3935 					      0,
3936 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3937 					      offsetof(struct sk_buff, cb),
3938 					      sizeof_field(struct sk_buff, cb),
3939 					      NULL);
3940 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3941 						sizeof(struct sk_buff_fclones),
3942 						0,
3943 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3944 						NULL);
3945 }
3946 
3947 static int
3948 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3949 	       unsigned int recursion_level)
3950 {
3951 	int start = skb_headlen(skb);
3952 	int i, copy = start - offset;
3953 	struct sk_buff *frag_iter;
3954 	int elt = 0;
3955 
3956 	if (unlikely(recursion_level >= 24))
3957 		return -EMSGSIZE;
3958 
3959 	if (copy > 0) {
3960 		if (copy > len)
3961 			copy = len;
3962 		sg_set_buf(sg, skb->data + offset, copy);
3963 		elt++;
3964 		if ((len -= copy) == 0)
3965 			return elt;
3966 		offset += copy;
3967 	}
3968 
3969 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3970 		int end;
3971 
3972 		WARN_ON(start > offset + len);
3973 
3974 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3975 		if ((copy = end - offset) > 0) {
3976 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3977 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3978 				return -EMSGSIZE;
3979 
3980 			if (copy > len)
3981 				copy = len;
3982 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3983 					frag->page_offset+offset-start);
3984 			elt++;
3985 			if (!(len -= copy))
3986 				return elt;
3987 			offset += copy;
3988 		}
3989 		start = end;
3990 	}
3991 
3992 	skb_walk_frags(skb, frag_iter) {
3993 		int end, ret;
3994 
3995 		WARN_ON(start > offset + len);
3996 
3997 		end = start + frag_iter->len;
3998 		if ((copy = end - offset) > 0) {
3999 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4000 				return -EMSGSIZE;
4001 
4002 			if (copy > len)
4003 				copy = len;
4004 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4005 					      copy, recursion_level + 1);
4006 			if (unlikely(ret < 0))
4007 				return ret;
4008 			elt += ret;
4009 			if ((len -= copy) == 0)
4010 				return elt;
4011 			offset += copy;
4012 		}
4013 		start = end;
4014 	}
4015 	BUG_ON(len);
4016 	return elt;
4017 }
4018 
4019 /**
4020  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4021  *	@skb: Socket buffer containing the buffers to be mapped
4022  *	@sg: The scatter-gather list to map into
4023  *	@offset: The offset into the buffer's contents to start mapping
4024  *	@len: Length of buffer space to be mapped
4025  *
4026  *	Fill the specified scatter-gather list with mappings/pointers into a
4027  *	region of the buffer space attached to a socket buffer. Returns either
4028  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4029  *	could not fit.
4030  */
4031 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4032 {
4033 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4034 
4035 	if (nsg <= 0)
4036 		return nsg;
4037 
4038 	sg_mark_end(&sg[nsg - 1]);
4039 
4040 	return nsg;
4041 }
4042 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4043 
4044 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4045  * sglist without mark the sg which contain last skb data as the end.
4046  * So the caller can mannipulate sg list as will when padding new data after
4047  * the first call without calling sg_unmark_end to expend sg list.
4048  *
4049  * Scenario to use skb_to_sgvec_nomark:
4050  * 1. sg_init_table
4051  * 2. skb_to_sgvec_nomark(payload1)
4052  * 3. skb_to_sgvec_nomark(payload2)
4053  *
4054  * This is equivalent to:
4055  * 1. sg_init_table
4056  * 2. skb_to_sgvec(payload1)
4057  * 3. sg_unmark_end
4058  * 4. skb_to_sgvec(payload2)
4059  *
4060  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4061  * is more preferable.
4062  */
4063 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4064 			int offset, int len)
4065 {
4066 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4067 }
4068 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4069 
4070 
4071 
4072 /**
4073  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4074  *	@skb: The socket buffer to check.
4075  *	@tailbits: Amount of trailing space to be added
4076  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4077  *
4078  *	Make sure that the data buffers attached to a socket buffer are
4079  *	writable. If they are not, private copies are made of the data buffers
4080  *	and the socket buffer is set to use these instead.
4081  *
4082  *	If @tailbits is given, make sure that there is space to write @tailbits
4083  *	bytes of data beyond current end of socket buffer.  @trailer will be
4084  *	set to point to the skb in which this space begins.
4085  *
4086  *	The number of scatterlist elements required to completely map the
4087  *	COW'd and extended socket buffer will be returned.
4088  */
4089 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4090 {
4091 	int copyflag;
4092 	int elt;
4093 	struct sk_buff *skb1, **skb_p;
4094 
4095 	/* If skb is cloned or its head is paged, reallocate
4096 	 * head pulling out all the pages (pages are considered not writable
4097 	 * at the moment even if they are anonymous).
4098 	 */
4099 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4100 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4101 		return -ENOMEM;
4102 
4103 	/* Easy case. Most of packets will go this way. */
4104 	if (!skb_has_frag_list(skb)) {
4105 		/* A little of trouble, not enough of space for trailer.
4106 		 * This should not happen, when stack is tuned to generate
4107 		 * good frames. OK, on miss we reallocate and reserve even more
4108 		 * space, 128 bytes is fair. */
4109 
4110 		if (skb_tailroom(skb) < tailbits &&
4111 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4112 			return -ENOMEM;
4113 
4114 		/* Voila! */
4115 		*trailer = skb;
4116 		return 1;
4117 	}
4118 
4119 	/* Misery. We are in troubles, going to mincer fragments... */
4120 
4121 	elt = 1;
4122 	skb_p = &skb_shinfo(skb)->frag_list;
4123 	copyflag = 0;
4124 
4125 	while ((skb1 = *skb_p) != NULL) {
4126 		int ntail = 0;
4127 
4128 		/* The fragment is partially pulled by someone,
4129 		 * this can happen on input. Copy it and everything
4130 		 * after it. */
4131 
4132 		if (skb_shared(skb1))
4133 			copyflag = 1;
4134 
4135 		/* If the skb is the last, worry about trailer. */
4136 
4137 		if (skb1->next == NULL && tailbits) {
4138 			if (skb_shinfo(skb1)->nr_frags ||
4139 			    skb_has_frag_list(skb1) ||
4140 			    skb_tailroom(skb1) < tailbits)
4141 				ntail = tailbits + 128;
4142 		}
4143 
4144 		if (copyflag ||
4145 		    skb_cloned(skb1) ||
4146 		    ntail ||
4147 		    skb_shinfo(skb1)->nr_frags ||
4148 		    skb_has_frag_list(skb1)) {
4149 			struct sk_buff *skb2;
4150 
4151 			/* Fuck, we are miserable poor guys... */
4152 			if (ntail == 0)
4153 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4154 			else
4155 				skb2 = skb_copy_expand(skb1,
4156 						       skb_headroom(skb1),
4157 						       ntail,
4158 						       GFP_ATOMIC);
4159 			if (unlikely(skb2 == NULL))
4160 				return -ENOMEM;
4161 
4162 			if (skb1->sk)
4163 				skb_set_owner_w(skb2, skb1->sk);
4164 
4165 			/* Looking around. Are we still alive?
4166 			 * OK, link new skb, drop old one */
4167 
4168 			skb2->next = skb1->next;
4169 			*skb_p = skb2;
4170 			kfree_skb(skb1);
4171 			skb1 = skb2;
4172 		}
4173 		elt++;
4174 		*trailer = skb1;
4175 		skb_p = &skb1->next;
4176 	}
4177 
4178 	return elt;
4179 }
4180 EXPORT_SYMBOL_GPL(skb_cow_data);
4181 
4182 static void sock_rmem_free(struct sk_buff *skb)
4183 {
4184 	struct sock *sk = skb->sk;
4185 
4186 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4187 }
4188 
4189 static void skb_set_err_queue(struct sk_buff *skb)
4190 {
4191 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4192 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4193 	 */
4194 	skb->pkt_type = PACKET_OUTGOING;
4195 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4196 }
4197 
4198 /*
4199  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4200  */
4201 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4202 {
4203 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4204 	    (unsigned int)sk->sk_rcvbuf)
4205 		return -ENOMEM;
4206 
4207 	skb_orphan(skb);
4208 	skb->sk = sk;
4209 	skb->destructor = sock_rmem_free;
4210 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4211 	skb_set_err_queue(skb);
4212 
4213 	/* before exiting rcu section, make sure dst is refcounted */
4214 	skb_dst_force(skb);
4215 
4216 	skb_queue_tail(&sk->sk_error_queue, skb);
4217 	if (!sock_flag(sk, SOCK_DEAD))
4218 		sk->sk_error_report(sk);
4219 	return 0;
4220 }
4221 EXPORT_SYMBOL(sock_queue_err_skb);
4222 
4223 static bool is_icmp_err_skb(const struct sk_buff *skb)
4224 {
4225 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4226 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4227 }
4228 
4229 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4230 {
4231 	struct sk_buff_head *q = &sk->sk_error_queue;
4232 	struct sk_buff *skb, *skb_next = NULL;
4233 	bool icmp_next = false;
4234 	unsigned long flags;
4235 
4236 	spin_lock_irqsave(&q->lock, flags);
4237 	skb = __skb_dequeue(q);
4238 	if (skb && (skb_next = skb_peek(q))) {
4239 		icmp_next = is_icmp_err_skb(skb_next);
4240 		if (icmp_next)
4241 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4242 	}
4243 	spin_unlock_irqrestore(&q->lock, flags);
4244 
4245 	if (is_icmp_err_skb(skb) && !icmp_next)
4246 		sk->sk_err = 0;
4247 
4248 	if (skb_next)
4249 		sk->sk_error_report(sk);
4250 
4251 	return skb;
4252 }
4253 EXPORT_SYMBOL(sock_dequeue_err_skb);
4254 
4255 /**
4256  * skb_clone_sk - create clone of skb, and take reference to socket
4257  * @skb: the skb to clone
4258  *
4259  * This function creates a clone of a buffer that holds a reference on
4260  * sk_refcnt.  Buffers created via this function are meant to be
4261  * returned using sock_queue_err_skb, or free via kfree_skb.
4262  *
4263  * When passing buffers allocated with this function to sock_queue_err_skb
4264  * it is necessary to wrap the call with sock_hold/sock_put in order to
4265  * prevent the socket from being released prior to being enqueued on
4266  * the sk_error_queue.
4267  */
4268 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4269 {
4270 	struct sock *sk = skb->sk;
4271 	struct sk_buff *clone;
4272 
4273 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4274 		return NULL;
4275 
4276 	clone = skb_clone(skb, GFP_ATOMIC);
4277 	if (!clone) {
4278 		sock_put(sk);
4279 		return NULL;
4280 	}
4281 
4282 	clone->sk = sk;
4283 	clone->destructor = sock_efree;
4284 
4285 	return clone;
4286 }
4287 EXPORT_SYMBOL(skb_clone_sk);
4288 
4289 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4290 					struct sock *sk,
4291 					int tstype,
4292 					bool opt_stats)
4293 {
4294 	struct sock_exterr_skb *serr;
4295 	int err;
4296 
4297 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4298 
4299 	serr = SKB_EXT_ERR(skb);
4300 	memset(serr, 0, sizeof(*serr));
4301 	serr->ee.ee_errno = ENOMSG;
4302 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4303 	serr->ee.ee_info = tstype;
4304 	serr->opt_stats = opt_stats;
4305 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4306 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4307 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4308 		if (sk->sk_protocol == IPPROTO_TCP &&
4309 		    sk->sk_type == SOCK_STREAM)
4310 			serr->ee.ee_data -= sk->sk_tskey;
4311 	}
4312 
4313 	err = sock_queue_err_skb(sk, skb);
4314 
4315 	if (err)
4316 		kfree_skb(skb);
4317 }
4318 
4319 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4320 {
4321 	bool ret;
4322 
4323 	if (likely(sysctl_tstamp_allow_data || tsonly))
4324 		return true;
4325 
4326 	read_lock_bh(&sk->sk_callback_lock);
4327 	ret = sk->sk_socket && sk->sk_socket->file &&
4328 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4329 	read_unlock_bh(&sk->sk_callback_lock);
4330 	return ret;
4331 }
4332 
4333 void skb_complete_tx_timestamp(struct sk_buff *skb,
4334 			       struct skb_shared_hwtstamps *hwtstamps)
4335 {
4336 	struct sock *sk = skb->sk;
4337 
4338 	if (!skb_may_tx_timestamp(sk, false))
4339 		goto err;
4340 
4341 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4342 	 * but only if the socket refcount is not zero.
4343 	 */
4344 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4345 		*skb_hwtstamps(skb) = *hwtstamps;
4346 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4347 		sock_put(sk);
4348 		return;
4349 	}
4350 
4351 err:
4352 	kfree_skb(skb);
4353 }
4354 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4355 
4356 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4357 		     struct skb_shared_hwtstamps *hwtstamps,
4358 		     struct sock *sk, int tstype)
4359 {
4360 	struct sk_buff *skb;
4361 	bool tsonly, opt_stats = false;
4362 
4363 	if (!sk)
4364 		return;
4365 
4366 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4367 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4368 		return;
4369 
4370 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4371 	if (!skb_may_tx_timestamp(sk, tsonly))
4372 		return;
4373 
4374 	if (tsonly) {
4375 #ifdef CONFIG_INET
4376 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4377 		    sk->sk_protocol == IPPROTO_TCP &&
4378 		    sk->sk_type == SOCK_STREAM) {
4379 			skb = tcp_get_timestamping_opt_stats(sk);
4380 			opt_stats = true;
4381 		} else
4382 #endif
4383 			skb = alloc_skb(0, GFP_ATOMIC);
4384 	} else {
4385 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4386 	}
4387 	if (!skb)
4388 		return;
4389 
4390 	if (tsonly) {
4391 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4392 					     SKBTX_ANY_TSTAMP;
4393 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4394 	}
4395 
4396 	if (hwtstamps)
4397 		*skb_hwtstamps(skb) = *hwtstamps;
4398 	else
4399 		skb->tstamp = ktime_get_real();
4400 
4401 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4402 }
4403 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4404 
4405 void skb_tstamp_tx(struct sk_buff *orig_skb,
4406 		   struct skb_shared_hwtstamps *hwtstamps)
4407 {
4408 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4409 			       SCM_TSTAMP_SND);
4410 }
4411 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4412 
4413 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4414 {
4415 	struct sock *sk = skb->sk;
4416 	struct sock_exterr_skb *serr;
4417 	int err = 1;
4418 
4419 	skb->wifi_acked_valid = 1;
4420 	skb->wifi_acked = acked;
4421 
4422 	serr = SKB_EXT_ERR(skb);
4423 	memset(serr, 0, sizeof(*serr));
4424 	serr->ee.ee_errno = ENOMSG;
4425 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4426 
4427 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4428 	 * but only if the socket refcount is not zero.
4429 	 */
4430 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4431 		err = sock_queue_err_skb(sk, skb);
4432 		sock_put(sk);
4433 	}
4434 	if (err)
4435 		kfree_skb(skb);
4436 }
4437 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4438 
4439 /**
4440  * skb_partial_csum_set - set up and verify partial csum values for packet
4441  * @skb: the skb to set
4442  * @start: the number of bytes after skb->data to start checksumming.
4443  * @off: the offset from start to place the checksum.
4444  *
4445  * For untrusted partially-checksummed packets, we need to make sure the values
4446  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4447  *
4448  * This function checks and sets those values and skb->ip_summed: if this
4449  * returns false you should drop the packet.
4450  */
4451 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4452 {
4453 	if (unlikely(start > skb_headlen(skb)) ||
4454 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4455 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4456 				     start, off, skb_headlen(skb));
4457 		return false;
4458 	}
4459 	skb->ip_summed = CHECKSUM_PARTIAL;
4460 	skb->csum_start = skb_headroom(skb) + start;
4461 	skb->csum_offset = off;
4462 	skb_set_transport_header(skb, start);
4463 	return true;
4464 }
4465 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4466 
4467 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4468 			       unsigned int max)
4469 {
4470 	if (skb_headlen(skb) >= len)
4471 		return 0;
4472 
4473 	/* If we need to pullup then pullup to the max, so we
4474 	 * won't need to do it again.
4475 	 */
4476 	if (max > skb->len)
4477 		max = skb->len;
4478 
4479 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4480 		return -ENOMEM;
4481 
4482 	if (skb_headlen(skb) < len)
4483 		return -EPROTO;
4484 
4485 	return 0;
4486 }
4487 
4488 #define MAX_TCP_HDR_LEN (15 * 4)
4489 
4490 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4491 				      typeof(IPPROTO_IP) proto,
4492 				      unsigned int off)
4493 {
4494 	switch (proto) {
4495 		int err;
4496 
4497 	case IPPROTO_TCP:
4498 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4499 					  off + MAX_TCP_HDR_LEN);
4500 		if (!err && !skb_partial_csum_set(skb, off,
4501 						  offsetof(struct tcphdr,
4502 							   check)))
4503 			err = -EPROTO;
4504 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4505 
4506 	case IPPROTO_UDP:
4507 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4508 					  off + sizeof(struct udphdr));
4509 		if (!err && !skb_partial_csum_set(skb, off,
4510 						  offsetof(struct udphdr,
4511 							   check)))
4512 			err = -EPROTO;
4513 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4514 	}
4515 
4516 	return ERR_PTR(-EPROTO);
4517 }
4518 
4519 /* This value should be large enough to cover a tagged ethernet header plus
4520  * maximally sized IP and TCP or UDP headers.
4521  */
4522 #define MAX_IP_HDR_LEN 128
4523 
4524 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4525 {
4526 	unsigned int off;
4527 	bool fragment;
4528 	__sum16 *csum;
4529 	int err;
4530 
4531 	fragment = false;
4532 
4533 	err = skb_maybe_pull_tail(skb,
4534 				  sizeof(struct iphdr),
4535 				  MAX_IP_HDR_LEN);
4536 	if (err < 0)
4537 		goto out;
4538 
4539 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4540 		fragment = true;
4541 
4542 	off = ip_hdrlen(skb);
4543 
4544 	err = -EPROTO;
4545 
4546 	if (fragment)
4547 		goto out;
4548 
4549 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4550 	if (IS_ERR(csum))
4551 		return PTR_ERR(csum);
4552 
4553 	if (recalculate)
4554 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4555 					   ip_hdr(skb)->daddr,
4556 					   skb->len - off,
4557 					   ip_hdr(skb)->protocol, 0);
4558 	err = 0;
4559 
4560 out:
4561 	return err;
4562 }
4563 
4564 /* This value should be large enough to cover a tagged ethernet header plus
4565  * an IPv6 header, all options, and a maximal TCP or UDP header.
4566  */
4567 #define MAX_IPV6_HDR_LEN 256
4568 
4569 #define OPT_HDR(type, skb, off) \
4570 	(type *)(skb_network_header(skb) + (off))
4571 
4572 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4573 {
4574 	int err;
4575 	u8 nexthdr;
4576 	unsigned int off;
4577 	unsigned int len;
4578 	bool fragment;
4579 	bool done;
4580 	__sum16 *csum;
4581 
4582 	fragment = false;
4583 	done = false;
4584 
4585 	off = sizeof(struct ipv6hdr);
4586 
4587 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4588 	if (err < 0)
4589 		goto out;
4590 
4591 	nexthdr = ipv6_hdr(skb)->nexthdr;
4592 
4593 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4594 	while (off <= len && !done) {
4595 		switch (nexthdr) {
4596 		case IPPROTO_DSTOPTS:
4597 		case IPPROTO_HOPOPTS:
4598 		case IPPROTO_ROUTING: {
4599 			struct ipv6_opt_hdr *hp;
4600 
4601 			err = skb_maybe_pull_tail(skb,
4602 						  off +
4603 						  sizeof(struct ipv6_opt_hdr),
4604 						  MAX_IPV6_HDR_LEN);
4605 			if (err < 0)
4606 				goto out;
4607 
4608 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4609 			nexthdr = hp->nexthdr;
4610 			off += ipv6_optlen(hp);
4611 			break;
4612 		}
4613 		case IPPROTO_AH: {
4614 			struct ip_auth_hdr *hp;
4615 
4616 			err = skb_maybe_pull_tail(skb,
4617 						  off +
4618 						  sizeof(struct ip_auth_hdr),
4619 						  MAX_IPV6_HDR_LEN);
4620 			if (err < 0)
4621 				goto out;
4622 
4623 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4624 			nexthdr = hp->nexthdr;
4625 			off += ipv6_authlen(hp);
4626 			break;
4627 		}
4628 		case IPPROTO_FRAGMENT: {
4629 			struct frag_hdr *hp;
4630 
4631 			err = skb_maybe_pull_tail(skb,
4632 						  off +
4633 						  sizeof(struct frag_hdr),
4634 						  MAX_IPV6_HDR_LEN);
4635 			if (err < 0)
4636 				goto out;
4637 
4638 			hp = OPT_HDR(struct frag_hdr, skb, off);
4639 
4640 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4641 				fragment = true;
4642 
4643 			nexthdr = hp->nexthdr;
4644 			off += sizeof(struct frag_hdr);
4645 			break;
4646 		}
4647 		default:
4648 			done = true;
4649 			break;
4650 		}
4651 	}
4652 
4653 	err = -EPROTO;
4654 
4655 	if (!done || fragment)
4656 		goto out;
4657 
4658 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4659 	if (IS_ERR(csum))
4660 		return PTR_ERR(csum);
4661 
4662 	if (recalculate)
4663 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4664 					 &ipv6_hdr(skb)->daddr,
4665 					 skb->len - off, nexthdr, 0);
4666 	err = 0;
4667 
4668 out:
4669 	return err;
4670 }
4671 
4672 /**
4673  * skb_checksum_setup - set up partial checksum offset
4674  * @skb: the skb to set up
4675  * @recalculate: if true the pseudo-header checksum will be recalculated
4676  */
4677 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4678 {
4679 	int err;
4680 
4681 	switch (skb->protocol) {
4682 	case htons(ETH_P_IP):
4683 		err = skb_checksum_setup_ipv4(skb, recalculate);
4684 		break;
4685 
4686 	case htons(ETH_P_IPV6):
4687 		err = skb_checksum_setup_ipv6(skb, recalculate);
4688 		break;
4689 
4690 	default:
4691 		err = -EPROTO;
4692 		break;
4693 	}
4694 
4695 	return err;
4696 }
4697 EXPORT_SYMBOL(skb_checksum_setup);
4698 
4699 /**
4700  * skb_checksum_maybe_trim - maybe trims the given skb
4701  * @skb: the skb to check
4702  * @transport_len: the data length beyond the network header
4703  *
4704  * Checks whether the given skb has data beyond the given transport length.
4705  * If so, returns a cloned skb trimmed to this transport length.
4706  * Otherwise returns the provided skb. Returns NULL in error cases
4707  * (e.g. transport_len exceeds skb length or out-of-memory).
4708  *
4709  * Caller needs to set the skb transport header and free any returned skb if it
4710  * differs from the provided skb.
4711  */
4712 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4713 					       unsigned int transport_len)
4714 {
4715 	struct sk_buff *skb_chk;
4716 	unsigned int len = skb_transport_offset(skb) + transport_len;
4717 	int ret;
4718 
4719 	if (skb->len < len)
4720 		return NULL;
4721 	else if (skb->len == len)
4722 		return skb;
4723 
4724 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4725 	if (!skb_chk)
4726 		return NULL;
4727 
4728 	ret = pskb_trim_rcsum(skb_chk, len);
4729 	if (ret) {
4730 		kfree_skb(skb_chk);
4731 		return NULL;
4732 	}
4733 
4734 	return skb_chk;
4735 }
4736 
4737 /**
4738  * skb_checksum_trimmed - validate checksum of an skb
4739  * @skb: the skb to check
4740  * @transport_len: the data length beyond the network header
4741  * @skb_chkf: checksum function to use
4742  *
4743  * Applies the given checksum function skb_chkf to the provided skb.
4744  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4745  *
4746  * If the skb has data beyond the given transport length, then a
4747  * trimmed & cloned skb is checked and returned.
4748  *
4749  * Caller needs to set the skb transport header and free any returned skb if it
4750  * differs from the provided skb.
4751  */
4752 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4753 				     unsigned int transport_len,
4754 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4755 {
4756 	struct sk_buff *skb_chk;
4757 	unsigned int offset = skb_transport_offset(skb);
4758 	__sum16 ret;
4759 
4760 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4761 	if (!skb_chk)
4762 		goto err;
4763 
4764 	if (!pskb_may_pull(skb_chk, offset))
4765 		goto err;
4766 
4767 	skb_pull_rcsum(skb_chk, offset);
4768 	ret = skb_chkf(skb_chk);
4769 	skb_push_rcsum(skb_chk, offset);
4770 
4771 	if (ret)
4772 		goto err;
4773 
4774 	return skb_chk;
4775 
4776 err:
4777 	if (skb_chk && skb_chk != skb)
4778 		kfree_skb(skb_chk);
4779 
4780 	return NULL;
4781 
4782 }
4783 EXPORT_SYMBOL(skb_checksum_trimmed);
4784 
4785 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4786 {
4787 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4788 			     skb->dev->name);
4789 }
4790 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4791 
4792 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4793 {
4794 	if (head_stolen) {
4795 		skb_release_head_state(skb);
4796 		kmem_cache_free(skbuff_head_cache, skb);
4797 	} else {
4798 		__kfree_skb(skb);
4799 	}
4800 }
4801 EXPORT_SYMBOL(kfree_skb_partial);
4802 
4803 /**
4804  * skb_try_coalesce - try to merge skb to prior one
4805  * @to: prior buffer
4806  * @from: buffer to add
4807  * @fragstolen: pointer to boolean
4808  * @delta_truesize: how much more was allocated than was requested
4809  */
4810 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4811 		      bool *fragstolen, int *delta_truesize)
4812 {
4813 	struct skb_shared_info *to_shinfo, *from_shinfo;
4814 	int i, delta, len = from->len;
4815 
4816 	*fragstolen = false;
4817 
4818 	if (skb_cloned(to))
4819 		return false;
4820 
4821 	if (len <= skb_tailroom(to)) {
4822 		if (len)
4823 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4824 		*delta_truesize = 0;
4825 		return true;
4826 	}
4827 
4828 	to_shinfo = skb_shinfo(to);
4829 	from_shinfo = skb_shinfo(from);
4830 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4831 		return false;
4832 	if (skb_zcopy(to) || skb_zcopy(from))
4833 		return false;
4834 
4835 	if (skb_headlen(from) != 0) {
4836 		struct page *page;
4837 		unsigned int offset;
4838 
4839 		if (to_shinfo->nr_frags +
4840 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4841 			return false;
4842 
4843 		if (skb_head_is_locked(from))
4844 			return false;
4845 
4846 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4847 
4848 		page = virt_to_head_page(from->head);
4849 		offset = from->data - (unsigned char *)page_address(page);
4850 
4851 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4852 				   page, offset, skb_headlen(from));
4853 		*fragstolen = true;
4854 	} else {
4855 		if (to_shinfo->nr_frags +
4856 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4857 			return false;
4858 
4859 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4860 	}
4861 
4862 	WARN_ON_ONCE(delta < len);
4863 
4864 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4865 	       from_shinfo->frags,
4866 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4867 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4868 
4869 	if (!skb_cloned(from))
4870 		from_shinfo->nr_frags = 0;
4871 
4872 	/* if the skb is not cloned this does nothing
4873 	 * since we set nr_frags to 0.
4874 	 */
4875 	for (i = 0; i < from_shinfo->nr_frags; i++)
4876 		__skb_frag_ref(&from_shinfo->frags[i]);
4877 
4878 	to->truesize += delta;
4879 	to->len += len;
4880 	to->data_len += len;
4881 
4882 	*delta_truesize = delta;
4883 	return true;
4884 }
4885 EXPORT_SYMBOL(skb_try_coalesce);
4886 
4887 /**
4888  * skb_scrub_packet - scrub an skb
4889  *
4890  * @skb: buffer to clean
4891  * @xnet: packet is crossing netns
4892  *
4893  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4894  * into/from a tunnel. Some information have to be cleared during these
4895  * operations.
4896  * skb_scrub_packet can also be used to clean a skb before injecting it in
4897  * another namespace (@xnet == true). We have to clear all information in the
4898  * skb that could impact namespace isolation.
4899  */
4900 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4901 {
4902 	skb->tstamp = 0;
4903 	skb->pkt_type = PACKET_HOST;
4904 	skb->skb_iif = 0;
4905 	skb->ignore_df = 0;
4906 	skb_dst_drop(skb);
4907 	secpath_reset(skb);
4908 	nf_reset(skb);
4909 	nf_reset_trace(skb);
4910 
4911 	if (!xnet)
4912 		return;
4913 
4914 	ipvs_reset(skb);
4915 	skb_orphan(skb);
4916 	skb->mark = 0;
4917 }
4918 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4919 
4920 /**
4921  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4922  *
4923  * @skb: GSO skb
4924  *
4925  * skb_gso_transport_seglen is used to determine the real size of the
4926  * individual segments, including Layer4 headers (TCP/UDP).
4927  *
4928  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4929  */
4930 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4931 {
4932 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4933 	unsigned int thlen = 0;
4934 
4935 	if (skb->encapsulation) {
4936 		thlen = skb_inner_transport_header(skb) -
4937 			skb_transport_header(skb);
4938 
4939 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4940 			thlen += inner_tcp_hdrlen(skb);
4941 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4942 		thlen = tcp_hdrlen(skb);
4943 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4944 		thlen = sizeof(struct sctphdr);
4945 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4946 		thlen = sizeof(struct udphdr);
4947 	}
4948 	/* UFO sets gso_size to the size of the fragmentation
4949 	 * payload, i.e. the size of the L4 (UDP) header is already
4950 	 * accounted for.
4951 	 */
4952 	return thlen + shinfo->gso_size;
4953 }
4954 
4955 /**
4956  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4957  *
4958  * @skb: GSO skb
4959  *
4960  * skb_gso_network_seglen is used to determine the real size of the
4961  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4962  *
4963  * The MAC/L2 header is not accounted for.
4964  */
4965 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4966 {
4967 	unsigned int hdr_len = skb_transport_header(skb) -
4968 			       skb_network_header(skb);
4969 
4970 	return hdr_len + skb_gso_transport_seglen(skb);
4971 }
4972 
4973 /**
4974  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4975  *
4976  * @skb: GSO skb
4977  *
4978  * skb_gso_mac_seglen is used to determine the real size of the
4979  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4980  * headers (TCP/UDP).
4981  */
4982 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4983 {
4984 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4985 
4986 	return hdr_len + skb_gso_transport_seglen(skb);
4987 }
4988 
4989 /**
4990  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4991  *
4992  * There are a couple of instances where we have a GSO skb, and we
4993  * want to determine what size it would be after it is segmented.
4994  *
4995  * We might want to check:
4996  * -    L3+L4+payload size (e.g. IP forwarding)
4997  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4998  *
4999  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5000  *
5001  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5002  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5003  *
5004  * @max_len: The maximum permissible length.
5005  *
5006  * Returns true if the segmented length <= max length.
5007  */
5008 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5009 				      unsigned int seg_len,
5010 				      unsigned int max_len) {
5011 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5012 	const struct sk_buff *iter;
5013 
5014 	if (shinfo->gso_size != GSO_BY_FRAGS)
5015 		return seg_len <= max_len;
5016 
5017 	/* Undo this so we can re-use header sizes */
5018 	seg_len -= GSO_BY_FRAGS;
5019 
5020 	skb_walk_frags(skb, iter) {
5021 		if (seg_len + skb_headlen(iter) > max_len)
5022 			return false;
5023 	}
5024 
5025 	return true;
5026 }
5027 
5028 /**
5029  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5030  *
5031  * @skb: GSO skb
5032  * @mtu: MTU to validate against
5033  *
5034  * skb_gso_validate_network_len validates if a given skb will fit a
5035  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5036  * payload.
5037  */
5038 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5039 {
5040 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5041 }
5042 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5043 
5044 /**
5045  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5046  *
5047  * @skb: GSO skb
5048  * @len: length to validate against
5049  *
5050  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5051  * length once split, including L2, L3 and L4 headers and the payload.
5052  */
5053 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5054 {
5055 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5056 }
5057 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5058 
5059 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5060 {
5061 	int mac_len;
5062 
5063 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5064 		kfree_skb(skb);
5065 		return NULL;
5066 	}
5067 
5068 	mac_len = skb->data - skb_mac_header(skb);
5069 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5070 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5071 			mac_len - VLAN_HLEN - ETH_TLEN);
5072 	}
5073 	skb->mac_header += VLAN_HLEN;
5074 	return skb;
5075 }
5076 
5077 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5078 {
5079 	struct vlan_hdr *vhdr;
5080 	u16 vlan_tci;
5081 
5082 	if (unlikely(skb_vlan_tag_present(skb))) {
5083 		/* vlan_tci is already set-up so leave this for another time */
5084 		return skb;
5085 	}
5086 
5087 	skb = skb_share_check(skb, GFP_ATOMIC);
5088 	if (unlikely(!skb))
5089 		goto err_free;
5090 
5091 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5092 		goto err_free;
5093 
5094 	vhdr = (struct vlan_hdr *)skb->data;
5095 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5096 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5097 
5098 	skb_pull_rcsum(skb, VLAN_HLEN);
5099 	vlan_set_encap_proto(skb, vhdr);
5100 
5101 	skb = skb_reorder_vlan_header(skb);
5102 	if (unlikely(!skb))
5103 		goto err_free;
5104 
5105 	skb_reset_network_header(skb);
5106 	skb_reset_transport_header(skb);
5107 	skb_reset_mac_len(skb);
5108 
5109 	return skb;
5110 
5111 err_free:
5112 	kfree_skb(skb);
5113 	return NULL;
5114 }
5115 EXPORT_SYMBOL(skb_vlan_untag);
5116 
5117 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5118 {
5119 	if (!pskb_may_pull(skb, write_len))
5120 		return -ENOMEM;
5121 
5122 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5123 		return 0;
5124 
5125 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5126 }
5127 EXPORT_SYMBOL(skb_ensure_writable);
5128 
5129 /* remove VLAN header from packet and update csum accordingly.
5130  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5131  */
5132 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5133 {
5134 	struct vlan_hdr *vhdr;
5135 	int offset = skb->data - skb_mac_header(skb);
5136 	int err;
5137 
5138 	if (WARN_ONCE(offset,
5139 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5140 		      offset)) {
5141 		return -EINVAL;
5142 	}
5143 
5144 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5145 	if (unlikely(err))
5146 		return err;
5147 
5148 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5149 
5150 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5151 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5152 
5153 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5154 	__skb_pull(skb, VLAN_HLEN);
5155 
5156 	vlan_set_encap_proto(skb, vhdr);
5157 	skb->mac_header += VLAN_HLEN;
5158 
5159 	if (skb_network_offset(skb) < ETH_HLEN)
5160 		skb_set_network_header(skb, ETH_HLEN);
5161 
5162 	skb_reset_mac_len(skb);
5163 
5164 	return err;
5165 }
5166 EXPORT_SYMBOL(__skb_vlan_pop);
5167 
5168 /* Pop a vlan tag either from hwaccel or from payload.
5169  * Expects skb->data at mac header.
5170  */
5171 int skb_vlan_pop(struct sk_buff *skb)
5172 {
5173 	u16 vlan_tci;
5174 	__be16 vlan_proto;
5175 	int err;
5176 
5177 	if (likely(skb_vlan_tag_present(skb))) {
5178 		skb->vlan_tci = 0;
5179 	} else {
5180 		if (unlikely(!eth_type_vlan(skb->protocol)))
5181 			return 0;
5182 
5183 		err = __skb_vlan_pop(skb, &vlan_tci);
5184 		if (err)
5185 			return err;
5186 	}
5187 	/* move next vlan tag to hw accel tag */
5188 	if (likely(!eth_type_vlan(skb->protocol)))
5189 		return 0;
5190 
5191 	vlan_proto = skb->protocol;
5192 	err = __skb_vlan_pop(skb, &vlan_tci);
5193 	if (unlikely(err))
5194 		return err;
5195 
5196 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5197 	return 0;
5198 }
5199 EXPORT_SYMBOL(skb_vlan_pop);
5200 
5201 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5202  * Expects skb->data at mac header.
5203  */
5204 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5205 {
5206 	if (skb_vlan_tag_present(skb)) {
5207 		int offset = skb->data - skb_mac_header(skb);
5208 		int err;
5209 
5210 		if (WARN_ONCE(offset,
5211 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5212 			      offset)) {
5213 			return -EINVAL;
5214 		}
5215 
5216 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5217 					skb_vlan_tag_get(skb));
5218 		if (err)
5219 			return err;
5220 
5221 		skb->protocol = skb->vlan_proto;
5222 		skb->mac_len += VLAN_HLEN;
5223 
5224 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5225 	}
5226 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5227 	return 0;
5228 }
5229 EXPORT_SYMBOL(skb_vlan_push);
5230 
5231 /**
5232  * alloc_skb_with_frags - allocate skb with page frags
5233  *
5234  * @header_len: size of linear part
5235  * @data_len: needed length in frags
5236  * @max_page_order: max page order desired.
5237  * @errcode: pointer to error code if any
5238  * @gfp_mask: allocation mask
5239  *
5240  * This can be used to allocate a paged skb, given a maximal order for frags.
5241  */
5242 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5243 				     unsigned long data_len,
5244 				     int max_page_order,
5245 				     int *errcode,
5246 				     gfp_t gfp_mask)
5247 {
5248 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5249 	unsigned long chunk;
5250 	struct sk_buff *skb;
5251 	struct page *page;
5252 	gfp_t gfp_head;
5253 	int i;
5254 
5255 	*errcode = -EMSGSIZE;
5256 	/* Note this test could be relaxed, if we succeed to allocate
5257 	 * high order pages...
5258 	 */
5259 	if (npages > MAX_SKB_FRAGS)
5260 		return NULL;
5261 
5262 	gfp_head = gfp_mask;
5263 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5264 		gfp_head |= __GFP_RETRY_MAYFAIL;
5265 
5266 	*errcode = -ENOBUFS;
5267 	skb = alloc_skb(header_len, gfp_head);
5268 	if (!skb)
5269 		return NULL;
5270 
5271 	skb->truesize += npages << PAGE_SHIFT;
5272 
5273 	for (i = 0; npages > 0; i++) {
5274 		int order = max_page_order;
5275 
5276 		while (order) {
5277 			if (npages >= 1 << order) {
5278 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5279 						   __GFP_COMP |
5280 						   __GFP_NOWARN,
5281 						   order);
5282 				if (page)
5283 					goto fill_page;
5284 				/* Do not retry other high order allocations */
5285 				order = 1;
5286 				max_page_order = 0;
5287 			}
5288 			order--;
5289 		}
5290 		page = alloc_page(gfp_mask);
5291 		if (!page)
5292 			goto failure;
5293 fill_page:
5294 		chunk = min_t(unsigned long, data_len,
5295 			      PAGE_SIZE << order);
5296 		skb_fill_page_desc(skb, i, page, 0, chunk);
5297 		data_len -= chunk;
5298 		npages -= 1 << order;
5299 	}
5300 	return skb;
5301 
5302 failure:
5303 	kfree_skb(skb);
5304 	return NULL;
5305 }
5306 EXPORT_SYMBOL(alloc_skb_with_frags);
5307 
5308 /* carve out the first off bytes from skb when off < headlen */
5309 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5310 				    const int headlen, gfp_t gfp_mask)
5311 {
5312 	int i;
5313 	int size = skb_end_offset(skb);
5314 	int new_hlen = headlen - off;
5315 	u8 *data;
5316 
5317 	size = SKB_DATA_ALIGN(size);
5318 
5319 	if (skb_pfmemalloc(skb))
5320 		gfp_mask |= __GFP_MEMALLOC;
5321 	data = kmalloc_reserve(size +
5322 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5323 			       gfp_mask, NUMA_NO_NODE, NULL);
5324 	if (!data)
5325 		return -ENOMEM;
5326 
5327 	size = SKB_WITH_OVERHEAD(ksize(data));
5328 
5329 	/* Copy real data, and all frags */
5330 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5331 	skb->len -= off;
5332 
5333 	memcpy((struct skb_shared_info *)(data + size),
5334 	       skb_shinfo(skb),
5335 	       offsetof(struct skb_shared_info,
5336 			frags[skb_shinfo(skb)->nr_frags]));
5337 	if (skb_cloned(skb)) {
5338 		/* drop the old head gracefully */
5339 		if (skb_orphan_frags(skb, gfp_mask)) {
5340 			kfree(data);
5341 			return -ENOMEM;
5342 		}
5343 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5344 			skb_frag_ref(skb, i);
5345 		if (skb_has_frag_list(skb))
5346 			skb_clone_fraglist(skb);
5347 		skb_release_data(skb);
5348 	} else {
5349 		/* we can reuse existing recount- all we did was
5350 		 * relocate values
5351 		 */
5352 		skb_free_head(skb);
5353 	}
5354 
5355 	skb->head = data;
5356 	skb->data = data;
5357 	skb->head_frag = 0;
5358 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5359 	skb->end = size;
5360 #else
5361 	skb->end = skb->head + size;
5362 #endif
5363 	skb_set_tail_pointer(skb, skb_headlen(skb));
5364 	skb_headers_offset_update(skb, 0);
5365 	skb->cloned = 0;
5366 	skb->hdr_len = 0;
5367 	skb->nohdr = 0;
5368 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5369 
5370 	return 0;
5371 }
5372 
5373 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5374 
5375 /* carve out the first eat bytes from skb's frag_list. May recurse into
5376  * pskb_carve()
5377  */
5378 static int pskb_carve_frag_list(struct sk_buff *skb,
5379 				struct skb_shared_info *shinfo, int eat,
5380 				gfp_t gfp_mask)
5381 {
5382 	struct sk_buff *list = shinfo->frag_list;
5383 	struct sk_buff *clone = NULL;
5384 	struct sk_buff *insp = NULL;
5385 
5386 	do {
5387 		if (!list) {
5388 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5389 			return -EFAULT;
5390 		}
5391 		if (list->len <= eat) {
5392 			/* Eaten as whole. */
5393 			eat -= list->len;
5394 			list = list->next;
5395 			insp = list;
5396 		} else {
5397 			/* Eaten partially. */
5398 			if (skb_shared(list)) {
5399 				clone = skb_clone(list, gfp_mask);
5400 				if (!clone)
5401 					return -ENOMEM;
5402 				insp = list->next;
5403 				list = clone;
5404 			} else {
5405 				/* This may be pulled without problems. */
5406 				insp = list;
5407 			}
5408 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5409 				kfree_skb(clone);
5410 				return -ENOMEM;
5411 			}
5412 			break;
5413 		}
5414 	} while (eat);
5415 
5416 	/* Free pulled out fragments. */
5417 	while ((list = shinfo->frag_list) != insp) {
5418 		shinfo->frag_list = list->next;
5419 		kfree_skb(list);
5420 	}
5421 	/* And insert new clone at head. */
5422 	if (clone) {
5423 		clone->next = list;
5424 		shinfo->frag_list = clone;
5425 	}
5426 	return 0;
5427 }
5428 
5429 /* carve off first len bytes from skb. Split line (off) is in the
5430  * non-linear part of skb
5431  */
5432 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5433 				       int pos, gfp_t gfp_mask)
5434 {
5435 	int i, k = 0;
5436 	int size = skb_end_offset(skb);
5437 	u8 *data;
5438 	const int nfrags = skb_shinfo(skb)->nr_frags;
5439 	struct skb_shared_info *shinfo;
5440 
5441 	size = SKB_DATA_ALIGN(size);
5442 
5443 	if (skb_pfmemalloc(skb))
5444 		gfp_mask |= __GFP_MEMALLOC;
5445 	data = kmalloc_reserve(size +
5446 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5447 			       gfp_mask, NUMA_NO_NODE, NULL);
5448 	if (!data)
5449 		return -ENOMEM;
5450 
5451 	size = SKB_WITH_OVERHEAD(ksize(data));
5452 
5453 	memcpy((struct skb_shared_info *)(data + size),
5454 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5455 					 frags[skb_shinfo(skb)->nr_frags]));
5456 	if (skb_orphan_frags(skb, gfp_mask)) {
5457 		kfree(data);
5458 		return -ENOMEM;
5459 	}
5460 	shinfo = (struct skb_shared_info *)(data + size);
5461 	for (i = 0; i < nfrags; i++) {
5462 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5463 
5464 		if (pos + fsize > off) {
5465 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5466 
5467 			if (pos < off) {
5468 				/* Split frag.
5469 				 * We have two variants in this case:
5470 				 * 1. Move all the frag to the second
5471 				 *    part, if it is possible. F.e.
5472 				 *    this approach is mandatory for TUX,
5473 				 *    where splitting is expensive.
5474 				 * 2. Split is accurately. We make this.
5475 				 */
5476 				shinfo->frags[0].page_offset += off - pos;
5477 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5478 			}
5479 			skb_frag_ref(skb, i);
5480 			k++;
5481 		}
5482 		pos += fsize;
5483 	}
5484 	shinfo->nr_frags = k;
5485 	if (skb_has_frag_list(skb))
5486 		skb_clone_fraglist(skb);
5487 
5488 	if (k == 0) {
5489 		/* split line is in frag list */
5490 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5491 	}
5492 	skb_release_data(skb);
5493 
5494 	skb->head = data;
5495 	skb->head_frag = 0;
5496 	skb->data = data;
5497 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5498 	skb->end = size;
5499 #else
5500 	skb->end = skb->head + size;
5501 #endif
5502 	skb_reset_tail_pointer(skb);
5503 	skb_headers_offset_update(skb, 0);
5504 	skb->cloned   = 0;
5505 	skb->hdr_len  = 0;
5506 	skb->nohdr    = 0;
5507 	skb->len -= off;
5508 	skb->data_len = skb->len;
5509 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5510 	return 0;
5511 }
5512 
5513 /* remove len bytes from the beginning of the skb */
5514 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5515 {
5516 	int headlen = skb_headlen(skb);
5517 
5518 	if (len < headlen)
5519 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5520 	else
5521 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5522 }
5523 
5524 /* Extract to_copy bytes starting at off from skb, and return this in
5525  * a new skb
5526  */
5527 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5528 			     int to_copy, gfp_t gfp)
5529 {
5530 	struct sk_buff  *clone = skb_clone(skb, gfp);
5531 
5532 	if (!clone)
5533 		return NULL;
5534 
5535 	if (pskb_carve(clone, off, gfp) < 0 ||
5536 	    pskb_trim(clone, to_copy)) {
5537 		kfree_skb(clone);
5538 		return NULL;
5539 	}
5540 	return clone;
5541 }
5542 EXPORT_SYMBOL(pskb_extract);
5543 
5544 /**
5545  * skb_condense - try to get rid of fragments/frag_list if possible
5546  * @skb: buffer
5547  *
5548  * Can be used to save memory before skb is added to a busy queue.
5549  * If packet has bytes in frags and enough tail room in skb->head,
5550  * pull all of them, so that we can free the frags right now and adjust
5551  * truesize.
5552  * Notes:
5553  *	We do not reallocate skb->head thus can not fail.
5554  *	Caller must re-evaluate skb->truesize if needed.
5555  */
5556 void skb_condense(struct sk_buff *skb)
5557 {
5558 	if (skb->data_len) {
5559 		if (skb->data_len > skb->end - skb->tail ||
5560 		    skb_cloned(skb))
5561 			return;
5562 
5563 		/* Nice, we can free page frag(s) right now */
5564 		__pskb_pull_tail(skb, skb->data_len);
5565 	}
5566 	/* At this point, skb->truesize might be over estimated,
5567 	 * because skb had a fragment, and fragments do not tell
5568 	 * their truesize.
5569 	 * When we pulled its content into skb->head, fragment
5570 	 * was freed, but __pskb_pull_tail() could not possibly
5571 	 * adjust skb->truesize, not knowing the frag truesize.
5572 	 */
5573 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5574 }
5575