1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/page_pool.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 #include <linux/indirect_call_wrapper.h> 81 82 #include "datagram.h" 83 84 struct kmem_cache *skbuff_head_cache __ro_after_init; 85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 86 #ifdef CONFIG_SKB_EXTENSIONS 87 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 88 #endif 89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 90 EXPORT_SYMBOL(sysctl_max_skb_frags); 91 92 /** 93 * skb_panic - private function for out-of-line support 94 * @skb: buffer 95 * @sz: size 96 * @addr: address 97 * @msg: skb_over_panic or skb_under_panic 98 * 99 * Out-of-line support for skb_put() and skb_push(). 100 * Called via the wrapper skb_over_panic() or skb_under_panic(). 101 * Keep out of line to prevent kernel bloat. 102 * __builtin_return_address is not used because it is not always reliable. 103 */ 104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 105 const char msg[]) 106 { 107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 108 msg, addr, skb->len, sz, skb->head, skb->data, 109 (unsigned long)skb->tail, (unsigned long)skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 115 { 116 skb_panic(skb, sz, addr, __func__); 117 } 118 119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 #define NAPI_SKB_CACHE_SIZE 64 125 #define NAPI_SKB_CACHE_BULK 16 126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 127 128 struct napi_alloc_cache { 129 struct page_frag_cache page; 130 unsigned int skb_count; 131 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 132 }; 133 134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 136 137 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 138 { 139 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 140 141 fragsz = SKB_DATA_ALIGN(fragsz); 142 143 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 144 } 145 EXPORT_SYMBOL(__napi_alloc_frag_align); 146 147 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 148 { 149 void *data; 150 151 fragsz = SKB_DATA_ALIGN(fragsz); 152 if (in_hardirq() || irqs_disabled()) { 153 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 154 155 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 156 } else { 157 struct napi_alloc_cache *nc; 158 159 local_bh_disable(); 160 nc = this_cpu_ptr(&napi_alloc_cache); 161 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 162 local_bh_enable(); 163 } 164 return data; 165 } 166 EXPORT_SYMBOL(__netdev_alloc_frag_align); 167 168 static struct sk_buff *napi_skb_cache_get(void) 169 { 170 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 171 struct sk_buff *skb; 172 173 if (unlikely(!nc->skb_count)) 174 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 175 GFP_ATOMIC, 176 NAPI_SKB_CACHE_BULK, 177 nc->skb_cache); 178 if (unlikely(!nc->skb_count)) 179 return NULL; 180 181 skb = nc->skb_cache[--nc->skb_count]; 182 kasan_unpoison_object_data(skbuff_head_cache, skb); 183 184 return skb; 185 } 186 187 /* Caller must provide SKB that is memset cleared */ 188 static void __build_skb_around(struct sk_buff *skb, void *data, 189 unsigned int frag_size) 190 { 191 struct skb_shared_info *shinfo; 192 unsigned int size = frag_size ? : ksize(data); 193 194 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 195 196 /* Assumes caller memset cleared SKB */ 197 skb->truesize = SKB_TRUESIZE(size); 198 refcount_set(&skb->users, 1); 199 skb->head = data; 200 skb->data = data; 201 skb_reset_tail_pointer(skb); 202 skb->end = skb->tail + size; 203 skb->mac_header = (typeof(skb->mac_header))~0U; 204 skb->transport_header = (typeof(skb->transport_header))~0U; 205 206 /* make sure we initialize shinfo sequentially */ 207 shinfo = skb_shinfo(skb); 208 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 209 atomic_set(&shinfo->dataref, 1); 210 211 skb_set_kcov_handle(skb, kcov_common_handle()); 212 } 213 214 /** 215 * __build_skb - build a network buffer 216 * @data: data buffer provided by caller 217 * @frag_size: size of data, or 0 if head was kmalloced 218 * 219 * Allocate a new &sk_buff. Caller provides space holding head and 220 * skb_shared_info. @data must have been allocated by kmalloc() only if 221 * @frag_size is 0, otherwise data should come from the page allocator 222 * or vmalloc() 223 * The return is the new skb buffer. 224 * On a failure the return is %NULL, and @data is not freed. 225 * Notes : 226 * Before IO, driver allocates only data buffer where NIC put incoming frame 227 * Driver should add room at head (NET_SKB_PAD) and 228 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 229 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 230 * before giving packet to stack. 231 * RX rings only contains data buffers, not full skbs. 232 */ 233 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 234 { 235 struct sk_buff *skb; 236 237 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 238 if (unlikely(!skb)) 239 return NULL; 240 241 memset(skb, 0, offsetof(struct sk_buff, tail)); 242 __build_skb_around(skb, data, frag_size); 243 244 return skb; 245 } 246 247 /* build_skb() is wrapper over __build_skb(), that specifically 248 * takes care of skb->head and skb->pfmemalloc 249 * This means that if @frag_size is not zero, then @data must be backed 250 * by a page fragment, not kmalloc() or vmalloc() 251 */ 252 struct sk_buff *build_skb(void *data, unsigned int frag_size) 253 { 254 struct sk_buff *skb = __build_skb(data, frag_size); 255 256 if (skb && frag_size) { 257 skb->head_frag = 1; 258 if (page_is_pfmemalloc(virt_to_head_page(data))) 259 skb->pfmemalloc = 1; 260 } 261 return skb; 262 } 263 EXPORT_SYMBOL(build_skb); 264 265 /** 266 * build_skb_around - build a network buffer around provided skb 267 * @skb: sk_buff provide by caller, must be memset cleared 268 * @data: data buffer provided by caller 269 * @frag_size: size of data, or 0 if head was kmalloced 270 */ 271 struct sk_buff *build_skb_around(struct sk_buff *skb, 272 void *data, unsigned int frag_size) 273 { 274 if (unlikely(!skb)) 275 return NULL; 276 277 __build_skb_around(skb, data, frag_size); 278 279 if (frag_size) { 280 skb->head_frag = 1; 281 if (page_is_pfmemalloc(virt_to_head_page(data))) 282 skb->pfmemalloc = 1; 283 } 284 return skb; 285 } 286 EXPORT_SYMBOL(build_skb_around); 287 288 /** 289 * __napi_build_skb - build a network buffer 290 * @data: data buffer provided by caller 291 * @frag_size: size of data, or 0 if head was kmalloced 292 * 293 * Version of __build_skb() that uses NAPI percpu caches to obtain 294 * skbuff_head instead of inplace allocation. 295 * 296 * Returns a new &sk_buff on success, %NULL on allocation failure. 297 */ 298 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 299 { 300 struct sk_buff *skb; 301 302 skb = napi_skb_cache_get(); 303 if (unlikely(!skb)) 304 return NULL; 305 306 memset(skb, 0, offsetof(struct sk_buff, tail)); 307 __build_skb_around(skb, data, frag_size); 308 309 return skb; 310 } 311 312 /** 313 * napi_build_skb - build a network buffer 314 * @data: data buffer provided by caller 315 * @frag_size: size of data, or 0 if head was kmalloced 316 * 317 * Version of __napi_build_skb() that takes care of skb->head_frag 318 * and skb->pfmemalloc when the data is a page or page fragment. 319 * 320 * Returns a new &sk_buff on success, %NULL on allocation failure. 321 */ 322 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 323 { 324 struct sk_buff *skb = __napi_build_skb(data, frag_size); 325 326 if (likely(skb) && frag_size) { 327 skb->head_frag = 1; 328 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 329 } 330 331 return skb; 332 } 333 EXPORT_SYMBOL(napi_build_skb); 334 335 /* 336 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 337 * the caller if emergency pfmemalloc reserves are being used. If it is and 338 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 339 * may be used. Otherwise, the packet data may be discarded until enough 340 * memory is free 341 */ 342 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 343 bool *pfmemalloc) 344 { 345 void *obj; 346 bool ret_pfmemalloc = false; 347 348 /* 349 * Try a regular allocation, when that fails and we're not entitled 350 * to the reserves, fail. 351 */ 352 obj = kmalloc_node_track_caller(size, 353 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 354 node); 355 if (obj || !(gfp_pfmemalloc_allowed(flags))) 356 goto out; 357 358 /* Try again but now we are using pfmemalloc reserves */ 359 ret_pfmemalloc = true; 360 obj = kmalloc_node_track_caller(size, flags, node); 361 362 out: 363 if (pfmemalloc) 364 *pfmemalloc = ret_pfmemalloc; 365 366 return obj; 367 } 368 369 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 370 * 'private' fields and also do memory statistics to find all the 371 * [BEEP] leaks. 372 * 373 */ 374 375 /** 376 * __alloc_skb - allocate a network buffer 377 * @size: size to allocate 378 * @gfp_mask: allocation mask 379 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 380 * instead of head cache and allocate a cloned (child) skb. 381 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 382 * allocations in case the data is required for writeback 383 * @node: numa node to allocate memory on 384 * 385 * Allocate a new &sk_buff. The returned buffer has no headroom and a 386 * tail room of at least size bytes. The object has a reference count 387 * of one. The return is the buffer. On a failure the return is %NULL. 388 * 389 * Buffers may only be allocated from interrupts using a @gfp_mask of 390 * %GFP_ATOMIC. 391 */ 392 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 393 int flags, int node) 394 { 395 struct kmem_cache *cache; 396 struct sk_buff *skb; 397 unsigned int osize; 398 bool pfmemalloc; 399 u8 *data; 400 401 cache = (flags & SKB_ALLOC_FCLONE) 402 ? skbuff_fclone_cache : skbuff_head_cache; 403 404 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 405 gfp_mask |= __GFP_MEMALLOC; 406 407 /* Get the HEAD */ 408 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 409 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 410 skb = napi_skb_cache_get(); 411 else 412 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 413 if (unlikely(!skb)) 414 return NULL; 415 prefetchw(skb); 416 417 /* We do our best to align skb_shared_info on a separate cache 418 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 419 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 420 * Both skb->head and skb_shared_info are cache line aligned. 421 */ 422 size = SKB_DATA_ALIGN(size); 423 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 424 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 425 if (unlikely(!data)) 426 goto nodata; 427 /* kmalloc(size) might give us more room than requested. 428 * Put skb_shared_info exactly at the end of allocated zone, 429 * to allow max possible filling before reallocation. 430 */ 431 osize = ksize(data); 432 size = SKB_WITH_OVERHEAD(osize); 433 prefetchw(data + size); 434 435 /* 436 * Only clear those fields we need to clear, not those that we will 437 * actually initialise below. Hence, don't put any more fields after 438 * the tail pointer in struct sk_buff! 439 */ 440 memset(skb, 0, offsetof(struct sk_buff, tail)); 441 __build_skb_around(skb, data, osize); 442 skb->pfmemalloc = pfmemalloc; 443 444 if (flags & SKB_ALLOC_FCLONE) { 445 struct sk_buff_fclones *fclones; 446 447 fclones = container_of(skb, struct sk_buff_fclones, skb1); 448 449 skb->fclone = SKB_FCLONE_ORIG; 450 refcount_set(&fclones->fclone_ref, 1); 451 452 fclones->skb2.fclone = SKB_FCLONE_CLONE; 453 } 454 455 return skb; 456 457 nodata: 458 kmem_cache_free(cache, skb); 459 return NULL; 460 } 461 EXPORT_SYMBOL(__alloc_skb); 462 463 /** 464 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 465 * @dev: network device to receive on 466 * @len: length to allocate 467 * @gfp_mask: get_free_pages mask, passed to alloc_skb 468 * 469 * Allocate a new &sk_buff and assign it a usage count of one. The 470 * buffer has NET_SKB_PAD headroom built in. Users should allocate 471 * the headroom they think they need without accounting for the 472 * built in space. The built in space is used for optimisations. 473 * 474 * %NULL is returned if there is no free memory. 475 */ 476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 477 gfp_t gfp_mask) 478 { 479 struct page_frag_cache *nc; 480 struct sk_buff *skb; 481 bool pfmemalloc; 482 void *data; 483 484 len += NET_SKB_PAD; 485 486 /* If requested length is either too small or too big, 487 * we use kmalloc() for skb->head allocation. 488 */ 489 if (len <= SKB_WITH_OVERHEAD(1024) || 490 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 491 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 492 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 493 if (!skb) 494 goto skb_fail; 495 goto skb_success; 496 } 497 498 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 499 len = SKB_DATA_ALIGN(len); 500 501 if (sk_memalloc_socks()) 502 gfp_mask |= __GFP_MEMALLOC; 503 504 if (in_hardirq() || irqs_disabled()) { 505 nc = this_cpu_ptr(&netdev_alloc_cache); 506 data = page_frag_alloc(nc, len, gfp_mask); 507 pfmemalloc = nc->pfmemalloc; 508 } else { 509 local_bh_disable(); 510 nc = this_cpu_ptr(&napi_alloc_cache.page); 511 data = page_frag_alloc(nc, len, gfp_mask); 512 pfmemalloc = nc->pfmemalloc; 513 local_bh_enable(); 514 } 515 516 if (unlikely(!data)) 517 return NULL; 518 519 skb = __build_skb(data, len); 520 if (unlikely(!skb)) { 521 skb_free_frag(data); 522 return NULL; 523 } 524 525 if (pfmemalloc) 526 skb->pfmemalloc = 1; 527 skb->head_frag = 1; 528 529 skb_success: 530 skb_reserve(skb, NET_SKB_PAD); 531 skb->dev = dev; 532 533 skb_fail: 534 return skb; 535 } 536 EXPORT_SYMBOL(__netdev_alloc_skb); 537 538 /** 539 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 540 * @napi: napi instance this buffer was allocated for 541 * @len: length to allocate 542 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 543 * 544 * Allocate a new sk_buff for use in NAPI receive. This buffer will 545 * attempt to allocate the head from a special reserved region used 546 * only for NAPI Rx allocation. By doing this we can save several 547 * CPU cycles by avoiding having to disable and re-enable IRQs. 548 * 549 * %NULL is returned if there is no free memory. 550 */ 551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 552 gfp_t gfp_mask) 553 { 554 struct napi_alloc_cache *nc; 555 struct sk_buff *skb; 556 void *data; 557 558 len += NET_SKB_PAD + NET_IP_ALIGN; 559 560 /* If requested length is either too small or too big, 561 * we use kmalloc() for skb->head allocation. 562 */ 563 if (len <= SKB_WITH_OVERHEAD(1024) || 564 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 565 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 566 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 567 NUMA_NO_NODE); 568 if (!skb) 569 goto skb_fail; 570 goto skb_success; 571 } 572 573 nc = this_cpu_ptr(&napi_alloc_cache); 574 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 575 len = SKB_DATA_ALIGN(len); 576 577 if (sk_memalloc_socks()) 578 gfp_mask |= __GFP_MEMALLOC; 579 580 data = page_frag_alloc(&nc->page, len, gfp_mask); 581 if (unlikely(!data)) 582 return NULL; 583 584 skb = __napi_build_skb(data, len); 585 if (unlikely(!skb)) { 586 skb_free_frag(data); 587 return NULL; 588 } 589 590 if (nc->page.pfmemalloc) 591 skb->pfmemalloc = 1; 592 skb->head_frag = 1; 593 594 skb_success: 595 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 596 skb->dev = napi->dev; 597 598 skb_fail: 599 return skb; 600 } 601 EXPORT_SYMBOL(__napi_alloc_skb); 602 603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 604 int size, unsigned int truesize) 605 { 606 skb_fill_page_desc(skb, i, page, off, size); 607 skb->len += size; 608 skb->data_len += size; 609 skb->truesize += truesize; 610 } 611 EXPORT_SYMBOL(skb_add_rx_frag); 612 613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 614 unsigned int truesize) 615 { 616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 617 618 skb_frag_size_add(frag, size); 619 skb->len += size; 620 skb->data_len += size; 621 skb->truesize += truesize; 622 } 623 EXPORT_SYMBOL(skb_coalesce_rx_frag); 624 625 static void skb_drop_list(struct sk_buff **listp) 626 { 627 kfree_skb_list(*listp); 628 *listp = NULL; 629 } 630 631 static inline void skb_drop_fraglist(struct sk_buff *skb) 632 { 633 skb_drop_list(&skb_shinfo(skb)->frag_list); 634 } 635 636 static void skb_clone_fraglist(struct sk_buff *skb) 637 { 638 struct sk_buff *list; 639 640 skb_walk_frags(skb, list) 641 skb_get(list); 642 } 643 644 static void skb_free_head(struct sk_buff *skb) 645 { 646 unsigned char *head = skb->head; 647 648 if (skb->head_frag) { 649 if (skb_pp_recycle(skb, head)) 650 return; 651 skb_free_frag(head); 652 } else { 653 kfree(head); 654 } 655 } 656 657 static void skb_release_data(struct sk_buff *skb) 658 { 659 struct skb_shared_info *shinfo = skb_shinfo(skb); 660 int i; 661 662 if (skb->cloned && 663 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 664 &shinfo->dataref)) 665 goto exit; 666 667 skb_zcopy_clear(skb, true); 668 669 for (i = 0; i < shinfo->nr_frags; i++) 670 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 671 672 if (shinfo->frag_list) 673 kfree_skb_list(shinfo->frag_list); 674 675 skb_free_head(skb); 676 exit: 677 /* When we clone an SKB we copy the reycling bit. The pp_recycle 678 * bit is only set on the head though, so in order to avoid races 679 * while trying to recycle fragments on __skb_frag_unref() we need 680 * to make one SKB responsible for triggering the recycle path. 681 * So disable the recycling bit if an SKB is cloned and we have 682 * additional references to to the fragmented part of the SKB. 683 * Eventually the last SKB will have the recycling bit set and it's 684 * dataref set to 0, which will trigger the recycling 685 */ 686 skb->pp_recycle = 0; 687 } 688 689 /* 690 * Free an skbuff by memory without cleaning the state. 691 */ 692 static void kfree_skbmem(struct sk_buff *skb) 693 { 694 struct sk_buff_fclones *fclones; 695 696 switch (skb->fclone) { 697 case SKB_FCLONE_UNAVAILABLE: 698 kmem_cache_free(skbuff_head_cache, skb); 699 return; 700 701 case SKB_FCLONE_ORIG: 702 fclones = container_of(skb, struct sk_buff_fclones, skb1); 703 704 /* We usually free the clone (TX completion) before original skb 705 * This test would have no chance to be true for the clone, 706 * while here, branch prediction will be good. 707 */ 708 if (refcount_read(&fclones->fclone_ref) == 1) 709 goto fastpath; 710 break; 711 712 default: /* SKB_FCLONE_CLONE */ 713 fclones = container_of(skb, struct sk_buff_fclones, skb2); 714 break; 715 } 716 if (!refcount_dec_and_test(&fclones->fclone_ref)) 717 return; 718 fastpath: 719 kmem_cache_free(skbuff_fclone_cache, fclones); 720 } 721 722 void skb_release_head_state(struct sk_buff *skb) 723 { 724 skb_dst_drop(skb); 725 if (skb->destructor) { 726 WARN_ON(in_hardirq()); 727 skb->destructor(skb); 728 } 729 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 730 nf_conntrack_put(skb_nfct(skb)); 731 #endif 732 skb_ext_put(skb); 733 } 734 735 /* Free everything but the sk_buff shell. */ 736 static void skb_release_all(struct sk_buff *skb) 737 { 738 skb_release_head_state(skb); 739 if (likely(skb->head)) 740 skb_release_data(skb); 741 } 742 743 /** 744 * __kfree_skb - private function 745 * @skb: buffer 746 * 747 * Free an sk_buff. Release anything attached to the buffer. 748 * Clean the state. This is an internal helper function. Users should 749 * always call kfree_skb 750 */ 751 752 void __kfree_skb(struct sk_buff *skb) 753 { 754 skb_release_all(skb); 755 kfree_skbmem(skb); 756 } 757 EXPORT_SYMBOL(__kfree_skb); 758 759 /** 760 * kfree_skb - free an sk_buff 761 * @skb: buffer to free 762 * 763 * Drop a reference to the buffer and free it if the usage count has 764 * hit zero. 765 */ 766 void kfree_skb(struct sk_buff *skb) 767 { 768 if (!skb_unref(skb)) 769 return; 770 771 trace_kfree_skb(skb, __builtin_return_address(0)); 772 __kfree_skb(skb); 773 } 774 EXPORT_SYMBOL(kfree_skb); 775 776 void kfree_skb_list(struct sk_buff *segs) 777 { 778 while (segs) { 779 struct sk_buff *next = segs->next; 780 781 kfree_skb(segs); 782 segs = next; 783 } 784 } 785 EXPORT_SYMBOL(kfree_skb_list); 786 787 /* Dump skb information and contents. 788 * 789 * Must only be called from net_ratelimit()-ed paths. 790 * 791 * Dumps whole packets if full_pkt, only headers otherwise. 792 */ 793 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 794 { 795 struct skb_shared_info *sh = skb_shinfo(skb); 796 struct net_device *dev = skb->dev; 797 struct sock *sk = skb->sk; 798 struct sk_buff *list_skb; 799 bool has_mac, has_trans; 800 int headroom, tailroom; 801 int i, len, seg_len; 802 803 if (full_pkt) 804 len = skb->len; 805 else 806 len = min_t(int, skb->len, MAX_HEADER + 128); 807 808 headroom = skb_headroom(skb); 809 tailroom = skb_tailroom(skb); 810 811 has_mac = skb_mac_header_was_set(skb); 812 has_trans = skb_transport_header_was_set(skb); 813 814 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 815 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 816 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 817 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 818 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 819 level, skb->len, headroom, skb_headlen(skb), tailroom, 820 has_mac ? skb->mac_header : -1, 821 has_mac ? skb_mac_header_len(skb) : -1, 822 skb->network_header, 823 has_trans ? skb_network_header_len(skb) : -1, 824 has_trans ? skb->transport_header : -1, 825 sh->tx_flags, sh->nr_frags, 826 sh->gso_size, sh->gso_type, sh->gso_segs, 827 skb->csum, skb->ip_summed, skb->csum_complete_sw, 828 skb->csum_valid, skb->csum_level, 829 skb->hash, skb->sw_hash, skb->l4_hash, 830 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 831 832 if (dev) 833 printk("%sdev name=%s feat=0x%pNF\n", 834 level, dev->name, &dev->features); 835 if (sk) 836 printk("%ssk family=%hu type=%u proto=%u\n", 837 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 838 839 if (full_pkt && headroom) 840 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 841 16, 1, skb->head, headroom, false); 842 843 seg_len = min_t(int, skb_headlen(skb), len); 844 if (seg_len) 845 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 846 16, 1, skb->data, seg_len, false); 847 len -= seg_len; 848 849 if (full_pkt && tailroom) 850 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 851 16, 1, skb_tail_pointer(skb), tailroom, false); 852 853 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 855 u32 p_off, p_len, copied; 856 struct page *p; 857 u8 *vaddr; 858 859 skb_frag_foreach_page(frag, skb_frag_off(frag), 860 skb_frag_size(frag), p, p_off, p_len, 861 copied) { 862 seg_len = min_t(int, p_len, len); 863 vaddr = kmap_atomic(p); 864 print_hex_dump(level, "skb frag: ", 865 DUMP_PREFIX_OFFSET, 866 16, 1, vaddr + p_off, seg_len, false); 867 kunmap_atomic(vaddr); 868 len -= seg_len; 869 if (!len) 870 break; 871 } 872 } 873 874 if (full_pkt && skb_has_frag_list(skb)) { 875 printk("skb fraglist:\n"); 876 skb_walk_frags(skb, list_skb) 877 skb_dump(level, list_skb, true); 878 } 879 } 880 EXPORT_SYMBOL(skb_dump); 881 882 /** 883 * skb_tx_error - report an sk_buff xmit error 884 * @skb: buffer that triggered an error 885 * 886 * Report xmit error if a device callback is tracking this skb. 887 * skb must be freed afterwards. 888 */ 889 void skb_tx_error(struct sk_buff *skb) 890 { 891 skb_zcopy_clear(skb, true); 892 } 893 EXPORT_SYMBOL(skb_tx_error); 894 895 #ifdef CONFIG_TRACEPOINTS 896 /** 897 * consume_skb - free an skbuff 898 * @skb: buffer to free 899 * 900 * Drop a ref to the buffer and free it if the usage count has hit zero 901 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 902 * is being dropped after a failure and notes that 903 */ 904 void consume_skb(struct sk_buff *skb) 905 { 906 if (!skb_unref(skb)) 907 return; 908 909 trace_consume_skb(skb); 910 __kfree_skb(skb); 911 } 912 EXPORT_SYMBOL(consume_skb); 913 #endif 914 915 /** 916 * __consume_stateless_skb - free an skbuff, assuming it is stateless 917 * @skb: buffer to free 918 * 919 * Alike consume_skb(), but this variant assumes that this is the last 920 * skb reference and all the head states have been already dropped 921 */ 922 void __consume_stateless_skb(struct sk_buff *skb) 923 { 924 trace_consume_skb(skb); 925 skb_release_data(skb); 926 kfree_skbmem(skb); 927 } 928 929 static void napi_skb_cache_put(struct sk_buff *skb) 930 { 931 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 932 u32 i; 933 934 kasan_poison_object_data(skbuff_head_cache, skb); 935 nc->skb_cache[nc->skb_count++] = skb; 936 937 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 938 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 939 kasan_unpoison_object_data(skbuff_head_cache, 940 nc->skb_cache[i]); 941 942 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 943 nc->skb_cache + NAPI_SKB_CACHE_HALF); 944 nc->skb_count = NAPI_SKB_CACHE_HALF; 945 } 946 } 947 948 void __kfree_skb_defer(struct sk_buff *skb) 949 { 950 skb_release_all(skb); 951 napi_skb_cache_put(skb); 952 } 953 954 void napi_skb_free_stolen_head(struct sk_buff *skb) 955 { 956 if (unlikely(skb->slow_gro)) { 957 nf_reset_ct(skb); 958 skb_dst_drop(skb); 959 skb_ext_put(skb); 960 skb_orphan(skb); 961 skb->slow_gro = 0; 962 } 963 napi_skb_cache_put(skb); 964 } 965 966 void napi_consume_skb(struct sk_buff *skb, int budget) 967 { 968 /* Zero budget indicate non-NAPI context called us, like netpoll */ 969 if (unlikely(!budget)) { 970 dev_consume_skb_any(skb); 971 return; 972 } 973 974 lockdep_assert_in_softirq(); 975 976 if (!skb_unref(skb)) 977 return; 978 979 /* if reaching here SKB is ready to free */ 980 trace_consume_skb(skb); 981 982 /* if SKB is a clone, don't handle this case */ 983 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 984 __kfree_skb(skb); 985 return; 986 } 987 988 skb_release_all(skb); 989 napi_skb_cache_put(skb); 990 } 991 EXPORT_SYMBOL(napi_consume_skb); 992 993 /* Make sure a field is enclosed inside headers_start/headers_end section */ 994 #define CHECK_SKB_FIELD(field) \ 995 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 996 offsetof(struct sk_buff, headers_start)); \ 997 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 998 offsetof(struct sk_buff, headers_end)); \ 999 1000 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1001 { 1002 new->tstamp = old->tstamp; 1003 /* We do not copy old->sk */ 1004 new->dev = old->dev; 1005 memcpy(new->cb, old->cb, sizeof(old->cb)); 1006 skb_dst_copy(new, old); 1007 __skb_ext_copy(new, old); 1008 __nf_copy(new, old, false); 1009 1010 /* Note : this field could be in headers_start/headers_end section 1011 * It is not yet because we do not want to have a 16 bit hole 1012 */ 1013 new->queue_mapping = old->queue_mapping; 1014 1015 memcpy(&new->headers_start, &old->headers_start, 1016 offsetof(struct sk_buff, headers_end) - 1017 offsetof(struct sk_buff, headers_start)); 1018 CHECK_SKB_FIELD(protocol); 1019 CHECK_SKB_FIELD(csum); 1020 CHECK_SKB_FIELD(hash); 1021 CHECK_SKB_FIELD(priority); 1022 CHECK_SKB_FIELD(skb_iif); 1023 CHECK_SKB_FIELD(vlan_proto); 1024 CHECK_SKB_FIELD(vlan_tci); 1025 CHECK_SKB_FIELD(transport_header); 1026 CHECK_SKB_FIELD(network_header); 1027 CHECK_SKB_FIELD(mac_header); 1028 CHECK_SKB_FIELD(inner_protocol); 1029 CHECK_SKB_FIELD(inner_transport_header); 1030 CHECK_SKB_FIELD(inner_network_header); 1031 CHECK_SKB_FIELD(inner_mac_header); 1032 CHECK_SKB_FIELD(mark); 1033 #ifdef CONFIG_NETWORK_SECMARK 1034 CHECK_SKB_FIELD(secmark); 1035 #endif 1036 #ifdef CONFIG_NET_RX_BUSY_POLL 1037 CHECK_SKB_FIELD(napi_id); 1038 #endif 1039 #ifdef CONFIG_XPS 1040 CHECK_SKB_FIELD(sender_cpu); 1041 #endif 1042 #ifdef CONFIG_NET_SCHED 1043 CHECK_SKB_FIELD(tc_index); 1044 #endif 1045 1046 } 1047 1048 /* 1049 * You should not add any new code to this function. Add it to 1050 * __copy_skb_header above instead. 1051 */ 1052 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1053 { 1054 #define C(x) n->x = skb->x 1055 1056 n->next = n->prev = NULL; 1057 n->sk = NULL; 1058 __copy_skb_header(n, skb); 1059 1060 C(len); 1061 C(data_len); 1062 C(mac_len); 1063 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1064 n->cloned = 1; 1065 n->nohdr = 0; 1066 n->peeked = 0; 1067 C(pfmemalloc); 1068 C(pp_recycle); 1069 n->destructor = NULL; 1070 C(tail); 1071 C(end); 1072 C(head); 1073 C(head_frag); 1074 C(data); 1075 C(truesize); 1076 refcount_set(&n->users, 1); 1077 1078 atomic_inc(&(skb_shinfo(skb)->dataref)); 1079 skb->cloned = 1; 1080 1081 return n; 1082 #undef C 1083 } 1084 1085 /** 1086 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1087 * @first: first sk_buff of the msg 1088 */ 1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1090 { 1091 struct sk_buff *n; 1092 1093 n = alloc_skb(0, GFP_ATOMIC); 1094 if (!n) 1095 return NULL; 1096 1097 n->len = first->len; 1098 n->data_len = first->len; 1099 n->truesize = first->truesize; 1100 1101 skb_shinfo(n)->frag_list = first; 1102 1103 __copy_skb_header(n, first); 1104 n->destructor = NULL; 1105 1106 return n; 1107 } 1108 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1109 1110 /** 1111 * skb_morph - morph one skb into another 1112 * @dst: the skb to receive the contents 1113 * @src: the skb to supply the contents 1114 * 1115 * This is identical to skb_clone except that the target skb is 1116 * supplied by the user. 1117 * 1118 * The target skb is returned upon exit. 1119 */ 1120 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1121 { 1122 skb_release_all(dst); 1123 return __skb_clone(dst, src); 1124 } 1125 EXPORT_SYMBOL_GPL(skb_morph); 1126 1127 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1128 { 1129 unsigned long max_pg, num_pg, new_pg, old_pg; 1130 struct user_struct *user; 1131 1132 if (capable(CAP_IPC_LOCK) || !size) 1133 return 0; 1134 1135 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1136 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1137 user = mmp->user ? : current_user(); 1138 1139 do { 1140 old_pg = atomic_long_read(&user->locked_vm); 1141 new_pg = old_pg + num_pg; 1142 if (new_pg > max_pg) 1143 return -ENOBUFS; 1144 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1145 old_pg); 1146 1147 if (!mmp->user) { 1148 mmp->user = get_uid(user); 1149 mmp->num_pg = num_pg; 1150 } else { 1151 mmp->num_pg += num_pg; 1152 } 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1157 1158 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1159 { 1160 if (mmp->user) { 1161 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1162 free_uid(mmp->user); 1163 } 1164 } 1165 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1166 1167 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1168 { 1169 struct ubuf_info *uarg; 1170 struct sk_buff *skb; 1171 1172 WARN_ON_ONCE(!in_task()); 1173 1174 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1175 if (!skb) 1176 return NULL; 1177 1178 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1179 uarg = (void *)skb->cb; 1180 uarg->mmp.user = NULL; 1181 1182 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1183 kfree_skb(skb); 1184 return NULL; 1185 } 1186 1187 uarg->callback = msg_zerocopy_callback; 1188 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1189 uarg->len = 1; 1190 uarg->bytelen = size; 1191 uarg->zerocopy = 1; 1192 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1193 refcount_set(&uarg->refcnt, 1); 1194 sock_hold(sk); 1195 1196 return uarg; 1197 } 1198 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1199 1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1201 { 1202 return container_of((void *)uarg, struct sk_buff, cb); 1203 } 1204 1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1206 struct ubuf_info *uarg) 1207 { 1208 if (uarg) { 1209 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1210 u32 bytelen, next; 1211 1212 /* realloc only when socket is locked (TCP, UDP cork), 1213 * so uarg->len and sk_zckey access is serialized 1214 */ 1215 if (!sock_owned_by_user(sk)) { 1216 WARN_ON_ONCE(1); 1217 return NULL; 1218 } 1219 1220 bytelen = uarg->bytelen + size; 1221 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1222 /* TCP can create new skb to attach new uarg */ 1223 if (sk->sk_type == SOCK_STREAM) 1224 goto new_alloc; 1225 return NULL; 1226 } 1227 1228 next = (u32)atomic_read(&sk->sk_zckey); 1229 if ((u32)(uarg->id + uarg->len) == next) { 1230 if (mm_account_pinned_pages(&uarg->mmp, size)) 1231 return NULL; 1232 uarg->len++; 1233 uarg->bytelen = bytelen; 1234 atomic_set(&sk->sk_zckey, ++next); 1235 1236 /* no extra ref when appending to datagram (MSG_MORE) */ 1237 if (sk->sk_type == SOCK_STREAM) 1238 net_zcopy_get(uarg); 1239 1240 return uarg; 1241 } 1242 } 1243 1244 new_alloc: 1245 return msg_zerocopy_alloc(sk, size); 1246 } 1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1248 1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1250 { 1251 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1252 u32 old_lo, old_hi; 1253 u64 sum_len; 1254 1255 old_lo = serr->ee.ee_info; 1256 old_hi = serr->ee.ee_data; 1257 sum_len = old_hi - old_lo + 1ULL + len; 1258 1259 if (sum_len >= (1ULL << 32)) 1260 return false; 1261 1262 if (lo != old_hi + 1) 1263 return false; 1264 1265 serr->ee.ee_data += len; 1266 return true; 1267 } 1268 1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1270 { 1271 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1272 struct sock_exterr_skb *serr; 1273 struct sock *sk = skb->sk; 1274 struct sk_buff_head *q; 1275 unsigned long flags; 1276 bool is_zerocopy; 1277 u32 lo, hi; 1278 u16 len; 1279 1280 mm_unaccount_pinned_pages(&uarg->mmp); 1281 1282 /* if !len, there was only 1 call, and it was aborted 1283 * so do not queue a completion notification 1284 */ 1285 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1286 goto release; 1287 1288 len = uarg->len; 1289 lo = uarg->id; 1290 hi = uarg->id + len - 1; 1291 is_zerocopy = uarg->zerocopy; 1292 1293 serr = SKB_EXT_ERR(skb); 1294 memset(serr, 0, sizeof(*serr)); 1295 serr->ee.ee_errno = 0; 1296 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1297 serr->ee.ee_data = hi; 1298 serr->ee.ee_info = lo; 1299 if (!is_zerocopy) 1300 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1301 1302 q = &sk->sk_error_queue; 1303 spin_lock_irqsave(&q->lock, flags); 1304 tail = skb_peek_tail(q); 1305 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1306 !skb_zerocopy_notify_extend(tail, lo, len)) { 1307 __skb_queue_tail(q, skb); 1308 skb = NULL; 1309 } 1310 spin_unlock_irqrestore(&q->lock, flags); 1311 1312 sk_error_report(sk); 1313 1314 release: 1315 consume_skb(skb); 1316 sock_put(sk); 1317 } 1318 1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1320 bool success) 1321 { 1322 uarg->zerocopy = uarg->zerocopy & success; 1323 1324 if (refcount_dec_and_test(&uarg->refcnt)) 1325 __msg_zerocopy_callback(uarg); 1326 } 1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1328 1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1330 { 1331 struct sock *sk = skb_from_uarg(uarg)->sk; 1332 1333 atomic_dec(&sk->sk_zckey); 1334 uarg->len--; 1335 1336 if (have_uref) 1337 msg_zerocopy_callback(NULL, uarg, true); 1338 } 1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1340 1341 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1342 { 1343 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1344 } 1345 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1346 1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1348 struct msghdr *msg, int len, 1349 struct ubuf_info *uarg) 1350 { 1351 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1352 struct iov_iter orig_iter = msg->msg_iter; 1353 int err, orig_len = skb->len; 1354 1355 /* An skb can only point to one uarg. This edge case happens when 1356 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1357 */ 1358 if (orig_uarg && uarg != orig_uarg) 1359 return -EEXIST; 1360 1361 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1362 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1363 struct sock *save_sk = skb->sk; 1364 1365 /* Streams do not free skb on error. Reset to prev state. */ 1366 msg->msg_iter = orig_iter; 1367 skb->sk = sk; 1368 ___pskb_trim(skb, orig_len); 1369 skb->sk = save_sk; 1370 return err; 1371 } 1372 1373 skb_zcopy_set(skb, uarg, NULL); 1374 return skb->len - orig_len; 1375 } 1376 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1377 1378 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1379 gfp_t gfp_mask) 1380 { 1381 if (skb_zcopy(orig)) { 1382 if (skb_zcopy(nskb)) { 1383 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1384 if (!gfp_mask) { 1385 WARN_ON_ONCE(1); 1386 return -ENOMEM; 1387 } 1388 if (skb_uarg(nskb) == skb_uarg(orig)) 1389 return 0; 1390 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1391 return -EIO; 1392 } 1393 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1394 } 1395 return 0; 1396 } 1397 1398 /** 1399 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1400 * @skb: the skb to modify 1401 * @gfp_mask: allocation priority 1402 * 1403 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1404 * It will copy all frags into kernel and drop the reference 1405 * to userspace pages. 1406 * 1407 * If this function is called from an interrupt gfp_mask() must be 1408 * %GFP_ATOMIC. 1409 * 1410 * Returns 0 on success or a negative error code on failure 1411 * to allocate kernel memory to copy to. 1412 */ 1413 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1414 { 1415 int num_frags = skb_shinfo(skb)->nr_frags; 1416 struct page *page, *head = NULL; 1417 int i, new_frags; 1418 u32 d_off; 1419 1420 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1421 return -EINVAL; 1422 1423 if (!num_frags) 1424 goto release; 1425 1426 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1427 for (i = 0; i < new_frags; i++) { 1428 page = alloc_page(gfp_mask); 1429 if (!page) { 1430 while (head) { 1431 struct page *next = (struct page *)page_private(head); 1432 put_page(head); 1433 head = next; 1434 } 1435 return -ENOMEM; 1436 } 1437 set_page_private(page, (unsigned long)head); 1438 head = page; 1439 } 1440 1441 page = head; 1442 d_off = 0; 1443 for (i = 0; i < num_frags; i++) { 1444 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1445 u32 p_off, p_len, copied; 1446 struct page *p; 1447 u8 *vaddr; 1448 1449 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1450 p, p_off, p_len, copied) { 1451 u32 copy, done = 0; 1452 vaddr = kmap_atomic(p); 1453 1454 while (done < p_len) { 1455 if (d_off == PAGE_SIZE) { 1456 d_off = 0; 1457 page = (struct page *)page_private(page); 1458 } 1459 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1460 memcpy(page_address(page) + d_off, 1461 vaddr + p_off + done, copy); 1462 done += copy; 1463 d_off += copy; 1464 } 1465 kunmap_atomic(vaddr); 1466 } 1467 } 1468 1469 /* skb frags release userspace buffers */ 1470 for (i = 0; i < num_frags; i++) 1471 skb_frag_unref(skb, i); 1472 1473 /* skb frags point to kernel buffers */ 1474 for (i = 0; i < new_frags - 1; i++) { 1475 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1476 head = (struct page *)page_private(head); 1477 } 1478 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1479 skb_shinfo(skb)->nr_frags = new_frags; 1480 1481 release: 1482 skb_zcopy_clear(skb, false); 1483 return 0; 1484 } 1485 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1486 1487 /** 1488 * skb_clone - duplicate an sk_buff 1489 * @skb: buffer to clone 1490 * @gfp_mask: allocation priority 1491 * 1492 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1493 * copies share the same packet data but not structure. The new 1494 * buffer has a reference count of 1. If the allocation fails the 1495 * function returns %NULL otherwise the new buffer is returned. 1496 * 1497 * If this function is called from an interrupt gfp_mask() must be 1498 * %GFP_ATOMIC. 1499 */ 1500 1501 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1502 { 1503 struct sk_buff_fclones *fclones = container_of(skb, 1504 struct sk_buff_fclones, 1505 skb1); 1506 struct sk_buff *n; 1507 1508 if (skb_orphan_frags(skb, gfp_mask)) 1509 return NULL; 1510 1511 if (skb->fclone == SKB_FCLONE_ORIG && 1512 refcount_read(&fclones->fclone_ref) == 1) { 1513 n = &fclones->skb2; 1514 refcount_set(&fclones->fclone_ref, 2); 1515 } else { 1516 if (skb_pfmemalloc(skb)) 1517 gfp_mask |= __GFP_MEMALLOC; 1518 1519 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1520 if (!n) 1521 return NULL; 1522 1523 n->fclone = SKB_FCLONE_UNAVAILABLE; 1524 } 1525 1526 return __skb_clone(n, skb); 1527 } 1528 EXPORT_SYMBOL(skb_clone); 1529 1530 void skb_headers_offset_update(struct sk_buff *skb, int off) 1531 { 1532 /* Only adjust this if it actually is csum_start rather than csum */ 1533 if (skb->ip_summed == CHECKSUM_PARTIAL) 1534 skb->csum_start += off; 1535 /* {transport,network,mac}_header and tail are relative to skb->head */ 1536 skb->transport_header += off; 1537 skb->network_header += off; 1538 if (skb_mac_header_was_set(skb)) 1539 skb->mac_header += off; 1540 skb->inner_transport_header += off; 1541 skb->inner_network_header += off; 1542 skb->inner_mac_header += off; 1543 } 1544 EXPORT_SYMBOL(skb_headers_offset_update); 1545 1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1547 { 1548 __copy_skb_header(new, old); 1549 1550 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1551 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1552 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1553 } 1554 EXPORT_SYMBOL(skb_copy_header); 1555 1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1557 { 1558 if (skb_pfmemalloc(skb)) 1559 return SKB_ALLOC_RX; 1560 return 0; 1561 } 1562 1563 /** 1564 * skb_copy - create private copy of an sk_buff 1565 * @skb: buffer to copy 1566 * @gfp_mask: allocation priority 1567 * 1568 * Make a copy of both an &sk_buff and its data. This is used when the 1569 * caller wishes to modify the data and needs a private copy of the 1570 * data to alter. Returns %NULL on failure or the pointer to the buffer 1571 * on success. The returned buffer has a reference count of 1. 1572 * 1573 * As by-product this function converts non-linear &sk_buff to linear 1574 * one, so that &sk_buff becomes completely private and caller is allowed 1575 * to modify all the data of returned buffer. This means that this 1576 * function is not recommended for use in circumstances when only 1577 * header is going to be modified. Use pskb_copy() instead. 1578 */ 1579 1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1581 { 1582 int headerlen = skb_headroom(skb); 1583 unsigned int size = skb_end_offset(skb) + skb->data_len; 1584 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1585 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1586 1587 if (!n) 1588 return NULL; 1589 1590 /* Set the data pointer */ 1591 skb_reserve(n, headerlen); 1592 /* Set the tail pointer and length */ 1593 skb_put(n, skb->len); 1594 1595 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1596 1597 skb_copy_header(n, skb); 1598 return n; 1599 } 1600 EXPORT_SYMBOL(skb_copy); 1601 1602 /** 1603 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1604 * @skb: buffer to copy 1605 * @headroom: headroom of new skb 1606 * @gfp_mask: allocation priority 1607 * @fclone: if true allocate the copy of the skb from the fclone 1608 * cache instead of the head cache; it is recommended to set this 1609 * to true for the cases where the copy will likely be cloned 1610 * 1611 * Make a copy of both an &sk_buff and part of its data, located 1612 * in header. Fragmented data remain shared. This is used when 1613 * the caller wishes to modify only header of &sk_buff and needs 1614 * private copy of the header to alter. Returns %NULL on failure 1615 * or the pointer to the buffer on success. 1616 * The returned buffer has a reference count of 1. 1617 */ 1618 1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1620 gfp_t gfp_mask, bool fclone) 1621 { 1622 unsigned int size = skb_headlen(skb) + headroom; 1623 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1624 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1625 1626 if (!n) 1627 goto out; 1628 1629 /* Set the data pointer */ 1630 skb_reserve(n, headroom); 1631 /* Set the tail pointer and length */ 1632 skb_put(n, skb_headlen(skb)); 1633 /* Copy the bytes */ 1634 skb_copy_from_linear_data(skb, n->data, n->len); 1635 1636 n->truesize += skb->data_len; 1637 n->data_len = skb->data_len; 1638 n->len = skb->len; 1639 1640 if (skb_shinfo(skb)->nr_frags) { 1641 int i; 1642 1643 if (skb_orphan_frags(skb, gfp_mask) || 1644 skb_zerocopy_clone(n, skb, gfp_mask)) { 1645 kfree_skb(n); 1646 n = NULL; 1647 goto out; 1648 } 1649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1650 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1651 skb_frag_ref(skb, i); 1652 } 1653 skb_shinfo(n)->nr_frags = i; 1654 } 1655 1656 if (skb_has_frag_list(skb)) { 1657 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1658 skb_clone_fraglist(n); 1659 } 1660 1661 skb_copy_header(n, skb); 1662 out: 1663 return n; 1664 } 1665 EXPORT_SYMBOL(__pskb_copy_fclone); 1666 1667 /** 1668 * pskb_expand_head - reallocate header of &sk_buff 1669 * @skb: buffer to reallocate 1670 * @nhead: room to add at head 1671 * @ntail: room to add at tail 1672 * @gfp_mask: allocation priority 1673 * 1674 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1675 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1676 * reference count of 1. Returns zero in the case of success or error, 1677 * if expansion failed. In the last case, &sk_buff is not changed. 1678 * 1679 * All the pointers pointing into skb header may change and must be 1680 * reloaded after call to this function. 1681 */ 1682 1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1684 gfp_t gfp_mask) 1685 { 1686 int i, osize = skb_end_offset(skb); 1687 int size = osize + nhead + ntail; 1688 long off; 1689 u8 *data; 1690 1691 BUG_ON(nhead < 0); 1692 1693 BUG_ON(skb_shared(skb)); 1694 1695 size = SKB_DATA_ALIGN(size); 1696 1697 if (skb_pfmemalloc(skb)) 1698 gfp_mask |= __GFP_MEMALLOC; 1699 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1700 gfp_mask, NUMA_NO_NODE, NULL); 1701 if (!data) 1702 goto nodata; 1703 size = SKB_WITH_OVERHEAD(ksize(data)); 1704 1705 /* Copy only real data... and, alas, header. This should be 1706 * optimized for the cases when header is void. 1707 */ 1708 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1709 1710 memcpy((struct skb_shared_info *)(data + size), 1711 skb_shinfo(skb), 1712 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1713 1714 /* 1715 * if shinfo is shared we must drop the old head gracefully, but if it 1716 * is not we can just drop the old head and let the existing refcount 1717 * be since all we did is relocate the values 1718 */ 1719 if (skb_cloned(skb)) { 1720 if (skb_orphan_frags(skb, gfp_mask)) 1721 goto nofrags; 1722 if (skb_zcopy(skb)) 1723 refcount_inc(&skb_uarg(skb)->refcnt); 1724 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1725 skb_frag_ref(skb, i); 1726 1727 if (skb_has_frag_list(skb)) 1728 skb_clone_fraglist(skb); 1729 1730 skb_release_data(skb); 1731 } else { 1732 skb_free_head(skb); 1733 } 1734 off = (data + nhead) - skb->head; 1735 1736 skb->head = data; 1737 skb->head_frag = 0; 1738 skb->data += off; 1739 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1740 skb->end = size; 1741 off = nhead; 1742 #else 1743 skb->end = skb->head + size; 1744 #endif 1745 skb->tail += off; 1746 skb_headers_offset_update(skb, nhead); 1747 skb->cloned = 0; 1748 skb->hdr_len = 0; 1749 skb->nohdr = 0; 1750 atomic_set(&skb_shinfo(skb)->dataref, 1); 1751 1752 skb_metadata_clear(skb); 1753 1754 /* It is not generally safe to change skb->truesize. 1755 * For the moment, we really care of rx path, or 1756 * when skb is orphaned (not attached to a socket). 1757 */ 1758 if (!skb->sk || skb->destructor == sock_edemux) 1759 skb->truesize += size - osize; 1760 1761 return 0; 1762 1763 nofrags: 1764 kfree(data); 1765 nodata: 1766 return -ENOMEM; 1767 } 1768 EXPORT_SYMBOL(pskb_expand_head); 1769 1770 /* Make private copy of skb with writable head and some headroom */ 1771 1772 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1773 { 1774 struct sk_buff *skb2; 1775 int delta = headroom - skb_headroom(skb); 1776 1777 if (delta <= 0) 1778 skb2 = pskb_copy(skb, GFP_ATOMIC); 1779 else { 1780 skb2 = skb_clone(skb, GFP_ATOMIC); 1781 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1782 GFP_ATOMIC)) { 1783 kfree_skb(skb2); 1784 skb2 = NULL; 1785 } 1786 } 1787 return skb2; 1788 } 1789 EXPORT_SYMBOL(skb_realloc_headroom); 1790 1791 /** 1792 * skb_expand_head - reallocate header of &sk_buff 1793 * @skb: buffer to reallocate 1794 * @headroom: needed headroom 1795 * 1796 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1797 * if possible; copies skb->sk to new skb as needed 1798 * and frees original skb in case of failures. 1799 * 1800 * It expect increased headroom and generates warning otherwise. 1801 */ 1802 1803 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1804 { 1805 int delta = headroom - skb_headroom(skb); 1806 1807 if (WARN_ONCE(delta <= 0, 1808 "%s is expecting an increase in the headroom", __func__)) 1809 return skb; 1810 1811 /* pskb_expand_head() might crash, if skb is shared */ 1812 if (skb_shared(skb)) { 1813 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1814 1815 if (likely(nskb)) { 1816 if (skb->sk) 1817 skb_set_owner_w(nskb, skb->sk); 1818 consume_skb(skb); 1819 } else { 1820 kfree_skb(skb); 1821 } 1822 skb = nskb; 1823 } 1824 if (skb && 1825 pskb_expand_head(skb, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { 1826 kfree_skb(skb); 1827 skb = NULL; 1828 } 1829 return skb; 1830 } 1831 EXPORT_SYMBOL(skb_expand_head); 1832 1833 /** 1834 * skb_copy_expand - copy and expand sk_buff 1835 * @skb: buffer to copy 1836 * @newheadroom: new free bytes at head 1837 * @newtailroom: new free bytes at tail 1838 * @gfp_mask: allocation priority 1839 * 1840 * Make a copy of both an &sk_buff and its data and while doing so 1841 * allocate additional space. 1842 * 1843 * This is used when the caller wishes to modify the data and needs a 1844 * private copy of the data to alter as well as more space for new fields. 1845 * Returns %NULL on failure or the pointer to the buffer 1846 * on success. The returned buffer has a reference count of 1. 1847 * 1848 * You must pass %GFP_ATOMIC as the allocation priority if this function 1849 * is called from an interrupt. 1850 */ 1851 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1852 int newheadroom, int newtailroom, 1853 gfp_t gfp_mask) 1854 { 1855 /* 1856 * Allocate the copy buffer 1857 */ 1858 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1859 gfp_mask, skb_alloc_rx_flag(skb), 1860 NUMA_NO_NODE); 1861 int oldheadroom = skb_headroom(skb); 1862 int head_copy_len, head_copy_off; 1863 1864 if (!n) 1865 return NULL; 1866 1867 skb_reserve(n, newheadroom); 1868 1869 /* Set the tail pointer and length */ 1870 skb_put(n, skb->len); 1871 1872 head_copy_len = oldheadroom; 1873 head_copy_off = 0; 1874 if (newheadroom <= head_copy_len) 1875 head_copy_len = newheadroom; 1876 else 1877 head_copy_off = newheadroom - head_copy_len; 1878 1879 /* Copy the linear header and data. */ 1880 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1881 skb->len + head_copy_len)); 1882 1883 skb_copy_header(n, skb); 1884 1885 skb_headers_offset_update(n, newheadroom - oldheadroom); 1886 1887 return n; 1888 } 1889 EXPORT_SYMBOL(skb_copy_expand); 1890 1891 /** 1892 * __skb_pad - zero pad the tail of an skb 1893 * @skb: buffer to pad 1894 * @pad: space to pad 1895 * @free_on_error: free buffer on error 1896 * 1897 * Ensure that a buffer is followed by a padding area that is zero 1898 * filled. Used by network drivers which may DMA or transfer data 1899 * beyond the buffer end onto the wire. 1900 * 1901 * May return error in out of memory cases. The skb is freed on error 1902 * if @free_on_error is true. 1903 */ 1904 1905 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1906 { 1907 int err; 1908 int ntail; 1909 1910 /* If the skbuff is non linear tailroom is always zero.. */ 1911 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1912 memset(skb->data+skb->len, 0, pad); 1913 return 0; 1914 } 1915 1916 ntail = skb->data_len + pad - (skb->end - skb->tail); 1917 if (likely(skb_cloned(skb) || ntail > 0)) { 1918 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1919 if (unlikely(err)) 1920 goto free_skb; 1921 } 1922 1923 /* FIXME: The use of this function with non-linear skb's really needs 1924 * to be audited. 1925 */ 1926 err = skb_linearize(skb); 1927 if (unlikely(err)) 1928 goto free_skb; 1929 1930 memset(skb->data + skb->len, 0, pad); 1931 return 0; 1932 1933 free_skb: 1934 if (free_on_error) 1935 kfree_skb(skb); 1936 return err; 1937 } 1938 EXPORT_SYMBOL(__skb_pad); 1939 1940 /** 1941 * pskb_put - add data to the tail of a potentially fragmented buffer 1942 * @skb: start of the buffer to use 1943 * @tail: tail fragment of the buffer to use 1944 * @len: amount of data to add 1945 * 1946 * This function extends the used data area of the potentially 1947 * fragmented buffer. @tail must be the last fragment of @skb -- or 1948 * @skb itself. If this would exceed the total buffer size the kernel 1949 * will panic. A pointer to the first byte of the extra data is 1950 * returned. 1951 */ 1952 1953 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1954 { 1955 if (tail != skb) { 1956 skb->data_len += len; 1957 skb->len += len; 1958 } 1959 return skb_put(tail, len); 1960 } 1961 EXPORT_SYMBOL_GPL(pskb_put); 1962 1963 /** 1964 * skb_put - add data to a buffer 1965 * @skb: buffer to use 1966 * @len: amount of data to add 1967 * 1968 * This function extends the used data area of the buffer. If this would 1969 * exceed the total buffer size the kernel will panic. A pointer to the 1970 * first byte of the extra data is returned. 1971 */ 1972 void *skb_put(struct sk_buff *skb, unsigned int len) 1973 { 1974 void *tmp = skb_tail_pointer(skb); 1975 SKB_LINEAR_ASSERT(skb); 1976 skb->tail += len; 1977 skb->len += len; 1978 if (unlikely(skb->tail > skb->end)) 1979 skb_over_panic(skb, len, __builtin_return_address(0)); 1980 return tmp; 1981 } 1982 EXPORT_SYMBOL(skb_put); 1983 1984 /** 1985 * skb_push - add data to the start of a buffer 1986 * @skb: buffer to use 1987 * @len: amount of data to add 1988 * 1989 * This function extends the used data area of the buffer at the buffer 1990 * start. If this would exceed the total buffer headroom the kernel will 1991 * panic. A pointer to the first byte of the extra data is returned. 1992 */ 1993 void *skb_push(struct sk_buff *skb, unsigned int len) 1994 { 1995 skb->data -= len; 1996 skb->len += len; 1997 if (unlikely(skb->data < skb->head)) 1998 skb_under_panic(skb, len, __builtin_return_address(0)); 1999 return skb->data; 2000 } 2001 EXPORT_SYMBOL(skb_push); 2002 2003 /** 2004 * skb_pull - remove data from the start of a buffer 2005 * @skb: buffer to use 2006 * @len: amount of data to remove 2007 * 2008 * This function removes data from the start of a buffer, returning 2009 * the memory to the headroom. A pointer to the next data in the buffer 2010 * is returned. Once the data has been pulled future pushes will overwrite 2011 * the old data. 2012 */ 2013 void *skb_pull(struct sk_buff *skb, unsigned int len) 2014 { 2015 return skb_pull_inline(skb, len); 2016 } 2017 EXPORT_SYMBOL(skb_pull); 2018 2019 /** 2020 * skb_trim - remove end from a buffer 2021 * @skb: buffer to alter 2022 * @len: new length 2023 * 2024 * Cut the length of a buffer down by removing data from the tail. If 2025 * the buffer is already under the length specified it is not modified. 2026 * The skb must be linear. 2027 */ 2028 void skb_trim(struct sk_buff *skb, unsigned int len) 2029 { 2030 if (skb->len > len) 2031 __skb_trim(skb, len); 2032 } 2033 EXPORT_SYMBOL(skb_trim); 2034 2035 /* Trims skb to length len. It can change skb pointers. 2036 */ 2037 2038 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2039 { 2040 struct sk_buff **fragp; 2041 struct sk_buff *frag; 2042 int offset = skb_headlen(skb); 2043 int nfrags = skb_shinfo(skb)->nr_frags; 2044 int i; 2045 int err; 2046 2047 if (skb_cloned(skb) && 2048 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2049 return err; 2050 2051 i = 0; 2052 if (offset >= len) 2053 goto drop_pages; 2054 2055 for (; i < nfrags; i++) { 2056 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2057 2058 if (end < len) { 2059 offset = end; 2060 continue; 2061 } 2062 2063 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2064 2065 drop_pages: 2066 skb_shinfo(skb)->nr_frags = i; 2067 2068 for (; i < nfrags; i++) 2069 skb_frag_unref(skb, i); 2070 2071 if (skb_has_frag_list(skb)) 2072 skb_drop_fraglist(skb); 2073 goto done; 2074 } 2075 2076 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2077 fragp = &frag->next) { 2078 int end = offset + frag->len; 2079 2080 if (skb_shared(frag)) { 2081 struct sk_buff *nfrag; 2082 2083 nfrag = skb_clone(frag, GFP_ATOMIC); 2084 if (unlikely(!nfrag)) 2085 return -ENOMEM; 2086 2087 nfrag->next = frag->next; 2088 consume_skb(frag); 2089 frag = nfrag; 2090 *fragp = frag; 2091 } 2092 2093 if (end < len) { 2094 offset = end; 2095 continue; 2096 } 2097 2098 if (end > len && 2099 unlikely((err = pskb_trim(frag, len - offset)))) 2100 return err; 2101 2102 if (frag->next) 2103 skb_drop_list(&frag->next); 2104 break; 2105 } 2106 2107 done: 2108 if (len > skb_headlen(skb)) { 2109 skb->data_len -= skb->len - len; 2110 skb->len = len; 2111 } else { 2112 skb->len = len; 2113 skb->data_len = 0; 2114 skb_set_tail_pointer(skb, len); 2115 } 2116 2117 if (!skb->sk || skb->destructor == sock_edemux) 2118 skb_condense(skb); 2119 return 0; 2120 } 2121 EXPORT_SYMBOL(___pskb_trim); 2122 2123 /* Note : use pskb_trim_rcsum() instead of calling this directly 2124 */ 2125 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2126 { 2127 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2128 int delta = skb->len - len; 2129 2130 skb->csum = csum_block_sub(skb->csum, 2131 skb_checksum(skb, len, delta, 0), 2132 len); 2133 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2134 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2135 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2136 2137 if (offset + sizeof(__sum16) > hdlen) 2138 return -EINVAL; 2139 } 2140 return __pskb_trim(skb, len); 2141 } 2142 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2143 2144 /** 2145 * __pskb_pull_tail - advance tail of skb header 2146 * @skb: buffer to reallocate 2147 * @delta: number of bytes to advance tail 2148 * 2149 * The function makes a sense only on a fragmented &sk_buff, 2150 * it expands header moving its tail forward and copying necessary 2151 * data from fragmented part. 2152 * 2153 * &sk_buff MUST have reference count of 1. 2154 * 2155 * Returns %NULL (and &sk_buff does not change) if pull failed 2156 * or value of new tail of skb in the case of success. 2157 * 2158 * All the pointers pointing into skb header may change and must be 2159 * reloaded after call to this function. 2160 */ 2161 2162 /* Moves tail of skb head forward, copying data from fragmented part, 2163 * when it is necessary. 2164 * 1. It may fail due to malloc failure. 2165 * 2. It may change skb pointers. 2166 * 2167 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2168 */ 2169 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2170 { 2171 /* If skb has not enough free space at tail, get new one 2172 * plus 128 bytes for future expansions. If we have enough 2173 * room at tail, reallocate without expansion only if skb is cloned. 2174 */ 2175 int i, k, eat = (skb->tail + delta) - skb->end; 2176 2177 if (eat > 0 || skb_cloned(skb)) { 2178 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2179 GFP_ATOMIC)) 2180 return NULL; 2181 } 2182 2183 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2184 skb_tail_pointer(skb), delta)); 2185 2186 /* Optimization: no fragments, no reasons to preestimate 2187 * size of pulled pages. Superb. 2188 */ 2189 if (!skb_has_frag_list(skb)) 2190 goto pull_pages; 2191 2192 /* Estimate size of pulled pages. */ 2193 eat = delta; 2194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2195 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2196 2197 if (size >= eat) 2198 goto pull_pages; 2199 eat -= size; 2200 } 2201 2202 /* If we need update frag list, we are in troubles. 2203 * Certainly, it is possible to add an offset to skb data, 2204 * but taking into account that pulling is expected to 2205 * be very rare operation, it is worth to fight against 2206 * further bloating skb head and crucify ourselves here instead. 2207 * Pure masohism, indeed. 8)8) 2208 */ 2209 if (eat) { 2210 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2211 struct sk_buff *clone = NULL; 2212 struct sk_buff *insp = NULL; 2213 2214 do { 2215 if (list->len <= eat) { 2216 /* Eaten as whole. */ 2217 eat -= list->len; 2218 list = list->next; 2219 insp = list; 2220 } else { 2221 /* Eaten partially. */ 2222 2223 if (skb_shared(list)) { 2224 /* Sucks! We need to fork list. :-( */ 2225 clone = skb_clone(list, GFP_ATOMIC); 2226 if (!clone) 2227 return NULL; 2228 insp = list->next; 2229 list = clone; 2230 } else { 2231 /* This may be pulled without 2232 * problems. */ 2233 insp = list; 2234 } 2235 if (!pskb_pull(list, eat)) { 2236 kfree_skb(clone); 2237 return NULL; 2238 } 2239 break; 2240 } 2241 } while (eat); 2242 2243 /* Free pulled out fragments. */ 2244 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2245 skb_shinfo(skb)->frag_list = list->next; 2246 kfree_skb(list); 2247 } 2248 /* And insert new clone at head. */ 2249 if (clone) { 2250 clone->next = list; 2251 skb_shinfo(skb)->frag_list = clone; 2252 } 2253 } 2254 /* Success! Now we may commit changes to skb data. */ 2255 2256 pull_pages: 2257 eat = delta; 2258 k = 0; 2259 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2260 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2261 2262 if (size <= eat) { 2263 skb_frag_unref(skb, i); 2264 eat -= size; 2265 } else { 2266 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2267 2268 *frag = skb_shinfo(skb)->frags[i]; 2269 if (eat) { 2270 skb_frag_off_add(frag, eat); 2271 skb_frag_size_sub(frag, eat); 2272 if (!i) 2273 goto end; 2274 eat = 0; 2275 } 2276 k++; 2277 } 2278 } 2279 skb_shinfo(skb)->nr_frags = k; 2280 2281 end: 2282 skb->tail += delta; 2283 skb->data_len -= delta; 2284 2285 if (!skb->data_len) 2286 skb_zcopy_clear(skb, false); 2287 2288 return skb_tail_pointer(skb); 2289 } 2290 EXPORT_SYMBOL(__pskb_pull_tail); 2291 2292 /** 2293 * skb_copy_bits - copy bits from skb to kernel buffer 2294 * @skb: source skb 2295 * @offset: offset in source 2296 * @to: destination buffer 2297 * @len: number of bytes to copy 2298 * 2299 * Copy the specified number of bytes from the source skb to the 2300 * destination buffer. 2301 * 2302 * CAUTION ! : 2303 * If its prototype is ever changed, 2304 * check arch/{*}/net/{*}.S files, 2305 * since it is called from BPF assembly code. 2306 */ 2307 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2308 { 2309 int start = skb_headlen(skb); 2310 struct sk_buff *frag_iter; 2311 int i, copy; 2312 2313 if (offset > (int)skb->len - len) 2314 goto fault; 2315 2316 /* Copy header. */ 2317 if ((copy = start - offset) > 0) { 2318 if (copy > len) 2319 copy = len; 2320 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2321 if ((len -= copy) == 0) 2322 return 0; 2323 offset += copy; 2324 to += copy; 2325 } 2326 2327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2328 int end; 2329 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2330 2331 WARN_ON(start > offset + len); 2332 2333 end = start + skb_frag_size(f); 2334 if ((copy = end - offset) > 0) { 2335 u32 p_off, p_len, copied; 2336 struct page *p; 2337 u8 *vaddr; 2338 2339 if (copy > len) 2340 copy = len; 2341 2342 skb_frag_foreach_page(f, 2343 skb_frag_off(f) + offset - start, 2344 copy, p, p_off, p_len, copied) { 2345 vaddr = kmap_atomic(p); 2346 memcpy(to + copied, vaddr + p_off, p_len); 2347 kunmap_atomic(vaddr); 2348 } 2349 2350 if ((len -= copy) == 0) 2351 return 0; 2352 offset += copy; 2353 to += copy; 2354 } 2355 start = end; 2356 } 2357 2358 skb_walk_frags(skb, frag_iter) { 2359 int end; 2360 2361 WARN_ON(start > offset + len); 2362 2363 end = start + frag_iter->len; 2364 if ((copy = end - offset) > 0) { 2365 if (copy > len) 2366 copy = len; 2367 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2368 goto fault; 2369 if ((len -= copy) == 0) 2370 return 0; 2371 offset += copy; 2372 to += copy; 2373 } 2374 start = end; 2375 } 2376 2377 if (!len) 2378 return 0; 2379 2380 fault: 2381 return -EFAULT; 2382 } 2383 EXPORT_SYMBOL(skb_copy_bits); 2384 2385 /* 2386 * Callback from splice_to_pipe(), if we need to release some pages 2387 * at the end of the spd in case we error'ed out in filling the pipe. 2388 */ 2389 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2390 { 2391 put_page(spd->pages[i]); 2392 } 2393 2394 static struct page *linear_to_page(struct page *page, unsigned int *len, 2395 unsigned int *offset, 2396 struct sock *sk) 2397 { 2398 struct page_frag *pfrag = sk_page_frag(sk); 2399 2400 if (!sk_page_frag_refill(sk, pfrag)) 2401 return NULL; 2402 2403 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2404 2405 memcpy(page_address(pfrag->page) + pfrag->offset, 2406 page_address(page) + *offset, *len); 2407 *offset = pfrag->offset; 2408 pfrag->offset += *len; 2409 2410 return pfrag->page; 2411 } 2412 2413 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2414 struct page *page, 2415 unsigned int offset) 2416 { 2417 return spd->nr_pages && 2418 spd->pages[spd->nr_pages - 1] == page && 2419 (spd->partial[spd->nr_pages - 1].offset + 2420 spd->partial[spd->nr_pages - 1].len == offset); 2421 } 2422 2423 /* 2424 * Fill page/offset/length into spd, if it can hold more pages. 2425 */ 2426 static bool spd_fill_page(struct splice_pipe_desc *spd, 2427 struct pipe_inode_info *pipe, struct page *page, 2428 unsigned int *len, unsigned int offset, 2429 bool linear, 2430 struct sock *sk) 2431 { 2432 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2433 return true; 2434 2435 if (linear) { 2436 page = linear_to_page(page, len, &offset, sk); 2437 if (!page) 2438 return true; 2439 } 2440 if (spd_can_coalesce(spd, page, offset)) { 2441 spd->partial[spd->nr_pages - 1].len += *len; 2442 return false; 2443 } 2444 get_page(page); 2445 spd->pages[spd->nr_pages] = page; 2446 spd->partial[spd->nr_pages].len = *len; 2447 spd->partial[spd->nr_pages].offset = offset; 2448 spd->nr_pages++; 2449 2450 return false; 2451 } 2452 2453 static bool __splice_segment(struct page *page, unsigned int poff, 2454 unsigned int plen, unsigned int *off, 2455 unsigned int *len, 2456 struct splice_pipe_desc *spd, bool linear, 2457 struct sock *sk, 2458 struct pipe_inode_info *pipe) 2459 { 2460 if (!*len) 2461 return true; 2462 2463 /* skip this segment if already processed */ 2464 if (*off >= plen) { 2465 *off -= plen; 2466 return false; 2467 } 2468 2469 /* ignore any bits we already processed */ 2470 poff += *off; 2471 plen -= *off; 2472 *off = 0; 2473 2474 do { 2475 unsigned int flen = min(*len, plen); 2476 2477 if (spd_fill_page(spd, pipe, page, &flen, poff, 2478 linear, sk)) 2479 return true; 2480 poff += flen; 2481 plen -= flen; 2482 *len -= flen; 2483 } while (*len && plen); 2484 2485 return false; 2486 } 2487 2488 /* 2489 * Map linear and fragment data from the skb to spd. It reports true if the 2490 * pipe is full or if we already spliced the requested length. 2491 */ 2492 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2493 unsigned int *offset, unsigned int *len, 2494 struct splice_pipe_desc *spd, struct sock *sk) 2495 { 2496 int seg; 2497 struct sk_buff *iter; 2498 2499 /* map the linear part : 2500 * If skb->head_frag is set, this 'linear' part is backed by a 2501 * fragment, and if the head is not shared with any clones then 2502 * we can avoid a copy since we own the head portion of this page. 2503 */ 2504 if (__splice_segment(virt_to_page(skb->data), 2505 (unsigned long) skb->data & (PAGE_SIZE - 1), 2506 skb_headlen(skb), 2507 offset, len, spd, 2508 skb_head_is_locked(skb), 2509 sk, pipe)) 2510 return true; 2511 2512 /* 2513 * then map the fragments 2514 */ 2515 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2516 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2517 2518 if (__splice_segment(skb_frag_page(f), 2519 skb_frag_off(f), skb_frag_size(f), 2520 offset, len, spd, false, sk, pipe)) 2521 return true; 2522 } 2523 2524 skb_walk_frags(skb, iter) { 2525 if (*offset >= iter->len) { 2526 *offset -= iter->len; 2527 continue; 2528 } 2529 /* __skb_splice_bits() only fails if the output has no room 2530 * left, so no point in going over the frag_list for the error 2531 * case. 2532 */ 2533 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2534 return true; 2535 } 2536 2537 return false; 2538 } 2539 2540 /* 2541 * Map data from the skb to a pipe. Should handle both the linear part, 2542 * the fragments, and the frag list. 2543 */ 2544 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2545 struct pipe_inode_info *pipe, unsigned int tlen, 2546 unsigned int flags) 2547 { 2548 struct partial_page partial[MAX_SKB_FRAGS]; 2549 struct page *pages[MAX_SKB_FRAGS]; 2550 struct splice_pipe_desc spd = { 2551 .pages = pages, 2552 .partial = partial, 2553 .nr_pages_max = MAX_SKB_FRAGS, 2554 .ops = &nosteal_pipe_buf_ops, 2555 .spd_release = sock_spd_release, 2556 }; 2557 int ret = 0; 2558 2559 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2560 2561 if (spd.nr_pages) 2562 ret = splice_to_pipe(pipe, &spd); 2563 2564 return ret; 2565 } 2566 EXPORT_SYMBOL_GPL(skb_splice_bits); 2567 2568 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2569 struct kvec *vec, size_t num, size_t size) 2570 { 2571 struct socket *sock = sk->sk_socket; 2572 2573 if (!sock) 2574 return -EINVAL; 2575 return kernel_sendmsg(sock, msg, vec, num, size); 2576 } 2577 2578 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2579 size_t size, int flags) 2580 { 2581 struct socket *sock = sk->sk_socket; 2582 2583 if (!sock) 2584 return -EINVAL; 2585 return kernel_sendpage(sock, page, offset, size, flags); 2586 } 2587 2588 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2589 struct kvec *vec, size_t num, size_t size); 2590 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2591 size_t size, int flags); 2592 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2593 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2594 { 2595 unsigned int orig_len = len; 2596 struct sk_buff *head = skb; 2597 unsigned short fragidx; 2598 int slen, ret; 2599 2600 do_frag_list: 2601 2602 /* Deal with head data */ 2603 while (offset < skb_headlen(skb) && len) { 2604 struct kvec kv; 2605 struct msghdr msg; 2606 2607 slen = min_t(int, len, skb_headlen(skb) - offset); 2608 kv.iov_base = skb->data + offset; 2609 kv.iov_len = slen; 2610 memset(&msg, 0, sizeof(msg)); 2611 msg.msg_flags = MSG_DONTWAIT; 2612 2613 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2614 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2615 if (ret <= 0) 2616 goto error; 2617 2618 offset += ret; 2619 len -= ret; 2620 } 2621 2622 /* All the data was skb head? */ 2623 if (!len) 2624 goto out; 2625 2626 /* Make offset relative to start of frags */ 2627 offset -= skb_headlen(skb); 2628 2629 /* Find where we are in frag list */ 2630 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2631 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2632 2633 if (offset < skb_frag_size(frag)) 2634 break; 2635 2636 offset -= skb_frag_size(frag); 2637 } 2638 2639 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2640 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2641 2642 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2643 2644 while (slen) { 2645 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2646 sendpage_unlocked, sk, 2647 skb_frag_page(frag), 2648 skb_frag_off(frag) + offset, 2649 slen, MSG_DONTWAIT); 2650 if (ret <= 0) 2651 goto error; 2652 2653 len -= ret; 2654 offset += ret; 2655 slen -= ret; 2656 } 2657 2658 offset = 0; 2659 } 2660 2661 if (len) { 2662 /* Process any frag lists */ 2663 2664 if (skb == head) { 2665 if (skb_has_frag_list(skb)) { 2666 skb = skb_shinfo(skb)->frag_list; 2667 goto do_frag_list; 2668 } 2669 } else if (skb->next) { 2670 skb = skb->next; 2671 goto do_frag_list; 2672 } 2673 } 2674 2675 out: 2676 return orig_len - len; 2677 2678 error: 2679 return orig_len == len ? ret : orig_len - len; 2680 } 2681 2682 /* Send skb data on a socket. Socket must be locked. */ 2683 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2684 int len) 2685 { 2686 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2687 kernel_sendpage_locked); 2688 } 2689 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2690 2691 /* Send skb data on a socket. Socket must be unlocked. */ 2692 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2693 { 2694 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2695 sendpage_unlocked); 2696 } 2697 2698 /** 2699 * skb_store_bits - store bits from kernel buffer to skb 2700 * @skb: destination buffer 2701 * @offset: offset in destination 2702 * @from: source buffer 2703 * @len: number of bytes to copy 2704 * 2705 * Copy the specified number of bytes from the source buffer to the 2706 * destination skb. This function handles all the messy bits of 2707 * traversing fragment lists and such. 2708 */ 2709 2710 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2711 { 2712 int start = skb_headlen(skb); 2713 struct sk_buff *frag_iter; 2714 int i, copy; 2715 2716 if (offset > (int)skb->len - len) 2717 goto fault; 2718 2719 if ((copy = start - offset) > 0) { 2720 if (copy > len) 2721 copy = len; 2722 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2723 if ((len -= copy) == 0) 2724 return 0; 2725 offset += copy; 2726 from += copy; 2727 } 2728 2729 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2730 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2731 int end; 2732 2733 WARN_ON(start > offset + len); 2734 2735 end = start + skb_frag_size(frag); 2736 if ((copy = end - offset) > 0) { 2737 u32 p_off, p_len, copied; 2738 struct page *p; 2739 u8 *vaddr; 2740 2741 if (copy > len) 2742 copy = len; 2743 2744 skb_frag_foreach_page(frag, 2745 skb_frag_off(frag) + offset - start, 2746 copy, p, p_off, p_len, copied) { 2747 vaddr = kmap_atomic(p); 2748 memcpy(vaddr + p_off, from + copied, p_len); 2749 kunmap_atomic(vaddr); 2750 } 2751 2752 if ((len -= copy) == 0) 2753 return 0; 2754 offset += copy; 2755 from += copy; 2756 } 2757 start = end; 2758 } 2759 2760 skb_walk_frags(skb, frag_iter) { 2761 int end; 2762 2763 WARN_ON(start > offset + len); 2764 2765 end = start + frag_iter->len; 2766 if ((copy = end - offset) > 0) { 2767 if (copy > len) 2768 copy = len; 2769 if (skb_store_bits(frag_iter, offset - start, 2770 from, copy)) 2771 goto fault; 2772 if ((len -= copy) == 0) 2773 return 0; 2774 offset += copy; 2775 from += copy; 2776 } 2777 start = end; 2778 } 2779 if (!len) 2780 return 0; 2781 2782 fault: 2783 return -EFAULT; 2784 } 2785 EXPORT_SYMBOL(skb_store_bits); 2786 2787 /* Checksum skb data. */ 2788 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2789 __wsum csum, const struct skb_checksum_ops *ops) 2790 { 2791 int start = skb_headlen(skb); 2792 int i, copy = start - offset; 2793 struct sk_buff *frag_iter; 2794 int pos = 0; 2795 2796 /* Checksum header. */ 2797 if (copy > 0) { 2798 if (copy > len) 2799 copy = len; 2800 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2801 skb->data + offset, copy, csum); 2802 if ((len -= copy) == 0) 2803 return csum; 2804 offset += copy; 2805 pos = copy; 2806 } 2807 2808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2809 int end; 2810 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2811 2812 WARN_ON(start > offset + len); 2813 2814 end = start + skb_frag_size(frag); 2815 if ((copy = end - offset) > 0) { 2816 u32 p_off, p_len, copied; 2817 struct page *p; 2818 __wsum csum2; 2819 u8 *vaddr; 2820 2821 if (copy > len) 2822 copy = len; 2823 2824 skb_frag_foreach_page(frag, 2825 skb_frag_off(frag) + offset - start, 2826 copy, p, p_off, p_len, copied) { 2827 vaddr = kmap_atomic(p); 2828 csum2 = INDIRECT_CALL_1(ops->update, 2829 csum_partial_ext, 2830 vaddr + p_off, p_len, 0); 2831 kunmap_atomic(vaddr); 2832 csum = INDIRECT_CALL_1(ops->combine, 2833 csum_block_add_ext, csum, 2834 csum2, pos, p_len); 2835 pos += p_len; 2836 } 2837 2838 if (!(len -= copy)) 2839 return csum; 2840 offset += copy; 2841 } 2842 start = end; 2843 } 2844 2845 skb_walk_frags(skb, frag_iter) { 2846 int end; 2847 2848 WARN_ON(start > offset + len); 2849 2850 end = start + frag_iter->len; 2851 if ((copy = end - offset) > 0) { 2852 __wsum csum2; 2853 if (copy > len) 2854 copy = len; 2855 csum2 = __skb_checksum(frag_iter, offset - start, 2856 copy, 0, ops); 2857 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2858 csum, csum2, pos, copy); 2859 if ((len -= copy) == 0) 2860 return csum; 2861 offset += copy; 2862 pos += copy; 2863 } 2864 start = end; 2865 } 2866 BUG_ON(len); 2867 2868 return csum; 2869 } 2870 EXPORT_SYMBOL(__skb_checksum); 2871 2872 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2873 int len, __wsum csum) 2874 { 2875 const struct skb_checksum_ops ops = { 2876 .update = csum_partial_ext, 2877 .combine = csum_block_add_ext, 2878 }; 2879 2880 return __skb_checksum(skb, offset, len, csum, &ops); 2881 } 2882 EXPORT_SYMBOL(skb_checksum); 2883 2884 /* Both of above in one bottle. */ 2885 2886 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2887 u8 *to, int len) 2888 { 2889 int start = skb_headlen(skb); 2890 int i, copy = start - offset; 2891 struct sk_buff *frag_iter; 2892 int pos = 0; 2893 __wsum csum = 0; 2894 2895 /* Copy header. */ 2896 if (copy > 0) { 2897 if (copy > len) 2898 copy = len; 2899 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2900 copy); 2901 if ((len -= copy) == 0) 2902 return csum; 2903 offset += copy; 2904 to += copy; 2905 pos = copy; 2906 } 2907 2908 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2909 int end; 2910 2911 WARN_ON(start > offset + len); 2912 2913 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2914 if ((copy = end - offset) > 0) { 2915 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2916 u32 p_off, p_len, copied; 2917 struct page *p; 2918 __wsum csum2; 2919 u8 *vaddr; 2920 2921 if (copy > len) 2922 copy = len; 2923 2924 skb_frag_foreach_page(frag, 2925 skb_frag_off(frag) + offset - start, 2926 copy, p, p_off, p_len, copied) { 2927 vaddr = kmap_atomic(p); 2928 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2929 to + copied, 2930 p_len); 2931 kunmap_atomic(vaddr); 2932 csum = csum_block_add(csum, csum2, pos); 2933 pos += p_len; 2934 } 2935 2936 if (!(len -= copy)) 2937 return csum; 2938 offset += copy; 2939 to += copy; 2940 } 2941 start = end; 2942 } 2943 2944 skb_walk_frags(skb, frag_iter) { 2945 __wsum csum2; 2946 int end; 2947 2948 WARN_ON(start > offset + len); 2949 2950 end = start + frag_iter->len; 2951 if ((copy = end - offset) > 0) { 2952 if (copy > len) 2953 copy = len; 2954 csum2 = skb_copy_and_csum_bits(frag_iter, 2955 offset - start, 2956 to, copy); 2957 csum = csum_block_add(csum, csum2, pos); 2958 if ((len -= copy) == 0) 2959 return csum; 2960 offset += copy; 2961 to += copy; 2962 pos += copy; 2963 } 2964 start = end; 2965 } 2966 BUG_ON(len); 2967 return csum; 2968 } 2969 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2970 2971 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2972 { 2973 __sum16 sum; 2974 2975 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2976 /* See comments in __skb_checksum_complete(). */ 2977 if (likely(!sum)) { 2978 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2979 !skb->csum_complete_sw) 2980 netdev_rx_csum_fault(skb->dev, skb); 2981 } 2982 if (!skb_shared(skb)) 2983 skb->csum_valid = !sum; 2984 return sum; 2985 } 2986 EXPORT_SYMBOL(__skb_checksum_complete_head); 2987 2988 /* This function assumes skb->csum already holds pseudo header's checksum, 2989 * which has been changed from the hardware checksum, for example, by 2990 * __skb_checksum_validate_complete(). And, the original skb->csum must 2991 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2992 * 2993 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2994 * zero. The new checksum is stored back into skb->csum unless the skb is 2995 * shared. 2996 */ 2997 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2998 { 2999 __wsum csum; 3000 __sum16 sum; 3001 3002 csum = skb_checksum(skb, 0, skb->len, 0); 3003 3004 sum = csum_fold(csum_add(skb->csum, csum)); 3005 /* This check is inverted, because we already knew the hardware 3006 * checksum is invalid before calling this function. So, if the 3007 * re-computed checksum is valid instead, then we have a mismatch 3008 * between the original skb->csum and skb_checksum(). This means either 3009 * the original hardware checksum is incorrect or we screw up skb->csum 3010 * when moving skb->data around. 3011 */ 3012 if (likely(!sum)) { 3013 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3014 !skb->csum_complete_sw) 3015 netdev_rx_csum_fault(skb->dev, skb); 3016 } 3017 3018 if (!skb_shared(skb)) { 3019 /* Save full packet checksum */ 3020 skb->csum = csum; 3021 skb->ip_summed = CHECKSUM_COMPLETE; 3022 skb->csum_complete_sw = 1; 3023 skb->csum_valid = !sum; 3024 } 3025 3026 return sum; 3027 } 3028 EXPORT_SYMBOL(__skb_checksum_complete); 3029 3030 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3031 { 3032 net_warn_ratelimited( 3033 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3034 __func__); 3035 return 0; 3036 } 3037 3038 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3039 int offset, int len) 3040 { 3041 net_warn_ratelimited( 3042 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3043 __func__); 3044 return 0; 3045 } 3046 3047 static const struct skb_checksum_ops default_crc32c_ops = { 3048 .update = warn_crc32c_csum_update, 3049 .combine = warn_crc32c_csum_combine, 3050 }; 3051 3052 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3053 &default_crc32c_ops; 3054 EXPORT_SYMBOL(crc32c_csum_stub); 3055 3056 /** 3057 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3058 * @from: source buffer 3059 * 3060 * Calculates the amount of linear headroom needed in the 'to' skb passed 3061 * into skb_zerocopy(). 3062 */ 3063 unsigned int 3064 skb_zerocopy_headlen(const struct sk_buff *from) 3065 { 3066 unsigned int hlen = 0; 3067 3068 if (!from->head_frag || 3069 skb_headlen(from) < L1_CACHE_BYTES || 3070 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3071 hlen = skb_headlen(from); 3072 if (!hlen) 3073 hlen = from->len; 3074 } 3075 3076 if (skb_has_frag_list(from)) 3077 hlen = from->len; 3078 3079 return hlen; 3080 } 3081 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3082 3083 /** 3084 * skb_zerocopy - Zero copy skb to skb 3085 * @to: destination buffer 3086 * @from: source buffer 3087 * @len: number of bytes to copy from source buffer 3088 * @hlen: size of linear headroom in destination buffer 3089 * 3090 * Copies up to `len` bytes from `from` to `to` by creating references 3091 * to the frags in the source buffer. 3092 * 3093 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3094 * headroom in the `to` buffer. 3095 * 3096 * Return value: 3097 * 0: everything is OK 3098 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3099 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3100 */ 3101 int 3102 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3103 { 3104 int i, j = 0; 3105 int plen = 0; /* length of skb->head fragment */ 3106 int ret; 3107 struct page *page; 3108 unsigned int offset; 3109 3110 BUG_ON(!from->head_frag && !hlen); 3111 3112 /* dont bother with small payloads */ 3113 if (len <= skb_tailroom(to)) 3114 return skb_copy_bits(from, 0, skb_put(to, len), len); 3115 3116 if (hlen) { 3117 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3118 if (unlikely(ret)) 3119 return ret; 3120 len -= hlen; 3121 } else { 3122 plen = min_t(int, skb_headlen(from), len); 3123 if (plen) { 3124 page = virt_to_head_page(from->head); 3125 offset = from->data - (unsigned char *)page_address(page); 3126 __skb_fill_page_desc(to, 0, page, offset, plen); 3127 get_page(page); 3128 j = 1; 3129 len -= plen; 3130 } 3131 } 3132 3133 to->truesize += len + plen; 3134 to->len += len + plen; 3135 to->data_len += len + plen; 3136 3137 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3138 skb_tx_error(from); 3139 return -ENOMEM; 3140 } 3141 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3142 3143 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3144 int size; 3145 3146 if (!len) 3147 break; 3148 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3149 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3150 len); 3151 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3152 len -= size; 3153 skb_frag_ref(to, j); 3154 j++; 3155 } 3156 skb_shinfo(to)->nr_frags = j; 3157 3158 return 0; 3159 } 3160 EXPORT_SYMBOL_GPL(skb_zerocopy); 3161 3162 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3163 { 3164 __wsum csum; 3165 long csstart; 3166 3167 if (skb->ip_summed == CHECKSUM_PARTIAL) 3168 csstart = skb_checksum_start_offset(skb); 3169 else 3170 csstart = skb_headlen(skb); 3171 3172 BUG_ON(csstart > skb_headlen(skb)); 3173 3174 skb_copy_from_linear_data(skb, to, csstart); 3175 3176 csum = 0; 3177 if (csstart != skb->len) 3178 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3179 skb->len - csstart); 3180 3181 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3182 long csstuff = csstart + skb->csum_offset; 3183 3184 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3185 } 3186 } 3187 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3188 3189 /** 3190 * skb_dequeue - remove from the head of the queue 3191 * @list: list to dequeue from 3192 * 3193 * Remove the head of the list. The list lock is taken so the function 3194 * may be used safely with other locking list functions. The head item is 3195 * returned or %NULL if the list is empty. 3196 */ 3197 3198 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3199 { 3200 unsigned long flags; 3201 struct sk_buff *result; 3202 3203 spin_lock_irqsave(&list->lock, flags); 3204 result = __skb_dequeue(list); 3205 spin_unlock_irqrestore(&list->lock, flags); 3206 return result; 3207 } 3208 EXPORT_SYMBOL(skb_dequeue); 3209 3210 /** 3211 * skb_dequeue_tail - remove from the tail of the queue 3212 * @list: list to dequeue from 3213 * 3214 * Remove the tail of the list. The list lock is taken so the function 3215 * may be used safely with other locking list functions. The tail item is 3216 * returned or %NULL if the list is empty. 3217 */ 3218 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3219 { 3220 unsigned long flags; 3221 struct sk_buff *result; 3222 3223 spin_lock_irqsave(&list->lock, flags); 3224 result = __skb_dequeue_tail(list); 3225 spin_unlock_irqrestore(&list->lock, flags); 3226 return result; 3227 } 3228 EXPORT_SYMBOL(skb_dequeue_tail); 3229 3230 /** 3231 * skb_queue_purge - empty a list 3232 * @list: list to empty 3233 * 3234 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3235 * the list and one reference dropped. This function takes the list 3236 * lock and is atomic with respect to other list locking functions. 3237 */ 3238 void skb_queue_purge(struct sk_buff_head *list) 3239 { 3240 struct sk_buff *skb; 3241 while ((skb = skb_dequeue(list)) != NULL) 3242 kfree_skb(skb); 3243 } 3244 EXPORT_SYMBOL(skb_queue_purge); 3245 3246 /** 3247 * skb_rbtree_purge - empty a skb rbtree 3248 * @root: root of the rbtree to empty 3249 * Return value: the sum of truesizes of all purged skbs. 3250 * 3251 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3252 * the list and one reference dropped. This function does not take 3253 * any lock. Synchronization should be handled by the caller (e.g., TCP 3254 * out-of-order queue is protected by the socket lock). 3255 */ 3256 unsigned int skb_rbtree_purge(struct rb_root *root) 3257 { 3258 struct rb_node *p = rb_first(root); 3259 unsigned int sum = 0; 3260 3261 while (p) { 3262 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3263 3264 p = rb_next(p); 3265 rb_erase(&skb->rbnode, root); 3266 sum += skb->truesize; 3267 kfree_skb(skb); 3268 } 3269 return sum; 3270 } 3271 3272 /** 3273 * skb_queue_head - queue a buffer at the list head 3274 * @list: list to use 3275 * @newsk: buffer to queue 3276 * 3277 * Queue a buffer at the start of the list. This function takes the 3278 * list lock and can be used safely with other locking &sk_buff functions 3279 * safely. 3280 * 3281 * A buffer cannot be placed on two lists at the same time. 3282 */ 3283 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3284 { 3285 unsigned long flags; 3286 3287 spin_lock_irqsave(&list->lock, flags); 3288 __skb_queue_head(list, newsk); 3289 spin_unlock_irqrestore(&list->lock, flags); 3290 } 3291 EXPORT_SYMBOL(skb_queue_head); 3292 3293 /** 3294 * skb_queue_tail - queue a buffer at the list tail 3295 * @list: list to use 3296 * @newsk: buffer to queue 3297 * 3298 * Queue a buffer at the tail of the list. This function takes the 3299 * list lock and can be used safely with other locking &sk_buff functions 3300 * safely. 3301 * 3302 * A buffer cannot be placed on two lists at the same time. 3303 */ 3304 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3305 { 3306 unsigned long flags; 3307 3308 spin_lock_irqsave(&list->lock, flags); 3309 __skb_queue_tail(list, newsk); 3310 spin_unlock_irqrestore(&list->lock, flags); 3311 } 3312 EXPORT_SYMBOL(skb_queue_tail); 3313 3314 /** 3315 * skb_unlink - remove a buffer from a list 3316 * @skb: buffer to remove 3317 * @list: list to use 3318 * 3319 * Remove a packet from a list. The list locks are taken and this 3320 * function is atomic with respect to other list locked calls 3321 * 3322 * You must know what list the SKB is on. 3323 */ 3324 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3325 { 3326 unsigned long flags; 3327 3328 spin_lock_irqsave(&list->lock, flags); 3329 __skb_unlink(skb, list); 3330 spin_unlock_irqrestore(&list->lock, flags); 3331 } 3332 EXPORT_SYMBOL(skb_unlink); 3333 3334 /** 3335 * skb_append - append a buffer 3336 * @old: buffer to insert after 3337 * @newsk: buffer to insert 3338 * @list: list to use 3339 * 3340 * Place a packet after a given packet in a list. The list locks are taken 3341 * and this function is atomic with respect to other list locked calls. 3342 * A buffer cannot be placed on two lists at the same time. 3343 */ 3344 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3345 { 3346 unsigned long flags; 3347 3348 spin_lock_irqsave(&list->lock, flags); 3349 __skb_queue_after(list, old, newsk); 3350 spin_unlock_irqrestore(&list->lock, flags); 3351 } 3352 EXPORT_SYMBOL(skb_append); 3353 3354 static inline void skb_split_inside_header(struct sk_buff *skb, 3355 struct sk_buff* skb1, 3356 const u32 len, const int pos) 3357 { 3358 int i; 3359 3360 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3361 pos - len); 3362 /* And move data appendix as is. */ 3363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3364 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3365 3366 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3367 skb_shinfo(skb)->nr_frags = 0; 3368 skb1->data_len = skb->data_len; 3369 skb1->len += skb1->data_len; 3370 skb->data_len = 0; 3371 skb->len = len; 3372 skb_set_tail_pointer(skb, len); 3373 } 3374 3375 static inline void skb_split_no_header(struct sk_buff *skb, 3376 struct sk_buff* skb1, 3377 const u32 len, int pos) 3378 { 3379 int i, k = 0; 3380 const int nfrags = skb_shinfo(skb)->nr_frags; 3381 3382 skb_shinfo(skb)->nr_frags = 0; 3383 skb1->len = skb1->data_len = skb->len - len; 3384 skb->len = len; 3385 skb->data_len = len - pos; 3386 3387 for (i = 0; i < nfrags; i++) { 3388 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3389 3390 if (pos + size > len) { 3391 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3392 3393 if (pos < len) { 3394 /* Split frag. 3395 * We have two variants in this case: 3396 * 1. Move all the frag to the second 3397 * part, if it is possible. F.e. 3398 * this approach is mandatory for TUX, 3399 * where splitting is expensive. 3400 * 2. Split is accurately. We make this. 3401 */ 3402 skb_frag_ref(skb, i); 3403 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3404 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3405 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3406 skb_shinfo(skb)->nr_frags++; 3407 } 3408 k++; 3409 } else 3410 skb_shinfo(skb)->nr_frags++; 3411 pos += size; 3412 } 3413 skb_shinfo(skb1)->nr_frags = k; 3414 } 3415 3416 /** 3417 * skb_split - Split fragmented skb to two parts at length len. 3418 * @skb: the buffer to split 3419 * @skb1: the buffer to receive the second part 3420 * @len: new length for skb 3421 */ 3422 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3423 { 3424 int pos = skb_headlen(skb); 3425 3426 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3427 skb_zerocopy_clone(skb1, skb, 0); 3428 if (len < pos) /* Split line is inside header. */ 3429 skb_split_inside_header(skb, skb1, len, pos); 3430 else /* Second chunk has no header, nothing to copy. */ 3431 skb_split_no_header(skb, skb1, len, pos); 3432 } 3433 EXPORT_SYMBOL(skb_split); 3434 3435 /* Shifting from/to a cloned skb is a no-go. 3436 * 3437 * Caller cannot keep skb_shinfo related pointers past calling here! 3438 */ 3439 static int skb_prepare_for_shift(struct sk_buff *skb) 3440 { 3441 int ret = 0; 3442 3443 if (skb_cloned(skb)) { 3444 /* Save and restore truesize: pskb_expand_head() may reallocate 3445 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3446 * cannot change truesize at this point. 3447 */ 3448 unsigned int save_truesize = skb->truesize; 3449 3450 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3451 skb->truesize = save_truesize; 3452 } 3453 return ret; 3454 } 3455 3456 /** 3457 * skb_shift - Shifts paged data partially from skb to another 3458 * @tgt: buffer into which tail data gets added 3459 * @skb: buffer from which the paged data comes from 3460 * @shiftlen: shift up to this many bytes 3461 * 3462 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3463 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3464 * It's up to caller to free skb if everything was shifted. 3465 * 3466 * If @tgt runs out of frags, the whole operation is aborted. 3467 * 3468 * Skb cannot include anything else but paged data while tgt is allowed 3469 * to have non-paged data as well. 3470 * 3471 * TODO: full sized shift could be optimized but that would need 3472 * specialized skb free'er to handle frags without up-to-date nr_frags. 3473 */ 3474 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3475 { 3476 int from, to, merge, todo; 3477 skb_frag_t *fragfrom, *fragto; 3478 3479 BUG_ON(shiftlen > skb->len); 3480 3481 if (skb_headlen(skb)) 3482 return 0; 3483 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3484 return 0; 3485 3486 todo = shiftlen; 3487 from = 0; 3488 to = skb_shinfo(tgt)->nr_frags; 3489 fragfrom = &skb_shinfo(skb)->frags[from]; 3490 3491 /* Actual merge is delayed until the point when we know we can 3492 * commit all, so that we don't have to undo partial changes 3493 */ 3494 if (!to || 3495 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3496 skb_frag_off(fragfrom))) { 3497 merge = -1; 3498 } else { 3499 merge = to - 1; 3500 3501 todo -= skb_frag_size(fragfrom); 3502 if (todo < 0) { 3503 if (skb_prepare_for_shift(skb) || 3504 skb_prepare_for_shift(tgt)) 3505 return 0; 3506 3507 /* All previous frag pointers might be stale! */ 3508 fragfrom = &skb_shinfo(skb)->frags[from]; 3509 fragto = &skb_shinfo(tgt)->frags[merge]; 3510 3511 skb_frag_size_add(fragto, shiftlen); 3512 skb_frag_size_sub(fragfrom, shiftlen); 3513 skb_frag_off_add(fragfrom, shiftlen); 3514 3515 goto onlymerged; 3516 } 3517 3518 from++; 3519 } 3520 3521 /* Skip full, not-fitting skb to avoid expensive operations */ 3522 if ((shiftlen == skb->len) && 3523 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3524 return 0; 3525 3526 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3527 return 0; 3528 3529 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3530 if (to == MAX_SKB_FRAGS) 3531 return 0; 3532 3533 fragfrom = &skb_shinfo(skb)->frags[from]; 3534 fragto = &skb_shinfo(tgt)->frags[to]; 3535 3536 if (todo >= skb_frag_size(fragfrom)) { 3537 *fragto = *fragfrom; 3538 todo -= skb_frag_size(fragfrom); 3539 from++; 3540 to++; 3541 3542 } else { 3543 __skb_frag_ref(fragfrom); 3544 skb_frag_page_copy(fragto, fragfrom); 3545 skb_frag_off_copy(fragto, fragfrom); 3546 skb_frag_size_set(fragto, todo); 3547 3548 skb_frag_off_add(fragfrom, todo); 3549 skb_frag_size_sub(fragfrom, todo); 3550 todo = 0; 3551 3552 to++; 3553 break; 3554 } 3555 } 3556 3557 /* Ready to "commit" this state change to tgt */ 3558 skb_shinfo(tgt)->nr_frags = to; 3559 3560 if (merge >= 0) { 3561 fragfrom = &skb_shinfo(skb)->frags[0]; 3562 fragto = &skb_shinfo(tgt)->frags[merge]; 3563 3564 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3565 __skb_frag_unref(fragfrom, skb->pp_recycle); 3566 } 3567 3568 /* Reposition in the original skb */ 3569 to = 0; 3570 while (from < skb_shinfo(skb)->nr_frags) 3571 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3572 skb_shinfo(skb)->nr_frags = to; 3573 3574 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3575 3576 onlymerged: 3577 /* Most likely the tgt won't ever need its checksum anymore, skb on 3578 * the other hand might need it if it needs to be resent 3579 */ 3580 tgt->ip_summed = CHECKSUM_PARTIAL; 3581 skb->ip_summed = CHECKSUM_PARTIAL; 3582 3583 /* Yak, is it really working this way? Some helper please? */ 3584 skb->len -= shiftlen; 3585 skb->data_len -= shiftlen; 3586 skb->truesize -= shiftlen; 3587 tgt->len += shiftlen; 3588 tgt->data_len += shiftlen; 3589 tgt->truesize += shiftlen; 3590 3591 return shiftlen; 3592 } 3593 3594 /** 3595 * skb_prepare_seq_read - Prepare a sequential read of skb data 3596 * @skb: the buffer to read 3597 * @from: lower offset of data to be read 3598 * @to: upper offset of data to be read 3599 * @st: state variable 3600 * 3601 * Initializes the specified state variable. Must be called before 3602 * invoking skb_seq_read() for the first time. 3603 */ 3604 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3605 unsigned int to, struct skb_seq_state *st) 3606 { 3607 st->lower_offset = from; 3608 st->upper_offset = to; 3609 st->root_skb = st->cur_skb = skb; 3610 st->frag_idx = st->stepped_offset = 0; 3611 st->frag_data = NULL; 3612 st->frag_off = 0; 3613 } 3614 EXPORT_SYMBOL(skb_prepare_seq_read); 3615 3616 /** 3617 * skb_seq_read - Sequentially read skb data 3618 * @consumed: number of bytes consumed by the caller so far 3619 * @data: destination pointer for data to be returned 3620 * @st: state variable 3621 * 3622 * Reads a block of skb data at @consumed relative to the 3623 * lower offset specified to skb_prepare_seq_read(). Assigns 3624 * the head of the data block to @data and returns the length 3625 * of the block or 0 if the end of the skb data or the upper 3626 * offset has been reached. 3627 * 3628 * The caller is not required to consume all of the data 3629 * returned, i.e. @consumed is typically set to the number 3630 * of bytes already consumed and the next call to 3631 * skb_seq_read() will return the remaining part of the block. 3632 * 3633 * Note 1: The size of each block of data returned can be arbitrary, 3634 * this limitation is the cost for zerocopy sequential 3635 * reads of potentially non linear data. 3636 * 3637 * Note 2: Fragment lists within fragments are not implemented 3638 * at the moment, state->root_skb could be replaced with 3639 * a stack for this purpose. 3640 */ 3641 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3642 struct skb_seq_state *st) 3643 { 3644 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3645 skb_frag_t *frag; 3646 3647 if (unlikely(abs_offset >= st->upper_offset)) { 3648 if (st->frag_data) { 3649 kunmap_atomic(st->frag_data); 3650 st->frag_data = NULL; 3651 } 3652 return 0; 3653 } 3654 3655 next_skb: 3656 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3657 3658 if (abs_offset < block_limit && !st->frag_data) { 3659 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3660 return block_limit - abs_offset; 3661 } 3662 3663 if (st->frag_idx == 0 && !st->frag_data) 3664 st->stepped_offset += skb_headlen(st->cur_skb); 3665 3666 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3667 unsigned int pg_idx, pg_off, pg_sz; 3668 3669 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3670 3671 pg_idx = 0; 3672 pg_off = skb_frag_off(frag); 3673 pg_sz = skb_frag_size(frag); 3674 3675 if (skb_frag_must_loop(skb_frag_page(frag))) { 3676 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3677 pg_off = offset_in_page(pg_off + st->frag_off); 3678 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3679 PAGE_SIZE - pg_off); 3680 } 3681 3682 block_limit = pg_sz + st->stepped_offset; 3683 if (abs_offset < block_limit) { 3684 if (!st->frag_data) 3685 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3686 3687 *data = (u8 *)st->frag_data + pg_off + 3688 (abs_offset - st->stepped_offset); 3689 3690 return block_limit - abs_offset; 3691 } 3692 3693 if (st->frag_data) { 3694 kunmap_atomic(st->frag_data); 3695 st->frag_data = NULL; 3696 } 3697 3698 st->stepped_offset += pg_sz; 3699 st->frag_off += pg_sz; 3700 if (st->frag_off == skb_frag_size(frag)) { 3701 st->frag_off = 0; 3702 st->frag_idx++; 3703 } 3704 } 3705 3706 if (st->frag_data) { 3707 kunmap_atomic(st->frag_data); 3708 st->frag_data = NULL; 3709 } 3710 3711 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3712 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3713 st->frag_idx = 0; 3714 goto next_skb; 3715 } else if (st->cur_skb->next) { 3716 st->cur_skb = st->cur_skb->next; 3717 st->frag_idx = 0; 3718 goto next_skb; 3719 } 3720 3721 return 0; 3722 } 3723 EXPORT_SYMBOL(skb_seq_read); 3724 3725 /** 3726 * skb_abort_seq_read - Abort a sequential read of skb data 3727 * @st: state variable 3728 * 3729 * Must be called if skb_seq_read() was not called until it 3730 * returned 0. 3731 */ 3732 void skb_abort_seq_read(struct skb_seq_state *st) 3733 { 3734 if (st->frag_data) 3735 kunmap_atomic(st->frag_data); 3736 } 3737 EXPORT_SYMBOL(skb_abort_seq_read); 3738 3739 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3740 3741 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3742 struct ts_config *conf, 3743 struct ts_state *state) 3744 { 3745 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3746 } 3747 3748 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3749 { 3750 skb_abort_seq_read(TS_SKB_CB(state)); 3751 } 3752 3753 /** 3754 * skb_find_text - Find a text pattern in skb data 3755 * @skb: the buffer to look in 3756 * @from: search offset 3757 * @to: search limit 3758 * @config: textsearch configuration 3759 * 3760 * Finds a pattern in the skb data according to the specified 3761 * textsearch configuration. Use textsearch_next() to retrieve 3762 * subsequent occurrences of the pattern. Returns the offset 3763 * to the first occurrence or UINT_MAX if no match was found. 3764 */ 3765 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3766 unsigned int to, struct ts_config *config) 3767 { 3768 struct ts_state state; 3769 unsigned int ret; 3770 3771 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3772 3773 config->get_next_block = skb_ts_get_next_block; 3774 config->finish = skb_ts_finish; 3775 3776 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3777 3778 ret = textsearch_find(config, &state); 3779 return (ret <= to - from ? ret : UINT_MAX); 3780 } 3781 EXPORT_SYMBOL(skb_find_text); 3782 3783 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3784 int offset, size_t size) 3785 { 3786 int i = skb_shinfo(skb)->nr_frags; 3787 3788 if (skb_can_coalesce(skb, i, page, offset)) { 3789 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3790 } else if (i < MAX_SKB_FRAGS) { 3791 get_page(page); 3792 skb_fill_page_desc(skb, i, page, offset, size); 3793 } else { 3794 return -EMSGSIZE; 3795 } 3796 3797 return 0; 3798 } 3799 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3800 3801 /** 3802 * skb_pull_rcsum - pull skb and update receive checksum 3803 * @skb: buffer to update 3804 * @len: length of data pulled 3805 * 3806 * This function performs an skb_pull on the packet and updates 3807 * the CHECKSUM_COMPLETE checksum. It should be used on 3808 * receive path processing instead of skb_pull unless you know 3809 * that the checksum difference is zero (e.g., a valid IP header) 3810 * or you are setting ip_summed to CHECKSUM_NONE. 3811 */ 3812 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3813 { 3814 unsigned char *data = skb->data; 3815 3816 BUG_ON(len > skb->len); 3817 __skb_pull(skb, len); 3818 skb_postpull_rcsum(skb, data, len); 3819 return skb->data; 3820 } 3821 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3822 3823 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3824 { 3825 skb_frag_t head_frag; 3826 struct page *page; 3827 3828 page = virt_to_head_page(frag_skb->head); 3829 __skb_frag_set_page(&head_frag, page); 3830 skb_frag_off_set(&head_frag, frag_skb->data - 3831 (unsigned char *)page_address(page)); 3832 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3833 return head_frag; 3834 } 3835 3836 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3837 netdev_features_t features, 3838 unsigned int offset) 3839 { 3840 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3841 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3842 unsigned int delta_truesize = 0; 3843 unsigned int delta_len = 0; 3844 struct sk_buff *tail = NULL; 3845 struct sk_buff *nskb, *tmp; 3846 int err; 3847 3848 skb_push(skb, -skb_network_offset(skb) + offset); 3849 3850 skb_shinfo(skb)->frag_list = NULL; 3851 3852 do { 3853 nskb = list_skb; 3854 list_skb = list_skb->next; 3855 3856 err = 0; 3857 if (skb_shared(nskb)) { 3858 tmp = skb_clone(nskb, GFP_ATOMIC); 3859 if (tmp) { 3860 consume_skb(nskb); 3861 nskb = tmp; 3862 err = skb_unclone(nskb, GFP_ATOMIC); 3863 } else { 3864 err = -ENOMEM; 3865 } 3866 } 3867 3868 if (!tail) 3869 skb->next = nskb; 3870 else 3871 tail->next = nskb; 3872 3873 if (unlikely(err)) { 3874 nskb->next = list_skb; 3875 goto err_linearize; 3876 } 3877 3878 tail = nskb; 3879 3880 delta_len += nskb->len; 3881 delta_truesize += nskb->truesize; 3882 3883 skb_push(nskb, -skb_network_offset(nskb) + offset); 3884 3885 skb_release_head_state(nskb); 3886 __copy_skb_header(nskb, skb); 3887 3888 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3889 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3890 nskb->data - tnl_hlen, 3891 offset + tnl_hlen); 3892 3893 if (skb_needs_linearize(nskb, features) && 3894 __skb_linearize(nskb)) 3895 goto err_linearize; 3896 3897 } while (list_skb); 3898 3899 skb->truesize = skb->truesize - delta_truesize; 3900 skb->data_len = skb->data_len - delta_len; 3901 skb->len = skb->len - delta_len; 3902 3903 skb_gso_reset(skb); 3904 3905 skb->prev = tail; 3906 3907 if (skb_needs_linearize(skb, features) && 3908 __skb_linearize(skb)) 3909 goto err_linearize; 3910 3911 skb_get(skb); 3912 3913 return skb; 3914 3915 err_linearize: 3916 kfree_skb_list(skb->next); 3917 skb->next = NULL; 3918 return ERR_PTR(-ENOMEM); 3919 } 3920 EXPORT_SYMBOL_GPL(skb_segment_list); 3921 3922 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3923 { 3924 if (unlikely(p->len + skb->len >= 65536)) 3925 return -E2BIG; 3926 3927 if (NAPI_GRO_CB(p)->last == p) 3928 skb_shinfo(p)->frag_list = skb; 3929 else 3930 NAPI_GRO_CB(p)->last->next = skb; 3931 3932 skb_pull(skb, skb_gro_offset(skb)); 3933 3934 NAPI_GRO_CB(p)->last = skb; 3935 NAPI_GRO_CB(p)->count++; 3936 p->data_len += skb->len; 3937 3938 /* sk owenrship - if any - completely transferred to the aggregated packet */ 3939 skb->destructor = NULL; 3940 p->truesize += skb->truesize; 3941 p->len += skb->len; 3942 3943 NAPI_GRO_CB(skb)->same_flow = 1; 3944 3945 return 0; 3946 } 3947 3948 /** 3949 * skb_segment - Perform protocol segmentation on skb. 3950 * @head_skb: buffer to segment 3951 * @features: features for the output path (see dev->features) 3952 * 3953 * This function performs segmentation on the given skb. It returns 3954 * a pointer to the first in a list of new skbs for the segments. 3955 * In case of error it returns ERR_PTR(err). 3956 */ 3957 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3958 netdev_features_t features) 3959 { 3960 struct sk_buff *segs = NULL; 3961 struct sk_buff *tail = NULL; 3962 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3963 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3964 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3965 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3966 struct sk_buff *frag_skb = head_skb; 3967 unsigned int offset = doffset; 3968 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3969 unsigned int partial_segs = 0; 3970 unsigned int headroom; 3971 unsigned int len = head_skb->len; 3972 __be16 proto; 3973 bool csum, sg; 3974 int nfrags = skb_shinfo(head_skb)->nr_frags; 3975 int err = -ENOMEM; 3976 int i = 0; 3977 int pos; 3978 3979 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3980 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3981 /* gso_size is untrusted, and we have a frag_list with a linear 3982 * non head_frag head. 3983 * 3984 * (we assume checking the first list_skb member suffices; 3985 * i.e if either of the list_skb members have non head_frag 3986 * head, then the first one has too). 3987 * 3988 * If head_skb's headlen does not fit requested gso_size, it 3989 * means that the frag_list members do NOT terminate on exact 3990 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3991 * sharing. Therefore we must fallback to copying the frag_list 3992 * skbs; we do so by disabling SG. 3993 */ 3994 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3995 features &= ~NETIF_F_SG; 3996 } 3997 3998 __skb_push(head_skb, doffset); 3999 proto = skb_network_protocol(head_skb, NULL); 4000 if (unlikely(!proto)) 4001 return ERR_PTR(-EINVAL); 4002 4003 sg = !!(features & NETIF_F_SG); 4004 csum = !!can_checksum_protocol(features, proto); 4005 4006 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4007 if (!(features & NETIF_F_GSO_PARTIAL)) { 4008 struct sk_buff *iter; 4009 unsigned int frag_len; 4010 4011 if (!list_skb || 4012 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4013 goto normal; 4014 4015 /* If we get here then all the required 4016 * GSO features except frag_list are supported. 4017 * Try to split the SKB to multiple GSO SKBs 4018 * with no frag_list. 4019 * Currently we can do that only when the buffers don't 4020 * have a linear part and all the buffers except 4021 * the last are of the same length. 4022 */ 4023 frag_len = list_skb->len; 4024 skb_walk_frags(head_skb, iter) { 4025 if (frag_len != iter->len && iter->next) 4026 goto normal; 4027 if (skb_headlen(iter) && !iter->head_frag) 4028 goto normal; 4029 4030 len -= iter->len; 4031 } 4032 4033 if (len != frag_len) 4034 goto normal; 4035 } 4036 4037 /* GSO partial only requires that we trim off any excess that 4038 * doesn't fit into an MSS sized block, so take care of that 4039 * now. 4040 */ 4041 partial_segs = len / mss; 4042 if (partial_segs > 1) 4043 mss *= partial_segs; 4044 else 4045 partial_segs = 0; 4046 } 4047 4048 normal: 4049 headroom = skb_headroom(head_skb); 4050 pos = skb_headlen(head_skb); 4051 4052 do { 4053 struct sk_buff *nskb; 4054 skb_frag_t *nskb_frag; 4055 int hsize; 4056 int size; 4057 4058 if (unlikely(mss == GSO_BY_FRAGS)) { 4059 len = list_skb->len; 4060 } else { 4061 len = head_skb->len - offset; 4062 if (len > mss) 4063 len = mss; 4064 } 4065 4066 hsize = skb_headlen(head_skb) - offset; 4067 4068 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4069 (skb_headlen(list_skb) == len || sg)) { 4070 BUG_ON(skb_headlen(list_skb) > len); 4071 4072 i = 0; 4073 nfrags = skb_shinfo(list_skb)->nr_frags; 4074 frag = skb_shinfo(list_skb)->frags; 4075 frag_skb = list_skb; 4076 pos += skb_headlen(list_skb); 4077 4078 while (pos < offset + len) { 4079 BUG_ON(i >= nfrags); 4080 4081 size = skb_frag_size(frag); 4082 if (pos + size > offset + len) 4083 break; 4084 4085 i++; 4086 pos += size; 4087 frag++; 4088 } 4089 4090 nskb = skb_clone(list_skb, GFP_ATOMIC); 4091 list_skb = list_skb->next; 4092 4093 if (unlikely(!nskb)) 4094 goto err; 4095 4096 if (unlikely(pskb_trim(nskb, len))) { 4097 kfree_skb(nskb); 4098 goto err; 4099 } 4100 4101 hsize = skb_end_offset(nskb); 4102 if (skb_cow_head(nskb, doffset + headroom)) { 4103 kfree_skb(nskb); 4104 goto err; 4105 } 4106 4107 nskb->truesize += skb_end_offset(nskb) - hsize; 4108 skb_release_head_state(nskb); 4109 __skb_push(nskb, doffset); 4110 } else { 4111 if (hsize < 0) 4112 hsize = 0; 4113 if (hsize > len || !sg) 4114 hsize = len; 4115 4116 nskb = __alloc_skb(hsize + doffset + headroom, 4117 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4118 NUMA_NO_NODE); 4119 4120 if (unlikely(!nskb)) 4121 goto err; 4122 4123 skb_reserve(nskb, headroom); 4124 __skb_put(nskb, doffset); 4125 } 4126 4127 if (segs) 4128 tail->next = nskb; 4129 else 4130 segs = nskb; 4131 tail = nskb; 4132 4133 __copy_skb_header(nskb, head_skb); 4134 4135 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4136 skb_reset_mac_len(nskb); 4137 4138 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4139 nskb->data - tnl_hlen, 4140 doffset + tnl_hlen); 4141 4142 if (nskb->len == len + doffset) 4143 goto perform_csum_check; 4144 4145 if (!sg) { 4146 if (!csum) { 4147 if (!nskb->remcsum_offload) 4148 nskb->ip_summed = CHECKSUM_NONE; 4149 SKB_GSO_CB(nskb)->csum = 4150 skb_copy_and_csum_bits(head_skb, offset, 4151 skb_put(nskb, 4152 len), 4153 len); 4154 SKB_GSO_CB(nskb)->csum_start = 4155 skb_headroom(nskb) + doffset; 4156 } else { 4157 skb_copy_bits(head_skb, offset, 4158 skb_put(nskb, len), 4159 len); 4160 } 4161 continue; 4162 } 4163 4164 nskb_frag = skb_shinfo(nskb)->frags; 4165 4166 skb_copy_from_linear_data_offset(head_skb, offset, 4167 skb_put(nskb, hsize), hsize); 4168 4169 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4170 SKBFL_SHARED_FRAG; 4171 4172 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4173 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4174 goto err; 4175 4176 while (pos < offset + len) { 4177 if (i >= nfrags) { 4178 i = 0; 4179 nfrags = skb_shinfo(list_skb)->nr_frags; 4180 frag = skb_shinfo(list_skb)->frags; 4181 frag_skb = list_skb; 4182 if (!skb_headlen(list_skb)) { 4183 BUG_ON(!nfrags); 4184 } else { 4185 BUG_ON(!list_skb->head_frag); 4186 4187 /* to make room for head_frag. */ 4188 i--; 4189 frag--; 4190 } 4191 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4192 skb_zerocopy_clone(nskb, frag_skb, 4193 GFP_ATOMIC)) 4194 goto err; 4195 4196 list_skb = list_skb->next; 4197 } 4198 4199 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4200 MAX_SKB_FRAGS)) { 4201 net_warn_ratelimited( 4202 "skb_segment: too many frags: %u %u\n", 4203 pos, mss); 4204 err = -EINVAL; 4205 goto err; 4206 } 4207 4208 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4209 __skb_frag_ref(nskb_frag); 4210 size = skb_frag_size(nskb_frag); 4211 4212 if (pos < offset) { 4213 skb_frag_off_add(nskb_frag, offset - pos); 4214 skb_frag_size_sub(nskb_frag, offset - pos); 4215 } 4216 4217 skb_shinfo(nskb)->nr_frags++; 4218 4219 if (pos + size <= offset + len) { 4220 i++; 4221 frag++; 4222 pos += size; 4223 } else { 4224 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4225 goto skip_fraglist; 4226 } 4227 4228 nskb_frag++; 4229 } 4230 4231 skip_fraglist: 4232 nskb->data_len = len - hsize; 4233 nskb->len += nskb->data_len; 4234 nskb->truesize += nskb->data_len; 4235 4236 perform_csum_check: 4237 if (!csum) { 4238 if (skb_has_shared_frag(nskb) && 4239 __skb_linearize(nskb)) 4240 goto err; 4241 4242 if (!nskb->remcsum_offload) 4243 nskb->ip_summed = CHECKSUM_NONE; 4244 SKB_GSO_CB(nskb)->csum = 4245 skb_checksum(nskb, doffset, 4246 nskb->len - doffset, 0); 4247 SKB_GSO_CB(nskb)->csum_start = 4248 skb_headroom(nskb) + doffset; 4249 } 4250 } while ((offset += len) < head_skb->len); 4251 4252 /* Some callers want to get the end of the list. 4253 * Put it in segs->prev to avoid walking the list. 4254 * (see validate_xmit_skb_list() for example) 4255 */ 4256 segs->prev = tail; 4257 4258 if (partial_segs) { 4259 struct sk_buff *iter; 4260 int type = skb_shinfo(head_skb)->gso_type; 4261 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4262 4263 /* Update type to add partial and then remove dodgy if set */ 4264 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4265 type &= ~SKB_GSO_DODGY; 4266 4267 /* Update GSO info and prepare to start updating headers on 4268 * our way back down the stack of protocols. 4269 */ 4270 for (iter = segs; iter; iter = iter->next) { 4271 skb_shinfo(iter)->gso_size = gso_size; 4272 skb_shinfo(iter)->gso_segs = partial_segs; 4273 skb_shinfo(iter)->gso_type = type; 4274 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4275 } 4276 4277 if (tail->len - doffset <= gso_size) 4278 skb_shinfo(tail)->gso_size = 0; 4279 else if (tail != segs) 4280 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4281 } 4282 4283 /* Following permits correct backpressure, for protocols 4284 * using skb_set_owner_w(). 4285 * Idea is to tranfert ownership from head_skb to last segment. 4286 */ 4287 if (head_skb->destructor == sock_wfree) { 4288 swap(tail->truesize, head_skb->truesize); 4289 swap(tail->destructor, head_skb->destructor); 4290 swap(tail->sk, head_skb->sk); 4291 } 4292 return segs; 4293 4294 err: 4295 kfree_skb_list(segs); 4296 return ERR_PTR(err); 4297 } 4298 EXPORT_SYMBOL_GPL(skb_segment); 4299 4300 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4301 { 4302 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4303 unsigned int offset = skb_gro_offset(skb); 4304 unsigned int headlen = skb_headlen(skb); 4305 unsigned int len = skb_gro_len(skb); 4306 unsigned int delta_truesize; 4307 unsigned int new_truesize; 4308 struct sk_buff *lp; 4309 4310 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4311 return -E2BIG; 4312 4313 lp = NAPI_GRO_CB(p)->last; 4314 pinfo = skb_shinfo(lp); 4315 4316 if (headlen <= offset) { 4317 skb_frag_t *frag; 4318 skb_frag_t *frag2; 4319 int i = skbinfo->nr_frags; 4320 int nr_frags = pinfo->nr_frags + i; 4321 4322 if (nr_frags > MAX_SKB_FRAGS) 4323 goto merge; 4324 4325 offset -= headlen; 4326 pinfo->nr_frags = nr_frags; 4327 skbinfo->nr_frags = 0; 4328 4329 frag = pinfo->frags + nr_frags; 4330 frag2 = skbinfo->frags + i; 4331 do { 4332 *--frag = *--frag2; 4333 } while (--i); 4334 4335 skb_frag_off_add(frag, offset); 4336 skb_frag_size_sub(frag, offset); 4337 4338 /* all fragments truesize : remove (head size + sk_buff) */ 4339 new_truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4340 delta_truesize = skb->truesize - new_truesize; 4341 4342 skb->truesize = new_truesize; 4343 skb->len -= skb->data_len; 4344 skb->data_len = 0; 4345 4346 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4347 goto done; 4348 } else if (skb->head_frag) { 4349 int nr_frags = pinfo->nr_frags; 4350 skb_frag_t *frag = pinfo->frags + nr_frags; 4351 struct page *page = virt_to_head_page(skb->head); 4352 unsigned int first_size = headlen - offset; 4353 unsigned int first_offset; 4354 4355 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4356 goto merge; 4357 4358 first_offset = skb->data - 4359 (unsigned char *)page_address(page) + 4360 offset; 4361 4362 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4363 4364 __skb_frag_set_page(frag, page); 4365 skb_frag_off_set(frag, first_offset); 4366 skb_frag_size_set(frag, first_size); 4367 4368 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4369 /* We dont need to clear skbinfo->nr_frags here */ 4370 4371 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4372 delta_truesize = skb->truesize - new_truesize; 4373 skb->truesize = new_truesize; 4374 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4375 goto done; 4376 } 4377 4378 merge: 4379 /* sk owenrship - if any - completely transferred to the aggregated packet */ 4380 skb->destructor = NULL; 4381 delta_truesize = skb->truesize; 4382 if (offset > headlen) { 4383 unsigned int eat = offset - headlen; 4384 4385 skb_frag_off_add(&skbinfo->frags[0], eat); 4386 skb_frag_size_sub(&skbinfo->frags[0], eat); 4387 skb->data_len -= eat; 4388 skb->len -= eat; 4389 offset = headlen; 4390 } 4391 4392 __skb_pull(skb, offset); 4393 4394 if (NAPI_GRO_CB(p)->last == p) 4395 skb_shinfo(p)->frag_list = skb; 4396 else 4397 NAPI_GRO_CB(p)->last->next = skb; 4398 NAPI_GRO_CB(p)->last = skb; 4399 __skb_header_release(skb); 4400 lp = p; 4401 4402 done: 4403 NAPI_GRO_CB(p)->count++; 4404 p->data_len += len; 4405 p->truesize += delta_truesize; 4406 p->len += len; 4407 if (lp != p) { 4408 lp->data_len += len; 4409 lp->truesize += delta_truesize; 4410 lp->len += len; 4411 } 4412 NAPI_GRO_CB(skb)->same_flow = 1; 4413 return 0; 4414 } 4415 4416 #ifdef CONFIG_SKB_EXTENSIONS 4417 #define SKB_EXT_ALIGN_VALUE 8 4418 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4419 4420 static const u8 skb_ext_type_len[] = { 4421 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4422 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4423 #endif 4424 #ifdef CONFIG_XFRM 4425 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4426 #endif 4427 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4428 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4429 #endif 4430 #if IS_ENABLED(CONFIG_MPTCP) 4431 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4432 #endif 4433 }; 4434 4435 static __always_inline unsigned int skb_ext_total_length(void) 4436 { 4437 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4438 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4439 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4440 #endif 4441 #ifdef CONFIG_XFRM 4442 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4443 #endif 4444 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4445 skb_ext_type_len[TC_SKB_EXT] + 4446 #endif 4447 #if IS_ENABLED(CONFIG_MPTCP) 4448 skb_ext_type_len[SKB_EXT_MPTCP] + 4449 #endif 4450 0; 4451 } 4452 4453 static void skb_extensions_init(void) 4454 { 4455 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4456 BUILD_BUG_ON(skb_ext_total_length() > 255); 4457 4458 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4459 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4460 0, 4461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4462 NULL); 4463 } 4464 #else 4465 static void skb_extensions_init(void) {} 4466 #endif 4467 4468 void __init skb_init(void) 4469 { 4470 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4471 sizeof(struct sk_buff), 4472 0, 4473 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4474 offsetof(struct sk_buff, cb), 4475 sizeof_field(struct sk_buff, cb), 4476 NULL); 4477 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4478 sizeof(struct sk_buff_fclones), 4479 0, 4480 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4481 NULL); 4482 skb_extensions_init(); 4483 } 4484 4485 static int 4486 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4487 unsigned int recursion_level) 4488 { 4489 int start = skb_headlen(skb); 4490 int i, copy = start - offset; 4491 struct sk_buff *frag_iter; 4492 int elt = 0; 4493 4494 if (unlikely(recursion_level >= 24)) 4495 return -EMSGSIZE; 4496 4497 if (copy > 0) { 4498 if (copy > len) 4499 copy = len; 4500 sg_set_buf(sg, skb->data + offset, copy); 4501 elt++; 4502 if ((len -= copy) == 0) 4503 return elt; 4504 offset += copy; 4505 } 4506 4507 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4508 int end; 4509 4510 WARN_ON(start > offset + len); 4511 4512 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4513 if ((copy = end - offset) > 0) { 4514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4515 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4516 return -EMSGSIZE; 4517 4518 if (copy > len) 4519 copy = len; 4520 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4521 skb_frag_off(frag) + offset - start); 4522 elt++; 4523 if (!(len -= copy)) 4524 return elt; 4525 offset += copy; 4526 } 4527 start = end; 4528 } 4529 4530 skb_walk_frags(skb, frag_iter) { 4531 int end, ret; 4532 4533 WARN_ON(start > offset + len); 4534 4535 end = start + frag_iter->len; 4536 if ((copy = end - offset) > 0) { 4537 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4538 return -EMSGSIZE; 4539 4540 if (copy > len) 4541 copy = len; 4542 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4543 copy, recursion_level + 1); 4544 if (unlikely(ret < 0)) 4545 return ret; 4546 elt += ret; 4547 if ((len -= copy) == 0) 4548 return elt; 4549 offset += copy; 4550 } 4551 start = end; 4552 } 4553 BUG_ON(len); 4554 return elt; 4555 } 4556 4557 /** 4558 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4559 * @skb: Socket buffer containing the buffers to be mapped 4560 * @sg: The scatter-gather list to map into 4561 * @offset: The offset into the buffer's contents to start mapping 4562 * @len: Length of buffer space to be mapped 4563 * 4564 * Fill the specified scatter-gather list with mappings/pointers into a 4565 * region of the buffer space attached to a socket buffer. Returns either 4566 * the number of scatterlist items used, or -EMSGSIZE if the contents 4567 * could not fit. 4568 */ 4569 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4570 { 4571 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4572 4573 if (nsg <= 0) 4574 return nsg; 4575 4576 sg_mark_end(&sg[nsg - 1]); 4577 4578 return nsg; 4579 } 4580 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4581 4582 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4583 * sglist without mark the sg which contain last skb data as the end. 4584 * So the caller can mannipulate sg list as will when padding new data after 4585 * the first call without calling sg_unmark_end to expend sg list. 4586 * 4587 * Scenario to use skb_to_sgvec_nomark: 4588 * 1. sg_init_table 4589 * 2. skb_to_sgvec_nomark(payload1) 4590 * 3. skb_to_sgvec_nomark(payload2) 4591 * 4592 * This is equivalent to: 4593 * 1. sg_init_table 4594 * 2. skb_to_sgvec(payload1) 4595 * 3. sg_unmark_end 4596 * 4. skb_to_sgvec(payload2) 4597 * 4598 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4599 * is more preferable. 4600 */ 4601 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4602 int offset, int len) 4603 { 4604 return __skb_to_sgvec(skb, sg, offset, len, 0); 4605 } 4606 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4607 4608 4609 4610 /** 4611 * skb_cow_data - Check that a socket buffer's data buffers are writable 4612 * @skb: The socket buffer to check. 4613 * @tailbits: Amount of trailing space to be added 4614 * @trailer: Returned pointer to the skb where the @tailbits space begins 4615 * 4616 * Make sure that the data buffers attached to a socket buffer are 4617 * writable. If they are not, private copies are made of the data buffers 4618 * and the socket buffer is set to use these instead. 4619 * 4620 * If @tailbits is given, make sure that there is space to write @tailbits 4621 * bytes of data beyond current end of socket buffer. @trailer will be 4622 * set to point to the skb in which this space begins. 4623 * 4624 * The number of scatterlist elements required to completely map the 4625 * COW'd and extended socket buffer will be returned. 4626 */ 4627 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4628 { 4629 int copyflag; 4630 int elt; 4631 struct sk_buff *skb1, **skb_p; 4632 4633 /* If skb is cloned or its head is paged, reallocate 4634 * head pulling out all the pages (pages are considered not writable 4635 * at the moment even if they are anonymous). 4636 */ 4637 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4638 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4639 return -ENOMEM; 4640 4641 /* Easy case. Most of packets will go this way. */ 4642 if (!skb_has_frag_list(skb)) { 4643 /* A little of trouble, not enough of space for trailer. 4644 * This should not happen, when stack is tuned to generate 4645 * good frames. OK, on miss we reallocate and reserve even more 4646 * space, 128 bytes is fair. */ 4647 4648 if (skb_tailroom(skb) < tailbits && 4649 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4650 return -ENOMEM; 4651 4652 /* Voila! */ 4653 *trailer = skb; 4654 return 1; 4655 } 4656 4657 /* Misery. We are in troubles, going to mincer fragments... */ 4658 4659 elt = 1; 4660 skb_p = &skb_shinfo(skb)->frag_list; 4661 copyflag = 0; 4662 4663 while ((skb1 = *skb_p) != NULL) { 4664 int ntail = 0; 4665 4666 /* The fragment is partially pulled by someone, 4667 * this can happen on input. Copy it and everything 4668 * after it. */ 4669 4670 if (skb_shared(skb1)) 4671 copyflag = 1; 4672 4673 /* If the skb is the last, worry about trailer. */ 4674 4675 if (skb1->next == NULL && tailbits) { 4676 if (skb_shinfo(skb1)->nr_frags || 4677 skb_has_frag_list(skb1) || 4678 skb_tailroom(skb1) < tailbits) 4679 ntail = tailbits + 128; 4680 } 4681 4682 if (copyflag || 4683 skb_cloned(skb1) || 4684 ntail || 4685 skb_shinfo(skb1)->nr_frags || 4686 skb_has_frag_list(skb1)) { 4687 struct sk_buff *skb2; 4688 4689 /* Fuck, we are miserable poor guys... */ 4690 if (ntail == 0) 4691 skb2 = skb_copy(skb1, GFP_ATOMIC); 4692 else 4693 skb2 = skb_copy_expand(skb1, 4694 skb_headroom(skb1), 4695 ntail, 4696 GFP_ATOMIC); 4697 if (unlikely(skb2 == NULL)) 4698 return -ENOMEM; 4699 4700 if (skb1->sk) 4701 skb_set_owner_w(skb2, skb1->sk); 4702 4703 /* Looking around. Are we still alive? 4704 * OK, link new skb, drop old one */ 4705 4706 skb2->next = skb1->next; 4707 *skb_p = skb2; 4708 kfree_skb(skb1); 4709 skb1 = skb2; 4710 } 4711 elt++; 4712 *trailer = skb1; 4713 skb_p = &skb1->next; 4714 } 4715 4716 return elt; 4717 } 4718 EXPORT_SYMBOL_GPL(skb_cow_data); 4719 4720 static void sock_rmem_free(struct sk_buff *skb) 4721 { 4722 struct sock *sk = skb->sk; 4723 4724 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4725 } 4726 4727 static void skb_set_err_queue(struct sk_buff *skb) 4728 { 4729 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4730 * So, it is safe to (mis)use it to mark skbs on the error queue. 4731 */ 4732 skb->pkt_type = PACKET_OUTGOING; 4733 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4734 } 4735 4736 /* 4737 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4738 */ 4739 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4740 { 4741 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4742 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4743 return -ENOMEM; 4744 4745 skb_orphan(skb); 4746 skb->sk = sk; 4747 skb->destructor = sock_rmem_free; 4748 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4749 skb_set_err_queue(skb); 4750 4751 /* before exiting rcu section, make sure dst is refcounted */ 4752 skb_dst_force(skb); 4753 4754 skb_queue_tail(&sk->sk_error_queue, skb); 4755 if (!sock_flag(sk, SOCK_DEAD)) 4756 sk_error_report(sk); 4757 return 0; 4758 } 4759 EXPORT_SYMBOL(sock_queue_err_skb); 4760 4761 static bool is_icmp_err_skb(const struct sk_buff *skb) 4762 { 4763 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4764 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4765 } 4766 4767 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4768 { 4769 struct sk_buff_head *q = &sk->sk_error_queue; 4770 struct sk_buff *skb, *skb_next = NULL; 4771 bool icmp_next = false; 4772 unsigned long flags; 4773 4774 spin_lock_irqsave(&q->lock, flags); 4775 skb = __skb_dequeue(q); 4776 if (skb && (skb_next = skb_peek(q))) { 4777 icmp_next = is_icmp_err_skb(skb_next); 4778 if (icmp_next) 4779 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4780 } 4781 spin_unlock_irqrestore(&q->lock, flags); 4782 4783 if (is_icmp_err_skb(skb) && !icmp_next) 4784 sk->sk_err = 0; 4785 4786 if (skb_next) 4787 sk_error_report(sk); 4788 4789 return skb; 4790 } 4791 EXPORT_SYMBOL(sock_dequeue_err_skb); 4792 4793 /** 4794 * skb_clone_sk - create clone of skb, and take reference to socket 4795 * @skb: the skb to clone 4796 * 4797 * This function creates a clone of a buffer that holds a reference on 4798 * sk_refcnt. Buffers created via this function are meant to be 4799 * returned using sock_queue_err_skb, or free via kfree_skb. 4800 * 4801 * When passing buffers allocated with this function to sock_queue_err_skb 4802 * it is necessary to wrap the call with sock_hold/sock_put in order to 4803 * prevent the socket from being released prior to being enqueued on 4804 * the sk_error_queue. 4805 */ 4806 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4807 { 4808 struct sock *sk = skb->sk; 4809 struct sk_buff *clone; 4810 4811 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4812 return NULL; 4813 4814 clone = skb_clone(skb, GFP_ATOMIC); 4815 if (!clone) { 4816 sock_put(sk); 4817 return NULL; 4818 } 4819 4820 clone->sk = sk; 4821 clone->destructor = sock_efree; 4822 4823 return clone; 4824 } 4825 EXPORT_SYMBOL(skb_clone_sk); 4826 4827 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4828 struct sock *sk, 4829 int tstype, 4830 bool opt_stats) 4831 { 4832 struct sock_exterr_skb *serr; 4833 int err; 4834 4835 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4836 4837 serr = SKB_EXT_ERR(skb); 4838 memset(serr, 0, sizeof(*serr)); 4839 serr->ee.ee_errno = ENOMSG; 4840 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4841 serr->ee.ee_info = tstype; 4842 serr->opt_stats = opt_stats; 4843 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4844 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4845 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4846 if (sk->sk_protocol == IPPROTO_TCP && 4847 sk->sk_type == SOCK_STREAM) 4848 serr->ee.ee_data -= sk->sk_tskey; 4849 } 4850 4851 err = sock_queue_err_skb(sk, skb); 4852 4853 if (err) 4854 kfree_skb(skb); 4855 } 4856 4857 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4858 { 4859 bool ret; 4860 4861 if (likely(sysctl_tstamp_allow_data || tsonly)) 4862 return true; 4863 4864 read_lock_bh(&sk->sk_callback_lock); 4865 ret = sk->sk_socket && sk->sk_socket->file && 4866 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4867 read_unlock_bh(&sk->sk_callback_lock); 4868 return ret; 4869 } 4870 4871 void skb_complete_tx_timestamp(struct sk_buff *skb, 4872 struct skb_shared_hwtstamps *hwtstamps) 4873 { 4874 struct sock *sk = skb->sk; 4875 4876 if (!skb_may_tx_timestamp(sk, false)) 4877 goto err; 4878 4879 /* Take a reference to prevent skb_orphan() from freeing the socket, 4880 * but only if the socket refcount is not zero. 4881 */ 4882 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4883 *skb_hwtstamps(skb) = *hwtstamps; 4884 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4885 sock_put(sk); 4886 return; 4887 } 4888 4889 err: 4890 kfree_skb(skb); 4891 } 4892 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4893 4894 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4895 const struct sk_buff *ack_skb, 4896 struct skb_shared_hwtstamps *hwtstamps, 4897 struct sock *sk, int tstype) 4898 { 4899 struct sk_buff *skb; 4900 bool tsonly, opt_stats = false; 4901 4902 if (!sk) 4903 return; 4904 4905 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4906 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4907 return; 4908 4909 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4910 if (!skb_may_tx_timestamp(sk, tsonly)) 4911 return; 4912 4913 if (tsonly) { 4914 #ifdef CONFIG_INET 4915 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4916 sk->sk_protocol == IPPROTO_TCP && 4917 sk->sk_type == SOCK_STREAM) { 4918 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4919 ack_skb); 4920 opt_stats = true; 4921 } else 4922 #endif 4923 skb = alloc_skb(0, GFP_ATOMIC); 4924 } else { 4925 skb = skb_clone(orig_skb, GFP_ATOMIC); 4926 } 4927 if (!skb) 4928 return; 4929 4930 if (tsonly) { 4931 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4932 SKBTX_ANY_TSTAMP; 4933 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4934 } 4935 4936 if (hwtstamps) 4937 *skb_hwtstamps(skb) = *hwtstamps; 4938 else 4939 skb->tstamp = ktime_get_real(); 4940 4941 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4942 } 4943 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4944 4945 void skb_tstamp_tx(struct sk_buff *orig_skb, 4946 struct skb_shared_hwtstamps *hwtstamps) 4947 { 4948 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4949 SCM_TSTAMP_SND); 4950 } 4951 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4952 4953 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4954 { 4955 struct sock *sk = skb->sk; 4956 struct sock_exterr_skb *serr; 4957 int err = 1; 4958 4959 skb->wifi_acked_valid = 1; 4960 skb->wifi_acked = acked; 4961 4962 serr = SKB_EXT_ERR(skb); 4963 memset(serr, 0, sizeof(*serr)); 4964 serr->ee.ee_errno = ENOMSG; 4965 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4966 4967 /* Take a reference to prevent skb_orphan() from freeing the socket, 4968 * but only if the socket refcount is not zero. 4969 */ 4970 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4971 err = sock_queue_err_skb(sk, skb); 4972 sock_put(sk); 4973 } 4974 if (err) 4975 kfree_skb(skb); 4976 } 4977 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4978 4979 /** 4980 * skb_partial_csum_set - set up and verify partial csum values for packet 4981 * @skb: the skb to set 4982 * @start: the number of bytes after skb->data to start checksumming. 4983 * @off: the offset from start to place the checksum. 4984 * 4985 * For untrusted partially-checksummed packets, we need to make sure the values 4986 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4987 * 4988 * This function checks and sets those values and skb->ip_summed: if this 4989 * returns false you should drop the packet. 4990 */ 4991 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4992 { 4993 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4994 u32 csum_start = skb_headroom(skb) + (u32)start; 4995 4996 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4997 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4998 start, off, skb_headroom(skb), skb_headlen(skb)); 4999 return false; 5000 } 5001 skb->ip_summed = CHECKSUM_PARTIAL; 5002 skb->csum_start = csum_start; 5003 skb->csum_offset = off; 5004 skb_set_transport_header(skb, start); 5005 return true; 5006 } 5007 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5008 5009 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5010 unsigned int max) 5011 { 5012 if (skb_headlen(skb) >= len) 5013 return 0; 5014 5015 /* If we need to pullup then pullup to the max, so we 5016 * won't need to do it again. 5017 */ 5018 if (max > skb->len) 5019 max = skb->len; 5020 5021 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5022 return -ENOMEM; 5023 5024 if (skb_headlen(skb) < len) 5025 return -EPROTO; 5026 5027 return 0; 5028 } 5029 5030 #define MAX_TCP_HDR_LEN (15 * 4) 5031 5032 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5033 typeof(IPPROTO_IP) proto, 5034 unsigned int off) 5035 { 5036 int err; 5037 5038 switch (proto) { 5039 case IPPROTO_TCP: 5040 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5041 off + MAX_TCP_HDR_LEN); 5042 if (!err && !skb_partial_csum_set(skb, off, 5043 offsetof(struct tcphdr, 5044 check))) 5045 err = -EPROTO; 5046 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5047 5048 case IPPROTO_UDP: 5049 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5050 off + sizeof(struct udphdr)); 5051 if (!err && !skb_partial_csum_set(skb, off, 5052 offsetof(struct udphdr, 5053 check))) 5054 err = -EPROTO; 5055 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5056 } 5057 5058 return ERR_PTR(-EPROTO); 5059 } 5060 5061 /* This value should be large enough to cover a tagged ethernet header plus 5062 * maximally sized IP and TCP or UDP headers. 5063 */ 5064 #define MAX_IP_HDR_LEN 128 5065 5066 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5067 { 5068 unsigned int off; 5069 bool fragment; 5070 __sum16 *csum; 5071 int err; 5072 5073 fragment = false; 5074 5075 err = skb_maybe_pull_tail(skb, 5076 sizeof(struct iphdr), 5077 MAX_IP_HDR_LEN); 5078 if (err < 0) 5079 goto out; 5080 5081 if (ip_is_fragment(ip_hdr(skb))) 5082 fragment = true; 5083 5084 off = ip_hdrlen(skb); 5085 5086 err = -EPROTO; 5087 5088 if (fragment) 5089 goto out; 5090 5091 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5092 if (IS_ERR(csum)) 5093 return PTR_ERR(csum); 5094 5095 if (recalculate) 5096 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5097 ip_hdr(skb)->daddr, 5098 skb->len - off, 5099 ip_hdr(skb)->protocol, 0); 5100 err = 0; 5101 5102 out: 5103 return err; 5104 } 5105 5106 /* This value should be large enough to cover a tagged ethernet header plus 5107 * an IPv6 header, all options, and a maximal TCP or UDP header. 5108 */ 5109 #define MAX_IPV6_HDR_LEN 256 5110 5111 #define OPT_HDR(type, skb, off) \ 5112 (type *)(skb_network_header(skb) + (off)) 5113 5114 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5115 { 5116 int err; 5117 u8 nexthdr; 5118 unsigned int off; 5119 unsigned int len; 5120 bool fragment; 5121 bool done; 5122 __sum16 *csum; 5123 5124 fragment = false; 5125 done = false; 5126 5127 off = sizeof(struct ipv6hdr); 5128 5129 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5130 if (err < 0) 5131 goto out; 5132 5133 nexthdr = ipv6_hdr(skb)->nexthdr; 5134 5135 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5136 while (off <= len && !done) { 5137 switch (nexthdr) { 5138 case IPPROTO_DSTOPTS: 5139 case IPPROTO_HOPOPTS: 5140 case IPPROTO_ROUTING: { 5141 struct ipv6_opt_hdr *hp; 5142 5143 err = skb_maybe_pull_tail(skb, 5144 off + 5145 sizeof(struct ipv6_opt_hdr), 5146 MAX_IPV6_HDR_LEN); 5147 if (err < 0) 5148 goto out; 5149 5150 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5151 nexthdr = hp->nexthdr; 5152 off += ipv6_optlen(hp); 5153 break; 5154 } 5155 case IPPROTO_AH: { 5156 struct ip_auth_hdr *hp; 5157 5158 err = skb_maybe_pull_tail(skb, 5159 off + 5160 sizeof(struct ip_auth_hdr), 5161 MAX_IPV6_HDR_LEN); 5162 if (err < 0) 5163 goto out; 5164 5165 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5166 nexthdr = hp->nexthdr; 5167 off += ipv6_authlen(hp); 5168 break; 5169 } 5170 case IPPROTO_FRAGMENT: { 5171 struct frag_hdr *hp; 5172 5173 err = skb_maybe_pull_tail(skb, 5174 off + 5175 sizeof(struct frag_hdr), 5176 MAX_IPV6_HDR_LEN); 5177 if (err < 0) 5178 goto out; 5179 5180 hp = OPT_HDR(struct frag_hdr, skb, off); 5181 5182 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5183 fragment = true; 5184 5185 nexthdr = hp->nexthdr; 5186 off += sizeof(struct frag_hdr); 5187 break; 5188 } 5189 default: 5190 done = true; 5191 break; 5192 } 5193 } 5194 5195 err = -EPROTO; 5196 5197 if (!done || fragment) 5198 goto out; 5199 5200 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5201 if (IS_ERR(csum)) 5202 return PTR_ERR(csum); 5203 5204 if (recalculate) 5205 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5206 &ipv6_hdr(skb)->daddr, 5207 skb->len - off, nexthdr, 0); 5208 err = 0; 5209 5210 out: 5211 return err; 5212 } 5213 5214 /** 5215 * skb_checksum_setup - set up partial checksum offset 5216 * @skb: the skb to set up 5217 * @recalculate: if true the pseudo-header checksum will be recalculated 5218 */ 5219 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5220 { 5221 int err; 5222 5223 switch (skb->protocol) { 5224 case htons(ETH_P_IP): 5225 err = skb_checksum_setup_ipv4(skb, recalculate); 5226 break; 5227 5228 case htons(ETH_P_IPV6): 5229 err = skb_checksum_setup_ipv6(skb, recalculate); 5230 break; 5231 5232 default: 5233 err = -EPROTO; 5234 break; 5235 } 5236 5237 return err; 5238 } 5239 EXPORT_SYMBOL(skb_checksum_setup); 5240 5241 /** 5242 * skb_checksum_maybe_trim - maybe trims the given skb 5243 * @skb: the skb to check 5244 * @transport_len: the data length beyond the network header 5245 * 5246 * Checks whether the given skb has data beyond the given transport length. 5247 * If so, returns a cloned skb trimmed to this transport length. 5248 * Otherwise returns the provided skb. Returns NULL in error cases 5249 * (e.g. transport_len exceeds skb length or out-of-memory). 5250 * 5251 * Caller needs to set the skb transport header and free any returned skb if it 5252 * differs from the provided skb. 5253 */ 5254 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5255 unsigned int transport_len) 5256 { 5257 struct sk_buff *skb_chk; 5258 unsigned int len = skb_transport_offset(skb) + transport_len; 5259 int ret; 5260 5261 if (skb->len < len) 5262 return NULL; 5263 else if (skb->len == len) 5264 return skb; 5265 5266 skb_chk = skb_clone(skb, GFP_ATOMIC); 5267 if (!skb_chk) 5268 return NULL; 5269 5270 ret = pskb_trim_rcsum(skb_chk, len); 5271 if (ret) { 5272 kfree_skb(skb_chk); 5273 return NULL; 5274 } 5275 5276 return skb_chk; 5277 } 5278 5279 /** 5280 * skb_checksum_trimmed - validate checksum of an skb 5281 * @skb: the skb to check 5282 * @transport_len: the data length beyond the network header 5283 * @skb_chkf: checksum function to use 5284 * 5285 * Applies the given checksum function skb_chkf to the provided skb. 5286 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5287 * 5288 * If the skb has data beyond the given transport length, then a 5289 * trimmed & cloned skb is checked and returned. 5290 * 5291 * Caller needs to set the skb transport header and free any returned skb if it 5292 * differs from the provided skb. 5293 */ 5294 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5295 unsigned int transport_len, 5296 __sum16(*skb_chkf)(struct sk_buff *skb)) 5297 { 5298 struct sk_buff *skb_chk; 5299 unsigned int offset = skb_transport_offset(skb); 5300 __sum16 ret; 5301 5302 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5303 if (!skb_chk) 5304 goto err; 5305 5306 if (!pskb_may_pull(skb_chk, offset)) 5307 goto err; 5308 5309 skb_pull_rcsum(skb_chk, offset); 5310 ret = skb_chkf(skb_chk); 5311 skb_push_rcsum(skb_chk, offset); 5312 5313 if (ret) 5314 goto err; 5315 5316 return skb_chk; 5317 5318 err: 5319 if (skb_chk && skb_chk != skb) 5320 kfree_skb(skb_chk); 5321 5322 return NULL; 5323 5324 } 5325 EXPORT_SYMBOL(skb_checksum_trimmed); 5326 5327 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5328 { 5329 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5330 skb->dev->name); 5331 } 5332 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5333 5334 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5335 { 5336 if (head_stolen) { 5337 skb_release_head_state(skb); 5338 kmem_cache_free(skbuff_head_cache, skb); 5339 } else { 5340 __kfree_skb(skb); 5341 } 5342 } 5343 EXPORT_SYMBOL(kfree_skb_partial); 5344 5345 /** 5346 * skb_try_coalesce - try to merge skb to prior one 5347 * @to: prior buffer 5348 * @from: buffer to add 5349 * @fragstolen: pointer to boolean 5350 * @delta_truesize: how much more was allocated than was requested 5351 */ 5352 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5353 bool *fragstolen, int *delta_truesize) 5354 { 5355 struct skb_shared_info *to_shinfo, *from_shinfo; 5356 int i, delta, len = from->len; 5357 5358 *fragstolen = false; 5359 5360 if (skb_cloned(to)) 5361 return false; 5362 5363 /* The page pool signature of struct page will eventually figure out 5364 * which pages can be recycled or not but for now let's prohibit slab 5365 * allocated and page_pool allocated SKBs from being coalesced. 5366 */ 5367 if (to->pp_recycle != from->pp_recycle) 5368 return false; 5369 5370 if (len <= skb_tailroom(to)) { 5371 if (len) 5372 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5373 *delta_truesize = 0; 5374 return true; 5375 } 5376 5377 to_shinfo = skb_shinfo(to); 5378 from_shinfo = skb_shinfo(from); 5379 if (to_shinfo->frag_list || from_shinfo->frag_list) 5380 return false; 5381 if (skb_zcopy(to) || skb_zcopy(from)) 5382 return false; 5383 5384 if (skb_headlen(from) != 0) { 5385 struct page *page; 5386 unsigned int offset; 5387 5388 if (to_shinfo->nr_frags + 5389 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5390 return false; 5391 5392 if (skb_head_is_locked(from)) 5393 return false; 5394 5395 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5396 5397 page = virt_to_head_page(from->head); 5398 offset = from->data - (unsigned char *)page_address(page); 5399 5400 skb_fill_page_desc(to, to_shinfo->nr_frags, 5401 page, offset, skb_headlen(from)); 5402 *fragstolen = true; 5403 } else { 5404 if (to_shinfo->nr_frags + 5405 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5406 return false; 5407 5408 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5409 } 5410 5411 WARN_ON_ONCE(delta < len); 5412 5413 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5414 from_shinfo->frags, 5415 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5416 to_shinfo->nr_frags += from_shinfo->nr_frags; 5417 5418 if (!skb_cloned(from)) 5419 from_shinfo->nr_frags = 0; 5420 5421 /* if the skb is not cloned this does nothing 5422 * since we set nr_frags to 0. 5423 */ 5424 for (i = 0; i < from_shinfo->nr_frags; i++) 5425 __skb_frag_ref(&from_shinfo->frags[i]); 5426 5427 to->truesize += delta; 5428 to->len += len; 5429 to->data_len += len; 5430 5431 *delta_truesize = delta; 5432 return true; 5433 } 5434 EXPORT_SYMBOL(skb_try_coalesce); 5435 5436 /** 5437 * skb_scrub_packet - scrub an skb 5438 * 5439 * @skb: buffer to clean 5440 * @xnet: packet is crossing netns 5441 * 5442 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5443 * into/from a tunnel. Some information have to be cleared during these 5444 * operations. 5445 * skb_scrub_packet can also be used to clean a skb before injecting it in 5446 * another namespace (@xnet == true). We have to clear all information in the 5447 * skb that could impact namespace isolation. 5448 */ 5449 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5450 { 5451 skb->pkt_type = PACKET_HOST; 5452 skb->skb_iif = 0; 5453 skb->ignore_df = 0; 5454 skb_dst_drop(skb); 5455 skb_ext_reset(skb); 5456 nf_reset_ct(skb); 5457 nf_reset_trace(skb); 5458 5459 #ifdef CONFIG_NET_SWITCHDEV 5460 skb->offload_fwd_mark = 0; 5461 skb->offload_l3_fwd_mark = 0; 5462 #endif 5463 5464 if (!xnet) 5465 return; 5466 5467 ipvs_reset(skb); 5468 skb->mark = 0; 5469 skb->tstamp = 0; 5470 } 5471 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5472 5473 /** 5474 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5475 * 5476 * @skb: GSO skb 5477 * 5478 * skb_gso_transport_seglen is used to determine the real size of the 5479 * individual segments, including Layer4 headers (TCP/UDP). 5480 * 5481 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5482 */ 5483 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5484 { 5485 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5486 unsigned int thlen = 0; 5487 5488 if (skb->encapsulation) { 5489 thlen = skb_inner_transport_header(skb) - 5490 skb_transport_header(skb); 5491 5492 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5493 thlen += inner_tcp_hdrlen(skb); 5494 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5495 thlen = tcp_hdrlen(skb); 5496 } else if (unlikely(skb_is_gso_sctp(skb))) { 5497 thlen = sizeof(struct sctphdr); 5498 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5499 thlen = sizeof(struct udphdr); 5500 } 5501 /* UFO sets gso_size to the size of the fragmentation 5502 * payload, i.e. the size of the L4 (UDP) header is already 5503 * accounted for. 5504 */ 5505 return thlen + shinfo->gso_size; 5506 } 5507 5508 /** 5509 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5510 * 5511 * @skb: GSO skb 5512 * 5513 * skb_gso_network_seglen is used to determine the real size of the 5514 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5515 * 5516 * The MAC/L2 header is not accounted for. 5517 */ 5518 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5519 { 5520 unsigned int hdr_len = skb_transport_header(skb) - 5521 skb_network_header(skb); 5522 5523 return hdr_len + skb_gso_transport_seglen(skb); 5524 } 5525 5526 /** 5527 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5528 * 5529 * @skb: GSO skb 5530 * 5531 * skb_gso_mac_seglen is used to determine the real size of the 5532 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5533 * headers (TCP/UDP). 5534 */ 5535 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5536 { 5537 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5538 5539 return hdr_len + skb_gso_transport_seglen(skb); 5540 } 5541 5542 /** 5543 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5544 * 5545 * There are a couple of instances where we have a GSO skb, and we 5546 * want to determine what size it would be after it is segmented. 5547 * 5548 * We might want to check: 5549 * - L3+L4+payload size (e.g. IP forwarding) 5550 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5551 * 5552 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5553 * 5554 * @skb: GSO skb 5555 * 5556 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5557 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5558 * 5559 * @max_len: The maximum permissible length. 5560 * 5561 * Returns true if the segmented length <= max length. 5562 */ 5563 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5564 unsigned int seg_len, 5565 unsigned int max_len) { 5566 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5567 const struct sk_buff *iter; 5568 5569 if (shinfo->gso_size != GSO_BY_FRAGS) 5570 return seg_len <= max_len; 5571 5572 /* Undo this so we can re-use header sizes */ 5573 seg_len -= GSO_BY_FRAGS; 5574 5575 skb_walk_frags(skb, iter) { 5576 if (seg_len + skb_headlen(iter) > max_len) 5577 return false; 5578 } 5579 5580 return true; 5581 } 5582 5583 /** 5584 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5585 * 5586 * @skb: GSO skb 5587 * @mtu: MTU to validate against 5588 * 5589 * skb_gso_validate_network_len validates if a given skb will fit a 5590 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5591 * payload. 5592 */ 5593 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5594 { 5595 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5596 } 5597 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5598 5599 /** 5600 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5601 * 5602 * @skb: GSO skb 5603 * @len: length to validate against 5604 * 5605 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5606 * length once split, including L2, L3 and L4 headers and the payload. 5607 */ 5608 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5609 { 5610 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5611 } 5612 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5613 5614 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5615 { 5616 int mac_len, meta_len; 5617 void *meta; 5618 5619 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5620 kfree_skb(skb); 5621 return NULL; 5622 } 5623 5624 mac_len = skb->data - skb_mac_header(skb); 5625 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5626 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5627 mac_len - VLAN_HLEN - ETH_TLEN); 5628 } 5629 5630 meta_len = skb_metadata_len(skb); 5631 if (meta_len) { 5632 meta = skb_metadata_end(skb) - meta_len; 5633 memmove(meta + VLAN_HLEN, meta, meta_len); 5634 } 5635 5636 skb->mac_header += VLAN_HLEN; 5637 return skb; 5638 } 5639 5640 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5641 { 5642 struct vlan_hdr *vhdr; 5643 u16 vlan_tci; 5644 5645 if (unlikely(skb_vlan_tag_present(skb))) { 5646 /* vlan_tci is already set-up so leave this for another time */ 5647 return skb; 5648 } 5649 5650 skb = skb_share_check(skb, GFP_ATOMIC); 5651 if (unlikely(!skb)) 5652 goto err_free; 5653 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5654 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5655 goto err_free; 5656 5657 vhdr = (struct vlan_hdr *)skb->data; 5658 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5659 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5660 5661 skb_pull_rcsum(skb, VLAN_HLEN); 5662 vlan_set_encap_proto(skb, vhdr); 5663 5664 skb = skb_reorder_vlan_header(skb); 5665 if (unlikely(!skb)) 5666 goto err_free; 5667 5668 skb_reset_network_header(skb); 5669 if (!skb_transport_header_was_set(skb)) 5670 skb_reset_transport_header(skb); 5671 skb_reset_mac_len(skb); 5672 5673 return skb; 5674 5675 err_free: 5676 kfree_skb(skb); 5677 return NULL; 5678 } 5679 EXPORT_SYMBOL(skb_vlan_untag); 5680 5681 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5682 { 5683 if (!pskb_may_pull(skb, write_len)) 5684 return -ENOMEM; 5685 5686 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5687 return 0; 5688 5689 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5690 } 5691 EXPORT_SYMBOL(skb_ensure_writable); 5692 5693 /* remove VLAN header from packet and update csum accordingly. 5694 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5695 */ 5696 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5697 { 5698 struct vlan_hdr *vhdr; 5699 int offset = skb->data - skb_mac_header(skb); 5700 int err; 5701 5702 if (WARN_ONCE(offset, 5703 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5704 offset)) { 5705 return -EINVAL; 5706 } 5707 5708 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5709 if (unlikely(err)) 5710 return err; 5711 5712 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5713 5714 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5715 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5716 5717 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5718 __skb_pull(skb, VLAN_HLEN); 5719 5720 vlan_set_encap_proto(skb, vhdr); 5721 skb->mac_header += VLAN_HLEN; 5722 5723 if (skb_network_offset(skb) < ETH_HLEN) 5724 skb_set_network_header(skb, ETH_HLEN); 5725 5726 skb_reset_mac_len(skb); 5727 5728 return err; 5729 } 5730 EXPORT_SYMBOL(__skb_vlan_pop); 5731 5732 /* Pop a vlan tag either from hwaccel or from payload. 5733 * Expects skb->data at mac header. 5734 */ 5735 int skb_vlan_pop(struct sk_buff *skb) 5736 { 5737 u16 vlan_tci; 5738 __be16 vlan_proto; 5739 int err; 5740 5741 if (likely(skb_vlan_tag_present(skb))) { 5742 __vlan_hwaccel_clear_tag(skb); 5743 } else { 5744 if (unlikely(!eth_type_vlan(skb->protocol))) 5745 return 0; 5746 5747 err = __skb_vlan_pop(skb, &vlan_tci); 5748 if (err) 5749 return err; 5750 } 5751 /* move next vlan tag to hw accel tag */ 5752 if (likely(!eth_type_vlan(skb->protocol))) 5753 return 0; 5754 5755 vlan_proto = skb->protocol; 5756 err = __skb_vlan_pop(skb, &vlan_tci); 5757 if (unlikely(err)) 5758 return err; 5759 5760 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5761 return 0; 5762 } 5763 EXPORT_SYMBOL(skb_vlan_pop); 5764 5765 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5766 * Expects skb->data at mac header. 5767 */ 5768 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5769 { 5770 if (skb_vlan_tag_present(skb)) { 5771 int offset = skb->data - skb_mac_header(skb); 5772 int err; 5773 5774 if (WARN_ONCE(offset, 5775 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5776 offset)) { 5777 return -EINVAL; 5778 } 5779 5780 err = __vlan_insert_tag(skb, skb->vlan_proto, 5781 skb_vlan_tag_get(skb)); 5782 if (err) 5783 return err; 5784 5785 skb->protocol = skb->vlan_proto; 5786 skb->mac_len += VLAN_HLEN; 5787 5788 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5789 } 5790 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5791 return 0; 5792 } 5793 EXPORT_SYMBOL(skb_vlan_push); 5794 5795 /** 5796 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5797 * 5798 * @skb: Socket buffer to modify 5799 * 5800 * Drop the Ethernet header of @skb. 5801 * 5802 * Expects that skb->data points to the mac header and that no VLAN tags are 5803 * present. 5804 * 5805 * Returns 0 on success, -errno otherwise. 5806 */ 5807 int skb_eth_pop(struct sk_buff *skb) 5808 { 5809 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5810 skb_network_offset(skb) < ETH_HLEN) 5811 return -EPROTO; 5812 5813 skb_pull_rcsum(skb, ETH_HLEN); 5814 skb_reset_mac_header(skb); 5815 skb_reset_mac_len(skb); 5816 5817 return 0; 5818 } 5819 EXPORT_SYMBOL(skb_eth_pop); 5820 5821 /** 5822 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5823 * 5824 * @skb: Socket buffer to modify 5825 * @dst: Destination MAC address of the new header 5826 * @src: Source MAC address of the new header 5827 * 5828 * Prepend @skb with a new Ethernet header. 5829 * 5830 * Expects that skb->data points to the mac header, which must be empty. 5831 * 5832 * Returns 0 on success, -errno otherwise. 5833 */ 5834 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5835 const unsigned char *src) 5836 { 5837 struct ethhdr *eth; 5838 int err; 5839 5840 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5841 return -EPROTO; 5842 5843 err = skb_cow_head(skb, sizeof(*eth)); 5844 if (err < 0) 5845 return err; 5846 5847 skb_push(skb, sizeof(*eth)); 5848 skb_reset_mac_header(skb); 5849 skb_reset_mac_len(skb); 5850 5851 eth = eth_hdr(skb); 5852 ether_addr_copy(eth->h_dest, dst); 5853 ether_addr_copy(eth->h_source, src); 5854 eth->h_proto = skb->protocol; 5855 5856 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5857 5858 return 0; 5859 } 5860 EXPORT_SYMBOL(skb_eth_push); 5861 5862 /* Update the ethertype of hdr and the skb csum value if required. */ 5863 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5864 __be16 ethertype) 5865 { 5866 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5867 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5868 5869 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5870 } 5871 5872 hdr->h_proto = ethertype; 5873 } 5874 5875 /** 5876 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5877 * the packet 5878 * 5879 * @skb: buffer 5880 * @mpls_lse: MPLS label stack entry to push 5881 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5882 * @mac_len: length of the MAC header 5883 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5884 * ethernet 5885 * 5886 * Expects skb->data at mac header. 5887 * 5888 * Returns 0 on success, -errno otherwise. 5889 */ 5890 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5891 int mac_len, bool ethernet) 5892 { 5893 struct mpls_shim_hdr *lse; 5894 int err; 5895 5896 if (unlikely(!eth_p_mpls(mpls_proto))) 5897 return -EINVAL; 5898 5899 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5900 if (skb->encapsulation) 5901 return -EINVAL; 5902 5903 err = skb_cow_head(skb, MPLS_HLEN); 5904 if (unlikely(err)) 5905 return err; 5906 5907 if (!skb->inner_protocol) { 5908 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5909 skb_set_inner_protocol(skb, skb->protocol); 5910 } 5911 5912 skb_push(skb, MPLS_HLEN); 5913 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5914 mac_len); 5915 skb_reset_mac_header(skb); 5916 skb_set_network_header(skb, mac_len); 5917 skb_reset_mac_len(skb); 5918 5919 lse = mpls_hdr(skb); 5920 lse->label_stack_entry = mpls_lse; 5921 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5922 5923 if (ethernet && mac_len >= ETH_HLEN) 5924 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5925 skb->protocol = mpls_proto; 5926 5927 return 0; 5928 } 5929 EXPORT_SYMBOL_GPL(skb_mpls_push); 5930 5931 /** 5932 * skb_mpls_pop() - pop the outermost MPLS header 5933 * 5934 * @skb: buffer 5935 * @next_proto: ethertype of header after popped MPLS header 5936 * @mac_len: length of the MAC header 5937 * @ethernet: flag to indicate if the packet is ethernet 5938 * 5939 * Expects skb->data at mac header. 5940 * 5941 * Returns 0 on success, -errno otherwise. 5942 */ 5943 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5944 bool ethernet) 5945 { 5946 int err; 5947 5948 if (unlikely(!eth_p_mpls(skb->protocol))) 5949 return 0; 5950 5951 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5952 if (unlikely(err)) 5953 return err; 5954 5955 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5956 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5957 mac_len); 5958 5959 __skb_pull(skb, MPLS_HLEN); 5960 skb_reset_mac_header(skb); 5961 skb_set_network_header(skb, mac_len); 5962 5963 if (ethernet && mac_len >= ETH_HLEN) { 5964 struct ethhdr *hdr; 5965 5966 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5967 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5968 skb_mod_eth_type(skb, hdr, next_proto); 5969 } 5970 skb->protocol = next_proto; 5971 5972 return 0; 5973 } 5974 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5975 5976 /** 5977 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5978 * 5979 * @skb: buffer 5980 * @mpls_lse: new MPLS label stack entry to update to 5981 * 5982 * Expects skb->data at mac header. 5983 * 5984 * Returns 0 on success, -errno otherwise. 5985 */ 5986 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5987 { 5988 int err; 5989 5990 if (unlikely(!eth_p_mpls(skb->protocol))) 5991 return -EINVAL; 5992 5993 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5994 if (unlikely(err)) 5995 return err; 5996 5997 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5998 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5999 6000 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6001 } 6002 6003 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6004 6005 return 0; 6006 } 6007 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6008 6009 /** 6010 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6011 * 6012 * @skb: buffer 6013 * 6014 * Expects skb->data at mac header. 6015 * 6016 * Returns 0 on success, -errno otherwise. 6017 */ 6018 int skb_mpls_dec_ttl(struct sk_buff *skb) 6019 { 6020 u32 lse; 6021 u8 ttl; 6022 6023 if (unlikely(!eth_p_mpls(skb->protocol))) 6024 return -EINVAL; 6025 6026 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6027 return -ENOMEM; 6028 6029 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6030 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6031 if (!--ttl) 6032 return -EINVAL; 6033 6034 lse &= ~MPLS_LS_TTL_MASK; 6035 lse |= ttl << MPLS_LS_TTL_SHIFT; 6036 6037 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6038 } 6039 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6040 6041 /** 6042 * alloc_skb_with_frags - allocate skb with page frags 6043 * 6044 * @header_len: size of linear part 6045 * @data_len: needed length in frags 6046 * @max_page_order: max page order desired. 6047 * @errcode: pointer to error code if any 6048 * @gfp_mask: allocation mask 6049 * 6050 * This can be used to allocate a paged skb, given a maximal order for frags. 6051 */ 6052 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6053 unsigned long data_len, 6054 int max_page_order, 6055 int *errcode, 6056 gfp_t gfp_mask) 6057 { 6058 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6059 unsigned long chunk; 6060 struct sk_buff *skb; 6061 struct page *page; 6062 int i; 6063 6064 *errcode = -EMSGSIZE; 6065 /* Note this test could be relaxed, if we succeed to allocate 6066 * high order pages... 6067 */ 6068 if (npages > MAX_SKB_FRAGS) 6069 return NULL; 6070 6071 *errcode = -ENOBUFS; 6072 skb = alloc_skb(header_len, gfp_mask); 6073 if (!skb) 6074 return NULL; 6075 6076 skb->truesize += npages << PAGE_SHIFT; 6077 6078 for (i = 0; npages > 0; i++) { 6079 int order = max_page_order; 6080 6081 while (order) { 6082 if (npages >= 1 << order) { 6083 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6084 __GFP_COMP | 6085 __GFP_NOWARN, 6086 order); 6087 if (page) 6088 goto fill_page; 6089 /* Do not retry other high order allocations */ 6090 order = 1; 6091 max_page_order = 0; 6092 } 6093 order--; 6094 } 6095 page = alloc_page(gfp_mask); 6096 if (!page) 6097 goto failure; 6098 fill_page: 6099 chunk = min_t(unsigned long, data_len, 6100 PAGE_SIZE << order); 6101 skb_fill_page_desc(skb, i, page, 0, chunk); 6102 data_len -= chunk; 6103 npages -= 1 << order; 6104 } 6105 return skb; 6106 6107 failure: 6108 kfree_skb(skb); 6109 return NULL; 6110 } 6111 EXPORT_SYMBOL(alloc_skb_with_frags); 6112 6113 /* carve out the first off bytes from skb when off < headlen */ 6114 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6115 const int headlen, gfp_t gfp_mask) 6116 { 6117 int i; 6118 int size = skb_end_offset(skb); 6119 int new_hlen = headlen - off; 6120 u8 *data; 6121 6122 size = SKB_DATA_ALIGN(size); 6123 6124 if (skb_pfmemalloc(skb)) 6125 gfp_mask |= __GFP_MEMALLOC; 6126 data = kmalloc_reserve(size + 6127 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6128 gfp_mask, NUMA_NO_NODE, NULL); 6129 if (!data) 6130 return -ENOMEM; 6131 6132 size = SKB_WITH_OVERHEAD(ksize(data)); 6133 6134 /* Copy real data, and all frags */ 6135 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6136 skb->len -= off; 6137 6138 memcpy((struct skb_shared_info *)(data + size), 6139 skb_shinfo(skb), 6140 offsetof(struct skb_shared_info, 6141 frags[skb_shinfo(skb)->nr_frags])); 6142 if (skb_cloned(skb)) { 6143 /* drop the old head gracefully */ 6144 if (skb_orphan_frags(skb, gfp_mask)) { 6145 kfree(data); 6146 return -ENOMEM; 6147 } 6148 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6149 skb_frag_ref(skb, i); 6150 if (skb_has_frag_list(skb)) 6151 skb_clone_fraglist(skb); 6152 skb_release_data(skb); 6153 } else { 6154 /* we can reuse existing recount- all we did was 6155 * relocate values 6156 */ 6157 skb_free_head(skb); 6158 } 6159 6160 skb->head = data; 6161 skb->data = data; 6162 skb->head_frag = 0; 6163 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6164 skb->end = size; 6165 #else 6166 skb->end = skb->head + size; 6167 #endif 6168 skb_set_tail_pointer(skb, skb_headlen(skb)); 6169 skb_headers_offset_update(skb, 0); 6170 skb->cloned = 0; 6171 skb->hdr_len = 0; 6172 skb->nohdr = 0; 6173 atomic_set(&skb_shinfo(skb)->dataref, 1); 6174 6175 return 0; 6176 } 6177 6178 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6179 6180 /* carve out the first eat bytes from skb's frag_list. May recurse into 6181 * pskb_carve() 6182 */ 6183 static int pskb_carve_frag_list(struct sk_buff *skb, 6184 struct skb_shared_info *shinfo, int eat, 6185 gfp_t gfp_mask) 6186 { 6187 struct sk_buff *list = shinfo->frag_list; 6188 struct sk_buff *clone = NULL; 6189 struct sk_buff *insp = NULL; 6190 6191 do { 6192 if (!list) { 6193 pr_err("Not enough bytes to eat. Want %d\n", eat); 6194 return -EFAULT; 6195 } 6196 if (list->len <= eat) { 6197 /* Eaten as whole. */ 6198 eat -= list->len; 6199 list = list->next; 6200 insp = list; 6201 } else { 6202 /* Eaten partially. */ 6203 if (skb_shared(list)) { 6204 clone = skb_clone(list, gfp_mask); 6205 if (!clone) 6206 return -ENOMEM; 6207 insp = list->next; 6208 list = clone; 6209 } else { 6210 /* This may be pulled without problems. */ 6211 insp = list; 6212 } 6213 if (pskb_carve(list, eat, gfp_mask) < 0) { 6214 kfree_skb(clone); 6215 return -ENOMEM; 6216 } 6217 break; 6218 } 6219 } while (eat); 6220 6221 /* Free pulled out fragments. */ 6222 while ((list = shinfo->frag_list) != insp) { 6223 shinfo->frag_list = list->next; 6224 kfree_skb(list); 6225 } 6226 /* And insert new clone at head. */ 6227 if (clone) { 6228 clone->next = list; 6229 shinfo->frag_list = clone; 6230 } 6231 return 0; 6232 } 6233 6234 /* carve off first len bytes from skb. Split line (off) is in the 6235 * non-linear part of skb 6236 */ 6237 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6238 int pos, gfp_t gfp_mask) 6239 { 6240 int i, k = 0; 6241 int size = skb_end_offset(skb); 6242 u8 *data; 6243 const int nfrags = skb_shinfo(skb)->nr_frags; 6244 struct skb_shared_info *shinfo; 6245 6246 size = SKB_DATA_ALIGN(size); 6247 6248 if (skb_pfmemalloc(skb)) 6249 gfp_mask |= __GFP_MEMALLOC; 6250 data = kmalloc_reserve(size + 6251 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6252 gfp_mask, NUMA_NO_NODE, NULL); 6253 if (!data) 6254 return -ENOMEM; 6255 6256 size = SKB_WITH_OVERHEAD(ksize(data)); 6257 6258 memcpy((struct skb_shared_info *)(data + size), 6259 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6260 if (skb_orphan_frags(skb, gfp_mask)) { 6261 kfree(data); 6262 return -ENOMEM; 6263 } 6264 shinfo = (struct skb_shared_info *)(data + size); 6265 for (i = 0; i < nfrags; i++) { 6266 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6267 6268 if (pos + fsize > off) { 6269 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6270 6271 if (pos < off) { 6272 /* Split frag. 6273 * We have two variants in this case: 6274 * 1. Move all the frag to the second 6275 * part, if it is possible. F.e. 6276 * this approach is mandatory for TUX, 6277 * where splitting is expensive. 6278 * 2. Split is accurately. We make this. 6279 */ 6280 skb_frag_off_add(&shinfo->frags[0], off - pos); 6281 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6282 } 6283 skb_frag_ref(skb, i); 6284 k++; 6285 } 6286 pos += fsize; 6287 } 6288 shinfo->nr_frags = k; 6289 if (skb_has_frag_list(skb)) 6290 skb_clone_fraglist(skb); 6291 6292 /* split line is in frag list */ 6293 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6294 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6295 if (skb_has_frag_list(skb)) 6296 kfree_skb_list(skb_shinfo(skb)->frag_list); 6297 kfree(data); 6298 return -ENOMEM; 6299 } 6300 skb_release_data(skb); 6301 6302 skb->head = data; 6303 skb->head_frag = 0; 6304 skb->data = data; 6305 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6306 skb->end = size; 6307 #else 6308 skb->end = skb->head + size; 6309 #endif 6310 skb_reset_tail_pointer(skb); 6311 skb_headers_offset_update(skb, 0); 6312 skb->cloned = 0; 6313 skb->hdr_len = 0; 6314 skb->nohdr = 0; 6315 skb->len -= off; 6316 skb->data_len = skb->len; 6317 atomic_set(&skb_shinfo(skb)->dataref, 1); 6318 return 0; 6319 } 6320 6321 /* remove len bytes from the beginning of the skb */ 6322 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6323 { 6324 int headlen = skb_headlen(skb); 6325 6326 if (len < headlen) 6327 return pskb_carve_inside_header(skb, len, headlen, gfp); 6328 else 6329 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6330 } 6331 6332 /* Extract to_copy bytes starting at off from skb, and return this in 6333 * a new skb 6334 */ 6335 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6336 int to_copy, gfp_t gfp) 6337 { 6338 struct sk_buff *clone = skb_clone(skb, gfp); 6339 6340 if (!clone) 6341 return NULL; 6342 6343 if (pskb_carve(clone, off, gfp) < 0 || 6344 pskb_trim(clone, to_copy)) { 6345 kfree_skb(clone); 6346 return NULL; 6347 } 6348 return clone; 6349 } 6350 EXPORT_SYMBOL(pskb_extract); 6351 6352 /** 6353 * skb_condense - try to get rid of fragments/frag_list if possible 6354 * @skb: buffer 6355 * 6356 * Can be used to save memory before skb is added to a busy queue. 6357 * If packet has bytes in frags and enough tail room in skb->head, 6358 * pull all of them, so that we can free the frags right now and adjust 6359 * truesize. 6360 * Notes: 6361 * We do not reallocate skb->head thus can not fail. 6362 * Caller must re-evaluate skb->truesize if needed. 6363 */ 6364 void skb_condense(struct sk_buff *skb) 6365 { 6366 if (skb->data_len) { 6367 if (skb->data_len > skb->end - skb->tail || 6368 skb_cloned(skb)) 6369 return; 6370 6371 /* Nice, we can free page frag(s) right now */ 6372 __pskb_pull_tail(skb, skb->data_len); 6373 } 6374 /* At this point, skb->truesize might be over estimated, 6375 * because skb had a fragment, and fragments do not tell 6376 * their truesize. 6377 * When we pulled its content into skb->head, fragment 6378 * was freed, but __pskb_pull_tail() could not possibly 6379 * adjust skb->truesize, not knowing the frag truesize. 6380 */ 6381 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6382 } 6383 6384 #ifdef CONFIG_SKB_EXTENSIONS 6385 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6386 { 6387 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6388 } 6389 6390 /** 6391 * __skb_ext_alloc - allocate a new skb extensions storage 6392 * 6393 * @flags: See kmalloc(). 6394 * 6395 * Returns the newly allocated pointer. The pointer can later attached to a 6396 * skb via __skb_ext_set(). 6397 * Note: caller must handle the skb_ext as an opaque data. 6398 */ 6399 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6400 { 6401 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6402 6403 if (new) { 6404 memset(new->offset, 0, sizeof(new->offset)); 6405 refcount_set(&new->refcnt, 1); 6406 } 6407 6408 return new; 6409 } 6410 6411 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6412 unsigned int old_active) 6413 { 6414 struct skb_ext *new; 6415 6416 if (refcount_read(&old->refcnt) == 1) 6417 return old; 6418 6419 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6420 if (!new) 6421 return NULL; 6422 6423 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6424 refcount_set(&new->refcnt, 1); 6425 6426 #ifdef CONFIG_XFRM 6427 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6428 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6429 unsigned int i; 6430 6431 for (i = 0; i < sp->len; i++) 6432 xfrm_state_hold(sp->xvec[i]); 6433 } 6434 #endif 6435 __skb_ext_put(old); 6436 return new; 6437 } 6438 6439 /** 6440 * __skb_ext_set - attach the specified extension storage to this skb 6441 * @skb: buffer 6442 * @id: extension id 6443 * @ext: extension storage previously allocated via __skb_ext_alloc() 6444 * 6445 * Existing extensions, if any, are cleared. 6446 * 6447 * Returns the pointer to the extension. 6448 */ 6449 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6450 struct skb_ext *ext) 6451 { 6452 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6453 6454 skb_ext_put(skb); 6455 newlen = newoff + skb_ext_type_len[id]; 6456 ext->chunks = newlen; 6457 ext->offset[id] = newoff; 6458 skb->extensions = ext; 6459 skb->active_extensions = 1 << id; 6460 return skb_ext_get_ptr(ext, id); 6461 } 6462 6463 /** 6464 * skb_ext_add - allocate space for given extension, COW if needed 6465 * @skb: buffer 6466 * @id: extension to allocate space for 6467 * 6468 * Allocates enough space for the given extension. 6469 * If the extension is already present, a pointer to that extension 6470 * is returned. 6471 * 6472 * If the skb was cloned, COW applies and the returned memory can be 6473 * modified without changing the extension space of clones buffers. 6474 * 6475 * Returns pointer to the extension or NULL on allocation failure. 6476 */ 6477 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6478 { 6479 struct skb_ext *new, *old = NULL; 6480 unsigned int newlen, newoff; 6481 6482 if (skb->active_extensions) { 6483 old = skb->extensions; 6484 6485 new = skb_ext_maybe_cow(old, skb->active_extensions); 6486 if (!new) 6487 return NULL; 6488 6489 if (__skb_ext_exist(new, id)) 6490 goto set_active; 6491 6492 newoff = new->chunks; 6493 } else { 6494 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6495 6496 new = __skb_ext_alloc(GFP_ATOMIC); 6497 if (!new) 6498 return NULL; 6499 } 6500 6501 newlen = newoff + skb_ext_type_len[id]; 6502 new->chunks = newlen; 6503 new->offset[id] = newoff; 6504 set_active: 6505 skb->slow_gro = 1; 6506 skb->extensions = new; 6507 skb->active_extensions |= 1 << id; 6508 return skb_ext_get_ptr(new, id); 6509 } 6510 EXPORT_SYMBOL(skb_ext_add); 6511 6512 #ifdef CONFIG_XFRM 6513 static void skb_ext_put_sp(struct sec_path *sp) 6514 { 6515 unsigned int i; 6516 6517 for (i = 0; i < sp->len; i++) 6518 xfrm_state_put(sp->xvec[i]); 6519 } 6520 #endif 6521 6522 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6523 { 6524 struct skb_ext *ext = skb->extensions; 6525 6526 skb->active_extensions &= ~(1 << id); 6527 if (skb->active_extensions == 0) { 6528 skb->extensions = NULL; 6529 __skb_ext_put(ext); 6530 #ifdef CONFIG_XFRM 6531 } else if (id == SKB_EXT_SEC_PATH && 6532 refcount_read(&ext->refcnt) == 1) { 6533 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6534 6535 skb_ext_put_sp(sp); 6536 sp->len = 0; 6537 #endif 6538 } 6539 } 6540 EXPORT_SYMBOL(__skb_ext_del); 6541 6542 void __skb_ext_put(struct skb_ext *ext) 6543 { 6544 /* If this is last clone, nothing can increment 6545 * it after check passes. Avoids one atomic op. 6546 */ 6547 if (refcount_read(&ext->refcnt) == 1) 6548 goto free_now; 6549 6550 if (!refcount_dec_and_test(&ext->refcnt)) 6551 return; 6552 free_now: 6553 #ifdef CONFIG_XFRM 6554 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6555 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6556 #endif 6557 6558 kmem_cache_free(skbuff_ext_cache, ext); 6559 } 6560 EXPORT_SYMBOL(__skb_ext_put); 6561 #endif /* CONFIG_SKB_EXTENSIONS */ 6562