1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 out: 253 return skb; 254 nodata: 255 kmem_cache_free(cache, skb); 256 skb = NULL; 257 goto out; 258 } 259 EXPORT_SYMBOL(__alloc_skb); 260 261 /* Caller must provide SKB that is memset cleared */ 262 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 263 void *data, unsigned int frag_size) 264 { 265 struct skb_shared_info *shinfo; 266 unsigned int size = frag_size ? : ksize(data); 267 268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 269 270 /* Assumes caller memset cleared SKB */ 271 skb->truesize = SKB_TRUESIZE(size); 272 refcount_set(&skb->users, 1); 273 skb->head = data; 274 skb->data = data; 275 skb_reset_tail_pointer(skb); 276 skb->end = skb->tail + size; 277 skb->mac_header = (typeof(skb->mac_header))~0U; 278 skb->transport_header = (typeof(skb->transport_header))~0U; 279 280 /* make sure we initialize shinfo sequentially */ 281 shinfo = skb_shinfo(skb); 282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 283 atomic_set(&shinfo->dataref, 1); 284 285 return skb; 286 } 287 288 /** 289 * __build_skb - build a network buffer 290 * @data: data buffer provided by caller 291 * @frag_size: size of data, or 0 if head was kmalloced 292 * 293 * Allocate a new &sk_buff. Caller provides space holding head and 294 * skb_shared_info. @data must have been allocated by kmalloc() only if 295 * @frag_size is 0, otherwise data should come from the page allocator 296 * or vmalloc() 297 * The return is the new skb buffer. 298 * On a failure the return is %NULL, and @data is not freed. 299 * Notes : 300 * Before IO, driver allocates only data buffer where NIC put incoming frame 301 * Driver should add room at head (NET_SKB_PAD) and 302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 304 * before giving packet to stack. 305 * RX rings only contains data buffers, not full skbs. 306 */ 307 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 308 { 309 struct sk_buff *skb; 310 311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 312 if (unlikely(!skb)) 313 return NULL; 314 315 memset(skb, 0, offsetof(struct sk_buff, tail)); 316 317 return __build_skb_around(skb, data, frag_size); 318 } 319 320 /* build_skb() is wrapper over __build_skb(), that specifically 321 * takes care of skb->head and skb->pfmemalloc 322 * This means that if @frag_size is not zero, then @data must be backed 323 * by a page fragment, not kmalloc() or vmalloc() 324 */ 325 struct sk_buff *build_skb(void *data, unsigned int frag_size) 326 { 327 struct sk_buff *skb = __build_skb(data, frag_size); 328 329 if (skb && frag_size) { 330 skb->head_frag = 1; 331 if (page_is_pfmemalloc(virt_to_head_page(data))) 332 skb->pfmemalloc = 1; 333 } 334 return skb; 335 } 336 EXPORT_SYMBOL(build_skb); 337 338 /** 339 * build_skb_around - build a network buffer around provided skb 340 * @skb: sk_buff provide by caller, must be memset cleared 341 * @data: data buffer provided by caller 342 * @frag_size: size of data, or 0 if head was kmalloced 343 */ 344 struct sk_buff *build_skb_around(struct sk_buff *skb, 345 void *data, unsigned int frag_size) 346 { 347 if (unlikely(!skb)) 348 return NULL; 349 350 skb = __build_skb_around(skb, data, frag_size); 351 352 if (skb && frag_size) { 353 skb->head_frag = 1; 354 if (page_is_pfmemalloc(virt_to_head_page(data))) 355 skb->pfmemalloc = 1; 356 } 357 return skb; 358 } 359 EXPORT_SYMBOL(build_skb_around); 360 361 #define NAPI_SKB_CACHE_SIZE 64 362 363 struct napi_alloc_cache { 364 struct page_frag_cache page; 365 unsigned int skb_count; 366 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 367 }; 368 369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 371 372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 373 { 374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 375 376 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 377 } 378 379 void *napi_alloc_frag(unsigned int fragsz) 380 { 381 fragsz = SKB_DATA_ALIGN(fragsz); 382 383 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 384 } 385 EXPORT_SYMBOL(napi_alloc_frag); 386 387 /** 388 * netdev_alloc_frag - allocate a page fragment 389 * @fragsz: fragment size 390 * 391 * Allocates a frag from a page for receive buffer. 392 * Uses GFP_ATOMIC allocations. 393 */ 394 void *netdev_alloc_frag(unsigned int fragsz) 395 { 396 struct page_frag_cache *nc; 397 void *data; 398 399 fragsz = SKB_DATA_ALIGN(fragsz); 400 if (in_irq() || irqs_disabled()) { 401 nc = this_cpu_ptr(&netdev_alloc_cache); 402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 403 } else { 404 local_bh_disable(); 405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 406 local_bh_enable(); 407 } 408 return data; 409 } 410 EXPORT_SYMBOL(netdev_alloc_frag); 411 412 /** 413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 414 * @dev: network device to receive on 415 * @len: length to allocate 416 * @gfp_mask: get_free_pages mask, passed to alloc_skb 417 * 418 * Allocate a new &sk_buff and assign it a usage count of one. The 419 * buffer has NET_SKB_PAD headroom built in. Users should allocate 420 * the headroom they think they need without accounting for the 421 * built in space. The built in space is used for optimisations. 422 * 423 * %NULL is returned if there is no free memory. 424 */ 425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 426 gfp_t gfp_mask) 427 { 428 struct page_frag_cache *nc; 429 struct sk_buff *skb; 430 bool pfmemalloc; 431 void *data; 432 433 len += NET_SKB_PAD; 434 435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 438 if (!skb) 439 goto skb_fail; 440 goto skb_success; 441 } 442 443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 444 len = SKB_DATA_ALIGN(len); 445 446 if (sk_memalloc_socks()) 447 gfp_mask |= __GFP_MEMALLOC; 448 449 if (in_irq() || irqs_disabled()) { 450 nc = this_cpu_ptr(&netdev_alloc_cache); 451 data = page_frag_alloc(nc, len, gfp_mask); 452 pfmemalloc = nc->pfmemalloc; 453 } else { 454 local_bh_disable(); 455 nc = this_cpu_ptr(&napi_alloc_cache.page); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 local_bh_enable(); 459 } 460 461 if (unlikely(!data)) 462 return NULL; 463 464 skb = __build_skb(data, len); 465 if (unlikely(!skb)) { 466 skb_free_frag(data); 467 return NULL; 468 } 469 470 if (pfmemalloc) 471 skb->pfmemalloc = 1; 472 skb->head_frag = 1; 473 474 skb_success: 475 skb_reserve(skb, NET_SKB_PAD); 476 skb->dev = dev; 477 478 skb_fail: 479 return skb; 480 } 481 EXPORT_SYMBOL(__netdev_alloc_skb); 482 483 /** 484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 485 * @napi: napi instance this buffer was allocated for 486 * @len: length to allocate 487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 488 * 489 * Allocate a new sk_buff for use in NAPI receive. This buffer will 490 * attempt to allocate the head from a special reserved region used 491 * only for NAPI Rx allocation. By doing this we can save several 492 * CPU cycles by avoiding having to disable and re-enable IRQs. 493 * 494 * %NULL is returned if there is no free memory. 495 */ 496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 497 gfp_t gfp_mask) 498 { 499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 500 struct sk_buff *skb; 501 void *data; 502 503 len += NET_SKB_PAD + NET_IP_ALIGN; 504 505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 508 if (!skb) 509 goto skb_fail; 510 goto skb_success; 511 } 512 513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 514 len = SKB_DATA_ALIGN(len); 515 516 if (sk_memalloc_socks()) 517 gfp_mask |= __GFP_MEMALLOC; 518 519 data = page_frag_alloc(&nc->page, len, gfp_mask); 520 if (unlikely(!data)) 521 return NULL; 522 523 skb = __build_skb(data, len); 524 if (unlikely(!skb)) { 525 skb_free_frag(data); 526 return NULL; 527 } 528 529 if (nc->page.pfmemalloc) 530 skb->pfmemalloc = 1; 531 skb->head_frag = 1; 532 533 skb_success: 534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 535 skb->dev = napi->dev; 536 537 skb_fail: 538 return skb; 539 } 540 EXPORT_SYMBOL(__napi_alloc_skb); 541 542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 543 int size, unsigned int truesize) 544 { 545 skb_fill_page_desc(skb, i, page, off, size); 546 skb->len += size; 547 skb->data_len += size; 548 skb->truesize += truesize; 549 } 550 EXPORT_SYMBOL(skb_add_rx_frag); 551 552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 553 unsigned int truesize) 554 { 555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 556 557 skb_frag_size_add(frag, size); 558 skb->len += size; 559 skb->data_len += size; 560 skb->truesize += truesize; 561 } 562 EXPORT_SYMBOL(skb_coalesce_rx_frag); 563 564 static void skb_drop_list(struct sk_buff **listp) 565 { 566 kfree_skb_list(*listp); 567 *listp = NULL; 568 } 569 570 static inline void skb_drop_fraglist(struct sk_buff *skb) 571 { 572 skb_drop_list(&skb_shinfo(skb)->frag_list); 573 } 574 575 static void skb_clone_fraglist(struct sk_buff *skb) 576 { 577 struct sk_buff *list; 578 579 skb_walk_frags(skb, list) 580 skb_get(list); 581 } 582 583 static void skb_free_head(struct sk_buff *skb) 584 { 585 unsigned char *head = skb->head; 586 587 if (skb->head_frag) 588 skb_free_frag(head); 589 else 590 kfree(head); 591 } 592 593 static void skb_release_data(struct sk_buff *skb) 594 { 595 struct skb_shared_info *shinfo = skb_shinfo(skb); 596 int i; 597 598 if (skb->cloned && 599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 600 &shinfo->dataref)) 601 return; 602 603 for (i = 0; i < shinfo->nr_frags; i++) 604 __skb_frag_unref(&shinfo->frags[i]); 605 606 if (shinfo->frag_list) 607 kfree_skb_list(shinfo->frag_list); 608 609 skb_zcopy_clear(skb, true); 610 skb_free_head(skb); 611 } 612 613 /* 614 * Free an skbuff by memory without cleaning the state. 615 */ 616 static void kfree_skbmem(struct sk_buff *skb) 617 { 618 struct sk_buff_fclones *fclones; 619 620 switch (skb->fclone) { 621 case SKB_FCLONE_UNAVAILABLE: 622 kmem_cache_free(skbuff_head_cache, skb); 623 return; 624 625 case SKB_FCLONE_ORIG: 626 fclones = container_of(skb, struct sk_buff_fclones, skb1); 627 628 /* We usually free the clone (TX completion) before original skb 629 * This test would have no chance to be true for the clone, 630 * while here, branch prediction will be good. 631 */ 632 if (refcount_read(&fclones->fclone_ref) == 1) 633 goto fastpath; 634 break; 635 636 default: /* SKB_FCLONE_CLONE */ 637 fclones = container_of(skb, struct sk_buff_fclones, skb2); 638 break; 639 } 640 if (!refcount_dec_and_test(&fclones->fclone_ref)) 641 return; 642 fastpath: 643 kmem_cache_free(skbuff_fclone_cache, fclones); 644 } 645 646 void skb_release_head_state(struct sk_buff *skb) 647 { 648 skb_dst_drop(skb); 649 if (skb->destructor) { 650 WARN_ON(in_irq()); 651 skb->destructor(skb); 652 } 653 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 654 nf_conntrack_put(skb_nfct(skb)); 655 #endif 656 skb_ext_put(skb); 657 } 658 659 /* Free everything but the sk_buff shell. */ 660 static void skb_release_all(struct sk_buff *skb) 661 { 662 skb_release_head_state(skb); 663 if (likely(skb->head)) 664 skb_release_data(skb); 665 } 666 667 /** 668 * __kfree_skb - private function 669 * @skb: buffer 670 * 671 * Free an sk_buff. Release anything attached to the buffer. 672 * Clean the state. This is an internal helper function. Users should 673 * always call kfree_skb 674 */ 675 676 void __kfree_skb(struct sk_buff *skb) 677 { 678 skb_release_all(skb); 679 kfree_skbmem(skb); 680 } 681 EXPORT_SYMBOL(__kfree_skb); 682 683 /** 684 * kfree_skb - free an sk_buff 685 * @skb: buffer to free 686 * 687 * Drop a reference to the buffer and free it if the usage count has 688 * hit zero. 689 */ 690 void kfree_skb(struct sk_buff *skb) 691 { 692 if (!skb_unref(skb)) 693 return; 694 695 trace_kfree_skb(skb, __builtin_return_address(0)); 696 __kfree_skb(skb); 697 } 698 EXPORT_SYMBOL(kfree_skb); 699 700 void kfree_skb_list(struct sk_buff *segs) 701 { 702 while (segs) { 703 struct sk_buff *next = segs->next; 704 705 kfree_skb(segs); 706 segs = next; 707 } 708 } 709 EXPORT_SYMBOL(kfree_skb_list); 710 711 /* Dump skb information and contents. 712 * 713 * Must only be called from net_ratelimit()-ed paths. 714 * 715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise. 716 */ 717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 718 { 719 static atomic_t can_dump_full = ATOMIC_INIT(5); 720 struct skb_shared_info *sh = skb_shinfo(skb); 721 struct net_device *dev = skb->dev; 722 struct sock *sk = skb->sk; 723 struct sk_buff *list_skb; 724 bool has_mac, has_trans; 725 int headroom, tailroom; 726 int i, len, seg_len; 727 728 if (full_pkt) 729 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0; 730 731 if (full_pkt) 732 len = skb->len; 733 else 734 len = min_t(int, skb->len, MAX_HEADER + 128); 735 736 headroom = skb_headroom(skb); 737 tailroom = skb_tailroom(skb); 738 739 has_mac = skb_mac_header_was_set(skb); 740 has_trans = skb_transport_header_was_set(skb); 741 742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 743 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 747 level, skb->len, headroom, skb_headlen(skb), tailroom, 748 has_mac ? skb->mac_header : -1, 749 has_mac ? skb_mac_header_len(skb) : -1, 750 skb->network_header, 751 has_trans ? skb_network_header_len(skb) : -1, 752 has_trans ? skb->transport_header : -1, 753 sh->tx_flags, sh->nr_frags, 754 sh->gso_size, sh->gso_type, sh->gso_segs, 755 skb->csum, skb->ip_summed, skb->csum_complete_sw, 756 skb->csum_valid, skb->csum_level, 757 skb->hash, skb->sw_hash, skb->l4_hash, 758 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 759 760 if (dev) 761 printk("%sdev name=%s feat=0x%pNF\n", 762 level, dev->name, &dev->features); 763 if (sk) 764 printk("%ssk family=%hu type=%u proto=%u\n", 765 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 766 767 if (full_pkt && headroom) 768 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 769 16, 1, skb->head, headroom, false); 770 771 seg_len = min_t(int, skb_headlen(skb), len); 772 if (seg_len) 773 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 774 16, 1, skb->data, seg_len, false); 775 len -= seg_len; 776 777 if (full_pkt && tailroom) 778 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 779 16, 1, skb_tail_pointer(skb), tailroom, false); 780 781 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 783 u32 p_off, p_len, copied; 784 struct page *p; 785 u8 *vaddr; 786 787 skb_frag_foreach_page(frag, skb_frag_off(frag), 788 skb_frag_size(frag), p, p_off, p_len, 789 copied) { 790 seg_len = min_t(int, p_len, len); 791 vaddr = kmap_atomic(p); 792 print_hex_dump(level, "skb frag: ", 793 DUMP_PREFIX_OFFSET, 794 16, 1, vaddr + p_off, seg_len, false); 795 kunmap_atomic(vaddr); 796 len -= seg_len; 797 if (!len) 798 break; 799 } 800 } 801 802 if (full_pkt && skb_has_frag_list(skb)) { 803 printk("skb fraglist:\n"); 804 skb_walk_frags(skb, list_skb) 805 skb_dump(level, list_skb, true); 806 } 807 } 808 EXPORT_SYMBOL(skb_dump); 809 810 /** 811 * skb_tx_error - report an sk_buff xmit error 812 * @skb: buffer that triggered an error 813 * 814 * Report xmit error if a device callback is tracking this skb. 815 * skb must be freed afterwards. 816 */ 817 void skb_tx_error(struct sk_buff *skb) 818 { 819 skb_zcopy_clear(skb, true); 820 } 821 EXPORT_SYMBOL(skb_tx_error); 822 823 /** 824 * consume_skb - free an skbuff 825 * @skb: buffer to free 826 * 827 * Drop a ref to the buffer and free it if the usage count has hit zero 828 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 829 * is being dropped after a failure and notes that 830 */ 831 void consume_skb(struct sk_buff *skb) 832 { 833 if (!skb_unref(skb)) 834 return; 835 836 trace_consume_skb(skb); 837 __kfree_skb(skb); 838 } 839 EXPORT_SYMBOL(consume_skb); 840 841 /** 842 * consume_stateless_skb - free an skbuff, assuming it is stateless 843 * @skb: buffer to free 844 * 845 * Alike consume_skb(), but this variant assumes that this is the last 846 * skb reference and all the head states have been already dropped 847 */ 848 void __consume_stateless_skb(struct sk_buff *skb) 849 { 850 trace_consume_skb(skb); 851 skb_release_data(skb); 852 kfree_skbmem(skb); 853 } 854 855 void __kfree_skb_flush(void) 856 { 857 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 858 859 /* flush skb_cache if containing objects */ 860 if (nc->skb_count) { 861 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 862 nc->skb_cache); 863 nc->skb_count = 0; 864 } 865 } 866 867 static inline void _kfree_skb_defer(struct sk_buff *skb) 868 { 869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 870 871 /* drop skb->head and call any destructors for packet */ 872 skb_release_all(skb); 873 874 /* record skb to CPU local list */ 875 nc->skb_cache[nc->skb_count++] = skb; 876 877 #ifdef CONFIG_SLUB 878 /* SLUB writes into objects when freeing */ 879 prefetchw(skb); 880 #endif 881 882 /* flush skb_cache if it is filled */ 883 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 884 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 885 nc->skb_cache); 886 nc->skb_count = 0; 887 } 888 } 889 void __kfree_skb_defer(struct sk_buff *skb) 890 { 891 _kfree_skb_defer(skb); 892 } 893 894 void napi_consume_skb(struct sk_buff *skb, int budget) 895 { 896 if (unlikely(!skb)) 897 return; 898 899 /* Zero budget indicate non-NAPI context called us, like netpoll */ 900 if (unlikely(!budget)) { 901 dev_consume_skb_any(skb); 902 return; 903 } 904 905 if (!skb_unref(skb)) 906 return; 907 908 /* if reaching here SKB is ready to free */ 909 trace_consume_skb(skb); 910 911 /* if SKB is a clone, don't handle this case */ 912 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 913 __kfree_skb(skb); 914 return; 915 } 916 917 _kfree_skb_defer(skb); 918 } 919 EXPORT_SYMBOL(napi_consume_skb); 920 921 /* Make sure a field is enclosed inside headers_start/headers_end section */ 922 #define CHECK_SKB_FIELD(field) \ 923 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 924 offsetof(struct sk_buff, headers_start)); \ 925 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 926 offsetof(struct sk_buff, headers_end)); \ 927 928 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 929 { 930 new->tstamp = old->tstamp; 931 /* We do not copy old->sk */ 932 new->dev = old->dev; 933 memcpy(new->cb, old->cb, sizeof(old->cb)); 934 skb_dst_copy(new, old); 935 __skb_ext_copy(new, old); 936 __nf_copy(new, old, false); 937 938 /* Note : this field could be in headers_start/headers_end section 939 * It is not yet because we do not want to have a 16 bit hole 940 */ 941 new->queue_mapping = old->queue_mapping; 942 943 memcpy(&new->headers_start, &old->headers_start, 944 offsetof(struct sk_buff, headers_end) - 945 offsetof(struct sk_buff, headers_start)); 946 CHECK_SKB_FIELD(protocol); 947 CHECK_SKB_FIELD(csum); 948 CHECK_SKB_FIELD(hash); 949 CHECK_SKB_FIELD(priority); 950 CHECK_SKB_FIELD(skb_iif); 951 CHECK_SKB_FIELD(vlan_proto); 952 CHECK_SKB_FIELD(vlan_tci); 953 CHECK_SKB_FIELD(transport_header); 954 CHECK_SKB_FIELD(network_header); 955 CHECK_SKB_FIELD(mac_header); 956 CHECK_SKB_FIELD(inner_protocol); 957 CHECK_SKB_FIELD(inner_transport_header); 958 CHECK_SKB_FIELD(inner_network_header); 959 CHECK_SKB_FIELD(inner_mac_header); 960 CHECK_SKB_FIELD(mark); 961 #ifdef CONFIG_NETWORK_SECMARK 962 CHECK_SKB_FIELD(secmark); 963 #endif 964 #ifdef CONFIG_NET_RX_BUSY_POLL 965 CHECK_SKB_FIELD(napi_id); 966 #endif 967 #ifdef CONFIG_XPS 968 CHECK_SKB_FIELD(sender_cpu); 969 #endif 970 #ifdef CONFIG_NET_SCHED 971 CHECK_SKB_FIELD(tc_index); 972 #endif 973 974 } 975 976 /* 977 * You should not add any new code to this function. Add it to 978 * __copy_skb_header above instead. 979 */ 980 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 981 { 982 #define C(x) n->x = skb->x 983 984 n->next = n->prev = NULL; 985 n->sk = NULL; 986 __copy_skb_header(n, skb); 987 988 C(len); 989 C(data_len); 990 C(mac_len); 991 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 992 n->cloned = 1; 993 n->nohdr = 0; 994 n->peeked = 0; 995 C(pfmemalloc); 996 n->destructor = NULL; 997 C(tail); 998 C(end); 999 C(head); 1000 C(head_frag); 1001 C(data); 1002 C(truesize); 1003 refcount_set(&n->users, 1); 1004 1005 atomic_inc(&(skb_shinfo(skb)->dataref)); 1006 skb->cloned = 1; 1007 1008 return n; 1009 #undef C 1010 } 1011 1012 /** 1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1014 * @first: first sk_buff of the msg 1015 */ 1016 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1017 { 1018 struct sk_buff *n; 1019 1020 n = alloc_skb(0, GFP_ATOMIC); 1021 if (!n) 1022 return NULL; 1023 1024 n->len = first->len; 1025 n->data_len = first->len; 1026 n->truesize = first->truesize; 1027 1028 skb_shinfo(n)->frag_list = first; 1029 1030 __copy_skb_header(n, first); 1031 n->destructor = NULL; 1032 1033 return n; 1034 } 1035 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1036 1037 /** 1038 * skb_morph - morph one skb into another 1039 * @dst: the skb to receive the contents 1040 * @src: the skb to supply the contents 1041 * 1042 * This is identical to skb_clone except that the target skb is 1043 * supplied by the user. 1044 * 1045 * The target skb is returned upon exit. 1046 */ 1047 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1048 { 1049 skb_release_all(dst); 1050 return __skb_clone(dst, src); 1051 } 1052 EXPORT_SYMBOL_GPL(skb_morph); 1053 1054 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1055 { 1056 unsigned long max_pg, num_pg, new_pg, old_pg; 1057 struct user_struct *user; 1058 1059 if (capable(CAP_IPC_LOCK) || !size) 1060 return 0; 1061 1062 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1063 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1064 user = mmp->user ? : current_user(); 1065 1066 do { 1067 old_pg = atomic_long_read(&user->locked_vm); 1068 new_pg = old_pg + num_pg; 1069 if (new_pg > max_pg) 1070 return -ENOBUFS; 1071 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1072 old_pg); 1073 1074 if (!mmp->user) { 1075 mmp->user = get_uid(user); 1076 mmp->num_pg = num_pg; 1077 } else { 1078 mmp->num_pg += num_pg; 1079 } 1080 1081 return 0; 1082 } 1083 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1084 1085 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1086 { 1087 if (mmp->user) { 1088 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1089 free_uid(mmp->user); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1093 1094 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1095 { 1096 struct ubuf_info *uarg; 1097 struct sk_buff *skb; 1098 1099 WARN_ON_ONCE(!in_task()); 1100 1101 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1102 if (!skb) 1103 return NULL; 1104 1105 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1106 uarg = (void *)skb->cb; 1107 uarg->mmp.user = NULL; 1108 1109 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1110 kfree_skb(skb); 1111 return NULL; 1112 } 1113 1114 uarg->callback = sock_zerocopy_callback; 1115 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1116 uarg->len = 1; 1117 uarg->bytelen = size; 1118 uarg->zerocopy = 1; 1119 refcount_set(&uarg->refcnt, 1); 1120 sock_hold(sk); 1121 1122 return uarg; 1123 } 1124 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1125 1126 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1127 { 1128 return container_of((void *)uarg, struct sk_buff, cb); 1129 } 1130 1131 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1132 struct ubuf_info *uarg) 1133 { 1134 if (uarg) { 1135 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1136 u32 bytelen, next; 1137 1138 /* realloc only when socket is locked (TCP, UDP cork), 1139 * so uarg->len and sk_zckey access is serialized 1140 */ 1141 if (!sock_owned_by_user(sk)) { 1142 WARN_ON_ONCE(1); 1143 return NULL; 1144 } 1145 1146 bytelen = uarg->bytelen + size; 1147 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1148 /* TCP can create new skb to attach new uarg */ 1149 if (sk->sk_type == SOCK_STREAM) 1150 goto new_alloc; 1151 return NULL; 1152 } 1153 1154 next = (u32)atomic_read(&sk->sk_zckey); 1155 if ((u32)(uarg->id + uarg->len) == next) { 1156 if (mm_account_pinned_pages(&uarg->mmp, size)) 1157 return NULL; 1158 uarg->len++; 1159 uarg->bytelen = bytelen; 1160 atomic_set(&sk->sk_zckey, ++next); 1161 1162 /* no extra ref when appending to datagram (MSG_MORE) */ 1163 if (sk->sk_type == SOCK_STREAM) 1164 sock_zerocopy_get(uarg); 1165 1166 return uarg; 1167 } 1168 } 1169 1170 new_alloc: 1171 return sock_zerocopy_alloc(sk, size); 1172 } 1173 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1174 1175 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1176 { 1177 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1178 u32 old_lo, old_hi; 1179 u64 sum_len; 1180 1181 old_lo = serr->ee.ee_info; 1182 old_hi = serr->ee.ee_data; 1183 sum_len = old_hi - old_lo + 1ULL + len; 1184 1185 if (sum_len >= (1ULL << 32)) 1186 return false; 1187 1188 if (lo != old_hi + 1) 1189 return false; 1190 1191 serr->ee.ee_data += len; 1192 return true; 1193 } 1194 1195 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1196 { 1197 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1198 struct sock_exterr_skb *serr; 1199 struct sock *sk = skb->sk; 1200 struct sk_buff_head *q; 1201 unsigned long flags; 1202 u32 lo, hi; 1203 u16 len; 1204 1205 mm_unaccount_pinned_pages(&uarg->mmp); 1206 1207 /* if !len, there was only 1 call, and it was aborted 1208 * so do not queue a completion notification 1209 */ 1210 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1211 goto release; 1212 1213 len = uarg->len; 1214 lo = uarg->id; 1215 hi = uarg->id + len - 1; 1216 1217 serr = SKB_EXT_ERR(skb); 1218 memset(serr, 0, sizeof(*serr)); 1219 serr->ee.ee_errno = 0; 1220 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1221 serr->ee.ee_data = hi; 1222 serr->ee.ee_info = lo; 1223 if (!success) 1224 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1225 1226 q = &sk->sk_error_queue; 1227 spin_lock_irqsave(&q->lock, flags); 1228 tail = skb_peek_tail(q); 1229 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1230 !skb_zerocopy_notify_extend(tail, lo, len)) { 1231 __skb_queue_tail(q, skb); 1232 skb = NULL; 1233 } 1234 spin_unlock_irqrestore(&q->lock, flags); 1235 1236 sk->sk_error_report(sk); 1237 1238 release: 1239 consume_skb(skb); 1240 sock_put(sk); 1241 } 1242 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1243 1244 void sock_zerocopy_put(struct ubuf_info *uarg) 1245 { 1246 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1247 if (uarg->callback) 1248 uarg->callback(uarg, uarg->zerocopy); 1249 else 1250 consume_skb(skb_from_uarg(uarg)); 1251 } 1252 } 1253 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1254 1255 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1256 { 1257 if (uarg) { 1258 struct sock *sk = skb_from_uarg(uarg)->sk; 1259 1260 atomic_dec(&sk->sk_zckey); 1261 uarg->len--; 1262 1263 if (have_uref) 1264 sock_zerocopy_put(uarg); 1265 } 1266 } 1267 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1268 1269 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1270 { 1271 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1272 } 1273 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1274 1275 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1276 struct msghdr *msg, int len, 1277 struct ubuf_info *uarg) 1278 { 1279 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1280 struct iov_iter orig_iter = msg->msg_iter; 1281 int err, orig_len = skb->len; 1282 1283 /* An skb can only point to one uarg. This edge case happens when 1284 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1285 */ 1286 if (orig_uarg && uarg != orig_uarg) 1287 return -EEXIST; 1288 1289 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1290 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1291 struct sock *save_sk = skb->sk; 1292 1293 /* Streams do not free skb on error. Reset to prev state. */ 1294 msg->msg_iter = orig_iter; 1295 skb->sk = sk; 1296 ___pskb_trim(skb, orig_len); 1297 skb->sk = save_sk; 1298 return err; 1299 } 1300 1301 skb_zcopy_set(skb, uarg, NULL); 1302 return skb->len - orig_len; 1303 } 1304 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1305 1306 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1307 gfp_t gfp_mask) 1308 { 1309 if (skb_zcopy(orig)) { 1310 if (skb_zcopy(nskb)) { 1311 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1312 if (!gfp_mask) { 1313 WARN_ON_ONCE(1); 1314 return -ENOMEM; 1315 } 1316 if (skb_uarg(nskb) == skb_uarg(orig)) 1317 return 0; 1318 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1319 return -EIO; 1320 } 1321 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1322 } 1323 return 0; 1324 } 1325 1326 /** 1327 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1328 * @skb: the skb to modify 1329 * @gfp_mask: allocation priority 1330 * 1331 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1332 * It will copy all frags into kernel and drop the reference 1333 * to userspace pages. 1334 * 1335 * If this function is called from an interrupt gfp_mask() must be 1336 * %GFP_ATOMIC. 1337 * 1338 * Returns 0 on success or a negative error code on failure 1339 * to allocate kernel memory to copy to. 1340 */ 1341 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int num_frags = skb_shinfo(skb)->nr_frags; 1344 struct page *page, *head = NULL; 1345 int i, new_frags; 1346 u32 d_off; 1347 1348 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1349 return -EINVAL; 1350 1351 if (!num_frags) 1352 goto release; 1353 1354 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1355 for (i = 0; i < new_frags; i++) { 1356 page = alloc_page(gfp_mask); 1357 if (!page) { 1358 while (head) { 1359 struct page *next = (struct page *)page_private(head); 1360 put_page(head); 1361 head = next; 1362 } 1363 return -ENOMEM; 1364 } 1365 set_page_private(page, (unsigned long)head); 1366 head = page; 1367 } 1368 1369 page = head; 1370 d_off = 0; 1371 for (i = 0; i < num_frags; i++) { 1372 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1373 u32 p_off, p_len, copied; 1374 struct page *p; 1375 u8 *vaddr; 1376 1377 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1378 p, p_off, p_len, copied) { 1379 u32 copy, done = 0; 1380 vaddr = kmap_atomic(p); 1381 1382 while (done < p_len) { 1383 if (d_off == PAGE_SIZE) { 1384 d_off = 0; 1385 page = (struct page *)page_private(page); 1386 } 1387 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1388 memcpy(page_address(page) + d_off, 1389 vaddr + p_off + done, copy); 1390 done += copy; 1391 d_off += copy; 1392 } 1393 kunmap_atomic(vaddr); 1394 } 1395 } 1396 1397 /* skb frags release userspace buffers */ 1398 for (i = 0; i < num_frags; i++) 1399 skb_frag_unref(skb, i); 1400 1401 /* skb frags point to kernel buffers */ 1402 for (i = 0; i < new_frags - 1; i++) { 1403 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1404 head = (struct page *)page_private(head); 1405 } 1406 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1407 skb_shinfo(skb)->nr_frags = new_frags; 1408 1409 release: 1410 skb_zcopy_clear(skb, false); 1411 return 0; 1412 } 1413 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1414 1415 /** 1416 * skb_clone - duplicate an sk_buff 1417 * @skb: buffer to clone 1418 * @gfp_mask: allocation priority 1419 * 1420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1421 * copies share the same packet data but not structure. The new 1422 * buffer has a reference count of 1. If the allocation fails the 1423 * function returns %NULL otherwise the new buffer is returned. 1424 * 1425 * If this function is called from an interrupt gfp_mask() must be 1426 * %GFP_ATOMIC. 1427 */ 1428 1429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1430 { 1431 struct sk_buff_fclones *fclones = container_of(skb, 1432 struct sk_buff_fclones, 1433 skb1); 1434 struct sk_buff *n; 1435 1436 if (skb_orphan_frags(skb, gfp_mask)) 1437 return NULL; 1438 1439 if (skb->fclone == SKB_FCLONE_ORIG && 1440 refcount_read(&fclones->fclone_ref) == 1) { 1441 n = &fclones->skb2; 1442 refcount_set(&fclones->fclone_ref, 2); 1443 } else { 1444 if (skb_pfmemalloc(skb)) 1445 gfp_mask |= __GFP_MEMALLOC; 1446 1447 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1448 if (!n) 1449 return NULL; 1450 1451 n->fclone = SKB_FCLONE_UNAVAILABLE; 1452 } 1453 1454 return __skb_clone(n, skb); 1455 } 1456 EXPORT_SYMBOL(skb_clone); 1457 1458 void skb_headers_offset_update(struct sk_buff *skb, int off) 1459 { 1460 /* Only adjust this if it actually is csum_start rather than csum */ 1461 if (skb->ip_summed == CHECKSUM_PARTIAL) 1462 skb->csum_start += off; 1463 /* {transport,network,mac}_header and tail are relative to skb->head */ 1464 skb->transport_header += off; 1465 skb->network_header += off; 1466 if (skb_mac_header_was_set(skb)) 1467 skb->mac_header += off; 1468 skb->inner_transport_header += off; 1469 skb->inner_network_header += off; 1470 skb->inner_mac_header += off; 1471 } 1472 EXPORT_SYMBOL(skb_headers_offset_update); 1473 1474 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1475 { 1476 __copy_skb_header(new, old); 1477 1478 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1479 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1480 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1481 } 1482 EXPORT_SYMBOL(skb_copy_header); 1483 1484 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1485 { 1486 if (skb_pfmemalloc(skb)) 1487 return SKB_ALLOC_RX; 1488 return 0; 1489 } 1490 1491 /** 1492 * skb_copy - create private copy of an sk_buff 1493 * @skb: buffer to copy 1494 * @gfp_mask: allocation priority 1495 * 1496 * Make a copy of both an &sk_buff and its data. This is used when the 1497 * caller wishes to modify the data and needs a private copy of the 1498 * data to alter. Returns %NULL on failure or the pointer to the buffer 1499 * on success. The returned buffer has a reference count of 1. 1500 * 1501 * As by-product this function converts non-linear &sk_buff to linear 1502 * one, so that &sk_buff becomes completely private and caller is allowed 1503 * to modify all the data of returned buffer. This means that this 1504 * function is not recommended for use in circumstances when only 1505 * header is going to be modified. Use pskb_copy() instead. 1506 */ 1507 1508 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1509 { 1510 int headerlen = skb_headroom(skb); 1511 unsigned int size = skb_end_offset(skb) + skb->data_len; 1512 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1513 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1514 1515 if (!n) 1516 return NULL; 1517 1518 /* Set the data pointer */ 1519 skb_reserve(n, headerlen); 1520 /* Set the tail pointer and length */ 1521 skb_put(n, skb->len); 1522 1523 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1524 1525 skb_copy_header(n, skb); 1526 return n; 1527 } 1528 EXPORT_SYMBOL(skb_copy); 1529 1530 /** 1531 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1532 * @skb: buffer to copy 1533 * @headroom: headroom of new skb 1534 * @gfp_mask: allocation priority 1535 * @fclone: if true allocate the copy of the skb from the fclone 1536 * cache instead of the head cache; it is recommended to set this 1537 * to true for the cases where the copy will likely be cloned 1538 * 1539 * Make a copy of both an &sk_buff and part of its data, located 1540 * in header. Fragmented data remain shared. This is used when 1541 * the caller wishes to modify only header of &sk_buff and needs 1542 * private copy of the header to alter. Returns %NULL on failure 1543 * or the pointer to the buffer on success. 1544 * The returned buffer has a reference count of 1. 1545 */ 1546 1547 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1548 gfp_t gfp_mask, bool fclone) 1549 { 1550 unsigned int size = skb_headlen(skb) + headroom; 1551 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1552 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1553 1554 if (!n) 1555 goto out; 1556 1557 /* Set the data pointer */ 1558 skb_reserve(n, headroom); 1559 /* Set the tail pointer and length */ 1560 skb_put(n, skb_headlen(skb)); 1561 /* Copy the bytes */ 1562 skb_copy_from_linear_data(skb, n->data, n->len); 1563 1564 n->truesize += skb->data_len; 1565 n->data_len = skb->data_len; 1566 n->len = skb->len; 1567 1568 if (skb_shinfo(skb)->nr_frags) { 1569 int i; 1570 1571 if (skb_orphan_frags(skb, gfp_mask) || 1572 skb_zerocopy_clone(n, skb, gfp_mask)) { 1573 kfree_skb(n); 1574 n = NULL; 1575 goto out; 1576 } 1577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1578 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1579 skb_frag_ref(skb, i); 1580 } 1581 skb_shinfo(n)->nr_frags = i; 1582 } 1583 1584 if (skb_has_frag_list(skb)) { 1585 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1586 skb_clone_fraglist(n); 1587 } 1588 1589 skb_copy_header(n, skb); 1590 out: 1591 return n; 1592 } 1593 EXPORT_SYMBOL(__pskb_copy_fclone); 1594 1595 /** 1596 * pskb_expand_head - reallocate header of &sk_buff 1597 * @skb: buffer to reallocate 1598 * @nhead: room to add at head 1599 * @ntail: room to add at tail 1600 * @gfp_mask: allocation priority 1601 * 1602 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1603 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1604 * reference count of 1. Returns zero in the case of success or error, 1605 * if expansion failed. In the last case, &sk_buff is not changed. 1606 * 1607 * All the pointers pointing into skb header may change and must be 1608 * reloaded after call to this function. 1609 */ 1610 1611 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1612 gfp_t gfp_mask) 1613 { 1614 int i, osize = skb_end_offset(skb); 1615 int size = osize + nhead + ntail; 1616 long off; 1617 u8 *data; 1618 1619 BUG_ON(nhead < 0); 1620 1621 BUG_ON(skb_shared(skb)); 1622 1623 size = SKB_DATA_ALIGN(size); 1624 1625 if (skb_pfmemalloc(skb)) 1626 gfp_mask |= __GFP_MEMALLOC; 1627 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1628 gfp_mask, NUMA_NO_NODE, NULL); 1629 if (!data) 1630 goto nodata; 1631 size = SKB_WITH_OVERHEAD(ksize(data)); 1632 1633 /* Copy only real data... and, alas, header. This should be 1634 * optimized for the cases when header is void. 1635 */ 1636 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1637 1638 memcpy((struct skb_shared_info *)(data + size), 1639 skb_shinfo(skb), 1640 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1641 1642 /* 1643 * if shinfo is shared we must drop the old head gracefully, but if it 1644 * is not we can just drop the old head and let the existing refcount 1645 * be since all we did is relocate the values 1646 */ 1647 if (skb_cloned(skb)) { 1648 if (skb_orphan_frags(skb, gfp_mask)) 1649 goto nofrags; 1650 if (skb_zcopy(skb)) 1651 refcount_inc(&skb_uarg(skb)->refcnt); 1652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1653 skb_frag_ref(skb, i); 1654 1655 if (skb_has_frag_list(skb)) 1656 skb_clone_fraglist(skb); 1657 1658 skb_release_data(skb); 1659 } else { 1660 skb_free_head(skb); 1661 } 1662 off = (data + nhead) - skb->head; 1663 1664 skb->head = data; 1665 skb->head_frag = 0; 1666 skb->data += off; 1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1668 skb->end = size; 1669 off = nhead; 1670 #else 1671 skb->end = skb->head + size; 1672 #endif 1673 skb->tail += off; 1674 skb_headers_offset_update(skb, nhead); 1675 skb->cloned = 0; 1676 skb->hdr_len = 0; 1677 skb->nohdr = 0; 1678 atomic_set(&skb_shinfo(skb)->dataref, 1); 1679 1680 skb_metadata_clear(skb); 1681 1682 /* It is not generally safe to change skb->truesize. 1683 * For the moment, we really care of rx path, or 1684 * when skb is orphaned (not attached to a socket). 1685 */ 1686 if (!skb->sk || skb->destructor == sock_edemux) 1687 skb->truesize += size - osize; 1688 1689 return 0; 1690 1691 nofrags: 1692 kfree(data); 1693 nodata: 1694 return -ENOMEM; 1695 } 1696 EXPORT_SYMBOL(pskb_expand_head); 1697 1698 /* Make private copy of skb with writable head and some headroom */ 1699 1700 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1701 { 1702 struct sk_buff *skb2; 1703 int delta = headroom - skb_headroom(skb); 1704 1705 if (delta <= 0) 1706 skb2 = pskb_copy(skb, GFP_ATOMIC); 1707 else { 1708 skb2 = skb_clone(skb, GFP_ATOMIC); 1709 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1710 GFP_ATOMIC)) { 1711 kfree_skb(skb2); 1712 skb2 = NULL; 1713 } 1714 } 1715 return skb2; 1716 } 1717 EXPORT_SYMBOL(skb_realloc_headroom); 1718 1719 /** 1720 * skb_copy_expand - copy and expand sk_buff 1721 * @skb: buffer to copy 1722 * @newheadroom: new free bytes at head 1723 * @newtailroom: new free bytes at tail 1724 * @gfp_mask: allocation priority 1725 * 1726 * Make a copy of both an &sk_buff and its data and while doing so 1727 * allocate additional space. 1728 * 1729 * This is used when the caller wishes to modify the data and needs a 1730 * private copy of the data to alter as well as more space for new fields. 1731 * Returns %NULL on failure or the pointer to the buffer 1732 * on success. The returned buffer has a reference count of 1. 1733 * 1734 * You must pass %GFP_ATOMIC as the allocation priority if this function 1735 * is called from an interrupt. 1736 */ 1737 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1738 int newheadroom, int newtailroom, 1739 gfp_t gfp_mask) 1740 { 1741 /* 1742 * Allocate the copy buffer 1743 */ 1744 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1745 gfp_mask, skb_alloc_rx_flag(skb), 1746 NUMA_NO_NODE); 1747 int oldheadroom = skb_headroom(skb); 1748 int head_copy_len, head_copy_off; 1749 1750 if (!n) 1751 return NULL; 1752 1753 skb_reserve(n, newheadroom); 1754 1755 /* Set the tail pointer and length */ 1756 skb_put(n, skb->len); 1757 1758 head_copy_len = oldheadroom; 1759 head_copy_off = 0; 1760 if (newheadroom <= head_copy_len) 1761 head_copy_len = newheadroom; 1762 else 1763 head_copy_off = newheadroom - head_copy_len; 1764 1765 /* Copy the linear header and data. */ 1766 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1767 skb->len + head_copy_len)); 1768 1769 skb_copy_header(n, skb); 1770 1771 skb_headers_offset_update(n, newheadroom - oldheadroom); 1772 1773 return n; 1774 } 1775 EXPORT_SYMBOL(skb_copy_expand); 1776 1777 /** 1778 * __skb_pad - zero pad the tail of an skb 1779 * @skb: buffer to pad 1780 * @pad: space to pad 1781 * @free_on_error: free buffer on error 1782 * 1783 * Ensure that a buffer is followed by a padding area that is zero 1784 * filled. Used by network drivers which may DMA or transfer data 1785 * beyond the buffer end onto the wire. 1786 * 1787 * May return error in out of memory cases. The skb is freed on error 1788 * if @free_on_error is true. 1789 */ 1790 1791 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1792 { 1793 int err; 1794 int ntail; 1795 1796 /* If the skbuff is non linear tailroom is always zero.. */ 1797 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1798 memset(skb->data+skb->len, 0, pad); 1799 return 0; 1800 } 1801 1802 ntail = skb->data_len + pad - (skb->end - skb->tail); 1803 if (likely(skb_cloned(skb) || ntail > 0)) { 1804 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1805 if (unlikely(err)) 1806 goto free_skb; 1807 } 1808 1809 /* FIXME: The use of this function with non-linear skb's really needs 1810 * to be audited. 1811 */ 1812 err = skb_linearize(skb); 1813 if (unlikely(err)) 1814 goto free_skb; 1815 1816 memset(skb->data + skb->len, 0, pad); 1817 return 0; 1818 1819 free_skb: 1820 if (free_on_error) 1821 kfree_skb(skb); 1822 return err; 1823 } 1824 EXPORT_SYMBOL(__skb_pad); 1825 1826 /** 1827 * pskb_put - add data to the tail of a potentially fragmented buffer 1828 * @skb: start of the buffer to use 1829 * @tail: tail fragment of the buffer to use 1830 * @len: amount of data to add 1831 * 1832 * This function extends the used data area of the potentially 1833 * fragmented buffer. @tail must be the last fragment of @skb -- or 1834 * @skb itself. If this would exceed the total buffer size the kernel 1835 * will panic. A pointer to the first byte of the extra data is 1836 * returned. 1837 */ 1838 1839 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1840 { 1841 if (tail != skb) { 1842 skb->data_len += len; 1843 skb->len += len; 1844 } 1845 return skb_put(tail, len); 1846 } 1847 EXPORT_SYMBOL_GPL(pskb_put); 1848 1849 /** 1850 * skb_put - add data to a buffer 1851 * @skb: buffer to use 1852 * @len: amount of data to add 1853 * 1854 * This function extends the used data area of the buffer. If this would 1855 * exceed the total buffer size the kernel will panic. A pointer to the 1856 * first byte of the extra data is returned. 1857 */ 1858 void *skb_put(struct sk_buff *skb, unsigned int len) 1859 { 1860 void *tmp = skb_tail_pointer(skb); 1861 SKB_LINEAR_ASSERT(skb); 1862 skb->tail += len; 1863 skb->len += len; 1864 if (unlikely(skb->tail > skb->end)) 1865 skb_over_panic(skb, len, __builtin_return_address(0)); 1866 return tmp; 1867 } 1868 EXPORT_SYMBOL(skb_put); 1869 1870 /** 1871 * skb_push - add data to the start of a buffer 1872 * @skb: buffer to use 1873 * @len: amount of data to add 1874 * 1875 * This function extends the used data area of the buffer at the buffer 1876 * start. If this would exceed the total buffer headroom the kernel will 1877 * panic. A pointer to the first byte of the extra data is returned. 1878 */ 1879 void *skb_push(struct sk_buff *skb, unsigned int len) 1880 { 1881 skb->data -= len; 1882 skb->len += len; 1883 if (unlikely(skb->data < skb->head)) 1884 skb_under_panic(skb, len, __builtin_return_address(0)); 1885 return skb->data; 1886 } 1887 EXPORT_SYMBOL(skb_push); 1888 1889 /** 1890 * skb_pull - remove data from the start of a buffer 1891 * @skb: buffer to use 1892 * @len: amount of data to remove 1893 * 1894 * This function removes data from the start of a buffer, returning 1895 * the memory to the headroom. A pointer to the next data in the buffer 1896 * is returned. Once the data has been pulled future pushes will overwrite 1897 * the old data. 1898 */ 1899 void *skb_pull(struct sk_buff *skb, unsigned int len) 1900 { 1901 return skb_pull_inline(skb, len); 1902 } 1903 EXPORT_SYMBOL(skb_pull); 1904 1905 /** 1906 * skb_trim - remove end from a buffer 1907 * @skb: buffer to alter 1908 * @len: new length 1909 * 1910 * Cut the length of a buffer down by removing data from the tail. If 1911 * the buffer is already under the length specified it is not modified. 1912 * The skb must be linear. 1913 */ 1914 void skb_trim(struct sk_buff *skb, unsigned int len) 1915 { 1916 if (skb->len > len) 1917 __skb_trim(skb, len); 1918 } 1919 EXPORT_SYMBOL(skb_trim); 1920 1921 /* Trims skb to length len. It can change skb pointers. 1922 */ 1923 1924 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1925 { 1926 struct sk_buff **fragp; 1927 struct sk_buff *frag; 1928 int offset = skb_headlen(skb); 1929 int nfrags = skb_shinfo(skb)->nr_frags; 1930 int i; 1931 int err; 1932 1933 if (skb_cloned(skb) && 1934 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1935 return err; 1936 1937 i = 0; 1938 if (offset >= len) 1939 goto drop_pages; 1940 1941 for (; i < nfrags; i++) { 1942 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1943 1944 if (end < len) { 1945 offset = end; 1946 continue; 1947 } 1948 1949 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1950 1951 drop_pages: 1952 skb_shinfo(skb)->nr_frags = i; 1953 1954 for (; i < nfrags; i++) 1955 skb_frag_unref(skb, i); 1956 1957 if (skb_has_frag_list(skb)) 1958 skb_drop_fraglist(skb); 1959 goto done; 1960 } 1961 1962 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1963 fragp = &frag->next) { 1964 int end = offset + frag->len; 1965 1966 if (skb_shared(frag)) { 1967 struct sk_buff *nfrag; 1968 1969 nfrag = skb_clone(frag, GFP_ATOMIC); 1970 if (unlikely(!nfrag)) 1971 return -ENOMEM; 1972 1973 nfrag->next = frag->next; 1974 consume_skb(frag); 1975 frag = nfrag; 1976 *fragp = frag; 1977 } 1978 1979 if (end < len) { 1980 offset = end; 1981 continue; 1982 } 1983 1984 if (end > len && 1985 unlikely((err = pskb_trim(frag, len - offset)))) 1986 return err; 1987 1988 if (frag->next) 1989 skb_drop_list(&frag->next); 1990 break; 1991 } 1992 1993 done: 1994 if (len > skb_headlen(skb)) { 1995 skb->data_len -= skb->len - len; 1996 skb->len = len; 1997 } else { 1998 skb->len = len; 1999 skb->data_len = 0; 2000 skb_set_tail_pointer(skb, len); 2001 } 2002 2003 if (!skb->sk || skb->destructor == sock_edemux) 2004 skb_condense(skb); 2005 return 0; 2006 } 2007 EXPORT_SYMBOL(___pskb_trim); 2008 2009 /* Note : use pskb_trim_rcsum() instead of calling this directly 2010 */ 2011 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2012 { 2013 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2014 int delta = skb->len - len; 2015 2016 skb->csum = csum_block_sub(skb->csum, 2017 skb_checksum(skb, len, delta, 0), 2018 len); 2019 } 2020 return __pskb_trim(skb, len); 2021 } 2022 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2023 2024 /** 2025 * __pskb_pull_tail - advance tail of skb header 2026 * @skb: buffer to reallocate 2027 * @delta: number of bytes to advance tail 2028 * 2029 * The function makes a sense only on a fragmented &sk_buff, 2030 * it expands header moving its tail forward and copying necessary 2031 * data from fragmented part. 2032 * 2033 * &sk_buff MUST have reference count of 1. 2034 * 2035 * Returns %NULL (and &sk_buff does not change) if pull failed 2036 * or value of new tail of skb in the case of success. 2037 * 2038 * All the pointers pointing into skb header may change and must be 2039 * reloaded after call to this function. 2040 */ 2041 2042 /* Moves tail of skb head forward, copying data from fragmented part, 2043 * when it is necessary. 2044 * 1. It may fail due to malloc failure. 2045 * 2. It may change skb pointers. 2046 * 2047 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2048 */ 2049 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2050 { 2051 /* If skb has not enough free space at tail, get new one 2052 * plus 128 bytes for future expansions. If we have enough 2053 * room at tail, reallocate without expansion only if skb is cloned. 2054 */ 2055 int i, k, eat = (skb->tail + delta) - skb->end; 2056 2057 if (eat > 0 || skb_cloned(skb)) { 2058 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2059 GFP_ATOMIC)) 2060 return NULL; 2061 } 2062 2063 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2064 skb_tail_pointer(skb), delta)); 2065 2066 /* Optimization: no fragments, no reasons to preestimate 2067 * size of pulled pages. Superb. 2068 */ 2069 if (!skb_has_frag_list(skb)) 2070 goto pull_pages; 2071 2072 /* Estimate size of pulled pages. */ 2073 eat = delta; 2074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2075 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2076 2077 if (size >= eat) 2078 goto pull_pages; 2079 eat -= size; 2080 } 2081 2082 /* If we need update frag list, we are in troubles. 2083 * Certainly, it is possible to add an offset to skb data, 2084 * but taking into account that pulling is expected to 2085 * be very rare operation, it is worth to fight against 2086 * further bloating skb head and crucify ourselves here instead. 2087 * Pure masohism, indeed. 8)8) 2088 */ 2089 if (eat) { 2090 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2091 struct sk_buff *clone = NULL; 2092 struct sk_buff *insp = NULL; 2093 2094 do { 2095 if (list->len <= eat) { 2096 /* Eaten as whole. */ 2097 eat -= list->len; 2098 list = list->next; 2099 insp = list; 2100 } else { 2101 /* Eaten partially. */ 2102 2103 if (skb_shared(list)) { 2104 /* Sucks! We need to fork list. :-( */ 2105 clone = skb_clone(list, GFP_ATOMIC); 2106 if (!clone) 2107 return NULL; 2108 insp = list->next; 2109 list = clone; 2110 } else { 2111 /* This may be pulled without 2112 * problems. */ 2113 insp = list; 2114 } 2115 if (!pskb_pull(list, eat)) { 2116 kfree_skb(clone); 2117 return NULL; 2118 } 2119 break; 2120 } 2121 } while (eat); 2122 2123 /* Free pulled out fragments. */ 2124 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2125 skb_shinfo(skb)->frag_list = list->next; 2126 kfree_skb(list); 2127 } 2128 /* And insert new clone at head. */ 2129 if (clone) { 2130 clone->next = list; 2131 skb_shinfo(skb)->frag_list = clone; 2132 } 2133 } 2134 /* Success! Now we may commit changes to skb data. */ 2135 2136 pull_pages: 2137 eat = delta; 2138 k = 0; 2139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2140 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2141 2142 if (size <= eat) { 2143 skb_frag_unref(skb, i); 2144 eat -= size; 2145 } else { 2146 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2147 2148 *frag = skb_shinfo(skb)->frags[i]; 2149 if (eat) { 2150 skb_frag_off_add(frag, eat); 2151 skb_frag_size_sub(frag, eat); 2152 if (!i) 2153 goto end; 2154 eat = 0; 2155 } 2156 k++; 2157 } 2158 } 2159 skb_shinfo(skb)->nr_frags = k; 2160 2161 end: 2162 skb->tail += delta; 2163 skb->data_len -= delta; 2164 2165 if (!skb->data_len) 2166 skb_zcopy_clear(skb, false); 2167 2168 return skb_tail_pointer(skb); 2169 } 2170 EXPORT_SYMBOL(__pskb_pull_tail); 2171 2172 /** 2173 * skb_copy_bits - copy bits from skb to kernel buffer 2174 * @skb: source skb 2175 * @offset: offset in source 2176 * @to: destination buffer 2177 * @len: number of bytes to copy 2178 * 2179 * Copy the specified number of bytes from the source skb to the 2180 * destination buffer. 2181 * 2182 * CAUTION ! : 2183 * If its prototype is ever changed, 2184 * check arch/{*}/net/{*}.S files, 2185 * since it is called from BPF assembly code. 2186 */ 2187 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2188 { 2189 int start = skb_headlen(skb); 2190 struct sk_buff *frag_iter; 2191 int i, copy; 2192 2193 if (offset > (int)skb->len - len) 2194 goto fault; 2195 2196 /* Copy header. */ 2197 if ((copy = start - offset) > 0) { 2198 if (copy > len) 2199 copy = len; 2200 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2201 if ((len -= copy) == 0) 2202 return 0; 2203 offset += copy; 2204 to += copy; 2205 } 2206 2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2208 int end; 2209 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2210 2211 WARN_ON(start > offset + len); 2212 2213 end = start + skb_frag_size(f); 2214 if ((copy = end - offset) > 0) { 2215 u32 p_off, p_len, copied; 2216 struct page *p; 2217 u8 *vaddr; 2218 2219 if (copy > len) 2220 copy = len; 2221 2222 skb_frag_foreach_page(f, 2223 skb_frag_off(f) + offset - start, 2224 copy, p, p_off, p_len, copied) { 2225 vaddr = kmap_atomic(p); 2226 memcpy(to + copied, vaddr + p_off, p_len); 2227 kunmap_atomic(vaddr); 2228 } 2229 2230 if ((len -= copy) == 0) 2231 return 0; 2232 offset += copy; 2233 to += copy; 2234 } 2235 start = end; 2236 } 2237 2238 skb_walk_frags(skb, frag_iter) { 2239 int end; 2240 2241 WARN_ON(start > offset + len); 2242 2243 end = start + frag_iter->len; 2244 if ((copy = end - offset) > 0) { 2245 if (copy > len) 2246 copy = len; 2247 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2248 goto fault; 2249 if ((len -= copy) == 0) 2250 return 0; 2251 offset += copy; 2252 to += copy; 2253 } 2254 start = end; 2255 } 2256 2257 if (!len) 2258 return 0; 2259 2260 fault: 2261 return -EFAULT; 2262 } 2263 EXPORT_SYMBOL(skb_copy_bits); 2264 2265 /* 2266 * Callback from splice_to_pipe(), if we need to release some pages 2267 * at the end of the spd in case we error'ed out in filling the pipe. 2268 */ 2269 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2270 { 2271 put_page(spd->pages[i]); 2272 } 2273 2274 static struct page *linear_to_page(struct page *page, unsigned int *len, 2275 unsigned int *offset, 2276 struct sock *sk) 2277 { 2278 struct page_frag *pfrag = sk_page_frag(sk); 2279 2280 if (!sk_page_frag_refill(sk, pfrag)) 2281 return NULL; 2282 2283 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2284 2285 memcpy(page_address(pfrag->page) + pfrag->offset, 2286 page_address(page) + *offset, *len); 2287 *offset = pfrag->offset; 2288 pfrag->offset += *len; 2289 2290 return pfrag->page; 2291 } 2292 2293 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2294 struct page *page, 2295 unsigned int offset) 2296 { 2297 return spd->nr_pages && 2298 spd->pages[spd->nr_pages - 1] == page && 2299 (spd->partial[spd->nr_pages - 1].offset + 2300 spd->partial[spd->nr_pages - 1].len == offset); 2301 } 2302 2303 /* 2304 * Fill page/offset/length into spd, if it can hold more pages. 2305 */ 2306 static bool spd_fill_page(struct splice_pipe_desc *spd, 2307 struct pipe_inode_info *pipe, struct page *page, 2308 unsigned int *len, unsigned int offset, 2309 bool linear, 2310 struct sock *sk) 2311 { 2312 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2313 return true; 2314 2315 if (linear) { 2316 page = linear_to_page(page, len, &offset, sk); 2317 if (!page) 2318 return true; 2319 } 2320 if (spd_can_coalesce(spd, page, offset)) { 2321 spd->partial[spd->nr_pages - 1].len += *len; 2322 return false; 2323 } 2324 get_page(page); 2325 spd->pages[spd->nr_pages] = page; 2326 spd->partial[spd->nr_pages].len = *len; 2327 spd->partial[spd->nr_pages].offset = offset; 2328 spd->nr_pages++; 2329 2330 return false; 2331 } 2332 2333 static bool __splice_segment(struct page *page, unsigned int poff, 2334 unsigned int plen, unsigned int *off, 2335 unsigned int *len, 2336 struct splice_pipe_desc *spd, bool linear, 2337 struct sock *sk, 2338 struct pipe_inode_info *pipe) 2339 { 2340 if (!*len) 2341 return true; 2342 2343 /* skip this segment if already processed */ 2344 if (*off >= plen) { 2345 *off -= plen; 2346 return false; 2347 } 2348 2349 /* ignore any bits we already processed */ 2350 poff += *off; 2351 plen -= *off; 2352 *off = 0; 2353 2354 do { 2355 unsigned int flen = min(*len, plen); 2356 2357 if (spd_fill_page(spd, pipe, page, &flen, poff, 2358 linear, sk)) 2359 return true; 2360 poff += flen; 2361 plen -= flen; 2362 *len -= flen; 2363 } while (*len && plen); 2364 2365 return false; 2366 } 2367 2368 /* 2369 * Map linear and fragment data from the skb to spd. It reports true if the 2370 * pipe is full or if we already spliced the requested length. 2371 */ 2372 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2373 unsigned int *offset, unsigned int *len, 2374 struct splice_pipe_desc *spd, struct sock *sk) 2375 { 2376 int seg; 2377 struct sk_buff *iter; 2378 2379 /* map the linear part : 2380 * If skb->head_frag is set, this 'linear' part is backed by a 2381 * fragment, and if the head is not shared with any clones then 2382 * we can avoid a copy since we own the head portion of this page. 2383 */ 2384 if (__splice_segment(virt_to_page(skb->data), 2385 (unsigned long) skb->data & (PAGE_SIZE - 1), 2386 skb_headlen(skb), 2387 offset, len, spd, 2388 skb_head_is_locked(skb), 2389 sk, pipe)) 2390 return true; 2391 2392 /* 2393 * then map the fragments 2394 */ 2395 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2396 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2397 2398 if (__splice_segment(skb_frag_page(f), 2399 skb_frag_off(f), skb_frag_size(f), 2400 offset, len, spd, false, sk, pipe)) 2401 return true; 2402 } 2403 2404 skb_walk_frags(skb, iter) { 2405 if (*offset >= iter->len) { 2406 *offset -= iter->len; 2407 continue; 2408 } 2409 /* __skb_splice_bits() only fails if the output has no room 2410 * left, so no point in going over the frag_list for the error 2411 * case. 2412 */ 2413 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2414 return true; 2415 } 2416 2417 return false; 2418 } 2419 2420 /* 2421 * Map data from the skb to a pipe. Should handle both the linear part, 2422 * the fragments, and the frag list. 2423 */ 2424 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2425 struct pipe_inode_info *pipe, unsigned int tlen, 2426 unsigned int flags) 2427 { 2428 struct partial_page partial[MAX_SKB_FRAGS]; 2429 struct page *pages[MAX_SKB_FRAGS]; 2430 struct splice_pipe_desc spd = { 2431 .pages = pages, 2432 .partial = partial, 2433 .nr_pages_max = MAX_SKB_FRAGS, 2434 .ops = &nosteal_pipe_buf_ops, 2435 .spd_release = sock_spd_release, 2436 }; 2437 int ret = 0; 2438 2439 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2440 2441 if (spd.nr_pages) 2442 ret = splice_to_pipe(pipe, &spd); 2443 2444 return ret; 2445 } 2446 EXPORT_SYMBOL_GPL(skb_splice_bits); 2447 2448 /* Send skb data on a socket. Socket must be locked. */ 2449 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2450 int len) 2451 { 2452 unsigned int orig_len = len; 2453 struct sk_buff *head = skb; 2454 unsigned short fragidx; 2455 int slen, ret; 2456 2457 do_frag_list: 2458 2459 /* Deal with head data */ 2460 while (offset < skb_headlen(skb) && len) { 2461 struct kvec kv; 2462 struct msghdr msg; 2463 2464 slen = min_t(int, len, skb_headlen(skb) - offset); 2465 kv.iov_base = skb->data + offset; 2466 kv.iov_len = slen; 2467 memset(&msg, 0, sizeof(msg)); 2468 msg.msg_flags = MSG_DONTWAIT; 2469 2470 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2471 if (ret <= 0) 2472 goto error; 2473 2474 offset += ret; 2475 len -= ret; 2476 } 2477 2478 /* All the data was skb head? */ 2479 if (!len) 2480 goto out; 2481 2482 /* Make offset relative to start of frags */ 2483 offset -= skb_headlen(skb); 2484 2485 /* Find where we are in frag list */ 2486 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2488 2489 if (offset < skb_frag_size(frag)) 2490 break; 2491 2492 offset -= skb_frag_size(frag); 2493 } 2494 2495 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2496 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2497 2498 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2499 2500 while (slen) { 2501 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2502 skb_frag_off(frag) + offset, 2503 slen, MSG_DONTWAIT); 2504 if (ret <= 0) 2505 goto error; 2506 2507 len -= ret; 2508 offset += ret; 2509 slen -= ret; 2510 } 2511 2512 offset = 0; 2513 } 2514 2515 if (len) { 2516 /* Process any frag lists */ 2517 2518 if (skb == head) { 2519 if (skb_has_frag_list(skb)) { 2520 skb = skb_shinfo(skb)->frag_list; 2521 goto do_frag_list; 2522 } 2523 } else if (skb->next) { 2524 skb = skb->next; 2525 goto do_frag_list; 2526 } 2527 } 2528 2529 out: 2530 return orig_len - len; 2531 2532 error: 2533 return orig_len == len ? ret : orig_len - len; 2534 } 2535 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2536 2537 /** 2538 * skb_store_bits - store bits from kernel buffer to skb 2539 * @skb: destination buffer 2540 * @offset: offset in destination 2541 * @from: source buffer 2542 * @len: number of bytes to copy 2543 * 2544 * Copy the specified number of bytes from the source buffer to the 2545 * destination skb. This function handles all the messy bits of 2546 * traversing fragment lists and such. 2547 */ 2548 2549 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2550 { 2551 int start = skb_headlen(skb); 2552 struct sk_buff *frag_iter; 2553 int i, copy; 2554 2555 if (offset > (int)skb->len - len) 2556 goto fault; 2557 2558 if ((copy = start - offset) > 0) { 2559 if (copy > len) 2560 copy = len; 2561 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2562 if ((len -= copy) == 0) 2563 return 0; 2564 offset += copy; 2565 from += copy; 2566 } 2567 2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2570 int end; 2571 2572 WARN_ON(start > offset + len); 2573 2574 end = start + skb_frag_size(frag); 2575 if ((copy = end - offset) > 0) { 2576 u32 p_off, p_len, copied; 2577 struct page *p; 2578 u8 *vaddr; 2579 2580 if (copy > len) 2581 copy = len; 2582 2583 skb_frag_foreach_page(frag, 2584 skb_frag_off(frag) + offset - start, 2585 copy, p, p_off, p_len, copied) { 2586 vaddr = kmap_atomic(p); 2587 memcpy(vaddr + p_off, from + copied, p_len); 2588 kunmap_atomic(vaddr); 2589 } 2590 2591 if ((len -= copy) == 0) 2592 return 0; 2593 offset += copy; 2594 from += copy; 2595 } 2596 start = end; 2597 } 2598 2599 skb_walk_frags(skb, frag_iter) { 2600 int end; 2601 2602 WARN_ON(start > offset + len); 2603 2604 end = start + frag_iter->len; 2605 if ((copy = end - offset) > 0) { 2606 if (copy > len) 2607 copy = len; 2608 if (skb_store_bits(frag_iter, offset - start, 2609 from, copy)) 2610 goto fault; 2611 if ((len -= copy) == 0) 2612 return 0; 2613 offset += copy; 2614 from += copy; 2615 } 2616 start = end; 2617 } 2618 if (!len) 2619 return 0; 2620 2621 fault: 2622 return -EFAULT; 2623 } 2624 EXPORT_SYMBOL(skb_store_bits); 2625 2626 /* Checksum skb data. */ 2627 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2628 __wsum csum, const struct skb_checksum_ops *ops) 2629 { 2630 int start = skb_headlen(skb); 2631 int i, copy = start - offset; 2632 struct sk_buff *frag_iter; 2633 int pos = 0; 2634 2635 /* Checksum header. */ 2636 if (copy > 0) { 2637 if (copy > len) 2638 copy = len; 2639 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2640 skb->data + offset, copy, csum); 2641 if ((len -= copy) == 0) 2642 return csum; 2643 offset += copy; 2644 pos = copy; 2645 } 2646 2647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2648 int end; 2649 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2650 2651 WARN_ON(start > offset + len); 2652 2653 end = start + skb_frag_size(frag); 2654 if ((copy = end - offset) > 0) { 2655 u32 p_off, p_len, copied; 2656 struct page *p; 2657 __wsum csum2; 2658 u8 *vaddr; 2659 2660 if (copy > len) 2661 copy = len; 2662 2663 skb_frag_foreach_page(frag, 2664 skb_frag_off(frag) + offset - start, 2665 copy, p, p_off, p_len, copied) { 2666 vaddr = kmap_atomic(p); 2667 csum2 = INDIRECT_CALL_1(ops->update, 2668 csum_partial_ext, 2669 vaddr + p_off, p_len, 0); 2670 kunmap_atomic(vaddr); 2671 csum = INDIRECT_CALL_1(ops->combine, 2672 csum_block_add_ext, csum, 2673 csum2, pos, p_len); 2674 pos += p_len; 2675 } 2676 2677 if (!(len -= copy)) 2678 return csum; 2679 offset += copy; 2680 } 2681 start = end; 2682 } 2683 2684 skb_walk_frags(skb, frag_iter) { 2685 int end; 2686 2687 WARN_ON(start > offset + len); 2688 2689 end = start + frag_iter->len; 2690 if ((copy = end - offset) > 0) { 2691 __wsum csum2; 2692 if (copy > len) 2693 copy = len; 2694 csum2 = __skb_checksum(frag_iter, offset - start, 2695 copy, 0, ops); 2696 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2697 csum, csum2, pos, copy); 2698 if ((len -= copy) == 0) 2699 return csum; 2700 offset += copy; 2701 pos += copy; 2702 } 2703 start = end; 2704 } 2705 BUG_ON(len); 2706 2707 return csum; 2708 } 2709 EXPORT_SYMBOL(__skb_checksum); 2710 2711 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2712 int len, __wsum csum) 2713 { 2714 const struct skb_checksum_ops ops = { 2715 .update = csum_partial_ext, 2716 .combine = csum_block_add_ext, 2717 }; 2718 2719 return __skb_checksum(skb, offset, len, csum, &ops); 2720 } 2721 EXPORT_SYMBOL(skb_checksum); 2722 2723 /* Both of above in one bottle. */ 2724 2725 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2726 u8 *to, int len, __wsum csum) 2727 { 2728 int start = skb_headlen(skb); 2729 int i, copy = start - offset; 2730 struct sk_buff *frag_iter; 2731 int pos = 0; 2732 2733 /* Copy header. */ 2734 if (copy > 0) { 2735 if (copy > len) 2736 copy = len; 2737 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2738 copy, csum); 2739 if ((len -= copy) == 0) 2740 return csum; 2741 offset += copy; 2742 to += copy; 2743 pos = copy; 2744 } 2745 2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2747 int end; 2748 2749 WARN_ON(start > offset + len); 2750 2751 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2752 if ((copy = end - offset) > 0) { 2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2754 u32 p_off, p_len, copied; 2755 struct page *p; 2756 __wsum csum2; 2757 u8 *vaddr; 2758 2759 if (copy > len) 2760 copy = len; 2761 2762 skb_frag_foreach_page(frag, 2763 skb_frag_off(frag) + offset - start, 2764 copy, p, p_off, p_len, copied) { 2765 vaddr = kmap_atomic(p); 2766 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2767 to + copied, 2768 p_len, 0); 2769 kunmap_atomic(vaddr); 2770 csum = csum_block_add(csum, csum2, pos); 2771 pos += p_len; 2772 } 2773 2774 if (!(len -= copy)) 2775 return csum; 2776 offset += copy; 2777 to += copy; 2778 } 2779 start = end; 2780 } 2781 2782 skb_walk_frags(skb, frag_iter) { 2783 __wsum csum2; 2784 int end; 2785 2786 WARN_ON(start > offset + len); 2787 2788 end = start + frag_iter->len; 2789 if ((copy = end - offset) > 0) { 2790 if (copy > len) 2791 copy = len; 2792 csum2 = skb_copy_and_csum_bits(frag_iter, 2793 offset - start, 2794 to, copy, 0); 2795 csum = csum_block_add(csum, csum2, pos); 2796 if ((len -= copy) == 0) 2797 return csum; 2798 offset += copy; 2799 to += copy; 2800 pos += copy; 2801 } 2802 start = end; 2803 } 2804 BUG_ON(len); 2805 return csum; 2806 } 2807 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2808 2809 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2810 { 2811 __sum16 sum; 2812 2813 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2814 /* See comments in __skb_checksum_complete(). */ 2815 if (likely(!sum)) { 2816 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2817 !skb->csum_complete_sw) 2818 netdev_rx_csum_fault(skb->dev, skb); 2819 } 2820 if (!skb_shared(skb)) 2821 skb->csum_valid = !sum; 2822 return sum; 2823 } 2824 EXPORT_SYMBOL(__skb_checksum_complete_head); 2825 2826 /* This function assumes skb->csum already holds pseudo header's checksum, 2827 * which has been changed from the hardware checksum, for example, by 2828 * __skb_checksum_validate_complete(). And, the original skb->csum must 2829 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2830 * 2831 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2832 * zero. The new checksum is stored back into skb->csum unless the skb is 2833 * shared. 2834 */ 2835 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2836 { 2837 __wsum csum; 2838 __sum16 sum; 2839 2840 csum = skb_checksum(skb, 0, skb->len, 0); 2841 2842 sum = csum_fold(csum_add(skb->csum, csum)); 2843 /* This check is inverted, because we already knew the hardware 2844 * checksum is invalid before calling this function. So, if the 2845 * re-computed checksum is valid instead, then we have a mismatch 2846 * between the original skb->csum and skb_checksum(). This means either 2847 * the original hardware checksum is incorrect or we screw up skb->csum 2848 * when moving skb->data around. 2849 */ 2850 if (likely(!sum)) { 2851 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2852 !skb->csum_complete_sw) 2853 netdev_rx_csum_fault(skb->dev, skb); 2854 } 2855 2856 if (!skb_shared(skb)) { 2857 /* Save full packet checksum */ 2858 skb->csum = csum; 2859 skb->ip_summed = CHECKSUM_COMPLETE; 2860 skb->csum_complete_sw = 1; 2861 skb->csum_valid = !sum; 2862 } 2863 2864 return sum; 2865 } 2866 EXPORT_SYMBOL(__skb_checksum_complete); 2867 2868 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2869 { 2870 net_warn_ratelimited( 2871 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2872 __func__); 2873 return 0; 2874 } 2875 2876 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2877 int offset, int len) 2878 { 2879 net_warn_ratelimited( 2880 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2881 __func__); 2882 return 0; 2883 } 2884 2885 static const struct skb_checksum_ops default_crc32c_ops = { 2886 .update = warn_crc32c_csum_update, 2887 .combine = warn_crc32c_csum_combine, 2888 }; 2889 2890 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2891 &default_crc32c_ops; 2892 EXPORT_SYMBOL(crc32c_csum_stub); 2893 2894 /** 2895 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2896 * @from: source buffer 2897 * 2898 * Calculates the amount of linear headroom needed in the 'to' skb passed 2899 * into skb_zerocopy(). 2900 */ 2901 unsigned int 2902 skb_zerocopy_headlen(const struct sk_buff *from) 2903 { 2904 unsigned int hlen = 0; 2905 2906 if (!from->head_frag || 2907 skb_headlen(from) < L1_CACHE_BYTES || 2908 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2909 hlen = skb_headlen(from); 2910 2911 if (skb_has_frag_list(from)) 2912 hlen = from->len; 2913 2914 return hlen; 2915 } 2916 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2917 2918 /** 2919 * skb_zerocopy - Zero copy skb to skb 2920 * @to: destination buffer 2921 * @from: source buffer 2922 * @len: number of bytes to copy from source buffer 2923 * @hlen: size of linear headroom in destination buffer 2924 * 2925 * Copies up to `len` bytes from `from` to `to` by creating references 2926 * to the frags in the source buffer. 2927 * 2928 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2929 * headroom in the `to` buffer. 2930 * 2931 * Return value: 2932 * 0: everything is OK 2933 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2934 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2935 */ 2936 int 2937 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2938 { 2939 int i, j = 0; 2940 int plen = 0; /* length of skb->head fragment */ 2941 int ret; 2942 struct page *page; 2943 unsigned int offset; 2944 2945 BUG_ON(!from->head_frag && !hlen); 2946 2947 /* dont bother with small payloads */ 2948 if (len <= skb_tailroom(to)) 2949 return skb_copy_bits(from, 0, skb_put(to, len), len); 2950 2951 if (hlen) { 2952 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2953 if (unlikely(ret)) 2954 return ret; 2955 len -= hlen; 2956 } else { 2957 plen = min_t(int, skb_headlen(from), len); 2958 if (plen) { 2959 page = virt_to_head_page(from->head); 2960 offset = from->data - (unsigned char *)page_address(page); 2961 __skb_fill_page_desc(to, 0, page, offset, plen); 2962 get_page(page); 2963 j = 1; 2964 len -= plen; 2965 } 2966 } 2967 2968 to->truesize += len + plen; 2969 to->len += len + plen; 2970 to->data_len += len + plen; 2971 2972 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2973 skb_tx_error(from); 2974 return -ENOMEM; 2975 } 2976 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2977 2978 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2979 int size; 2980 2981 if (!len) 2982 break; 2983 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2984 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2985 len); 2986 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2987 len -= size; 2988 skb_frag_ref(to, j); 2989 j++; 2990 } 2991 skb_shinfo(to)->nr_frags = j; 2992 2993 return 0; 2994 } 2995 EXPORT_SYMBOL_GPL(skb_zerocopy); 2996 2997 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2998 { 2999 __wsum csum; 3000 long csstart; 3001 3002 if (skb->ip_summed == CHECKSUM_PARTIAL) 3003 csstart = skb_checksum_start_offset(skb); 3004 else 3005 csstart = skb_headlen(skb); 3006 3007 BUG_ON(csstart > skb_headlen(skb)); 3008 3009 skb_copy_from_linear_data(skb, to, csstart); 3010 3011 csum = 0; 3012 if (csstart != skb->len) 3013 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3014 skb->len - csstart, 0); 3015 3016 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3017 long csstuff = csstart + skb->csum_offset; 3018 3019 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3020 } 3021 } 3022 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3023 3024 /** 3025 * skb_dequeue - remove from the head of the queue 3026 * @list: list to dequeue from 3027 * 3028 * Remove the head of the list. The list lock is taken so the function 3029 * may be used safely with other locking list functions. The head item is 3030 * returned or %NULL if the list is empty. 3031 */ 3032 3033 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3034 { 3035 unsigned long flags; 3036 struct sk_buff *result; 3037 3038 spin_lock_irqsave(&list->lock, flags); 3039 result = __skb_dequeue(list); 3040 spin_unlock_irqrestore(&list->lock, flags); 3041 return result; 3042 } 3043 EXPORT_SYMBOL(skb_dequeue); 3044 3045 /** 3046 * skb_dequeue_tail - remove from the tail of the queue 3047 * @list: list to dequeue from 3048 * 3049 * Remove the tail of the list. The list lock is taken so the function 3050 * may be used safely with other locking list functions. The tail item is 3051 * returned or %NULL if the list is empty. 3052 */ 3053 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3054 { 3055 unsigned long flags; 3056 struct sk_buff *result; 3057 3058 spin_lock_irqsave(&list->lock, flags); 3059 result = __skb_dequeue_tail(list); 3060 spin_unlock_irqrestore(&list->lock, flags); 3061 return result; 3062 } 3063 EXPORT_SYMBOL(skb_dequeue_tail); 3064 3065 /** 3066 * skb_queue_purge - empty a list 3067 * @list: list to empty 3068 * 3069 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3070 * the list and one reference dropped. This function takes the list 3071 * lock and is atomic with respect to other list locking functions. 3072 */ 3073 void skb_queue_purge(struct sk_buff_head *list) 3074 { 3075 struct sk_buff *skb; 3076 while ((skb = skb_dequeue(list)) != NULL) 3077 kfree_skb(skb); 3078 } 3079 EXPORT_SYMBOL(skb_queue_purge); 3080 3081 /** 3082 * skb_rbtree_purge - empty a skb rbtree 3083 * @root: root of the rbtree to empty 3084 * Return value: the sum of truesizes of all purged skbs. 3085 * 3086 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3087 * the list and one reference dropped. This function does not take 3088 * any lock. Synchronization should be handled by the caller (e.g., TCP 3089 * out-of-order queue is protected by the socket lock). 3090 */ 3091 unsigned int skb_rbtree_purge(struct rb_root *root) 3092 { 3093 struct rb_node *p = rb_first(root); 3094 unsigned int sum = 0; 3095 3096 while (p) { 3097 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3098 3099 p = rb_next(p); 3100 rb_erase(&skb->rbnode, root); 3101 sum += skb->truesize; 3102 kfree_skb(skb); 3103 } 3104 return sum; 3105 } 3106 3107 /** 3108 * skb_queue_head - queue a buffer at the list head 3109 * @list: list to use 3110 * @newsk: buffer to queue 3111 * 3112 * Queue a buffer at the start of the list. This function takes the 3113 * list lock and can be used safely with other locking &sk_buff functions 3114 * safely. 3115 * 3116 * A buffer cannot be placed on two lists at the same time. 3117 */ 3118 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3119 { 3120 unsigned long flags; 3121 3122 spin_lock_irqsave(&list->lock, flags); 3123 __skb_queue_head(list, newsk); 3124 spin_unlock_irqrestore(&list->lock, flags); 3125 } 3126 EXPORT_SYMBOL(skb_queue_head); 3127 3128 /** 3129 * skb_queue_tail - queue a buffer at the list tail 3130 * @list: list to use 3131 * @newsk: buffer to queue 3132 * 3133 * Queue a buffer at the tail of the list. This function takes the 3134 * list lock and can be used safely with other locking &sk_buff functions 3135 * safely. 3136 * 3137 * A buffer cannot be placed on two lists at the same time. 3138 */ 3139 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3140 { 3141 unsigned long flags; 3142 3143 spin_lock_irqsave(&list->lock, flags); 3144 __skb_queue_tail(list, newsk); 3145 spin_unlock_irqrestore(&list->lock, flags); 3146 } 3147 EXPORT_SYMBOL(skb_queue_tail); 3148 3149 /** 3150 * skb_unlink - remove a buffer from a list 3151 * @skb: buffer to remove 3152 * @list: list to use 3153 * 3154 * Remove a packet from a list. The list locks are taken and this 3155 * function is atomic with respect to other list locked calls 3156 * 3157 * You must know what list the SKB is on. 3158 */ 3159 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3160 { 3161 unsigned long flags; 3162 3163 spin_lock_irqsave(&list->lock, flags); 3164 __skb_unlink(skb, list); 3165 spin_unlock_irqrestore(&list->lock, flags); 3166 } 3167 EXPORT_SYMBOL(skb_unlink); 3168 3169 /** 3170 * skb_append - append a buffer 3171 * @old: buffer to insert after 3172 * @newsk: buffer to insert 3173 * @list: list to use 3174 * 3175 * Place a packet after a given packet in a list. The list locks are taken 3176 * and this function is atomic with respect to other list locked calls. 3177 * A buffer cannot be placed on two lists at the same time. 3178 */ 3179 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3180 { 3181 unsigned long flags; 3182 3183 spin_lock_irqsave(&list->lock, flags); 3184 __skb_queue_after(list, old, newsk); 3185 spin_unlock_irqrestore(&list->lock, flags); 3186 } 3187 EXPORT_SYMBOL(skb_append); 3188 3189 static inline void skb_split_inside_header(struct sk_buff *skb, 3190 struct sk_buff* skb1, 3191 const u32 len, const int pos) 3192 { 3193 int i; 3194 3195 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3196 pos - len); 3197 /* And move data appendix as is. */ 3198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3199 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3200 3201 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3202 skb_shinfo(skb)->nr_frags = 0; 3203 skb1->data_len = skb->data_len; 3204 skb1->len += skb1->data_len; 3205 skb->data_len = 0; 3206 skb->len = len; 3207 skb_set_tail_pointer(skb, len); 3208 } 3209 3210 static inline void skb_split_no_header(struct sk_buff *skb, 3211 struct sk_buff* skb1, 3212 const u32 len, int pos) 3213 { 3214 int i, k = 0; 3215 const int nfrags = skb_shinfo(skb)->nr_frags; 3216 3217 skb_shinfo(skb)->nr_frags = 0; 3218 skb1->len = skb1->data_len = skb->len - len; 3219 skb->len = len; 3220 skb->data_len = len - pos; 3221 3222 for (i = 0; i < nfrags; i++) { 3223 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3224 3225 if (pos + size > len) { 3226 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3227 3228 if (pos < len) { 3229 /* Split frag. 3230 * We have two variants in this case: 3231 * 1. Move all the frag to the second 3232 * part, if it is possible. F.e. 3233 * this approach is mandatory for TUX, 3234 * where splitting is expensive. 3235 * 2. Split is accurately. We make this. 3236 */ 3237 skb_frag_ref(skb, i); 3238 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3239 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3240 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3241 skb_shinfo(skb)->nr_frags++; 3242 } 3243 k++; 3244 } else 3245 skb_shinfo(skb)->nr_frags++; 3246 pos += size; 3247 } 3248 skb_shinfo(skb1)->nr_frags = k; 3249 } 3250 3251 /** 3252 * skb_split - Split fragmented skb to two parts at length len. 3253 * @skb: the buffer to split 3254 * @skb1: the buffer to receive the second part 3255 * @len: new length for skb 3256 */ 3257 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3258 { 3259 int pos = skb_headlen(skb); 3260 3261 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3262 SKBTX_SHARED_FRAG; 3263 skb_zerocopy_clone(skb1, skb, 0); 3264 if (len < pos) /* Split line is inside header. */ 3265 skb_split_inside_header(skb, skb1, len, pos); 3266 else /* Second chunk has no header, nothing to copy. */ 3267 skb_split_no_header(skb, skb1, len, pos); 3268 } 3269 EXPORT_SYMBOL(skb_split); 3270 3271 /* Shifting from/to a cloned skb is a no-go. 3272 * 3273 * Caller cannot keep skb_shinfo related pointers past calling here! 3274 */ 3275 static int skb_prepare_for_shift(struct sk_buff *skb) 3276 { 3277 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3278 } 3279 3280 /** 3281 * skb_shift - Shifts paged data partially from skb to another 3282 * @tgt: buffer into which tail data gets added 3283 * @skb: buffer from which the paged data comes from 3284 * @shiftlen: shift up to this many bytes 3285 * 3286 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3287 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3288 * It's up to caller to free skb if everything was shifted. 3289 * 3290 * If @tgt runs out of frags, the whole operation is aborted. 3291 * 3292 * Skb cannot include anything else but paged data while tgt is allowed 3293 * to have non-paged data as well. 3294 * 3295 * TODO: full sized shift could be optimized but that would need 3296 * specialized skb free'er to handle frags without up-to-date nr_frags. 3297 */ 3298 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3299 { 3300 int from, to, merge, todo; 3301 skb_frag_t *fragfrom, *fragto; 3302 3303 BUG_ON(shiftlen > skb->len); 3304 3305 if (skb_headlen(skb)) 3306 return 0; 3307 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3308 return 0; 3309 3310 todo = shiftlen; 3311 from = 0; 3312 to = skb_shinfo(tgt)->nr_frags; 3313 fragfrom = &skb_shinfo(skb)->frags[from]; 3314 3315 /* Actual merge is delayed until the point when we know we can 3316 * commit all, so that we don't have to undo partial changes 3317 */ 3318 if (!to || 3319 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3320 skb_frag_off(fragfrom))) { 3321 merge = -1; 3322 } else { 3323 merge = to - 1; 3324 3325 todo -= skb_frag_size(fragfrom); 3326 if (todo < 0) { 3327 if (skb_prepare_for_shift(skb) || 3328 skb_prepare_for_shift(tgt)) 3329 return 0; 3330 3331 /* All previous frag pointers might be stale! */ 3332 fragfrom = &skb_shinfo(skb)->frags[from]; 3333 fragto = &skb_shinfo(tgt)->frags[merge]; 3334 3335 skb_frag_size_add(fragto, shiftlen); 3336 skb_frag_size_sub(fragfrom, shiftlen); 3337 skb_frag_off_add(fragfrom, shiftlen); 3338 3339 goto onlymerged; 3340 } 3341 3342 from++; 3343 } 3344 3345 /* Skip full, not-fitting skb to avoid expensive operations */ 3346 if ((shiftlen == skb->len) && 3347 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3348 return 0; 3349 3350 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3351 return 0; 3352 3353 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3354 if (to == MAX_SKB_FRAGS) 3355 return 0; 3356 3357 fragfrom = &skb_shinfo(skb)->frags[from]; 3358 fragto = &skb_shinfo(tgt)->frags[to]; 3359 3360 if (todo >= skb_frag_size(fragfrom)) { 3361 *fragto = *fragfrom; 3362 todo -= skb_frag_size(fragfrom); 3363 from++; 3364 to++; 3365 3366 } else { 3367 __skb_frag_ref(fragfrom); 3368 skb_frag_page_copy(fragto, fragfrom); 3369 skb_frag_off_copy(fragto, fragfrom); 3370 skb_frag_size_set(fragto, todo); 3371 3372 skb_frag_off_add(fragfrom, todo); 3373 skb_frag_size_sub(fragfrom, todo); 3374 todo = 0; 3375 3376 to++; 3377 break; 3378 } 3379 } 3380 3381 /* Ready to "commit" this state change to tgt */ 3382 skb_shinfo(tgt)->nr_frags = to; 3383 3384 if (merge >= 0) { 3385 fragfrom = &skb_shinfo(skb)->frags[0]; 3386 fragto = &skb_shinfo(tgt)->frags[merge]; 3387 3388 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3389 __skb_frag_unref(fragfrom); 3390 } 3391 3392 /* Reposition in the original skb */ 3393 to = 0; 3394 while (from < skb_shinfo(skb)->nr_frags) 3395 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3396 skb_shinfo(skb)->nr_frags = to; 3397 3398 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3399 3400 onlymerged: 3401 /* Most likely the tgt won't ever need its checksum anymore, skb on 3402 * the other hand might need it if it needs to be resent 3403 */ 3404 tgt->ip_summed = CHECKSUM_PARTIAL; 3405 skb->ip_summed = CHECKSUM_PARTIAL; 3406 3407 /* Yak, is it really working this way? Some helper please? */ 3408 skb->len -= shiftlen; 3409 skb->data_len -= shiftlen; 3410 skb->truesize -= shiftlen; 3411 tgt->len += shiftlen; 3412 tgt->data_len += shiftlen; 3413 tgt->truesize += shiftlen; 3414 3415 return shiftlen; 3416 } 3417 3418 /** 3419 * skb_prepare_seq_read - Prepare a sequential read of skb data 3420 * @skb: the buffer to read 3421 * @from: lower offset of data to be read 3422 * @to: upper offset of data to be read 3423 * @st: state variable 3424 * 3425 * Initializes the specified state variable. Must be called before 3426 * invoking skb_seq_read() for the first time. 3427 */ 3428 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3429 unsigned int to, struct skb_seq_state *st) 3430 { 3431 st->lower_offset = from; 3432 st->upper_offset = to; 3433 st->root_skb = st->cur_skb = skb; 3434 st->frag_idx = st->stepped_offset = 0; 3435 st->frag_data = NULL; 3436 } 3437 EXPORT_SYMBOL(skb_prepare_seq_read); 3438 3439 /** 3440 * skb_seq_read - Sequentially read skb data 3441 * @consumed: number of bytes consumed by the caller so far 3442 * @data: destination pointer for data to be returned 3443 * @st: state variable 3444 * 3445 * Reads a block of skb data at @consumed relative to the 3446 * lower offset specified to skb_prepare_seq_read(). Assigns 3447 * the head of the data block to @data and returns the length 3448 * of the block or 0 if the end of the skb data or the upper 3449 * offset has been reached. 3450 * 3451 * The caller is not required to consume all of the data 3452 * returned, i.e. @consumed is typically set to the number 3453 * of bytes already consumed and the next call to 3454 * skb_seq_read() will return the remaining part of the block. 3455 * 3456 * Note 1: The size of each block of data returned can be arbitrary, 3457 * this limitation is the cost for zerocopy sequential 3458 * reads of potentially non linear data. 3459 * 3460 * Note 2: Fragment lists within fragments are not implemented 3461 * at the moment, state->root_skb could be replaced with 3462 * a stack for this purpose. 3463 */ 3464 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3465 struct skb_seq_state *st) 3466 { 3467 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3468 skb_frag_t *frag; 3469 3470 if (unlikely(abs_offset >= st->upper_offset)) { 3471 if (st->frag_data) { 3472 kunmap_atomic(st->frag_data); 3473 st->frag_data = NULL; 3474 } 3475 return 0; 3476 } 3477 3478 next_skb: 3479 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3480 3481 if (abs_offset < block_limit && !st->frag_data) { 3482 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3483 return block_limit - abs_offset; 3484 } 3485 3486 if (st->frag_idx == 0 && !st->frag_data) 3487 st->stepped_offset += skb_headlen(st->cur_skb); 3488 3489 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3490 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3491 block_limit = skb_frag_size(frag) + st->stepped_offset; 3492 3493 if (abs_offset < block_limit) { 3494 if (!st->frag_data) 3495 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3496 3497 *data = (u8 *) st->frag_data + skb_frag_off(frag) + 3498 (abs_offset - st->stepped_offset); 3499 3500 return block_limit - abs_offset; 3501 } 3502 3503 if (st->frag_data) { 3504 kunmap_atomic(st->frag_data); 3505 st->frag_data = NULL; 3506 } 3507 3508 st->frag_idx++; 3509 st->stepped_offset += skb_frag_size(frag); 3510 } 3511 3512 if (st->frag_data) { 3513 kunmap_atomic(st->frag_data); 3514 st->frag_data = NULL; 3515 } 3516 3517 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3518 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3519 st->frag_idx = 0; 3520 goto next_skb; 3521 } else if (st->cur_skb->next) { 3522 st->cur_skb = st->cur_skb->next; 3523 st->frag_idx = 0; 3524 goto next_skb; 3525 } 3526 3527 return 0; 3528 } 3529 EXPORT_SYMBOL(skb_seq_read); 3530 3531 /** 3532 * skb_abort_seq_read - Abort a sequential read of skb data 3533 * @st: state variable 3534 * 3535 * Must be called if skb_seq_read() was not called until it 3536 * returned 0. 3537 */ 3538 void skb_abort_seq_read(struct skb_seq_state *st) 3539 { 3540 if (st->frag_data) 3541 kunmap_atomic(st->frag_data); 3542 } 3543 EXPORT_SYMBOL(skb_abort_seq_read); 3544 3545 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3546 3547 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3548 struct ts_config *conf, 3549 struct ts_state *state) 3550 { 3551 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3552 } 3553 3554 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3555 { 3556 skb_abort_seq_read(TS_SKB_CB(state)); 3557 } 3558 3559 /** 3560 * skb_find_text - Find a text pattern in skb data 3561 * @skb: the buffer to look in 3562 * @from: search offset 3563 * @to: search limit 3564 * @config: textsearch configuration 3565 * 3566 * Finds a pattern in the skb data according to the specified 3567 * textsearch configuration. Use textsearch_next() to retrieve 3568 * subsequent occurrences of the pattern. Returns the offset 3569 * to the first occurrence or UINT_MAX if no match was found. 3570 */ 3571 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3572 unsigned int to, struct ts_config *config) 3573 { 3574 struct ts_state state; 3575 unsigned int ret; 3576 3577 config->get_next_block = skb_ts_get_next_block; 3578 config->finish = skb_ts_finish; 3579 3580 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3581 3582 ret = textsearch_find(config, &state); 3583 return (ret <= to - from ? ret : UINT_MAX); 3584 } 3585 EXPORT_SYMBOL(skb_find_text); 3586 3587 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3588 int offset, size_t size) 3589 { 3590 int i = skb_shinfo(skb)->nr_frags; 3591 3592 if (skb_can_coalesce(skb, i, page, offset)) { 3593 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3594 } else if (i < MAX_SKB_FRAGS) { 3595 get_page(page); 3596 skb_fill_page_desc(skb, i, page, offset, size); 3597 } else { 3598 return -EMSGSIZE; 3599 } 3600 3601 return 0; 3602 } 3603 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3604 3605 /** 3606 * skb_pull_rcsum - pull skb and update receive checksum 3607 * @skb: buffer to update 3608 * @len: length of data pulled 3609 * 3610 * This function performs an skb_pull on the packet and updates 3611 * the CHECKSUM_COMPLETE checksum. It should be used on 3612 * receive path processing instead of skb_pull unless you know 3613 * that the checksum difference is zero (e.g., a valid IP header) 3614 * or you are setting ip_summed to CHECKSUM_NONE. 3615 */ 3616 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3617 { 3618 unsigned char *data = skb->data; 3619 3620 BUG_ON(len > skb->len); 3621 __skb_pull(skb, len); 3622 skb_postpull_rcsum(skb, data, len); 3623 return skb->data; 3624 } 3625 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3626 3627 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3628 { 3629 skb_frag_t head_frag; 3630 struct page *page; 3631 3632 page = virt_to_head_page(frag_skb->head); 3633 __skb_frag_set_page(&head_frag, page); 3634 skb_frag_off_set(&head_frag, frag_skb->data - 3635 (unsigned char *)page_address(page)); 3636 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3637 return head_frag; 3638 } 3639 3640 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3641 netdev_features_t features, 3642 unsigned int offset) 3643 { 3644 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3645 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3646 unsigned int delta_truesize = 0; 3647 unsigned int delta_len = 0; 3648 struct sk_buff *tail = NULL; 3649 struct sk_buff *nskb; 3650 3651 skb_push(skb, -skb_network_offset(skb) + offset); 3652 3653 skb_shinfo(skb)->frag_list = NULL; 3654 3655 do { 3656 nskb = list_skb; 3657 list_skb = list_skb->next; 3658 3659 if (!tail) 3660 skb->next = nskb; 3661 else 3662 tail->next = nskb; 3663 3664 tail = nskb; 3665 3666 delta_len += nskb->len; 3667 delta_truesize += nskb->truesize; 3668 3669 skb_push(nskb, -skb_network_offset(nskb) + offset); 3670 3671 __copy_skb_header(nskb, skb); 3672 3673 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3674 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3675 nskb->data - tnl_hlen, 3676 offset + tnl_hlen); 3677 3678 if (skb_needs_linearize(nskb, features) && 3679 __skb_linearize(nskb)) 3680 goto err_linearize; 3681 3682 } while (list_skb); 3683 3684 skb->truesize = skb->truesize - delta_truesize; 3685 skb->data_len = skb->data_len - delta_len; 3686 skb->len = skb->len - delta_len; 3687 3688 skb_gso_reset(skb); 3689 3690 skb->prev = tail; 3691 3692 if (skb_needs_linearize(skb, features) && 3693 __skb_linearize(skb)) 3694 goto err_linearize; 3695 3696 skb_get(skb); 3697 3698 return skb; 3699 3700 err_linearize: 3701 kfree_skb_list(skb->next); 3702 skb->next = NULL; 3703 return ERR_PTR(-ENOMEM); 3704 } 3705 EXPORT_SYMBOL_GPL(skb_segment_list); 3706 3707 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3708 { 3709 if (unlikely(p->len + skb->len >= 65536)) 3710 return -E2BIG; 3711 3712 if (NAPI_GRO_CB(p)->last == p) 3713 skb_shinfo(p)->frag_list = skb; 3714 else 3715 NAPI_GRO_CB(p)->last->next = skb; 3716 3717 skb_pull(skb, skb_gro_offset(skb)); 3718 3719 NAPI_GRO_CB(p)->last = skb; 3720 NAPI_GRO_CB(p)->count++; 3721 p->data_len += skb->len; 3722 p->truesize += skb->truesize; 3723 p->len += skb->len; 3724 3725 NAPI_GRO_CB(skb)->same_flow = 1; 3726 3727 return 0; 3728 } 3729 EXPORT_SYMBOL_GPL(skb_gro_receive_list); 3730 3731 /** 3732 * skb_segment - Perform protocol segmentation on skb. 3733 * @head_skb: buffer to segment 3734 * @features: features for the output path (see dev->features) 3735 * 3736 * This function performs segmentation on the given skb. It returns 3737 * a pointer to the first in a list of new skbs for the segments. 3738 * In case of error it returns ERR_PTR(err). 3739 */ 3740 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3741 netdev_features_t features) 3742 { 3743 struct sk_buff *segs = NULL; 3744 struct sk_buff *tail = NULL; 3745 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3746 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3747 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3748 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3749 struct sk_buff *frag_skb = head_skb; 3750 unsigned int offset = doffset; 3751 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3752 unsigned int partial_segs = 0; 3753 unsigned int headroom; 3754 unsigned int len = head_skb->len; 3755 __be16 proto; 3756 bool csum, sg; 3757 int nfrags = skb_shinfo(head_skb)->nr_frags; 3758 int err = -ENOMEM; 3759 int i = 0; 3760 int pos; 3761 int dummy; 3762 3763 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3764 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3765 /* gso_size is untrusted, and we have a frag_list with a linear 3766 * non head_frag head. 3767 * 3768 * (we assume checking the first list_skb member suffices; 3769 * i.e if either of the list_skb members have non head_frag 3770 * head, then the first one has too). 3771 * 3772 * If head_skb's headlen does not fit requested gso_size, it 3773 * means that the frag_list members do NOT terminate on exact 3774 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3775 * sharing. Therefore we must fallback to copying the frag_list 3776 * skbs; we do so by disabling SG. 3777 */ 3778 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3779 features &= ~NETIF_F_SG; 3780 } 3781 3782 __skb_push(head_skb, doffset); 3783 proto = skb_network_protocol(head_skb, &dummy); 3784 if (unlikely(!proto)) 3785 return ERR_PTR(-EINVAL); 3786 3787 sg = !!(features & NETIF_F_SG); 3788 csum = !!can_checksum_protocol(features, proto); 3789 3790 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3791 if (!(features & NETIF_F_GSO_PARTIAL)) { 3792 struct sk_buff *iter; 3793 unsigned int frag_len; 3794 3795 if (!list_skb || 3796 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3797 goto normal; 3798 3799 /* If we get here then all the required 3800 * GSO features except frag_list are supported. 3801 * Try to split the SKB to multiple GSO SKBs 3802 * with no frag_list. 3803 * Currently we can do that only when the buffers don't 3804 * have a linear part and all the buffers except 3805 * the last are of the same length. 3806 */ 3807 frag_len = list_skb->len; 3808 skb_walk_frags(head_skb, iter) { 3809 if (frag_len != iter->len && iter->next) 3810 goto normal; 3811 if (skb_headlen(iter) && !iter->head_frag) 3812 goto normal; 3813 3814 len -= iter->len; 3815 } 3816 3817 if (len != frag_len) 3818 goto normal; 3819 } 3820 3821 /* GSO partial only requires that we trim off any excess that 3822 * doesn't fit into an MSS sized block, so take care of that 3823 * now. 3824 */ 3825 partial_segs = len / mss; 3826 if (partial_segs > 1) 3827 mss *= partial_segs; 3828 else 3829 partial_segs = 0; 3830 } 3831 3832 normal: 3833 headroom = skb_headroom(head_skb); 3834 pos = skb_headlen(head_skb); 3835 3836 do { 3837 struct sk_buff *nskb; 3838 skb_frag_t *nskb_frag; 3839 int hsize; 3840 int size; 3841 3842 if (unlikely(mss == GSO_BY_FRAGS)) { 3843 len = list_skb->len; 3844 } else { 3845 len = head_skb->len - offset; 3846 if (len > mss) 3847 len = mss; 3848 } 3849 3850 hsize = skb_headlen(head_skb) - offset; 3851 if (hsize < 0) 3852 hsize = 0; 3853 if (hsize > len || !sg) 3854 hsize = len; 3855 3856 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3857 (skb_headlen(list_skb) == len || sg)) { 3858 BUG_ON(skb_headlen(list_skb) > len); 3859 3860 i = 0; 3861 nfrags = skb_shinfo(list_skb)->nr_frags; 3862 frag = skb_shinfo(list_skb)->frags; 3863 frag_skb = list_skb; 3864 pos += skb_headlen(list_skb); 3865 3866 while (pos < offset + len) { 3867 BUG_ON(i >= nfrags); 3868 3869 size = skb_frag_size(frag); 3870 if (pos + size > offset + len) 3871 break; 3872 3873 i++; 3874 pos += size; 3875 frag++; 3876 } 3877 3878 nskb = skb_clone(list_skb, GFP_ATOMIC); 3879 list_skb = list_skb->next; 3880 3881 if (unlikely(!nskb)) 3882 goto err; 3883 3884 if (unlikely(pskb_trim(nskb, len))) { 3885 kfree_skb(nskb); 3886 goto err; 3887 } 3888 3889 hsize = skb_end_offset(nskb); 3890 if (skb_cow_head(nskb, doffset + headroom)) { 3891 kfree_skb(nskb); 3892 goto err; 3893 } 3894 3895 nskb->truesize += skb_end_offset(nskb) - hsize; 3896 skb_release_head_state(nskb); 3897 __skb_push(nskb, doffset); 3898 } else { 3899 nskb = __alloc_skb(hsize + doffset + headroom, 3900 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3901 NUMA_NO_NODE); 3902 3903 if (unlikely(!nskb)) 3904 goto err; 3905 3906 skb_reserve(nskb, headroom); 3907 __skb_put(nskb, doffset); 3908 } 3909 3910 if (segs) 3911 tail->next = nskb; 3912 else 3913 segs = nskb; 3914 tail = nskb; 3915 3916 __copy_skb_header(nskb, head_skb); 3917 3918 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3919 skb_reset_mac_len(nskb); 3920 3921 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3922 nskb->data - tnl_hlen, 3923 doffset + tnl_hlen); 3924 3925 if (nskb->len == len + doffset) 3926 goto perform_csum_check; 3927 3928 if (!sg) { 3929 if (!nskb->remcsum_offload) 3930 nskb->ip_summed = CHECKSUM_NONE; 3931 SKB_GSO_CB(nskb)->csum = 3932 skb_copy_and_csum_bits(head_skb, offset, 3933 skb_put(nskb, len), 3934 len, 0); 3935 SKB_GSO_CB(nskb)->csum_start = 3936 skb_headroom(nskb) + doffset; 3937 continue; 3938 } 3939 3940 nskb_frag = skb_shinfo(nskb)->frags; 3941 3942 skb_copy_from_linear_data_offset(head_skb, offset, 3943 skb_put(nskb, hsize), hsize); 3944 3945 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3946 SKBTX_SHARED_FRAG; 3947 3948 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3949 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3950 goto err; 3951 3952 while (pos < offset + len) { 3953 if (i >= nfrags) { 3954 i = 0; 3955 nfrags = skb_shinfo(list_skb)->nr_frags; 3956 frag = skb_shinfo(list_skb)->frags; 3957 frag_skb = list_skb; 3958 if (!skb_headlen(list_skb)) { 3959 BUG_ON(!nfrags); 3960 } else { 3961 BUG_ON(!list_skb->head_frag); 3962 3963 /* to make room for head_frag. */ 3964 i--; 3965 frag--; 3966 } 3967 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3968 skb_zerocopy_clone(nskb, frag_skb, 3969 GFP_ATOMIC)) 3970 goto err; 3971 3972 list_skb = list_skb->next; 3973 } 3974 3975 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3976 MAX_SKB_FRAGS)) { 3977 net_warn_ratelimited( 3978 "skb_segment: too many frags: %u %u\n", 3979 pos, mss); 3980 err = -EINVAL; 3981 goto err; 3982 } 3983 3984 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3985 __skb_frag_ref(nskb_frag); 3986 size = skb_frag_size(nskb_frag); 3987 3988 if (pos < offset) { 3989 skb_frag_off_add(nskb_frag, offset - pos); 3990 skb_frag_size_sub(nskb_frag, offset - pos); 3991 } 3992 3993 skb_shinfo(nskb)->nr_frags++; 3994 3995 if (pos + size <= offset + len) { 3996 i++; 3997 frag++; 3998 pos += size; 3999 } else { 4000 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4001 goto skip_fraglist; 4002 } 4003 4004 nskb_frag++; 4005 } 4006 4007 skip_fraglist: 4008 nskb->data_len = len - hsize; 4009 nskb->len += nskb->data_len; 4010 nskb->truesize += nskb->data_len; 4011 4012 perform_csum_check: 4013 if (!csum) { 4014 if (skb_has_shared_frag(nskb) && 4015 __skb_linearize(nskb)) 4016 goto err; 4017 4018 if (!nskb->remcsum_offload) 4019 nskb->ip_summed = CHECKSUM_NONE; 4020 SKB_GSO_CB(nskb)->csum = 4021 skb_checksum(nskb, doffset, 4022 nskb->len - doffset, 0); 4023 SKB_GSO_CB(nskb)->csum_start = 4024 skb_headroom(nskb) + doffset; 4025 } 4026 } while ((offset += len) < head_skb->len); 4027 4028 /* Some callers want to get the end of the list. 4029 * Put it in segs->prev to avoid walking the list. 4030 * (see validate_xmit_skb_list() for example) 4031 */ 4032 segs->prev = tail; 4033 4034 if (partial_segs) { 4035 struct sk_buff *iter; 4036 int type = skb_shinfo(head_skb)->gso_type; 4037 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4038 4039 /* Update type to add partial and then remove dodgy if set */ 4040 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4041 type &= ~SKB_GSO_DODGY; 4042 4043 /* Update GSO info and prepare to start updating headers on 4044 * our way back down the stack of protocols. 4045 */ 4046 for (iter = segs; iter; iter = iter->next) { 4047 skb_shinfo(iter)->gso_size = gso_size; 4048 skb_shinfo(iter)->gso_segs = partial_segs; 4049 skb_shinfo(iter)->gso_type = type; 4050 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4051 } 4052 4053 if (tail->len - doffset <= gso_size) 4054 skb_shinfo(tail)->gso_size = 0; 4055 else if (tail != segs) 4056 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4057 } 4058 4059 /* Following permits correct backpressure, for protocols 4060 * using skb_set_owner_w(). 4061 * Idea is to tranfert ownership from head_skb to last segment. 4062 */ 4063 if (head_skb->destructor == sock_wfree) { 4064 swap(tail->truesize, head_skb->truesize); 4065 swap(tail->destructor, head_skb->destructor); 4066 swap(tail->sk, head_skb->sk); 4067 } 4068 return segs; 4069 4070 err: 4071 kfree_skb_list(segs); 4072 return ERR_PTR(err); 4073 } 4074 EXPORT_SYMBOL_GPL(skb_segment); 4075 4076 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4077 { 4078 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4079 unsigned int offset = skb_gro_offset(skb); 4080 unsigned int headlen = skb_headlen(skb); 4081 unsigned int len = skb_gro_len(skb); 4082 unsigned int delta_truesize; 4083 struct sk_buff *lp; 4084 4085 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4086 return -E2BIG; 4087 4088 lp = NAPI_GRO_CB(p)->last; 4089 pinfo = skb_shinfo(lp); 4090 4091 if (headlen <= offset) { 4092 skb_frag_t *frag; 4093 skb_frag_t *frag2; 4094 int i = skbinfo->nr_frags; 4095 int nr_frags = pinfo->nr_frags + i; 4096 4097 if (nr_frags > MAX_SKB_FRAGS) 4098 goto merge; 4099 4100 offset -= headlen; 4101 pinfo->nr_frags = nr_frags; 4102 skbinfo->nr_frags = 0; 4103 4104 frag = pinfo->frags + nr_frags; 4105 frag2 = skbinfo->frags + i; 4106 do { 4107 *--frag = *--frag2; 4108 } while (--i); 4109 4110 skb_frag_off_add(frag, offset); 4111 skb_frag_size_sub(frag, offset); 4112 4113 /* all fragments truesize : remove (head size + sk_buff) */ 4114 delta_truesize = skb->truesize - 4115 SKB_TRUESIZE(skb_end_offset(skb)); 4116 4117 skb->truesize -= skb->data_len; 4118 skb->len -= skb->data_len; 4119 skb->data_len = 0; 4120 4121 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4122 goto done; 4123 } else if (skb->head_frag) { 4124 int nr_frags = pinfo->nr_frags; 4125 skb_frag_t *frag = pinfo->frags + nr_frags; 4126 struct page *page = virt_to_head_page(skb->head); 4127 unsigned int first_size = headlen - offset; 4128 unsigned int first_offset; 4129 4130 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4131 goto merge; 4132 4133 first_offset = skb->data - 4134 (unsigned char *)page_address(page) + 4135 offset; 4136 4137 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4138 4139 __skb_frag_set_page(frag, page); 4140 skb_frag_off_set(frag, first_offset); 4141 skb_frag_size_set(frag, first_size); 4142 4143 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4144 /* We dont need to clear skbinfo->nr_frags here */ 4145 4146 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4147 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4148 goto done; 4149 } 4150 4151 merge: 4152 delta_truesize = skb->truesize; 4153 if (offset > headlen) { 4154 unsigned int eat = offset - headlen; 4155 4156 skb_frag_off_add(&skbinfo->frags[0], eat); 4157 skb_frag_size_sub(&skbinfo->frags[0], eat); 4158 skb->data_len -= eat; 4159 skb->len -= eat; 4160 offset = headlen; 4161 } 4162 4163 __skb_pull(skb, offset); 4164 4165 if (NAPI_GRO_CB(p)->last == p) 4166 skb_shinfo(p)->frag_list = skb; 4167 else 4168 NAPI_GRO_CB(p)->last->next = skb; 4169 NAPI_GRO_CB(p)->last = skb; 4170 __skb_header_release(skb); 4171 lp = p; 4172 4173 done: 4174 NAPI_GRO_CB(p)->count++; 4175 p->data_len += len; 4176 p->truesize += delta_truesize; 4177 p->len += len; 4178 if (lp != p) { 4179 lp->data_len += len; 4180 lp->truesize += delta_truesize; 4181 lp->len += len; 4182 } 4183 NAPI_GRO_CB(skb)->same_flow = 1; 4184 return 0; 4185 } 4186 EXPORT_SYMBOL_GPL(skb_gro_receive); 4187 4188 #ifdef CONFIG_SKB_EXTENSIONS 4189 #define SKB_EXT_ALIGN_VALUE 8 4190 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4191 4192 static const u8 skb_ext_type_len[] = { 4193 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4194 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4195 #endif 4196 #ifdef CONFIG_XFRM 4197 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4198 #endif 4199 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4200 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4201 #endif 4202 #if IS_ENABLED(CONFIG_MPTCP) 4203 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4204 #endif 4205 }; 4206 4207 static __always_inline unsigned int skb_ext_total_length(void) 4208 { 4209 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4210 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4211 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4212 #endif 4213 #ifdef CONFIG_XFRM 4214 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4215 #endif 4216 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4217 skb_ext_type_len[TC_SKB_EXT] + 4218 #endif 4219 #if IS_ENABLED(CONFIG_MPTCP) 4220 skb_ext_type_len[SKB_EXT_MPTCP] + 4221 #endif 4222 0; 4223 } 4224 4225 static void skb_extensions_init(void) 4226 { 4227 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4228 BUILD_BUG_ON(skb_ext_total_length() > 255); 4229 4230 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4231 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4232 0, 4233 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4234 NULL); 4235 } 4236 #else 4237 static void skb_extensions_init(void) {} 4238 #endif 4239 4240 void __init skb_init(void) 4241 { 4242 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4243 sizeof(struct sk_buff), 4244 0, 4245 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4246 offsetof(struct sk_buff, cb), 4247 sizeof_field(struct sk_buff, cb), 4248 NULL); 4249 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4250 sizeof(struct sk_buff_fclones), 4251 0, 4252 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4253 NULL); 4254 skb_extensions_init(); 4255 } 4256 4257 static int 4258 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4259 unsigned int recursion_level) 4260 { 4261 int start = skb_headlen(skb); 4262 int i, copy = start - offset; 4263 struct sk_buff *frag_iter; 4264 int elt = 0; 4265 4266 if (unlikely(recursion_level >= 24)) 4267 return -EMSGSIZE; 4268 4269 if (copy > 0) { 4270 if (copy > len) 4271 copy = len; 4272 sg_set_buf(sg, skb->data + offset, copy); 4273 elt++; 4274 if ((len -= copy) == 0) 4275 return elt; 4276 offset += copy; 4277 } 4278 4279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4280 int end; 4281 4282 WARN_ON(start > offset + len); 4283 4284 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4285 if ((copy = end - offset) > 0) { 4286 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4287 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4288 return -EMSGSIZE; 4289 4290 if (copy > len) 4291 copy = len; 4292 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4293 skb_frag_off(frag) + offset - start); 4294 elt++; 4295 if (!(len -= copy)) 4296 return elt; 4297 offset += copy; 4298 } 4299 start = end; 4300 } 4301 4302 skb_walk_frags(skb, frag_iter) { 4303 int end, ret; 4304 4305 WARN_ON(start > offset + len); 4306 4307 end = start + frag_iter->len; 4308 if ((copy = end - offset) > 0) { 4309 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4310 return -EMSGSIZE; 4311 4312 if (copy > len) 4313 copy = len; 4314 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4315 copy, recursion_level + 1); 4316 if (unlikely(ret < 0)) 4317 return ret; 4318 elt += ret; 4319 if ((len -= copy) == 0) 4320 return elt; 4321 offset += copy; 4322 } 4323 start = end; 4324 } 4325 BUG_ON(len); 4326 return elt; 4327 } 4328 4329 /** 4330 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4331 * @skb: Socket buffer containing the buffers to be mapped 4332 * @sg: The scatter-gather list to map into 4333 * @offset: The offset into the buffer's contents to start mapping 4334 * @len: Length of buffer space to be mapped 4335 * 4336 * Fill the specified scatter-gather list with mappings/pointers into a 4337 * region of the buffer space attached to a socket buffer. Returns either 4338 * the number of scatterlist items used, or -EMSGSIZE if the contents 4339 * could not fit. 4340 */ 4341 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4342 { 4343 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4344 4345 if (nsg <= 0) 4346 return nsg; 4347 4348 sg_mark_end(&sg[nsg - 1]); 4349 4350 return nsg; 4351 } 4352 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4353 4354 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4355 * sglist without mark the sg which contain last skb data as the end. 4356 * So the caller can mannipulate sg list as will when padding new data after 4357 * the first call without calling sg_unmark_end to expend sg list. 4358 * 4359 * Scenario to use skb_to_sgvec_nomark: 4360 * 1. sg_init_table 4361 * 2. skb_to_sgvec_nomark(payload1) 4362 * 3. skb_to_sgvec_nomark(payload2) 4363 * 4364 * This is equivalent to: 4365 * 1. sg_init_table 4366 * 2. skb_to_sgvec(payload1) 4367 * 3. sg_unmark_end 4368 * 4. skb_to_sgvec(payload2) 4369 * 4370 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4371 * is more preferable. 4372 */ 4373 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4374 int offset, int len) 4375 { 4376 return __skb_to_sgvec(skb, sg, offset, len, 0); 4377 } 4378 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4379 4380 4381 4382 /** 4383 * skb_cow_data - Check that a socket buffer's data buffers are writable 4384 * @skb: The socket buffer to check. 4385 * @tailbits: Amount of trailing space to be added 4386 * @trailer: Returned pointer to the skb where the @tailbits space begins 4387 * 4388 * Make sure that the data buffers attached to a socket buffer are 4389 * writable. If they are not, private copies are made of the data buffers 4390 * and the socket buffer is set to use these instead. 4391 * 4392 * If @tailbits is given, make sure that there is space to write @tailbits 4393 * bytes of data beyond current end of socket buffer. @trailer will be 4394 * set to point to the skb in which this space begins. 4395 * 4396 * The number of scatterlist elements required to completely map the 4397 * COW'd and extended socket buffer will be returned. 4398 */ 4399 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4400 { 4401 int copyflag; 4402 int elt; 4403 struct sk_buff *skb1, **skb_p; 4404 4405 /* If skb is cloned or its head is paged, reallocate 4406 * head pulling out all the pages (pages are considered not writable 4407 * at the moment even if they are anonymous). 4408 */ 4409 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4410 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4411 return -ENOMEM; 4412 4413 /* Easy case. Most of packets will go this way. */ 4414 if (!skb_has_frag_list(skb)) { 4415 /* A little of trouble, not enough of space for trailer. 4416 * This should not happen, when stack is tuned to generate 4417 * good frames. OK, on miss we reallocate and reserve even more 4418 * space, 128 bytes is fair. */ 4419 4420 if (skb_tailroom(skb) < tailbits && 4421 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4422 return -ENOMEM; 4423 4424 /* Voila! */ 4425 *trailer = skb; 4426 return 1; 4427 } 4428 4429 /* Misery. We are in troubles, going to mincer fragments... */ 4430 4431 elt = 1; 4432 skb_p = &skb_shinfo(skb)->frag_list; 4433 copyflag = 0; 4434 4435 while ((skb1 = *skb_p) != NULL) { 4436 int ntail = 0; 4437 4438 /* The fragment is partially pulled by someone, 4439 * this can happen on input. Copy it and everything 4440 * after it. */ 4441 4442 if (skb_shared(skb1)) 4443 copyflag = 1; 4444 4445 /* If the skb is the last, worry about trailer. */ 4446 4447 if (skb1->next == NULL && tailbits) { 4448 if (skb_shinfo(skb1)->nr_frags || 4449 skb_has_frag_list(skb1) || 4450 skb_tailroom(skb1) < tailbits) 4451 ntail = tailbits + 128; 4452 } 4453 4454 if (copyflag || 4455 skb_cloned(skb1) || 4456 ntail || 4457 skb_shinfo(skb1)->nr_frags || 4458 skb_has_frag_list(skb1)) { 4459 struct sk_buff *skb2; 4460 4461 /* Fuck, we are miserable poor guys... */ 4462 if (ntail == 0) 4463 skb2 = skb_copy(skb1, GFP_ATOMIC); 4464 else 4465 skb2 = skb_copy_expand(skb1, 4466 skb_headroom(skb1), 4467 ntail, 4468 GFP_ATOMIC); 4469 if (unlikely(skb2 == NULL)) 4470 return -ENOMEM; 4471 4472 if (skb1->sk) 4473 skb_set_owner_w(skb2, skb1->sk); 4474 4475 /* Looking around. Are we still alive? 4476 * OK, link new skb, drop old one */ 4477 4478 skb2->next = skb1->next; 4479 *skb_p = skb2; 4480 kfree_skb(skb1); 4481 skb1 = skb2; 4482 } 4483 elt++; 4484 *trailer = skb1; 4485 skb_p = &skb1->next; 4486 } 4487 4488 return elt; 4489 } 4490 EXPORT_SYMBOL_GPL(skb_cow_data); 4491 4492 static void sock_rmem_free(struct sk_buff *skb) 4493 { 4494 struct sock *sk = skb->sk; 4495 4496 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4497 } 4498 4499 static void skb_set_err_queue(struct sk_buff *skb) 4500 { 4501 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4502 * So, it is safe to (mis)use it to mark skbs on the error queue. 4503 */ 4504 skb->pkt_type = PACKET_OUTGOING; 4505 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4506 } 4507 4508 /* 4509 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4510 */ 4511 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4512 { 4513 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4514 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4515 return -ENOMEM; 4516 4517 skb_orphan(skb); 4518 skb->sk = sk; 4519 skb->destructor = sock_rmem_free; 4520 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4521 skb_set_err_queue(skb); 4522 4523 /* before exiting rcu section, make sure dst is refcounted */ 4524 skb_dst_force(skb); 4525 4526 skb_queue_tail(&sk->sk_error_queue, skb); 4527 if (!sock_flag(sk, SOCK_DEAD)) 4528 sk->sk_error_report(sk); 4529 return 0; 4530 } 4531 EXPORT_SYMBOL(sock_queue_err_skb); 4532 4533 static bool is_icmp_err_skb(const struct sk_buff *skb) 4534 { 4535 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4536 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4537 } 4538 4539 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4540 { 4541 struct sk_buff_head *q = &sk->sk_error_queue; 4542 struct sk_buff *skb, *skb_next = NULL; 4543 bool icmp_next = false; 4544 unsigned long flags; 4545 4546 spin_lock_irqsave(&q->lock, flags); 4547 skb = __skb_dequeue(q); 4548 if (skb && (skb_next = skb_peek(q))) { 4549 icmp_next = is_icmp_err_skb(skb_next); 4550 if (icmp_next) 4551 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4552 } 4553 spin_unlock_irqrestore(&q->lock, flags); 4554 4555 if (is_icmp_err_skb(skb) && !icmp_next) 4556 sk->sk_err = 0; 4557 4558 if (skb_next) 4559 sk->sk_error_report(sk); 4560 4561 return skb; 4562 } 4563 EXPORT_SYMBOL(sock_dequeue_err_skb); 4564 4565 /** 4566 * skb_clone_sk - create clone of skb, and take reference to socket 4567 * @skb: the skb to clone 4568 * 4569 * This function creates a clone of a buffer that holds a reference on 4570 * sk_refcnt. Buffers created via this function are meant to be 4571 * returned using sock_queue_err_skb, or free via kfree_skb. 4572 * 4573 * When passing buffers allocated with this function to sock_queue_err_skb 4574 * it is necessary to wrap the call with sock_hold/sock_put in order to 4575 * prevent the socket from being released prior to being enqueued on 4576 * the sk_error_queue. 4577 */ 4578 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4579 { 4580 struct sock *sk = skb->sk; 4581 struct sk_buff *clone; 4582 4583 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4584 return NULL; 4585 4586 clone = skb_clone(skb, GFP_ATOMIC); 4587 if (!clone) { 4588 sock_put(sk); 4589 return NULL; 4590 } 4591 4592 clone->sk = sk; 4593 clone->destructor = sock_efree; 4594 4595 return clone; 4596 } 4597 EXPORT_SYMBOL(skb_clone_sk); 4598 4599 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4600 struct sock *sk, 4601 int tstype, 4602 bool opt_stats) 4603 { 4604 struct sock_exterr_skb *serr; 4605 int err; 4606 4607 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4608 4609 serr = SKB_EXT_ERR(skb); 4610 memset(serr, 0, sizeof(*serr)); 4611 serr->ee.ee_errno = ENOMSG; 4612 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4613 serr->ee.ee_info = tstype; 4614 serr->opt_stats = opt_stats; 4615 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4616 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4617 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4618 if (sk->sk_protocol == IPPROTO_TCP && 4619 sk->sk_type == SOCK_STREAM) 4620 serr->ee.ee_data -= sk->sk_tskey; 4621 } 4622 4623 err = sock_queue_err_skb(sk, skb); 4624 4625 if (err) 4626 kfree_skb(skb); 4627 } 4628 4629 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4630 { 4631 bool ret; 4632 4633 if (likely(sysctl_tstamp_allow_data || tsonly)) 4634 return true; 4635 4636 read_lock_bh(&sk->sk_callback_lock); 4637 ret = sk->sk_socket && sk->sk_socket->file && 4638 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4639 read_unlock_bh(&sk->sk_callback_lock); 4640 return ret; 4641 } 4642 4643 void skb_complete_tx_timestamp(struct sk_buff *skb, 4644 struct skb_shared_hwtstamps *hwtstamps) 4645 { 4646 struct sock *sk = skb->sk; 4647 4648 if (!skb_may_tx_timestamp(sk, false)) 4649 goto err; 4650 4651 /* Take a reference to prevent skb_orphan() from freeing the socket, 4652 * but only if the socket refcount is not zero. 4653 */ 4654 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4655 *skb_hwtstamps(skb) = *hwtstamps; 4656 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4657 sock_put(sk); 4658 return; 4659 } 4660 4661 err: 4662 kfree_skb(skb); 4663 } 4664 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4665 4666 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4667 struct skb_shared_hwtstamps *hwtstamps, 4668 struct sock *sk, int tstype) 4669 { 4670 struct sk_buff *skb; 4671 bool tsonly, opt_stats = false; 4672 4673 if (!sk) 4674 return; 4675 4676 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4677 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4678 return; 4679 4680 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4681 if (!skb_may_tx_timestamp(sk, tsonly)) 4682 return; 4683 4684 if (tsonly) { 4685 #ifdef CONFIG_INET 4686 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4687 sk->sk_protocol == IPPROTO_TCP && 4688 sk->sk_type == SOCK_STREAM) { 4689 skb = tcp_get_timestamping_opt_stats(sk); 4690 opt_stats = true; 4691 } else 4692 #endif 4693 skb = alloc_skb(0, GFP_ATOMIC); 4694 } else { 4695 skb = skb_clone(orig_skb, GFP_ATOMIC); 4696 } 4697 if (!skb) 4698 return; 4699 4700 if (tsonly) { 4701 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4702 SKBTX_ANY_TSTAMP; 4703 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4704 } 4705 4706 if (hwtstamps) 4707 *skb_hwtstamps(skb) = *hwtstamps; 4708 else 4709 skb->tstamp = ktime_get_real(); 4710 4711 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4712 } 4713 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4714 4715 void skb_tstamp_tx(struct sk_buff *orig_skb, 4716 struct skb_shared_hwtstamps *hwtstamps) 4717 { 4718 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4719 SCM_TSTAMP_SND); 4720 } 4721 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4722 4723 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4724 { 4725 struct sock *sk = skb->sk; 4726 struct sock_exterr_skb *serr; 4727 int err = 1; 4728 4729 skb->wifi_acked_valid = 1; 4730 skb->wifi_acked = acked; 4731 4732 serr = SKB_EXT_ERR(skb); 4733 memset(serr, 0, sizeof(*serr)); 4734 serr->ee.ee_errno = ENOMSG; 4735 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4736 4737 /* Take a reference to prevent skb_orphan() from freeing the socket, 4738 * but only if the socket refcount is not zero. 4739 */ 4740 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4741 err = sock_queue_err_skb(sk, skb); 4742 sock_put(sk); 4743 } 4744 if (err) 4745 kfree_skb(skb); 4746 } 4747 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4748 4749 /** 4750 * skb_partial_csum_set - set up and verify partial csum values for packet 4751 * @skb: the skb to set 4752 * @start: the number of bytes after skb->data to start checksumming. 4753 * @off: the offset from start to place the checksum. 4754 * 4755 * For untrusted partially-checksummed packets, we need to make sure the values 4756 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4757 * 4758 * This function checks and sets those values and skb->ip_summed: if this 4759 * returns false you should drop the packet. 4760 */ 4761 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4762 { 4763 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4764 u32 csum_start = skb_headroom(skb) + (u32)start; 4765 4766 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4767 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4768 start, off, skb_headroom(skb), skb_headlen(skb)); 4769 return false; 4770 } 4771 skb->ip_summed = CHECKSUM_PARTIAL; 4772 skb->csum_start = csum_start; 4773 skb->csum_offset = off; 4774 skb_set_transport_header(skb, start); 4775 return true; 4776 } 4777 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4778 4779 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4780 unsigned int max) 4781 { 4782 if (skb_headlen(skb) >= len) 4783 return 0; 4784 4785 /* If we need to pullup then pullup to the max, so we 4786 * won't need to do it again. 4787 */ 4788 if (max > skb->len) 4789 max = skb->len; 4790 4791 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4792 return -ENOMEM; 4793 4794 if (skb_headlen(skb) < len) 4795 return -EPROTO; 4796 4797 return 0; 4798 } 4799 4800 #define MAX_TCP_HDR_LEN (15 * 4) 4801 4802 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4803 typeof(IPPROTO_IP) proto, 4804 unsigned int off) 4805 { 4806 int err; 4807 4808 switch (proto) { 4809 case IPPROTO_TCP: 4810 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4811 off + MAX_TCP_HDR_LEN); 4812 if (!err && !skb_partial_csum_set(skb, off, 4813 offsetof(struct tcphdr, 4814 check))) 4815 err = -EPROTO; 4816 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4817 4818 case IPPROTO_UDP: 4819 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4820 off + sizeof(struct udphdr)); 4821 if (!err && !skb_partial_csum_set(skb, off, 4822 offsetof(struct udphdr, 4823 check))) 4824 err = -EPROTO; 4825 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4826 } 4827 4828 return ERR_PTR(-EPROTO); 4829 } 4830 4831 /* This value should be large enough to cover a tagged ethernet header plus 4832 * maximally sized IP and TCP or UDP headers. 4833 */ 4834 #define MAX_IP_HDR_LEN 128 4835 4836 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4837 { 4838 unsigned int off; 4839 bool fragment; 4840 __sum16 *csum; 4841 int err; 4842 4843 fragment = false; 4844 4845 err = skb_maybe_pull_tail(skb, 4846 sizeof(struct iphdr), 4847 MAX_IP_HDR_LEN); 4848 if (err < 0) 4849 goto out; 4850 4851 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4852 fragment = true; 4853 4854 off = ip_hdrlen(skb); 4855 4856 err = -EPROTO; 4857 4858 if (fragment) 4859 goto out; 4860 4861 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4862 if (IS_ERR(csum)) 4863 return PTR_ERR(csum); 4864 4865 if (recalculate) 4866 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4867 ip_hdr(skb)->daddr, 4868 skb->len - off, 4869 ip_hdr(skb)->protocol, 0); 4870 err = 0; 4871 4872 out: 4873 return err; 4874 } 4875 4876 /* This value should be large enough to cover a tagged ethernet header plus 4877 * an IPv6 header, all options, and a maximal TCP or UDP header. 4878 */ 4879 #define MAX_IPV6_HDR_LEN 256 4880 4881 #define OPT_HDR(type, skb, off) \ 4882 (type *)(skb_network_header(skb) + (off)) 4883 4884 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4885 { 4886 int err; 4887 u8 nexthdr; 4888 unsigned int off; 4889 unsigned int len; 4890 bool fragment; 4891 bool done; 4892 __sum16 *csum; 4893 4894 fragment = false; 4895 done = false; 4896 4897 off = sizeof(struct ipv6hdr); 4898 4899 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4900 if (err < 0) 4901 goto out; 4902 4903 nexthdr = ipv6_hdr(skb)->nexthdr; 4904 4905 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4906 while (off <= len && !done) { 4907 switch (nexthdr) { 4908 case IPPROTO_DSTOPTS: 4909 case IPPROTO_HOPOPTS: 4910 case IPPROTO_ROUTING: { 4911 struct ipv6_opt_hdr *hp; 4912 4913 err = skb_maybe_pull_tail(skb, 4914 off + 4915 sizeof(struct ipv6_opt_hdr), 4916 MAX_IPV6_HDR_LEN); 4917 if (err < 0) 4918 goto out; 4919 4920 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4921 nexthdr = hp->nexthdr; 4922 off += ipv6_optlen(hp); 4923 break; 4924 } 4925 case IPPROTO_AH: { 4926 struct ip_auth_hdr *hp; 4927 4928 err = skb_maybe_pull_tail(skb, 4929 off + 4930 sizeof(struct ip_auth_hdr), 4931 MAX_IPV6_HDR_LEN); 4932 if (err < 0) 4933 goto out; 4934 4935 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4936 nexthdr = hp->nexthdr; 4937 off += ipv6_authlen(hp); 4938 break; 4939 } 4940 case IPPROTO_FRAGMENT: { 4941 struct frag_hdr *hp; 4942 4943 err = skb_maybe_pull_tail(skb, 4944 off + 4945 sizeof(struct frag_hdr), 4946 MAX_IPV6_HDR_LEN); 4947 if (err < 0) 4948 goto out; 4949 4950 hp = OPT_HDR(struct frag_hdr, skb, off); 4951 4952 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4953 fragment = true; 4954 4955 nexthdr = hp->nexthdr; 4956 off += sizeof(struct frag_hdr); 4957 break; 4958 } 4959 default: 4960 done = true; 4961 break; 4962 } 4963 } 4964 4965 err = -EPROTO; 4966 4967 if (!done || fragment) 4968 goto out; 4969 4970 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4971 if (IS_ERR(csum)) 4972 return PTR_ERR(csum); 4973 4974 if (recalculate) 4975 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4976 &ipv6_hdr(skb)->daddr, 4977 skb->len - off, nexthdr, 0); 4978 err = 0; 4979 4980 out: 4981 return err; 4982 } 4983 4984 /** 4985 * skb_checksum_setup - set up partial checksum offset 4986 * @skb: the skb to set up 4987 * @recalculate: if true the pseudo-header checksum will be recalculated 4988 */ 4989 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4990 { 4991 int err; 4992 4993 switch (skb->protocol) { 4994 case htons(ETH_P_IP): 4995 err = skb_checksum_setup_ipv4(skb, recalculate); 4996 break; 4997 4998 case htons(ETH_P_IPV6): 4999 err = skb_checksum_setup_ipv6(skb, recalculate); 5000 break; 5001 5002 default: 5003 err = -EPROTO; 5004 break; 5005 } 5006 5007 return err; 5008 } 5009 EXPORT_SYMBOL(skb_checksum_setup); 5010 5011 /** 5012 * skb_checksum_maybe_trim - maybe trims the given skb 5013 * @skb: the skb to check 5014 * @transport_len: the data length beyond the network header 5015 * 5016 * Checks whether the given skb has data beyond the given transport length. 5017 * If so, returns a cloned skb trimmed to this transport length. 5018 * Otherwise returns the provided skb. Returns NULL in error cases 5019 * (e.g. transport_len exceeds skb length or out-of-memory). 5020 * 5021 * Caller needs to set the skb transport header and free any returned skb if it 5022 * differs from the provided skb. 5023 */ 5024 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5025 unsigned int transport_len) 5026 { 5027 struct sk_buff *skb_chk; 5028 unsigned int len = skb_transport_offset(skb) + transport_len; 5029 int ret; 5030 5031 if (skb->len < len) 5032 return NULL; 5033 else if (skb->len == len) 5034 return skb; 5035 5036 skb_chk = skb_clone(skb, GFP_ATOMIC); 5037 if (!skb_chk) 5038 return NULL; 5039 5040 ret = pskb_trim_rcsum(skb_chk, len); 5041 if (ret) { 5042 kfree_skb(skb_chk); 5043 return NULL; 5044 } 5045 5046 return skb_chk; 5047 } 5048 5049 /** 5050 * skb_checksum_trimmed - validate checksum of an skb 5051 * @skb: the skb to check 5052 * @transport_len: the data length beyond the network header 5053 * @skb_chkf: checksum function to use 5054 * 5055 * Applies the given checksum function skb_chkf to the provided skb. 5056 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5057 * 5058 * If the skb has data beyond the given transport length, then a 5059 * trimmed & cloned skb is checked and returned. 5060 * 5061 * Caller needs to set the skb transport header and free any returned skb if it 5062 * differs from the provided skb. 5063 */ 5064 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5065 unsigned int transport_len, 5066 __sum16(*skb_chkf)(struct sk_buff *skb)) 5067 { 5068 struct sk_buff *skb_chk; 5069 unsigned int offset = skb_transport_offset(skb); 5070 __sum16 ret; 5071 5072 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5073 if (!skb_chk) 5074 goto err; 5075 5076 if (!pskb_may_pull(skb_chk, offset)) 5077 goto err; 5078 5079 skb_pull_rcsum(skb_chk, offset); 5080 ret = skb_chkf(skb_chk); 5081 skb_push_rcsum(skb_chk, offset); 5082 5083 if (ret) 5084 goto err; 5085 5086 return skb_chk; 5087 5088 err: 5089 if (skb_chk && skb_chk != skb) 5090 kfree_skb(skb_chk); 5091 5092 return NULL; 5093 5094 } 5095 EXPORT_SYMBOL(skb_checksum_trimmed); 5096 5097 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5098 { 5099 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5100 skb->dev->name); 5101 } 5102 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5103 5104 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5105 { 5106 if (head_stolen) { 5107 skb_release_head_state(skb); 5108 kmem_cache_free(skbuff_head_cache, skb); 5109 } else { 5110 __kfree_skb(skb); 5111 } 5112 } 5113 EXPORT_SYMBOL(kfree_skb_partial); 5114 5115 /** 5116 * skb_try_coalesce - try to merge skb to prior one 5117 * @to: prior buffer 5118 * @from: buffer to add 5119 * @fragstolen: pointer to boolean 5120 * @delta_truesize: how much more was allocated than was requested 5121 */ 5122 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5123 bool *fragstolen, int *delta_truesize) 5124 { 5125 struct skb_shared_info *to_shinfo, *from_shinfo; 5126 int i, delta, len = from->len; 5127 5128 *fragstolen = false; 5129 5130 if (skb_cloned(to)) 5131 return false; 5132 5133 if (len <= skb_tailroom(to)) { 5134 if (len) 5135 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5136 *delta_truesize = 0; 5137 return true; 5138 } 5139 5140 to_shinfo = skb_shinfo(to); 5141 from_shinfo = skb_shinfo(from); 5142 if (to_shinfo->frag_list || from_shinfo->frag_list) 5143 return false; 5144 if (skb_zcopy(to) || skb_zcopy(from)) 5145 return false; 5146 5147 if (skb_headlen(from) != 0) { 5148 struct page *page; 5149 unsigned int offset; 5150 5151 if (to_shinfo->nr_frags + 5152 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5153 return false; 5154 5155 if (skb_head_is_locked(from)) 5156 return false; 5157 5158 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5159 5160 page = virt_to_head_page(from->head); 5161 offset = from->data - (unsigned char *)page_address(page); 5162 5163 skb_fill_page_desc(to, to_shinfo->nr_frags, 5164 page, offset, skb_headlen(from)); 5165 *fragstolen = true; 5166 } else { 5167 if (to_shinfo->nr_frags + 5168 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5169 return false; 5170 5171 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5172 } 5173 5174 WARN_ON_ONCE(delta < len); 5175 5176 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5177 from_shinfo->frags, 5178 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5179 to_shinfo->nr_frags += from_shinfo->nr_frags; 5180 5181 if (!skb_cloned(from)) 5182 from_shinfo->nr_frags = 0; 5183 5184 /* if the skb is not cloned this does nothing 5185 * since we set nr_frags to 0. 5186 */ 5187 for (i = 0; i < from_shinfo->nr_frags; i++) 5188 __skb_frag_ref(&from_shinfo->frags[i]); 5189 5190 to->truesize += delta; 5191 to->len += len; 5192 to->data_len += len; 5193 5194 *delta_truesize = delta; 5195 return true; 5196 } 5197 EXPORT_SYMBOL(skb_try_coalesce); 5198 5199 /** 5200 * skb_scrub_packet - scrub an skb 5201 * 5202 * @skb: buffer to clean 5203 * @xnet: packet is crossing netns 5204 * 5205 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5206 * into/from a tunnel. Some information have to be cleared during these 5207 * operations. 5208 * skb_scrub_packet can also be used to clean a skb before injecting it in 5209 * another namespace (@xnet == true). We have to clear all information in the 5210 * skb that could impact namespace isolation. 5211 */ 5212 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5213 { 5214 skb->pkt_type = PACKET_HOST; 5215 skb->skb_iif = 0; 5216 skb->ignore_df = 0; 5217 skb_dst_drop(skb); 5218 skb_ext_reset(skb); 5219 nf_reset_ct(skb); 5220 nf_reset_trace(skb); 5221 5222 #ifdef CONFIG_NET_SWITCHDEV 5223 skb->offload_fwd_mark = 0; 5224 skb->offload_l3_fwd_mark = 0; 5225 #endif 5226 5227 if (!xnet) 5228 return; 5229 5230 ipvs_reset(skb); 5231 skb->mark = 0; 5232 skb->tstamp = 0; 5233 } 5234 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5235 5236 /** 5237 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5238 * 5239 * @skb: GSO skb 5240 * 5241 * skb_gso_transport_seglen is used to determine the real size of the 5242 * individual segments, including Layer4 headers (TCP/UDP). 5243 * 5244 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5245 */ 5246 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5247 { 5248 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5249 unsigned int thlen = 0; 5250 5251 if (skb->encapsulation) { 5252 thlen = skb_inner_transport_header(skb) - 5253 skb_transport_header(skb); 5254 5255 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5256 thlen += inner_tcp_hdrlen(skb); 5257 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5258 thlen = tcp_hdrlen(skb); 5259 } else if (unlikely(skb_is_gso_sctp(skb))) { 5260 thlen = sizeof(struct sctphdr); 5261 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5262 thlen = sizeof(struct udphdr); 5263 } 5264 /* UFO sets gso_size to the size of the fragmentation 5265 * payload, i.e. the size of the L4 (UDP) header is already 5266 * accounted for. 5267 */ 5268 return thlen + shinfo->gso_size; 5269 } 5270 5271 /** 5272 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5273 * 5274 * @skb: GSO skb 5275 * 5276 * skb_gso_network_seglen is used to determine the real size of the 5277 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5278 * 5279 * The MAC/L2 header is not accounted for. 5280 */ 5281 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5282 { 5283 unsigned int hdr_len = skb_transport_header(skb) - 5284 skb_network_header(skb); 5285 5286 return hdr_len + skb_gso_transport_seglen(skb); 5287 } 5288 5289 /** 5290 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5291 * 5292 * @skb: GSO skb 5293 * 5294 * skb_gso_mac_seglen is used to determine the real size of the 5295 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5296 * headers (TCP/UDP). 5297 */ 5298 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5299 { 5300 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5301 5302 return hdr_len + skb_gso_transport_seglen(skb); 5303 } 5304 5305 /** 5306 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5307 * 5308 * There are a couple of instances where we have a GSO skb, and we 5309 * want to determine what size it would be after it is segmented. 5310 * 5311 * We might want to check: 5312 * - L3+L4+payload size (e.g. IP forwarding) 5313 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5314 * 5315 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5316 * 5317 * @skb: GSO skb 5318 * 5319 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5320 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5321 * 5322 * @max_len: The maximum permissible length. 5323 * 5324 * Returns true if the segmented length <= max length. 5325 */ 5326 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5327 unsigned int seg_len, 5328 unsigned int max_len) { 5329 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5330 const struct sk_buff *iter; 5331 5332 if (shinfo->gso_size != GSO_BY_FRAGS) 5333 return seg_len <= max_len; 5334 5335 /* Undo this so we can re-use header sizes */ 5336 seg_len -= GSO_BY_FRAGS; 5337 5338 skb_walk_frags(skb, iter) { 5339 if (seg_len + skb_headlen(iter) > max_len) 5340 return false; 5341 } 5342 5343 return true; 5344 } 5345 5346 /** 5347 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5348 * 5349 * @skb: GSO skb 5350 * @mtu: MTU to validate against 5351 * 5352 * skb_gso_validate_network_len validates if a given skb will fit a 5353 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5354 * payload. 5355 */ 5356 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5357 { 5358 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5359 } 5360 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5361 5362 /** 5363 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5364 * 5365 * @skb: GSO skb 5366 * @len: length to validate against 5367 * 5368 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5369 * length once split, including L2, L3 and L4 headers and the payload. 5370 */ 5371 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5372 { 5373 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5374 } 5375 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5376 5377 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5378 { 5379 int mac_len, meta_len; 5380 void *meta; 5381 5382 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5383 kfree_skb(skb); 5384 return NULL; 5385 } 5386 5387 mac_len = skb->data - skb_mac_header(skb); 5388 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5389 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5390 mac_len - VLAN_HLEN - ETH_TLEN); 5391 } 5392 5393 meta_len = skb_metadata_len(skb); 5394 if (meta_len) { 5395 meta = skb_metadata_end(skb) - meta_len; 5396 memmove(meta + VLAN_HLEN, meta, meta_len); 5397 } 5398 5399 skb->mac_header += VLAN_HLEN; 5400 return skb; 5401 } 5402 5403 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5404 { 5405 struct vlan_hdr *vhdr; 5406 u16 vlan_tci; 5407 5408 if (unlikely(skb_vlan_tag_present(skb))) { 5409 /* vlan_tci is already set-up so leave this for another time */ 5410 return skb; 5411 } 5412 5413 skb = skb_share_check(skb, GFP_ATOMIC); 5414 if (unlikely(!skb)) 5415 goto err_free; 5416 5417 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5418 goto err_free; 5419 5420 vhdr = (struct vlan_hdr *)skb->data; 5421 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5422 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5423 5424 skb_pull_rcsum(skb, VLAN_HLEN); 5425 vlan_set_encap_proto(skb, vhdr); 5426 5427 skb = skb_reorder_vlan_header(skb); 5428 if (unlikely(!skb)) 5429 goto err_free; 5430 5431 skb_reset_network_header(skb); 5432 skb_reset_transport_header(skb); 5433 skb_reset_mac_len(skb); 5434 5435 return skb; 5436 5437 err_free: 5438 kfree_skb(skb); 5439 return NULL; 5440 } 5441 EXPORT_SYMBOL(skb_vlan_untag); 5442 5443 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5444 { 5445 if (!pskb_may_pull(skb, write_len)) 5446 return -ENOMEM; 5447 5448 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5449 return 0; 5450 5451 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5452 } 5453 EXPORT_SYMBOL(skb_ensure_writable); 5454 5455 /* remove VLAN header from packet and update csum accordingly. 5456 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5457 */ 5458 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5459 { 5460 struct vlan_hdr *vhdr; 5461 int offset = skb->data - skb_mac_header(skb); 5462 int err; 5463 5464 if (WARN_ONCE(offset, 5465 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5466 offset)) { 5467 return -EINVAL; 5468 } 5469 5470 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5471 if (unlikely(err)) 5472 return err; 5473 5474 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5475 5476 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5477 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5478 5479 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5480 __skb_pull(skb, VLAN_HLEN); 5481 5482 vlan_set_encap_proto(skb, vhdr); 5483 skb->mac_header += VLAN_HLEN; 5484 5485 if (skb_network_offset(skb) < ETH_HLEN) 5486 skb_set_network_header(skb, ETH_HLEN); 5487 5488 skb_reset_mac_len(skb); 5489 5490 return err; 5491 } 5492 EXPORT_SYMBOL(__skb_vlan_pop); 5493 5494 /* Pop a vlan tag either from hwaccel or from payload. 5495 * Expects skb->data at mac header. 5496 */ 5497 int skb_vlan_pop(struct sk_buff *skb) 5498 { 5499 u16 vlan_tci; 5500 __be16 vlan_proto; 5501 int err; 5502 5503 if (likely(skb_vlan_tag_present(skb))) { 5504 __vlan_hwaccel_clear_tag(skb); 5505 } else { 5506 if (unlikely(!eth_type_vlan(skb->protocol))) 5507 return 0; 5508 5509 err = __skb_vlan_pop(skb, &vlan_tci); 5510 if (err) 5511 return err; 5512 } 5513 /* move next vlan tag to hw accel tag */ 5514 if (likely(!eth_type_vlan(skb->protocol))) 5515 return 0; 5516 5517 vlan_proto = skb->protocol; 5518 err = __skb_vlan_pop(skb, &vlan_tci); 5519 if (unlikely(err)) 5520 return err; 5521 5522 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5523 return 0; 5524 } 5525 EXPORT_SYMBOL(skb_vlan_pop); 5526 5527 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5528 * Expects skb->data at mac header. 5529 */ 5530 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5531 { 5532 if (skb_vlan_tag_present(skb)) { 5533 int offset = skb->data - skb_mac_header(skb); 5534 int err; 5535 5536 if (WARN_ONCE(offset, 5537 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5538 offset)) { 5539 return -EINVAL; 5540 } 5541 5542 err = __vlan_insert_tag(skb, skb->vlan_proto, 5543 skb_vlan_tag_get(skb)); 5544 if (err) 5545 return err; 5546 5547 skb->protocol = skb->vlan_proto; 5548 skb->mac_len += VLAN_HLEN; 5549 5550 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5551 } 5552 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5553 return 0; 5554 } 5555 EXPORT_SYMBOL(skb_vlan_push); 5556 5557 /* Update the ethertype of hdr and the skb csum value if required. */ 5558 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5559 __be16 ethertype) 5560 { 5561 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5562 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5563 5564 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5565 } 5566 5567 hdr->h_proto = ethertype; 5568 } 5569 5570 /** 5571 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5572 * the packet 5573 * 5574 * @skb: buffer 5575 * @mpls_lse: MPLS label stack entry to push 5576 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5577 * @mac_len: length of the MAC header 5578 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5579 * ethernet 5580 * 5581 * Expects skb->data at mac header. 5582 * 5583 * Returns 0 on success, -errno otherwise. 5584 */ 5585 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5586 int mac_len, bool ethernet) 5587 { 5588 struct mpls_shim_hdr *lse; 5589 int err; 5590 5591 if (unlikely(!eth_p_mpls(mpls_proto))) 5592 return -EINVAL; 5593 5594 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5595 if (skb->encapsulation) 5596 return -EINVAL; 5597 5598 err = skb_cow_head(skb, MPLS_HLEN); 5599 if (unlikely(err)) 5600 return err; 5601 5602 if (!skb->inner_protocol) { 5603 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5604 skb_set_inner_protocol(skb, skb->protocol); 5605 } 5606 5607 skb_push(skb, MPLS_HLEN); 5608 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5609 mac_len); 5610 skb_reset_mac_header(skb); 5611 skb_set_network_header(skb, mac_len); 5612 skb_reset_mac_len(skb); 5613 5614 lse = mpls_hdr(skb); 5615 lse->label_stack_entry = mpls_lse; 5616 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5617 5618 if (ethernet) 5619 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5620 skb->protocol = mpls_proto; 5621 5622 return 0; 5623 } 5624 EXPORT_SYMBOL_GPL(skb_mpls_push); 5625 5626 /** 5627 * skb_mpls_pop() - pop the outermost MPLS header 5628 * 5629 * @skb: buffer 5630 * @next_proto: ethertype of header after popped MPLS header 5631 * @mac_len: length of the MAC header 5632 * @ethernet: flag to indicate if the packet is ethernet 5633 * 5634 * Expects skb->data at mac header. 5635 * 5636 * Returns 0 on success, -errno otherwise. 5637 */ 5638 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5639 bool ethernet) 5640 { 5641 int err; 5642 5643 if (unlikely(!eth_p_mpls(skb->protocol))) 5644 return 0; 5645 5646 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5647 if (unlikely(err)) 5648 return err; 5649 5650 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5651 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5652 mac_len); 5653 5654 __skb_pull(skb, MPLS_HLEN); 5655 skb_reset_mac_header(skb); 5656 skb_set_network_header(skb, mac_len); 5657 5658 if (ethernet) { 5659 struct ethhdr *hdr; 5660 5661 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5662 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5663 skb_mod_eth_type(skb, hdr, next_proto); 5664 } 5665 skb->protocol = next_proto; 5666 5667 return 0; 5668 } 5669 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5670 5671 /** 5672 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5673 * 5674 * @skb: buffer 5675 * @mpls_lse: new MPLS label stack entry to update to 5676 * 5677 * Expects skb->data at mac header. 5678 * 5679 * Returns 0 on success, -errno otherwise. 5680 */ 5681 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5682 { 5683 int err; 5684 5685 if (unlikely(!eth_p_mpls(skb->protocol))) 5686 return -EINVAL; 5687 5688 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5689 if (unlikely(err)) 5690 return err; 5691 5692 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5693 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5694 5695 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5696 } 5697 5698 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5699 5700 return 0; 5701 } 5702 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5703 5704 /** 5705 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5706 * 5707 * @skb: buffer 5708 * 5709 * Expects skb->data at mac header. 5710 * 5711 * Returns 0 on success, -errno otherwise. 5712 */ 5713 int skb_mpls_dec_ttl(struct sk_buff *skb) 5714 { 5715 u32 lse; 5716 u8 ttl; 5717 5718 if (unlikely(!eth_p_mpls(skb->protocol))) 5719 return -EINVAL; 5720 5721 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5722 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5723 if (!--ttl) 5724 return -EINVAL; 5725 5726 lse &= ~MPLS_LS_TTL_MASK; 5727 lse |= ttl << MPLS_LS_TTL_SHIFT; 5728 5729 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5730 } 5731 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5732 5733 /** 5734 * alloc_skb_with_frags - allocate skb with page frags 5735 * 5736 * @header_len: size of linear part 5737 * @data_len: needed length in frags 5738 * @max_page_order: max page order desired. 5739 * @errcode: pointer to error code if any 5740 * @gfp_mask: allocation mask 5741 * 5742 * This can be used to allocate a paged skb, given a maximal order for frags. 5743 */ 5744 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5745 unsigned long data_len, 5746 int max_page_order, 5747 int *errcode, 5748 gfp_t gfp_mask) 5749 { 5750 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5751 unsigned long chunk; 5752 struct sk_buff *skb; 5753 struct page *page; 5754 int i; 5755 5756 *errcode = -EMSGSIZE; 5757 /* Note this test could be relaxed, if we succeed to allocate 5758 * high order pages... 5759 */ 5760 if (npages > MAX_SKB_FRAGS) 5761 return NULL; 5762 5763 *errcode = -ENOBUFS; 5764 skb = alloc_skb(header_len, gfp_mask); 5765 if (!skb) 5766 return NULL; 5767 5768 skb->truesize += npages << PAGE_SHIFT; 5769 5770 for (i = 0; npages > 0; i++) { 5771 int order = max_page_order; 5772 5773 while (order) { 5774 if (npages >= 1 << order) { 5775 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5776 __GFP_COMP | 5777 __GFP_NOWARN, 5778 order); 5779 if (page) 5780 goto fill_page; 5781 /* Do not retry other high order allocations */ 5782 order = 1; 5783 max_page_order = 0; 5784 } 5785 order--; 5786 } 5787 page = alloc_page(gfp_mask); 5788 if (!page) 5789 goto failure; 5790 fill_page: 5791 chunk = min_t(unsigned long, data_len, 5792 PAGE_SIZE << order); 5793 skb_fill_page_desc(skb, i, page, 0, chunk); 5794 data_len -= chunk; 5795 npages -= 1 << order; 5796 } 5797 return skb; 5798 5799 failure: 5800 kfree_skb(skb); 5801 return NULL; 5802 } 5803 EXPORT_SYMBOL(alloc_skb_with_frags); 5804 5805 /* carve out the first off bytes from skb when off < headlen */ 5806 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5807 const int headlen, gfp_t gfp_mask) 5808 { 5809 int i; 5810 int size = skb_end_offset(skb); 5811 int new_hlen = headlen - off; 5812 u8 *data; 5813 5814 size = SKB_DATA_ALIGN(size); 5815 5816 if (skb_pfmemalloc(skb)) 5817 gfp_mask |= __GFP_MEMALLOC; 5818 data = kmalloc_reserve(size + 5819 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5820 gfp_mask, NUMA_NO_NODE, NULL); 5821 if (!data) 5822 return -ENOMEM; 5823 5824 size = SKB_WITH_OVERHEAD(ksize(data)); 5825 5826 /* Copy real data, and all frags */ 5827 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5828 skb->len -= off; 5829 5830 memcpy((struct skb_shared_info *)(data + size), 5831 skb_shinfo(skb), 5832 offsetof(struct skb_shared_info, 5833 frags[skb_shinfo(skb)->nr_frags])); 5834 if (skb_cloned(skb)) { 5835 /* drop the old head gracefully */ 5836 if (skb_orphan_frags(skb, gfp_mask)) { 5837 kfree(data); 5838 return -ENOMEM; 5839 } 5840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5841 skb_frag_ref(skb, i); 5842 if (skb_has_frag_list(skb)) 5843 skb_clone_fraglist(skb); 5844 skb_release_data(skb); 5845 } else { 5846 /* we can reuse existing recount- all we did was 5847 * relocate values 5848 */ 5849 skb_free_head(skb); 5850 } 5851 5852 skb->head = data; 5853 skb->data = data; 5854 skb->head_frag = 0; 5855 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5856 skb->end = size; 5857 #else 5858 skb->end = skb->head + size; 5859 #endif 5860 skb_set_tail_pointer(skb, skb_headlen(skb)); 5861 skb_headers_offset_update(skb, 0); 5862 skb->cloned = 0; 5863 skb->hdr_len = 0; 5864 skb->nohdr = 0; 5865 atomic_set(&skb_shinfo(skb)->dataref, 1); 5866 5867 return 0; 5868 } 5869 5870 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5871 5872 /* carve out the first eat bytes from skb's frag_list. May recurse into 5873 * pskb_carve() 5874 */ 5875 static int pskb_carve_frag_list(struct sk_buff *skb, 5876 struct skb_shared_info *shinfo, int eat, 5877 gfp_t gfp_mask) 5878 { 5879 struct sk_buff *list = shinfo->frag_list; 5880 struct sk_buff *clone = NULL; 5881 struct sk_buff *insp = NULL; 5882 5883 do { 5884 if (!list) { 5885 pr_err("Not enough bytes to eat. Want %d\n", eat); 5886 return -EFAULT; 5887 } 5888 if (list->len <= eat) { 5889 /* Eaten as whole. */ 5890 eat -= list->len; 5891 list = list->next; 5892 insp = list; 5893 } else { 5894 /* Eaten partially. */ 5895 if (skb_shared(list)) { 5896 clone = skb_clone(list, gfp_mask); 5897 if (!clone) 5898 return -ENOMEM; 5899 insp = list->next; 5900 list = clone; 5901 } else { 5902 /* This may be pulled without problems. */ 5903 insp = list; 5904 } 5905 if (pskb_carve(list, eat, gfp_mask) < 0) { 5906 kfree_skb(clone); 5907 return -ENOMEM; 5908 } 5909 break; 5910 } 5911 } while (eat); 5912 5913 /* Free pulled out fragments. */ 5914 while ((list = shinfo->frag_list) != insp) { 5915 shinfo->frag_list = list->next; 5916 kfree_skb(list); 5917 } 5918 /* And insert new clone at head. */ 5919 if (clone) { 5920 clone->next = list; 5921 shinfo->frag_list = clone; 5922 } 5923 return 0; 5924 } 5925 5926 /* carve off first len bytes from skb. Split line (off) is in the 5927 * non-linear part of skb 5928 */ 5929 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5930 int pos, gfp_t gfp_mask) 5931 { 5932 int i, k = 0; 5933 int size = skb_end_offset(skb); 5934 u8 *data; 5935 const int nfrags = skb_shinfo(skb)->nr_frags; 5936 struct skb_shared_info *shinfo; 5937 5938 size = SKB_DATA_ALIGN(size); 5939 5940 if (skb_pfmemalloc(skb)) 5941 gfp_mask |= __GFP_MEMALLOC; 5942 data = kmalloc_reserve(size + 5943 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5944 gfp_mask, NUMA_NO_NODE, NULL); 5945 if (!data) 5946 return -ENOMEM; 5947 5948 size = SKB_WITH_OVERHEAD(ksize(data)); 5949 5950 memcpy((struct skb_shared_info *)(data + size), 5951 skb_shinfo(skb), offsetof(struct skb_shared_info, 5952 frags[skb_shinfo(skb)->nr_frags])); 5953 if (skb_orphan_frags(skb, gfp_mask)) { 5954 kfree(data); 5955 return -ENOMEM; 5956 } 5957 shinfo = (struct skb_shared_info *)(data + size); 5958 for (i = 0; i < nfrags; i++) { 5959 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5960 5961 if (pos + fsize > off) { 5962 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5963 5964 if (pos < off) { 5965 /* Split frag. 5966 * We have two variants in this case: 5967 * 1. Move all the frag to the second 5968 * part, if it is possible. F.e. 5969 * this approach is mandatory for TUX, 5970 * where splitting is expensive. 5971 * 2. Split is accurately. We make this. 5972 */ 5973 skb_frag_off_add(&shinfo->frags[0], off - pos); 5974 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5975 } 5976 skb_frag_ref(skb, i); 5977 k++; 5978 } 5979 pos += fsize; 5980 } 5981 shinfo->nr_frags = k; 5982 if (skb_has_frag_list(skb)) 5983 skb_clone_fraglist(skb); 5984 5985 if (k == 0) { 5986 /* split line is in frag list */ 5987 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5988 } 5989 skb_release_data(skb); 5990 5991 skb->head = data; 5992 skb->head_frag = 0; 5993 skb->data = data; 5994 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5995 skb->end = size; 5996 #else 5997 skb->end = skb->head + size; 5998 #endif 5999 skb_reset_tail_pointer(skb); 6000 skb_headers_offset_update(skb, 0); 6001 skb->cloned = 0; 6002 skb->hdr_len = 0; 6003 skb->nohdr = 0; 6004 skb->len -= off; 6005 skb->data_len = skb->len; 6006 atomic_set(&skb_shinfo(skb)->dataref, 1); 6007 return 0; 6008 } 6009 6010 /* remove len bytes from the beginning of the skb */ 6011 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6012 { 6013 int headlen = skb_headlen(skb); 6014 6015 if (len < headlen) 6016 return pskb_carve_inside_header(skb, len, headlen, gfp); 6017 else 6018 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6019 } 6020 6021 /* Extract to_copy bytes starting at off from skb, and return this in 6022 * a new skb 6023 */ 6024 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6025 int to_copy, gfp_t gfp) 6026 { 6027 struct sk_buff *clone = skb_clone(skb, gfp); 6028 6029 if (!clone) 6030 return NULL; 6031 6032 if (pskb_carve(clone, off, gfp) < 0 || 6033 pskb_trim(clone, to_copy)) { 6034 kfree_skb(clone); 6035 return NULL; 6036 } 6037 return clone; 6038 } 6039 EXPORT_SYMBOL(pskb_extract); 6040 6041 /** 6042 * skb_condense - try to get rid of fragments/frag_list if possible 6043 * @skb: buffer 6044 * 6045 * Can be used to save memory before skb is added to a busy queue. 6046 * If packet has bytes in frags and enough tail room in skb->head, 6047 * pull all of them, so that we can free the frags right now and adjust 6048 * truesize. 6049 * Notes: 6050 * We do not reallocate skb->head thus can not fail. 6051 * Caller must re-evaluate skb->truesize if needed. 6052 */ 6053 void skb_condense(struct sk_buff *skb) 6054 { 6055 if (skb->data_len) { 6056 if (skb->data_len > skb->end - skb->tail || 6057 skb_cloned(skb)) 6058 return; 6059 6060 /* Nice, we can free page frag(s) right now */ 6061 __pskb_pull_tail(skb, skb->data_len); 6062 } 6063 /* At this point, skb->truesize might be over estimated, 6064 * because skb had a fragment, and fragments do not tell 6065 * their truesize. 6066 * When we pulled its content into skb->head, fragment 6067 * was freed, but __pskb_pull_tail() could not possibly 6068 * adjust skb->truesize, not knowing the frag truesize. 6069 */ 6070 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6071 } 6072 6073 #ifdef CONFIG_SKB_EXTENSIONS 6074 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6075 { 6076 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6077 } 6078 6079 /** 6080 * __skb_ext_alloc - allocate a new skb extensions storage 6081 * 6082 * Returns the newly allocated pointer. The pointer can later attached to a 6083 * skb via __skb_ext_set(). 6084 * Note: caller must handle the skb_ext as an opaque data. 6085 */ 6086 struct skb_ext *__skb_ext_alloc(void) 6087 { 6088 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6089 6090 if (new) { 6091 memset(new->offset, 0, sizeof(new->offset)); 6092 refcount_set(&new->refcnt, 1); 6093 } 6094 6095 return new; 6096 } 6097 6098 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6099 unsigned int old_active) 6100 { 6101 struct skb_ext *new; 6102 6103 if (refcount_read(&old->refcnt) == 1) 6104 return old; 6105 6106 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6107 if (!new) 6108 return NULL; 6109 6110 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6111 refcount_set(&new->refcnt, 1); 6112 6113 #ifdef CONFIG_XFRM 6114 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6115 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6116 unsigned int i; 6117 6118 for (i = 0; i < sp->len; i++) 6119 xfrm_state_hold(sp->xvec[i]); 6120 } 6121 #endif 6122 __skb_ext_put(old); 6123 return new; 6124 } 6125 6126 /** 6127 * __skb_ext_set - attach the specified extension storage to this skb 6128 * @skb: buffer 6129 * @id: extension id 6130 * @ext: extension storage previously allocated via __skb_ext_alloc() 6131 * 6132 * Existing extensions, if any, are cleared. 6133 * 6134 * Returns the pointer to the extension. 6135 */ 6136 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6137 struct skb_ext *ext) 6138 { 6139 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6140 6141 skb_ext_put(skb); 6142 newlen = newoff + skb_ext_type_len[id]; 6143 ext->chunks = newlen; 6144 ext->offset[id] = newoff; 6145 skb->extensions = ext; 6146 skb->active_extensions = 1 << id; 6147 return skb_ext_get_ptr(ext, id); 6148 } 6149 6150 /** 6151 * skb_ext_add - allocate space for given extension, COW if needed 6152 * @skb: buffer 6153 * @id: extension to allocate space for 6154 * 6155 * Allocates enough space for the given extension. 6156 * If the extension is already present, a pointer to that extension 6157 * is returned. 6158 * 6159 * If the skb was cloned, COW applies and the returned memory can be 6160 * modified without changing the extension space of clones buffers. 6161 * 6162 * Returns pointer to the extension or NULL on allocation failure. 6163 */ 6164 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6165 { 6166 struct skb_ext *new, *old = NULL; 6167 unsigned int newlen, newoff; 6168 6169 if (skb->active_extensions) { 6170 old = skb->extensions; 6171 6172 new = skb_ext_maybe_cow(old, skb->active_extensions); 6173 if (!new) 6174 return NULL; 6175 6176 if (__skb_ext_exist(new, id)) 6177 goto set_active; 6178 6179 newoff = new->chunks; 6180 } else { 6181 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6182 6183 new = __skb_ext_alloc(); 6184 if (!new) 6185 return NULL; 6186 } 6187 6188 newlen = newoff + skb_ext_type_len[id]; 6189 new->chunks = newlen; 6190 new->offset[id] = newoff; 6191 set_active: 6192 skb->extensions = new; 6193 skb->active_extensions |= 1 << id; 6194 return skb_ext_get_ptr(new, id); 6195 } 6196 EXPORT_SYMBOL(skb_ext_add); 6197 6198 #ifdef CONFIG_XFRM 6199 static void skb_ext_put_sp(struct sec_path *sp) 6200 { 6201 unsigned int i; 6202 6203 for (i = 0; i < sp->len; i++) 6204 xfrm_state_put(sp->xvec[i]); 6205 } 6206 #endif 6207 6208 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6209 { 6210 struct skb_ext *ext = skb->extensions; 6211 6212 skb->active_extensions &= ~(1 << id); 6213 if (skb->active_extensions == 0) { 6214 skb->extensions = NULL; 6215 __skb_ext_put(ext); 6216 #ifdef CONFIG_XFRM 6217 } else if (id == SKB_EXT_SEC_PATH && 6218 refcount_read(&ext->refcnt) == 1) { 6219 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6220 6221 skb_ext_put_sp(sp); 6222 sp->len = 0; 6223 #endif 6224 } 6225 } 6226 EXPORT_SYMBOL(__skb_ext_del); 6227 6228 void __skb_ext_put(struct skb_ext *ext) 6229 { 6230 /* If this is last clone, nothing can increment 6231 * it after check passes. Avoids one atomic op. 6232 */ 6233 if (refcount_read(&ext->refcnt) == 1) 6234 goto free_now; 6235 6236 if (!refcount_dec_and_test(&ext->refcnt)) 6237 return; 6238 free_now: 6239 #ifdef CONFIG_XFRM 6240 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6241 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6242 #endif 6243 6244 kmem_cache_free(skbuff_ext_cache, ext); 6245 } 6246 EXPORT_SYMBOL(__skb_ext_put); 6247 #endif /* CONFIG_SKB_EXTENSIONS */ 6248