xref: /openbmc/linux/net/core/skbuff.c (revision efe4a1ac)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 	struct sk_buff *skb;
164 
165 	/* Get the HEAD */
166 	skb = kmem_cache_alloc_node(skbuff_head_cache,
167 				    gfp_mask & ~__GFP_DMA, node);
168 	if (!skb)
169 		goto out;
170 
171 	/*
172 	 * Only clear those fields we need to clear, not those that we will
173 	 * actually initialise below. Hence, don't put any more fields after
174 	 * the tail pointer in struct sk_buff!
175 	 */
176 	memset(skb, 0, offsetof(struct sk_buff, tail));
177 	skb->head = NULL;
178 	skb->truesize = sizeof(struct sk_buff);
179 	atomic_set(&skb->users, 1);
180 
181 	skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 	return skb;
184 }
185 
186 /**
187  *	__alloc_skb	-	allocate a network buffer
188  *	@size: size to allocate
189  *	@gfp_mask: allocation mask
190  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191  *		instead of head cache and allocate a cloned (child) skb.
192  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193  *		allocations in case the data is required for writeback
194  *	@node: numa node to allocate memory on
195  *
196  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
197  *	tail room of at least size bytes. The object has a reference count
198  *	of one. The return is the buffer. On a failure the return is %NULL.
199  *
200  *	Buffers may only be allocated from interrupts using a @gfp_mask of
201  *	%GFP_ATOMIC.
202  */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 			    int flags, int node)
205 {
206 	struct kmem_cache *cache;
207 	struct skb_shared_info *shinfo;
208 	struct sk_buff *skb;
209 	u8 *data;
210 	bool pfmemalloc;
211 
212 	cache = (flags & SKB_ALLOC_FCLONE)
213 		? skbuff_fclone_cache : skbuff_head_cache;
214 
215 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 		gfp_mask |= __GFP_MEMALLOC;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 	if (!skb)
221 		goto out;
222 	prefetchw(skb);
223 
224 	/* We do our best to align skb_shared_info on a separate cache
225 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 	 * Both skb->head and skb_shared_info are cache line aligned.
228 	 */
229 	size = SKB_DATA_ALIGN(size);
230 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 	if (!data)
233 		goto nodata;
234 	/* kmalloc(size) might give us more room than requested.
235 	 * Put skb_shared_info exactly at the end of allocated zone,
236 	 * to allow max possible filling before reallocation.
237 	 */
238 	size = SKB_WITH_OVERHEAD(ksize(data));
239 	prefetchw(data + size);
240 
241 	/*
242 	 * Only clear those fields we need to clear, not those that we will
243 	 * actually initialise below. Hence, don't put any more fields after
244 	 * the tail pointer in struct sk_buff!
245 	 */
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	/* Account for allocated memory : skb + skb->head */
248 	skb->truesize = SKB_TRUESIZE(size);
249 	skb->pfmemalloc = pfmemalloc;
250 	atomic_set(&skb->users, 1);
251 	skb->head = data;
252 	skb->data = data;
253 	skb_reset_tail_pointer(skb);
254 	skb->end = skb->tail + size;
255 	skb->mac_header = (typeof(skb->mac_header))~0U;
256 	skb->transport_header = (typeof(skb->transport_header))~0U;
257 
258 	/* make sure we initialize shinfo sequentially */
259 	shinfo = skb_shinfo(skb);
260 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 	atomic_set(&shinfo->dataref, 1);
262 	kmemcheck_annotate_variable(shinfo->destructor_arg);
263 
264 	if (flags & SKB_ALLOC_FCLONE) {
265 		struct sk_buff_fclones *fclones;
266 
267 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
268 
269 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 		skb->fclone = SKB_FCLONE_ORIG;
271 		atomic_set(&fclones->fclone_ref, 1);
272 
273 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 #define NAPI_SKB_CACHE_SIZE	64
353 
354 struct napi_alloc_cache {
355 	struct page_frag_cache page;
356 	unsigned int skb_count;
357 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359 
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362 
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct page_frag_cache *nc;
366 	unsigned long flags;
367 	void *data;
368 
369 	local_irq_save(flags);
370 	nc = this_cpu_ptr(&netdev_alloc_cache);
371 	data = page_frag_alloc(nc, fragsz, gfp_mask);
372 	local_irq_restore(flags);
373 	return data;
374 }
375 
376 /**
377  * netdev_alloc_frag - allocate a page fragment
378  * @fragsz: fragment size
379  *
380  * Allocates a frag from a page for receive buffer.
381  * Uses GFP_ATOMIC allocations.
382  */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388 
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392 
393 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
394 }
395 
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401 
402 /**
403  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
404  *	@dev: network device to receive on
405  *	@len: length to allocate
406  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
407  *
408  *	Allocate a new &sk_buff and assign it a usage count of one. The
409  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
410  *	the headroom they think they need without accounting for the
411  *	built in space. The built in space is used for optimisations.
412  *
413  *	%NULL is returned if there is no free memory.
414  */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 				   gfp_t gfp_mask)
417 {
418 	struct page_frag_cache *nc;
419 	unsigned long flags;
420 	struct sk_buff *skb;
421 	bool pfmemalloc;
422 	void *data;
423 
424 	len += NET_SKB_PAD;
425 
426 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 		if (!skb)
430 			goto skb_fail;
431 		goto skb_success;
432 	}
433 
434 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 	len = SKB_DATA_ALIGN(len);
436 
437 	if (sk_memalloc_socks())
438 		gfp_mask |= __GFP_MEMALLOC;
439 
440 	local_irq_save(flags);
441 
442 	nc = this_cpu_ptr(&netdev_alloc_cache);
443 	data = page_frag_alloc(nc, len, gfp_mask);
444 	pfmemalloc = nc->pfmemalloc;
445 
446 	local_irq_restore(flags);
447 
448 	if (unlikely(!data))
449 		return NULL;
450 
451 	skb = __build_skb(data, len);
452 	if (unlikely(!skb)) {
453 		skb_free_frag(data);
454 		return NULL;
455 	}
456 
457 	/* use OR instead of assignment to avoid clearing of bits in mask */
458 	if (pfmemalloc)
459 		skb->pfmemalloc = 1;
460 	skb->head_frag = 1;
461 
462 skb_success:
463 	skb_reserve(skb, NET_SKB_PAD);
464 	skb->dev = dev;
465 
466 skb_fail:
467 	return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470 
471 /**
472  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473  *	@napi: napi instance this buffer was allocated for
474  *	@len: length to allocate
475  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476  *
477  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
478  *	attempt to allocate the head from a special reserved region used
479  *	only for NAPI Rx allocation.  By doing this we can save several
480  *	CPU cycles by avoiding having to disable and re-enable IRQs.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 				 gfp_t gfp_mask)
486 {
487 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 	struct sk_buff *skb;
489 	void *data;
490 
491 	len += NET_SKB_PAD + NET_IP_ALIGN;
492 
493 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	data = page_frag_alloc(&nc->page, len, gfp_mask);
508 	if (unlikely(!data))
509 		return NULL;
510 
511 	skb = __build_skb(data, len);
512 	if (unlikely(!skb)) {
513 		skb_free_frag(data);
514 		return NULL;
515 	}
516 
517 	/* use OR instead of assignment to avoid clearing of bits in mask */
518 	if (nc->page.pfmemalloc)
519 		skb->pfmemalloc = 1;
520 	skb->head_frag = 1;
521 
522 skb_success:
523 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 	skb->dev = napi->dev;
525 
526 skb_fail:
527 	return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530 
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 		     int size, unsigned int truesize)
533 {
534 	skb_fill_page_desc(skb, i, page, off, size);
535 	skb->len += size;
536 	skb->data_len += size;
537 	skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540 
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 			  unsigned int truesize)
543 {
544 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545 
546 	skb_frag_size_add(frag, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552 
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 	kfree_skb_list(*listp);
556 	*listp = NULL;
557 }
558 
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 	skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563 
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 	struct sk_buff *list;
567 
568 	skb_walk_frags(skb, list)
569 		skb_get(list);
570 }
571 
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 	unsigned char *head = skb->head;
575 
576 	if (skb->head_frag)
577 		skb_free_frag(head);
578 	else
579 		kfree(head);
580 }
581 
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 	struct skb_shared_info *shinfo = skb_shinfo(skb);
585 	int i;
586 
587 	if (skb->cloned &&
588 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 			      &shinfo->dataref))
590 		return;
591 
592 	for (i = 0; i < shinfo->nr_frags; i++)
593 		__skb_frag_unref(&shinfo->frags[i]);
594 
595 	/*
596 	 * If skb buf is from userspace, we need to notify the caller
597 	 * the lower device DMA has done;
598 	 */
599 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 		struct ubuf_info *uarg;
601 
602 		uarg = shinfo->destructor_arg;
603 		if (uarg->callback)
604 			uarg->callback(uarg, true);
605 	}
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (atomic_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!atomic_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 	secpath_put(skb->sp);
651 #endif
652 	if (skb->destructor) {
653 		WARN_ON(in_irq());
654 		skb->destructor(skb);
655 	}
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 	nf_conntrack_put(skb_nfct(skb));
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (unlikely(!skb))
698 		return;
699 	if (likely(atomic_read(&skb->users) == 1))
700 		smp_rmb();
701 	else if (likely(!atomic_dec_and_test(&skb->users)))
702 		return;
703 	trace_kfree_skb(skb, __builtin_return_address(0));
704 	__kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707 
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 	while (segs) {
711 		struct sk_buff *next = segs->next;
712 
713 		kfree_skb(segs);
714 		segs = next;
715 	}
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718 
719 /**
720  *	skb_tx_error - report an sk_buff xmit error
721  *	@skb: buffer that triggered an error
722  *
723  *	Report xmit error if a device callback is tracking this skb.
724  *	skb must be freed afterwards.
725  */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 		struct ubuf_info *uarg;
730 
731 		uarg = skb_shinfo(skb)->destructor_arg;
732 		if (uarg->callback)
733 			uarg->callback(uarg, false);
734 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 	}
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738 
739 /**
740  *	consume_skb - free an skbuff
741  *	@skb: buffer to free
742  *
743  *	Drop a ref to the buffer and free it if the usage count has hit zero
744  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
745  *	is being dropped after a failure and notes that
746  */
747 void consume_skb(struct sk_buff *skb)
748 {
749 	if (unlikely(!skb))
750 		return;
751 	if (likely(atomic_read(&skb->users) == 1))
752 		smp_rmb();
753 	else if (likely(!atomic_dec_and_test(&skb->users)))
754 		return;
755 	trace_consume_skb(skb);
756 	__kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759 
760 void __kfree_skb_flush(void)
761 {
762 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763 
764 	/* flush skb_cache if containing objects */
765 	if (nc->skb_count) {
766 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 				     nc->skb_cache);
768 		nc->skb_count = 0;
769 	}
770 }
771 
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775 
776 	/* drop skb->head and call any destructors for packet */
777 	skb_release_all(skb);
778 
779 	/* record skb to CPU local list */
780 	nc->skb_cache[nc->skb_count++] = skb;
781 
782 #ifdef CONFIG_SLUB
783 	/* SLUB writes into objects when freeing */
784 	prefetchw(skb);
785 #endif
786 
787 	/* flush skb_cache if it is filled */
788 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 				     nc->skb_cache);
791 		nc->skb_count = 0;
792 	}
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 	_kfree_skb_defer(skb);
797 }
798 
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 	if (unlikely(!skb))
802 		return;
803 
804 	/* Zero budget indicate non-NAPI context called us, like netpoll */
805 	if (unlikely(!budget)) {
806 		dev_consume_skb_any(skb);
807 		return;
808 	}
809 
810 	if (likely(atomic_read(&skb->users) == 1))
811 		smp_rmb();
812 	else if (likely(!atomic_dec_and_test(&skb->users)))
813 		return;
814 	/* if reaching here SKB is ready to free */
815 	trace_consume_skb(skb);
816 
817 	/* if SKB is a clone, don't handle this case */
818 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 		__kfree_skb(skb);
820 		return;
821 	}
822 
823 	_kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826 
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
830 		     offsetof(struct sk_buff, headers_start));	\
831 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
832 		     offsetof(struct sk_buff, headers_end));	\
833 
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 	new->tstamp		= old->tstamp;
837 	/* We do not copy old->sk */
838 	new->dev		= old->dev;
839 	memcpy(new->cb, old->cb, sizeof(old->cb));
840 	skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 	new->sp			= secpath_get(old->sp);
843 #endif
844 	__nf_copy(new, old, false);
845 
846 	/* Note : this field could be in headers_start/headers_end section
847 	 * It is not yet because we do not want to have a 16 bit hole
848 	 */
849 	new->queue_mapping = old->queue_mapping;
850 
851 	memcpy(&new->headers_start, &old->headers_start,
852 	       offsetof(struct sk_buff, headers_end) -
853 	       offsetof(struct sk_buff, headers_start));
854 	CHECK_SKB_FIELD(protocol);
855 	CHECK_SKB_FIELD(csum);
856 	CHECK_SKB_FIELD(hash);
857 	CHECK_SKB_FIELD(priority);
858 	CHECK_SKB_FIELD(skb_iif);
859 	CHECK_SKB_FIELD(vlan_proto);
860 	CHECK_SKB_FIELD(vlan_tci);
861 	CHECK_SKB_FIELD(transport_header);
862 	CHECK_SKB_FIELD(network_header);
863 	CHECK_SKB_FIELD(mac_header);
864 	CHECK_SKB_FIELD(inner_protocol);
865 	CHECK_SKB_FIELD(inner_transport_header);
866 	CHECK_SKB_FIELD(inner_network_header);
867 	CHECK_SKB_FIELD(inner_mac_header);
868 	CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 	CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 	CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 	CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 	CHECK_SKB_FIELD(tc_index);
880 #endif
881 
882 }
883 
884 /*
885  * You should not add any new code to this function.  Add it to
886  * __copy_skb_header above instead.
887  */
888 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
889 {
890 #define C(x) n->x = skb->x
891 
892 	n->next = n->prev = NULL;
893 	n->sk = NULL;
894 	__copy_skb_header(n, skb);
895 
896 	C(len);
897 	C(data_len);
898 	C(mac_len);
899 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
900 	n->cloned = 1;
901 	n->nohdr = 0;
902 	n->destructor = NULL;
903 	C(tail);
904 	C(end);
905 	C(head);
906 	C(head_frag);
907 	C(data);
908 	C(truesize);
909 	atomic_set(&n->users, 1);
910 
911 	atomic_inc(&(skb_shinfo(skb)->dataref));
912 	skb->cloned = 1;
913 
914 	return n;
915 #undef C
916 }
917 
918 /**
919  *	skb_morph	-	morph one skb into another
920  *	@dst: the skb to receive the contents
921  *	@src: the skb to supply the contents
922  *
923  *	This is identical to skb_clone except that the target skb is
924  *	supplied by the user.
925  *
926  *	The target skb is returned upon exit.
927  */
928 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
929 {
930 	skb_release_all(dst);
931 	return __skb_clone(dst, src);
932 }
933 EXPORT_SYMBOL_GPL(skb_morph);
934 
935 /**
936  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
937  *	@skb: the skb to modify
938  *	@gfp_mask: allocation priority
939  *
940  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
941  *	It will copy all frags into kernel and drop the reference
942  *	to userspace pages.
943  *
944  *	If this function is called from an interrupt gfp_mask() must be
945  *	%GFP_ATOMIC.
946  *
947  *	Returns 0 on success or a negative error code on failure
948  *	to allocate kernel memory to copy to.
949  */
950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
951 {
952 	int i;
953 	int num_frags = skb_shinfo(skb)->nr_frags;
954 	struct page *page, *head = NULL;
955 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
956 
957 	for (i = 0; i < num_frags; i++) {
958 		u8 *vaddr;
959 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
960 
961 		page = alloc_page(gfp_mask);
962 		if (!page) {
963 			while (head) {
964 				struct page *next = (struct page *)page_private(head);
965 				put_page(head);
966 				head = next;
967 			}
968 			return -ENOMEM;
969 		}
970 		vaddr = kmap_atomic(skb_frag_page(f));
971 		memcpy(page_address(page),
972 		       vaddr + f->page_offset, skb_frag_size(f));
973 		kunmap_atomic(vaddr);
974 		set_page_private(page, (unsigned long)head);
975 		head = page;
976 	}
977 
978 	/* skb frags release userspace buffers */
979 	for (i = 0; i < num_frags; i++)
980 		skb_frag_unref(skb, i);
981 
982 	uarg->callback(uarg, false);
983 
984 	/* skb frags point to kernel buffers */
985 	for (i = num_frags - 1; i >= 0; i--) {
986 		__skb_fill_page_desc(skb, i, head, 0,
987 				     skb_shinfo(skb)->frags[i].size);
988 		head = (struct page *)page_private(head);
989 	}
990 
991 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
995 
996 /**
997  *	skb_clone	-	duplicate an sk_buff
998  *	@skb: buffer to clone
999  *	@gfp_mask: allocation priority
1000  *
1001  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1002  *	copies share the same packet data but not structure. The new
1003  *	buffer has a reference count of 1. If the allocation fails the
1004  *	function returns %NULL otherwise the new buffer is returned.
1005  *
1006  *	If this function is called from an interrupt gfp_mask() must be
1007  *	%GFP_ATOMIC.
1008  */
1009 
1010 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1011 {
1012 	struct sk_buff_fclones *fclones = container_of(skb,
1013 						       struct sk_buff_fclones,
1014 						       skb1);
1015 	struct sk_buff *n;
1016 
1017 	if (skb_orphan_frags(skb, gfp_mask))
1018 		return NULL;
1019 
1020 	if (skb->fclone == SKB_FCLONE_ORIG &&
1021 	    atomic_read(&fclones->fclone_ref) == 1) {
1022 		n = &fclones->skb2;
1023 		atomic_set(&fclones->fclone_ref, 2);
1024 	} else {
1025 		if (skb_pfmemalloc(skb))
1026 			gfp_mask |= __GFP_MEMALLOC;
1027 
1028 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1029 		if (!n)
1030 			return NULL;
1031 
1032 		kmemcheck_annotate_bitfield(n, flags1);
1033 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1034 	}
1035 
1036 	return __skb_clone(n, skb);
1037 }
1038 EXPORT_SYMBOL(skb_clone);
1039 
1040 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1041 {
1042 	/* Only adjust this if it actually is csum_start rather than csum */
1043 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1044 		skb->csum_start += off;
1045 	/* {transport,network,mac}_header and tail are relative to skb->head */
1046 	skb->transport_header += off;
1047 	skb->network_header   += off;
1048 	if (skb_mac_header_was_set(skb))
1049 		skb->mac_header += off;
1050 	skb->inner_transport_header += off;
1051 	skb->inner_network_header += off;
1052 	skb->inner_mac_header += off;
1053 }
1054 
1055 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1056 {
1057 	__copy_skb_header(new, old);
1058 
1059 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1060 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1061 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1062 }
1063 
1064 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1065 {
1066 	if (skb_pfmemalloc(skb))
1067 		return SKB_ALLOC_RX;
1068 	return 0;
1069 }
1070 
1071 /**
1072  *	skb_copy	-	create private copy of an sk_buff
1073  *	@skb: buffer to copy
1074  *	@gfp_mask: allocation priority
1075  *
1076  *	Make a copy of both an &sk_buff and its data. This is used when the
1077  *	caller wishes to modify the data and needs a private copy of the
1078  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1079  *	on success. The returned buffer has a reference count of 1.
1080  *
1081  *	As by-product this function converts non-linear &sk_buff to linear
1082  *	one, so that &sk_buff becomes completely private and caller is allowed
1083  *	to modify all the data of returned buffer. This means that this
1084  *	function is not recommended for use in circumstances when only
1085  *	header is going to be modified. Use pskb_copy() instead.
1086  */
1087 
1088 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1089 {
1090 	int headerlen = skb_headroom(skb);
1091 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1092 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1093 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1094 
1095 	if (!n)
1096 		return NULL;
1097 
1098 	/* Set the data pointer */
1099 	skb_reserve(n, headerlen);
1100 	/* Set the tail pointer and length */
1101 	skb_put(n, skb->len);
1102 
1103 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1104 		BUG();
1105 
1106 	copy_skb_header(n, skb);
1107 	return n;
1108 }
1109 EXPORT_SYMBOL(skb_copy);
1110 
1111 /**
1112  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1113  *	@skb: buffer to copy
1114  *	@headroom: headroom of new skb
1115  *	@gfp_mask: allocation priority
1116  *	@fclone: if true allocate the copy of the skb from the fclone
1117  *	cache instead of the head cache; it is recommended to set this
1118  *	to true for the cases where the copy will likely be cloned
1119  *
1120  *	Make a copy of both an &sk_buff and part of its data, located
1121  *	in header. Fragmented data remain shared. This is used when
1122  *	the caller wishes to modify only header of &sk_buff and needs
1123  *	private copy of the header to alter. Returns %NULL on failure
1124  *	or the pointer to the buffer on success.
1125  *	The returned buffer has a reference count of 1.
1126  */
1127 
1128 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1129 				   gfp_t gfp_mask, bool fclone)
1130 {
1131 	unsigned int size = skb_headlen(skb) + headroom;
1132 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1133 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1134 
1135 	if (!n)
1136 		goto out;
1137 
1138 	/* Set the data pointer */
1139 	skb_reserve(n, headroom);
1140 	/* Set the tail pointer and length */
1141 	skb_put(n, skb_headlen(skb));
1142 	/* Copy the bytes */
1143 	skb_copy_from_linear_data(skb, n->data, n->len);
1144 
1145 	n->truesize += skb->data_len;
1146 	n->data_len  = skb->data_len;
1147 	n->len	     = skb->len;
1148 
1149 	if (skb_shinfo(skb)->nr_frags) {
1150 		int i;
1151 
1152 		if (skb_orphan_frags(skb, gfp_mask)) {
1153 			kfree_skb(n);
1154 			n = NULL;
1155 			goto out;
1156 		}
1157 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1159 			skb_frag_ref(skb, i);
1160 		}
1161 		skb_shinfo(n)->nr_frags = i;
1162 	}
1163 
1164 	if (skb_has_frag_list(skb)) {
1165 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1166 		skb_clone_fraglist(n);
1167 	}
1168 
1169 	copy_skb_header(n, skb);
1170 out:
1171 	return n;
1172 }
1173 EXPORT_SYMBOL(__pskb_copy_fclone);
1174 
1175 /**
1176  *	pskb_expand_head - reallocate header of &sk_buff
1177  *	@skb: buffer to reallocate
1178  *	@nhead: room to add at head
1179  *	@ntail: room to add at tail
1180  *	@gfp_mask: allocation priority
1181  *
1182  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1183  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1184  *	reference count of 1. Returns zero in the case of success or error,
1185  *	if expansion failed. In the last case, &sk_buff is not changed.
1186  *
1187  *	All the pointers pointing into skb header may change and must be
1188  *	reloaded after call to this function.
1189  */
1190 
1191 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1192 		     gfp_t gfp_mask)
1193 {
1194 	int i, osize = skb_end_offset(skb);
1195 	int size = osize + nhead + ntail;
1196 	long off;
1197 	u8 *data;
1198 
1199 	BUG_ON(nhead < 0);
1200 
1201 	if (skb_shared(skb))
1202 		BUG();
1203 
1204 	size = SKB_DATA_ALIGN(size);
1205 
1206 	if (skb_pfmemalloc(skb))
1207 		gfp_mask |= __GFP_MEMALLOC;
1208 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1209 			       gfp_mask, NUMA_NO_NODE, NULL);
1210 	if (!data)
1211 		goto nodata;
1212 	size = SKB_WITH_OVERHEAD(ksize(data));
1213 
1214 	/* Copy only real data... and, alas, header. This should be
1215 	 * optimized for the cases when header is void.
1216 	 */
1217 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1218 
1219 	memcpy((struct skb_shared_info *)(data + size),
1220 	       skb_shinfo(skb),
1221 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1222 
1223 	/*
1224 	 * if shinfo is shared we must drop the old head gracefully, but if it
1225 	 * is not we can just drop the old head and let the existing refcount
1226 	 * be since all we did is relocate the values
1227 	 */
1228 	if (skb_cloned(skb)) {
1229 		/* copy this zero copy skb frags */
1230 		if (skb_orphan_frags(skb, gfp_mask))
1231 			goto nofrags;
1232 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1233 			skb_frag_ref(skb, i);
1234 
1235 		if (skb_has_frag_list(skb))
1236 			skb_clone_fraglist(skb);
1237 
1238 		skb_release_data(skb);
1239 	} else {
1240 		skb_free_head(skb);
1241 	}
1242 	off = (data + nhead) - skb->head;
1243 
1244 	skb->head     = data;
1245 	skb->head_frag = 0;
1246 	skb->data    += off;
1247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1248 	skb->end      = size;
1249 	off           = nhead;
1250 #else
1251 	skb->end      = skb->head + size;
1252 #endif
1253 	skb->tail	      += off;
1254 	skb_headers_offset_update(skb, nhead);
1255 	skb->cloned   = 0;
1256 	skb->hdr_len  = 0;
1257 	skb->nohdr    = 0;
1258 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1259 
1260 	/* It is not generally safe to change skb->truesize.
1261 	 * For the moment, we really care of rx path, or
1262 	 * when skb is orphaned (not attached to a socket).
1263 	 */
1264 	if (!skb->sk || skb->destructor == sock_edemux)
1265 		skb->truesize += size - osize;
1266 
1267 	return 0;
1268 
1269 nofrags:
1270 	kfree(data);
1271 nodata:
1272 	return -ENOMEM;
1273 }
1274 EXPORT_SYMBOL(pskb_expand_head);
1275 
1276 /* Make private copy of skb with writable head and some headroom */
1277 
1278 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1279 {
1280 	struct sk_buff *skb2;
1281 	int delta = headroom - skb_headroom(skb);
1282 
1283 	if (delta <= 0)
1284 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1285 	else {
1286 		skb2 = skb_clone(skb, GFP_ATOMIC);
1287 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1288 					     GFP_ATOMIC)) {
1289 			kfree_skb(skb2);
1290 			skb2 = NULL;
1291 		}
1292 	}
1293 	return skb2;
1294 }
1295 EXPORT_SYMBOL(skb_realloc_headroom);
1296 
1297 /**
1298  *	skb_copy_expand	-	copy and expand sk_buff
1299  *	@skb: buffer to copy
1300  *	@newheadroom: new free bytes at head
1301  *	@newtailroom: new free bytes at tail
1302  *	@gfp_mask: allocation priority
1303  *
1304  *	Make a copy of both an &sk_buff and its data and while doing so
1305  *	allocate additional space.
1306  *
1307  *	This is used when the caller wishes to modify the data and needs a
1308  *	private copy of the data to alter as well as more space for new fields.
1309  *	Returns %NULL on failure or the pointer to the buffer
1310  *	on success. The returned buffer has a reference count of 1.
1311  *
1312  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1313  *	is called from an interrupt.
1314  */
1315 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1316 				int newheadroom, int newtailroom,
1317 				gfp_t gfp_mask)
1318 {
1319 	/*
1320 	 *	Allocate the copy buffer
1321 	 */
1322 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1323 					gfp_mask, skb_alloc_rx_flag(skb),
1324 					NUMA_NO_NODE);
1325 	int oldheadroom = skb_headroom(skb);
1326 	int head_copy_len, head_copy_off;
1327 
1328 	if (!n)
1329 		return NULL;
1330 
1331 	skb_reserve(n, newheadroom);
1332 
1333 	/* Set the tail pointer and length */
1334 	skb_put(n, skb->len);
1335 
1336 	head_copy_len = oldheadroom;
1337 	head_copy_off = 0;
1338 	if (newheadroom <= head_copy_len)
1339 		head_copy_len = newheadroom;
1340 	else
1341 		head_copy_off = newheadroom - head_copy_len;
1342 
1343 	/* Copy the linear header and data. */
1344 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1345 			  skb->len + head_copy_len))
1346 		BUG();
1347 
1348 	copy_skb_header(n, skb);
1349 
1350 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1351 
1352 	return n;
1353 }
1354 EXPORT_SYMBOL(skb_copy_expand);
1355 
1356 /**
1357  *	skb_pad			-	zero pad the tail of an skb
1358  *	@skb: buffer to pad
1359  *	@pad: space to pad
1360  *
1361  *	Ensure that a buffer is followed by a padding area that is zero
1362  *	filled. Used by network drivers which may DMA or transfer data
1363  *	beyond the buffer end onto the wire.
1364  *
1365  *	May return error in out of memory cases. The skb is freed on error.
1366  */
1367 
1368 int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 	int err;
1371 	int ntail;
1372 
1373 	/* If the skbuff is non linear tailroom is always zero.. */
1374 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1375 		memset(skb->data+skb->len, 0, pad);
1376 		return 0;
1377 	}
1378 
1379 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1380 	if (likely(skb_cloned(skb) || ntail > 0)) {
1381 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1382 		if (unlikely(err))
1383 			goto free_skb;
1384 	}
1385 
1386 	/* FIXME: The use of this function with non-linear skb's really needs
1387 	 * to be audited.
1388 	 */
1389 	err = skb_linearize(skb);
1390 	if (unlikely(err))
1391 		goto free_skb;
1392 
1393 	memset(skb->data + skb->len, 0, pad);
1394 	return 0;
1395 
1396 free_skb:
1397 	kfree_skb(skb);
1398 	return err;
1399 }
1400 EXPORT_SYMBOL(skb_pad);
1401 
1402 /**
1403  *	pskb_put - add data to the tail of a potentially fragmented buffer
1404  *	@skb: start of the buffer to use
1405  *	@tail: tail fragment of the buffer to use
1406  *	@len: amount of data to add
1407  *
1408  *	This function extends the used data area of the potentially
1409  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1410  *	@skb itself. If this would exceed the total buffer size the kernel
1411  *	will panic. A pointer to the first byte of the extra data is
1412  *	returned.
1413  */
1414 
1415 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1416 {
1417 	if (tail != skb) {
1418 		skb->data_len += len;
1419 		skb->len += len;
1420 	}
1421 	return skb_put(tail, len);
1422 }
1423 EXPORT_SYMBOL_GPL(pskb_put);
1424 
1425 /**
1426  *	skb_put - add data to a buffer
1427  *	@skb: buffer to use
1428  *	@len: amount of data to add
1429  *
1430  *	This function extends the used data area of the buffer. If this would
1431  *	exceed the total buffer size the kernel will panic. A pointer to the
1432  *	first byte of the extra data is returned.
1433  */
1434 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1435 {
1436 	unsigned char *tmp = skb_tail_pointer(skb);
1437 	SKB_LINEAR_ASSERT(skb);
1438 	skb->tail += len;
1439 	skb->len  += len;
1440 	if (unlikely(skb->tail > skb->end))
1441 		skb_over_panic(skb, len, __builtin_return_address(0));
1442 	return tmp;
1443 }
1444 EXPORT_SYMBOL(skb_put);
1445 
1446 /**
1447  *	skb_push - add data to the start of a buffer
1448  *	@skb: buffer to use
1449  *	@len: amount of data to add
1450  *
1451  *	This function extends the used data area of the buffer at the buffer
1452  *	start. If this would exceed the total buffer headroom the kernel will
1453  *	panic. A pointer to the first byte of the extra data is returned.
1454  */
1455 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1456 {
1457 	skb->data -= len;
1458 	skb->len  += len;
1459 	if (unlikely(skb->data<skb->head))
1460 		skb_under_panic(skb, len, __builtin_return_address(0));
1461 	return skb->data;
1462 }
1463 EXPORT_SYMBOL(skb_push);
1464 
1465 /**
1466  *	skb_pull - remove data from the start of a buffer
1467  *	@skb: buffer to use
1468  *	@len: amount of data to remove
1469  *
1470  *	This function removes data from the start of a buffer, returning
1471  *	the memory to the headroom. A pointer to the next data in the buffer
1472  *	is returned. Once the data has been pulled future pushes will overwrite
1473  *	the old data.
1474  */
1475 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1476 {
1477 	return skb_pull_inline(skb, len);
1478 }
1479 EXPORT_SYMBOL(skb_pull);
1480 
1481 /**
1482  *	skb_trim - remove end from a buffer
1483  *	@skb: buffer to alter
1484  *	@len: new length
1485  *
1486  *	Cut the length of a buffer down by removing data from the tail. If
1487  *	the buffer is already under the length specified it is not modified.
1488  *	The skb must be linear.
1489  */
1490 void skb_trim(struct sk_buff *skb, unsigned int len)
1491 {
1492 	if (skb->len > len)
1493 		__skb_trim(skb, len);
1494 }
1495 EXPORT_SYMBOL(skb_trim);
1496 
1497 /* Trims skb to length len. It can change skb pointers.
1498  */
1499 
1500 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1501 {
1502 	struct sk_buff **fragp;
1503 	struct sk_buff *frag;
1504 	int offset = skb_headlen(skb);
1505 	int nfrags = skb_shinfo(skb)->nr_frags;
1506 	int i;
1507 	int err;
1508 
1509 	if (skb_cloned(skb) &&
1510 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1511 		return err;
1512 
1513 	i = 0;
1514 	if (offset >= len)
1515 		goto drop_pages;
1516 
1517 	for (; i < nfrags; i++) {
1518 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1519 
1520 		if (end < len) {
1521 			offset = end;
1522 			continue;
1523 		}
1524 
1525 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1526 
1527 drop_pages:
1528 		skb_shinfo(skb)->nr_frags = i;
1529 
1530 		for (; i < nfrags; i++)
1531 			skb_frag_unref(skb, i);
1532 
1533 		if (skb_has_frag_list(skb))
1534 			skb_drop_fraglist(skb);
1535 		goto done;
1536 	}
1537 
1538 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1539 	     fragp = &frag->next) {
1540 		int end = offset + frag->len;
1541 
1542 		if (skb_shared(frag)) {
1543 			struct sk_buff *nfrag;
1544 
1545 			nfrag = skb_clone(frag, GFP_ATOMIC);
1546 			if (unlikely(!nfrag))
1547 				return -ENOMEM;
1548 
1549 			nfrag->next = frag->next;
1550 			consume_skb(frag);
1551 			frag = nfrag;
1552 			*fragp = frag;
1553 		}
1554 
1555 		if (end < len) {
1556 			offset = end;
1557 			continue;
1558 		}
1559 
1560 		if (end > len &&
1561 		    unlikely((err = pskb_trim(frag, len - offset))))
1562 			return err;
1563 
1564 		if (frag->next)
1565 			skb_drop_list(&frag->next);
1566 		break;
1567 	}
1568 
1569 done:
1570 	if (len > skb_headlen(skb)) {
1571 		skb->data_len -= skb->len - len;
1572 		skb->len       = len;
1573 	} else {
1574 		skb->len       = len;
1575 		skb->data_len  = 0;
1576 		skb_set_tail_pointer(skb, len);
1577 	}
1578 
1579 	if (!skb->sk || skb->destructor == sock_edemux)
1580 		skb_condense(skb);
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL(___pskb_trim);
1584 
1585 /**
1586  *	__pskb_pull_tail - advance tail of skb header
1587  *	@skb: buffer to reallocate
1588  *	@delta: number of bytes to advance tail
1589  *
1590  *	The function makes a sense only on a fragmented &sk_buff,
1591  *	it expands header moving its tail forward and copying necessary
1592  *	data from fragmented part.
1593  *
1594  *	&sk_buff MUST have reference count of 1.
1595  *
1596  *	Returns %NULL (and &sk_buff does not change) if pull failed
1597  *	or value of new tail of skb in the case of success.
1598  *
1599  *	All the pointers pointing into skb header may change and must be
1600  *	reloaded after call to this function.
1601  */
1602 
1603 /* Moves tail of skb head forward, copying data from fragmented part,
1604  * when it is necessary.
1605  * 1. It may fail due to malloc failure.
1606  * 2. It may change skb pointers.
1607  *
1608  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1609  */
1610 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1611 {
1612 	/* If skb has not enough free space at tail, get new one
1613 	 * plus 128 bytes for future expansions. If we have enough
1614 	 * room at tail, reallocate without expansion only if skb is cloned.
1615 	 */
1616 	int i, k, eat = (skb->tail + delta) - skb->end;
1617 
1618 	if (eat > 0 || skb_cloned(skb)) {
1619 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1620 				     GFP_ATOMIC))
1621 			return NULL;
1622 	}
1623 
1624 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1625 		BUG();
1626 
1627 	/* Optimization: no fragments, no reasons to preestimate
1628 	 * size of pulled pages. Superb.
1629 	 */
1630 	if (!skb_has_frag_list(skb))
1631 		goto pull_pages;
1632 
1633 	/* Estimate size of pulled pages. */
1634 	eat = delta;
1635 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1636 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1637 
1638 		if (size >= eat)
1639 			goto pull_pages;
1640 		eat -= size;
1641 	}
1642 
1643 	/* If we need update frag list, we are in troubles.
1644 	 * Certainly, it possible to add an offset to skb data,
1645 	 * but taking into account that pulling is expected to
1646 	 * be very rare operation, it is worth to fight against
1647 	 * further bloating skb head and crucify ourselves here instead.
1648 	 * Pure masohism, indeed. 8)8)
1649 	 */
1650 	if (eat) {
1651 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1652 		struct sk_buff *clone = NULL;
1653 		struct sk_buff *insp = NULL;
1654 
1655 		do {
1656 			BUG_ON(!list);
1657 
1658 			if (list->len <= eat) {
1659 				/* Eaten as whole. */
1660 				eat -= list->len;
1661 				list = list->next;
1662 				insp = list;
1663 			} else {
1664 				/* Eaten partially. */
1665 
1666 				if (skb_shared(list)) {
1667 					/* Sucks! We need to fork list. :-( */
1668 					clone = skb_clone(list, GFP_ATOMIC);
1669 					if (!clone)
1670 						return NULL;
1671 					insp = list->next;
1672 					list = clone;
1673 				} else {
1674 					/* This may be pulled without
1675 					 * problems. */
1676 					insp = list;
1677 				}
1678 				if (!pskb_pull(list, eat)) {
1679 					kfree_skb(clone);
1680 					return NULL;
1681 				}
1682 				break;
1683 			}
1684 		} while (eat);
1685 
1686 		/* Free pulled out fragments. */
1687 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1688 			skb_shinfo(skb)->frag_list = list->next;
1689 			kfree_skb(list);
1690 		}
1691 		/* And insert new clone at head. */
1692 		if (clone) {
1693 			clone->next = list;
1694 			skb_shinfo(skb)->frag_list = clone;
1695 		}
1696 	}
1697 	/* Success! Now we may commit changes to skb data. */
1698 
1699 pull_pages:
1700 	eat = delta;
1701 	k = 0;
1702 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1703 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1704 
1705 		if (size <= eat) {
1706 			skb_frag_unref(skb, i);
1707 			eat -= size;
1708 		} else {
1709 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1710 			if (eat) {
1711 				skb_shinfo(skb)->frags[k].page_offset += eat;
1712 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1713 				eat = 0;
1714 			}
1715 			k++;
1716 		}
1717 	}
1718 	skb_shinfo(skb)->nr_frags = k;
1719 
1720 	skb->tail     += delta;
1721 	skb->data_len -= delta;
1722 
1723 	return skb_tail_pointer(skb);
1724 }
1725 EXPORT_SYMBOL(__pskb_pull_tail);
1726 
1727 /**
1728  *	skb_copy_bits - copy bits from skb to kernel buffer
1729  *	@skb: source skb
1730  *	@offset: offset in source
1731  *	@to: destination buffer
1732  *	@len: number of bytes to copy
1733  *
1734  *	Copy the specified number of bytes from the source skb to the
1735  *	destination buffer.
1736  *
1737  *	CAUTION ! :
1738  *		If its prototype is ever changed,
1739  *		check arch/{*}/net/{*}.S files,
1740  *		since it is called from BPF assembly code.
1741  */
1742 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1743 {
1744 	int start = skb_headlen(skb);
1745 	struct sk_buff *frag_iter;
1746 	int i, copy;
1747 
1748 	if (offset > (int)skb->len - len)
1749 		goto fault;
1750 
1751 	/* Copy header. */
1752 	if ((copy = start - offset) > 0) {
1753 		if (copy > len)
1754 			copy = len;
1755 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1756 		if ((len -= copy) == 0)
1757 			return 0;
1758 		offset += copy;
1759 		to     += copy;
1760 	}
1761 
1762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1763 		int end;
1764 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1765 
1766 		WARN_ON(start > offset + len);
1767 
1768 		end = start + skb_frag_size(f);
1769 		if ((copy = end - offset) > 0) {
1770 			u8 *vaddr;
1771 
1772 			if (copy > len)
1773 				copy = len;
1774 
1775 			vaddr = kmap_atomic(skb_frag_page(f));
1776 			memcpy(to,
1777 			       vaddr + f->page_offset + offset - start,
1778 			       copy);
1779 			kunmap_atomic(vaddr);
1780 
1781 			if ((len -= copy) == 0)
1782 				return 0;
1783 			offset += copy;
1784 			to     += copy;
1785 		}
1786 		start = end;
1787 	}
1788 
1789 	skb_walk_frags(skb, frag_iter) {
1790 		int end;
1791 
1792 		WARN_ON(start > offset + len);
1793 
1794 		end = start + frag_iter->len;
1795 		if ((copy = end - offset) > 0) {
1796 			if (copy > len)
1797 				copy = len;
1798 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1799 				goto fault;
1800 			if ((len -= copy) == 0)
1801 				return 0;
1802 			offset += copy;
1803 			to     += copy;
1804 		}
1805 		start = end;
1806 	}
1807 
1808 	if (!len)
1809 		return 0;
1810 
1811 fault:
1812 	return -EFAULT;
1813 }
1814 EXPORT_SYMBOL(skb_copy_bits);
1815 
1816 /*
1817  * Callback from splice_to_pipe(), if we need to release some pages
1818  * at the end of the spd in case we error'ed out in filling the pipe.
1819  */
1820 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1821 {
1822 	put_page(spd->pages[i]);
1823 }
1824 
1825 static struct page *linear_to_page(struct page *page, unsigned int *len,
1826 				   unsigned int *offset,
1827 				   struct sock *sk)
1828 {
1829 	struct page_frag *pfrag = sk_page_frag(sk);
1830 
1831 	if (!sk_page_frag_refill(sk, pfrag))
1832 		return NULL;
1833 
1834 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1835 
1836 	memcpy(page_address(pfrag->page) + pfrag->offset,
1837 	       page_address(page) + *offset, *len);
1838 	*offset = pfrag->offset;
1839 	pfrag->offset += *len;
1840 
1841 	return pfrag->page;
1842 }
1843 
1844 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1845 			     struct page *page,
1846 			     unsigned int offset)
1847 {
1848 	return	spd->nr_pages &&
1849 		spd->pages[spd->nr_pages - 1] == page &&
1850 		(spd->partial[spd->nr_pages - 1].offset +
1851 		 spd->partial[spd->nr_pages - 1].len == offset);
1852 }
1853 
1854 /*
1855  * Fill page/offset/length into spd, if it can hold more pages.
1856  */
1857 static bool spd_fill_page(struct splice_pipe_desc *spd,
1858 			  struct pipe_inode_info *pipe, struct page *page,
1859 			  unsigned int *len, unsigned int offset,
1860 			  bool linear,
1861 			  struct sock *sk)
1862 {
1863 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1864 		return true;
1865 
1866 	if (linear) {
1867 		page = linear_to_page(page, len, &offset, sk);
1868 		if (!page)
1869 			return true;
1870 	}
1871 	if (spd_can_coalesce(spd, page, offset)) {
1872 		spd->partial[spd->nr_pages - 1].len += *len;
1873 		return false;
1874 	}
1875 	get_page(page);
1876 	spd->pages[spd->nr_pages] = page;
1877 	spd->partial[spd->nr_pages].len = *len;
1878 	spd->partial[spd->nr_pages].offset = offset;
1879 	spd->nr_pages++;
1880 
1881 	return false;
1882 }
1883 
1884 static bool __splice_segment(struct page *page, unsigned int poff,
1885 			     unsigned int plen, unsigned int *off,
1886 			     unsigned int *len,
1887 			     struct splice_pipe_desc *spd, bool linear,
1888 			     struct sock *sk,
1889 			     struct pipe_inode_info *pipe)
1890 {
1891 	if (!*len)
1892 		return true;
1893 
1894 	/* skip this segment if already processed */
1895 	if (*off >= plen) {
1896 		*off -= plen;
1897 		return false;
1898 	}
1899 
1900 	/* ignore any bits we already processed */
1901 	poff += *off;
1902 	plen -= *off;
1903 	*off = 0;
1904 
1905 	do {
1906 		unsigned int flen = min(*len, plen);
1907 
1908 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1909 				  linear, sk))
1910 			return true;
1911 		poff += flen;
1912 		plen -= flen;
1913 		*len -= flen;
1914 	} while (*len && plen);
1915 
1916 	return false;
1917 }
1918 
1919 /*
1920  * Map linear and fragment data from the skb to spd. It reports true if the
1921  * pipe is full or if we already spliced the requested length.
1922  */
1923 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1924 			      unsigned int *offset, unsigned int *len,
1925 			      struct splice_pipe_desc *spd, struct sock *sk)
1926 {
1927 	int seg;
1928 	struct sk_buff *iter;
1929 
1930 	/* map the linear part :
1931 	 * If skb->head_frag is set, this 'linear' part is backed by a
1932 	 * fragment, and if the head is not shared with any clones then
1933 	 * we can avoid a copy since we own the head portion of this page.
1934 	 */
1935 	if (__splice_segment(virt_to_page(skb->data),
1936 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1937 			     skb_headlen(skb),
1938 			     offset, len, spd,
1939 			     skb_head_is_locked(skb),
1940 			     sk, pipe))
1941 		return true;
1942 
1943 	/*
1944 	 * then map the fragments
1945 	 */
1946 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1947 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1948 
1949 		if (__splice_segment(skb_frag_page(f),
1950 				     f->page_offset, skb_frag_size(f),
1951 				     offset, len, spd, false, sk, pipe))
1952 			return true;
1953 	}
1954 
1955 	skb_walk_frags(skb, iter) {
1956 		if (*offset >= iter->len) {
1957 			*offset -= iter->len;
1958 			continue;
1959 		}
1960 		/* __skb_splice_bits() only fails if the output has no room
1961 		 * left, so no point in going over the frag_list for the error
1962 		 * case.
1963 		 */
1964 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1965 			return true;
1966 	}
1967 
1968 	return false;
1969 }
1970 
1971 /*
1972  * Map data from the skb to a pipe. Should handle both the linear part,
1973  * the fragments, and the frag list.
1974  */
1975 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1976 		    struct pipe_inode_info *pipe, unsigned int tlen,
1977 		    unsigned int flags)
1978 {
1979 	struct partial_page partial[MAX_SKB_FRAGS];
1980 	struct page *pages[MAX_SKB_FRAGS];
1981 	struct splice_pipe_desc spd = {
1982 		.pages = pages,
1983 		.partial = partial,
1984 		.nr_pages_max = MAX_SKB_FRAGS,
1985 		.ops = &nosteal_pipe_buf_ops,
1986 		.spd_release = sock_spd_release,
1987 	};
1988 	int ret = 0;
1989 
1990 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1991 
1992 	if (spd.nr_pages)
1993 		ret = splice_to_pipe(pipe, &spd);
1994 
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(skb_splice_bits);
1998 
1999 /**
2000  *	skb_store_bits - store bits from kernel buffer to skb
2001  *	@skb: destination buffer
2002  *	@offset: offset in destination
2003  *	@from: source buffer
2004  *	@len: number of bytes to copy
2005  *
2006  *	Copy the specified number of bytes from the source buffer to the
2007  *	destination skb.  This function handles all the messy bits of
2008  *	traversing fragment lists and such.
2009  */
2010 
2011 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2012 {
2013 	int start = skb_headlen(skb);
2014 	struct sk_buff *frag_iter;
2015 	int i, copy;
2016 
2017 	if (offset > (int)skb->len - len)
2018 		goto fault;
2019 
2020 	if ((copy = start - offset) > 0) {
2021 		if (copy > len)
2022 			copy = len;
2023 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2024 		if ((len -= copy) == 0)
2025 			return 0;
2026 		offset += copy;
2027 		from += copy;
2028 	}
2029 
2030 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 		int end;
2033 
2034 		WARN_ON(start > offset + len);
2035 
2036 		end = start + skb_frag_size(frag);
2037 		if ((copy = end - offset) > 0) {
2038 			u8 *vaddr;
2039 
2040 			if (copy > len)
2041 				copy = len;
2042 
2043 			vaddr = kmap_atomic(skb_frag_page(frag));
2044 			memcpy(vaddr + frag->page_offset + offset - start,
2045 			       from, copy);
2046 			kunmap_atomic(vaddr);
2047 
2048 			if ((len -= copy) == 0)
2049 				return 0;
2050 			offset += copy;
2051 			from += copy;
2052 		}
2053 		start = end;
2054 	}
2055 
2056 	skb_walk_frags(skb, frag_iter) {
2057 		int end;
2058 
2059 		WARN_ON(start > offset + len);
2060 
2061 		end = start + frag_iter->len;
2062 		if ((copy = end - offset) > 0) {
2063 			if (copy > len)
2064 				copy = len;
2065 			if (skb_store_bits(frag_iter, offset - start,
2066 					   from, copy))
2067 				goto fault;
2068 			if ((len -= copy) == 0)
2069 				return 0;
2070 			offset += copy;
2071 			from += copy;
2072 		}
2073 		start = end;
2074 	}
2075 	if (!len)
2076 		return 0;
2077 
2078 fault:
2079 	return -EFAULT;
2080 }
2081 EXPORT_SYMBOL(skb_store_bits);
2082 
2083 /* Checksum skb data. */
2084 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2085 		      __wsum csum, const struct skb_checksum_ops *ops)
2086 {
2087 	int start = skb_headlen(skb);
2088 	int i, copy = start - offset;
2089 	struct sk_buff *frag_iter;
2090 	int pos = 0;
2091 
2092 	/* Checksum header. */
2093 	if (copy > 0) {
2094 		if (copy > len)
2095 			copy = len;
2096 		csum = ops->update(skb->data + offset, copy, csum);
2097 		if ((len -= copy) == 0)
2098 			return csum;
2099 		offset += copy;
2100 		pos	= copy;
2101 	}
2102 
2103 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2104 		int end;
2105 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2106 
2107 		WARN_ON(start > offset + len);
2108 
2109 		end = start + skb_frag_size(frag);
2110 		if ((copy = end - offset) > 0) {
2111 			__wsum csum2;
2112 			u8 *vaddr;
2113 
2114 			if (copy > len)
2115 				copy = len;
2116 			vaddr = kmap_atomic(skb_frag_page(frag));
2117 			csum2 = ops->update(vaddr + frag->page_offset +
2118 					    offset - start, copy, 0);
2119 			kunmap_atomic(vaddr);
2120 			csum = ops->combine(csum, csum2, pos, copy);
2121 			if (!(len -= copy))
2122 				return csum;
2123 			offset += copy;
2124 			pos    += copy;
2125 		}
2126 		start = end;
2127 	}
2128 
2129 	skb_walk_frags(skb, frag_iter) {
2130 		int end;
2131 
2132 		WARN_ON(start > offset + len);
2133 
2134 		end = start + frag_iter->len;
2135 		if ((copy = end - offset) > 0) {
2136 			__wsum csum2;
2137 			if (copy > len)
2138 				copy = len;
2139 			csum2 = __skb_checksum(frag_iter, offset - start,
2140 					       copy, 0, ops);
2141 			csum = ops->combine(csum, csum2, pos, copy);
2142 			if ((len -= copy) == 0)
2143 				return csum;
2144 			offset += copy;
2145 			pos    += copy;
2146 		}
2147 		start = end;
2148 	}
2149 	BUG_ON(len);
2150 
2151 	return csum;
2152 }
2153 EXPORT_SYMBOL(__skb_checksum);
2154 
2155 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2156 		    int len, __wsum csum)
2157 {
2158 	const struct skb_checksum_ops ops = {
2159 		.update  = csum_partial_ext,
2160 		.combine = csum_block_add_ext,
2161 	};
2162 
2163 	return __skb_checksum(skb, offset, len, csum, &ops);
2164 }
2165 EXPORT_SYMBOL(skb_checksum);
2166 
2167 /* Both of above in one bottle. */
2168 
2169 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2170 				    u8 *to, int len, __wsum csum)
2171 {
2172 	int start = skb_headlen(skb);
2173 	int i, copy = start - offset;
2174 	struct sk_buff *frag_iter;
2175 	int pos = 0;
2176 
2177 	/* Copy header. */
2178 	if (copy > 0) {
2179 		if (copy > len)
2180 			copy = len;
2181 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2182 						 copy, csum);
2183 		if ((len -= copy) == 0)
2184 			return csum;
2185 		offset += copy;
2186 		to     += copy;
2187 		pos	= copy;
2188 	}
2189 
2190 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2191 		int end;
2192 
2193 		WARN_ON(start > offset + len);
2194 
2195 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2196 		if ((copy = end - offset) > 0) {
2197 			__wsum csum2;
2198 			u8 *vaddr;
2199 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200 
2201 			if (copy > len)
2202 				copy = len;
2203 			vaddr = kmap_atomic(skb_frag_page(frag));
2204 			csum2 = csum_partial_copy_nocheck(vaddr +
2205 							  frag->page_offset +
2206 							  offset - start, to,
2207 							  copy, 0);
2208 			kunmap_atomic(vaddr);
2209 			csum = csum_block_add(csum, csum2, pos);
2210 			if (!(len -= copy))
2211 				return csum;
2212 			offset += copy;
2213 			to     += copy;
2214 			pos    += copy;
2215 		}
2216 		start = end;
2217 	}
2218 
2219 	skb_walk_frags(skb, frag_iter) {
2220 		__wsum csum2;
2221 		int end;
2222 
2223 		WARN_ON(start > offset + len);
2224 
2225 		end = start + frag_iter->len;
2226 		if ((copy = end - offset) > 0) {
2227 			if (copy > len)
2228 				copy = len;
2229 			csum2 = skb_copy_and_csum_bits(frag_iter,
2230 						       offset - start,
2231 						       to, copy, 0);
2232 			csum = csum_block_add(csum, csum2, pos);
2233 			if ((len -= copy) == 0)
2234 				return csum;
2235 			offset += copy;
2236 			to     += copy;
2237 			pos    += copy;
2238 		}
2239 		start = end;
2240 	}
2241 	BUG_ON(len);
2242 	return csum;
2243 }
2244 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2245 
2246  /**
2247  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2248  *	@from: source buffer
2249  *
2250  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2251  *	into skb_zerocopy().
2252  */
2253 unsigned int
2254 skb_zerocopy_headlen(const struct sk_buff *from)
2255 {
2256 	unsigned int hlen = 0;
2257 
2258 	if (!from->head_frag ||
2259 	    skb_headlen(from) < L1_CACHE_BYTES ||
2260 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2261 		hlen = skb_headlen(from);
2262 
2263 	if (skb_has_frag_list(from))
2264 		hlen = from->len;
2265 
2266 	return hlen;
2267 }
2268 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2269 
2270 /**
2271  *	skb_zerocopy - Zero copy skb to skb
2272  *	@to: destination buffer
2273  *	@from: source buffer
2274  *	@len: number of bytes to copy from source buffer
2275  *	@hlen: size of linear headroom in destination buffer
2276  *
2277  *	Copies up to `len` bytes from `from` to `to` by creating references
2278  *	to the frags in the source buffer.
2279  *
2280  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2281  *	headroom in the `to` buffer.
2282  *
2283  *	Return value:
2284  *	0: everything is OK
2285  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2286  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2287  */
2288 int
2289 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2290 {
2291 	int i, j = 0;
2292 	int plen = 0; /* length of skb->head fragment */
2293 	int ret;
2294 	struct page *page;
2295 	unsigned int offset;
2296 
2297 	BUG_ON(!from->head_frag && !hlen);
2298 
2299 	/* dont bother with small payloads */
2300 	if (len <= skb_tailroom(to))
2301 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2302 
2303 	if (hlen) {
2304 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2305 		if (unlikely(ret))
2306 			return ret;
2307 		len -= hlen;
2308 	} else {
2309 		plen = min_t(int, skb_headlen(from), len);
2310 		if (plen) {
2311 			page = virt_to_head_page(from->head);
2312 			offset = from->data - (unsigned char *)page_address(page);
2313 			__skb_fill_page_desc(to, 0, page, offset, plen);
2314 			get_page(page);
2315 			j = 1;
2316 			len -= plen;
2317 		}
2318 	}
2319 
2320 	to->truesize += len + plen;
2321 	to->len += len + plen;
2322 	to->data_len += len + plen;
2323 
2324 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2325 		skb_tx_error(from);
2326 		return -ENOMEM;
2327 	}
2328 
2329 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2330 		if (!len)
2331 			break;
2332 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2333 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2334 		len -= skb_shinfo(to)->frags[j].size;
2335 		skb_frag_ref(to, j);
2336 		j++;
2337 	}
2338 	skb_shinfo(to)->nr_frags = j;
2339 
2340 	return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(skb_zerocopy);
2343 
2344 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2345 {
2346 	__wsum csum;
2347 	long csstart;
2348 
2349 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2350 		csstart = skb_checksum_start_offset(skb);
2351 	else
2352 		csstart = skb_headlen(skb);
2353 
2354 	BUG_ON(csstart > skb_headlen(skb));
2355 
2356 	skb_copy_from_linear_data(skb, to, csstart);
2357 
2358 	csum = 0;
2359 	if (csstart != skb->len)
2360 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2361 					      skb->len - csstart, 0);
2362 
2363 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2364 		long csstuff = csstart + skb->csum_offset;
2365 
2366 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2367 	}
2368 }
2369 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2370 
2371 /**
2372  *	skb_dequeue - remove from the head of the queue
2373  *	@list: list to dequeue from
2374  *
2375  *	Remove the head of the list. The list lock is taken so the function
2376  *	may be used safely with other locking list functions. The head item is
2377  *	returned or %NULL if the list is empty.
2378  */
2379 
2380 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2381 {
2382 	unsigned long flags;
2383 	struct sk_buff *result;
2384 
2385 	spin_lock_irqsave(&list->lock, flags);
2386 	result = __skb_dequeue(list);
2387 	spin_unlock_irqrestore(&list->lock, flags);
2388 	return result;
2389 }
2390 EXPORT_SYMBOL(skb_dequeue);
2391 
2392 /**
2393  *	skb_dequeue_tail - remove from the tail of the queue
2394  *	@list: list to dequeue from
2395  *
2396  *	Remove the tail of the list. The list lock is taken so the function
2397  *	may be used safely with other locking list functions. The tail item is
2398  *	returned or %NULL if the list is empty.
2399  */
2400 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2401 {
2402 	unsigned long flags;
2403 	struct sk_buff *result;
2404 
2405 	spin_lock_irqsave(&list->lock, flags);
2406 	result = __skb_dequeue_tail(list);
2407 	spin_unlock_irqrestore(&list->lock, flags);
2408 	return result;
2409 }
2410 EXPORT_SYMBOL(skb_dequeue_tail);
2411 
2412 /**
2413  *	skb_queue_purge - empty a list
2414  *	@list: list to empty
2415  *
2416  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2417  *	the list and one reference dropped. This function takes the list
2418  *	lock and is atomic with respect to other list locking functions.
2419  */
2420 void skb_queue_purge(struct sk_buff_head *list)
2421 {
2422 	struct sk_buff *skb;
2423 	while ((skb = skb_dequeue(list)) != NULL)
2424 		kfree_skb(skb);
2425 }
2426 EXPORT_SYMBOL(skb_queue_purge);
2427 
2428 /**
2429  *	skb_rbtree_purge - empty a skb rbtree
2430  *	@root: root of the rbtree to empty
2431  *
2432  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2433  *	the list and one reference dropped. This function does not take
2434  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2435  *	out-of-order queue is protected by the socket lock).
2436  */
2437 void skb_rbtree_purge(struct rb_root *root)
2438 {
2439 	struct sk_buff *skb, *next;
2440 
2441 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2442 		kfree_skb(skb);
2443 
2444 	*root = RB_ROOT;
2445 }
2446 
2447 /**
2448  *	skb_queue_head - queue a buffer at the list head
2449  *	@list: list to use
2450  *	@newsk: buffer to queue
2451  *
2452  *	Queue a buffer at the start of the list. This function takes the
2453  *	list lock and can be used safely with other locking &sk_buff functions
2454  *	safely.
2455  *
2456  *	A buffer cannot be placed on two lists at the same time.
2457  */
2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2459 {
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&list->lock, flags);
2463 	__skb_queue_head(list, newsk);
2464 	spin_unlock_irqrestore(&list->lock, flags);
2465 }
2466 EXPORT_SYMBOL(skb_queue_head);
2467 
2468 /**
2469  *	skb_queue_tail - queue a buffer at the list tail
2470  *	@list: list to use
2471  *	@newsk: buffer to queue
2472  *
2473  *	Queue a buffer at the tail of the list. This function takes the
2474  *	list lock and can be used safely with other locking &sk_buff functions
2475  *	safely.
2476  *
2477  *	A buffer cannot be placed on two lists at the same time.
2478  */
2479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2480 {
2481 	unsigned long flags;
2482 
2483 	spin_lock_irqsave(&list->lock, flags);
2484 	__skb_queue_tail(list, newsk);
2485 	spin_unlock_irqrestore(&list->lock, flags);
2486 }
2487 EXPORT_SYMBOL(skb_queue_tail);
2488 
2489 /**
2490  *	skb_unlink	-	remove a buffer from a list
2491  *	@skb: buffer to remove
2492  *	@list: list to use
2493  *
2494  *	Remove a packet from a list. The list locks are taken and this
2495  *	function is atomic with respect to other list locked calls
2496  *
2497  *	You must know what list the SKB is on.
2498  */
2499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2500 {
2501 	unsigned long flags;
2502 
2503 	spin_lock_irqsave(&list->lock, flags);
2504 	__skb_unlink(skb, list);
2505 	spin_unlock_irqrestore(&list->lock, flags);
2506 }
2507 EXPORT_SYMBOL(skb_unlink);
2508 
2509 /**
2510  *	skb_append	-	append a buffer
2511  *	@old: buffer to insert after
2512  *	@newsk: buffer to insert
2513  *	@list: list to use
2514  *
2515  *	Place a packet after a given packet in a list. The list locks are taken
2516  *	and this function is atomic with respect to other list locked calls.
2517  *	A buffer cannot be placed on two lists at the same time.
2518  */
2519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2520 {
2521 	unsigned long flags;
2522 
2523 	spin_lock_irqsave(&list->lock, flags);
2524 	__skb_queue_after(list, old, newsk);
2525 	spin_unlock_irqrestore(&list->lock, flags);
2526 }
2527 EXPORT_SYMBOL(skb_append);
2528 
2529 /**
2530  *	skb_insert	-	insert a buffer
2531  *	@old: buffer to insert before
2532  *	@newsk: buffer to insert
2533  *	@list: list to use
2534  *
2535  *	Place a packet before a given packet in a list. The list locks are
2536  * 	taken and this function is atomic with respect to other list locked
2537  *	calls.
2538  *
2539  *	A buffer cannot be placed on two lists at the same time.
2540  */
2541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2542 {
2543 	unsigned long flags;
2544 
2545 	spin_lock_irqsave(&list->lock, flags);
2546 	__skb_insert(newsk, old->prev, old, list);
2547 	spin_unlock_irqrestore(&list->lock, flags);
2548 }
2549 EXPORT_SYMBOL(skb_insert);
2550 
2551 static inline void skb_split_inside_header(struct sk_buff *skb,
2552 					   struct sk_buff* skb1,
2553 					   const u32 len, const int pos)
2554 {
2555 	int i;
2556 
2557 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2558 					 pos - len);
2559 	/* And move data appendix as is. */
2560 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2561 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2562 
2563 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2564 	skb_shinfo(skb)->nr_frags  = 0;
2565 	skb1->data_len		   = skb->data_len;
2566 	skb1->len		   += skb1->data_len;
2567 	skb->data_len		   = 0;
2568 	skb->len		   = len;
2569 	skb_set_tail_pointer(skb, len);
2570 }
2571 
2572 static inline void skb_split_no_header(struct sk_buff *skb,
2573 				       struct sk_buff* skb1,
2574 				       const u32 len, int pos)
2575 {
2576 	int i, k = 0;
2577 	const int nfrags = skb_shinfo(skb)->nr_frags;
2578 
2579 	skb_shinfo(skb)->nr_frags = 0;
2580 	skb1->len		  = skb1->data_len = skb->len - len;
2581 	skb->len		  = len;
2582 	skb->data_len		  = len - pos;
2583 
2584 	for (i = 0; i < nfrags; i++) {
2585 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2586 
2587 		if (pos + size > len) {
2588 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2589 
2590 			if (pos < len) {
2591 				/* Split frag.
2592 				 * We have two variants in this case:
2593 				 * 1. Move all the frag to the second
2594 				 *    part, if it is possible. F.e.
2595 				 *    this approach is mandatory for TUX,
2596 				 *    where splitting is expensive.
2597 				 * 2. Split is accurately. We make this.
2598 				 */
2599 				skb_frag_ref(skb, i);
2600 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2601 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2602 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2603 				skb_shinfo(skb)->nr_frags++;
2604 			}
2605 			k++;
2606 		} else
2607 			skb_shinfo(skb)->nr_frags++;
2608 		pos += size;
2609 	}
2610 	skb_shinfo(skb1)->nr_frags = k;
2611 }
2612 
2613 /**
2614  * skb_split - Split fragmented skb to two parts at length len.
2615  * @skb: the buffer to split
2616  * @skb1: the buffer to receive the second part
2617  * @len: new length for skb
2618  */
2619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2620 {
2621 	int pos = skb_headlen(skb);
2622 
2623 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2624 	if (len < pos)	/* Split line is inside header. */
2625 		skb_split_inside_header(skb, skb1, len, pos);
2626 	else		/* Second chunk has no header, nothing to copy. */
2627 		skb_split_no_header(skb, skb1, len, pos);
2628 }
2629 EXPORT_SYMBOL(skb_split);
2630 
2631 /* Shifting from/to a cloned skb is a no-go.
2632  *
2633  * Caller cannot keep skb_shinfo related pointers past calling here!
2634  */
2635 static int skb_prepare_for_shift(struct sk_buff *skb)
2636 {
2637 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638 }
2639 
2640 /**
2641  * skb_shift - Shifts paged data partially from skb to another
2642  * @tgt: buffer into which tail data gets added
2643  * @skb: buffer from which the paged data comes from
2644  * @shiftlen: shift up to this many bytes
2645  *
2646  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2647  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2648  * It's up to caller to free skb if everything was shifted.
2649  *
2650  * If @tgt runs out of frags, the whole operation is aborted.
2651  *
2652  * Skb cannot include anything else but paged data while tgt is allowed
2653  * to have non-paged data as well.
2654  *
2655  * TODO: full sized shift could be optimized but that would need
2656  * specialized skb free'er to handle frags without up-to-date nr_frags.
2657  */
2658 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2659 {
2660 	int from, to, merge, todo;
2661 	struct skb_frag_struct *fragfrom, *fragto;
2662 
2663 	BUG_ON(shiftlen > skb->len);
2664 
2665 	if (skb_headlen(skb))
2666 		return 0;
2667 
2668 	todo = shiftlen;
2669 	from = 0;
2670 	to = skb_shinfo(tgt)->nr_frags;
2671 	fragfrom = &skb_shinfo(skb)->frags[from];
2672 
2673 	/* Actual merge is delayed until the point when we know we can
2674 	 * commit all, so that we don't have to undo partial changes
2675 	 */
2676 	if (!to ||
2677 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2678 			      fragfrom->page_offset)) {
2679 		merge = -1;
2680 	} else {
2681 		merge = to - 1;
2682 
2683 		todo -= skb_frag_size(fragfrom);
2684 		if (todo < 0) {
2685 			if (skb_prepare_for_shift(skb) ||
2686 			    skb_prepare_for_shift(tgt))
2687 				return 0;
2688 
2689 			/* All previous frag pointers might be stale! */
2690 			fragfrom = &skb_shinfo(skb)->frags[from];
2691 			fragto = &skb_shinfo(tgt)->frags[merge];
2692 
2693 			skb_frag_size_add(fragto, shiftlen);
2694 			skb_frag_size_sub(fragfrom, shiftlen);
2695 			fragfrom->page_offset += shiftlen;
2696 
2697 			goto onlymerged;
2698 		}
2699 
2700 		from++;
2701 	}
2702 
2703 	/* Skip full, not-fitting skb to avoid expensive operations */
2704 	if ((shiftlen == skb->len) &&
2705 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2706 		return 0;
2707 
2708 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2709 		return 0;
2710 
2711 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2712 		if (to == MAX_SKB_FRAGS)
2713 			return 0;
2714 
2715 		fragfrom = &skb_shinfo(skb)->frags[from];
2716 		fragto = &skb_shinfo(tgt)->frags[to];
2717 
2718 		if (todo >= skb_frag_size(fragfrom)) {
2719 			*fragto = *fragfrom;
2720 			todo -= skb_frag_size(fragfrom);
2721 			from++;
2722 			to++;
2723 
2724 		} else {
2725 			__skb_frag_ref(fragfrom);
2726 			fragto->page = fragfrom->page;
2727 			fragto->page_offset = fragfrom->page_offset;
2728 			skb_frag_size_set(fragto, todo);
2729 
2730 			fragfrom->page_offset += todo;
2731 			skb_frag_size_sub(fragfrom, todo);
2732 			todo = 0;
2733 
2734 			to++;
2735 			break;
2736 		}
2737 	}
2738 
2739 	/* Ready to "commit" this state change to tgt */
2740 	skb_shinfo(tgt)->nr_frags = to;
2741 
2742 	if (merge >= 0) {
2743 		fragfrom = &skb_shinfo(skb)->frags[0];
2744 		fragto = &skb_shinfo(tgt)->frags[merge];
2745 
2746 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2747 		__skb_frag_unref(fragfrom);
2748 	}
2749 
2750 	/* Reposition in the original skb */
2751 	to = 0;
2752 	while (from < skb_shinfo(skb)->nr_frags)
2753 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2754 	skb_shinfo(skb)->nr_frags = to;
2755 
2756 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2757 
2758 onlymerged:
2759 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2760 	 * the other hand might need it if it needs to be resent
2761 	 */
2762 	tgt->ip_summed = CHECKSUM_PARTIAL;
2763 	skb->ip_summed = CHECKSUM_PARTIAL;
2764 
2765 	/* Yak, is it really working this way? Some helper please? */
2766 	skb->len -= shiftlen;
2767 	skb->data_len -= shiftlen;
2768 	skb->truesize -= shiftlen;
2769 	tgt->len += shiftlen;
2770 	tgt->data_len += shiftlen;
2771 	tgt->truesize += shiftlen;
2772 
2773 	return shiftlen;
2774 }
2775 
2776 /**
2777  * skb_prepare_seq_read - Prepare a sequential read of skb data
2778  * @skb: the buffer to read
2779  * @from: lower offset of data to be read
2780  * @to: upper offset of data to be read
2781  * @st: state variable
2782  *
2783  * Initializes the specified state variable. Must be called before
2784  * invoking skb_seq_read() for the first time.
2785  */
2786 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2787 			  unsigned int to, struct skb_seq_state *st)
2788 {
2789 	st->lower_offset = from;
2790 	st->upper_offset = to;
2791 	st->root_skb = st->cur_skb = skb;
2792 	st->frag_idx = st->stepped_offset = 0;
2793 	st->frag_data = NULL;
2794 }
2795 EXPORT_SYMBOL(skb_prepare_seq_read);
2796 
2797 /**
2798  * skb_seq_read - Sequentially read skb data
2799  * @consumed: number of bytes consumed by the caller so far
2800  * @data: destination pointer for data to be returned
2801  * @st: state variable
2802  *
2803  * Reads a block of skb data at @consumed relative to the
2804  * lower offset specified to skb_prepare_seq_read(). Assigns
2805  * the head of the data block to @data and returns the length
2806  * of the block or 0 if the end of the skb data or the upper
2807  * offset has been reached.
2808  *
2809  * The caller is not required to consume all of the data
2810  * returned, i.e. @consumed is typically set to the number
2811  * of bytes already consumed and the next call to
2812  * skb_seq_read() will return the remaining part of the block.
2813  *
2814  * Note 1: The size of each block of data returned can be arbitrary,
2815  *       this limitation is the cost for zerocopy sequential
2816  *       reads of potentially non linear data.
2817  *
2818  * Note 2: Fragment lists within fragments are not implemented
2819  *       at the moment, state->root_skb could be replaced with
2820  *       a stack for this purpose.
2821  */
2822 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2823 			  struct skb_seq_state *st)
2824 {
2825 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2826 	skb_frag_t *frag;
2827 
2828 	if (unlikely(abs_offset >= st->upper_offset)) {
2829 		if (st->frag_data) {
2830 			kunmap_atomic(st->frag_data);
2831 			st->frag_data = NULL;
2832 		}
2833 		return 0;
2834 	}
2835 
2836 next_skb:
2837 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2838 
2839 	if (abs_offset < block_limit && !st->frag_data) {
2840 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2841 		return block_limit - abs_offset;
2842 	}
2843 
2844 	if (st->frag_idx == 0 && !st->frag_data)
2845 		st->stepped_offset += skb_headlen(st->cur_skb);
2846 
2847 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2848 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2849 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2850 
2851 		if (abs_offset < block_limit) {
2852 			if (!st->frag_data)
2853 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2854 
2855 			*data = (u8 *) st->frag_data + frag->page_offset +
2856 				(abs_offset - st->stepped_offset);
2857 
2858 			return block_limit - abs_offset;
2859 		}
2860 
2861 		if (st->frag_data) {
2862 			kunmap_atomic(st->frag_data);
2863 			st->frag_data = NULL;
2864 		}
2865 
2866 		st->frag_idx++;
2867 		st->stepped_offset += skb_frag_size(frag);
2868 	}
2869 
2870 	if (st->frag_data) {
2871 		kunmap_atomic(st->frag_data);
2872 		st->frag_data = NULL;
2873 	}
2874 
2875 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2876 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2877 		st->frag_idx = 0;
2878 		goto next_skb;
2879 	} else if (st->cur_skb->next) {
2880 		st->cur_skb = st->cur_skb->next;
2881 		st->frag_idx = 0;
2882 		goto next_skb;
2883 	}
2884 
2885 	return 0;
2886 }
2887 EXPORT_SYMBOL(skb_seq_read);
2888 
2889 /**
2890  * skb_abort_seq_read - Abort a sequential read of skb data
2891  * @st: state variable
2892  *
2893  * Must be called if skb_seq_read() was not called until it
2894  * returned 0.
2895  */
2896 void skb_abort_seq_read(struct skb_seq_state *st)
2897 {
2898 	if (st->frag_data)
2899 		kunmap_atomic(st->frag_data);
2900 }
2901 EXPORT_SYMBOL(skb_abort_seq_read);
2902 
2903 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2904 
2905 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2906 					  struct ts_config *conf,
2907 					  struct ts_state *state)
2908 {
2909 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2910 }
2911 
2912 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2913 {
2914 	skb_abort_seq_read(TS_SKB_CB(state));
2915 }
2916 
2917 /**
2918  * skb_find_text - Find a text pattern in skb data
2919  * @skb: the buffer to look in
2920  * @from: search offset
2921  * @to: search limit
2922  * @config: textsearch configuration
2923  *
2924  * Finds a pattern in the skb data according to the specified
2925  * textsearch configuration. Use textsearch_next() to retrieve
2926  * subsequent occurrences of the pattern. Returns the offset
2927  * to the first occurrence or UINT_MAX if no match was found.
2928  */
2929 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2930 			   unsigned int to, struct ts_config *config)
2931 {
2932 	struct ts_state state;
2933 	unsigned int ret;
2934 
2935 	config->get_next_block = skb_ts_get_next_block;
2936 	config->finish = skb_ts_finish;
2937 
2938 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2939 
2940 	ret = textsearch_find(config, &state);
2941 	return (ret <= to - from ? ret : UINT_MAX);
2942 }
2943 EXPORT_SYMBOL(skb_find_text);
2944 
2945 /**
2946  * skb_append_datato_frags - append the user data to a skb
2947  * @sk: sock  structure
2948  * @skb: skb structure to be appended with user data.
2949  * @getfrag: call back function to be used for getting the user data
2950  * @from: pointer to user message iov
2951  * @length: length of the iov message
2952  *
2953  * Description: This procedure append the user data in the fragment part
2954  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2955  */
2956 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2957 			int (*getfrag)(void *from, char *to, int offset,
2958 					int len, int odd, struct sk_buff *skb),
2959 			void *from, int length)
2960 {
2961 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2962 	int copy;
2963 	int offset = 0;
2964 	int ret;
2965 	struct page_frag *pfrag = &current->task_frag;
2966 
2967 	do {
2968 		/* Return error if we don't have space for new frag */
2969 		if (frg_cnt >= MAX_SKB_FRAGS)
2970 			return -EMSGSIZE;
2971 
2972 		if (!sk_page_frag_refill(sk, pfrag))
2973 			return -ENOMEM;
2974 
2975 		/* copy the user data to page */
2976 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2977 
2978 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2979 			      offset, copy, 0, skb);
2980 		if (ret < 0)
2981 			return -EFAULT;
2982 
2983 		/* copy was successful so update the size parameters */
2984 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2985 				   copy);
2986 		frg_cnt++;
2987 		pfrag->offset += copy;
2988 		get_page(pfrag->page);
2989 
2990 		skb->truesize += copy;
2991 		atomic_add(copy, &sk->sk_wmem_alloc);
2992 		skb->len += copy;
2993 		skb->data_len += copy;
2994 		offset += copy;
2995 		length -= copy;
2996 
2997 	} while (length > 0);
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(skb_append_datato_frags);
3002 
3003 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3004 			 int offset, size_t size)
3005 {
3006 	int i = skb_shinfo(skb)->nr_frags;
3007 
3008 	if (skb_can_coalesce(skb, i, page, offset)) {
3009 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3010 	} else if (i < MAX_SKB_FRAGS) {
3011 		get_page(page);
3012 		skb_fill_page_desc(skb, i, page, offset, size);
3013 	} else {
3014 		return -EMSGSIZE;
3015 	}
3016 
3017 	return 0;
3018 }
3019 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3020 
3021 /**
3022  *	skb_pull_rcsum - pull skb and update receive checksum
3023  *	@skb: buffer to update
3024  *	@len: length of data pulled
3025  *
3026  *	This function performs an skb_pull on the packet and updates
3027  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3028  *	receive path processing instead of skb_pull unless you know
3029  *	that the checksum difference is zero (e.g., a valid IP header)
3030  *	or you are setting ip_summed to CHECKSUM_NONE.
3031  */
3032 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3033 {
3034 	unsigned char *data = skb->data;
3035 
3036 	BUG_ON(len > skb->len);
3037 	__skb_pull(skb, len);
3038 	skb_postpull_rcsum(skb, data, len);
3039 	return skb->data;
3040 }
3041 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3042 
3043 /**
3044  *	skb_segment - Perform protocol segmentation on skb.
3045  *	@head_skb: buffer to segment
3046  *	@features: features for the output path (see dev->features)
3047  *
3048  *	This function performs segmentation on the given skb.  It returns
3049  *	a pointer to the first in a list of new skbs for the segments.
3050  *	In case of error it returns ERR_PTR(err).
3051  */
3052 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3053 			    netdev_features_t features)
3054 {
3055 	struct sk_buff *segs = NULL;
3056 	struct sk_buff *tail = NULL;
3057 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3058 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3059 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3060 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3061 	struct sk_buff *frag_skb = head_skb;
3062 	unsigned int offset = doffset;
3063 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3064 	unsigned int partial_segs = 0;
3065 	unsigned int headroom;
3066 	unsigned int len = head_skb->len;
3067 	__be16 proto;
3068 	bool csum, sg;
3069 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3070 	int err = -ENOMEM;
3071 	int i = 0;
3072 	int pos;
3073 	int dummy;
3074 
3075 	__skb_push(head_skb, doffset);
3076 	proto = skb_network_protocol(head_skb, &dummy);
3077 	if (unlikely(!proto))
3078 		return ERR_PTR(-EINVAL);
3079 
3080 	sg = !!(features & NETIF_F_SG);
3081 	csum = !!can_checksum_protocol(features, proto);
3082 
3083 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3084 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3085 			struct sk_buff *iter;
3086 			unsigned int frag_len;
3087 
3088 			if (!list_skb ||
3089 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3090 				goto normal;
3091 
3092 			/* If we get here then all the required
3093 			 * GSO features except frag_list are supported.
3094 			 * Try to split the SKB to multiple GSO SKBs
3095 			 * with no frag_list.
3096 			 * Currently we can do that only when the buffers don't
3097 			 * have a linear part and all the buffers except
3098 			 * the last are of the same length.
3099 			 */
3100 			frag_len = list_skb->len;
3101 			skb_walk_frags(head_skb, iter) {
3102 				if (frag_len != iter->len && iter->next)
3103 					goto normal;
3104 				if (skb_headlen(iter) && !iter->head_frag)
3105 					goto normal;
3106 
3107 				len -= iter->len;
3108 			}
3109 
3110 			if (len != frag_len)
3111 				goto normal;
3112 		}
3113 
3114 		/* GSO partial only requires that we trim off any excess that
3115 		 * doesn't fit into an MSS sized block, so take care of that
3116 		 * now.
3117 		 */
3118 		partial_segs = len / mss;
3119 		if (partial_segs > 1)
3120 			mss *= partial_segs;
3121 		else
3122 			partial_segs = 0;
3123 	}
3124 
3125 normal:
3126 	headroom = skb_headroom(head_skb);
3127 	pos = skb_headlen(head_skb);
3128 
3129 	do {
3130 		struct sk_buff *nskb;
3131 		skb_frag_t *nskb_frag;
3132 		int hsize;
3133 		int size;
3134 
3135 		if (unlikely(mss == GSO_BY_FRAGS)) {
3136 			len = list_skb->len;
3137 		} else {
3138 			len = head_skb->len - offset;
3139 			if (len > mss)
3140 				len = mss;
3141 		}
3142 
3143 		hsize = skb_headlen(head_skb) - offset;
3144 		if (hsize < 0)
3145 			hsize = 0;
3146 		if (hsize > len || !sg)
3147 			hsize = len;
3148 
3149 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3150 		    (skb_headlen(list_skb) == len || sg)) {
3151 			BUG_ON(skb_headlen(list_skb) > len);
3152 
3153 			i = 0;
3154 			nfrags = skb_shinfo(list_skb)->nr_frags;
3155 			frag = skb_shinfo(list_skb)->frags;
3156 			frag_skb = list_skb;
3157 			pos += skb_headlen(list_skb);
3158 
3159 			while (pos < offset + len) {
3160 				BUG_ON(i >= nfrags);
3161 
3162 				size = skb_frag_size(frag);
3163 				if (pos + size > offset + len)
3164 					break;
3165 
3166 				i++;
3167 				pos += size;
3168 				frag++;
3169 			}
3170 
3171 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3172 			list_skb = list_skb->next;
3173 
3174 			if (unlikely(!nskb))
3175 				goto err;
3176 
3177 			if (unlikely(pskb_trim(nskb, len))) {
3178 				kfree_skb(nskb);
3179 				goto err;
3180 			}
3181 
3182 			hsize = skb_end_offset(nskb);
3183 			if (skb_cow_head(nskb, doffset + headroom)) {
3184 				kfree_skb(nskb);
3185 				goto err;
3186 			}
3187 
3188 			nskb->truesize += skb_end_offset(nskb) - hsize;
3189 			skb_release_head_state(nskb);
3190 			__skb_push(nskb, doffset);
3191 		} else {
3192 			nskb = __alloc_skb(hsize + doffset + headroom,
3193 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3194 					   NUMA_NO_NODE);
3195 
3196 			if (unlikely(!nskb))
3197 				goto err;
3198 
3199 			skb_reserve(nskb, headroom);
3200 			__skb_put(nskb, doffset);
3201 		}
3202 
3203 		if (segs)
3204 			tail->next = nskb;
3205 		else
3206 			segs = nskb;
3207 		tail = nskb;
3208 
3209 		__copy_skb_header(nskb, head_skb);
3210 
3211 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3212 		skb_reset_mac_len(nskb);
3213 
3214 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3215 						 nskb->data - tnl_hlen,
3216 						 doffset + tnl_hlen);
3217 
3218 		if (nskb->len == len + doffset)
3219 			goto perform_csum_check;
3220 
3221 		if (!sg) {
3222 			if (!nskb->remcsum_offload)
3223 				nskb->ip_summed = CHECKSUM_NONE;
3224 			SKB_GSO_CB(nskb)->csum =
3225 				skb_copy_and_csum_bits(head_skb, offset,
3226 						       skb_put(nskb, len),
3227 						       len, 0);
3228 			SKB_GSO_CB(nskb)->csum_start =
3229 				skb_headroom(nskb) + doffset;
3230 			continue;
3231 		}
3232 
3233 		nskb_frag = skb_shinfo(nskb)->frags;
3234 
3235 		skb_copy_from_linear_data_offset(head_skb, offset,
3236 						 skb_put(nskb, hsize), hsize);
3237 
3238 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3239 			SKBTX_SHARED_FRAG;
3240 
3241 		while (pos < offset + len) {
3242 			if (i >= nfrags) {
3243 				BUG_ON(skb_headlen(list_skb));
3244 
3245 				i = 0;
3246 				nfrags = skb_shinfo(list_skb)->nr_frags;
3247 				frag = skb_shinfo(list_skb)->frags;
3248 				frag_skb = list_skb;
3249 
3250 				BUG_ON(!nfrags);
3251 
3252 				list_skb = list_skb->next;
3253 			}
3254 
3255 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3256 				     MAX_SKB_FRAGS)) {
3257 				net_warn_ratelimited(
3258 					"skb_segment: too many frags: %u %u\n",
3259 					pos, mss);
3260 				goto err;
3261 			}
3262 
3263 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3264 				goto err;
3265 
3266 			*nskb_frag = *frag;
3267 			__skb_frag_ref(nskb_frag);
3268 			size = skb_frag_size(nskb_frag);
3269 
3270 			if (pos < offset) {
3271 				nskb_frag->page_offset += offset - pos;
3272 				skb_frag_size_sub(nskb_frag, offset - pos);
3273 			}
3274 
3275 			skb_shinfo(nskb)->nr_frags++;
3276 
3277 			if (pos + size <= offset + len) {
3278 				i++;
3279 				frag++;
3280 				pos += size;
3281 			} else {
3282 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3283 				goto skip_fraglist;
3284 			}
3285 
3286 			nskb_frag++;
3287 		}
3288 
3289 skip_fraglist:
3290 		nskb->data_len = len - hsize;
3291 		nskb->len += nskb->data_len;
3292 		nskb->truesize += nskb->data_len;
3293 
3294 perform_csum_check:
3295 		if (!csum) {
3296 			if (skb_has_shared_frag(nskb)) {
3297 				err = __skb_linearize(nskb);
3298 				if (err)
3299 					goto err;
3300 			}
3301 			if (!nskb->remcsum_offload)
3302 				nskb->ip_summed = CHECKSUM_NONE;
3303 			SKB_GSO_CB(nskb)->csum =
3304 				skb_checksum(nskb, doffset,
3305 					     nskb->len - doffset, 0);
3306 			SKB_GSO_CB(nskb)->csum_start =
3307 				skb_headroom(nskb) + doffset;
3308 		}
3309 	} while ((offset += len) < head_skb->len);
3310 
3311 	/* Some callers want to get the end of the list.
3312 	 * Put it in segs->prev to avoid walking the list.
3313 	 * (see validate_xmit_skb_list() for example)
3314 	 */
3315 	segs->prev = tail;
3316 
3317 	if (partial_segs) {
3318 		struct sk_buff *iter;
3319 		int type = skb_shinfo(head_skb)->gso_type;
3320 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3321 
3322 		/* Update type to add partial and then remove dodgy if set */
3323 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3324 		type &= ~SKB_GSO_DODGY;
3325 
3326 		/* Update GSO info and prepare to start updating headers on
3327 		 * our way back down the stack of protocols.
3328 		 */
3329 		for (iter = segs; iter; iter = iter->next) {
3330 			skb_shinfo(iter)->gso_size = gso_size;
3331 			skb_shinfo(iter)->gso_segs = partial_segs;
3332 			skb_shinfo(iter)->gso_type = type;
3333 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3334 		}
3335 
3336 		if (tail->len - doffset <= gso_size)
3337 			skb_shinfo(tail)->gso_size = 0;
3338 		else if (tail != segs)
3339 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3340 	}
3341 
3342 	/* Following permits correct backpressure, for protocols
3343 	 * using skb_set_owner_w().
3344 	 * Idea is to tranfert ownership from head_skb to last segment.
3345 	 */
3346 	if (head_skb->destructor == sock_wfree) {
3347 		swap(tail->truesize, head_skb->truesize);
3348 		swap(tail->destructor, head_skb->destructor);
3349 		swap(tail->sk, head_skb->sk);
3350 	}
3351 	return segs;
3352 
3353 err:
3354 	kfree_skb_list(segs);
3355 	return ERR_PTR(err);
3356 }
3357 EXPORT_SYMBOL_GPL(skb_segment);
3358 
3359 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3360 {
3361 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3362 	unsigned int offset = skb_gro_offset(skb);
3363 	unsigned int headlen = skb_headlen(skb);
3364 	unsigned int len = skb_gro_len(skb);
3365 	struct sk_buff *lp, *p = *head;
3366 	unsigned int delta_truesize;
3367 
3368 	if (unlikely(p->len + len >= 65536))
3369 		return -E2BIG;
3370 
3371 	lp = NAPI_GRO_CB(p)->last;
3372 	pinfo = skb_shinfo(lp);
3373 
3374 	if (headlen <= offset) {
3375 		skb_frag_t *frag;
3376 		skb_frag_t *frag2;
3377 		int i = skbinfo->nr_frags;
3378 		int nr_frags = pinfo->nr_frags + i;
3379 
3380 		if (nr_frags > MAX_SKB_FRAGS)
3381 			goto merge;
3382 
3383 		offset -= headlen;
3384 		pinfo->nr_frags = nr_frags;
3385 		skbinfo->nr_frags = 0;
3386 
3387 		frag = pinfo->frags + nr_frags;
3388 		frag2 = skbinfo->frags + i;
3389 		do {
3390 			*--frag = *--frag2;
3391 		} while (--i);
3392 
3393 		frag->page_offset += offset;
3394 		skb_frag_size_sub(frag, offset);
3395 
3396 		/* all fragments truesize : remove (head size + sk_buff) */
3397 		delta_truesize = skb->truesize -
3398 				 SKB_TRUESIZE(skb_end_offset(skb));
3399 
3400 		skb->truesize -= skb->data_len;
3401 		skb->len -= skb->data_len;
3402 		skb->data_len = 0;
3403 
3404 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3405 		goto done;
3406 	} else if (skb->head_frag) {
3407 		int nr_frags = pinfo->nr_frags;
3408 		skb_frag_t *frag = pinfo->frags + nr_frags;
3409 		struct page *page = virt_to_head_page(skb->head);
3410 		unsigned int first_size = headlen - offset;
3411 		unsigned int first_offset;
3412 
3413 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3414 			goto merge;
3415 
3416 		first_offset = skb->data -
3417 			       (unsigned char *)page_address(page) +
3418 			       offset;
3419 
3420 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3421 
3422 		frag->page.p	  = page;
3423 		frag->page_offset = first_offset;
3424 		skb_frag_size_set(frag, first_size);
3425 
3426 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3427 		/* We dont need to clear skbinfo->nr_frags here */
3428 
3429 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3430 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3431 		goto done;
3432 	}
3433 
3434 merge:
3435 	delta_truesize = skb->truesize;
3436 	if (offset > headlen) {
3437 		unsigned int eat = offset - headlen;
3438 
3439 		skbinfo->frags[0].page_offset += eat;
3440 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3441 		skb->data_len -= eat;
3442 		skb->len -= eat;
3443 		offset = headlen;
3444 	}
3445 
3446 	__skb_pull(skb, offset);
3447 
3448 	if (NAPI_GRO_CB(p)->last == p)
3449 		skb_shinfo(p)->frag_list = skb;
3450 	else
3451 		NAPI_GRO_CB(p)->last->next = skb;
3452 	NAPI_GRO_CB(p)->last = skb;
3453 	__skb_header_release(skb);
3454 	lp = p;
3455 
3456 done:
3457 	NAPI_GRO_CB(p)->count++;
3458 	p->data_len += len;
3459 	p->truesize += delta_truesize;
3460 	p->len += len;
3461 	if (lp != p) {
3462 		lp->data_len += len;
3463 		lp->truesize += delta_truesize;
3464 		lp->len += len;
3465 	}
3466 	NAPI_GRO_CB(skb)->same_flow = 1;
3467 	return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(skb_gro_receive);
3470 
3471 void __init skb_init(void)
3472 {
3473 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3474 					      sizeof(struct sk_buff),
3475 					      0,
3476 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3477 					      NULL);
3478 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3479 						sizeof(struct sk_buff_fclones),
3480 						0,
3481 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3482 						NULL);
3483 }
3484 
3485 /**
3486  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3487  *	@skb: Socket buffer containing the buffers to be mapped
3488  *	@sg: The scatter-gather list to map into
3489  *	@offset: The offset into the buffer's contents to start mapping
3490  *	@len: Length of buffer space to be mapped
3491  *
3492  *	Fill the specified scatter-gather list with mappings/pointers into a
3493  *	region of the buffer space attached to a socket buffer.
3494  */
3495 static int
3496 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3497 {
3498 	int start = skb_headlen(skb);
3499 	int i, copy = start - offset;
3500 	struct sk_buff *frag_iter;
3501 	int elt = 0;
3502 
3503 	if (copy > 0) {
3504 		if (copy > len)
3505 			copy = len;
3506 		sg_set_buf(sg, skb->data + offset, copy);
3507 		elt++;
3508 		if ((len -= copy) == 0)
3509 			return elt;
3510 		offset += copy;
3511 	}
3512 
3513 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514 		int end;
3515 
3516 		WARN_ON(start > offset + len);
3517 
3518 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3519 		if ((copy = end - offset) > 0) {
3520 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3521 
3522 			if (copy > len)
3523 				copy = len;
3524 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3525 					frag->page_offset+offset-start);
3526 			elt++;
3527 			if (!(len -= copy))
3528 				return elt;
3529 			offset += copy;
3530 		}
3531 		start = end;
3532 	}
3533 
3534 	skb_walk_frags(skb, frag_iter) {
3535 		int end;
3536 
3537 		WARN_ON(start > offset + len);
3538 
3539 		end = start + frag_iter->len;
3540 		if ((copy = end - offset) > 0) {
3541 			if (copy > len)
3542 				copy = len;
3543 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3544 					      copy);
3545 			if ((len -= copy) == 0)
3546 				return elt;
3547 			offset += copy;
3548 		}
3549 		start = end;
3550 	}
3551 	BUG_ON(len);
3552 	return elt;
3553 }
3554 
3555 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3556  * sglist without mark the sg which contain last skb data as the end.
3557  * So the caller can mannipulate sg list as will when padding new data after
3558  * the first call without calling sg_unmark_end to expend sg list.
3559  *
3560  * Scenario to use skb_to_sgvec_nomark:
3561  * 1. sg_init_table
3562  * 2. skb_to_sgvec_nomark(payload1)
3563  * 3. skb_to_sgvec_nomark(payload2)
3564  *
3565  * This is equivalent to:
3566  * 1. sg_init_table
3567  * 2. skb_to_sgvec(payload1)
3568  * 3. sg_unmark_end
3569  * 4. skb_to_sgvec(payload2)
3570  *
3571  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3572  * is more preferable.
3573  */
3574 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3575 			int offset, int len)
3576 {
3577 	return __skb_to_sgvec(skb, sg, offset, len);
3578 }
3579 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3580 
3581 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3582 {
3583 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3584 
3585 	sg_mark_end(&sg[nsg - 1]);
3586 
3587 	return nsg;
3588 }
3589 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3590 
3591 /**
3592  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3593  *	@skb: The socket buffer to check.
3594  *	@tailbits: Amount of trailing space to be added
3595  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3596  *
3597  *	Make sure that the data buffers attached to a socket buffer are
3598  *	writable. If they are not, private copies are made of the data buffers
3599  *	and the socket buffer is set to use these instead.
3600  *
3601  *	If @tailbits is given, make sure that there is space to write @tailbits
3602  *	bytes of data beyond current end of socket buffer.  @trailer will be
3603  *	set to point to the skb in which this space begins.
3604  *
3605  *	The number of scatterlist elements required to completely map the
3606  *	COW'd and extended socket buffer will be returned.
3607  */
3608 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3609 {
3610 	int copyflag;
3611 	int elt;
3612 	struct sk_buff *skb1, **skb_p;
3613 
3614 	/* If skb is cloned or its head is paged, reallocate
3615 	 * head pulling out all the pages (pages are considered not writable
3616 	 * at the moment even if they are anonymous).
3617 	 */
3618 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3619 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3620 		return -ENOMEM;
3621 
3622 	/* Easy case. Most of packets will go this way. */
3623 	if (!skb_has_frag_list(skb)) {
3624 		/* A little of trouble, not enough of space for trailer.
3625 		 * This should not happen, when stack is tuned to generate
3626 		 * good frames. OK, on miss we reallocate and reserve even more
3627 		 * space, 128 bytes is fair. */
3628 
3629 		if (skb_tailroom(skb) < tailbits &&
3630 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3631 			return -ENOMEM;
3632 
3633 		/* Voila! */
3634 		*trailer = skb;
3635 		return 1;
3636 	}
3637 
3638 	/* Misery. We are in troubles, going to mincer fragments... */
3639 
3640 	elt = 1;
3641 	skb_p = &skb_shinfo(skb)->frag_list;
3642 	copyflag = 0;
3643 
3644 	while ((skb1 = *skb_p) != NULL) {
3645 		int ntail = 0;
3646 
3647 		/* The fragment is partially pulled by someone,
3648 		 * this can happen on input. Copy it and everything
3649 		 * after it. */
3650 
3651 		if (skb_shared(skb1))
3652 			copyflag = 1;
3653 
3654 		/* If the skb is the last, worry about trailer. */
3655 
3656 		if (skb1->next == NULL && tailbits) {
3657 			if (skb_shinfo(skb1)->nr_frags ||
3658 			    skb_has_frag_list(skb1) ||
3659 			    skb_tailroom(skb1) < tailbits)
3660 				ntail = tailbits + 128;
3661 		}
3662 
3663 		if (copyflag ||
3664 		    skb_cloned(skb1) ||
3665 		    ntail ||
3666 		    skb_shinfo(skb1)->nr_frags ||
3667 		    skb_has_frag_list(skb1)) {
3668 			struct sk_buff *skb2;
3669 
3670 			/* Fuck, we are miserable poor guys... */
3671 			if (ntail == 0)
3672 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3673 			else
3674 				skb2 = skb_copy_expand(skb1,
3675 						       skb_headroom(skb1),
3676 						       ntail,
3677 						       GFP_ATOMIC);
3678 			if (unlikely(skb2 == NULL))
3679 				return -ENOMEM;
3680 
3681 			if (skb1->sk)
3682 				skb_set_owner_w(skb2, skb1->sk);
3683 
3684 			/* Looking around. Are we still alive?
3685 			 * OK, link new skb, drop old one */
3686 
3687 			skb2->next = skb1->next;
3688 			*skb_p = skb2;
3689 			kfree_skb(skb1);
3690 			skb1 = skb2;
3691 		}
3692 		elt++;
3693 		*trailer = skb1;
3694 		skb_p = &skb1->next;
3695 	}
3696 
3697 	return elt;
3698 }
3699 EXPORT_SYMBOL_GPL(skb_cow_data);
3700 
3701 static void sock_rmem_free(struct sk_buff *skb)
3702 {
3703 	struct sock *sk = skb->sk;
3704 
3705 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3706 }
3707 
3708 static void skb_set_err_queue(struct sk_buff *skb)
3709 {
3710 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3711 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
3712 	 */
3713 	skb->pkt_type = PACKET_OUTGOING;
3714 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
3715 }
3716 
3717 /*
3718  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3719  */
3720 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3721 {
3722 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3723 	    (unsigned int)sk->sk_rcvbuf)
3724 		return -ENOMEM;
3725 
3726 	skb_orphan(skb);
3727 	skb->sk = sk;
3728 	skb->destructor = sock_rmem_free;
3729 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3730 	skb_set_err_queue(skb);
3731 
3732 	/* before exiting rcu section, make sure dst is refcounted */
3733 	skb_dst_force(skb);
3734 
3735 	skb_queue_tail(&sk->sk_error_queue, skb);
3736 	if (!sock_flag(sk, SOCK_DEAD))
3737 		sk->sk_data_ready(sk);
3738 	return 0;
3739 }
3740 EXPORT_SYMBOL(sock_queue_err_skb);
3741 
3742 static bool is_icmp_err_skb(const struct sk_buff *skb)
3743 {
3744 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3745 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3746 }
3747 
3748 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3749 {
3750 	struct sk_buff_head *q = &sk->sk_error_queue;
3751 	struct sk_buff *skb, *skb_next = NULL;
3752 	bool icmp_next = false;
3753 	unsigned long flags;
3754 
3755 	spin_lock_irqsave(&q->lock, flags);
3756 	skb = __skb_dequeue(q);
3757 	if (skb && (skb_next = skb_peek(q))) {
3758 		icmp_next = is_icmp_err_skb(skb_next);
3759 		if (icmp_next)
3760 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
3761 	}
3762 	spin_unlock_irqrestore(&q->lock, flags);
3763 
3764 	if (is_icmp_err_skb(skb) && !icmp_next)
3765 		sk->sk_err = 0;
3766 
3767 	if (skb_next)
3768 		sk->sk_error_report(sk);
3769 
3770 	return skb;
3771 }
3772 EXPORT_SYMBOL(sock_dequeue_err_skb);
3773 
3774 /**
3775  * skb_clone_sk - create clone of skb, and take reference to socket
3776  * @skb: the skb to clone
3777  *
3778  * This function creates a clone of a buffer that holds a reference on
3779  * sk_refcnt.  Buffers created via this function are meant to be
3780  * returned using sock_queue_err_skb, or free via kfree_skb.
3781  *
3782  * When passing buffers allocated with this function to sock_queue_err_skb
3783  * it is necessary to wrap the call with sock_hold/sock_put in order to
3784  * prevent the socket from being released prior to being enqueued on
3785  * the sk_error_queue.
3786  */
3787 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3788 {
3789 	struct sock *sk = skb->sk;
3790 	struct sk_buff *clone;
3791 
3792 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3793 		return NULL;
3794 
3795 	clone = skb_clone(skb, GFP_ATOMIC);
3796 	if (!clone) {
3797 		sock_put(sk);
3798 		return NULL;
3799 	}
3800 
3801 	clone->sk = sk;
3802 	clone->destructor = sock_efree;
3803 
3804 	return clone;
3805 }
3806 EXPORT_SYMBOL(skb_clone_sk);
3807 
3808 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3809 					struct sock *sk,
3810 					int tstype,
3811 					bool opt_stats)
3812 {
3813 	struct sock_exterr_skb *serr;
3814 	int err;
3815 
3816 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3817 
3818 	serr = SKB_EXT_ERR(skb);
3819 	memset(serr, 0, sizeof(*serr));
3820 	serr->ee.ee_errno = ENOMSG;
3821 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3822 	serr->ee.ee_info = tstype;
3823 	serr->opt_stats = opt_stats;
3824 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3825 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3826 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3827 		if (sk->sk_protocol == IPPROTO_TCP &&
3828 		    sk->sk_type == SOCK_STREAM)
3829 			serr->ee.ee_data -= sk->sk_tskey;
3830 	}
3831 
3832 	err = sock_queue_err_skb(sk, skb);
3833 
3834 	if (err)
3835 		kfree_skb(skb);
3836 }
3837 
3838 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3839 {
3840 	bool ret;
3841 
3842 	if (likely(sysctl_tstamp_allow_data || tsonly))
3843 		return true;
3844 
3845 	read_lock_bh(&sk->sk_callback_lock);
3846 	ret = sk->sk_socket && sk->sk_socket->file &&
3847 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3848 	read_unlock_bh(&sk->sk_callback_lock);
3849 	return ret;
3850 }
3851 
3852 void skb_complete_tx_timestamp(struct sk_buff *skb,
3853 			       struct skb_shared_hwtstamps *hwtstamps)
3854 {
3855 	struct sock *sk = skb->sk;
3856 
3857 	if (!skb_may_tx_timestamp(sk, false))
3858 		return;
3859 
3860 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3861 	 * but only if the socket refcount is not zero.
3862 	 */
3863 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3864 		*skb_hwtstamps(skb) = *hwtstamps;
3865 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3866 		sock_put(sk);
3867 	}
3868 }
3869 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3870 
3871 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3872 		     struct skb_shared_hwtstamps *hwtstamps,
3873 		     struct sock *sk, int tstype)
3874 {
3875 	struct sk_buff *skb;
3876 	bool tsonly, opt_stats = false;
3877 
3878 	if (!sk)
3879 		return;
3880 
3881 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3882 	if (!skb_may_tx_timestamp(sk, tsonly))
3883 		return;
3884 
3885 	if (tsonly) {
3886 #ifdef CONFIG_INET
3887 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3888 		    sk->sk_protocol == IPPROTO_TCP &&
3889 		    sk->sk_type == SOCK_STREAM) {
3890 			skb = tcp_get_timestamping_opt_stats(sk);
3891 			opt_stats = true;
3892 		} else
3893 #endif
3894 			skb = alloc_skb(0, GFP_ATOMIC);
3895 	} else {
3896 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3897 	}
3898 	if (!skb)
3899 		return;
3900 
3901 	if (tsonly) {
3902 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3903 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3904 	}
3905 
3906 	if (hwtstamps)
3907 		*skb_hwtstamps(skb) = *hwtstamps;
3908 	else
3909 		skb->tstamp = ktime_get_real();
3910 
3911 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3912 }
3913 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3914 
3915 void skb_tstamp_tx(struct sk_buff *orig_skb,
3916 		   struct skb_shared_hwtstamps *hwtstamps)
3917 {
3918 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3919 			       SCM_TSTAMP_SND);
3920 }
3921 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3922 
3923 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3924 {
3925 	struct sock *sk = skb->sk;
3926 	struct sock_exterr_skb *serr;
3927 	int err = 1;
3928 
3929 	skb->wifi_acked_valid = 1;
3930 	skb->wifi_acked = acked;
3931 
3932 	serr = SKB_EXT_ERR(skb);
3933 	memset(serr, 0, sizeof(*serr));
3934 	serr->ee.ee_errno = ENOMSG;
3935 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3936 
3937 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3938 	 * but only if the socket refcount is not zero.
3939 	 */
3940 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3941 		err = sock_queue_err_skb(sk, skb);
3942 		sock_put(sk);
3943 	}
3944 	if (err)
3945 		kfree_skb(skb);
3946 }
3947 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3948 
3949 /**
3950  * skb_partial_csum_set - set up and verify partial csum values for packet
3951  * @skb: the skb to set
3952  * @start: the number of bytes after skb->data to start checksumming.
3953  * @off: the offset from start to place the checksum.
3954  *
3955  * For untrusted partially-checksummed packets, we need to make sure the values
3956  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3957  *
3958  * This function checks and sets those values and skb->ip_summed: if this
3959  * returns false you should drop the packet.
3960  */
3961 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3962 {
3963 	if (unlikely(start > skb_headlen(skb)) ||
3964 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3965 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3966 				     start, off, skb_headlen(skb));
3967 		return false;
3968 	}
3969 	skb->ip_summed = CHECKSUM_PARTIAL;
3970 	skb->csum_start = skb_headroom(skb) + start;
3971 	skb->csum_offset = off;
3972 	skb_set_transport_header(skb, start);
3973 	return true;
3974 }
3975 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3976 
3977 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3978 			       unsigned int max)
3979 {
3980 	if (skb_headlen(skb) >= len)
3981 		return 0;
3982 
3983 	/* If we need to pullup then pullup to the max, so we
3984 	 * won't need to do it again.
3985 	 */
3986 	if (max > skb->len)
3987 		max = skb->len;
3988 
3989 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3990 		return -ENOMEM;
3991 
3992 	if (skb_headlen(skb) < len)
3993 		return -EPROTO;
3994 
3995 	return 0;
3996 }
3997 
3998 #define MAX_TCP_HDR_LEN (15 * 4)
3999 
4000 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4001 				      typeof(IPPROTO_IP) proto,
4002 				      unsigned int off)
4003 {
4004 	switch (proto) {
4005 		int err;
4006 
4007 	case IPPROTO_TCP:
4008 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4009 					  off + MAX_TCP_HDR_LEN);
4010 		if (!err && !skb_partial_csum_set(skb, off,
4011 						  offsetof(struct tcphdr,
4012 							   check)))
4013 			err = -EPROTO;
4014 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4015 
4016 	case IPPROTO_UDP:
4017 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4018 					  off + sizeof(struct udphdr));
4019 		if (!err && !skb_partial_csum_set(skb, off,
4020 						  offsetof(struct udphdr,
4021 							   check)))
4022 			err = -EPROTO;
4023 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4024 	}
4025 
4026 	return ERR_PTR(-EPROTO);
4027 }
4028 
4029 /* This value should be large enough to cover a tagged ethernet header plus
4030  * maximally sized IP and TCP or UDP headers.
4031  */
4032 #define MAX_IP_HDR_LEN 128
4033 
4034 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4035 {
4036 	unsigned int off;
4037 	bool fragment;
4038 	__sum16 *csum;
4039 	int err;
4040 
4041 	fragment = false;
4042 
4043 	err = skb_maybe_pull_tail(skb,
4044 				  sizeof(struct iphdr),
4045 				  MAX_IP_HDR_LEN);
4046 	if (err < 0)
4047 		goto out;
4048 
4049 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4050 		fragment = true;
4051 
4052 	off = ip_hdrlen(skb);
4053 
4054 	err = -EPROTO;
4055 
4056 	if (fragment)
4057 		goto out;
4058 
4059 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4060 	if (IS_ERR(csum))
4061 		return PTR_ERR(csum);
4062 
4063 	if (recalculate)
4064 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4065 					   ip_hdr(skb)->daddr,
4066 					   skb->len - off,
4067 					   ip_hdr(skb)->protocol, 0);
4068 	err = 0;
4069 
4070 out:
4071 	return err;
4072 }
4073 
4074 /* This value should be large enough to cover a tagged ethernet header plus
4075  * an IPv6 header, all options, and a maximal TCP or UDP header.
4076  */
4077 #define MAX_IPV6_HDR_LEN 256
4078 
4079 #define OPT_HDR(type, skb, off) \
4080 	(type *)(skb_network_header(skb) + (off))
4081 
4082 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4083 {
4084 	int err;
4085 	u8 nexthdr;
4086 	unsigned int off;
4087 	unsigned int len;
4088 	bool fragment;
4089 	bool done;
4090 	__sum16 *csum;
4091 
4092 	fragment = false;
4093 	done = false;
4094 
4095 	off = sizeof(struct ipv6hdr);
4096 
4097 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4098 	if (err < 0)
4099 		goto out;
4100 
4101 	nexthdr = ipv6_hdr(skb)->nexthdr;
4102 
4103 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4104 	while (off <= len && !done) {
4105 		switch (nexthdr) {
4106 		case IPPROTO_DSTOPTS:
4107 		case IPPROTO_HOPOPTS:
4108 		case IPPROTO_ROUTING: {
4109 			struct ipv6_opt_hdr *hp;
4110 
4111 			err = skb_maybe_pull_tail(skb,
4112 						  off +
4113 						  sizeof(struct ipv6_opt_hdr),
4114 						  MAX_IPV6_HDR_LEN);
4115 			if (err < 0)
4116 				goto out;
4117 
4118 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4119 			nexthdr = hp->nexthdr;
4120 			off += ipv6_optlen(hp);
4121 			break;
4122 		}
4123 		case IPPROTO_AH: {
4124 			struct ip_auth_hdr *hp;
4125 
4126 			err = skb_maybe_pull_tail(skb,
4127 						  off +
4128 						  sizeof(struct ip_auth_hdr),
4129 						  MAX_IPV6_HDR_LEN);
4130 			if (err < 0)
4131 				goto out;
4132 
4133 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4134 			nexthdr = hp->nexthdr;
4135 			off += ipv6_authlen(hp);
4136 			break;
4137 		}
4138 		case IPPROTO_FRAGMENT: {
4139 			struct frag_hdr *hp;
4140 
4141 			err = skb_maybe_pull_tail(skb,
4142 						  off +
4143 						  sizeof(struct frag_hdr),
4144 						  MAX_IPV6_HDR_LEN);
4145 			if (err < 0)
4146 				goto out;
4147 
4148 			hp = OPT_HDR(struct frag_hdr, skb, off);
4149 
4150 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4151 				fragment = true;
4152 
4153 			nexthdr = hp->nexthdr;
4154 			off += sizeof(struct frag_hdr);
4155 			break;
4156 		}
4157 		default:
4158 			done = true;
4159 			break;
4160 		}
4161 	}
4162 
4163 	err = -EPROTO;
4164 
4165 	if (!done || fragment)
4166 		goto out;
4167 
4168 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4169 	if (IS_ERR(csum))
4170 		return PTR_ERR(csum);
4171 
4172 	if (recalculate)
4173 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4174 					 &ipv6_hdr(skb)->daddr,
4175 					 skb->len - off, nexthdr, 0);
4176 	err = 0;
4177 
4178 out:
4179 	return err;
4180 }
4181 
4182 /**
4183  * skb_checksum_setup - set up partial checksum offset
4184  * @skb: the skb to set up
4185  * @recalculate: if true the pseudo-header checksum will be recalculated
4186  */
4187 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4188 {
4189 	int err;
4190 
4191 	switch (skb->protocol) {
4192 	case htons(ETH_P_IP):
4193 		err = skb_checksum_setup_ipv4(skb, recalculate);
4194 		break;
4195 
4196 	case htons(ETH_P_IPV6):
4197 		err = skb_checksum_setup_ipv6(skb, recalculate);
4198 		break;
4199 
4200 	default:
4201 		err = -EPROTO;
4202 		break;
4203 	}
4204 
4205 	return err;
4206 }
4207 EXPORT_SYMBOL(skb_checksum_setup);
4208 
4209 /**
4210  * skb_checksum_maybe_trim - maybe trims the given skb
4211  * @skb: the skb to check
4212  * @transport_len: the data length beyond the network header
4213  *
4214  * Checks whether the given skb has data beyond the given transport length.
4215  * If so, returns a cloned skb trimmed to this transport length.
4216  * Otherwise returns the provided skb. Returns NULL in error cases
4217  * (e.g. transport_len exceeds skb length or out-of-memory).
4218  *
4219  * Caller needs to set the skb transport header and free any returned skb if it
4220  * differs from the provided skb.
4221  */
4222 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4223 					       unsigned int transport_len)
4224 {
4225 	struct sk_buff *skb_chk;
4226 	unsigned int len = skb_transport_offset(skb) + transport_len;
4227 	int ret;
4228 
4229 	if (skb->len < len)
4230 		return NULL;
4231 	else if (skb->len == len)
4232 		return skb;
4233 
4234 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4235 	if (!skb_chk)
4236 		return NULL;
4237 
4238 	ret = pskb_trim_rcsum(skb_chk, len);
4239 	if (ret) {
4240 		kfree_skb(skb_chk);
4241 		return NULL;
4242 	}
4243 
4244 	return skb_chk;
4245 }
4246 
4247 /**
4248  * skb_checksum_trimmed - validate checksum of an skb
4249  * @skb: the skb to check
4250  * @transport_len: the data length beyond the network header
4251  * @skb_chkf: checksum function to use
4252  *
4253  * Applies the given checksum function skb_chkf to the provided skb.
4254  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4255  *
4256  * If the skb has data beyond the given transport length, then a
4257  * trimmed & cloned skb is checked and returned.
4258  *
4259  * Caller needs to set the skb transport header and free any returned skb if it
4260  * differs from the provided skb.
4261  */
4262 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4263 				     unsigned int transport_len,
4264 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4265 {
4266 	struct sk_buff *skb_chk;
4267 	unsigned int offset = skb_transport_offset(skb);
4268 	__sum16 ret;
4269 
4270 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4271 	if (!skb_chk)
4272 		goto err;
4273 
4274 	if (!pskb_may_pull(skb_chk, offset))
4275 		goto err;
4276 
4277 	skb_pull_rcsum(skb_chk, offset);
4278 	ret = skb_chkf(skb_chk);
4279 	skb_push_rcsum(skb_chk, offset);
4280 
4281 	if (ret)
4282 		goto err;
4283 
4284 	return skb_chk;
4285 
4286 err:
4287 	if (skb_chk && skb_chk != skb)
4288 		kfree_skb(skb_chk);
4289 
4290 	return NULL;
4291 
4292 }
4293 EXPORT_SYMBOL(skb_checksum_trimmed);
4294 
4295 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4296 {
4297 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4298 			     skb->dev->name);
4299 }
4300 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4301 
4302 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4303 {
4304 	if (head_stolen) {
4305 		skb_release_head_state(skb);
4306 		kmem_cache_free(skbuff_head_cache, skb);
4307 	} else {
4308 		__kfree_skb(skb);
4309 	}
4310 }
4311 EXPORT_SYMBOL(kfree_skb_partial);
4312 
4313 /**
4314  * skb_try_coalesce - try to merge skb to prior one
4315  * @to: prior buffer
4316  * @from: buffer to add
4317  * @fragstolen: pointer to boolean
4318  * @delta_truesize: how much more was allocated than was requested
4319  */
4320 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4321 		      bool *fragstolen, int *delta_truesize)
4322 {
4323 	int i, delta, len = from->len;
4324 
4325 	*fragstolen = false;
4326 
4327 	if (skb_cloned(to))
4328 		return false;
4329 
4330 	if (len <= skb_tailroom(to)) {
4331 		if (len)
4332 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4333 		*delta_truesize = 0;
4334 		return true;
4335 	}
4336 
4337 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4338 		return false;
4339 
4340 	if (skb_headlen(from) != 0) {
4341 		struct page *page;
4342 		unsigned int offset;
4343 
4344 		if (skb_shinfo(to)->nr_frags +
4345 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4346 			return false;
4347 
4348 		if (skb_head_is_locked(from))
4349 			return false;
4350 
4351 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4352 
4353 		page = virt_to_head_page(from->head);
4354 		offset = from->data - (unsigned char *)page_address(page);
4355 
4356 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4357 				   page, offset, skb_headlen(from));
4358 		*fragstolen = true;
4359 	} else {
4360 		if (skb_shinfo(to)->nr_frags +
4361 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4362 			return false;
4363 
4364 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4365 	}
4366 
4367 	WARN_ON_ONCE(delta < len);
4368 
4369 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4370 	       skb_shinfo(from)->frags,
4371 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4372 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4373 
4374 	if (!skb_cloned(from))
4375 		skb_shinfo(from)->nr_frags = 0;
4376 
4377 	/* if the skb is not cloned this does nothing
4378 	 * since we set nr_frags to 0.
4379 	 */
4380 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4381 		skb_frag_ref(from, i);
4382 
4383 	to->truesize += delta;
4384 	to->len += len;
4385 	to->data_len += len;
4386 
4387 	*delta_truesize = delta;
4388 	return true;
4389 }
4390 EXPORT_SYMBOL(skb_try_coalesce);
4391 
4392 /**
4393  * skb_scrub_packet - scrub an skb
4394  *
4395  * @skb: buffer to clean
4396  * @xnet: packet is crossing netns
4397  *
4398  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4399  * into/from a tunnel. Some information have to be cleared during these
4400  * operations.
4401  * skb_scrub_packet can also be used to clean a skb before injecting it in
4402  * another namespace (@xnet == true). We have to clear all information in the
4403  * skb that could impact namespace isolation.
4404  */
4405 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4406 {
4407 	skb->tstamp = 0;
4408 	skb->pkt_type = PACKET_HOST;
4409 	skb->skb_iif = 0;
4410 	skb->ignore_df = 0;
4411 	skb_dst_drop(skb);
4412 	secpath_reset(skb);
4413 	nf_reset(skb);
4414 	nf_reset_trace(skb);
4415 
4416 	if (!xnet)
4417 		return;
4418 
4419 	skb_orphan(skb);
4420 	skb->mark = 0;
4421 }
4422 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4423 
4424 /**
4425  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4426  *
4427  * @skb: GSO skb
4428  *
4429  * skb_gso_transport_seglen is used to determine the real size of the
4430  * individual segments, including Layer4 headers (TCP/UDP).
4431  *
4432  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4433  */
4434 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4435 {
4436 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4437 	unsigned int thlen = 0;
4438 
4439 	if (skb->encapsulation) {
4440 		thlen = skb_inner_transport_header(skb) -
4441 			skb_transport_header(skb);
4442 
4443 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4444 			thlen += inner_tcp_hdrlen(skb);
4445 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4446 		thlen = tcp_hdrlen(skb);
4447 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4448 		thlen = sizeof(struct sctphdr);
4449 	}
4450 	/* UFO sets gso_size to the size of the fragmentation
4451 	 * payload, i.e. the size of the L4 (UDP) header is already
4452 	 * accounted for.
4453 	 */
4454 	return thlen + shinfo->gso_size;
4455 }
4456 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4457 
4458 /**
4459  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4460  *
4461  * @skb: GSO skb
4462  * @mtu: MTU to validate against
4463  *
4464  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4465  * once split.
4466  */
4467 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4468 {
4469 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4470 	const struct sk_buff *iter;
4471 	unsigned int hlen;
4472 
4473 	hlen = skb_gso_network_seglen(skb);
4474 
4475 	if (shinfo->gso_size != GSO_BY_FRAGS)
4476 		return hlen <= mtu;
4477 
4478 	/* Undo this so we can re-use header sizes */
4479 	hlen -= GSO_BY_FRAGS;
4480 
4481 	skb_walk_frags(skb, iter) {
4482 		if (hlen + skb_headlen(iter) > mtu)
4483 			return false;
4484 	}
4485 
4486 	return true;
4487 }
4488 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4489 
4490 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4491 {
4492 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4493 		kfree_skb(skb);
4494 		return NULL;
4495 	}
4496 
4497 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4498 		2 * ETH_ALEN);
4499 	skb->mac_header += VLAN_HLEN;
4500 	return skb;
4501 }
4502 
4503 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4504 {
4505 	struct vlan_hdr *vhdr;
4506 	u16 vlan_tci;
4507 
4508 	if (unlikely(skb_vlan_tag_present(skb))) {
4509 		/* vlan_tci is already set-up so leave this for another time */
4510 		return skb;
4511 	}
4512 
4513 	skb = skb_share_check(skb, GFP_ATOMIC);
4514 	if (unlikely(!skb))
4515 		goto err_free;
4516 
4517 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4518 		goto err_free;
4519 
4520 	vhdr = (struct vlan_hdr *)skb->data;
4521 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4522 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4523 
4524 	skb_pull_rcsum(skb, VLAN_HLEN);
4525 	vlan_set_encap_proto(skb, vhdr);
4526 
4527 	skb = skb_reorder_vlan_header(skb);
4528 	if (unlikely(!skb))
4529 		goto err_free;
4530 
4531 	skb_reset_network_header(skb);
4532 	skb_reset_transport_header(skb);
4533 	skb_reset_mac_len(skb);
4534 
4535 	return skb;
4536 
4537 err_free:
4538 	kfree_skb(skb);
4539 	return NULL;
4540 }
4541 EXPORT_SYMBOL(skb_vlan_untag);
4542 
4543 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4544 {
4545 	if (!pskb_may_pull(skb, write_len))
4546 		return -ENOMEM;
4547 
4548 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4549 		return 0;
4550 
4551 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4552 }
4553 EXPORT_SYMBOL(skb_ensure_writable);
4554 
4555 /* remove VLAN header from packet and update csum accordingly.
4556  * expects a non skb_vlan_tag_present skb with a vlan tag payload
4557  */
4558 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4559 {
4560 	struct vlan_hdr *vhdr;
4561 	int offset = skb->data - skb_mac_header(skb);
4562 	int err;
4563 
4564 	if (WARN_ONCE(offset,
4565 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4566 		      offset)) {
4567 		return -EINVAL;
4568 	}
4569 
4570 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4571 	if (unlikely(err))
4572 		return err;
4573 
4574 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4575 
4576 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4577 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4578 
4579 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4580 	__skb_pull(skb, VLAN_HLEN);
4581 
4582 	vlan_set_encap_proto(skb, vhdr);
4583 	skb->mac_header += VLAN_HLEN;
4584 
4585 	if (skb_network_offset(skb) < ETH_HLEN)
4586 		skb_set_network_header(skb, ETH_HLEN);
4587 
4588 	skb_reset_mac_len(skb);
4589 
4590 	return err;
4591 }
4592 EXPORT_SYMBOL(__skb_vlan_pop);
4593 
4594 /* Pop a vlan tag either from hwaccel or from payload.
4595  * Expects skb->data at mac header.
4596  */
4597 int skb_vlan_pop(struct sk_buff *skb)
4598 {
4599 	u16 vlan_tci;
4600 	__be16 vlan_proto;
4601 	int err;
4602 
4603 	if (likely(skb_vlan_tag_present(skb))) {
4604 		skb->vlan_tci = 0;
4605 	} else {
4606 		if (unlikely(!eth_type_vlan(skb->protocol)))
4607 			return 0;
4608 
4609 		err = __skb_vlan_pop(skb, &vlan_tci);
4610 		if (err)
4611 			return err;
4612 	}
4613 	/* move next vlan tag to hw accel tag */
4614 	if (likely(!eth_type_vlan(skb->protocol)))
4615 		return 0;
4616 
4617 	vlan_proto = skb->protocol;
4618 	err = __skb_vlan_pop(skb, &vlan_tci);
4619 	if (unlikely(err))
4620 		return err;
4621 
4622 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4623 	return 0;
4624 }
4625 EXPORT_SYMBOL(skb_vlan_pop);
4626 
4627 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4628  * Expects skb->data at mac header.
4629  */
4630 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4631 {
4632 	if (skb_vlan_tag_present(skb)) {
4633 		int offset = skb->data - skb_mac_header(skb);
4634 		int err;
4635 
4636 		if (WARN_ONCE(offset,
4637 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4638 			      offset)) {
4639 			return -EINVAL;
4640 		}
4641 
4642 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4643 					skb_vlan_tag_get(skb));
4644 		if (err)
4645 			return err;
4646 
4647 		skb->protocol = skb->vlan_proto;
4648 		skb->mac_len += VLAN_HLEN;
4649 
4650 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4651 	}
4652 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4653 	return 0;
4654 }
4655 EXPORT_SYMBOL(skb_vlan_push);
4656 
4657 /**
4658  * alloc_skb_with_frags - allocate skb with page frags
4659  *
4660  * @header_len: size of linear part
4661  * @data_len: needed length in frags
4662  * @max_page_order: max page order desired.
4663  * @errcode: pointer to error code if any
4664  * @gfp_mask: allocation mask
4665  *
4666  * This can be used to allocate a paged skb, given a maximal order for frags.
4667  */
4668 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4669 				     unsigned long data_len,
4670 				     int max_page_order,
4671 				     int *errcode,
4672 				     gfp_t gfp_mask)
4673 {
4674 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4675 	unsigned long chunk;
4676 	struct sk_buff *skb;
4677 	struct page *page;
4678 	gfp_t gfp_head;
4679 	int i;
4680 
4681 	*errcode = -EMSGSIZE;
4682 	/* Note this test could be relaxed, if we succeed to allocate
4683 	 * high order pages...
4684 	 */
4685 	if (npages > MAX_SKB_FRAGS)
4686 		return NULL;
4687 
4688 	gfp_head = gfp_mask;
4689 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4690 		gfp_head |= __GFP_REPEAT;
4691 
4692 	*errcode = -ENOBUFS;
4693 	skb = alloc_skb(header_len, gfp_head);
4694 	if (!skb)
4695 		return NULL;
4696 
4697 	skb->truesize += npages << PAGE_SHIFT;
4698 
4699 	for (i = 0; npages > 0; i++) {
4700 		int order = max_page_order;
4701 
4702 		while (order) {
4703 			if (npages >= 1 << order) {
4704 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4705 						   __GFP_COMP |
4706 						   __GFP_NOWARN |
4707 						   __GFP_NORETRY,
4708 						   order);
4709 				if (page)
4710 					goto fill_page;
4711 				/* Do not retry other high order allocations */
4712 				order = 1;
4713 				max_page_order = 0;
4714 			}
4715 			order--;
4716 		}
4717 		page = alloc_page(gfp_mask);
4718 		if (!page)
4719 			goto failure;
4720 fill_page:
4721 		chunk = min_t(unsigned long, data_len,
4722 			      PAGE_SIZE << order);
4723 		skb_fill_page_desc(skb, i, page, 0, chunk);
4724 		data_len -= chunk;
4725 		npages -= 1 << order;
4726 	}
4727 	return skb;
4728 
4729 failure:
4730 	kfree_skb(skb);
4731 	return NULL;
4732 }
4733 EXPORT_SYMBOL(alloc_skb_with_frags);
4734 
4735 /* carve out the first off bytes from skb when off < headlen */
4736 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4737 				    const int headlen, gfp_t gfp_mask)
4738 {
4739 	int i;
4740 	int size = skb_end_offset(skb);
4741 	int new_hlen = headlen - off;
4742 	u8 *data;
4743 
4744 	size = SKB_DATA_ALIGN(size);
4745 
4746 	if (skb_pfmemalloc(skb))
4747 		gfp_mask |= __GFP_MEMALLOC;
4748 	data = kmalloc_reserve(size +
4749 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4750 			       gfp_mask, NUMA_NO_NODE, NULL);
4751 	if (!data)
4752 		return -ENOMEM;
4753 
4754 	size = SKB_WITH_OVERHEAD(ksize(data));
4755 
4756 	/* Copy real data, and all frags */
4757 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4758 	skb->len -= off;
4759 
4760 	memcpy((struct skb_shared_info *)(data + size),
4761 	       skb_shinfo(skb),
4762 	       offsetof(struct skb_shared_info,
4763 			frags[skb_shinfo(skb)->nr_frags]));
4764 	if (skb_cloned(skb)) {
4765 		/* drop the old head gracefully */
4766 		if (skb_orphan_frags(skb, gfp_mask)) {
4767 			kfree(data);
4768 			return -ENOMEM;
4769 		}
4770 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4771 			skb_frag_ref(skb, i);
4772 		if (skb_has_frag_list(skb))
4773 			skb_clone_fraglist(skb);
4774 		skb_release_data(skb);
4775 	} else {
4776 		/* we can reuse existing recount- all we did was
4777 		 * relocate values
4778 		 */
4779 		skb_free_head(skb);
4780 	}
4781 
4782 	skb->head = data;
4783 	skb->data = data;
4784 	skb->head_frag = 0;
4785 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4786 	skb->end = size;
4787 #else
4788 	skb->end = skb->head + size;
4789 #endif
4790 	skb_set_tail_pointer(skb, skb_headlen(skb));
4791 	skb_headers_offset_update(skb, 0);
4792 	skb->cloned = 0;
4793 	skb->hdr_len = 0;
4794 	skb->nohdr = 0;
4795 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4796 
4797 	return 0;
4798 }
4799 
4800 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4801 
4802 /* carve out the first eat bytes from skb's frag_list. May recurse into
4803  * pskb_carve()
4804  */
4805 static int pskb_carve_frag_list(struct sk_buff *skb,
4806 				struct skb_shared_info *shinfo, int eat,
4807 				gfp_t gfp_mask)
4808 {
4809 	struct sk_buff *list = shinfo->frag_list;
4810 	struct sk_buff *clone = NULL;
4811 	struct sk_buff *insp = NULL;
4812 
4813 	do {
4814 		if (!list) {
4815 			pr_err("Not enough bytes to eat. Want %d\n", eat);
4816 			return -EFAULT;
4817 		}
4818 		if (list->len <= eat) {
4819 			/* Eaten as whole. */
4820 			eat -= list->len;
4821 			list = list->next;
4822 			insp = list;
4823 		} else {
4824 			/* Eaten partially. */
4825 			if (skb_shared(list)) {
4826 				clone = skb_clone(list, gfp_mask);
4827 				if (!clone)
4828 					return -ENOMEM;
4829 				insp = list->next;
4830 				list = clone;
4831 			} else {
4832 				/* This may be pulled without problems. */
4833 				insp = list;
4834 			}
4835 			if (pskb_carve(list, eat, gfp_mask) < 0) {
4836 				kfree_skb(clone);
4837 				return -ENOMEM;
4838 			}
4839 			break;
4840 		}
4841 	} while (eat);
4842 
4843 	/* Free pulled out fragments. */
4844 	while ((list = shinfo->frag_list) != insp) {
4845 		shinfo->frag_list = list->next;
4846 		kfree_skb(list);
4847 	}
4848 	/* And insert new clone at head. */
4849 	if (clone) {
4850 		clone->next = list;
4851 		shinfo->frag_list = clone;
4852 	}
4853 	return 0;
4854 }
4855 
4856 /* carve off first len bytes from skb. Split line (off) is in the
4857  * non-linear part of skb
4858  */
4859 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4860 				       int pos, gfp_t gfp_mask)
4861 {
4862 	int i, k = 0;
4863 	int size = skb_end_offset(skb);
4864 	u8 *data;
4865 	const int nfrags = skb_shinfo(skb)->nr_frags;
4866 	struct skb_shared_info *shinfo;
4867 
4868 	size = SKB_DATA_ALIGN(size);
4869 
4870 	if (skb_pfmemalloc(skb))
4871 		gfp_mask |= __GFP_MEMALLOC;
4872 	data = kmalloc_reserve(size +
4873 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4874 			       gfp_mask, NUMA_NO_NODE, NULL);
4875 	if (!data)
4876 		return -ENOMEM;
4877 
4878 	size = SKB_WITH_OVERHEAD(ksize(data));
4879 
4880 	memcpy((struct skb_shared_info *)(data + size),
4881 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
4882 					 frags[skb_shinfo(skb)->nr_frags]));
4883 	if (skb_orphan_frags(skb, gfp_mask)) {
4884 		kfree(data);
4885 		return -ENOMEM;
4886 	}
4887 	shinfo = (struct skb_shared_info *)(data + size);
4888 	for (i = 0; i < nfrags; i++) {
4889 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4890 
4891 		if (pos + fsize > off) {
4892 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4893 
4894 			if (pos < off) {
4895 				/* Split frag.
4896 				 * We have two variants in this case:
4897 				 * 1. Move all the frag to the second
4898 				 *    part, if it is possible. F.e.
4899 				 *    this approach is mandatory for TUX,
4900 				 *    where splitting is expensive.
4901 				 * 2. Split is accurately. We make this.
4902 				 */
4903 				shinfo->frags[0].page_offset += off - pos;
4904 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
4905 			}
4906 			skb_frag_ref(skb, i);
4907 			k++;
4908 		}
4909 		pos += fsize;
4910 	}
4911 	shinfo->nr_frags = k;
4912 	if (skb_has_frag_list(skb))
4913 		skb_clone_fraglist(skb);
4914 
4915 	if (k == 0) {
4916 		/* split line is in frag list */
4917 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4918 	}
4919 	skb_release_data(skb);
4920 
4921 	skb->head = data;
4922 	skb->head_frag = 0;
4923 	skb->data = data;
4924 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4925 	skb->end = size;
4926 #else
4927 	skb->end = skb->head + size;
4928 #endif
4929 	skb_reset_tail_pointer(skb);
4930 	skb_headers_offset_update(skb, 0);
4931 	skb->cloned   = 0;
4932 	skb->hdr_len  = 0;
4933 	skb->nohdr    = 0;
4934 	skb->len -= off;
4935 	skb->data_len = skb->len;
4936 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4937 	return 0;
4938 }
4939 
4940 /* remove len bytes from the beginning of the skb */
4941 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4942 {
4943 	int headlen = skb_headlen(skb);
4944 
4945 	if (len < headlen)
4946 		return pskb_carve_inside_header(skb, len, headlen, gfp);
4947 	else
4948 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4949 }
4950 
4951 /* Extract to_copy bytes starting at off from skb, and return this in
4952  * a new skb
4953  */
4954 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4955 			     int to_copy, gfp_t gfp)
4956 {
4957 	struct sk_buff  *clone = skb_clone(skb, gfp);
4958 
4959 	if (!clone)
4960 		return NULL;
4961 
4962 	if (pskb_carve(clone, off, gfp) < 0 ||
4963 	    pskb_trim(clone, to_copy)) {
4964 		kfree_skb(clone);
4965 		return NULL;
4966 	}
4967 	return clone;
4968 }
4969 EXPORT_SYMBOL(pskb_extract);
4970 
4971 /**
4972  * skb_condense - try to get rid of fragments/frag_list if possible
4973  * @skb: buffer
4974  *
4975  * Can be used to save memory before skb is added to a busy queue.
4976  * If packet has bytes in frags and enough tail room in skb->head,
4977  * pull all of them, so that we can free the frags right now and adjust
4978  * truesize.
4979  * Notes:
4980  *	We do not reallocate skb->head thus can not fail.
4981  *	Caller must re-evaluate skb->truesize if needed.
4982  */
4983 void skb_condense(struct sk_buff *skb)
4984 {
4985 	if (skb->data_len) {
4986 		if (skb->data_len > skb->end - skb->tail ||
4987 		    skb_cloned(skb))
4988 			return;
4989 
4990 		/* Nice, we can free page frag(s) right now */
4991 		__pskb_pull_tail(skb, skb->data_len);
4992 	}
4993 	/* At this point, skb->truesize might be over estimated,
4994 	 * because skb had a fragment, and fragments do not tell
4995 	 * their truesize.
4996 	 * When we pulled its content into skb->head, fragment
4997 	 * was freed, but __pskb_pull_tail() could not possibly
4998 	 * adjust skb->truesize, not knowing the frag truesize.
4999 	 */
5000 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5001 }
5002