xref: /openbmc/linux/net/core/skbuff.c (revision e8e0929d)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70 
71 #include "kmap_skb.h"
72 
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 				  struct pipe_buffer *buf)
78 {
79 	put_page(buf->page);
80 }
81 
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 				struct pipe_buffer *buf)
84 {
85 	get_page(buf->page);
86 }
87 
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 			       struct pipe_buffer *buf)
90 {
91 	return 1;
92 }
93 
94 
95 /* Pipe buffer operations for a socket. */
96 static struct pipe_buf_operations sock_pipe_buf_ops = {
97 	.can_merge = 0,
98 	.map = generic_pipe_buf_map,
99 	.unmap = generic_pipe_buf_unmap,
100 	.confirm = generic_pipe_buf_confirm,
101 	.release = sock_pipe_buf_release,
102 	.steal = sock_pipe_buf_steal,
103 	.get = sock_pipe_buf_get,
104 };
105 
106 /*
107  *	Keep out-of-line to prevent kernel bloat.
108  *	__builtin_return_address is not used because it is not always
109  *	reliable.
110  */
111 
112 /**
113  *	skb_over_panic	- 	private function
114  *	@skb: buffer
115  *	@sz: size
116  *	@here: address
117  *
118  *	Out of line support code for skb_put(). Not user callable.
119  */
120 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
124 	       here, skb->len, sz, skb->head, skb->data,
125 	       (unsigned long)skb->tail, (unsigned long)skb->end,
126 	       skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 EXPORT_SYMBOL(skb_over_panic);
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 EXPORT_SYMBOL(skb_under_panic);
150 
151 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
152  *	'private' fields and also do memory statistics to find all the
153  *	[BEEP] leaks.
154  *
155  */
156 
157 /**
158  *	__alloc_skb	-	allocate a network buffer
159  *	@size: size to allocate
160  *	@gfp_mask: allocation mask
161  *	@fclone: allocate from fclone cache instead of head cache
162  *		and allocate a cloned (child) skb
163  *	@node: numa node to allocate memory on
164  *
165  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
166  *	tail room of size bytes. The object has a reference count of one.
167  *	The return is the buffer. On a failure the return is %NULL.
168  *
169  *	Buffers may only be allocated from interrupts using a @gfp_mask of
170  *	%GFP_ATOMIC.
171  */
172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 			    int fclone, int node)
174 {
175 	struct kmem_cache *cache;
176 	struct skb_shared_info *shinfo;
177 	struct sk_buff *skb;
178 	u8 *data;
179 
180 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 
182 	/* Get the HEAD */
183 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 	if (!skb)
185 		goto out;
186 
187 	size = SKB_DATA_ALIGN(size);
188 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 			gfp_mask, node);
190 	if (!data)
191 		goto nodata;
192 
193 	/*
194 	 * Only clear those fields we need to clear, not those that we will
195 	 * actually initialise below. Hence, don't put any more fields after
196 	 * the tail pointer in struct sk_buff!
197 	 */
198 	memset(skb, 0, offsetof(struct sk_buff, tail));
199 	skb->truesize = size + sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 	kmemcheck_annotate_bitfield(skb, flags1);
206 	kmemcheck_annotate_bitfield(skb, flags2);
207 #ifdef NET_SKBUFF_DATA_USES_OFFSET
208 	skb->mac_header = ~0U;
209 #endif
210 
211 	/* make sure we initialize shinfo sequentially */
212 	shinfo = skb_shinfo(skb);
213 	atomic_set(&shinfo->dataref, 1);
214 	shinfo->nr_frags  = 0;
215 	shinfo->gso_size = 0;
216 	shinfo->gso_segs = 0;
217 	shinfo->gso_type = 0;
218 	shinfo->ip6_frag_id = 0;
219 	shinfo->tx_flags.flags = 0;
220 	skb_frag_list_init(skb);
221 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
222 
223 	if (fclone) {
224 		struct sk_buff *child = skb + 1;
225 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 
227 		kmemcheck_annotate_bitfield(child, flags1);
228 		kmemcheck_annotate_bitfield(child, flags2);
229 		skb->fclone = SKB_FCLONE_ORIG;
230 		atomic_set(fclone_ref, 1);
231 
232 		child->fclone = SKB_FCLONE_UNAVAILABLE;
233 	}
234 out:
235 	return skb;
236 nodata:
237 	kmem_cache_free(cache, skb);
238 	skb = NULL;
239 	goto out;
240 }
241 EXPORT_SYMBOL(__alloc_skb);
242 
243 /**
244  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
245  *	@dev: network device to receive on
246  *	@length: length to allocate
247  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
248  *
249  *	Allocate a new &sk_buff and assign it a usage count of one. The
250  *	buffer has unspecified headroom built in. Users should allocate
251  *	the headroom they think they need without accounting for the
252  *	built in space. The built in space is used for optimisations.
253  *
254  *	%NULL is returned if there is no free memory.
255  */
256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
257 		unsigned int length, gfp_t gfp_mask)
258 {
259 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
260 	struct sk_buff *skb;
261 
262 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
263 	if (likely(skb)) {
264 		skb_reserve(skb, NET_SKB_PAD);
265 		skb->dev = dev;
266 	}
267 	return skb;
268 }
269 EXPORT_SYMBOL(__netdev_alloc_skb);
270 
271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
272 {
273 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
274 	struct page *page;
275 
276 	page = alloc_pages_node(node, gfp_mask, 0);
277 	return page;
278 }
279 EXPORT_SYMBOL(__netdev_alloc_page);
280 
281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
282 		int size)
283 {
284 	skb_fill_page_desc(skb, i, page, off, size);
285 	skb->len += size;
286 	skb->data_len += size;
287 	skb->truesize += size;
288 }
289 EXPORT_SYMBOL(skb_add_rx_frag);
290 
291 /**
292  *	dev_alloc_skb - allocate an skbuff for receiving
293  *	@length: length to allocate
294  *
295  *	Allocate a new &sk_buff and assign it a usage count of one. The
296  *	buffer has unspecified headroom built in. Users should allocate
297  *	the headroom they think they need without accounting for the
298  *	built in space. The built in space is used for optimisations.
299  *
300  *	%NULL is returned if there is no free memory. Although this function
301  *	allocates memory it can be called from an interrupt.
302  */
303 struct sk_buff *dev_alloc_skb(unsigned int length)
304 {
305 	/*
306 	 * There is more code here than it seems:
307 	 * __dev_alloc_skb is an inline
308 	 */
309 	return __dev_alloc_skb(length, GFP_ATOMIC);
310 }
311 EXPORT_SYMBOL(dev_alloc_skb);
312 
313 static void skb_drop_list(struct sk_buff **listp)
314 {
315 	struct sk_buff *list = *listp;
316 
317 	*listp = NULL;
318 
319 	do {
320 		struct sk_buff *this = list;
321 		list = list->next;
322 		kfree_skb(this);
323 	} while (list);
324 }
325 
326 static inline void skb_drop_fraglist(struct sk_buff *skb)
327 {
328 	skb_drop_list(&skb_shinfo(skb)->frag_list);
329 }
330 
331 static void skb_clone_fraglist(struct sk_buff *skb)
332 {
333 	struct sk_buff *list;
334 
335 	skb_walk_frags(skb, list)
336 		skb_get(list);
337 }
338 
339 static void skb_release_data(struct sk_buff *skb)
340 {
341 	if (!skb->cloned ||
342 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
343 			       &skb_shinfo(skb)->dataref)) {
344 		if (skb_shinfo(skb)->nr_frags) {
345 			int i;
346 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
347 				put_page(skb_shinfo(skb)->frags[i].page);
348 		}
349 
350 		if (skb_has_frags(skb))
351 			skb_drop_fraglist(skb);
352 
353 		kfree(skb->head);
354 	}
355 }
356 
357 /*
358  *	Free an skbuff by memory without cleaning the state.
359  */
360 static void kfree_skbmem(struct sk_buff *skb)
361 {
362 	struct sk_buff *other;
363 	atomic_t *fclone_ref;
364 
365 	switch (skb->fclone) {
366 	case SKB_FCLONE_UNAVAILABLE:
367 		kmem_cache_free(skbuff_head_cache, skb);
368 		break;
369 
370 	case SKB_FCLONE_ORIG:
371 		fclone_ref = (atomic_t *) (skb + 2);
372 		if (atomic_dec_and_test(fclone_ref))
373 			kmem_cache_free(skbuff_fclone_cache, skb);
374 		break;
375 
376 	case SKB_FCLONE_CLONE:
377 		fclone_ref = (atomic_t *) (skb + 1);
378 		other = skb - 1;
379 
380 		/* The clone portion is available for
381 		 * fast-cloning again.
382 		 */
383 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
384 
385 		if (atomic_dec_and_test(fclone_ref))
386 			kmem_cache_free(skbuff_fclone_cache, other);
387 		break;
388 	}
389 }
390 
391 static void skb_release_head_state(struct sk_buff *skb)
392 {
393 	skb_dst_drop(skb);
394 #ifdef CONFIG_XFRM
395 	secpath_put(skb->sp);
396 #endif
397 	if (skb->destructor) {
398 		WARN_ON(in_irq());
399 		skb->destructor(skb);
400 	}
401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
402 	nf_conntrack_put(skb->nfct);
403 	nf_conntrack_put_reasm(skb->nfct_reasm);
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 	nf_bridge_put(skb->nf_bridge);
407 #endif
408 /* XXX: IS this still necessary? - JHS */
409 #ifdef CONFIG_NET_SCHED
410 	skb->tc_index = 0;
411 #ifdef CONFIG_NET_CLS_ACT
412 	skb->tc_verd = 0;
413 #endif
414 #endif
415 }
416 
417 /* Free everything but the sk_buff shell. */
418 static void skb_release_all(struct sk_buff *skb)
419 {
420 	skb_release_head_state(skb);
421 	skb_release_data(skb);
422 }
423 
424 /**
425  *	__kfree_skb - private function
426  *	@skb: buffer
427  *
428  *	Free an sk_buff. Release anything attached to the buffer.
429  *	Clean the state. This is an internal helper function. Users should
430  *	always call kfree_skb
431  */
432 
433 void __kfree_skb(struct sk_buff *skb)
434 {
435 	skb_release_all(skb);
436 	kfree_skbmem(skb);
437 }
438 EXPORT_SYMBOL(__kfree_skb);
439 
440 /**
441  *	kfree_skb - free an sk_buff
442  *	@skb: buffer to free
443  *
444  *	Drop a reference to the buffer and free it if the usage count has
445  *	hit zero.
446  */
447 void kfree_skb(struct sk_buff *skb)
448 {
449 	if (unlikely(!skb))
450 		return;
451 	if (likely(atomic_read(&skb->users) == 1))
452 		smp_rmb();
453 	else if (likely(!atomic_dec_and_test(&skb->users)))
454 		return;
455 	trace_kfree_skb(skb, __builtin_return_address(0));
456 	__kfree_skb(skb);
457 }
458 EXPORT_SYMBOL(kfree_skb);
459 
460 /**
461  *	consume_skb - free an skbuff
462  *	@skb: buffer to free
463  *
464  *	Drop a ref to the buffer and free it if the usage count has hit zero
465  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
466  *	is being dropped after a failure and notes that
467  */
468 void consume_skb(struct sk_buff *skb)
469 {
470 	if (unlikely(!skb))
471 		return;
472 	if (likely(atomic_read(&skb->users) == 1))
473 		smp_rmb();
474 	else if (likely(!atomic_dec_and_test(&skb->users)))
475 		return;
476 	__kfree_skb(skb);
477 }
478 EXPORT_SYMBOL(consume_skb);
479 
480 /**
481  *	skb_recycle_check - check if skb can be reused for receive
482  *	@skb: buffer
483  *	@skb_size: minimum receive buffer size
484  *
485  *	Checks that the skb passed in is not shared or cloned, and
486  *	that it is linear and its head portion at least as large as
487  *	skb_size so that it can be recycled as a receive buffer.
488  *	If these conditions are met, this function does any necessary
489  *	reference count dropping and cleans up the skbuff as if it
490  *	just came from __alloc_skb().
491  */
492 int skb_recycle_check(struct sk_buff *skb, int skb_size)
493 {
494 	struct skb_shared_info *shinfo;
495 
496 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
497 		return 0;
498 
499 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
500 	if (skb_end_pointer(skb) - skb->head < skb_size)
501 		return 0;
502 
503 	if (skb_shared(skb) || skb_cloned(skb))
504 		return 0;
505 
506 	skb_release_head_state(skb);
507 	shinfo = skb_shinfo(skb);
508 	atomic_set(&shinfo->dataref, 1);
509 	shinfo->nr_frags = 0;
510 	shinfo->gso_size = 0;
511 	shinfo->gso_segs = 0;
512 	shinfo->gso_type = 0;
513 	shinfo->ip6_frag_id = 0;
514 	shinfo->tx_flags.flags = 0;
515 	skb_frag_list_init(skb);
516 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
517 
518 	memset(skb, 0, offsetof(struct sk_buff, tail));
519 	skb->data = skb->head + NET_SKB_PAD;
520 	skb_reset_tail_pointer(skb);
521 
522 	return 1;
523 }
524 EXPORT_SYMBOL(skb_recycle_check);
525 
526 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
527 {
528 	new->tstamp		= old->tstamp;
529 	new->dev		= old->dev;
530 	new->transport_header	= old->transport_header;
531 	new->network_header	= old->network_header;
532 	new->mac_header		= old->mac_header;
533 	skb_dst_set(new, dst_clone(skb_dst(old)));
534 #ifdef CONFIG_XFRM
535 	new->sp			= secpath_get(old->sp);
536 #endif
537 	memcpy(new->cb, old->cb, sizeof(old->cb));
538 	new->csum		= old->csum;
539 	new->local_df		= old->local_df;
540 	new->pkt_type		= old->pkt_type;
541 	new->ip_summed		= old->ip_summed;
542 	skb_copy_queue_mapping(new, old);
543 	new->priority		= old->priority;
544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
545 	new->ipvs_property	= old->ipvs_property;
546 #endif
547 	new->protocol		= old->protocol;
548 	new->mark		= old->mark;
549 	new->iif		= old->iif;
550 	__nf_copy(new, old);
551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
552     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
553 	new->nf_trace		= old->nf_trace;
554 #endif
555 #ifdef CONFIG_NET_SCHED
556 	new->tc_index		= old->tc_index;
557 #ifdef CONFIG_NET_CLS_ACT
558 	new->tc_verd		= old->tc_verd;
559 #endif
560 #endif
561 	new->vlan_tci		= old->vlan_tci;
562 
563 	skb_copy_secmark(new, old);
564 }
565 
566 /*
567  * You should not add any new code to this function.  Add it to
568  * __copy_skb_header above instead.
569  */
570 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
571 {
572 #define C(x) n->x = skb->x
573 
574 	n->next = n->prev = NULL;
575 	n->sk = NULL;
576 	__copy_skb_header(n, skb);
577 
578 	C(len);
579 	C(data_len);
580 	C(mac_len);
581 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
582 	n->cloned = 1;
583 	n->nohdr = 0;
584 	n->destructor = NULL;
585 	C(tail);
586 	C(end);
587 	C(head);
588 	C(data);
589 	C(truesize);
590 	atomic_set(&n->users, 1);
591 
592 	atomic_inc(&(skb_shinfo(skb)->dataref));
593 	skb->cloned = 1;
594 
595 	return n;
596 #undef C
597 }
598 
599 /**
600  *	skb_morph	-	morph one skb into another
601  *	@dst: the skb to receive the contents
602  *	@src: the skb to supply the contents
603  *
604  *	This is identical to skb_clone except that the target skb is
605  *	supplied by the user.
606  *
607  *	The target skb is returned upon exit.
608  */
609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
610 {
611 	skb_release_all(dst);
612 	return __skb_clone(dst, src);
613 }
614 EXPORT_SYMBOL_GPL(skb_morph);
615 
616 /**
617  *	skb_clone	-	duplicate an sk_buff
618  *	@skb: buffer to clone
619  *	@gfp_mask: allocation priority
620  *
621  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
622  *	copies share the same packet data but not structure. The new
623  *	buffer has a reference count of 1. If the allocation fails the
624  *	function returns %NULL otherwise the new buffer is returned.
625  *
626  *	If this function is called from an interrupt gfp_mask() must be
627  *	%GFP_ATOMIC.
628  */
629 
630 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
631 {
632 	struct sk_buff *n;
633 
634 	n = skb + 1;
635 	if (skb->fclone == SKB_FCLONE_ORIG &&
636 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
637 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
638 		n->fclone = SKB_FCLONE_CLONE;
639 		atomic_inc(fclone_ref);
640 	} else {
641 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
642 		if (!n)
643 			return NULL;
644 
645 		kmemcheck_annotate_bitfield(n, flags1);
646 		kmemcheck_annotate_bitfield(n, flags2);
647 		n->fclone = SKB_FCLONE_UNAVAILABLE;
648 	}
649 
650 	return __skb_clone(n, skb);
651 }
652 EXPORT_SYMBOL(skb_clone);
653 
654 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
655 {
656 #ifndef NET_SKBUFF_DATA_USES_OFFSET
657 	/*
658 	 *	Shift between the two data areas in bytes
659 	 */
660 	unsigned long offset = new->data - old->data;
661 #endif
662 
663 	__copy_skb_header(new, old);
664 
665 #ifndef NET_SKBUFF_DATA_USES_OFFSET
666 	/* {transport,network,mac}_header are relative to skb->head */
667 	new->transport_header += offset;
668 	new->network_header   += offset;
669 	if (skb_mac_header_was_set(new))
670 		new->mac_header	      += offset;
671 #endif
672 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
673 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
674 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
675 }
676 
677 /**
678  *	skb_copy	-	create private copy of an sk_buff
679  *	@skb: buffer to copy
680  *	@gfp_mask: allocation priority
681  *
682  *	Make a copy of both an &sk_buff and its data. This is used when the
683  *	caller wishes to modify the data and needs a private copy of the
684  *	data to alter. Returns %NULL on failure or the pointer to the buffer
685  *	on success. The returned buffer has a reference count of 1.
686  *
687  *	As by-product this function converts non-linear &sk_buff to linear
688  *	one, so that &sk_buff becomes completely private and caller is allowed
689  *	to modify all the data of returned buffer. This means that this
690  *	function is not recommended for use in circumstances when only
691  *	header is going to be modified. Use pskb_copy() instead.
692  */
693 
694 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
695 {
696 	int headerlen = skb->data - skb->head;
697 	/*
698 	 *	Allocate the copy buffer
699 	 */
700 	struct sk_buff *n;
701 #ifdef NET_SKBUFF_DATA_USES_OFFSET
702 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
703 #else
704 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
705 #endif
706 	if (!n)
707 		return NULL;
708 
709 	/* Set the data pointer */
710 	skb_reserve(n, headerlen);
711 	/* Set the tail pointer and length */
712 	skb_put(n, skb->len);
713 
714 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
715 		BUG();
716 
717 	copy_skb_header(n, skb);
718 	return n;
719 }
720 EXPORT_SYMBOL(skb_copy);
721 
722 /**
723  *	pskb_copy	-	create copy of an sk_buff with private head.
724  *	@skb: buffer to copy
725  *	@gfp_mask: allocation priority
726  *
727  *	Make a copy of both an &sk_buff and part of its data, located
728  *	in header. Fragmented data remain shared. This is used when
729  *	the caller wishes to modify only header of &sk_buff and needs
730  *	private copy of the header to alter. Returns %NULL on failure
731  *	or the pointer to the buffer on success.
732  *	The returned buffer has a reference count of 1.
733  */
734 
735 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
736 {
737 	/*
738 	 *	Allocate the copy buffer
739 	 */
740 	struct sk_buff *n;
741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
742 	n = alloc_skb(skb->end, gfp_mask);
743 #else
744 	n = alloc_skb(skb->end - skb->head, gfp_mask);
745 #endif
746 	if (!n)
747 		goto out;
748 
749 	/* Set the data pointer */
750 	skb_reserve(n, skb->data - skb->head);
751 	/* Set the tail pointer and length */
752 	skb_put(n, skb_headlen(skb));
753 	/* Copy the bytes */
754 	skb_copy_from_linear_data(skb, n->data, n->len);
755 
756 	n->truesize += skb->data_len;
757 	n->data_len  = skb->data_len;
758 	n->len	     = skb->len;
759 
760 	if (skb_shinfo(skb)->nr_frags) {
761 		int i;
762 
763 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
764 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
765 			get_page(skb_shinfo(n)->frags[i].page);
766 		}
767 		skb_shinfo(n)->nr_frags = i;
768 	}
769 
770 	if (skb_has_frags(skb)) {
771 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
772 		skb_clone_fraglist(n);
773 	}
774 
775 	copy_skb_header(n, skb);
776 out:
777 	return n;
778 }
779 EXPORT_SYMBOL(pskb_copy);
780 
781 /**
782  *	pskb_expand_head - reallocate header of &sk_buff
783  *	@skb: buffer to reallocate
784  *	@nhead: room to add at head
785  *	@ntail: room to add at tail
786  *	@gfp_mask: allocation priority
787  *
788  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
789  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
790  *	reference count of 1. Returns zero in the case of success or error,
791  *	if expansion failed. In the last case, &sk_buff is not changed.
792  *
793  *	All the pointers pointing into skb header may change and must be
794  *	reloaded after call to this function.
795  */
796 
797 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
798 		     gfp_t gfp_mask)
799 {
800 	int i;
801 	u8 *data;
802 #ifdef NET_SKBUFF_DATA_USES_OFFSET
803 	int size = nhead + skb->end + ntail;
804 #else
805 	int size = nhead + (skb->end - skb->head) + ntail;
806 #endif
807 	long off;
808 
809 	BUG_ON(nhead < 0);
810 
811 	if (skb_shared(skb))
812 		BUG();
813 
814 	size = SKB_DATA_ALIGN(size);
815 
816 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
817 	if (!data)
818 		goto nodata;
819 
820 	/* Copy only real data... and, alas, header. This should be
821 	 * optimized for the cases when header is void. */
822 #ifdef NET_SKBUFF_DATA_USES_OFFSET
823 	memcpy(data + nhead, skb->head, skb->tail);
824 #else
825 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
826 #endif
827 	memcpy(data + size, skb_end_pointer(skb),
828 	       sizeof(struct skb_shared_info));
829 
830 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
831 		get_page(skb_shinfo(skb)->frags[i].page);
832 
833 	if (skb_has_frags(skb))
834 		skb_clone_fraglist(skb);
835 
836 	skb_release_data(skb);
837 
838 	off = (data + nhead) - skb->head;
839 
840 	skb->head     = data;
841 	skb->data    += off;
842 #ifdef NET_SKBUFF_DATA_USES_OFFSET
843 	skb->end      = size;
844 	off           = nhead;
845 #else
846 	skb->end      = skb->head + size;
847 #endif
848 	/* {transport,network,mac}_header and tail are relative to skb->head */
849 	skb->tail	      += off;
850 	skb->transport_header += off;
851 	skb->network_header   += off;
852 	if (skb_mac_header_was_set(skb))
853 		skb->mac_header += off;
854 	skb->csum_start       += nhead;
855 	skb->cloned   = 0;
856 	skb->hdr_len  = 0;
857 	skb->nohdr    = 0;
858 	atomic_set(&skb_shinfo(skb)->dataref, 1);
859 	return 0;
860 
861 nodata:
862 	return -ENOMEM;
863 }
864 EXPORT_SYMBOL(pskb_expand_head);
865 
866 /* Make private copy of skb with writable head and some headroom */
867 
868 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
869 {
870 	struct sk_buff *skb2;
871 	int delta = headroom - skb_headroom(skb);
872 
873 	if (delta <= 0)
874 		skb2 = pskb_copy(skb, GFP_ATOMIC);
875 	else {
876 		skb2 = skb_clone(skb, GFP_ATOMIC);
877 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
878 					     GFP_ATOMIC)) {
879 			kfree_skb(skb2);
880 			skb2 = NULL;
881 		}
882 	}
883 	return skb2;
884 }
885 EXPORT_SYMBOL(skb_realloc_headroom);
886 
887 /**
888  *	skb_copy_expand	-	copy and expand sk_buff
889  *	@skb: buffer to copy
890  *	@newheadroom: new free bytes at head
891  *	@newtailroom: new free bytes at tail
892  *	@gfp_mask: allocation priority
893  *
894  *	Make a copy of both an &sk_buff and its data and while doing so
895  *	allocate additional space.
896  *
897  *	This is used when the caller wishes to modify the data and needs a
898  *	private copy of the data to alter as well as more space for new fields.
899  *	Returns %NULL on failure or the pointer to the buffer
900  *	on success. The returned buffer has a reference count of 1.
901  *
902  *	You must pass %GFP_ATOMIC as the allocation priority if this function
903  *	is called from an interrupt.
904  */
905 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
906 				int newheadroom, int newtailroom,
907 				gfp_t gfp_mask)
908 {
909 	/*
910 	 *	Allocate the copy buffer
911 	 */
912 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
913 				      gfp_mask);
914 	int oldheadroom = skb_headroom(skb);
915 	int head_copy_len, head_copy_off;
916 	int off;
917 
918 	if (!n)
919 		return NULL;
920 
921 	skb_reserve(n, newheadroom);
922 
923 	/* Set the tail pointer and length */
924 	skb_put(n, skb->len);
925 
926 	head_copy_len = oldheadroom;
927 	head_copy_off = 0;
928 	if (newheadroom <= head_copy_len)
929 		head_copy_len = newheadroom;
930 	else
931 		head_copy_off = newheadroom - head_copy_len;
932 
933 	/* Copy the linear header and data. */
934 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
935 			  skb->len + head_copy_len))
936 		BUG();
937 
938 	copy_skb_header(n, skb);
939 
940 	off                  = newheadroom - oldheadroom;
941 	n->csum_start       += off;
942 #ifdef NET_SKBUFF_DATA_USES_OFFSET
943 	n->transport_header += off;
944 	n->network_header   += off;
945 	if (skb_mac_header_was_set(skb))
946 		n->mac_header += off;
947 #endif
948 
949 	return n;
950 }
951 EXPORT_SYMBOL(skb_copy_expand);
952 
953 /**
954  *	skb_pad			-	zero pad the tail of an skb
955  *	@skb: buffer to pad
956  *	@pad: space to pad
957  *
958  *	Ensure that a buffer is followed by a padding area that is zero
959  *	filled. Used by network drivers which may DMA or transfer data
960  *	beyond the buffer end onto the wire.
961  *
962  *	May return error in out of memory cases. The skb is freed on error.
963  */
964 
965 int skb_pad(struct sk_buff *skb, int pad)
966 {
967 	int err;
968 	int ntail;
969 
970 	/* If the skbuff is non linear tailroom is always zero.. */
971 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
972 		memset(skb->data+skb->len, 0, pad);
973 		return 0;
974 	}
975 
976 	ntail = skb->data_len + pad - (skb->end - skb->tail);
977 	if (likely(skb_cloned(skb) || ntail > 0)) {
978 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
979 		if (unlikely(err))
980 			goto free_skb;
981 	}
982 
983 	/* FIXME: The use of this function with non-linear skb's really needs
984 	 * to be audited.
985 	 */
986 	err = skb_linearize(skb);
987 	if (unlikely(err))
988 		goto free_skb;
989 
990 	memset(skb->data + skb->len, 0, pad);
991 	return 0;
992 
993 free_skb:
994 	kfree_skb(skb);
995 	return err;
996 }
997 EXPORT_SYMBOL(skb_pad);
998 
999 /**
1000  *	skb_put - add data to a buffer
1001  *	@skb: buffer to use
1002  *	@len: amount of data to add
1003  *
1004  *	This function extends the used data area of the buffer. If this would
1005  *	exceed the total buffer size the kernel will panic. A pointer to the
1006  *	first byte of the extra data is returned.
1007  */
1008 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1009 {
1010 	unsigned char *tmp = skb_tail_pointer(skb);
1011 	SKB_LINEAR_ASSERT(skb);
1012 	skb->tail += len;
1013 	skb->len  += len;
1014 	if (unlikely(skb->tail > skb->end))
1015 		skb_over_panic(skb, len, __builtin_return_address(0));
1016 	return tmp;
1017 }
1018 EXPORT_SYMBOL(skb_put);
1019 
1020 /**
1021  *	skb_push - add data to the start of a buffer
1022  *	@skb: buffer to use
1023  *	@len: amount of data to add
1024  *
1025  *	This function extends the used data area of the buffer at the buffer
1026  *	start. If this would exceed the total buffer headroom the kernel will
1027  *	panic. A pointer to the first byte of the extra data is returned.
1028  */
1029 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1030 {
1031 	skb->data -= len;
1032 	skb->len  += len;
1033 	if (unlikely(skb->data<skb->head))
1034 		skb_under_panic(skb, len, __builtin_return_address(0));
1035 	return skb->data;
1036 }
1037 EXPORT_SYMBOL(skb_push);
1038 
1039 /**
1040  *	skb_pull - remove data from the start of a buffer
1041  *	@skb: buffer to use
1042  *	@len: amount of data to remove
1043  *
1044  *	This function removes data from the start of a buffer, returning
1045  *	the memory to the headroom. A pointer to the next data in the buffer
1046  *	is returned. Once the data has been pulled future pushes will overwrite
1047  *	the old data.
1048  */
1049 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1050 {
1051 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1052 }
1053 EXPORT_SYMBOL(skb_pull);
1054 
1055 /**
1056  *	skb_trim - remove end from a buffer
1057  *	@skb: buffer to alter
1058  *	@len: new length
1059  *
1060  *	Cut the length of a buffer down by removing data from the tail. If
1061  *	the buffer is already under the length specified it is not modified.
1062  *	The skb must be linear.
1063  */
1064 void skb_trim(struct sk_buff *skb, unsigned int len)
1065 {
1066 	if (skb->len > len)
1067 		__skb_trim(skb, len);
1068 }
1069 EXPORT_SYMBOL(skb_trim);
1070 
1071 /* Trims skb to length len. It can change skb pointers.
1072  */
1073 
1074 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1075 {
1076 	struct sk_buff **fragp;
1077 	struct sk_buff *frag;
1078 	int offset = skb_headlen(skb);
1079 	int nfrags = skb_shinfo(skb)->nr_frags;
1080 	int i;
1081 	int err;
1082 
1083 	if (skb_cloned(skb) &&
1084 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1085 		return err;
1086 
1087 	i = 0;
1088 	if (offset >= len)
1089 		goto drop_pages;
1090 
1091 	for (; i < nfrags; i++) {
1092 		int end = offset + skb_shinfo(skb)->frags[i].size;
1093 
1094 		if (end < len) {
1095 			offset = end;
1096 			continue;
1097 		}
1098 
1099 		skb_shinfo(skb)->frags[i++].size = len - offset;
1100 
1101 drop_pages:
1102 		skb_shinfo(skb)->nr_frags = i;
1103 
1104 		for (; i < nfrags; i++)
1105 			put_page(skb_shinfo(skb)->frags[i].page);
1106 
1107 		if (skb_has_frags(skb))
1108 			skb_drop_fraglist(skb);
1109 		goto done;
1110 	}
1111 
1112 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1113 	     fragp = &frag->next) {
1114 		int end = offset + frag->len;
1115 
1116 		if (skb_shared(frag)) {
1117 			struct sk_buff *nfrag;
1118 
1119 			nfrag = skb_clone(frag, GFP_ATOMIC);
1120 			if (unlikely(!nfrag))
1121 				return -ENOMEM;
1122 
1123 			nfrag->next = frag->next;
1124 			kfree_skb(frag);
1125 			frag = nfrag;
1126 			*fragp = frag;
1127 		}
1128 
1129 		if (end < len) {
1130 			offset = end;
1131 			continue;
1132 		}
1133 
1134 		if (end > len &&
1135 		    unlikely((err = pskb_trim(frag, len - offset))))
1136 			return err;
1137 
1138 		if (frag->next)
1139 			skb_drop_list(&frag->next);
1140 		break;
1141 	}
1142 
1143 done:
1144 	if (len > skb_headlen(skb)) {
1145 		skb->data_len -= skb->len - len;
1146 		skb->len       = len;
1147 	} else {
1148 		skb->len       = len;
1149 		skb->data_len  = 0;
1150 		skb_set_tail_pointer(skb, len);
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL(___pskb_trim);
1156 
1157 /**
1158  *	__pskb_pull_tail - advance tail of skb header
1159  *	@skb: buffer to reallocate
1160  *	@delta: number of bytes to advance tail
1161  *
1162  *	The function makes a sense only on a fragmented &sk_buff,
1163  *	it expands header moving its tail forward and copying necessary
1164  *	data from fragmented part.
1165  *
1166  *	&sk_buff MUST have reference count of 1.
1167  *
1168  *	Returns %NULL (and &sk_buff does not change) if pull failed
1169  *	or value of new tail of skb in the case of success.
1170  *
1171  *	All the pointers pointing into skb header may change and must be
1172  *	reloaded after call to this function.
1173  */
1174 
1175 /* Moves tail of skb head forward, copying data from fragmented part,
1176  * when it is necessary.
1177  * 1. It may fail due to malloc failure.
1178  * 2. It may change skb pointers.
1179  *
1180  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1181  */
1182 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1183 {
1184 	/* If skb has not enough free space at tail, get new one
1185 	 * plus 128 bytes for future expansions. If we have enough
1186 	 * room at tail, reallocate without expansion only if skb is cloned.
1187 	 */
1188 	int i, k, eat = (skb->tail + delta) - skb->end;
1189 
1190 	if (eat > 0 || skb_cloned(skb)) {
1191 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1192 				     GFP_ATOMIC))
1193 			return NULL;
1194 	}
1195 
1196 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1197 		BUG();
1198 
1199 	/* Optimization: no fragments, no reasons to preestimate
1200 	 * size of pulled pages. Superb.
1201 	 */
1202 	if (!skb_has_frags(skb))
1203 		goto pull_pages;
1204 
1205 	/* Estimate size of pulled pages. */
1206 	eat = delta;
1207 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1208 		if (skb_shinfo(skb)->frags[i].size >= eat)
1209 			goto pull_pages;
1210 		eat -= skb_shinfo(skb)->frags[i].size;
1211 	}
1212 
1213 	/* If we need update frag list, we are in troubles.
1214 	 * Certainly, it possible to add an offset to skb data,
1215 	 * but taking into account that pulling is expected to
1216 	 * be very rare operation, it is worth to fight against
1217 	 * further bloating skb head and crucify ourselves here instead.
1218 	 * Pure masohism, indeed. 8)8)
1219 	 */
1220 	if (eat) {
1221 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1222 		struct sk_buff *clone = NULL;
1223 		struct sk_buff *insp = NULL;
1224 
1225 		do {
1226 			BUG_ON(!list);
1227 
1228 			if (list->len <= eat) {
1229 				/* Eaten as whole. */
1230 				eat -= list->len;
1231 				list = list->next;
1232 				insp = list;
1233 			} else {
1234 				/* Eaten partially. */
1235 
1236 				if (skb_shared(list)) {
1237 					/* Sucks! We need to fork list. :-( */
1238 					clone = skb_clone(list, GFP_ATOMIC);
1239 					if (!clone)
1240 						return NULL;
1241 					insp = list->next;
1242 					list = clone;
1243 				} else {
1244 					/* This may be pulled without
1245 					 * problems. */
1246 					insp = list;
1247 				}
1248 				if (!pskb_pull(list, eat)) {
1249 					kfree_skb(clone);
1250 					return NULL;
1251 				}
1252 				break;
1253 			}
1254 		} while (eat);
1255 
1256 		/* Free pulled out fragments. */
1257 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1258 			skb_shinfo(skb)->frag_list = list->next;
1259 			kfree_skb(list);
1260 		}
1261 		/* And insert new clone at head. */
1262 		if (clone) {
1263 			clone->next = list;
1264 			skb_shinfo(skb)->frag_list = clone;
1265 		}
1266 	}
1267 	/* Success! Now we may commit changes to skb data. */
1268 
1269 pull_pages:
1270 	eat = delta;
1271 	k = 0;
1272 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1273 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1274 			put_page(skb_shinfo(skb)->frags[i].page);
1275 			eat -= skb_shinfo(skb)->frags[i].size;
1276 		} else {
1277 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1278 			if (eat) {
1279 				skb_shinfo(skb)->frags[k].page_offset += eat;
1280 				skb_shinfo(skb)->frags[k].size -= eat;
1281 				eat = 0;
1282 			}
1283 			k++;
1284 		}
1285 	}
1286 	skb_shinfo(skb)->nr_frags = k;
1287 
1288 	skb->tail     += delta;
1289 	skb->data_len -= delta;
1290 
1291 	return skb_tail_pointer(skb);
1292 }
1293 EXPORT_SYMBOL(__pskb_pull_tail);
1294 
1295 /* Copy some data bits from skb to kernel buffer. */
1296 
1297 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1298 {
1299 	int start = skb_headlen(skb);
1300 	struct sk_buff *frag_iter;
1301 	int i, copy;
1302 
1303 	if (offset > (int)skb->len - len)
1304 		goto fault;
1305 
1306 	/* Copy header. */
1307 	if ((copy = start - offset) > 0) {
1308 		if (copy > len)
1309 			copy = len;
1310 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1311 		if ((len -= copy) == 0)
1312 			return 0;
1313 		offset += copy;
1314 		to     += copy;
1315 	}
1316 
1317 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1318 		int end;
1319 
1320 		WARN_ON(start > offset + len);
1321 
1322 		end = start + skb_shinfo(skb)->frags[i].size;
1323 		if ((copy = end - offset) > 0) {
1324 			u8 *vaddr;
1325 
1326 			if (copy > len)
1327 				copy = len;
1328 
1329 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1330 			memcpy(to,
1331 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1332 			       offset - start, copy);
1333 			kunmap_skb_frag(vaddr);
1334 
1335 			if ((len -= copy) == 0)
1336 				return 0;
1337 			offset += copy;
1338 			to     += copy;
1339 		}
1340 		start = end;
1341 	}
1342 
1343 	skb_walk_frags(skb, frag_iter) {
1344 		int end;
1345 
1346 		WARN_ON(start > offset + len);
1347 
1348 		end = start + frag_iter->len;
1349 		if ((copy = end - offset) > 0) {
1350 			if (copy > len)
1351 				copy = len;
1352 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1353 				goto fault;
1354 			if ((len -= copy) == 0)
1355 				return 0;
1356 			offset += copy;
1357 			to     += copy;
1358 		}
1359 		start = end;
1360 	}
1361 	if (!len)
1362 		return 0;
1363 
1364 fault:
1365 	return -EFAULT;
1366 }
1367 EXPORT_SYMBOL(skb_copy_bits);
1368 
1369 /*
1370  * Callback from splice_to_pipe(), if we need to release some pages
1371  * at the end of the spd in case we error'ed out in filling the pipe.
1372  */
1373 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1374 {
1375 	put_page(spd->pages[i]);
1376 }
1377 
1378 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1379 					  unsigned int *offset,
1380 					  struct sk_buff *skb, struct sock *sk)
1381 {
1382 	struct page *p = sk->sk_sndmsg_page;
1383 	unsigned int off;
1384 
1385 	if (!p) {
1386 new_page:
1387 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1388 		if (!p)
1389 			return NULL;
1390 
1391 		off = sk->sk_sndmsg_off = 0;
1392 		/* hold one ref to this page until it's full */
1393 	} else {
1394 		unsigned int mlen;
1395 
1396 		off = sk->sk_sndmsg_off;
1397 		mlen = PAGE_SIZE - off;
1398 		if (mlen < 64 && mlen < *len) {
1399 			put_page(p);
1400 			goto new_page;
1401 		}
1402 
1403 		*len = min_t(unsigned int, *len, mlen);
1404 	}
1405 
1406 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1407 	sk->sk_sndmsg_off += *len;
1408 	*offset = off;
1409 	get_page(p);
1410 
1411 	return p;
1412 }
1413 
1414 /*
1415  * Fill page/offset/length into spd, if it can hold more pages.
1416  */
1417 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1418 				unsigned int *len, unsigned int offset,
1419 				struct sk_buff *skb, int linear,
1420 				struct sock *sk)
1421 {
1422 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1423 		return 1;
1424 
1425 	if (linear) {
1426 		page = linear_to_page(page, len, &offset, skb, sk);
1427 		if (!page)
1428 			return 1;
1429 	} else
1430 		get_page(page);
1431 
1432 	spd->pages[spd->nr_pages] = page;
1433 	spd->partial[spd->nr_pages].len = *len;
1434 	spd->partial[spd->nr_pages].offset = offset;
1435 	spd->nr_pages++;
1436 
1437 	return 0;
1438 }
1439 
1440 static inline void __segment_seek(struct page **page, unsigned int *poff,
1441 				  unsigned int *plen, unsigned int off)
1442 {
1443 	unsigned long n;
1444 
1445 	*poff += off;
1446 	n = *poff / PAGE_SIZE;
1447 	if (n)
1448 		*page = nth_page(*page, n);
1449 
1450 	*poff = *poff % PAGE_SIZE;
1451 	*plen -= off;
1452 }
1453 
1454 static inline int __splice_segment(struct page *page, unsigned int poff,
1455 				   unsigned int plen, unsigned int *off,
1456 				   unsigned int *len, struct sk_buff *skb,
1457 				   struct splice_pipe_desc *spd, int linear,
1458 				   struct sock *sk)
1459 {
1460 	if (!*len)
1461 		return 1;
1462 
1463 	/* skip this segment if already processed */
1464 	if (*off >= plen) {
1465 		*off -= plen;
1466 		return 0;
1467 	}
1468 
1469 	/* ignore any bits we already processed */
1470 	if (*off) {
1471 		__segment_seek(&page, &poff, &plen, *off);
1472 		*off = 0;
1473 	}
1474 
1475 	do {
1476 		unsigned int flen = min(*len, plen);
1477 
1478 		/* the linear region may spread across several pages  */
1479 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1480 
1481 		if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1482 			return 1;
1483 
1484 		__segment_seek(&page, &poff, &plen, flen);
1485 		*len -= flen;
1486 
1487 	} while (*len && plen);
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Map linear and fragment data from the skb to spd. It reports failure if the
1494  * pipe is full or if we already spliced the requested length.
1495  */
1496 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1497 			     unsigned int *len, struct splice_pipe_desc *spd,
1498 			     struct sock *sk)
1499 {
1500 	int seg;
1501 
1502 	/*
1503 	 * map the linear part
1504 	 */
1505 	if (__splice_segment(virt_to_page(skb->data),
1506 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1507 			     skb_headlen(skb),
1508 			     offset, len, skb, spd, 1, sk))
1509 		return 1;
1510 
1511 	/*
1512 	 * then map the fragments
1513 	 */
1514 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1515 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1516 
1517 		if (__splice_segment(f->page, f->page_offset, f->size,
1518 				     offset, len, skb, spd, 0, sk))
1519 			return 1;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Map data from the skb to a pipe. Should handle both the linear part,
1527  * the fragments, and the frag list. It does NOT handle frag lists within
1528  * the frag list, if such a thing exists. We'd probably need to recurse to
1529  * handle that cleanly.
1530  */
1531 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1532 		    struct pipe_inode_info *pipe, unsigned int tlen,
1533 		    unsigned int flags)
1534 {
1535 	struct partial_page partial[PIPE_BUFFERS];
1536 	struct page *pages[PIPE_BUFFERS];
1537 	struct splice_pipe_desc spd = {
1538 		.pages = pages,
1539 		.partial = partial,
1540 		.flags = flags,
1541 		.ops = &sock_pipe_buf_ops,
1542 		.spd_release = sock_spd_release,
1543 	};
1544 	struct sk_buff *frag_iter;
1545 	struct sock *sk = skb->sk;
1546 
1547 	/*
1548 	 * __skb_splice_bits() only fails if the output has no room left,
1549 	 * so no point in going over the frag_list for the error case.
1550 	 */
1551 	if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1552 		goto done;
1553 	else if (!tlen)
1554 		goto done;
1555 
1556 	/*
1557 	 * now see if we have a frag_list to map
1558 	 */
1559 	skb_walk_frags(skb, frag_iter) {
1560 		if (!tlen)
1561 			break;
1562 		if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk))
1563 			break;
1564 	}
1565 
1566 done:
1567 	if (spd.nr_pages) {
1568 		int ret;
1569 
1570 		/*
1571 		 * Drop the socket lock, otherwise we have reverse
1572 		 * locking dependencies between sk_lock and i_mutex
1573 		 * here as compared to sendfile(). We enter here
1574 		 * with the socket lock held, and splice_to_pipe() will
1575 		 * grab the pipe inode lock. For sendfile() emulation,
1576 		 * we call into ->sendpage() with the i_mutex lock held
1577 		 * and networking will grab the socket lock.
1578 		 */
1579 		release_sock(sk);
1580 		ret = splice_to_pipe(pipe, &spd);
1581 		lock_sock(sk);
1582 		return ret;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  *	skb_store_bits - store bits from kernel buffer to skb
1590  *	@skb: destination buffer
1591  *	@offset: offset in destination
1592  *	@from: source buffer
1593  *	@len: number of bytes to copy
1594  *
1595  *	Copy the specified number of bytes from the source buffer to the
1596  *	destination skb.  This function handles all the messy bits of
1597  *	traversing fragment lists and such.
1598  */
1599 
1600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1601 {
1602 	int start = skb_headlen(skb);
1603 	struct sk_buff *frag_iter;
1604 	int i, copy;
1605 
1606 	if (offset > (int)skb->len - len)
1607 		goto fault;
1608 
1609 	if ((copy = start - offset) > 0) {
1610 		if (copy > len)
1611 			copy = len;
1612 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1613 		if ((len -= copy) == 0)
1614 			return 0;
1615 		offset += copy;
1616 		from += copy;
1617 	}
1618 
1619 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1620 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1621 		int end;
1622 
1623 		WARN_ON(start > offset + len);
1624 
1625 		end = start + frag->size;
1626 		if ((copy = end - offset) > 0) {
1627 			u8 *vaddr;
1628 
1629 			if (copy > len)
1630 				copy = len;
1631 
1632 			vaddr = kmap_skb_frag(frag);
1633 			memcpy(vaddr + frag->page_offset + offset - start,
1634 			       from, copy);
1635 			kunmap_skb_frag(vaddr);
1636 
1637 			if ((len -= copy) == 0)
1638 				return 0;
1639 			offset += copy;
1640 			from += copy;
1641 		}
1642 		start = end;
1643 	}
1644 
1645 	skb_walk_frags(skb, frag_iter) {
1646 		int end;
1647 
1648 		WARN_ON(start > offset + len);
1649 
1650 		end = start + frag_iter->len;
1651 		if ((copy = end - offset) > 0) {
1652 			if (copy > len)
1653 				copy = len;
1654 			if (skb_store_bits(frag_iter, offset - start,
1655 					   from, copy))
1656 				goto fault;
1657 			if ((len -= copy) == 0)
1658 				return 0;
1659 			offset += copy;
1660 			from += copy;
1661 		}
1662 		start = end;
1663 	}
1664 	if (!len)
1665 		return 0;
1666 
1667 fault:
1668 	return -EFAULT;
1669 }
1670 EXPORT_SYMBOL(skb_store_bits);
1671 
1672 /* Checksum skb data. */
1673 
1674 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1675 			  int len, __wsum csum)
1676 {
1677 	int start = skb_headlen(skb);
1678 	int i, copy = start - offset;
1679 	struct sk_buff *frag_iter;
1680 	int pos = 0;
1681 
1682 	/* Checksum header. */
1683 	if (copy > 0) {
1684 		if (copy > len)
1685 			copy = len;
1686 		csum = csum_partial(skb->data + offset, copy, csum);
1687 		if ((len -= copy) == 0)
1688 			return csum;
1689 		offset += copy;
1690 		pos	= copy;
1691 	}
1692 
1693 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 		int end;
1695 
1696 		WARN_ON(start > offset + len);
1697 
1698 		end = start + skb_shinfo(skb)->frags[i].size;
1699 		if ((copy = end - offset) > 0) {
1700 			__wsum csum2;
1701 			u8 *vaddr;
1702 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703 
1704 			if (copy > len)
1705 				copy = len;
1706 			vaddr = kmap_skb_frag(frag);
1707 			csum2 = csum_partial(vaddr + frag->page_offset +
1708 					     offset - start, copy, 0);
1709 			kunmap_skb_frag(vaddr);
1710 			csum = csum_block_add(csum, csum2, pos);
1711 			if (!(len -= copy))
1712 				return csum;
1713 			offset += copy;
1714 			pos    += copy;
1715 		}
1716 		start = end;
1717 	}
1718 
1719 	skb_walk_frags(skb, frag_iter) {
1720 		int end;
1721 
1722 		WARN_ON(start > offset + len);
1723 
1724 		end = start + frag_iter->len;
1725 		if ((copy = end - offset) > 0) {
1726 			__wsum csum2;
1727 			if (copy > len)
1728 				copy = len;
1729 			csum2 = skb_checksum(frag_iter, offset - start,
1730 					     copy, 0);
1731 			csum = csum_block_add(csum, csum2, pos);
1732 			if ((len -= copy) == 0)
1733 				return csum;
1734 			offset += copy;
1735 			pos    += copy;
1736 		}
1737 		start = end;
1738 	}
1739 	BUG_ON(len);
1740 
1741 	return csum;
1742 }
1743 EXPORT_SYMBOL(skb_checksum);
1744 
1745 /* Both of above in one bottle. */
1746 
1747 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1748 				    u8 *to, int len, __wsum csum)
1749 {
1750 	int start = skb_headlen(skb);
1751 	int i, copy = start - offset;
1752 	struct sk_buff *frag_iter;
1753 	int pos = 0;
1754 
1755 	/* Copy header. */
1756 	if (copy > 0) {
1757 		if (copy > len)
1758 			copy = len;
1759 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760 						 copy, csum);
1761 		if ((len -= copy) == 0)
1762 			return csum;
1763 		offset += copy;
1764 		to     += copy;
1765 		pos	= copy;
1766 	}
1767 
1768 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769 		int end;
1770 
1771 		WARN_ON(start > offset + len);
1772 
1773 		end = start + skb_shinfo(skb)->frags[i].size;
1774 		if ((copy = end - offset) > 0) {
1775 			__wsum csum2;
1776 			u8 *vaddr;
1777 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778 
1779 			if (copy > len)
1780 				copy = len;
1781 			vaddr = kmap_skb_frag(frag);
1782 			csum2 = csum_partial_copy_nocheck(vaddr +
1783 							  frag->page_offset +
1784 							  offset - start, to,
1785 							  copy, 0);
1786 			kunmap_skb_frag(vaddr);
1787 			csum = csum_block_add(csum, csum2, pos);
1788 			if (!(len -= copy))
1789 				return csum;
1790 			offset += copy;
1791 			to     += copy;
1792 			pos    += copy;
1793 		}
1794 		start = end;
1795 	}
1796 
1797 	skb_walk_frags(skb, frag_iter) {
1798 		__wsum csum2;
1799 		int end;
1800 
1801 		WARN_ON(start > offset + len);
1802 
1803 		end = start + frag_iter->len;
1804 		if ((copy = end - offset) > 0) {
1805 			if (copy > len)
1806 				copy = len;
1807 			csum2 = skb_copy_and_csum_bits(frag_iter,
1808 						       offset - start,
1809 						       to, copy, 0);
1810 			csum = csum_block_add(csum, csum2, pos);
1811 			if ((len -= copy) == 0)
1812 				return csum;
1813 			offset += copy;
1814 			to     += copy;
1815 			pos    += copy;
1816 		}
1817 		start = end;
1818 	}
1819 	BUG_ON(len);
1820 	return csum;
1821 }
1822 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823 
1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825 {
1826 	__wsum csum;
1827 	long csstart;
1828 
1829 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1830 		csstart = skb->csum_start - skb_headroom(skb);
1831 	else
1832 		csstart = skb_headlen(skb);
1833 
1834 	BUG_ON(csstart > skb_headlen(skb));
1835 
1836 	skb_copy_from_linear_data(skb, to, csstart);
1837 
1838 	csum = 0;
1839 	if (csstart != skb->len)
1840 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841 					      skb->len - csstart, 0);
1842 
1843 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 		long csstuff = csstart + skb->csum_offset;
1845 
1846 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847 	}
1848 }
1849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850 
1851 /**
1852  *	skb_dequeue - remove from the head of the queue
1853  *	@list: list to dequeue from
1854  *
1855  *	Remove the head of the list. The list lock is taken so the function
1856  *	may be used safely with other locking list functions. The head item is
1857  *	returned or %NULL if the list is empty.
1858  */
1859 
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861 {
1862 	unsigned long flags;
1863 	struct sk_buff *result;
1864 
1865 	spin_lock_irqsave(&list->lock, flags);
1866 	result = __skb_dequeue(list);
1867 	spin_unlock_irqrestore(&list->lock, flags);
1868 	return result;
1869 }
1870 EXPORT_SYMBOL(skb_dequeue);
1871 
1872 /**
1873  *	skb_dequeue_tail - remove from the tail of the queue
1874  *	@list: list to dequeue from
1875  *
1876  *	Remove the tail of the list. The list lock is taken so the function
1877  *	may be used safely with other locking list functions. The tail item is
1878  *	returned or %NULL if the list is empty.
1879  */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881 {
1882 	unsigned long flags;
1883 	struct sk_buff *result;
1884 
1885 	spin_lock_irqsave(&list->lock, flags);
1886 	result = __skb_dequeue_tail(list);
1887 	spin_unlock_irqrestore(&list->lock, flags);
1888 	return result;
1889 }
1890 EXPORT_SYMBOL(skb_dequeue_tail);
1891 
1892 /**
1893  *	skb_queue_purge - empty a list
1894  *	@list: list to empty
1895  *
1896  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1897  *	the list and one reference dropped. This function takes the list
1898  *	lock and is atomic with respect to other list locking functions.
1899  */
1900 void skb_queue_purge(struct sk_buff_head *list)
1901 {
1902 	struct sk_buff *skb;
1903 	while ((skb = skb_dequeue(list)) != NULL)
1904 		kfree_skb(skb);
1905 }
1906 EXPORT_SYMBOL(skb_queue_purge);
1907 
1908 /**
1909  *	skb_queue_head - queue a buffer at the list head
1910  *	@list: list to use
1911  *	@newsk: buffer to queue
1912  *
1913  *	Queue a buffer at the start of the list. This function takes the
1914  *	list lock and can be used safely with other locking &sk_buff functions
1915  *	safely.
1916  *
1917  *	A buffer cannot be placed on two lists at the same time.
1918  */
1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920 {
1921 	unsigned long flags;
1922 
1923 	spin_lock_irqsave(&list->lock, flags);
1924 	__skb_queue_head(list, newsk);
1925 	spin_unlock_irqrestore(&list->lock, flags);
1926 }
1927 EXPORT_SYMBOL(skb_queue_head);
1928 
1929 /**
1930  *	skb_queue_tail - queue a buffer at the list tail
1931  *	@list: list to use
1932  *	@newsk: buffer to queue
1933  *
1934  *	Queue a buffer at the tail of the list. This function takes the
1935  *	list lock and can be used safely with other locking &sk_buff functions
1936  *	safely.
1937  *
1938  *	A buffer cannot be placed on two lists at the same time.
1939  */
1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941 {
1942 	unsigned long flags;
1943 
1944 	spin_lock_irqsave(&list->lock, flags);
1945 	__skb_queue_tail(list, newsk);
1946 	spin_unlock_irqrestore(&list->lock, flags);
1947 }
1948 EXPORT_SYMBOL(skb_queue_tail);
1949 
1950 /**
1951  *	skb_unlink	-	remove a buffer from a list
1952  *	@skb: buffer to remove
1953  *	@list: list to use
1954  *
1955  *	Remove a packet from a list. The list locks are taken and this
1956  *	function is atomic with respect to other list locked calls
1957  *
1958  *	You must know what list the SKB is on.
1959  */
1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961 {
1962 	unsigned long flags;
1963 
1964 	spin_lock_irqsave(&list->lock, flags);
1965 	__skb_unlink(skb, list);
1966 	spin_unlock_irqrestore(&list->lock, flags);
1967 }
1968 EXPORT_SYMBOL(skb_unlink);
1969 
1970 /**
1971  *	skb_append	-	append a buffer
1972  *	@old: buffer to insert after
1973  *	@newsk: buffer to insert
1974  *	@list: list to use
1975  *
1976  *	Place a packet after a given packet in a list. The list locks are taken
1977  *	and this function is atomic with respect to other list locked calls.
1978  *	A buffer cannot be placed on two lists at the same time.
1979  */
1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981 {
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(&list->lock, flags);
1985 	__skb_queue_after(list, old, newsk);
1986 	spin_unlock_irqrestore(&list->lock, flags);
1987 }
1988 EXPORT_SYMBOL(skb_append);
1989 
1990 /**
1991  *	skb_insert	-	insert a buffer
1992  *	@old: buffer to insert before
1993  *	@newsk: buffer to insert
1994  *	@list: list to use
1995  *
1996  *	Place a packet before a given packet in a list. The list locks are
1997  * 	taken and this function is atomic with respect to other list locked
1998  *	calls.
1999  *
2000  *	A buffer cannot be placed on two lists at the same time.
2001  */
2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003 {
2004 	unsigned long flags;
2005 
2006 	spin_lock_irqsave(&list->lock, flags);
2007 	__skb_insert(newsk, old->prev, old, list);
2008 	spin_unlock_irqrestore(&list->lock, flags);
2009 }
2010 EXPORT_SYMBOL(skb_insert);
2011 
2012 static inline void skb_split_inside_header(struct sk_buff *skb,
2013 					   struct sk_buff* skb1,
2014 					   const u32 len, const int pos)
2015 {
2016 	int i;
2017 
2018 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019 					 pos - len);
2020 	/* And move data appendix as is. */
2021 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023 
2024 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025 	skb_shinfo(skb)->nr_frags  = 0;
2026 	skb1->data_len		   = skb->data_len;
2027 	skb1->len		   += skb1->data_len;
2028 	skb->data_len		   = 0;
2029 	skb->len		   = len;
2030 	skb_set_tail_pointer(skb, len);
2031 }
2032 
2033 static inline void skb_split_no_header(struct sk_buff *skb,
2034 				       struct sk_buff* skb1,
2035 				       const u32 len, int pos)
2036 {
2037 	int i, k = 0;
2038 	const int nfrags = skb_shinfo(skb)->nr_frags;
2039 
2040 	skb_shinfo(skb)->nr_frags = 0;
2041 	skb1->len		  = skb1->data_len = skb->len - len;
2042 	skb->len		  = len;
2043 	skb->data_len		  = len - pos;
2044 
2045 	for (i = 0; i < nfrags; i++) {
2046 		int size = skb_shinfo(skb)->frags[i].size;
2047 
2048 		if (pos + size > len) {
2049 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050 
2051 			if (pos < len) {
2052 				/* Split frag.
2053 				 * We have two variants in this case:
2054 				 * 1. Move all the frag to the second
2055 				 *    part, if it is possible. F.e.
2056 				 *    this approach is mandatory for TUX,
2057 				 *    where splitting is expensive.
2058 				 * 2. Split is accurately. We make this.
2059 				 */
2060 				get_page(skb_shinfo(skb)->frags[i].page);
2061 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2063 				skb_shinfo(skb)->frags[i].size	= len - pos;
2064 				skb_shinfo(skb)->nr_frags++;
2065 			}
2066 			k++;
2067 		} else
2068 			skb_shinfo(skb)->nr_frags++;
2069 		pos += size;
2070 	}
2071 	skb_shinfo(skb1)->nr_frags = k;
2072 }
2073 
2074 /**
2075  * skb_split - Split fragmented skb to two parts at length len.
2076  * @skb: the buffer to split
2077  * @skb1: the buffer to receive the second part
2078  * @len: new length for skb
2079  */
2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081 {
2082 	int pos = skb_headlen(skb);
2083 
2084 	if (len < pos)	/* Split line is inside header. */
2085 		skb_split_inside_header(skb, skb1, len, pos);
2086 	else		/* Second chunk has no header, nothing to copy. */
2087 		skb_split_no_header(skb, skb1, len, pos);
2088 }
2089 EXPORT_SYMBOL(skb_split);
2090 
2091 /* Shifting from/to a cloned skb is a no-go.
2092  *
2093  * Caller cannot keep skb_shinfo related pointers past calling here!
2094  */
2095 static int skb_prepare_for_shift(struct sk_buff *skb)
2096 {
2097 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 }
2099 
2100 /**
2101  * skb_shift - Shifts paged data partially from skb to another
2102  * @tgt: buffer into which tail data gets added
2103  * @skb: buffer from which the paged data comes from
2104  * @shiftlen: shift up to this many bytes
2105  *
2106  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2107  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2108  * It's up to caller to free skb if everything was shifted.
2109  *
2110  * If @tgt runs out of frags, the whole operation is aborted.
2111  *
2112  * Skb cannot include anything else but paged data while tgt is allowed
2113  * to have non-paged data as well.
2114  *
2115  * TODO: full sized shift could be optimized but that would need
2116  * specialized skb free'er to handle frags without up-to-date nr_frags.
2117  */
2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119 {
2120 	int from, to, merge, todo;
2121 	struct skb_frag_struct *fragfrom, *fragto;
2122 
2123 	BUG_ON(shiftlen > skb->len);
2124 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2125 
2126 	todo = shiftlen;
2127 	from = 0;
2128 	to = skb_shinfo(tgt)->nr_frags;
2129 	fragfrom = &skb_shinfo(skb)->frags[from];
2130 
2131 	/* Actual merge is delayed until the point when we know we can
2132 	 * commit all, so that we don't have to undo partial changes
2133 	 */
2134 	if (!to ||
2135 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136 		merge = -1;
2137 	} else {
2138 		merge = to - 1;
2139 
2140 		todo -= fragfrom->size;
2141 		if (todo < 0) {
2142 			if (skb_prepare_for_shift(skb) ||
2143 			    skb_prepare_for_shift(tgt))
2144 				return 0;
2145 
2146 			/* All previous frag pointers might be stale! */
2147 			fragfrom = &skb_shinfo(skb)->frags[from];
2148 			fragto = &skb_shinfo(tgt)->frags[merge];
2149 
2150 			fragto->size += shiftlen;
2151 			fragfrom->size -= shiftlen;
2152 			fragfrom->page_offset += shiftlen;
2153 
2154 			goto onlymerged;
2155 		}
2156 
2157 		from++;
2158 	}
2159 
2160 	/* Skip full, not-fitting skb to avoid expensive operations */
2161 	if ((shiftlen == skb->len) &&
2162 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163 		return 0;
2164 
2165 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166 		return 0;
2167 
2168 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169 		if (to == MAX_SKB_FRAGS)
2170 			return 0;
2171 
2172 		fragfrom = &skb_shinfo(skb)->frags[from];
2173 		fragto = &skb_shinfo(tgt)->frags[to];
2174 
2175 		if (todo >= fragfrom->size) {
2176 			*fragto = *fragfrom;
2177 			todo -= fragfrom->size;
2178 			from++;
2179 			to++;
2180 
2181 		} else {
2182 			get_page(fragfrom->page);
2183 			fragto->page = fragfrom->page;
2184 			fragto->page_offset = fragfrom->page_offset;
2185 			fragto->size = todo;
2186 
2187 			fragfrom->page_offset += todo;
2188 			fragfrom->size -= todo;
2189 			todo = 0;
2190 
2191 			to++;
2192 			break;
2193 		}
2194 	}
2195 
2196 	/* Ready to "commit" this state change to tgt */
2197 	skb_shinfo(tgt)->nr_frags = to;
2198 
2199 	if (merge >= 0) {
2200 		fragfrom = &skb_shinfo(skb)->frags[0];
2201 		fragto = &skb_shinfo(tgt)->frags[merge];
2202 
2203 		fragto->size += fragfrom->size;
2204 		put_page(fragfrom->page);
2205 	}
2206 
2207 	/* Reposition in the original skb */
2208 	to = 0;
2209 	while (from < skb_shinfo(skb)->nr_frags)
2210 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211 	skb_shinfo(skb)->nr_frags = to;
2212 
2213 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214 
2215 onlymerged:
2216 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2217 	 * the other hand might need it if it needs to be resent
2218 	 */
2219 	tgt->ip_summed = CHECKSUM_PARTIAL;
2220 	skb->ip_summed = CHECKSUM_PARTIAL;
2221 
2222 	/* Yak, is it really working this way? Some helper please? */
2223 	skb->len -= shiftlen;
2224 	skb->data_len -= shiftlen;
2225 	skb->truesize -= shiftlen;
2226 	tgt->len += shiftlen;
2227 	tgt->data_len += shiftlen;
2228 	tgt->truesize += shiftlen;
2229 
2230 	return shiftlen;
2231 }
2232 
2233 /**
2234  * skb_prepare_seq_read - Prepare a sequential read of skb data
2235  * @skb: the buffer to read
2236  * @from: lower offset of data to be read
2237  * @to: upper offset of data to be read
2238  * @st: state variable
2239  *
2240  * Initializes the specified state variable. Must be called before
2241  * invoking skb_seq_read() for the first time.
2242  */
2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244 			  unsigned int to, struct skb_seq_state *st)
2245 {
2246 	st->lower_offset = from;
2247 	st->upper_offset = to;
2248 	st->root_skb = st->cur_skb = skb;
2249 	st->frag_idx = st->stepped_offset = 0;
2250 	st->frag_data = NULL;
2251 }
2252 EXPORT_SYMBOL(skb_prepare_seq_read);
2253 
2254 /**
2255  * skb_seq_read - Sequentially read skb data
2256  * @consumed: number of bytes consumed by the caller so far
2257  * @data: destination pointer for data to be returned
2258  * @st: state variable
2259  *
2260  * Reads a block of skb data at &consumed relative to the
2261  * lower offset specified to skb_prepare_seq_read(). Assigns
2262  * the head of the data block to &data and returns the length
2263  * of the block or 0 if the end of the skb data or the upper
2264  * offset has been reached.
2265  *
2266  * The caller is not required to consume all of the data
2267  * returned, i.e. &consumed is typically set to the number
2268  * of bytes already consumed and the next call to
2269  * skb_seq_read() will return the remaining part of the block.
2270  *
2271  * Note 1: The size of each block of data returned can be arbitary,
2272  *       this limitation is the cost for zerocopy seqeuental
2273  *       reads of potentially non linear data.
2274  *
2275  * Note 2: Fragment lists within fragments are not implemented
2276  *       at the moment, state->root_skb could be replaced with
2277  *       a stack for this purpose.
2278  */
2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280 			  struct skb_seq_state *st)
2281 {
2282 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283 	skb_frag_t *frag;
2284 
2285 	if (unlikely(abs_offset >= st->upper_offset))
2286 		return 0;
2287 
2288 next_skb:
2289 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290 
2291 	if (abs_offset < block_limit && !st->frag_data) {
2292 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293 		return block_limit - abs_offset;
2294 	}
2295 
2296 	if (st->frag_idx == 0 && !st->frag_data)
2297 		st->stepped_offset += skb_headlen(st->cur_skb);
2298 
2299 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301 		block_limit = frag->size + st->stepped_offset;
2302 
2303 		if (abs_offset < block_limit) {
2304 			if (!st->frag_data)
2305 				st->frag_data = kmap_skb_frag(frag);
2306 
2307 			*data = (u8 *) st->frag_data + frag->page_offset +
2308 				(abs_offset - st->stepped_offset);
2309 
2310 			return block_limit - abs_offset;
2311 		}
2312 
2313 		if (st->frag_data) {
2314 			kunmap_skb_frag(st->frag_data);
2315 			st->frag_data = NULL;
2316 		}
2317 
2318 		st->frag_idx++;
2319 		st->stepped_offset += frag->size;
2320 	}
2321 
2322 	if (st->frag_data) {
2323 		kunmap_skb_frag(st->frag_data);
2324 		st->frag_data = NULL;
2325 	}
2326 
2327 	if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2328 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2329 		st->frag_idx = 0;
2330 		goto next_skb;
2331 	} else if (st->cur_skb->next) {
2332 		st->cur_skb = st->cur_skb->next;
2333 		st->frag_idx = 0;
2334 		goto next_skb;
2335 	}
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(skb_seq_read);
2340 
2341 /**
2342  * skb_abort_seq_read - Abort a sequential read of skb data
2343  * @st: state variable
2344  *
2345  * Must be called if skb_seq_read() was not called until it
2346  * returned 0.
2347  */
2348 void skb_abort_seq_read(struct skb_seq_state *st)
2349 {
2350 	if (st->frag_data)
2351 		kunmap_skb_frag(st->frag_data);
2352 }
2353 EXPORT_SYMBOL(skb_abort_seq_read);
2354 
2355 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2356 
2357 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2358 					  struct ts_config *conf,
2359 					  struct ts_state *state)
2360 {
2361 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2362 }
2363 
2364 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2365 {
2366 	skb_abort_seq_read(TS_SKB_CB(state));
2367 }
2368 
2369 /**
2370  * skb_find_text - Find a text pattern in skb data
2371  * @skb: the buffer to look in
2372  * @from: search offset
2373  * @to: search limit
2374  * @config: textsearch configuration
2375  * @state: uninitialized textsearch state variable
2376  *
2377  * Finds a pattern in the skb data according to the specified
2378  * textsearch configuration. Use textsearch_next() to retrieve
2379  * subsequent occurrences of the pattern. Returns the offset
2380  * to the first occurrence or UINT_MAX if no match was found.
2381  */
2382 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2383 			   unsigned int to, struct ts_config *config,
2384 			   struct ts_state *state)
2385 {
2386 	unsigned int ret;
2387 
2388 	config->get_next_block = skb_ts_get_next_block;
2389 	config->finish = skb_ts_finish;
2390 
2391 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2392 
2393 	ret = textsearch_find(config, state);
2394 	return (ret <= to - from ? ret : UINT_MAX);
2395 }
2396 EXPORT_SYMBOL(skb_find_text);
2397 
2398 /**
2399  * skb_append_datato_frags: - append the user data to a skb
2400  * @sk: sock  structure
2401  * @skb: skb structure to be appened with user data.
2402  * @getfrag: call back function to be used for getting the user data
2403  * @from: pointer to user message iov
2404  * @length: length of the iov message
2405  *
2406  * Description: This procedure append the user data in the fragment part
2407  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2408  */
2409 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2410 			int (*getfrag)(void *from, char *to, int offset,
2411 					int len, int odd, struct sk_buff *skb),
2412 			void *from, int length)
2413 {
2414 	int frg_cnt = 0;
2415 	skb_frag_t *frag = NULL;
2416 	struct page *page = NULL;
2417 	int copy, left;
2418 	int offset = 0;
2419 	int ret;
2420 
2421 	do {
2422 		/* Return error if we don't have space for new frag */
2423 		frg_cnt = skb_shinfo(skb)->nr_frags;
2424 		if (frg_cnt >= MAX_SKB_FRAGS)
2425 			return -EFAULT;
2426 
2427 		/* allocate a new page for next frag */
2428 		page = alloc_pages(sk->sk_allocation, 0);
2429 
2430 		/* If alloc_page fails just return failure and caller will
2431 		 * free previous allocated pages by doing kfree_skb()
2432 		 */
2433 		if (page == NULL)
2434 			return -ENOMEM;
2435 
2436 		/* initialize the next frag */
2437 		sk->sk_sndmsg_page = page;
2438 		sk->sk_sndmsg_off = 0;
2439 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2440 		skb->truesize += PAGE_SIZE;
2441 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2442 
2443 		/* get the new initialized frag */
2444 		frg_cnt = skb_shinfo(skb)->nr_frags;
2445 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2446 
2447 		/* copy the user data to page */
2448 		left = PAGE_SIZE - frag->page_offset;
2449 		copy = (length > left)? left : length;
2450 
2451 		ret = getfrag(from, (page_address(frag->page) +
2452 			    frag->page_offset + frag->size),
2453 			    offset, copy, 0, skb);
2454 		if (ret < 0)
2455 			return -EFAULT;
2456 
2457 		/* copy was successful so update the size parameters */
2458 		sk->sk_sndmsg_off += copy;
2459 		frag->size += copy;
2460 		skb->len += copy;
2461 		skb->data_len += copy;
2462 		offset += copy;
2463 		length -= copy;
2464 
2465 	} while (length > 0);
2466 
2467 	return 0;
2468 }
2469 EXPORT_SYMBOL(skb_append_datato_frags);
2470 
2471 /**
2472  *	skb_pull_rcsum - pull skb and update receive checksum
2473  *	@skb: buffer to update
2474  *	@len: length of data pulled
2475  *
2476  *	This function performs an skb_pull on the packet and updates
2477  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2478  *	receive path processing instead of skb_pull unless you know
2479  *	that the checksum difference is zero (e.g., a valid IP header)
2480  *	or you are setting ip_summed to CHECKSUM_NONE.
2481  */
2482 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2483 {
2484 	BUG_ON(len > skb->len);
2485 	skb->len -= len;
2486 	BUG_ON(skb->len < skb->data_len);
2487 	skb_postpull_rcsum(skb, skb->data, len);
2488 	return skb->data += len;
2489 }
2490 
2491 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2492 
2493 /**
2494  *	skb_segment - Perform protocol segmentation on skb.
2495  *	@skb: buffer to segment
2496  *	@features: features for the output path (see dev->features)
2497  *
2498  *	This function performs segmentation on the given skb.  It returns
2499  *	a pointer to the first in a list of new skbs for the segments.
2500  *	In case of error it returns ERR_PTR(err).
2501  */
2502 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2503 {
2504 	struct sk_buff *segs = NULL;
2505 	struct sk_buff *tail = NULL;
2506 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2507 	unsigned int mss = skb_shinfo(skb)->gso_size;
2508 	unsigned int doffset = skb->data - skb_mac_header(skb);
2509 	unsigned int offset = doffset;
2510 	unsigned int headroom;
2511 	unsigned int len;
2512 	int sg = features & NETIF_F_SG;
2513 	int nfrags = skb_shinfo(skb)->nr_frags;
2514 	int err = -ENOMEM;
2515 	int i = 0;
2516 	int pos;
2517 
2518 	__skb_push(skb, doffset);
2519 	headroom = skb_headroom(skb);
2520 	pos = skb_headlen(skb);
2521 
2522 	do {
2523 		struct sk_buff *nskb;
2524 		skb_frag_t *frag;
2525 		int hsize;
2526 		int size;
2527 
2528 		len = skb->len - offset;
2529 		if (len > mss)
2530 			len = mss;
2531 
2532 		hsize = skb_headlen(skb) - offset;
2533 		if (hsize < 0)
2534 			hsize = 0;
2535 		if (hsize > len || !sg)
2536 			hsize = len;
2537 
2538 		if (!hsize && i >= nfrags) {
2539 			BUG_ON(fskb->len != len);
2540 
2541 			pos += len;
2542 			nskb = skb_clone(fskb, GFP_ATOMIC);
2543 			fskb = fskb->next;
2544 
2545 			if (unlikely(!nskb))
2546 				goto err;
2547 
2548 			hsize = skb_end_pointer(nskb) - nskb->head;
2549 			if (skb_cow_head(nskb, doffset + headroom)) {
2550 				kfree_skb(nskb);
2551 				goto err;
2552 			}
2553 
2554 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2555 					  hsize;
2556 			skb_release_head_state(nskb);
2557 			__skb_push(nskb, doffset);
2558 		} else {
2559 			nskb = alloc_skb(hsize + doffset + headroom,
2560 					 GFP_ATOMIC);
2561 
2562 			if (unlikely(!nskb))
2563 				goto err;
2564 
2565 			skb_reserve(nskb, headroom);
2566 			__skb_put(nskb, doffset);
2567 		}
2568 
2569 		if (segs)
2570 			tail->next = nskb;
2571 		else
2572 			segs = nskb;
2573 		tail = nskb;
2574 
2575 		__copy_skb_header(nskb, skb);
2576 		nskb->mac_len = skb->mac_len;
2577 
2578 		skb_reset_mac_header(nskb);
2579 		skb_set_network_header(nskb, skb->mac_len);
2580 		nskb->transport_header = (nskb->network_header +
2581 					  skb_network_header_len(skb));
2582 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2583 
2584 		if (fskb != skb_shinfo(skb)->frag_list)
2585 			continue;
2586 
2587 		if (!sg) {
2588 			nskb->ip_summed = CHECKSUM_NONE;
2589 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2590 							    skb_put(nskb, len),
2591 							    len, 0);
2592 			continue;
2593 		}
2594 
2595 		frag = skb_shinfo(nskb)->frags;
2596 
2597 		skb_copy_from_linear_data_offset(skb, offset,
2598 						 skb_put(nskb, hsize), hsize);
2599 
2600 		while (pos < offset + len && i < nfrags) {
2601 			*frag = skb_shinfo(skb)->frags[i];
2602 			get_page(frag->page);
2603 			size = frag->size;
2604 
2605 			if (pos < offset) {
2606 				frag->page_offset += offset - pos;
2607 				frag->size -= offset - pos;
2608 			}
2609 
2610 			skb_shinfo(nskb)->nr_frags++;
2611 
2612 			if (pos + size <= offset + len) {
2613 				i++;
2614 				pos += size;
2615 			} else {
2616 				frag->size -= pos + size - (offset + len);
2617 				goto skip_fraglist;
2618 			}
2619 
2620 			frag++;
2621 		}
2622 
2623 		if (pos < offset + len) {
2624 			struct sk_buff *fskb2 = fskb;
2625 
2626 			BUG_ON(pos + fskb->len != offset + len);
2627 
2628 			pos += fskb->len;
2629 			fskb = fskb->next;
2630 
2631 			if (fskb2->next) {
2632 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2633 				if (!fskb2)
2634 					goto err;
2635 			} else
2636 				skb_get(fskb2);
2637 
2638 			SKB_FRAG_ASSERT(nskb);
2639 			skb_shinfo(nskb)->frag_list = fskb2;
2640 		}
2641 
2642 skip_fraglist:
2643 		nskb->data_len = len - hsize;
2644 		nskb->len += nskb->data_len;
2645 		nskb->truesize += nskb->data_len;
2646 	} while ((offset += len) < skb->len);
2647 
2648 	return segs;
2649 
2650 err:
2651 	while ((skb = segs)) {
2652 		segs = skb->next;
2653 		kfree_skb(skb);
2654 	}
2655 	return ERR_PTR(err);
2656 }
2657 EXPORT_SYMBOL_GPL(skb_segment);
2658 
2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2660 {
2661 	struct sk_buff *p = *head;
2662 	struct sk_buff *nskb;
2663 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664 	struct skb_shared_info *pinfo = skb_shinfo(p);
2665 	unsigned int headroom;
2666 	unsigned int len = skb_gro_len(skb);
2667 	unsigned int offset = skb_gro_offset(skb);
2668 	unsigned int headlen = skb_headlen(skb);
2669 
2670 	if (p->len + len >= 65536)
2671 		return -E2BIG;
2672 
2673 	if (pinfo->frag_list)
2674 		goto merge;
2675 	else if (headlen <= offset) {
2676 		skb_frag_t *frag;
2677 		skb_frag_t *frag2;
2678 		int i = skbinfo->nr_frags;
2679 		int nr_frags = pinfo->nr_frags + i;
2680 
2681 		offset -= headlen;
2682 
2683 		if (nr_frags > MAX_SKB_FRAGS)
2684 			return -E2BIG;
2685 
2686 		pinfo->nr_frags = nr_frags;
2687 		skbinfo->nr_frags = 0;
2688 
2689 		frag = pinfo->frags + nr_frags;
2690 		frag2 = skbinfo->frags + i;
2691 		do {
2692 			*--frag = *--frag2;
2693 		} while (--i);
2694 
2695 		frag->page_offset += offset;
2696 		frag->size -= offset;
2697 
2698 		skb->truesize -= skb->data_len;
2699 		skb->len -= skb->data_len;
2700 		skb->data_len = 0;
2701 
2702 		NAPI_GRO_CB(skb)->free = 1;
2703 		goto done;
2704 	}
2705 
2706 	headroom = skb_headroom(p);
2707 	nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2708 	if (unlikely(!nskb))
2709 		return -ENOMEM;
2710 
2711 	__copy_skb_header(nskb, p);
2712 	nskb->mac_len = p->mac_len;
2713 
2714 	skb_reserve(nskb, headroom);
2715 	__skb_put(nskb, skb_gro_offset(p));
2716 
2717 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2718 	skb_set_network_header(nskb, skb_network_offset(p));
2719 	skb_set_transport_header(nskb, skb_transport_offset(p));
2720 
2721 	__skb_pull(p, skb_gro_offset(p));
2722 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2723 	       p->data - skb_mac_header(p));
2724 
2725 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2726 	skb_shinfo(nskb)->frag_list = p;
2727 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2728 	skb_header_release(p);
2729 	nskb->prev = p;
2730 
2731 	nskb->data_len += p->len;
2732 	nskb->truesize += p->len;
2733 	nskb->len += p->len;
2734 
2735 	*head = nskb;
2736 	nskb->next = p->next;
2737 	p->next = NULL;
2738 
2739 	p = nskb;
2740 
2741 merge:
2742 	if (offset > headlen) {
2743 		skbinfo->frags[0].page_offset += offset - headlen;
2744 		skbinfo->frags[0].size -= offset - headlen;
2745 		offset = headlen;
2746 	}
2747 
2748 	__skb_pull(skb, offset);
2749 
2750 	p->prev->next = skb;
2751 	p->prev = skb;
2752 	skb_header_release(skb);
2753 
2754 done:
2755 	NAPI_GRO_CB(p)->count++;
2756 	p->data_len += len;
2757 	p->truesize += len;
2758 	p->len += len;
2759 
2760 	NAPI_GRO_CB(skb)->same_flow = 1;
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(skb_gro_receive);
2764 
2765 void __init skb_init(void)
2766 {
2767 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2768 					      sizeof(struct sk_buff),
2769 					      0,
2770 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2771 					      NULL);
2772 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2773 						(2*sizeof(struct sk_buff)) +
2774 						sizeof(atomic_t),
2775 						0,
2776 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2777 						NULL);
2778 }
2779 
2780 /**
2781  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2782  *	@skb: Socket buffer containing the buffers to be mapped
2783  *	@sg: The scatter-gather list to map into
2784  *	@offset: The offset into the buffer's contents to start mapping
2785  *	@len: Length of buffer space to be mapped
2786  *
2787  *	Fill the specified scatter-gather list with mappings/pointers into a
2788  *	region of the buffer space attached to a socket buffer.
2789  */
2790 static int
2791 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2792 {
2793 	int start = skb_headlen(skb);
2794 	int i, copy = start - offset;
2795 	struct sk_buff *frag_iter;
2796 	int elt = 0;
2797 
2798 	if (copy > 0) {
2799 		if (copy > len)
2800 			copy = len;
2801 		sg_set_buf(sg, skb->data + offset, copy);
2802 		elt++;
2803 		if ((len -= copy) == 0)
2804 			return elt;
2805 		offset += copy;
2806 	}
2807 
2808 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2809 		int end;
2810 
2811 		WARN_ON(start > offset + len);
2812 
2813 		end = start + skb_shinfo(skb)->frags[i].size;
2814 		if ((copy = end - offset) > 0) {
2815 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2816 
2817 			if (copy > len)
2818 				copy = len;
2819 			sg_set_page(&sg[elt], frag->page, copy,
2820 					frag->page_offset+offset-start);
2821 			elt++;
2822 			if (!(len -= copy))
2823 				return elt;
2824 			offset += copy;
2825 		}
2826 		start = end;
2827 	}
2828 
2829 	skb_walk_frags(skb, frag_iter) {
2830 		int end;
2831 
2832 		WARN_ON(start > offset + len);
2833 
2834 		end = start + frag_iter->len;
2835 		if ((copy = end - offset) > 0) {
2836 			if (copy > len)
2837 				copy = len;
2838 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2839 					      copy);
2840 			if ((len -= copy) == 0)
2841 				return elt;
2842 			offset += copy;
2843 		}
2844 		start = end;
2845 	}
2846 	BUG_ON(len);
2847 	return elt;
2848 }
2849 
2850 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2851 {
2852 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2853 
2854 	sg_mark_end(&sg[nsg - 1]);
2855 
2856 	return nsg;
2857 }
2858 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2859 
2860 /**
2861  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2862  *	@skb: The socket buffer to check.
2863  *	@tailbits: Amount of trailing space to be added
2864  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2865  *
2866  *	Make sure that the data buffers attached to a socket buffer are
2867  *	writable. If they are not, private copies are made of the data buffers
2868  *	and the socket buffer is set to use these instead.
2869  *
2870  *	If @tailbits is given, make sure that there is space to write @tailbits
2871  *	bytes of data beyond current end of socket buffer.  @trailer will be
2872  *	set to point to the skb in which this space begins.
2873  *
2874  *	The number of scatterlist elements required to completely map the
2875  *	COW'd and extended socket buffer will be returned.
2876  */
2877 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2878 {
2879 	int copyflag;
2880 	int elt;
2881 	struct sk_buff *skb1, **skb_p;
2882 
2883 	/* If skb is cloned or its head is paged, reallocate
2884 	 * head pulling out all the pages (pages are considered not writable
2885 	 * at the moment even if they are anonymous).
2886 	 */
2887 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2888 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2889 		return -ENOMEM;
2890 
2891 	/* Easy case. Most of packets will go this way. */
2892 	if (!skb_has_frags(skb)) {
2893 		/* A little of trouble, not enough of space for trailer.
2894 		 * This should not happen, when stack is tuned to generate
2895 		 * good frames. OK, on miss we reallocate and reserve even more
2896 		 * space, 128 bytes is fair. */
2897 
2898 		if (skb_tailroom(skb) < tailbits &&
2899 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2900 			return -ENOMEM;
2901 
2902 		/* Voila! */
2903 		*trailer = skb;
2904 		return 1;
2905 	}
2906 
2907 	/* Misery. We are in troubles, going to mincer fragments... */
2908 
2909 	elt = 1;
2910 	skb_p = &skb_shinfo(skb)->frag_list;
2911 	copyflag = 0;
2912 
2913 	while ((skb1 = *skb_p) != NULL) {
2914 		int ntail = 0;
2915 
2916 		/* The fragment is partially pulled by someone,
2917 		 * this can happen on input. Copy it and everything
2918 		 * after it. */
2919 
2920 		if (skb_shared(skb1))
2921 			copyflag = 1;
2922 
2923 		/* If the skb is the last, worry about trailer. */
2924 
2925 		if (skb1->next == NULL && tailbits) {
2926 			if (skb_shinfo(skb1)->nr_frags ||
2927 			    skb_has_frags(skb1) ||
2928 			    skb_tailroom(skb1) < tailbits)
2929 				ntail = tailbits + 128;
2930 		}
2931 
2932 		if (copyflag ||
2933 		    skb_cloned(skb1) ||
2934 		    ntail ||
2935 		    skb_shinfo(skb1)->nr_frags ||
2936 		    skb_has_frags(skb1)) {
2937 			struct sk_buff *skb2;
2938 
2939 			/* Fuck, we are miserable poor guys... */
2940 			if (ntail == 0)
2941 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2942 			else
2943 				skb2 = skb_copy_expand(skb1,
2944 						       skb_headroom(skb1),
2945 						       ntail,
2946 						       GFP_ATOMIC);
2947 			if (unlikely(skb2 == NULL))
2948 				return -ENOMEM;
2949 
2950 			if (skb1->sk)
2951 				skb_set_owner_w(skb2, skb1->sk);
2952 
2953 			/* Looking around. Are we still alive?
2954 			 * OK, link new skb, drop old one */
2955 
2956 			skb2->next = skb1->next;
2957 			*skb_p = skb2;
2958 			kfree_skb(skb1);
2959 			skb1 = skb2;
2960 		}
2961 		elt++;
2962 		*trailer = skb1;
2963 		skb_p = &skb1->next;
2964 	}
2965 
2966 	return elt;
2967 }
2968 EXPORT_SYMBOL_GPL(skb_cow_data);
2969 
2970 void skb_tstamp_tx(struct sk_buff *orig_skb,
2971 		struct skb_shared_hwtstamps *hwtstamps)
2972 {
2973 	struct sock *sk = orig_skb->sk;
2974 	struct sock_exterr_skb *serr;
2975 	struct sk_buff *skb;
2976 	int err;
2977 
2978 	if (!sk)
2979 		return;
2980 
2981 	skb = skb_clone(orig_skb, GFP_ATOMIC);
2982 	if (!skb)
2983 		return;
2984 
2985 	if (hwtstamps) {
2986 		*skb_hwtstamps(skb) =
2987 			*hwtstamps;
2988 	} else {
2989 		/*
2990 		 * no hardware time stamps available,
2991 		 * so keep the skb_shared_tx and only
2992 		 * store software time stamp
2993 		 */
2994 		skb->tstamp = ktime_get_real();
2995 	}
2996 
2997 	serr = SKB_EXT_ERR(skb);
2998 	memset(serr, 0, sizeof(*serr));
2999 	serr->ee.ee_errno = ENOMSG;
3000 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3001 	err = sock_queue_err_skb(sk, skb);
3002 	if (err)
3003 		kfree_skb(skb);
3004 }
3005 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3006 
3007 
3008 /**
3009  * skb_partial_csum_set - set up and verify partial csum values for packet
3010  * @skb: the skb to set
3011  * @start: the number of bytes after skb->data to start checksumming.
3012  * @off: the offset from start to place the checksum.
3013  *
3014  * For untrusted partially-checksummed packets, we need to make sure the values
3015  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3016  *
3017  * This function checks and sets those values and skb->ip_summed: if this
3018  * returns false you should drop the packet.
3019  */
3020 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3021 {
3022 	if (unlikely(start > skb_headlen(skb)) ||
3023 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3024 		if (net_ratelimit())
3025 			printk(KERN_WARNING
3026 			       "bad partial csum: csum=%u/%u len=%u\n",
3027 			       start, off, skb_headlen(skb));
3028 		return false;
3029 	}
3030 	skb->ip_summed = CHECKSUM_PARTIAL;
3031 	skb->csum_start = skb_headroom(skb) + start;
3032 	skb->csum_offset = off;
3033 	return true;
3034 }
3035 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3036 
3037 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3038 {
3039 	if (net_ratelimit())
3040 		pr_warning("%s: received packets cannot be forwarded"
3041 			   " while LRO is enabled\n", skb->dev->name);
3042 }
3043 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3044