1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 #include <trace/events/skb.h> 70 71 #include "kmap_skb.h" 72 73 static struct kmem_cache *skbuff_head_cache __read_mostly; 74 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 75 76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 77 struct pipe_buffer *buf) 78 { 79 put_page(buf->page); 80 } 81 82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 get_page(buf->page); 86 } 87 88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 return 1; 92 } 93 94 95 /* Pipe buffer operations for a socket. */ 96 static struct pipe_buf_operations sock_pipe_buf_ops = { 97 .can_merge = 0, 98 .map = generic_pipe_buf_map, 99 .unmap = generic_pipe_buf_unmap, 100 .confirm = generic_pipe_buf_confirm, 101 .release = sock_pipe_buf_release, 102 .steal = sock_pipe_buf_steal, 103 .get = sock_pipe_buf_get, 104 }; 105 106 /* 107 * Keep out-of-line to prevent kernel bloat. 108 * __builtin_return_address is not used because it is not always 109 * reliable. 110 */ 111 112 /** 113 * skb_over_panic - private function 114 * @skb: buffer 115 * @sz: size 116 * @here: address 117 * 118 * Out of line support code for skb_put(). Not user callable. 119 */ 120 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 121 { 122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 123 "data:%p tail:%#lx end:%#lx dev:%s\n", 124 here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 EXPORT_SYMBOL(skb_over_panic); 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 EXPORT_SYMBOL(skb_under_panic); 150 151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 152 * 'private' fields and also do memory statistics to find all the 153 * [BEEP] leaks. 154 * 155 */ 156 157 /** 158 * __alloc_skb - allocate a network buffer 159 * @size: size to allocate 160 * @gfp_mask: allocation mask 161 * @fclone: allocate from fclone cache instead of head cache 162 * and allocate a cloned (child) skb 163 * @node: numa node to allocate memory on 164 * 165 * Allocate a new &sk_buff. The returned buffer has no headroom and a 166 * tail room of size bytes. The object has a reference count of one. 167 * The return is the buffer. On a failure the return is %NULL. 168 * 169 * Buffers may only be allocated from interrupts using a @gfp_mask of 170 * %GFP_ATOMIC. 171 */ 172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 173 int fclone, int node) 174 { 175 struct kmem_cache *cache; 176 struct skb_shared_info *shinfo; 177 struct sk_buff *skb; 178 u8 *data; 179 180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 181 182 /* Get the HEAD */ 183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 184 if (!skb) 185 goto out; 186 187 size = SKB_DATA_ALIGN(size); 188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 189 gfp_mask, node); 190 if (!data) 191 goto nodata; 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->truesize = size + sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 kmemcheck_annotate_bitfield(skb, flags1); 206 kmemcheck_annotate_bitfield(skb, flags2); 207 #ifdef NET_SKBUFF_DATA_USES_OFFSET 208 skb->mac_header = ~0U; 209 #endif 210 211 /* make sure we initialize shinfo sequentially */ 212 shinfo = skb_shinfo(skb); 213 atomic_set(&shinfo->dataref, 1); 214 shinfo->nr_frags = 0; 215 shinfo->gso_size = 0; 216 shinfo->gso_segs = 0; 217 shinfo->gso_type = 0; 218 shinfo->ip6_frag_id = 0; 219 shinfo->tx_flags.flags = 0; 220 skb_frag_list_init(skb); 221 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 222 223 if (fclone) { 224 struct sk_buff *child = skb + 1; 225 atomic_t *fclone_ref = (atomic_t *) (child + 1); 226 227 kmemcheck_annotate_bitfield(child, flags1); 228 kmemcheck_annotate_bitfield(child, flags2); 229 skb->fclone = SKB_FCLONE_ORIG; 230 atomic_set(fclone_ref, 1); 231 232 child->fclone = SKB_FCLONE_UNAVAILABLE; 233 } 234 out: 235 return skb; 236 nodata: 237 kmem_cache_free(cache, skb); 238 skb = NULL; 239 goto out; 240 } 241 EXPORT_SYMBOL(__alloc_skb); 242 243 /** 244 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 245 * @dev: network device to receive on 246 * @length: length to allocate 247 * @gfp_mask: get_free_pages mask, passed to alloc_skb 248 * 249 * Allocate a new &sk_buff and assign it a usage count of one. The 250 * buffer has unspecified headroom built in. Users should allocate 251 * the headroom they think they need without accounting for the 252 * built in space. The built in space is used for optimisations. 253 * 254 * %NULL is returned if there is no free memory. 255 */ 256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 257 unsigned int length, gfp_t gfp_mask) 258 { 259 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 260 struct sk_buff *skb; 261 262 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 263 if (likely(skb)) { 264 skb_reserve(skb, NET_SKB_PAD); 265 skb->dev = dev; 266 } 267 return skb; 268 } 269 EXPORT_SYMBOL(__netdev_alloc_skb); 270 271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 272 { 273 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 274 struct page *page; 275 276 page = alloc_pages_node(node, gfp_mask, 0); 277 return page; 278 } 279 EXPORT_SYMBOL(__netdev_alloc_page); 280 281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 282 int size) 283 { 284 skb_fill_page_desc(skb, i, page, off, size); 285 skb->len += size; 286 skb->data_len += size; 287 skb->truesize += size; 288 } 289 EXPORT_SYMBOL(skb_add_rx_frag); 290 291 /** 292 * dev_alloc_skb - allocate an skbuff for receiving 293 * @length: length to allocate 294 * 295 * Allocate a new &sk_buff and assign it a usage count of one. The 296 * buffer has unspecified headroom built in. Users should allocate 297 * the headroom they think they need without accounting for the 298 * built in space. The built in space is used for optimisations. 299 * 300 * %NULL is returned if there is no free memory. Although this function 301 * allocates memory it can be called from an interrupt. 302 */ 303 struct sk_buff *dev_alloc_skb(unsigned int length) 304 { 305 /* 306 * There is more code here than it seems: 307 * __dev_alloc_skb is an inline 308 */ 309 return __dev_alloc_skb(length, GFP_ATOMIC); 310 } 311 EXPORT_SYMBOL(dev_alloc_skb); 312 313 static void skb_drop_list(struct sk_buff **listp) 314 { 315 struct sk_buff *list = *listp; 316 317 *listp = NULL; 318 319 do { 320 struct sk_buff *this = list; 321 list = list->next; 322 kfree_skb(this); 323 } while (list); 324 } 325 326 static inline void skb_drop_fraglist(struct sk_buff *skb) 327 { 328 skb_drop_list(&skb_shinfo(skb)->frag_list); 329 } 330 331 static void skb_clone_fraglist(struct sk_buff *skb) 332 { 333 struct sk_buff *list; 334 335 skb_walk_frags(skb, list) 336 skb_get(list); 337 } 338 339 static void skb_release_data(struct sk_buff *skb) 340 { 341 if (!skb->cloned || 342 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 343 &skb_shinfo(skb)->dataref)) { 344 if (skb_shinfo(skb)->nr_frags) { 345 int i; 346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 347 put_page(skb_shinfo(skb)->frags[i].page); 348 } 349 350 if (skb_has_frags(skb)) 351 skb_drop_fraglist(skb); 352 353 kfree(skb->head); 354 } 355 } 356 357 /* 358 * Free an skbuff by memory without cleaning the state. 359 */ 360 static void kfree_skbmem(struct sk_buff *skb) 361 { 362 struct sk_buff *other; 363 atomic_t *fclone_ref; 364 365 switch (skb->fclone) { 366 case SKB_FCLONE_UNAVAILABLE: 367 kmem_cache_free(skbuff_head_cache, skb); 368 break; 369 370 case SKB_FCLONE_ORIG: 371 fclone_ref = (atomic_t *) (skb + 2); 372 if (atomic_dec_and_test(fclone_ref)) 373 kmem_cache_free(skbuff_fclone_cache, skb); 374 break; 375 376 case SKB_FCLONE_CLONE: 377 fclone_ref = (atomic_t *) (skb + 1); 378 other = skb - 1; 379 380 /* The clone portion is available for 381 * fast-cloning again. 382 */ 383 skb->fclone = SKB_FCLONE_UNAVAILABLE; 384 385 if (atomic_dec_and_test(fclone_ref)) 386 kmem_cache_free(skbuff_fclone_cache, other); 387 break; 388 } 389 } 390 391 static void skb_release_head_state(struct sk_buff *skb) 392 { 393 skb_dst_drop(skb); 394 #ifdef CONFIG_XFRM 395 secpath_put(skb->sp); 396 #endif 397 if (skb->destructor) { 398 WARN_ON(in_irq()); 399 skb->destructor(skb); 400 } 401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 402 nf_conntrack_put(skb->nfct); 403 nf_conntrack_put_reasm(skb->nfct_reasm); 404 #endif 405 #ifdef CONFIG_BRIDGE_NETFILTER 406 nf_bridge_put(skb->nf_bridge); 407 #endif 408 /* XXX: IS this still necessary? - JHS */ 409 #ifdef CONFIG_NET_SCHED 410 skb->tc_index = 0; 411 #ifdef CONFIG_NET_CLS_ACT 412 skb->tc_verd = 0; 413 #endif 414 #endif 415 } 416 417 /* Free everything but the sk_buff shell. */ 418 static void skb_release_all(struct sk_buff *skb) 419 { 420 skb_release_head_state(skb); 421 skb_release_data(skb); 422 } 423 424 /** 425 * __kfree_skb - private function 426 * @skb: buffer 427 * 428 * Free an sk_buff. Release anything attached to the buffer. 429 * Clean the state. This is an internal helper function. Users should 430 * always call kfree_skb 431 */ 432 433 void __kfree_skb(struct sk_buff *skb) 434 { 435 skb_release_all(skb); 436 kfree_skbmem(skb); 437 } 438 EXPORT_SYMBOL(__kfree_skb); 439 440 /** 441 * kfree_skb - free an sk_buff 442 * @skb: buffer to free 443 * 444 * Drop a reference to the buffer and free it if the usage count has 445 * hit zero. 446 */ 447 void kfree_skb(struct sk_buff *skb) 448 { 449 if (unlikely(!skb)) 450 return; 451 if (likely(atomic_read(&skb->users) == 1)) 452 smp_rmb(); 453 else if (likely(!atomic_dec_and_test(&skb->users))) 454 return; 455 trace_kfree_skb(skb, __builtin_return_address(0)); 456 __kfree_skb(skb); 457 } 458 EXPORT_SYMBOL(kfree_skb); 459 460 /** 461 * consume_skb - free an skbuff 462 * @skb: buffer to free 463 * 464 * Drop a ref to the buffer and free it if the usage count has hit zero 465 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 466 * is being dropped after a failure and notes that 467 */ 468 void consume_skb(struct sk_buff *skb) 469 { 470 if (unlikely(!skb)) 471 return; 472 if (likely(atomic_read(&skb->users) == 1)) 473 smp_rmb(); 474 else if (likely(!atomic_dec_and_test(&skb->users))) 475 return; 476 __kfree_skb(skb); 477 } 478 EXPORT_SYMBOL(consume_skb); 479 480 /** 481 * skb_recycle_check - check if skb can be reused for receive 482 * @skb: buffer 483 * @skb_size: minimum receive buffer size 484 * 485 * Checks that the skb passed in is not shared or cloned, and 486 * that it is linear and its head portion at least as large as 487 * skb_size so that it can be recycled as a receive buffer. 488 * If these conditions are met, this function does any necessary 489 * reference count dropping and cleans up the skbuff as if it 490 * just came from __alloc_skb(). 491 */ 492 int skb_recycle_check(struct sk_buff *skb, int skb_size) 493 { 494 struct skb_shared_info *shinfo; 495 496 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 497 return 0; 498 499 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 500 if (skb_end_pointer(skb) - skb->head < skb_size) 501 return 0; 502 503 if (skb_shared(skb) || skb_cloned(skb)) 504 return 0; 505 506 skb_release_head_state(skb); 507 shinfo = skb_shinfo(skb); 508 atomic_set(&shinfo->dataref, 1); 509 shinfo->nr_frags = 0; 510 shinfo->gso_size = 0; 511 shinfo->gso_segs = 0; 512 shinfo->gso_type = 0; 513 shinfo->ip6_frag_id = 0; 514 shinfo->tx_flags.flags = 0; 515 skb_frag_list_init(skb); 516 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps)); 517 518 memset(skb, 0, offsetof(struct sk_buff, tail)); 519 skb->data = skb->head + NET_SKB_PAD; 520 skb_reset_tail_pointer(skb); 521 522 return 1; 523 } 524 EXPORT_SYMBOL(skb_recycle_check); 525 526 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 527 { 528 new->tstamp = old->tstamp; 529 new->dev = old->dev; 530 new->transport_header = old->transport_header; 531 new->network_header = old->network_header; 532 new->mac_header = old->mac_header; 533 skb_dst_set(new, dst_clone(skb_dst(old))); 534 #ifdef CONFIG_XFRM 535 new->sp = secpath_get(old->sp); 536 #endif 537 memcpy(new->cb, old->cb, sizeof(old->cb)); 538 new->csum = old->csum; 539 new->local_df = old->local_df; 540 new->pkt_type = old->pkt_type; 541 new->ip_summed = old->ip_summed; 542 skb_copy_queue_mapping(new, old); 543 new->priority = old->priority; 544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 545 new->ipvs_property = old->ipvs_property; 546 #endif 547 new->protocol = old->protocol; 548 new->mark = old->mark; 549 new->iif = old->iif; 550 __nf_copy(new, old); 551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 552 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 553 new->nf_trace = old->nf_trace; 554 #endif 555 #ifdef CONFIG_NET_SCHED 556 new->tc_index = old->tc_index; 557 #ifdef CONFIG_NET_CLS_ACT 558 new->tc_verd = old->tc_verd; 559 #endif 560 #endif 561 new->vlan_tci = old->vlan_tci; 562 563 skb_copy_secmark(new, old); 564 } 565 566 /* 567 * You should not add any new code to this function. Add it to 568 * __copy_skb_header above instead. 569 */ 570 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 571 { 572 #define C(x) n->x = skb->x 573 574 n->next = n->prev = NULL; 575 n->sk = NULL; 576 __copy_skb_header(n, skb); 577 578 C(len); 579 C(data_len); 580 C(mac_len); 581 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 582 n->cloned = 1; 583 n->nohdr = 0; 584 n->destructor = NULL; 585 C(tail); 586 C(end); 587 C(head); 588 C(data); 589 C(truesize); 590 atomic_set(&n->users, 1); 591 592 atomic_inc(&(skb_shinfo(skb)->dataref)); 593 skb->cloned = 1; 594 595 return n; 596 #undef C 597 } 598 599 /** 600 * skb_morph - morph one skb into another 601 * @dst: the skb to receive the contents 602 * @src: the skb to supply the contents 603 * 604 * This is identical to skb_clone except that the target skb is 605 * supplied by the user. 606 * 607 * The target skb is returned upon exit. 608 */ 609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 610 { 611 skb_release_all(dst); 612 return __skb_clone(dst, src); 613 } 614 EXPORT_SYMBOL_GPL(skb_morph); 615 616 /** 617 * skb_clone - duplicate an sk_buff 618 * @skb: buffer to clone 619 * @gfp_mask: allocation priority 620 * 621 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 622 * copies share the same packet data but not structure. The new 623 * buffer has a reference count of 1. If the allocation fails the 624 * function returns %NULL otherwise the new buffer is returned. 625 * 626 * If this function is called from an interrupt gfp_mask() must be 627 * %GFP_ATOMIC. 628 */ 629 630 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 631 { 632 struct sk_buff *n; 633 634 n = skb + 1; 635 if (skb->fclone == SKB_FCLONE_ORIG && 636 n->fclone == SKB_FCLONE_UNAVAILABLE) { 637 atomic_t *fclone_ref = (atomic_t *) (n + 1); 638 n->fclone = SKB_FCLONE_CLONE; 639 atomic_inc(fclone_ref); 640 } else { 641 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 642 if (!n) 643 return NULL; 644 645 kmemcheck_annotate_bitfield(n, flags1); 646 kmemcheck_annotate_bitfield(n, flags2); 647 n->fclone = SKB_FCLONE_UNAVAILABLE; 648 } 649 650 return __skb_clone(n, skb); 651 } 652 EXPORT_SYMBOL(skb_clone); 653 654 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 655 { 656 #ifndef NET_SKBUFF_DATA_USES_OFFSET 657 /* 658 * Shift between the two data areas in bytes 659 */ 660 unsigned long offset = new->data - old->data; 661 #endif 662 663 __copy_skb_header(new, old); 664 665 #ifndef NET_SKBUFF_DATA_USES_OFFSET 666 /* {transport,network,mac}_header are relative to skb->head */ 667 new->transport_header += offset; 668 new->network_header += offset; 669 if (skb_mac_header_was_set(new)) 670 new->mac_header += offset; 671 #endif 672 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 673 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 674 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 675 } 676 677 /** 678 * skb_copy - create private copy of an sk_buff 679 * @skb: buffer to copy 680 * @gfp_mask: allocation priority 681 * 682 * Make a copy of both an &sk_buff and its data. This is used when the 683 * caller wishes to modify the data and needs a private copy of the 684 * data to alter. Returns %NULL on failure or the pointer to the buffer 685 * on success. The returned buffer has a reference count of 1. 686 * 687 * As by-product this function converts non-linear &sk_buff to linear 688 * one, so that &sk_buff becomes completely private and caller is allowed 689 * to modify all the data of returned buffer. This means that this 690 * function is not recommended for use in circumstances when only 691 * header is going to be modified. Use pskb_copy() instead. 692 */ 693 694 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 695 { 696 int headerlen = skb->data - skb->head; 697 /* 698 * Allocate the copy buffer 699 */ 700 struct sk_buff *n; 701 #ifdef NET_SKBUFF_DATA_USES_OFFSET 702 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 703 #else 704 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 705 #endif 706 if (!n) 707 return NULL; 708 709 /* Set the data pointer */ 710 skb_reserve(n, headerlen); 711 /* Set the tail pointer and length */ 712 skb_put(n, skb->len); 713 714 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 715 BUG(); 716 717 copy_skb_header(n, skb); 718 return n; 719 } 720 EXPORT_SYMBOL(skb_copy); 721 722 /** 723 * pskb_copy - create copy of an sk_buff with private head. 724 * @skb: buffer to copy 725 * @gfp_mask: allocation priority 726 * 727 * Make a copy of both an &sk_buff and part of its data, located 728 * in header. Fragmented data remain shared. This is used when 729 * the caller wishes to modify only header of &sk_buff and needs 730 * private copy of the header to alter. Returns %NULL on failure 731 * or the pointer to the buffer on success. 732 * The returned buffer has a reference count of 1. 733 */ 734 735 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 736 { 737 /* 738 * Allocate the copy buffer 739 */ 740 struct sk_buff *n; 741 #ifdef NET_SKBUFF_DATA_USES_OFFSET 742 n = alloc_skb(skb->end, gfp_mask); 743 #else 744 n = alloc_skb(skb->end - skb->head, gfp_mask); 745 #endif 746 if (!n) 747 goto out; 748 749 /* Set the data pointer */ 750 skb_reserve(n, skb->data - skb->head); 751 /* Set the tail pointer and length */ 752 skb_put(n, skb_headlen(skb)); 753 /* Copy the bytes */ 754 skb_copy_from_linear_data(skb, n->data, n->len); 755 756 n->truesize += skb->data_len; 757 n->data_len = skb->data_len; 758 n->len = skb->len; 759 760 if (skb_shinfo(skb)->nr_frags) { 761 int i; 762 763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 764 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 765 get_page(skb_shinfo(n)->frags[i].page); 766 } 767 skb_shinfo(n)->nr_frags = i; 768 } 769 770 if (skb_has_frags(skb)) { 771 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 772 skb_clone_fraglist(n); 773 } 774 775 copy_skb_header(n, skb); 776 out: 777 return n; 778 } 779 EXPORT_SYMBOL(pskb_copy); 780 781 /** 782 * pskb_expand_head - reallocate header of &sk_buff 783 * @skb: buffer to reallocate 784 * @nhead: room to add at head 785 * @ntail: room to add at tail 786 * @gfp_mask: allocation priority 787 * 788 * Expands (or creates identical copy, if &nhead and &ntail are zero) 789 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 790 * reference count of 1. Returns zero in the case of success or error, 791 * if expansion failed. In the last case, &sk_buff is not changed. 792 * 793 * All the pointers pointing into skb header may change and must be 794 * reloaded after call to this function. 795 */ 796 797 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 798 gfp_t gfp_mask) 799 { 800 int i; 801 u8 *data; 802 #ifdef NET_SKBUFF_DATA_USES_OFFSET 803 int size = nhead + skb->end + ntail; 804 #else 805 int size = nhead + (skb->end - skb->head) + ntail; 806 #endif 807 long off; 808 809 BUG_ON(nhead < 0); 810 811 if (skb_shared(skb)) 812 BUG(); 813 814 size = SKB_DATA_ALIGN(size); 815 816 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 817 if (!data) 818 goto nodata; 819 820 /* Copy only real data... and, alas, header. This should be 821 * optimized for the cases when header is void. */ 822 #ifdef NET_SKBUFF_DATA_USES_OFFSET 823 memcpy(data + nhead, skb->head, skb->tail); 824 #else 825 memcpy(data + nhead, skb->head, skb->tail - skb->head); 826 #endif 827 memcpy(data + size, skb_end_pointer(skb), 828 sizeof(struct skb_shared_info)); 829 830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 831 get_page(skb_shinfo(skb)->frags[i].page); 832 833 if (skb_has_frags(skb)) 834 skb_clone_fraglist(skb); 835 836 skb_release_data(skb); 837 838 off = (data + nhead) - skb->head; 839 840 skb->head = data; 841 skb->data += off; 842 #ifdef NET_SKBUFF_DATA_USES_OFFSET 843 skb->end = size; 844 off = nhead; 845 #else 846 skb->end = skb->head + size; 847 #endif 848 /* {transport,network,mac}_header and tail are relative to skb->head */ 849 skb->tail += off; 850 skb->transport_header += off; 851 skb->network_header += off; 852 if (skb_mac_header_was_set(skb)) 853 skb->mac_header += off; 854 skb->csum_start += nhead; 855 skb->cloned = 0; 856 skb->hdr_len = 0; 857 skb->nohdr = 0; 858 atomic_set(&skb_shinfo(skb)->dataref, 1); 859 return 0; 860 861 nodata: 862 return -ENOMEM; 863 } 864 EXPORT_SYMBOL(pskb_expand_head); 865 866 /* Make private copy of skb with writable head and some headroom */ 867 868 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 869 { 870 struct sk_buff *skb2; 871 int delta = headroom - skb_headroom(skb); 872 873 if (delta <= 0) 874 skb2 = pskb_copy(skb, GFP_ATOMIC); 875 else { 876 skb2 = skb_clone(skb, GFP_ATOMIC); 877 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 878 GFP_ATOMIC)) { 879 kfree_skb(skb2); 880 skb2 = NULL; 881 } 882 } 883 return skb2; 884 } 885 EXPORT_SYMBOL(skb_realloc_headroom); 886 887 /** 888 * skb_copy_expand - copy and expand sk_buff 889 * @skb: buffer to copy 890 * @newheadroom: new free bytes at head 891 * @newtailroom: new free bytes at tail 892 * @gfp_mask: allocation priority 893 * 894 * Make a copy of both an &sk_buff and its data and while doing so 895 * allocate additional space. 896 * 897 * This is used when the caller wishes to modify the data and needs a 898 * private copy of the data to alter as well as more space for new fields. 899 * Returns %NULL on failure or the pointer to the buffer 900 * on success. The returned buffer has a reference count of 1. 901 * 902 * You must pass %GFP_ATOMIC as the allocation priority if this function 903 * is called from an interrupt. 904 */ 905 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 906 int newheadroom, int newtailroom, 907 gfp_t gfp_mask) 908 { 909 /* 910 * Allocate the copy buffer 911 */ 912 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 913 gfp_mask); 914 int oldheadroom = skb_headroom(skb); 915 int head_copy_len, head_copy_off; 916 int off; 917 918 if (!n) 919 return NULL; 920 921 skb_reserve(n, newheadroom); 922 923 /* Set the tail pointer and length */ 924 skb_put(n, skb->len); 925 926 head_copy_len = oldheadroom; 927 head_copy_off = 0; 928 if (newheadroom <= head_copy_len) 929 head_copy_len = newheadroom; 930 else 931 head_copy_off = newheadroom - head_copy_len; 932 933 /* Copy the linear header and data. */ 934 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 935 skb->len + head_copy_len)) 936 BUG(); 937 938 copy_skb_header(n, skb); 939 940 off = newheadroom - oldheadroom; 941 n->csum_start += off; 942 #ifdef NET_SKBUFF_DATA_USES_OFFSET 943 n->transport_header += off; 944 n->network_header += off; 945 if (skb_mac_header_was_set(skb)) 946 n->mac_header += off; 947 #endif 948 949 return n; 950 } 951 EXPORT_SYMBOL(skb_copy_expand); 952 953 /** 954 * skb_pad - zero pad the tail of an skb 955 * @skb: buffer to pad 956 * @pad: space to pad 957 * 958 * Ensure that a buffer is followed by a padding area that is zero 959 * filled. Used by network drivers which may DMA or transfer data 960 * beyond the buffer end onto the wire. 961 * 962 * May return error in out of memory cases. The skb is freed on error. 963 */ 964 965 int skb_pad(struct sk_buff *skb, int pad) 966 { 967 int err; 968 int ntail; 969 970 /* If the skbuff is non linear tailroom is always zero.. */ 971 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 972 memset(skb->data+skb->len, 0, pad); 973 return 0; 974 } 975 976 ntail = skb->data_len + pad - (skb->end - skb->tail); 977 if (likely(skb_cloned(skb) || ntail > 0)) { 978 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 979 if (unlikely(err)) 980 goto free_skb; 981 } 982 983 /* FIXME: The use of this function with non-linear skb's really needs 984 * to be audited. 985 */ 986 err = skb_linearize(skb); 987 if (unlikely(err)) 988 goto free_skb; 989 990 memset(skb->data + skb->len, 0, pad); 991 return 0; 992 993 free_skb: 994 kfree_skb(skb); 995 return err; 996 } 997 EXPORT_SYMBOL(skb_pad); 998 999 /** 1000 * skb_put - add data to a buffer 1001 * @skb: buffer to use 1002 * @len: amount of data to add 1003 * 1004 * This function extends the used data area of the buffer. If this would 1005 * exceed the total buffer size the kernel will panic. A pointer to the 1006 * first byte of the extra data is returned. 1007 */ 1008 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1009 { 1010 unsigned char *tmp = skb_tail_pointer(skb); 1011 SKB_LINEAR_ASSERT(skb); 1012 skb->tail += len; 1013 skb->len += len; 1014 if (unlikely(skb->tail > skb->end)) 1015 skb_over_panic(skb, len, __builtin_return_address(0)); 1016 return tmp; 1017 } 1018 EXPORT_SYMBOL(skb_put); 1019 1020 /** 1021 * skb_push - add data to the start of a buffer 1022 * @skb: buffer to use 1023 * @len: amount of data to add 1024 * 1025 * This function extends the used data area of the buffer at the buffer 1026 * start. If this would exceed the total buffer headroom the kernel will 1027 * panic. A pointer to the first byte of the extra data is returned. 1028 */ 1029 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1030 { 1031 skb->data -= len; 1032 skb->len += len; 1033 if (unlikely(skb->data<skb->head)) 1034 skb_under_panic(skb, len, __builtin_return_address(0)); 1035 return skb->data; 1036 } 1037 EXPORT_SYMBOL(skb_push); 1038 1039 /** 1040 * skb_pull - remove data from the start of a buffer 1041 * @skb: buffer to use 1042 * @len: amount of data to remove 1043 * 1044 * This function removes data from the start of a buffer, returning 1045 * the memory to the headroom. A pointer to the next data in the buffer 1046 * is returned. Once the data has been pulled future pushes will overwrite 1047 * the old data. 1048 */ 1049 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1050 { 1051 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1052 } 1053 EXPORT_SYMBOL(skb_pull); 1054 1055 /** 1056 * skb_trim - remove end from a buffer 1057 * @skb: buffer to alter 1058 * @len: new length 1059 * 1060 * Cut the length of a buffer down by removing data from the tail. If 1061 * the buffer is already under the length specified it is not modified. 1062 * The skb must be linear. 1063 */ 1064 void skb_trim(struct sk_buff *skb, unsigned int len) 1065 { 1066 if (skb->len > len) 1067 __skb_trim(skb, len); 1068 } 1069 EXPORT_SYMBOL(skb_trim); 1070 1071 /* Trims skb to length len. It can change skb pointers. 1072 */ 1073 1074 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1075 { 1076 struct sk_buff **fragp; 1077 struct sk_buff *frag; 1078 int offset = skb_headlen(skb); 1079 int nfrags = skb_shinfo(skb)->nr_frags; 1080 int i; 1081 int err; 1082 1083 if (skb_cloned(skb) && 1084 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1085 return err; 1086 1087 i = 0; 1088 if (offset >= len) 1089 goto drop_pages; 1090 1091 for (; i < nfrags; i++) { 1092 int end = offset + skb_shinfo(skb)->frags[i].size; 1093 1094 if (end < len) { 1095 offset = end; 1096 continue; 1097 } 1098 1099 skb_shinfo(skb)->frags[i++].size = len - offset; 1100 1101 drop_pages: 1102 skb_shinfo(skb)->nr_frags = i; 1103 1104 for (; i < nfrags; i++) 1105 put_page(skb_shinfo(skb)->frags[i].page); 1106 1107 if (skb_has_frags(skb)) 1108 skb_drop_fraglist(skb); 1109 goto done; 1110 } 1111 1112 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1113 fragp = &frag->next) { 1114 int end = offset + frag->len; 1115 1116 if (skb_shared(frag)) { 1117 struct sk_buff *nfrag; 1118 1119 nfrag = skb_clone(frag, GFP_ATOMIC); 1120 if (unlikely(!nfrag)) 1121 return -ENOMEM; 1122 1123 nfrag->next = frag->next; 1124 kfree_skb(frag); 1125 frag = nfrag; 1126 *fragp = frag; 1127 } 1128 1129 if (end < len) { 1130 offset = end; 1131 continue; 1132 } 1133 1134 if (end > len && 1135 unlikely((err = pskb_trim(frag, len - offset)))) 1136 return err; 1137 1138 if (frag->next) 1139 skb_drop_list(&frag->next); 1140 break; 1141 } 1142 1143 done: 1144 if (len > skb_headlen(skb)) { 1145 skb->data_len -= skb->len - len; 1146 skb->len = len; 1147 } else { 1148 skb->len = len; 1149 skb->data_len = 0; 1150 skb_set_tail_pointer(skb, len); 1151 } 1152 1153 return 0; 1154 } 1155 EXPORT_SYMBOL(___pskb_trim); 1156 1157 /** 1158 * __pskb_pull_tail - advance tail of skb header 1159 * @skb: buffer to reallocate 1160 * @delta: number of bytes to advance tail 1161 * 1162 * The function makes a sense only on a fragmented &sk_buff, 1163 * it expands header moving its tail forward and copying necessary 1164 * data from fragmented part. 1165 * 1166 * &sk_buff MUST have reference count of 1. 1167 * 1168 * Returns %NULL (and &sk_buff does not change) if pull failed 1169 * or value of new tail of skb in the case of success. 1170 * 1171 * All the pointers pointing into skb header may change and must be 1172 * reloaded after call to this function. 1173 */ 1174 1175 /* Moves tail of skb head forward, copying data from fragmented part, 1176 * when it is necessary. 1177 * 1. It may fail due to malloc failure. 1178 * 2. It may change skb pointers. 1179 * 1180 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1181 */ 1182 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1183 { 1184 /* If skb has not enough free space at tail, get new one 1185 * plus 128 bytes for future expansions. If we have enough 1186 * room at tail, reallocate without expansion only if skb is cloned. 1187 */ 1188 int i, k, eat = (skb->tail + delta) - skb->end; 1189 1190 if (eat > 0 || skb_cloned(skb)) { 1191 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1192 GFP_ATOMIC)) 1193 return NULL; 1194 } 1195 1196 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1197 BUG(); 1198 1199 /* Optimization: no fragments, no reasons to preestimate 1200 * size of pulled pages. Superb. 1201 */ 1202 if (!skb_has_frags(skb)) 1203 goto pull_pages; 1204 1205 /* Estimate size of pulled pages. */ 1206 eat = delta; 1207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1208 if (skb_shinfo(skb)->frags[i].size >= eat) 1209 goto pull_pages; 1210 eat -= skb_shinfo(skb)->frags[i].size; 1211 } 1212 1213 /* If we need update frag list, we are in troubles. 1214 * Certainly, it possible to add an offset to skb data, 1215 * but taking into account that pulling is expected to 1216 * be very rare operation, it is worth to fight against 1217 * further bloating skb head and crucify ourselves here instead. 1218 * Pure masohism, indeed. 8)8) 1219 */ 1220 if (eat) { 1221 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1222 struct sk_buff *clone = NULL; 1223 struct sk_buff *insp = NULL; 1224 1225 do { 1226 BUG_ON(!list); 1227 1228 if (list->len <= eat) { 1229 /* Eaten as whole. */ 1230 eat -= list->len; 1231 list = list->next; 1232 insp = list; 1233 } else { 1234 /* Eaten partially. */ 1235 1236 if (skb_shared(list)) { 1237 /* Sucks! We need to fork list. :-( */ 1238 clone = skb_clone(list, GFP_ATOMIC); 1239 if (!clone) 1240 return NULL; 1241 insp = list->next; 1242 list = clone; 1243 } else { 1244 /* This may be pulled without 1245 * problems. */ 1246 insp = list; 1247 } 1248 if (!pskb_pull(list, eat)) { 1249 kfree_skb(clone); 1250 return NULL; 1251 } 1252 break; 1253 } 1254 } while (eat); 1255 1256 /* Free pulled out fragments. */ 1257 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1258 skb_shinfo(skb)->frag_list = list->next; 1259 kfree_skb(list); 1260 } 1261 /* And insert new clone at head. */ 1262 if (clone) { 1263 clone->next = list; 1264 skb_shinfo(skb)->frag_list = clone; 1265 } 1266 } 1267 /* Success! Now we may commit changes to skb data. */ 1268 1269 pull_pages: 1270 eat = delta; 1271 k = 0; 1272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1273 if (skb_shinfo(skb)->frags[i].size <= eat) { 1274 put_page(skb_shinfo(skb)->frags[i].page); 1275 eat -= skb_shinfo(skb)->frags[i].size; 1276 } else { 1277 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1278 if (eat) { 1279 skb_shinfo(skb)->frags[k].page_offset += eat; 1280 skb_shinfo(skb)->frags[k].size -= eat; 1281 eat = 0; 1282 } 1283 k++; 1284 } 1285 } 1286 skb_shinfo(skb)->nr_frags = k; 1287 1288 skb->tail += delta; 1289 skb->data_len -= delta; 1290 1291 return skb_tail_pointer(skb); 1292 } 1293 EXPORT_SYMBOL(__pskb_pull_tail); 1294 1295 /* Copy some data bits from skb to kernel buffer. */ 1296 1297 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1298 { 1299 int start = skb_headlen(skb); 1300 struct sk_buff *frag_iter; 1301 int i, copy; 1302 1303 if (offset > (int)skb->len - len) 1304 goto fault; 1305 1306 /* Copy header. */ 1307 if ((copy = start - offset) > 0) { 1308 if (copy > len) 1309 copy = len; 1310 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1311 if ((len -= copy) == 0) 1312 return 0; 1313 offset += copy; 1314 to += copy; 1315 } 1316 1317 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1318 int end; 1319 1320 WARN_ON(start > offset + len); 1321 1322 end = start + skb_shinfo(skb)->frags[i].size; 1323 if ((copy = end - offset) > 0) { 1324 u8 *vaddr; 1325 1326 if (copy > len) 1327 copy = len; 1328 1329 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1330 memcpy(to, 1331 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1332 offset - start, copy); 1333 kunmap_skb_frag(vaddr); 1334 1335 if ((len -= copy) == 0) 1336 return 0; 1337 offset += copy; 1338 to += copy; 1339 } 1340 start = end; 1341 } 1342 1343 skb_walk_frags(skb, frag_iter) { 1344 int end; 1345 1346 WARN_ON(start > offset + len); 1347 1348 end = start + frag_iter->len; 1349 if ((copy = end - offset) > 0) { 1350 if (copy > len) 1351 copy = len; 1352 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1353 goto fault; 1354 if ((len -= copy) == 0) 1355 return 0; 1356 offset += copy; 1357 to += copy; 1358 } 1359 start = end; 1360 } 1361 if (!len) 1362 return 0; 1363 1364 fault: 1365 return -EFAULT; 1366 } 1367 EXPORT_SYMBOL(skb_copy_bits); 1368 1369 /* 1370 * Callback from splice_to_pipe(), if we need to release some pages 1371 * at the end of the spd in case we error'ed out in filling the pipe. 1372 */ 1373 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1374 { 1375 put_page(spd->pages[i]); 1376 } 1377 1378 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1379 unsigned int *offset, 1380 struct sk_buff *skb, struct sock *sk) 1381 { 1382 struct page *p = sk->sk_sndmsg_page; 1383 unsigned int off; 1384 1385 if (!p) { 1386 new_page: 1387 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1388 if (!p) 1389 return NULL; 1390 1391 off = sk->sk_sndmsg_off = 0; 1392 /* hold one ref to this page until it's full */ 1393 } else { 1394 unsigned int mlen; 1395 1396 off = sk->sk_sndmsg_off; 1397 mlen = PAGE_SIZE - off; 1398 if (mlen < 64 && mlen < *len) { 1399 put_page(p); 1400 goto new_page; 1401 } 1402 1403 *len = min_t(unsigned int, *len, mlen); 1404 } 1405 1406 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1407 sk->sk_sndmsg_off += *len; 1408 *offset = off; 1409 get_page(p); 1410 1411 return p; 1412 } 1413 1414 /* 1415 * Fill page/offset/length into spd, if it can hold more pages. 1416 */ 1417 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1418 unsigned int *len, unsigned int offset, 1419 struct sk_buff *skb, int linear, 1420 struct sock *sk) 1421 { 1422 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1423 return 1; 1424 1425 if (linear) { 1426 page = linear_to_page(page, len, &offset, skb, sk); 1427 if (!page) 1428 return 1; 1429 } else 1430 get_page(page); 1431 1432 spd->pages[spd->nr_pages] = page; 1433 spd->partial[spd->nr_pages].len = *len; 1434 spd->partial[spd->nr_pages].offset = offset; 1435 spd->nr_pages++; 1436 1437 return 0; 1438 } 1439 1440 static inline void __segment_seek(struct page **page, unsigned int *poff, 1441 unsigned int *plen, unsigned int off) 1442 { 1443 unsigned long n; 1444 1445 *poff += off; 1446 n = *poff / PAGE_SIZE; 1447 if (n) 1448 *page = nth_page(*page, n); 1449 1450 *poff = *poff % PAGE_SIZE; 1451 *plen -= off; 1452 } 1453 1454 static inline int __splice_segment(struct page *page, unsigned int poff, 1455 unsigned int plen, unsigned int *off, 1456 unsigned int *len, struct sk_buff *skb, 1457 struct splice_pipe_desc *spd, int linear, 1458 struct sock *sk) 1459 { 1460 if (!*len) 1461 return 1; 1462 1463 /* skip this segment if already processed */ 1464 if (*off >= plen) { 1465 *off -= plen; 1466 return 0; 1467 } 1468 1469 /* ignore any bits we already processed */ 1470 if (*off) { 1471 __segment_seek(&page, &poff, &plen, *off); 1472 *off = 0; 1473 } 1474 1475 do { 1476 unsigned int flen = min(*len, plen); 1477 1478 /* the linear region may spread across several pages */ 1479 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1480 1481 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk)) 1482 return 1; 1483 1484 __segment_seek(&page, &poff, &plen, flen); 1485 *len -= flen; 1486 1487 } while (*len && plen); 1488 1489 return 0; 1490 } 1491 1492 /* 1493 * Map linear and fragment data from the skb to spd. It reports failure if the 1494 * pipe is full or if we already spliced the requested length. 1495 */ 1496 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1497 unsigned int *len, struct splice_pipe_desc *spd, 1498 struct sock *sk) 1499 { 1500 int seg; 1501 1502 /* 1503 * map the linear part 1504 */ 1505 if (__splice_segment(virt_to_page(skb->data), 1506 (unsigned long) skb->data & (PAGE_SIZE - 1), 1507 skb_headlen(skb), 1508 offset, len, skb, spd, 1, sk)) 1509 return 1; 1510 1511 /* 1512 * then map the fragments 1513 */ 1514 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1515 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1516 1517 if (__splice_segment(f->page, f->page_offset, f->size, 1518 offset, len, skb, spd, 0, sk)) 1519 return 1; 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * Map data from the skb to a pipe. Should handle both the linear part, 1527 * the fragments, and the frag list. It does NOT handle frag lists within 1528 * the frag list, if such a thing exists. We'd probably need to recurse to 1529 * handle that cleanly. 1530 */ 1531 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1532 struct pipe_inode_info *pipe, unsigned int tlen, 1533 unsigned int flags) 1534 { 1535 struct partial_page partial[PIPE_BUFFERS]; 1536 struct page *pages[PIPE_BUFFERS]; 1537 struct splice_pipe_desc spd = { 1538 .pages = pages, 1539 .partial = partial, 1540 .flags = flags, 1541 .ops = &sock_pipe_buf_ops, 1542 .spd_release = sock_spd_release, 1543 }; 1544 struct sk_buff *frag_iter; 1545 struct sock *sk = skb->sk; 1546 1547 /* 1548 * __skb_splice_bits() only fails if the output has no room left, 1549 * so no point in going over the frag_list for the error case. 1550 */ 1551 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk)) 1552 goto done; 1553 else if (!tlen) 1554 goto done; 1555 1556 /* 1557 * now see if we have a frag_list to map 1558 */ 1559 skb_walk_frags(skb, frag_iter) { 1560 if (!tlen) 1561 break; 1562 if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk)) 1563 break; 1564 } 1565 1566 done: 1567 if (spd.nr_pages) { 1568 int ret; 1569 1570 /* 1571 * Drop the socket lock, otherwise we have reverse 1572 * locking dependencies between sk_lock and i_mutex 1573 * here as compared to sendfile(). We enter here 1574 * with the socket lock held, and splice_to_pipe() will 1575 * grab the pipe inode lock. For sendfile() emulation, 1576 * we call into ->sendpage() with the i_mutex lock held 1577 * and networking will grab the socket lock. 1578 */ 1579 release_sock(sk); 1580 ret = splice_to_pipe(pipe, &spd); 1581 lock_sock(sk); 1582 return ret; 1583 } 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * skb_store_bits - store bits from kernel buffer to skb 1590 * @skb: destination buffer 1591 * @offset: offset in destination 1592 * @from: source buffer 1593 * @len: number of bytes to copy 1594 * 1595 * Copy the specified number of bytes from the source buffer to the 1596 * destination skb. This function handles all the messy bits of 1597 * traversing fragment lists and such. 1598 */ 1599 1600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1601 { 1602 int start = skb_headlen(skb); 1603 struct sk_buff *frag_iter; 1604 int i, copy; 1605 1606 if (offset > (int)skb->len - len) 1607 goto fault; 1608 1609 if ((copy = start - offset) > 0) { 1610 if (copy > len) 1611 copy = len; 1612 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1613 if ((len -= copy) == 0) 1614 return 0; 1615 offset += copy; 1616 from += copy; 1617 } 1618 1619 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1620 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1621 int end; 1622 1623 WARN_ON(start > offset + len); 1624 1625 end = start + frag->size; 1626 if ((copy = end - offset) > 0) { 1627 u8 *vaddr; 1628 1629 if (copy > len) 1630 copy = len; 1631 1632 vaddr = kmap_skb_frag(frag); 1633 memcpy(vaddr + frag->page_offset + offset - start, 1634 from, copy); 1635 kunmap_skb_frag(vaddr); 1636 1637 if ((len -= copy) == 0) 1638 return 0; 1639 offset += copy; 1640 from += copy; 1641 } 1642 start = end; 1643 } 1644 1645 skb_walk_frags(skb, frag_iter) { 1646 int end; 1647 1648 WARN_ON(start > offset + len); 1649 1650 end = start + frag_iter->len; 1651 if ((copy = end - offset) > 0) { 1652 if (copy > len) 1653 copy = len; 1654 if (skb_store_bits(frag_iter, offset - start, 1655 from, copy)) 1656 goto fault; 1657 if ((len -= copy) == 0) 1658 return 0; 1659 offset += copy; 1660 from += copy; 1661 } 1662 start = end; 1663 } 1664 if (!len) 1665 return 0; 1666 1667 fault: 1668 return -EFAULT; 1669 } 1670 EXPORT_SYMBOL(skb_store_bits); 1671 1672 /* Checksum skb data. */ 1673 1674 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1675 int len, __wsum csum) 1676 { 1677 int start = skb_headlen(skb); 1678 int i, copy = start - offset; 1679 struct sk_buff *frag_iter; 1680 int pos = 0; 1681 1682 /* Checksum header. */ 1683 if (copy > 0) { 1684 if (copy > len) 1685 copy = len; 1686 csum = csum_partial(skb->data + offset, copy, csum); 1687 if ((len -= copy) == 0) 1688 return csum; 1689 offset += copy; 1690 pos = copy; 1691 } 1692 1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1694 int end; 1695 1696 WARN_ON(start > offset + len); 1697 1698 end = start + skb_shinfo(skb)->frags[i].size; 1699 if ((copy = end - offset) > 0) { 1700 __wsum csum2; 1701 u8 *vaddr; 1702 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1703 1704 if (copy > len) 1705 copy = len; 1706 vaddr = kmap_skb_frag(frag); 1707 csum2 = csum_partial(vaddr + frag->page_offset + 1708 offset - start, copy, 0); 1709 kunmap_skb_frag(vaddr); 1710 csum = csum_block_add(csum, csum2, pos); 1711 if (!(len -= copy)) 1712 return csum; 1713 offset += copy; 1714 pos += copy; 1715 } 1716 start = end; 1717 } 1718 1719 skb_walk_frags(skb, frag_iter) { 1720 int end; 1721 1722 WARN_ON(start > offset + len); 1723 1724 end = start + frag_iter->len; 1725 if ((copy = end - offset) > 0) { 1726 __wsum csum2; 1727 if (copy > len) 1728 copy = len; 1729 csum2 = skb_checksum(frag_iter, offset - start, 1730 copy, 0); 1731 csum = csum_block_add(csum, csum2, pos); 1732 if ((len -= copy) == 0) 1733 return csum; 1734 offset += copy; 1735 pos += copy; 1736 } 1737 start = end; 1738 } 1739 BUG_ON(len); 1740 1741 return csum; 1742 } 1743 EXPORT_SYMBOL(skb_checksum); 1744 1745 /* Both of above in one bottle. */ 1746 1747 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1748 u8 *to, int len, __wsum csum) 1749 { 1750 int start = skb_headlen(skb); 1751 int i, copy = start - offset; 1752 struct sk_buff *frag_iter; 1753 int pos = 0; 1754 1755 /* Copy header. */ 1756 if (copy > 0) { 1757 if (copy > len) 1758 copy = len; 1759 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1760 copy, csum); 1761 if ((len -= copy) == 0) 1762 return csum; 1763 offset += copy; 1764 to += copy; 1765 pos = copy; 1766 } 1767 1768 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1769 int end; 1770 1771 WARN_ON(start > offset + len); 1772 1773 end = start + skb_shinfo(skb)->frags[i].size; 1774 if ((copy = end - offset) > 0) { 1775 __wsum csum2; 1776 u8 *vaddr; 1777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1778 1779 if (copy > len) 1780 copy = len; 1781 vaddr = kmap_skb_frag(frag); 1782 csum2 = csum_partial_copy_nocheck(vaddr + 1783 frag->page_offset + 1784 offset - start, to, 1785 copy, 0); 1786 kunmap_skb_frag(vaddr); 1787 csum = csum_block_add(csum, csum2, pos); 1788 if (!(len -= copy)) 1789 return csum; 1790 offset += copy; 1791 to += copy; 1792 pos += copy; 1793 } 1794 start = end; 1795 } 1796 1797 skb_walk_frags(skb, frag_iter) { 1798 __wsum csum2; 1799 int end; 1800 1801 WARN_ON(start > offset + len); 1802 1803 end = start + frag_iter->len; 1804 if ((copy = end - offset) > 0) { 1805 if (copy > len) 1806 copy = len; 1807 csum2 = skb_copy_and_csum_bits(frag_iter, 1808 offset - start, 1809 to, copy, 0); 1810 csum = csum_block_add(csum, csum2, pos); 1811 if ((len -= copy) == 0) 1812 return csum; 1813 offset += copy; 1814 to += copy; 1815 pos += copy; 1816 } 1817 start = end; 1818 } 1819 BUG_ON(len); 1820 return csum; 1821 } 1822 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1823 1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1825 { 1826 __wsum csum; 1827 long csstart; 1828 1829 if (skb->ip_summed == CHECKSUM_PARTIAL) 1830 csstart = skb->csum_start - skb_headroom(skb); 1831 else 1832 csstart = skb_headlen(skb); 1833 1834 BUG_ON(csstart > skb_headlen(skb)); 1835 1836 skb_copy_from_linear_data(skb, to, csstart); 1837 1838 csum = 0; 1839 if (csstart != skb->len) 1840 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1841 skb->len - csstart, 0); 1842 1843 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1844 long csstuff = csstart + skb->csum_offset; 1845 1846 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1847 } 1848 } 1849 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1850 1851 /** 1852 * skb_dequeue - remove from the head of the queue 1853 * @list: list to dequeue from 1854 * 1855 * Remove the head of the list. The list lock is taken so the function 1856 * may be used safely with other locking list functions. The head item is 1857 * returned or %NULL if the list is empty. 1858 */ 1859 1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1861 { 1862 unsigned long flags; 1863 struct sk_buff *result; 1864 1865 spin_lock_irqsave(&list->lock, flags); 1866 result = __skb_dequeue(list); 1867 spin_unlock_irqrestore(&list->lock, flags); 1868 return result; 1869 } 1870 EXPORT_SYMBOL(skb_dequeue); 1871 1872 /** 1873 * skb_dequeue_tail - remove from the tail of the queue 1874 * @list: list to dequeue from 1875 * 1876 * Remove the tail of the list. The list lock is taken so the function 1877 * may be used safely with other locking list functions. The tail item is 1878 * returned or %NULL if the list is empty. 1879 */ 1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1881 { 1882 unsigned long flags; 1883 struct sk_buff *result; 1884 1885 spin_lock_irqsave(&list->lock, flags); 1886 result = __skb_dequeue_tail(list); 1887 spin_unlock_irqrestore(&list->lock, flags); 1888 return result; 1889 } 1890 EXPORT_SYMBOL(skb_dequeue_tail); 1891 1892 /** 1893 * skb_queue_purge - empty a list 1894 * @list: list to empty 1895 * 1896 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1897 * the list and one reference dropped. This function takes the list 1898 * lock and is atomic with respect to other list locking functions. 1899 */ 1900 void skb_queue_purge(struct sk_buff_head *list) 1901 { 1902 struct sk_buff *skb; 1903 while ((skb = skb_dequeue(list)) != NULL) 1904 kfree_skb(skb); 1905 } 1906 EXPORT_SYMBOL(skb_queue_purge); 1907 1908 /** 1909 * skb_queue_head - queue a buffer at the list head 1910 * @list: list to use 1911 * @newsk: buffer to queue 1912 * 1913 * Queue a buffer at the start of the list. This function takes the 1914 * list lock and can be used safely with other locking &sk_buff functions 1915 * safely. 1916 * 1917 * A buffer cannot be placed on two lists at the same time. 1918 */ 1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1920 { 1921 unsigned long flags; 1922 1923 spin_lock_irqsave(&list->lock, flags); 1924 __skb_queue_head(list, newsk); 1925 spin_unlock_irqrestore(&list->lock, flags); 1926 } 1927 EXPORT_SYMBOL(skb_queue_head); 1928 1929 /** 1930 * skb_queue_tail - queue a buffer at the list tail 1931 * @list: list to use 1932 * @newsk: buffer to queue 1933 * 1934 * Queue a buffer at the tail of the list. This function takes the 1935 * list lock and can be used safely with other locking &sk_buff functions 1936 * safely. 1937 * 1938 * A buffer cannot be placed on two lists at the same time. 1939 */ 1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1941 { 1942 unsigned long flags; 1943 1944 spin_lock_irqsave(&list->lock, flags); 1945 __skb_queue_tail(list, newsk); 1946 spin_unlock_irqrestore(&list->lock, flags); 1947 } 1948 EXPORT_SYMBOL(skb_queue_tail); 1949 1950 /** 1951 * skb_unlink - remove a buffer from a list 1952 * @skb: buffer to remove 1953 * @list: list to use 1954 * 1955 * Remove a packet from a list. The list locks are taken and this 1956 * function is atomic with respect to other list locked calls 1957 * 1958 * You must know what list the SKB is on. 1959 */ 1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1961 { 1962 unsigned long flags; 1963 1964 spin_lock_irqsave(&list->lock, flags); 1965 __skb_unlink(skb, list); 1966 spin_unlock_irqrestore(&list->lock, flags); 1967 } 1968 EXPORT_SYMBOL(skb_unlink); 1969 1970 /** 1971 * skb_append - append a buffer 1972 * @old: buffer to insert after 1973 * @newsk: buffer to insert 1974 * @list: list to use 1975 * 1976 * Place a packet after a given packet in a list. The list locks are taken 1977 * and this function is atomic with respect to other list locked calls. 1978 * A buffer cannot be placed on two lists at the same time. 1979 */ 1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1981 { 1982 unsigned long flags; 1983 1984 spin_lock_irqsave(&list->lock, flags); 1985 __skb_queue_after(list, old, newsk); 1986 spin_unlock_irqrestore(&list->lock, flags); 1987 } 1988 EXPORT_SYMBOL(skb_append); 1989 1990 /** 1991 * skb_insert - insert a buffer 1992 * @old: buffer to insert before 1993 * @newsk: buffer to insert 1994 * @list: list to use 1995 * 1996 * Place a packet before a given packet in a list. The list locks are 1997 * taken and this function is atomic with respect to other list locked 1998 * calls. 1999 * 2000 * A buffer cannot be placed on two lists at the same time. 2001 */ 2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2003 { 2004 unsigned long flags; 2005 2006 spin_lock_irqsave(&list->lock, flags); 2007 __skb_insert(newsk, old->prev, old, list); 2008 spin_unlock_irqrestore(&list->lock, flags); 2009 } 2010 EXPORT_SYMBOL(skb_insert); 2011 2012 static inline void skb_split_inside_header(struct sk_buff *skb, 2013 struct sk_buff* skb1, 2014 const u32 len, const int pos) 2015 { 2016 int i; 2017 2018 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2019 pos - len); 2020 /* And move data appendix as is. */ 2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2022 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2023 2024 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2025 skb_shinfo(skb)->nr_frags = 0; 2026 skb1->data_len = skb->data_len; 2027 skb1->len += skb1->data_len; 2028 skb->data_len = 0; 2029 skb->len = len; 2030 skb_set_tail_pointer(skb, len); 2031 } 2032 2033 static inline void skb_split_no_header(struct sk_buff *skb, 2034 struct sk_buff* skb1, 2035 const u32 len, int pos) 2036 { 2037 int i, k = 0; 2038 const int nfrags = skb_shinfo(skb)->nr_frags; 2039 2040 skb_shinfo(skb)->nr_frags = 0; 2041 skb1->len = skb1->data_len = skb->len - len; 2042 skb->len = len; 2043 skb->data_len = len - pos; 2044 2045 for (i = 0; i < nfrags; i++) { 2046 int size = skb_shinfo(skb)->frags[i].size; 2047 2048 if (pos + size > len) { 2049 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2050 2051 if (pos < len) { 2052 /* Split frag. 2053 * We have two variants in this case: 2054 * 1. Move all the frag to the second 2055 * part, if it is possible. F.e. 2056 * this approach is mandatory for TUX, 2057 * where splitting is expensive. 2058 * 2. Split is accurately. We make this. 2059 */ 2060 get_page(skb_shinfo(skb)->frags[i].page); 2061 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2062 skb_shinfo(skb1)->frags[0].size -= len - pos; 2063 skb_shinfo(skb)->frags[i].size = len - pos; 2064 skb_shinfo(skb)->nr_frags++; 2065 } 2066 k++; 2067 } else 2068 skb_shinfo(skb)->nr_frags++; 2069 pos += size; 2070 } 2071 skb_shinfo(skb1)->nr_frags = k; 2072 } 2073 2074 /** 2075 * skb_split - Split fragmented skb to two parts at length len. 2076 * @skb: the buffer to split 2077 * @skb1: the buffer to receive the second part 2078 * @len: new length for skb 2079 */ 2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2081 { 2082 int pos = skb_headlen(skb); 2083 2084 if (len < pos) /* Split line is inside header. */ 2085 skb_split_inside_header(skb, skb1, len, pos); 2086 else /* Second chunk has no header, nothing to copy. */ 2087 skb_split_no_header(skb, skb1, len, pos); 2088 } 2089 EXPORT_SYMBOL(skb_split); 2090 2091 /* Shifting from/to a cloned skb is a no-go. 2092 * 2093 * Caller cannot keep skb_shinfo related pointers past calling here! 2094 */ 2095 static int skb_prepare_for_shift(struct sk_buff *skb) 2096 { 2097 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2098 } 2099 2100 /** 2101 * skb_shift - Shifts paged data partially from skb to another 2102 * @tgt: buffer into which tail data gets added 2103 * @skb: buffer from which the paged data comes from 2104 * @shiftlen: shift up to this many bytes 2105 * 2106 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2107 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2108 * It's up to caller to free skb if everything was shifted. 2109 * 2110 * If @tgt runs out of frags, the whole operation is aborted. 2111 * 2112 * Skb cannot include anything else but paged data while tgt is allowed 2113 * to have non-paged data as well. 2114 * 2115 * TODO: full sized shift could be optimized but that would need 2116 * specialized skb free'er to handle frags without up-to-date nr_frags. 2117 */ 2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2119 { 2120 int from, to, merge, todo; 2121 struct skb_frag_struct *fragfrom, *fragto; 2122 2123 BUG_ON(shiftlen > skb->len); 2124 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2125 2126 todo = shiftlen; 2127 from = 0; 2128 to = skb_shinfo(tgt)->nr_frags; 2129 fragfrom = &skb_shinfo(skb)->frags[from]; 2130 2131 /* Actual merge is delayed until the point when we know we can 2132 * commit all, so that we don't have to undo partial changes 2133 */ 2134 if (!to || 2135 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2136 merge = -1; 2137 } else { 2138 merge = to - 1; 2139 2140 todo -= fragfrom->size; 2141 if (todo < 0) { 2142 if (skb_prepare_for_shift(skb) || 2143 skb_prepare_for_shift(tgt)) 2144 return 0; 2145 2146 /* All previous frag pointers might be stale! */ 2147 fragfrom = &skb_shinfo(skb)->frags[from]; 2148 fragto = &skb_shinfo(tgt)->frags[merge]; 2149 2150 fragto->size += shiftlen; 2151 fragfrom->size -= shiftlen; 2152 fragfrom->page_offset += shiftlen; 2153 2154 goto onlymerged; 2155 } 2156 2157 from++; 2158 } 2159 2160 /* Skip full, not-fitting skb to avoid expensive operations */ 2161 if ((shiftlen == skb->len) && 2162 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2163 return 0; 2164 2165 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2166 return 0; 2167 2168 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2169 if (to == MAX_SKB_FRAGS) 2170 return 0; 2171 2172 fragfrom = &skb_shinfo(skb)->frags[from]; 2173 fragto = &skb_shinfo(tgt)->frags[to]; 2174 2175 if (todo >= fragfrom->size) { 2176 *fragto = *fragfrom; 2177 todo -= fragfrom->size; 2178 from++; 2179 to++; 2180 2181 } else { 2182 get_page(fragfrom->page); 2183 fragto->page = fragfrom->page; 2184 fragto->page_offset = fragfrom->page_offset; 2185 fragto->size = todo; 2186 2187 fragfrom->page_offset += todo; 2188 fragfrom->size -= todo; 2189 todo = 0; 2190 2191 to++; 2192 break; 2193 } 2194 } 2195 2196 /* Ready to "commit" this state change to tgt */ 2197 skb_shinfo(tgt)->nr_frags = to; 2198 2199 if (merge >= 0) { 2200 fragfrom = &skb_shinfo(skb)->frags[0]; 2201 fragto = &skb_shinfo(tgt)->frags[merge]; 2202 2203 fragto->size += fragfrom->size; 2204 put_page(fragfrom->page); 2205 } 2206 2207 /* Reposition in the original skb */ 2208 to = 0; 2209 while (from < skb_shinfo(skb)->nr_frags) 2210 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2211 skb_shinfo(skb)->nr_frags = to; 2212 2213 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2214 2215 onlymerged: 2216 /* Most likely the tgt won't ever need its checksum anymore, skb on 2217 * the other hand might need it if it needs to be resent 2218 */ 2219 tgt->ip_summed = CHECKSUM_PARTIAL; 2220 skb->ip_summed = CHECKSUM_PARTIAL; 2221 2222 /* Yak, is it really working this way? Some helper please? */ 2223 skb->len -= shiftlen; 2224 skb->data_len -= shiftlen; 2225 skb->truesize -= shiftlen; 2226 tgt->len += shiftlen; 2227 tgt->data_len += shiftlen; 2228 tgt->truesize += shiftlen; 2229 2230 return shiftlen; 2231 } 2232 2233 /** 2234 * skb_prepare_seq_read - Prepare a sequential read of skb data 2235 * @skb: the buffer to read 2236 * @from: lower offset of data to be read 2237 * @to: upper offset of data to be read 2238 * @st: state variable 2239 * 2240 * Initializes the specified state variable. Must be called before 2241 * invoking skb_seq_read() for the first time. 2242 */ 2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2244 unsigned int to, struct skb_seq_state *st) 2245 { 2246 st->lower_offset = from; 2247 st->upper_offset = to; 2248 st->root_skb = st->cur_skb = skb; 2249 st->frag_idx = st->stepped_offset = 0; 2250 st->frag_data = NULL; 2251 } 2252 EXPORT_SYMBOL(skb_prepare_seq_read); 2253 2254 /** 2255 * skb_seq_read - Sequentially read skb data 2256 * @consumed: number of bytes consumed by the caller so far 2257 * @data: destination pointer for data to be returned 2258 * @st: state variable 2259 * 2260 * Reads a block of skb data at &consumed relative to the 2261 * lower offset specified to skb_prepare_seq_read(). Assigns 2262 * the head of the data block to &data and returns the length 2263 * of the block or 0 if the end of the skb data or the upper 2264 * offset has been reached. 2265 * 2266 * The caller is not required to consume all of the data 2267 * returned, i.e. &consumed is typically set to the number 2268 * of bytes already consumed and the next call to 2269 * skb_seq_read() will return the remaining part of the block. 2270 * 2271 * Note 1: The size of each block of data returned can be arbitary, 2272 * this limitation is the cost for zerocopy seqeuental 2273 * reads of potentially non linear data. 2274 * 2275 * Note 2: Fragment lists within fragments are not implemented 2276 * at the moment, state->root_skb could be replaced with 2277 * a stack for this purpose. 2278 */ 2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2280 struct skb_seq_state *st) 2281 { 2282 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2283 skb_frag_t *frag; 2284 2285 if (unlikely(abs_offset >= st->upper_offset)) 2286 return 0; 2287 2288 next_skb: 2289 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2290 2291 if (abs_offset < block_limit && !st->frag_data) { 2292 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2293 return block_limit - abs_offset; 2294 } 2295 2296 if (st->frag_idx == 0 && !st->frag_data) 2297 st->stepped_offset += skb_headlen(st->cur_skb); 2298 2299 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2300 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2301 block_limit = frag->size + st->stepped_offset; 2302 2303 if (abs_offset < block_limit) { 2304 if (!st->frag_data) 2305 st->frag_data = kmap_skb_frag(frag); 2306 2307 *data = (u8 *) st->frag_data + frag->page_offset + 2308 (abs_offset - st->stepped_offset); 2309 2310 return block_limit - abs_offset; 2311 } 2312 2313 if (st->frag_data) { 2314 kunmap_skb_frag(st->frag_data); 2315 st->frag_data = NULL; 2316 } 2317 2318 st->frag_idx++; 2319 st->stepped_offset += frag->size; 2320 } 2321 2322 if (st->frag_data) { 2323 kunmap_skb_frag(st->frag_data); 2324 st->frag_data = NULL; 2325 } 2326 2327 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) { 2328 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2329 st->frag_idx = 0; 2330 goto next_skb; 2331 } else if (st->cur_skb->next) { 2332 st->cur_skb = st->cur_skb->next; 2333 st->frag_idx = 0; 2334 goto next_skb; 2335 } 2336 2337 return 0; 2338 } 2339 EXPORT_SYMBOL(skb_seq_read); 2340 2341 /** 2342 * skb_abort_seq_read - Abort a sequential read of skb data 2343 * @st: state variable 2344 * 2345 * Must be called if skb_seq_read() was not called until it 2346 * returned 0. 2347 */ 2348 void skb_abort_seq_read(struct skb_seq_state *st) 2349 { 2350 if (st->frag_data) 2351 kunmap_skb_frag(st->frag_data); 2352 } 2353 EXPORT_SYMBOL(skb_abort_seq_read); 2354 2355 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2356 2357 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2358 struct ts_config *conf, 2359 struct ts_state *state) 2360 { 2361 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2362 } 2363 2364 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2365 { 2366 skb_abort_seq_read(TS_SKB_CB(state)); 2367 } 2368 2369 /** 2370 * skb_find_text - Find a text pattern in skb data 2371 * @skb: the buffer to look in 2372 * @from: search offset 2373 * @to: search limit 2374 * @config: textsearch configuration 2375 * @state: uninitialized textsearch state variable 2376 * 2377 * Finds a pattern in the skb data according to the specified 2378 * textsearch configuration. Use textsearch_next() to retrieve 2379 * subsequent occurrences of the pattern. Returns the offset 2380 * to the first occurrence or UINT_MAX if no match was found. 2381 */ 2382 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2383 unsigned int to, struct ts_config *config, 2384 struct ts_state *state) 2385 { 2386 unsigned int ret; 2387 2388 config->get_next_block = skb_ts_get_next_block; 2389 config->finish = skb_ts_finish; 2390 2391 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2392 2393 ret = textsearch_find(config, state); 2394 return (ret <= to - from ? ret : UINT_MAX); 2395 } 2396 EXPORT_SYMBOL(skb_find_text); 2397 2398 /** 2399 * skb_append_datato_frags: - append the user data to a skb 2400 * @sk: sock structure 2401 * @skb: skb structure to be appened with user data. 2402 * @getfrag: call back function to be used for getting the user data 2403 * @from: pointer to user message iov 2404 * @length: length of the iov message 2405 * 2406 * Description: This procedure append the user data in the fragment part 2407 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2408 */ 2409 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2410 int (*getfrag)(void *from, char *to, int offset, 2411 int len, int odd, struct sk_buff *skb), 2412 void *from, int length) 2413 { 2414 int frg_cnt = 0; 2415 skb_frag_t *frag = NULL; 2416 struct page *page = NULL; 2417 int copy, left; 2418 int offset = 0; 2419 int ret; 2420 2421 do { 2422 /* Return error if we don't have space for new frag */ 2423 frg_cnt = skb_shinfo(skb)->nr_frags; 2424 if (frg_cnt >= MAX_SKB_FRAGS) 2425 return -EFAULT; 2426 2427 /* allocate a new page for next frag */ 2428 page = alloc_pages(sk->sk_allocation, 0); 2429 2430 /* If alloc_page fails just return failure and caller will 2431 * free previous allocated pages by doing kfree_skb() 2432 */ 2433 if (page == NULL) 2434 return -ENOMEM; 2435 2436 /* initialize the next frag */ 2437 sk->sk_sndmsg_page = page; 2438 sk->sk_sndmsg_off = 0; 2439 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2440 skb->truesize += PAGE_SIZE; 2441 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2442 2443 /* get the new initialized frag */ 2444 frg_cnt = skb_shinfo(skb)->nr_frags; 2445 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2446 2447 /* copy the user data to page */ 2448 left = PAGE_SIZE - frag->page_offset; 2449 copy = (length > left)? left : length; 2450 2451 ret = getfrag(from, (page_address(frag->page) + 2452 frag->page_offset + frag->size), 2453 offset, copy, 0, skb); 2454 if (ret < 0) 2455 return -EFAULT; 2456 2457 /* copy was successful so update the size parameters */ 2458 sk->sk_sndmsg_off += copy; 2459 frag->size += copy; 2460 skb->len += copy; 2461 skb->data_len += copy; 2462 offset += copy; 2463 length -= copy; 2464 2465 } while (length > 0); 2466 2467 return 0; 2468 } 2469 EXPORT_SYMBOL(skb_append_datato_frags); 2470 2471 /** 2472 * skb_pull_rcsum - pull skb and update receive checksum 2473 * @skb: buffer to update 2474 * @len: length of data pulled 2475 * 2476 * This function performs an skb_pull on the packet and updates 2477 * the CHECKSUM_COMPLETE checksum. It should be used on 2478 * receive path processing instead of skb_pull unless you know 2479 * that the checksum difference is zero (e.g., a valid IP header) 2480 * or you are setting ip_summed to CHECKSUM_NONE. 2481 */ 2482 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2483 { 2484 BUG_ON(len > skb->len); 2485 skb->len -= len; 2486 BUG_ON(skb->len < skb->data_len); 2487 skb_postpull_rcsum(skb, skb->data, len); 2488 return skb->data += len; 2489 } 2490 2491 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2492 2493 /** 2494 * skb_segment - Perform protocol segmentation on skb. 2495 * @skb: buffer to segment 2496 * @features: features for the output path (see dev->features) 2497 * 2498 * This function performs segmentation on the given skb. It returns 2499 * a pointer to the first in a list of new skbs for the segments. 2500 * In case of error it returns ERR_PTR(err). 2501 */ 2502 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2503 { 2504 struct sk_buff *segs = NULL; 2505 struct sk_buff *tail = NULL; 2506 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2507 unsigned int mss = skb_shinfo(skb)->gso_size; 2508 unsigned int doffset = skb->data - skb_mac_header(skb); 2509 unsigned int offset = doffset; 2510 unsigned int headroom; 2511 unsigned int len; 2512 int sg = features & NETIF_F_SG; 2513 int nfrags = skb_shinfo(skb)->nr_frags; 2514 int err = -ENOMEM; 2515 int i = 0; 2516 int pos; 2517 2518 __skb_push(skb, doffset); 2519 headroom = skb_headroom(skb); 2520 pos = skb_headlen(skb); 2521 2522 do { 2523 struct sk_buff *nskb; 2524 skb_frag_t *frag; 2525 int hsize; 2526 int size; 2527 2528 len = skb->len - offset; 2529 if (len > mss) 2530 len = mss; 2531 2532 hsize = skb_headlen(skb) - offset; 2533 if (hsize < 0) 2534 hsize = 0; 2535 if (hsize > len || !sg) 2536 hsize = len; 2537 2538 if (!hsize && i >= nfrags) { 2539 BUG_ON(fskb->len != len); 2540 2541 pos += len; 2542 nskb = skb_clone(fskb, GFP_ATOMIC); 2543 fskb = fskb->next; 2544 2545 if (unlikely(!nskb)) 2546 goto err; 2547 2548 hsize = skb_end_pointer(nskb) - nskb->head; 2549 if (skb_cow_head(nskb, doffset + headroom)) { 2550 kfree_skb(nskb); 2551 goto err; 2552 } 2553 2554 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2555 hsize; 2556 skb_release_head_state(nskb); 2557 __skb_push(nskb, doffset); 2558 } else { 2559 nskb = alloc_skb(hsize + doffset + headroom, 2560 GFP_ATOMIC); 2561 2562 if (unlikely(!nskb)) 2563 goto err; 2564 2565 skb_reserve(nskb, headroom); 2566 __skb_put(nskb, doffset); 2567 } 2568 2569 if (segs) 2570 tail->next = nskb; 2571 else 2572 segs = nskb; 2573 tail = nskb; 2574 2575 __copy_skb_header(nskb, skb); 2576 nskb->mac_len = skb->mac_len; 2577 2578 skb_reset_mac_header(nskb); 2579 skb_set_network_header(nskb, skb->mac_len); 2580 nskb->transport_header = (nskb->network_header + 2581 skb_network_header_len(skb)); 2582 skb_copy_from_linear_data(skb, nskb->data, doffset); 2583 2584 if (fskb != skb_shinfo(skb)->frag_list) 2585 continue; 2586 2587 if (!sg) { 2588 nskb->ip_summed = CHECKSUM_NONE; 2589 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2590 skb_put(nskb, len), 2591 len, 0); 2592 continue; 2593 } 2594 2595 frag = skb_shinfo(nskb)->frags; 2596 2597 skb_copy_from_linear_data_offset(skb, offset, 2598 skb_put(nskb, hsize), hsize); 2599 2600 while (pos < offset + len && i < nfrags) { 2601 *frag = skb_shinfo(skb)->frags[i]; 2602 get_page(frag->page); 2603 size = frag->size; 2604 2605 if (pos < offset) { 2606 frag->page_offset += offset - pos; 2607 frag->size -= offset - pos; 2608 } 2609 2610 skb_shinfo(nskb)->nr_frags++; 2611 2612 if (pos + size <= offset + len) { 2613 i++; 2614 pos += size; 2615 } else { 2616 frag->size -= pos + size - (offset + len); 2617 goto skip_fraglist; 2618 } 2619 2620 frag++; 2621 } 2622 2623 if (pos < offset + len) { 2624 struct sk_buff *fskb2 = fskb; 2625 2626 BUG_ON(pos + fskb->len != offset + len); 2627 2628 pos += fskb->len; 2629 fskb = fskb->next; 2630 2631 if (fskb2->next) { 2632 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2633 if (!fskb2) 2634 goto err; 2635 } else 2636 skb_get(fskb2); 2637 2638 SKB_FRAG_ASSERT(nskb); 2639 skb_shinfo(nskb)->frag_list = fskb2; 2640 } 2641 2642 skip_fraglist: 2643 nskb->data_len = len - hsize; 2644 nskb->len += nskb->data_len; 2645 nskb->truesize += nskb->data_len; 2646 } while ((offset += len) < skb->len); 2647 2648 return segs; 2649 2650 err: 2651 while ((skb = segs)) { 2652 segs = skb->next; 2653 kfree_skb(skb); 2654 } 2655 return ERR_PTR(err); 2656 } 2657 EXPORT_SYMBOL_GPL(skb_segment); 2658 2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2660 { 2661 struct sk_buff *p = *head; 2662 struct sk_buff *nskb; 2663 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2664 struct skb_shared_info *pinfo = skb_shinfo(p); 2665 unsigned int headroom; 2666 unsigned int len = skb_gro_len(skb); 2667 unsigned int offset = skb_gro_offset(skb); 2668 unsigned int headlen = skb_headlen(skb); 2669 2670 if (p->len + len >= 65536) 2671 return -E2BIG; 2672 2673 if (pinfo->frag_list) 2674 goto merge; 2675 else if (headlen <= offset) { 2676 skb_frag_t *frag; 2677 skb_frag_t *frag2; 2678 int i = skbinfo->nr_frags; 2679 int nr_frags = pinfo->nr_frags + i; 2680 2681 offset -= headlen; 2682 2683 if (nr_frags > MAX_SKB_FRAGS) 2684 return -E2BIG; 2685 2686 pinfo->nr_frags = nr_frags; 2687 skbinfo->nr_frags = 0; 2688 2689 frag = pinfo->frags + nr_frags; 2690 frag2 = skbinfo->frags + i; 2691 do { 2692 *--frag = *--frag2; 2693 } while (--i); 2694 2695 frag->page_offset += offset; 2696 frag->size -= offset; 2697 2698 skb->truesize -= skb->data_len; 2699 skb->len -= skb->data_len; 2700 skb->data_len = 0; 2701 2702 NAPI_GRO_CB(skb)->free = 1; 2703 goto done; 2704 } 2705 2706 headroom = skb_headroom(p); 2707 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p)); 2708 if (unlikely(!nskb)) 2709 return -ENOMEM; 2710 2711 __copy_skb_header(nskb, p); 2712 nskb->mac_len = p->mac_len; 2713 2714 skb_reserve(nskb, headroom); 2715 __skb_put(nskb, skb_gro_offset(p)); 2716 2717 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2718 skb_set_network_header(nskb, skb_network_offset(p)); 2719 skb_set_transport_header(nskb, skb_transport_offset(p)); 2720 2721 __skb_pull(p, skb_gro_offset(p)); 2722 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2723 p->data - skb_mac_header(p)); 2724 2725 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2726 skb_shinfo(nskb)->frag_list = p; 2727 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2728 skb_header_release(p); 2729 nskb->prev = p; 2730 2731 nskb->data_len += p->len; 2732 nskb->truesize += p->len; 2733 nskb->len += p->len; 2734 2735 *head = nskb; 2736 nskb->next = p->next; 2737 p->next = NULL; 2738 2739 p = nskb; 2740 2741 merge: 2742 if (offset > headlen) { 2743 skbinfo->frags[0].page_offset += offset - headlen; 2744 skbinfo->frags[0].size -= offset - headlen; 2745 offset = headlen; 2746 } 2747 2748 __skb_pull(skb, offset); 2749 2750 p->prev->next = skb; 2751 p->prev = skb; 2752 skb_header_release(skb); 2753 2754 done: 2755 NAPI_GRO_CB(p)->count++; 2756 p->data_len += len; 2757 p->truesize += len; 2758 p->len += len; 2759 2760 NAPI_GRO_CB(skb)->same_flow = 1; 2761 return 0; 2762 } 2763 EXPORT_SYMBOL_GPL(skb_gro_receive); 2764 2765 void __init skb_init(void) 2766 { 2767 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2768 sizeof(struct sk_buff), 2769 0, 2770 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2771 NULL); 2772 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2773 (2*sizeof(struct sk_buff)) + 2774 sizeof(atomic_t), 2775 0, 2776 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2777 NULL); 2778 } 2779 2780 /** 2781 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2782 * @skb: Socket buffer containing the buffers to be mapped 2783 * @sg: The scatter-gather list to map into 2784 * @offset: The offset into the buffer's contents to start mapping 2785 * @len: Length of buffer space to be mapped 2786 * 2787 * Fill the specified scatter-gather list with mappings/pointers into a 2788 * region of the buffer space attached to a socket buffer. 2789 */ 2790 static int 2791 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2792 { 2793 int start = skb_headlen(skb); 2794 int i, copy = start - offset; 2795 struct sk_buff *frag_iter; 2796 int elt = 0; 2797 2798 if (copy > 0) { 2799 if (copy > len) 2800 copy = len; 2801 sg_set_buf(sg, skb->data + offset, copy); 2802 elt++; 2803 if ((len -= copy) == 0) 2804 return elt; 2805 offset += copy; 2806 } 2807 2808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2809 int end; 2810 2811 WARN_ON(start > offset + len); 2812 2813 end = start + skb_shinfo(skb)->frags[i].size; 2814 if ((copy = end - offset) > 0) { 2815 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2816 2817 if (copy > len) 2818 copy = len; 2819 sg_set_page(&sg[elt], frag->page, copy, 2820 frag->page_offset+offset-start); 2821 elt++; 2822 if (!(len -= copy)) 2823 return elt; 2824 offset += copy; 2825 } 2826 start = end; 2827 } 2828 2829 skb_walk_frags(skb, frag_iter) { 2830 int end; 2831 2832 WARN_ON(start > offset + len); 2833 2834 end = start + frag_iter->len; 2835 if ((copy = end - offset) > 0) { 2836 if (copy > len) 2837 copy = len; 2838 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2839 copy); 2840 if ((len -= copy) == 0) 2841 return elt; 2842 offset += copy; 2843 } 2844 start = end; 2845 } 2846 BUG_ON(len); 2847 return elt; 2848 } 2849 2850 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2851 { 2852 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2853 2854 sg_mark_end(&sg[nsg - 1]); 2855 2856 return nsg; 2857 } 2858 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2859 2860 /** 2861 * skb_cow_data - Check that a socket buffer's data buffers are writable 2862 * @skb: The socket buffer to check. 2863 * @tailbits: Amount of trailing space to be added 2864 * @trailer: Returned pointer to the skb where the @tailbits space begins 2865 * 2866 * Make sure that the data buffers attached to a socket buffer are 2867 * writable. If they are not, private copies are made of the data buffers 2868 * and the socket buffer is set to use these instead. 2869 * 2870 * If @tailbits is given, make sure that there is space to write @tailbits 2871 * bytes of data beyond current end of socket buffer. @trailer will be 2872 * set to point to the skb in which this space begins. 2873 * 2874 * The number of scatterlist elements required to completely map the 2875 * COW'd and extended socket buffer will be returned. 2876 */ 2877 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2878 { 2879 int copyflag; 2880 int elt; 2881 struct sk_buff *skb1, **skb_p; 2882 2883 /* If skb is cloned or its head is paged, reallocate 2884 * head pulling out all the pages (pages are considered not writable 2885 * at the moment even if they are anonymous). 2886 */ 2887 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2888 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2889 return -ENOMEM; 2890 2891 /* Easy case. Most of packets will go this way. */ 2892 if (!skb_has_frags(skb)) { 2893 /* A little of trouble, not enough of space for trailer. 2894 * This should not happen, when stack is tuned to generate 2895 * good frames. OK, on miss we reallocate and reserve even more 2896 * space, 128 bytes is fair. */ 2897 2898 if (skb_tailroom(skb) < tailbits && 2899 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2900 return -ENOMEM; 2901 2902 /* Voila! */ 2903 *trailer = skb; 2904 return 1; 2905 } 2906 2907 /* Misery. We are in troubles, going to mincer fragments... */ 2908 2909 elt = 1; 2910 skb_p = &skb_shinfo(skb)->frag_list; 2911 copyflag = 0; 2912 2913 while ((skb1 = *skb_p) != NULL) { 2914 int ntail = 0; 2915 2916 /* The fragment is partially pulled by someone, 2917 * this can happen on input. Copy it and everything 2918 * after it. */ 2919 2920 if (skb_shared(skb1)) 2921 copyflag = 1; 2922 2923 /* If the skb is the last, worry about trailer. */ 2924 2925 if (skb1->next == NULL && tailbits) { 2926 if (skb_shinfo(skb1)->nr_frags || 2927 skb_has_frags(skb1) || 2928 skb_tailroom(skb1) < tailbits) 2929 ntail = tailbits + 128; 2930 } 2931 2932 if (copyflag || 2933 skb_cloned(skb1) || 2934 ntail || 2935 skb_shinfo(skb1)->nr_frags || 2936 skb_has_frags(skb1)) { 2937 struct sk_buff *skb2; 2938 2939 /* Fuck, we are miserable poor guys... */ 2940 if (ntail == 0) 2941 skb2 = skb_copy(skb1, GFP_ATOMIC); 2942 else 2943 skb2 = skb_copy_expand(skb1, 2944 skb_headroom(skb1), 2945 ntail, 2946 GFP_ATOMIC); 2947 if (unlikely(skb2 == NULL)) 2948 return -ENOMEM; 2949 2950 if (skb1->sk) 2951 skb_set_owner_w(skb2, skb1->sk); 2952 2953 /* Looking around. Are we still alive? 2954 * OK, link new skb, drop old one */ 2955 2956 skb2->next = skb1->next; 2957 *skb_p = skb2; 2958 kfree_skb(skb1); 2959 skb1 = skb2; 2960 } 2961 elt++; 2962 *trailer = skb1; 2963 skb_p = &skb1->next; 2964 } 2965 2966 return elt; 2967 } 2968 EXPORT_SYMBOL_GPL(skb_cow_data); 2969 2970 void skb_tstamp_tx(struct sk_buff *orig_skb, 2971 struct skb_shared_hwtstamps *hwtstamps) 2972 { 2973 struct sock *sk = orig_skb->sk; 2974 struct sock_exterr_skb *serr; 2975 struct sk_buff *skb; 2976 int err; 2977 2978 if (!sk) 2979 return; 2980 2981 skb = skb_clone(orig_skb, GFP_ATOMIC); 2982 if (!skb) 2983 return; 2984 2985 if (hwtstamps) { 2986 *skb_hwtstamps(skb) = 2987 *hwtstamps; 2988 } else { 2989 /* 2990 * no hardware time stamps available, 2991 * so keep the skb_shared_tx and only 2992 * store software time stamp 2993 */ 2994 skb->tstamp = ktime_get_real(); 2995 } 2996 2997 serr = SKB_EXT_ERR(skb); 2998 memset(serr, 0, sizeof(*serr)); 2999 serr->ee.ee_errno = ENOMSG; 3000 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3001 err = sock_queue_err_skb(sk, skb); 3002 if (err) 3003 kfree_skb(skb); 3004 } 3005 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3006 3007 3008 /** 3009 * skb_partial_csum_set - set up and verify partial csum values for packet 3010 * @skb: the skb to set 3011 * @start: the number of bytes after skb->data to start checksumming. 3012 * @off: the offset from start to place the checksum. 3013 * 3014 * For untrusted partially-checksummed packets, we need to make sure the values 3015 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3016 * 3017 * This function checks and sets those values and skb->ip_summed: if this 3018 * returns false you should drop the packet. 3019 */ 3020 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3021 { 3022 if (unlikely(start > skb_headlen(skb)) || 3023 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3024 if (net_ratelimit()) 3025 printk(KERN_WARNING 3026 "bad partial csum: csum=%u/%u len=%u\n", 3027 start, off, skb_headlen(skb)); 3028 return false; 3029 } 3030 skb->ip_summed = CHECKSUM_PARTIAL; 3031 skb->csum_start = skb_headroom(skb) + start; 3032 skb->csum_offset = off; 3033 return true; 3034 } 3035 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3036 3037 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3038 { 3039 if (net_ratelimit()) 3040 pr_warning("%s: received packets cannot be forwarded" 3041 " while LRO is enabled\n", skb->dev->name); 3042 } 3043 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3044