xref: /openbmc/linux/net/core/skbuff.c (revision e5c86679)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 	struct sk_buff *skb;
164 
165 	/* Get the HEAD */
166 	skb = kmem_cache_alloc_node(skbuff_head_cache,
167 				    gfp_mask & ~__GFP_DMA, node);
168 	if (!skb)
169 		goto out;
170 
171 	/*
172 	 * Only clear those fields we need to clear, not those that we will
173 	 * actually initialise below. Hence, don't put any more fields after
174 	 * the tail pointer in struct sk_buff!
175 	 */
176 	memset(skb, 0, offsetof(struct sk_buff, tail));
177 	skb->head = NULL;
178 	skb->truesize = sizeof(struct sk_buff);
179 	atomic_set(&skb->users, 1);
180 
181 	skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 	return skb;
184 }
185 
186 /**
187  *	__alloc_skb	-	allocate a network buffer
188  *	@size: size to allocate
189  *	@gfp_mask: allocation mask
190  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191  *		instead of head cache and allocate a cloned (child) skb.
192  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193  *		allocations in case the data is required for writeback
194  *	@node: numa node to allocate memory on
195  *
196  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
197  *	tail room of at least size bytes. The object has a reference count
198  *	of one. The return is the buffer. On a failure the return is %NULL.
199  *
200  *	Buffers may only be allocated from interrupts using a @gfp_mask of
201  *	%GFP_ATOMIC.
202  */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 			    int flags, int node)
205 {
206 	struct kmem_cache *cache;
207 	struct skb_shared_info *shinfo;
208 	struct sk_buff *skb;
209 	u8 *data;
210 	bool pfmemalloc;
211 
212 	cache = (flags & SKB_ALLOC_FCLONE)
213 		? skbuff_fclone_cache : skbuff_head_cache;
214 
215 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 		gfp_mask |= __GFP_MEMALLOC;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 	if (!skb)
221 		goto out;
222 	prefetchw(skb);
223 
224 	/* We do our best to align skb_shared_info on a separate cache
225 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 	 * Both skb->head and skb_shared_info are cache line aligned.
228 	 */
229 	size = SKB_DATA_ALIGN(size);
230 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 	if (!data)
233 		goto nodata;
234 	/* kmalloc(size) might give us more room than requested.
235 	 * Put skb_shared_info exactly at the end of allocated zone,
236 	 * to allow max possible filling before reallocation.
237 	 */
238 	size = SKB_WITH_OVERHEAD(ksize(data));
239 	prefetchw(data + size);
240 
241 	/*
242 	 * Only clear those fields we need to clear, not those that we will
243 	 * actually initialise below. Hence, don't put any more fields after
244 	 * the tail pointer in struct sk_buff!
245 	 */
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	/* Account for allocated memory : skb + skb->head */
248 	skb->truesize = SKB_TRUESIZE(size);
249 	skb->pfmemalloc = pfmemalloc;
250 	atomic_set(&skb->users, 1);
251 	skb->head = data;
252 	skb->data = data;
253 	skb_reset_tail_pointer(skb);
254 	skb->end = skb->tail + size;
255 	skb->mac_header = (typeof(skb->mac_header))~0U;
256 	skb->transport_header = (typeof(skb->transport_header))~0U;
257 
258 	/* make sure we initialize shinfo sequentially */
259 	shinfo = skb_shinfo(skb);
260 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 	atomic_set(&shinfo->dataref, 1);
262 	kmemcheck_annotate_variable(shinfo->destructor_arg);
263 
264 	if (flags & SKB_ALLOC_FCLONE) {
265 		struct sk_buff_fclones *fclones;
266 
267 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
268 
269 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 		skb->fclone = SKB_FCLONE_ORIG;
271 		atomic_set(&fclones->fclone_ref, 1);
272 
273 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 #define NAPI_SKB_CACHE_SIZE	64
353 
354 struct napi_alloc_cache {
355 	struct page_frag_cache page;
356 	unsigned int skb_count;
357 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359 
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362 
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct page_frag_cache *nc;
366 	unsigned long flags;
367 	void *data;
368 
369 	local_irq_save(flags);
370 	nc = this_cpu_ptr(&netdev_alloc_cache);
371 	data = page_frag_alloc(nc, fragsz, gfp_mask);
372 	local_irq_restore(flags);
373 	return data;
374 }
375 
376 /**
377  * netdev_alloc_frag - allocate a page fragment
378  * @fragsz: fragment size
379  *
380  * Allocates a frag from a page for receive buffer.
381  * Uses GFP_ATOMIC allocations.
382  */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388 
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392 
393 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
394 }
395 
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401 
402 /**
403  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
404  *	@dev: network device to receive on
405  *	@len: length to allocate
406  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
407  *
408  *	Allocate a new &sk_buff and assign it a usage count of one. The
409  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
410  *	the headroom they think they need without accounting for the
411  *	built in space. The built in space is used for optimisations.
412  *
413  *	%NULL is returned if there is no free memory.
414  */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 				   gfp_t gfp_mask)
417 {
418 	struct page_frag_cache *nc;
419 	unsigned long flags;
420 	struct sk_buff *skb;
421 	bool pfmemalloc;
422 	void *data;
423 
424 	len += NET_SKB_PAD;
425 
426 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 		if (!skb)
430 			goto skb_fail;
431 		goto skb_success;
432 	}
433 
434 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 	len = SKB_DATA_ALIGN(len);
436 
437 	if (sk_memalloc_socks())
438 		gfp_mask |= __GFP_MEMALLOC;
439 
440 	local_irq_save(flags);
441 
442 	nc = this_cpu_ptr(&netdev_alloc_cache);
443 	data = page_frag_alloc(nc, len, gfp_mask);
444 	pfmemalloc = nc->pfmemalloc;
445 
446 	local_irq_restore(flags);
447 
448 	if (unlikely(!data))
449 		return NULL;
450 
451 	skb = __build_skb(data, len);
452 	if (unlikely(!skb)) {
453 		skb_free_frag(data);
454 		return NULL;
455 	}
456 
457 	/* use OR instead of assignment to avoid clearing of bits in mask */
458 	if (pfmemalloc)
459 		skb->pfmemalloc = 1;
460 	skb->head_frag = 1;
461 
462 skb_success:
463 	skb_reserve(skb, NET_SKB_PAD);
464 	skb->dev = dev;
465 
466 skb_fail:
467 	return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470 
471 /**
472  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473  *	@napi: napi instance this buffer was allocated for
474  *	@len: length to allocate
475  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476  *
477  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
478  *	attempt to allocate the head from a special reserved region used
479  *	only for NAPI Rx allocation.  By doing this we can save several
480  *	CPU cycles by avoiding having to disable and re-enable IRQs.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 				 gfp_t gfp_mask)
486 {
487 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 	struct sk_buff *skb;
489 	void *data;
490 
491 	len += NET_SKB_PAD + NET_IP_ALIGN;
492 
493 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	data = page_frag_alloc(&nc->page, len, gfp_mask);
508 	if (unlikely(!data))
509 		return NULL;
510 
511 	skb = __build_skb(data, len);
512 	if (unlikely(!skb)) {
513 		skb_free_frag(data);
514 		return NULL;
515 	}
516 
517 	/* use OR instead of assignment to avoid clearing of bits in mask */
518 	if (nc->page.pfmemalloc)
519 		skb->pfmemalloc = 1;
520 	skb->head_frag = 1;
521 
522 skb_success:
523 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 	skb->dev = napi->dev;
525 
526 skb_fail:
527 	return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530 
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 		     int size, unsigned int truesize)
533 {
534 	skb_fill_page_desc(skb, i, page, off, size);
535 	skb->len += size;
536 	skb->data_len += size;
537 	skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540 
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 			  unsigned int truesize)
543 {
544 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545 
546 	skb_frag_size_add(frag, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552 
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 	kfree_skb_list(*listp);
556 	*listp = NULL;
557 }
558 
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 	skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563 
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 	struct sk_buff *list;
567 
568 	skb_walk_frags(skb, list)
569 		skb_get(list);
570 }
571 
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 	unsigned char *head = skb->head;
575 
576 	if (skb->head_frag)
577 		skb_free_frag(head);
578 	else
579 		kfree(head);
580 }
581 
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 	struct skb_shared_info *shinfo = skb_shinfo(skb);
585 	int i;
586 
587 	if (skb->cloned &&
588 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 			      &shinfo->dataref))
590 		return;
591 
592 	for (i = 0; i < shinfo->nr_frags; i++)
593 		__skb_frag_unref(&shinfo->frags[i]);
594 
595 	/*
596 	 * If skb buf is from userspace, we need to notify the caller
597 	 * the lower device DMA has done;
598 	 */
599 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 		struct ubuf_info *uarg;
601 
602 		uarg = shinfo->destructor_arg;
603 		if (uarg->callback)
604 			uarg->callback(uarg, true);
605 	}
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (atomic_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!atomic_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 	secpath_put(skb->sp);
651 #endif
652 	if (skb->destructor) {
653 		WARN_ON(in_irq());
654 		skb->destructor(skb);
655 	}
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 	nf_conntrack_put(skb_nfct(skb));
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (unlikely(!skb))
698 		return;
699 	if (likely(atomic_read(&skb->users) == 1))
700 		smp_rmb();
701 	else if (likely(!atomic_dec_and_test(&skb->users)))
702 		return;
703 	trace_kfree_skb(skb, __builtin_return_address(0));
704 	__kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707 
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 	while (segs) {
711 		struct sk_buff *next = segs->next;
712 
713 		kfree_skb(segs);
714 		segs = next;
715 	}
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718 
719 /**
720  *	skb_tx_error - report an sk_buff xmit error
721  *	@skb: buffer that triggered an error
722  *
723  *	Report xmit error if a device callback is tracking this skb.
724  *	skb must be freed afterwards.
725  */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 		struct ubuf_info *uarg;
730 
731 		uarg = skb_shinfo(skb)->destructor_arg;
732 		if (uarg->callback)
733 			uarg->callback(uarg, false);
734 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 	}
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738 
739 /**
740  *	consume_skb - free an skbuff
741  *	@skb: buffer to free
742  *
743  *	Drop a ref to the buffer and free it if the usage count has hit zero
744  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
745  *	is being dropped after a failure and notes that
746  */
747 void consume_skb(struct sk_buff *skb)
748 {
749 	if (unlikely(!skb))
750 		return;
751 	if (likely(atomic_read(&skb->users) == 1))
752 		smp_rmb();
753 	else if (likely(!atomic_dec_and_test(&skb->users)))
754 		return;
755 	trace_consume_skb(skb);
756 	__kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759 
760 void __kfree_skb_flush(void)
761 {
762 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763 
764 	/* flush skb_cache if containing objects */
765 	if (nc->skb_count) {
766 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 				     nc->skb_cache);
768 		nc->skb_count = 0;
769 	}
770 }
771 
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775 
776 	/* drop skb->head and call any destructors for packet */
777 	skb_release_all(skb);
778 
779 	/* record skb to CPU local list */
780 	nc->skb_cache[nc->skb_count++] = skb;
781 
782 #ifdef CONFIG_SLUB
783 	/* SLUB writes into objects when freeing */
784 	prefetchw(skb);
785 #endif
786 
787 	/* flush skb_cache if it is filled */
788 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 				     nc->skb_cache);
791 		nc->skb_count = 0;
792 	}
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 	_kfree_skb_defer(skb);
797 }
798 
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 	if (unlikely(!skb))
802 		return;
803 
804 	/* Zero budget indicate non-NAPI context called us, like netpoll */
805 	if (unlikely(!budget)) {
806 		dev_consume_skb_any(skb);
807 		return;
808 	}
809 
810 	if (likely(atomic_read(&skb->users) == 1))
811 		smp_rmb();
812 	else if (likely(!atomic_dec_and_test(&skb->users)))
813 		return;
814 	/* if reaching here SKB is ready to free */
815 	trace_consume_skb(skb);
816 
817 	/* if SKB is a clone, don't handle this case */
818 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 		__kfree_skb(skb);
820 		return;
821 	}
822 
823 	_kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826 
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
830 		     offsetof(struct sk_buff, headers_start));	\
831 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
832 		     offsetof(struct sk_buff, headers_end));	\
833 
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 	new->tstamp		= old->tstamp;
837 	/* We do not copy old->sk */
838 	new->dev		= old->dev;
839 	memcpy(new->cb, old->cb, sizeof(old->cb));
840 	skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 	new->sp			= secpath_get(old->sp);
843 #endif
844 	__nf_copy(new, old, false);
845 
846 	/* Note : this field could be in headers_start/headers_end section
847 	 * It is not yet because we do not want to have a 16 bit hole
848 	 */
849 	new->queue_mapping = old->queue_mapping;
850 
851 	memcpy(&new->headers_start, &old->headers_start,
852 	       offsetof(struct sk_buff, headers_end) -
853 	       offsetof(struct sk_buff, headers_start));
854 	CHECK_SKB_FIELD(protocol);
855 	CHECK_SKB_FIELD(csum);
856 	CHECK_SKB_FIELD(hash);
857 	CHECK_SKB_FIELD(priority);
858 	CHECK_SKB_FIELD(skb_iif);
859 	CHECK_SKB_FIELD(vlan_proto);
860 	CHECK_SKB_FIELD(vlan_tci);
861 	CHECK_SKB_FIELD(transport_header);
862 	CHECK_SKB_FIELD(network_header);
863 	CHECK_SKB_FIELD(mac_header);
864 	CHECK_SKB_FIELD(inner_protocol);
865 	CHECK_SKB_FIELD(inner_transport_header);
866 	CHECK_SKB_FIELD(inner_network_header);
867 	CHECK_SKB_FIELD(inner_mac_header);
868 	CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 	CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 	CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 	CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 	CHECK_SKB_FIELD(tc_index);
880 #endif
881 
882 }
883 
884 /*
885  * You should not add any new code to this function.  Add it to
886  * __copy_skb_header above instead.
887  */
888 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
889 {
890 #define C(x) n->x = skb->x
891 
892 	n->next = n->prev = NULL;
893 	n->sk = NULL;
894 	__copy_skb_header(n, skb);
895 
896 	C(len);
897 	C(data_len);
898 	C(mac_len);
899 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
900 	n->cloned = 1;
901 	n->nohdr = 0;
902 	n->destructor = NULL;
903 	C(tail);
904 	C(end);
905 	C(head);
906 	C(head_frag);
907 	C(data);
908 	C(truesize);
909 	atomic_set(&n->users, 1);
910 
911 	atomic_inc(&(skb_shinfo(skb)->dataref));
912 	skb->cloned = 1;
913 
914 	return n;
915 #undef C
916 }
917 
918 /**
919  *	skb_morph	-	morph one skb into another
920  *	@dst: the skb to receive the contents
921  *	@src: the skb to supply the contents
922  *
923  *	This is identical to skb_clone except that the target skb is
924  *	supplied by the user.
925  *
926  *	The target skb is returned upon exit.
927  */
928 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
929 {
930 	skb_release_all(dst);
931 	return __skb_clone(dst, src);
932 }
933 EXPORT_SYMBOL_GPL(skb_morph);
934 
935 /**
936  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
937  *	@skb: the skb to modify
938  *	@gfp_mask: allocation priority
939  *
940  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
941  *	It will copy all frags into kernel and drop the reference
942  *	to userspace pages.
943  *
944  *	If this function is called from an interrupt gfp_mask() must be
945  *	%GFP_ATOMIC.
946  *
947  *	Returns 0 on success or a negative error code on failure
948  *	to allocate kernel memory to copy to.
949  */
950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
951 {
952 	int i;
953 	int num_frags = skb_shinfo(skb)->nr_frags;
954 	struct page *page, *head = NULL;
955 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
956 
957 	for (i = 0; i < num_frags; i++) {
958 		u8 *vaddr;
959 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
960 
961 		page = alloc_page(gfp_mask);
962 		if (!page) {
963 			while (head) {
964 				struct page *next = (struct page *)page_private(head);
965 				put_page(head);
966 				head = next;
967 			}
968 			return -ENOMEM;
969 		}
970 		vaddr = kmap_atomic(skb_frag_page(f));
971 		memcpy(page_address(page),
972 		       vaddr + f->page_offset, skb_frag_size(f));
973 		kunmap_atomic(vaddr);
974 		set_page_private(page, (unsigned long)head);
975 		head = page;
976 	}
977 
978 	/* skb frags release userspace buffers */
979 	for (i = 0; i < num_frags; i++)
980 		skb_frag_unref(skb, i);
981 
982 	uarg->callback(uarg, false);
983 
984 	/* skb frags point to kernel buffers */
985 	for (i = num_frags - 1; i >= 0; i--) {
986 		__skb_fill_page_desc(skb, i, head, 0,
987 				     skb_shinfo(skb)->frags[i].size);
988 		head = (struct page *)page_private(head);
989 	}
990 
991 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
995 
996 /**
997  *	skb_clone	-	duplicate an sk_buff
998  *	@skb: buffer to clone
999  *	@gfp_mask: allocation priority
1000  *
1001  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1002  *	copies share the same packet data but not structure. The new
1003  *	buffer has a reference count of 1. If the allocation fails the
1004  *	function returns %NULL otherwise the new buffer is returned.
1005  *
1006  *	If this function is called from an interrupt gfp_mask() must be
1007  *	%GFP_ATOMIC.
1008  */
1009 
1010 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1011 {
1012 	struct sk_buff_fclones *fclones = container_of(skb,
1013 						       struct sk_buff_fclones,
1014 						       skb1);
1015 	struct sk_buff *n;
1016 
1017 	if (skb_orphan_frags(skb, gfp_mask))
1018 		return NULL;
1019 
1020 	if (skb->fclone == SKB_FCLONE_ORIG &&
1021 	    atomic_read(&fclones->fclone_ref) == 1) {
1022 		n = &fclones->skb2;
1023 		atomic_set(&fclones->fclone_ref, 2);
1024 	} else {
1025 		if (skb_pfmemalloc(skb))
1026 			gfp_mask |= __GFP_MEMALLOC;
1027 
1028 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1029 		if (!n)
1030 			return NULL;
1031 
1032 		kmemcheck_annotate_bitfield(n, flags1);
1033 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1034 	}
1035 
1036 	return __skb_clone(n, skb);
1037 }
1038 EXPORT_SYMBOL(skb_clone);
1039 
1040 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1041 {
1042 	/* Only adjust this if it actually is csum_start rather than csum */
1043 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1044 		skb->csum_start += off;
1045 	/* {transport,network,mac}_header and tail are relative to skb->head */
1046 	skb->transport_header += off;
1047 	skb->network_header   += off;
1048 	if (skb_mac_header_was_set(skb))
1049 		skb->mac_header += off;
1050 	skb->inner_transport_header += off;
1051 	skb->inner_network_header += off;
1052 	skb->inner_mac_header += off;
1053 }
1054 
1055 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1056 {
1057 	__copy_skb_header(new, old);
1058 
1059 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1060 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1061 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1062 }
1063 
1064 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1065 {
1066 	if (skb_pfmemalloc(skb))
1067 		return SKB_ALLOC_RX;
1068 	return 0;
1069 }
1070 
1071 /**
1072  *	skb_copy	-	create private copy of an sk_buff
1073  *	@skb: buffer to copy
1074  *	@gfp_mask: allocation priority
1075  *
1076  *	Make a copy of both an &sk_buff and its data. This is used when the
1077  *	caller wishes to modify the data and needs a private copy of the
1078  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1079  *	on success. The returned buffer has a reference count of 1.
1080  *
1081  *	As by-product this function converts non-linear &sk_buff to linear
1082  *	one, so that &sk_buff becomes completely private and caller is allowed
1083  *	to modify all the data of returned buffer. This means that this
1084  *	function is not recommended for use in circumstances when only
1085  *	header is going to be modified. Use pskb_copy() instead.
1086  */
1087 
1088 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1089 {
1090 	int headerlen = skb_headroom(skb);
1091 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1092 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1093 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1094 
1095 	if (!n)
1096 		return NULL;
1097 
1098 	/* Set the data pointer */
1099 	skb_reserve(n, headerlen);
1100 	/* Set the tail pointer and length */
1101 	skb_put(n, skb->len);
1102 
1103 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1104 		BUG();
1105 
1106 	copy_skb_header(n, skb);
1107 	return n;
1108 }
1109 EXPORT_SYMBOL(skb_copy);
1110 
1111 /**
1112  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1113  *	@skb: buffer to copy
1114  *	@headroom: headroom of new skb
1115  *	@gfp_mask: allocation priority
1116  *	@fclone: if true allocate the copy of the skb from the fclone
1117  *	cache instead of the head cache; it is recommended to set this
1118  *	to true for the cases where the copy will likely be cloned
1119  *
1120  *	Make a copy of both an &sk_buff and part of its data, located
1121  *	in header. Fragmented data remain shared. This is used when
1122  *	the caller wishes to modify only header of &sk_buff and needs
1123  *	private copy of the header to alter. Returns %NULL on failure
1124  *	or the pointer to the buffer on success.
1125  *	The returned buffer has a reference count of 1.
1126  */
1127 
1128 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1129 				   gfp_t gfp_mask, bool fclone)
1130 {
1131 	unsigned int size = skb_headlen(skb) + headroom;
1132 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1133 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1134 
1135 	if (!n)
1136 		goto out;
1137 
1138 	/* Set the data pointer */
1139 	skb_reserve(n, headroom);
1140 	/* Set the tail pointer and length */
1141 	skb_put(n, skb_headlen(skb));
1142 	/* Copy the bytes */
1143 	skb_copy_from_linear_data(skb, n->data, n->len);
1144 
1145 	n->truesize += skb->data_len;
1146 	n->data_len  = skb->data_len;
1147 	n->len	     = skb->len;
1148 
1149 	if (skb_shinfo(skb)->nr_frags) {
1150 		int i;
1151 
1152 		if (skb_orphan_frags(skb, gfp_mask)) {
1153 			kfree_skb(n);
1154 			n = NULL;
1155 			goto out;
1156 		}
1157 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1159 			skb_frag_ref(skb, i);
1160 		}
1161 		skb_shinfo(n)->nr_frags = i;
1162 	}
1163 
1164 	if (skb_has_frag_list(skb)) {
1165 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1166 		skb_clone_fraglist(n);
1167 	}
1168 
1169 	copy_skb_header(n, skb);
1170 out:
1171 	return n;
1172 }
1173 EXPORT_SYMBOL(__pskb_copy_fclone);
1174 
1175 /**
1176  *	pskb_expand_head - reallocate header of &sk_buff
1177  *	@skb: buffer to reallocate
1178  *	@nhead: room to add at head
1179  *	@ntail: room to add at tail
1180  *	@gfp_mask: allocation priority
1181  *
1182  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1183  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1184  *	reference count of 1. Returns zero in the case of success or error,
1185  *	if expansion failed. In the last case, &sk_buff is not changed.
1186  *
1187  *	All the pointers pointing into skb header may change and must be
1188  *	reloaded after call to this function.
1189  */
1190 
1191 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1192 		     gfp_t gfp_mask)
1193 {
1194 	int i, osize = skb_end_offset(skb);
1195 	int size = osize + nhead + ntail;
1196 	long off;
1197 	u8 *data;
1198 
1199 	BUG_ON(nhead < 0);
1200 
1201 	if (skb_shared(skb))
1202 		BUG();
1203 
1204 	size = SKB_DATA_ALIGN(size);
1205 
1206 	if (skb_pfmemalloc(skb))
1207 		gfp_mask |= __GFP_MEMALLOC;
1208 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1209 			       gfp_mask, NUMA_NO_NODE, NULL);
1210 	if (!data)
1211 		goto nodata;
1212 	size = SKB_WITH_OVERHEAD(ksize(data));
1213 
1214 	/* Copy only real data... and, alas, header. This should be
1215 	 * optimized for the cases when header is void.
1216 	 */
1217 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1218 
1219 	memcpy((struct skb_shared_info *)(data + size),
1220 	       skb_shinfo(skb),
1221 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1222 
1223 	/*
1224 	 * if shinfo is shared we must drop the old head gracefully, but if it
1225 	 * is not we can just drop the old head and let the existing refcount
1226 	 * be since all we did is relocate the values
1227 	 */
1228 	if (skb_cloned(skb)) {
1229 		/* copy this zero copy skb frags */
1230 		if (skb_orphan_frags(skb, gfp_mask))
1231 			goto nofrags;
1232 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1233 			skb_frag_ref(skb, i);
1234 
1235 		if (skb_has_frag_list(skb))
1236 			skb_clone_fraglist(skb);
1237 
1238 		skb_release_data(skb);
1239 	} else {
1240 		skb_free_head(skb);
1241 	}
1242 	off = (data + nhead) - skb->head;
1243 
1244 	skb->head     = data;
1245 	skb->head_frag = 0;
1246 	skb->data    += off;
1247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1248 	skb->end      = size;
1249 	off           = nhead;
1250 #else
1251 	skb->end      = skb->head + size;
1252 #endif
1253 	skb->tail	      += off;
1254 	skb_headers_offset_update(skb, nhead);
1255 	skb->cloned   = 0;
1256 	skb->hdr_len  = 0;
1257 	skb->nohdr    = 0;
1258 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1259 
1260 	/* It is not generally safe to change skb->truesize.
1261 	 * For the moment, we really care of rx path, or
1262 	 * when skb is orphaned (not attached to a socket).
1263 	 */
1264 	if (!skb->sk || skb->destructor == sock_edemux)
1265 		skb->truesize += size - osize;
1266 
1267 	return 0;
1268 
1269 nofrags:
1270 	kfree(data);
1271 nodata:
1272 	return -ENOMEM;
1273 }
1274 EXPORT_SYMBOL(pskb_expand_head);
1275 
1276 /* Make private copy of skb with writable head and some headroom */
1277 
1278 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1279 {
1280 	struct sk_buff *skb2;
1281 	int delta = headroom - skb_headroom(skb);
1282 
1283 	if (delta <= 0)
1284 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1285 	else {
1286 		skb2 = skb_clone(skb, GFP_ATOMIC);
1287 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1288 					     GFP_ATOMIC)) {
1289 			kfree_skb(skb2);
1290 			skb2 = NULL;
1291 		}
1292 	}
1293 	return skb2;
1294 }
1295 EXPORT_SYMBOL(skb_realloc_headroom);
1296 
1297 /**
1298  *	skb_copy_expand	-	copy and expand sk_buff
1299  *	@skb: buffer to copy
1300  *	@newheadroom: new free bytes at head
1301  *	@newtailroom: new free bytes at tail
1302  *	@gfp_mask: allocation priority
1303  *
1304  *	Make a copy of both an &sk_buff and its data and while doing so
1305  *	allocate additional space.
1306  *
1307  *	This is used when the caller wishes to modify the data and needs a
1308  *	private copy of the data to alter as well as more space for new fields.
1309  *	Returns %NULL on failure or the pointer to the buffer
1310  *	on success. The returned buffer has a reference count of 1.
1311  *
1312  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1313  *	is called from an interrupt.
1314  */
1315 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1316 				int newheadroom, int newtailroom,
1317 				gfp_t gfp_mask)
1318 {
1319 	/*
1320 	 *	Allocate the copy buffer
1321 	 */
1322 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1323 					gfp_mask, skb_alloc_rx_flag(skb),
1324 					NUMA_NO_NODE);
1325 	int oldheadroom = skb_headroom(skb);
1326 	int head_copy_len, head_copy_off;
1327 
1328 	if (!n)
1329 		return NULL;
1330 
1331 	skb_reserve(n, newheadroom);
1332 
1333 	/* Set the tail pointer and length */
1334 	skb_put(n, skb->len);
1335 
1336 	head_copy_len = oldheadroom;
1337 	head_copy_off = 0;
1338 	if (newheadroom <= head_copy_len)
1339 		head_copy_len = newheadroom;
1340 	else
1341 		head_copy_off = newheadroom - head_copy_len;
1342 
1343 	/* Copy the linear header and data. */
1344 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1345 			  skb->len + head_copy_len))
1346 		BUG();
1347 
1348 	copy_skb_header(n, skb);
1349 
1350 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1351 
1352 	return n;
1353 }
1354 EXPORT_SYMBOL(skb_copy_expand);
1355 
1356 /**
1357  *	skb_pad			-	zero pad the tail of an skb
1358  *	@skb: buffer to pad
1359  *	@pad: space to pad
1360  *
1361  *	Ensure that a buffer is followed by a padding area that is zero
1362  *	filled. Used by network drivers which may DMA or transfer data
1363  *	beyond the buffer end onto the wire.
1364  *
1365  *	May return error in out of memory cases. The skb is freed on error.
1366  */
1367 
1368 int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 	int err;
1371 	int ntail;
1372 
1373 	/* If the skbuff is non linear tailroom is always zero.. */
1374 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1375 		memset(skb->data+skb->len, 0, pad);
1376 		return 0;
1377 	}
1378 
1379 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1380 	if (likely(skb_cloned(skb) || ntail > 0)) {
1381 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1382 		if (unlikely(err))
1383 			goto free_skb;
1384 	}
1385 
1386 	/* FIXME: The use of this function with non-linear skb's really needs
1387 	 * to be audited.
1388 	 */
1389 	err = skb_linearize(skb);
1390 	if (unlikely(err))
1391 		goto free_skb;
1392 
1393 	memset(skb->data + skb->len, 0, pad);
1394 	return 0;
1395 
1396 free_skb:
1397 	kfree_skb(skb);
1398 	return err;
1399 }
1400 EXPORT_SYMBOL(skb_pad);
1401 
1402 /**
1403  *	pskb_put - add data to the tail of a potentially fragmented buffer
1404  *	@skb: start of the buffer to use
1405  *	@tail: tail fragment of the buffer to use
1406  *	@len: amount of data to add
1407  *
1408  *	This function extends the used data area of the potentially
1409  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1410  *	@skb itself. If this would exceed the total buffer size the kernel
1411  *	will panic. A pointer to the first byte of the extra data is
1412  *	returned.
1413  */
1414 
1415 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1416 {
1417 	if (tail != skb) {
1418 		skb->data_len += len;
1419 		skb->len += len;
1420 	}
1421 	return skb_put(tail, len);
1422 }
1423 EXPORT_SYMBOL_GPL(pskb_put);
1424 
1425 /**
1426  *	skb_put - add data to a buffer
1427  *	@skb: buffer to use
1428  *	@len: amount of data to add
1429  *
1430  *	This function extends the used data area of the buffer. If this would
1431  *	exceed the total buffer size the kernel will panic. A pointer to the
1432  *	first byte of the extra data is returned.
1433  */
1434 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1435 {
1436 	unsigned char *tmp = skb_tail_pointer(skb);
1437 	SKB_LINEAR_ASSERT(skb);
1438 	skb->tail += len;
1439 	skb->len  += len;
1440 	if (unlikely(skb->tail > skb->end))
1441 		skb_over_panic(skb, len, __builtin_return_address(0));
1442 	return tmp;
1443 }
1444 EXPORT_SYMBOL(skb_put);
1445 
1446 /**
1447  *	skb_push - add data to the start of a buffer
1448  *	@skb: buffer to use
1449  *	@len: amount of data to add
1450  *
1451  *	This function extends the used data area of the buffer at the buffer
1452  *	start. If this would exceed the total buffer headroom the kernel will
1453  *	panic. A pointer to the first byte of the extra data is returned.
1454  */
1455 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1456 {
1457 	skb->data -= len;
1458 	skb->len  += len;
1459 	if (unlikely(skb->data<skb->head))
1460 		skb_under_panic(skb, len, __builtin_return_address(0));
1461 	return skb->data;
1462 }
1463 EXPORT_SYMBOL(skb_push);
1464 
1465 /**
1466  *	skb_pull - remove data from the start of a buffer
1467  *	@skb: buffer to use
1468  *	@len: amount of data to remove
1469  *
1470  *	This function removes data from the start of a buffer, returning
1471  *	the memory to the headroom. A pointer to the next data in the buffer
1472  *	is returned. Once the data has been pulled future pushes will overwrite
1473  *	the old data.
1474  */
1475 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1476 {
1477 	return skb_pull_inline(skb, len);
1478 }
1479 EXPORT_SYMBOL(skb_pull);
1480 
1481 /**
1482  *	skb_trim - remove end from a buffer
1483  *	@skb: buffer to alter
1484  *	@len: new length
1485  *
1486  *	Cut the length of a buffer down by removing data from the tail. If
1487  *	the buffer is already under the length specified it is not modified.
1488  *	The skb must be linear.
1489  */
1490 void skb_trim(struct sk_buff *skb, unsigned int len)
1491 {
1492 	if (skb->len > len)
1493 		__skb_trim(skb, len);
1494 }
1495 EXPORT_SYMBOL(skb_trim);
1496 
1497 /* Trims skb to length len. It can change skb pointers.
1498  */
1499 
1500 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1501 {
1502 	struct sk_buff **fragp;
1503 	struct sk_buff *frag;
1504 	int offset = skb_headlen(skb);
1505 	int nfrags = skb_shinfo(skb)->nr_frags;
1506 	int i;
1507 	int err;
1508 
1509 	if (skb_cloned(skb) &&
1510 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1511 		return err;
1512 
1513 	i = 0;
1514 	if (offset >= len)
1515 		goto drop_pages;
1516 
1517 	for (; i < nfrags; i++) {
1518 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1519 
1520 		if (end < len) {
1521 			offset = end;
1522 			continue;
1523 		}
1524 
1525 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1526 
1527 drop_pages:
1528 		skb_shinfo(skb)->nr_frags = i;
1529 
1530 		for (; i < nfrags; i++)
1531 			skb_frag_unref(skb, i);
1532 
1533 		if (skb_has_frag_list(skb))
1534 			skb_drop_fraglist(skb);
1535 		goto done;
1536 	}
1537 
1538 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1539 	     fragp = &frag->next) {
1540 		int end = offset + frag->len;
1541 
1542 		if (skb_shared(frag)) {
1543 			struct sk_buff *nfrag;
1544 
1545 			nfrag = skb_clone(frag, GFP_ATOMIC);
1546 			if (unlikely(!nfrag))
1547 				return -ENOMEM;
1548 
1549 			nfrag->next = frag->next;
1550 			consume_skb(frag);
1551 			frag = nfrag;
1552 			*fragp = frag;
1553 		}
1554 
1555 		if (end < len) {
1556 			offset = end;
1557 			continue;
1558 		}
1559 
1560 		if (end > len &&
1561 		    unlikely((err = pskb_trim(frag, len - offset))))
1562 			return err;
1563 
1564 		if (frag->next)
1565 			skb_drop_list(&frag->next);
1566 		break;
1567 	}
1568 
1569 done:
1570 	if (len > skb_headlen(skb)) {
1571 		skb->data_len -= skb->len - len;
1572 		skb->len       = len;
1573 	} else {
1574 		skb->len       = len;
1575 		skb->data_len  = 0;
1576 		skb_set_tail_pointer(skb, len);
1577 	}
1578 
1579 	if (!skb->sk || skb->destructor == sock_edemux)
1580 		skb_condense(skb);
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL(___pskb_trim);
1584 
1585 /**
1586  *	__pskb_pull_tail - advance tail of skb header
1587  *	@skb: buffer to reallocate
1588  *	@delta: number of bytes to advance tail
1589  *
1590  *	The function makes a sense only on a fragmented &sk_buff,
1591  *	it expands header moving its tail forward and copying necessary
1592  *	data from fragmented part.
1593  *
1594  *	&sk_buff MUST have reference count of 1.
1595  *
1596  *	Returns %NULL (and &sk_buff does not change) if pull failed
1597  *	or value of new tail of skb in the case of success.
1598  *
1599  *	All the pointers pointing into skb header may change and must be
1600  *	reloaded after call to this function.
1601  */
1602 
1603 /* Moves tail of skb head forward, copying data from fragmented part,
1604  * when it is necessary.
1605  * 1. It may fail due to malloc failure.
1606  * 2. It may change skb pointers.
1607  *
1608  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1609  */
1610 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1611 {
1612 	/* If skb has not enough free space at tail, get new one
1613 	 * plus 128 bytes for future expansions. If we have enough
1614 	 * room at tail, reallocate without expansion only if skb is cloned.
1615 	 */
1616 	int i, k, eat = (skb->tail + delta) - skb->end;
1617 
1618 	if (eat > 0 || skb_cloned(skb)) {
1619 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1620 				     GFP_ATOMIC))
1621 			return NULL;
1622 	}
1623 
1624 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1625 		BUG();
1626 
1627 	/* Optimization: no fragments, no reasons to preestimate
1628 	 * size of pulled pages. Superb.
1629 	 */
1630 	if (!skb_has_frag_list(skb))
1631 		goto pull_pages;
1632 
1633 	/* Estimate size of pulled pages. */
1634 	eat = delta;
1635 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1636 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1637 
1638 		if (size >= eat)
1639 			goto pull_pages;
1640 		eat -= size;
1641 	}
1642 
1643 	/* If we need update frag list, we are in troubles.
1644 	 * Certainly, it possible to add an offset to skb data,
1645 	 * but taking into account that pulling is expected to
1646 	 * be very rare operation, it is worth to fight against
1647 	 * further bloating skb head and crucify ourselves here instead.
1648 	 * Pure masohism, indeed. 8)8)
1649 	 */
1650 	if (eat) {
1651 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1652 		struct sk_buff *clone = NULL;
1653 		struct sk_buff *insp = NULL;
1654 
1655 		do {
1656 			BUG_ON(!list);
1657 
1658 			if (list->len <= eat) {
1659 				/* Eaten as whole. */
1660 				eat -= list->len;
1661 				list = list->next;
1662 				insp = list;
1663 			} else {
1664 				/* Eaten partially. */
1665 
1666 				if (skb_shared(list)) {
1667 					/* Sucks! We need to fork list. :-( */
1668 					clone = skb_clone(list, GFP_ATOMIC);
1669 					if (!clone)
1670 						return NULL;
1671 					insp = list->next;
1672 					list = clone;
1673 				} else {
1674 					/* This may be pulled without
1675 					 * problems. */
1676 					insp = list;
1677 				}
1678 				if (!pskb_pull(list, eat)) {
1679 					kfree_skb(clone);
1680 					return NULL;
1681 				}
1682 				break;
1683 			}
1684 		} while (eat);
1685 
1686 		/* Free pulled out fragments. */
1687 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1688 			skb_shinfo(skb)->frag_list = list->next;
1689 			kfree_skb(list);
1690 		}
1691 		/* And insert new clone at head. */
1692 		if (clone) {
1693 			clone->next = list;
1694 			skb_shinfo(skb)->frag_list = clone;
1695 		}
1696 	}
1697 	/* Success! Now we may commit changes to skb data. */
1698 
1699 pull_pages:
1700 	eat = delta;
1701 	k = 0;
1702 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1703 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1704 
1705 		if (size <= eat) {
1706 			skb_frag_unref(skb, i);
1707 			eat -= size;
1708 		} else {
1709 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1710 			if (eat) {
1711 				skb_shinfo(skb)->frags[k].page_offset += eat;
1712 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1713 				eat = 0;
1714 			}
1715 			k++;
1716 		}
1717 	}
1718 	skb_shinfo(skb)->nr_frags = k;
1719 
1720 	skb->tail     += delta;
1721 	skb->data_len -= delta;
1722 
1723 	return skb_tail_pointer(skb);
1724 }
1725 EXPORT_SYMBOL(__pskb_pull_tail);
1726 
1727 /**
1728  *	skb_copy_bits - copy bits from skb to kernel buffer
1729  *	@skb: source skb
1730  *	@offset: offset in source
1731  *	@to: destination buffer
1732  *	@len: number of bytes to copy
1733  *
1734  *	Copy the specified number of bytes from the source skb to the
1735  *	destination buffer.
1736  *
1737  *	CAUTION ! :
1738  *		If its prototype is ever changed,
1739  *		check arch/{*}/net/{*}.S files,
1740  *		since it is called from BPF assembly code.
1741  */
1742 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1743 {
1744 	int start = skb_headlen(skb);
1745 	struct sk_buff *frag_iter;
1746 	int i, copy;
1747 
1748 	if (offset > (int)skb->len - len)
1749 		goto fault;
1750 
1751 	/* Copy header. */
1752 	if ((copy = start - offset) > 0) {
1753 		if (copy > len)
1754 			copy = len;
1755 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1756 		if ((len -= copy) == 0)
1757 			return 0;
1758 		offset += copy;
1759 		to     += copy;
1760 	}
1761 
1762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1763 		int end;
1764 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1765 
1766 		WARN_ON(start > offset + len);
1767 
1768 		end = start + skb_frag_size(f);
1769 		if ((copy = end - offset) > 0) {
1770 			u8 *vaddr;
1771 
1772 			if (copy > len)
1773 				copy = len;
1774 
1775 			vaddr = kmap_atomic(skb_frag_page(f));
1776 			memcpy(to,
1777 			       vaddr + f->page_offset + offset - start,
1778 			       copy);
1779 			kunmap_atomic(vaddr);
1780 
1781 			if ((len -= copy) == 0)
1782 				return 0;
1783 			offset += copy;
1784 			to     += copy;
1785 		}
1786 		start = end;
1787 	}
1788 
1789 	skb_walk_frags(skb, frag_iter) {
1790 		int end;
1791 
1792 		WARN_ON(start > offset + len);
1793 
1794 		end = start + frag_iter->len;
1795 		if ((copy = end - offset) > 0) {
1796 			if (copy > len)
1797 				copy = len;
1798 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1799 				goto fault;
1800 			if ((len -= copy) == 0)
1801 				return 0;
1802 			offset += copy;
1803 			to     += copy;
1804 		}
1805 		start = end;
1806 	}
1807 
1808 	if (!len)
1809 		return 0;
1810 
1811 fault:
1812 	return -EFAULT;
1813 }
1814 EXPORT_SYMBOL(skb_copy_bits);
1815 
1816 /*
1817  * Callback from splice_to_pipe(), if we need to release some pages
1818  * at the end of the spd in case we error'ed out in filling the pipe.
1819  */
1820 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1821 {
1822 	put_page(spd->pages[i]);
1823 }
1824 
1825 static struct page *linear_to_page(struct page *page, unsigned int *len,
1826 				   unsigned int *offset,
1827 				   struct sock *sk)
1828 {
1829 	struct page_frag *pfrag = sk_page_frag(sk);
1830 
1831 	if (!sk_page_frag_refill(sk, pfrag))
1832 		return NULL;
1833 
1834 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1835 
1836 	memcpy(page_address(pfrag->page) + pfrag->offset,
1837 	       page_address(page) + *offset, *len);
1838 	*offset = pfrag->offset;
1839 	pfrag->offset += *len;
1840 
1841 	return pfrag->page;
1842 }
1843 
1844 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1845 			     struct page *page,
1846 			     unsigned int offset)
1847 {
1848 	return	spd->nr_pages &&
1849 		spd->pages[spd->nr_pages - 1] == page &&
1850 		(spd->partial[spd->nr_pages - 1].offset +
1851 		 spd->partial[spd->nr_pages - 1].len == offset);
1852 }
1853 
1854 /*
1855  * Fill page/offset/length into spd, if it can hold more pages.
1856  */
1857 static bool spd_fill_page(struct splice_pipe_desc *spd,
1858 			  struct pipe_inode_info *pipe, struct page *page,
1859 			  unsigned int *len, unsigned int offset,
1860 			  bool linear,
1861 			  struct sock *sk)
1862 {
1863 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1864 		return true;
1865 
1866 	if (linear) {
1867 		page = linear_to_page(page, len, &offset, sk);
1868 		if (!page)
1869 			return true;
1870 	}
1871 	if (spd_can_coalesce(spd, page, offset)) {
1872 		spd->partial[spd->nr_pages - 1].len += *len;
1873 		return false;
1874 	}
1875 	get_page(page);
1876 	spd->pages[spd->nr_pages] = page;
1877 	spd->partial[spd->nr_pages].len = *len;
1878 	spd->partial[spd->nr_pages].offset = offset;
1879 	spd->nr_pages++;
1880 
1881 	return false;
1882 }
1883 
1884 static bool __splice_segment(struct page *page, unsigned int poff,
1885 			     unsigned int plen, unsigned int *off,
1886 			     unsigned int *len,
1887 			     struct splice_pipe_desc *spd, bool linear,
1888 			     struct sock *sk,
1889 			     struct pipe_inode_info *pipe)
1890 {
1891 	if (!*len)
1892 		return true;
1893 
1894 	/* skip this segment if already processed */
1895 	if (*off >= plen) {
1896 		*off -= plen;
1897 		return false;
1898 	}
1899 
1900 	/* ignore any bits we already processed */
1901 	poff += *off;
1902 	plen -= *off;
1903 	*off = 0;
1904 
1905 	do {
1906 		unsigned int flen = min(*len, plen);
1907 
1908 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1909 				  linear, sk))
1910 			return true;
1911 		poff += flen;
1912 		plen -= flen;
1913 		*len -= flen;
1914 	} while (*len && plen);
1915 
1916 	return false;
1917 }
1918 
1919 /*
1920  * Map linear and fragment data from the skb to spd. It reports true if the
1921  * pipe is full or if we already spliced the requested length.
1922  */
1923 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1924 			      unsigned int *offset, unsigned int *len,
1925 			      struct splice_pipe_desc *spd, struct sock *sk)
1926 {
1927 	int seg;
1928 	struct sk_buff *iter;
1929 
1930 	/* map the linear part :
1931 	 * If skb->head_frag is set, this 'linear' part is backed by a
1932 	 * fragment, and if the head is not shared with any clones then
1933 	 * we can avoid a copy since we own the head portion of this page.
1934 	 */
1935 	if (__splice_segment(virt_to_page(skb->data),
1936 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1937 			     skb_headlen(skb),
1938 			     offset, len, spd,
1939 			     skb_head_is_locked(skb),
1940 			     sk, pipe))
1941 		return true;
1942 
1943 	/*
1944 	 * then map the fragments
1945 	 */
1946 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1947 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1948 
1949 		if (__splice_segment(skb_frag_page(f),
1950 				     f->page_offset, skb_frag_size(f),
1951 				     offset, len, spd, false, sk, pipe))
1952 			return true;
1953 	}
1954 
1955 	skb_walk_frags(skb, iter) {
1956 		if (*offset >= iter->len) {
1957 			*offset -= iter->len;
1958 			continue;
1959 		}
1960 		/* __skb_splice_bits() only fails if the output has no room
1961 		 * left, so no point in going over the frag_list for the error
1962 		 * case.
1963 		 */
1964 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1965 			return true;
1966 	}
1967 
1968 	return false;
1969 }
1970 
1971 /*
1972  * Map data from the skb to a pipe. Should handle both the linear part,
1973  * the fragments, and the frag list.
1974  */
1975 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1976 		    struct pipe_inode_info *pipe, unsigned int tlen,
1977 		    unsigned int flags)
1978 {
1979 	struct partial_page partial[MAX_SKB_FRAGS];
1980 	struct page *pages[MAX_SKB_FRAGS];
1981 	struct splice_pipe_desc spd = {
1982 		.pages = pages,
1983 		.partial = partial,
1984 		.nr_pages_max = MAX_SKB_FRAGS,
1985 		.flags = flags,
1986 		.ops = &nosteal_pipe_buf_ops,
1987 		.spd_release = sock_spd_release,
1988 	};
1989 	int ret = 0;
1990 
1991 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1992 
1993 	if (spd.nr_pages)
1994 		ret = splice_to_pipe(pipe, &spd);
1995 
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(skb_splice_bits);
1999 
2000 /**
2001  *	skb_store_bits - store bits from kernel buffer to skb
2002  *	@skb: destination buffer
2003  *	@offset: offset in destination
2004  *	@from: source buffer
2005  *	@len: number of bytes to copy
2006  *
2007  *	Copy the specified number of bytes from the source buffer to the
2008  *	destination skb.  This function handles all the messy bits of
2009  *	traversing fragment lists and such.
2010  */
2011 
2012 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2013 {
2014 	int start = skb_headlen(skb);
2015 	struct sk_buff *frag_iter;
2016 	int i, copy;
2017 
2018 	if (offset > (int)skb->len - len)
2019 		goto fault;
2020 
2021 	if ((copy = start - offset) > 0) {
2022 		if (copy > len)
2023 			copy = len;
2024 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2025 		if ((len -= copy) == 0)
2026 			return 0;
2027 		offset += copy;
2028 		from += copy;
2029 	}
2030 
2031 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2032 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2033 		int end;
2034 
2035 		WARN_ON(start > offset + len);
2036 
2037 		end = start + skb_frag_size(frag);
2038 		if ((copy = end - offset) > 0) {
2039 			u8 *vaddr;
2040 
2041 			if (copy > len)
2042 				copy = len;
2043 
2044 			vaddr = kmap_atomic(skb_frag_page(frag));
2045 			memcpy(vaddr + frag->page_offset + offset - start,
2046 			       from, copy);
2047 			kunmap_atomic(vaddr);
2048 
2049 			if ((len -= copy) == 0)
2050 				return 0;
2051 			offset += copy;
2052 			from += copy;
2053 		}
2054 		start = end;
2055 	}
2056 
2057 	skb_walk_frags(skb, frag_iter) {
2058 		int end;
2059 
2060 		WARN_ON(start > offset + len);
2061 
2062 		end = start + frag_iter->len;
2063 		if ((copy = end - offset) > 0) {
2064 			if (copy > len)
2065 				copy = len;
2066 			if (skb_store_bits(frag_iter, offset - start,
2067 					   from, copy))
2068 				goto fault;
2069 			if ((len -= copy) == 0)
2070 				return 0;
2071 			offset += copy;
2072 			from += copy;
2073 		}
2074 		start = end;
2075 	}
2076 	if (!len)
2077 		return 0;
2078 
2079 fault:
2080 	return -EFAULT;
2081 }
2082 EXPORT_SYMBOL(skb_store_bits);
2083 
2084 /* Checksum skb data. */
2085 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2086 		      __wsum csum, const struct skb_checksum_ops *ops)
2087 {
2088 	int start = skb_headlen(skb);
2089 	int i, copy = start - offset;
2090 	struct sk_buff *frag_iter;
2091 	int pos = 0;
2092 
2093 	/* Checksum header. */
2094 	if (copy > 0) {
2095 		if (copy > len)
2096 			copy = len;
2097 		csum = ops->update(skb->data + offset, copy, csum);
2098 		if ((len -= copy) == 0)
2099 			return csum;
2100 		offset += copy;
2101 		pos	= copy;
2102 	}
2103 
2104 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2105 		int end;
2106 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2107 
2108 		WARN_ON(start > offset + len);
2109 
2110 		end = start + skb_frag_size(frag);
2111 		if ((copy = end - offset) > 0) {
2112 			__wsum csum2;
2113 			u8 *vaddr;
2114 
2115 			if (copy > len)
2116 				copy = len;
2117 			vaddr = kmap_atomic(skb_frag_page(frag));
2118 			csum2 = ops->update(vaddr + frag->page_offset +
2119 					    offset - start, copy, 0);
2120 			kunmap_atomic(vaddr);
2121 			csum = ops->combine(csum, csum2, pos, copy);
2122 			if (!(len -= copy))
2123 				return csum;
2124 			offset += copy;
2125 			pos    += copy;
2126 		}
2127 		start = end;
2128 	}
2129 
2130 	skb_walk_frags(skb, frag_iter) {
2131 		int end;
2132 
2133 		WARN_ON(start > offset + len);
2134 
2135 		end = start + frag_iter->len;
2136 		if ((copy = end - offset) > 0) {
2137 			__wsum csum2;
2138 			if (copy > len)
2139 				copy = len;
2140 			csum2 = __skb_checksum(frag_iter, offset - start,
2141 					       copy, 0, ops);
2142 			csum = ops->combine(csum, csum2, pos, copy);
2143 			if ((len -= copy) == 0)
2144 				return csum;
2145 			offset += copy;
2146 			pos    += copy;
2147 		}
2148 		start = end;
2149 	}
2150 	BUG_ON(len);
2151 
2152 	return csum;
2153 }
2154 EXPORT_SYMBOL(__skb_checksum);
2155 
2156 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2157 		    int len, __wsum csum)
2158 {
2159 	const struct skb_checksum_ops ops = {
2160 		.update  = csum_partial_ext,
2161 		.combine = csum_block_add_ext,
2162 	};
2163 
2164 	return __skb_checksum(skb, offset, len, csum, &ops);
2165 }
2166 EXPORT_SYMBOL(skb_checksum);
2167 
2168 /* Both of above in one bottle. */
2169 
2170 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2171 				    u8 *to, int len, __wsum csum)
2172 {
2173 	int start = skb_headlen(skb);
2174 	int i, copy = start - offset;
2175 	struct sk_buff *frag_iter;
2176 	int pos = 0;
2177 
2178 	/* Copy header. */
2179 	if (copy > 0) {
2180 		if (copy > len)
2181 			copy = len;
2182 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2183 						 copy, csum);
2184 		if ((len -= copy) == 0)
2185 			return csum;
2186 		offset += copy;
2187 		to     += copy;
2188 		pos	= copy;
2189 	}
2190 
2191 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2192 		int end;
2193 
2194 		WARN_ON(start > offset + len);
2195 
2196 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2197 		if ((copy = end - offset) > 0) {
2198 			__wsum csum2;
2199 			u8 *vaddr;
2200 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2201 
2202 			if (copy > len)
2203 				copy = len;
2204 			vaddr = kmap_atomic(skb_frag_page(frag));
2205 			csum2 = csum_partial_copy_nocheck(vaddr +
2206 							  frag->page_offset +
2207 							  offset - start, to,
2208 							  copy, 0);
2209 			kunmap_atomic(vaddr);
2210 			csum = csum_block_add(csum, csum2, pos);
2211 			if (!(len -= copy))
2212 				return csum;
2213 			offset += copy;
2214 			to     += copy;
2215 			pos    += copy;
2216 		}
2217 		start = end;
2218 	}
2219 
2220 	skb_walk_frags(skb, frag_iter) {
2221 		__wsum csum2;
2222 		int end;
2223 
2224 		WARN_ON(start > offset + len);
2225 
2226 		end = start + frag_iter->len;
2227 		if ((copy = end - offset) > 0) {
2228 			if (copy > len)
2229 				copy = len;
2230 			csum2 = skb_copy_and_csum_bits(frag_iter,
2231 						       offset - start,
2232 						       to, copy, 0);
2233 			csum = csum_block_add(csum, csum2, pos);
2234 			if ((len -= copy) == 0)
2235 				return csum;
2236 			offset += copy;
2237 			to     += copy;
2238 			pos    += copy;
2239 		}
2240 		start = end;
2241 	}
2242 	BUG_ON(len);
2243 	return csum;
2244 }
2245 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2246 
2247  /**
2248  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2249  *	@from: source buffer
2250  *
2251  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2252  *	into skb_zerocopy().
2253  */
2254 unsigned int
2255 skb_zerocopy_headlen(const struct sk_buff *from)
2256 {
2257 	unsigned int hlen = 0;
2258 
2259 	if (!from->head_frag ||
2260 	    skb_headlen(from) < L1_CACHE_BYTES ||
2261 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2262 		hlen = skb_headlen(from);
2263 
2264 	if (skb_has_frag_list(from))
2265 		hlen = from->len;
2266 
2267 	return hlen;
2268 }
2269 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2270 
2271 /**
2272  *	skb_zerocopy - Zero copy skb to skb
2273  *	@to: destination buffer
2274  *	@from: source buffer
2275  *	@len: number of bytes to copy from source buffer
2276  *	@hlen: size of linear headroom in destination buffer
2277  *
2278  *	Copies up to `len` bytes from `from` to `to` by creating references
2279  *	to the frags in the source buffer.
2280  *
2281  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2282  *	headroom in the `to` buffer.
2283  *
2284  *	Return value:
2285  *	0: everything is OK
2286  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2287  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2288  */
2289 int
2290 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2291 {
2292 	int i, j = 0;
2293 	int plen = 0; /* length of skb->head fragment */
2294 	int ret;
2295 	struct page *page;
2296 	unsigned int offset;
2297 
2298 	BUG_ON(!from->head_frag && !hlen);
2299 
2300 	/* dont bother with small payloads */
2301 	if (len <= skb_tailroom(to))
2302 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2303 
2304 	if (hlen) {
2305 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2306 		if (unlikely(ret))
2307 			return ret;
2308 		len -= hlen;
2309 	} else {
2310 		plen = min_t(int, skb_headlen(from), len);
2311 		if (plen) {
2312 			page = virt_to_head_page(from->head);
2313 			offset = from->data - (unsigned char *)page_address(page);
2314 			__skb_fill_page_desc(to, 0, page, offset, plen);
2315 			get_page(page);
2316 			j = 1;
2317 			len -= plen;
2318 		}
2319 	}
2320 
2321 	to->truesize += len + plen;
2322 	to->len += len + plen;
2323 	to->data_len += len + plen;
2324 
2325 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2326 		skb_tx_error(from);
2327 		return -ENOMEM;
2328 	}
2329 
2330 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2331 		if (!len)
2332 			break;
2333 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2334 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2335 		len -= skb_shinfo(to)->frags[j].size;
2336 		skb_frag_ref(to, j);
2337 		j++;
2338 	}
2339 	skb_shinfo(to)->nr_frags = j;
2340 
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(skb_zerocopy);
2344 
2345 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2346 {
2347 	__wsum csum;
2348 	long csstart;
2349 
2350 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2351 		csstart = skb_checksum_start_offset(skb);
2352 	else
2353 		csstart = skb_headlen(skb);
2354 
2355 	BUG_ON(csstart > skb_headlen(skb));
2356 
2357 	skb_copy_from_linear_data(skb, to, csstart);
2358 
2359 	csum = 0;
2360 	if (csstart != skb->len)
2361 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2362 					      skb->len - csstart, 0);
2363 
2364 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2365 		long csstuff = csstart + skb->csum_offset;
2366 
2367 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2368 	}
2369 }
2370 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2371 
2372 /**
2373  *	skb_dequeue - remove from the head of the queue
2374  *	@list: list to dequeue from
2375  *
2376  *	Remove the head of the list. The list lock is taken so the function
2377  *	may be used safely with other locking list functions. The head item is
2378  *	returned or %NULL if the list is empty.
2379  */
2380 
2381 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2382 {
2383 	unsigned long flags;
2384 	struct sk_buff *result;
2385 
2386 	spin_lock_irqsave(&list->lock, flags);
2387 	result = __skb_dequeue(list);
2388 	spin_unlock_irqrestore(&list->lock, flags);
2389 	return result;
2390 }
2391 EXPORT_SYMBOL(skb_dequeue);
2392 
2393 /**
2394  *	skb_dequeue_tail - remove from the tail of the queue
2395  *	@list: list to dequeue from
2396  *
2397  *	Remove the tail of the list. The list lock is taken so the function
2398  *	may be used safely with other locking list functions. The tail item is
2399  *	returned or %NULL if the list is empty.
2400  */
2401 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2402 {
2403 	unsigned long flags;
2404 	struct sk_buff *result;
2405 
2406 	spin_lock_irqsave(&list->lock, flags);
2407 	result = __skb_dequeue_tail(list);
2408 	spin_unlock_irqrestore(&list->lock, flags);
2409 	return result;
2410 }
2411 EXPORT_SYMBOL(skb_dequeue_tail);
2412 
2413 /**
2414  *	skb_queue_purge - empty a list
2415  *	@list: list to empty
2416  *
2417  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2418  *	the list and one reference dropped. This function takes the list
2419  *	lock and is atomic with respect to other list locking functions.
2420  */
2421 void skb_queue_purge(struct sk_buff_head *list)
2422 {
2423 	struct sk_buff *skb;
2424 	while ((skb = skb_dequeue(list)) != NULL)
2425 		kfree_skb(skb);
2426 }
2427 EXPORT_SYMBOL(skb_queue_purge);
2428 
2429 /**
2430  *	skb_rbtree_purge - empty a skb rbtree
2431  *	@root: root of the rbtree to empty
2432  *
2433  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2434  *	the list and one reference dropped. This function does not take
2435  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2436  *	out-of-order queue is protected by the socket lock).
2437  */
2438 void skb_rbtree_purge(struct rb_root *root)
2439 {
2440 	struct sk_buff *skb, *next;
2441 
2442 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2443 		kfree_skb(skb);
2444 
2445 	*root = RB_ROOT;
2446 }
2447 
2448 /**
2449  *	skb_queue_head - queue a buffer at the list head
2450  *	@list: list to use
2451  *	@newsk: buffer to queue
2452  *
2453  *	Queue a buffer at the start of the list. This function takes the
2454  *	list lock and can be used safely with other locking &sk_buff functions
2455  *	safely.
2456  *
2457  *	A buffer cannot be placed on two lists at the same time.
2458  */
2459 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2460 {
2461 	unsigned long flags;
2462 
2463 	spin_lock_irqsave(&list->lock, flags);
2464 	__skb_queue_head(list, newsk);
2465 	spin_unlock_irqrestore(&list->lock, flags);
2466 }
2467 EXPORT_SYMBOL(skb_queue_head);
2468 
2469 /**
2470  *	skb_queue_tail - queue a buffer at the list tail
2471  *	@list: list to use
2472  *	@newsk: buffer to queue
2473  *
2474  *	Queue a buffer at the tail of the list. This function takes the
2475  *	list lock and can be used safely with other locking &sk_buff functions
2476  *	safely.
2477  *
2478  *	A buffer cannot be placed on two lists at the same time.
2479  */
2480 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2481 {
2482 	unsigned long flags;
2483 
2484 	spin_lock_irqsave(&list->lock, flags);
2485 	__skb_queue_tail(list, newsk);
2486 	spin_unlock_irqrestore(&list->lock, flags);
2487 }
2488 EXPORT_SYMBOL(skb_queue_tail);
2489 
2490 /**
2491  *	skb_unlink	-	remove a buffer from a list
2492  *	@skb: buffer to remove
2493  *	@list: list to use
2494  *
2495  *	Remove a packet from a list. The list locks are taken and this
2496  *	function is atomic with respect to other list locked calls
2497  *
2498  *	You must know what list the SKB is on.
2499  */
2500 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2501 {
2502 	unsigned long flags;
2503 
2504 	spin_lock_irqsave(&list->lock, flags);
2505 	__skb_unlink(skb, list);
2506 	spin_unlock_irqrestore(&list->lock, flags);
2507 }
2508 EXPORT_SYMBOL(skb_unlink);
2509 
2510 /**
2511  *	skb_append	-	append a buffer
2512  *	@old: buffer to insert after
2513  *	@newsk: buffer to insert
2514  *	@list: list to use
2515  *
2516  *	Place a packet after a given packet in a list. The list locks are taken
2517  *	and this function is atomic with respect to other list locked calls.
2518  *	A buffer cannot be placed on two lists at the same time.
2519  */
2520 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2521 {
2522 	unsigned long flags;
2523 
2524 	spin_lock_irqsave(&list->lock, flags);
2525 	__skb_queue_after(list, old, newsk);
2526 	spin_unlock_irqrestore(&list->lock, flags);
2527 }
2528 EXPORT_SYMBOL(skb_append);
2529 
2530 /**
2531  *	skb_insert	-	insert a buffer
2532  *	@old: buffer to insert before
2533  *	@newsk: buffer to insert
2534  *	@list: list to use
2535  *
2536  *	Place a packet before a given packet in a list. The list locks are
2537  * 	taken and this function is atomic with respect to other list locked
2538  *	calls.
2539  *
2540  *	A buffer cannot be placed on two lists at the same time.
2541  */
2542 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2543 {
2544 	unsigned long flags;
2545 
2546 	spin_lock_irqsave(&list->lock, flags);
2547 	__skb_insert(newsk, old->prev, old, list);
2548 	spin_unlock_irqrestore(&list->lock, flags);
2549 }
2550 EXPORT_SYMBOL(skb_insert);
2551 
2552 static inline void skb_split_inside_header(struct sk_buff *skb,
2553 					   struct sk_buff* skb1,
2554 					   const u32 len, const int pos)
2555 {
2556 	int i;
2557 
2558 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2559 					 pos - len);
2560 	/* And move data appendix as is. */
2561 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2562 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2563 
2564 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2565 	skb_shinfo(skb)->nr_frags  = 0;
2566 	skb1->data_len		   = skb->data_len;
2567 	skb1->len		   += skb1->data_len;
2568 	skb->data_len		   = 0;
2569 	skb->len		   = len;
2570 	skb_set_tail_pointer(skb, len);
2571 }
2572 
2573 static inline void skb_split_no_header(struct sk_buff *skb,
2574 				       struct sk_buff* skb1,
2575 				       const u32 len, int pos)
2576 {
2577 	int i, k = 0;
2578 	const int nfrags = skb_shinfo(skb)->nr_frags;
2579 
2580 	skb_shinfo(skb)->nr_frags = 0;
2581 	skb1->len		  = skb1->data_len = skb->len - len;
2582 	skb->len		  = len;
2583 	skb->data_len		  = len - pos;
2584 
2585 	for (i = 0; i < nfrags; i++) {
2586 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2587 
2588 		if (pos + size > len) {
2589 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2590 
2591 			if (pos < len) {
2592 				/* Split frag.
2593 				 * We have two variants in this case:
2594 				 * 1. Move all the frag to the second
2595 				 *    part, if it is possible. F.e.
2596 				 *    this approach is mandatory for TUX,
2597 				 *    where splitting is expensive.
2598 				 * 2. Split is accurately. We make this.
2599 				 */
2600 				skb_frag_ref(skb, i);
2601 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2602 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2603 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2604 				skb_shinfo(skb)->nr_frags++;
2605 			}
2606 			k++;
2607 		} else
2608 			skb_shinfo(skb)->nr_frags++;
2609 		pos += size;
2610 	}
2611 	skb_shinfo(skb1)->nr_frags = k;
2612 }
2613 
2614 /**
2615  * skb_split - Split fragmented skb to two parts at length len.
2616  * @skb: the buffer to split
2617  * @skb1: the buffer to receive the second part
2618  * @len: new length for skb
2619  */
2620 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2621 {
2622 	int pos = skb_headlen(skb);
2623 
2624 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2625 	if (len < pos)	/* Split line is inside header. */
2626 		skb_split_inside_header(skb, skb1, len, pos);
2627 	else		/* Second chunk has no header, nothing to copy. */
2628 		skb_split_no_header(skb, skb1, len, pos);
2629 }
2630 EXPORT_SYMBOL(skb_split);
2631 
2632 /* Shifting from/to a cloned skb is a no-go.
2633  *
2634  * Caller cannot keep skb_shinfo related pointers past calling here!
2635  */
2636 static int skb_prepare_for_shift(struct sk_buff *skb)
2637 {
2638 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2639 }
2640 
2641 /**
2642  * skb_shift - Shifts paged data partially from skb to another
2643  * @tgt: buffer into which tail data gets added
2644  * @skb: buffer from which the paged data comes from
2645  * @shiftlen: shift up to this many bytes
2646  *
2647  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2648  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2649  * It's up to caller to free skb if everything was shifted.
2650  *
2651  * If @tgt runs out of frags, the whole operation is aborted.
2652  *
2653  * Skb cannot include anything else but paged data while tgt is allowed
2654  * to have non-paged data as well.
2655  *
2656  * TODO: full sized shift could be optimized but that would need
2657  * specialized skb free'er to handle frags without up-to-date nr_frags.
2658  */
2659 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2660 {
2661 	int from, to, merge, todo;
2662 	struct skb_frag_struct *fragfrom, *fragto;
2663 
2664 	BUG_ON(shiftlen > skb->len);
2665 
2666 	if (skb_headlen(skb))
2667 		return 0;
2668 
2669 	todo = shiftlen;
2670 	from = 0;
2671 	to = skb_shinfo(tgt)->nr_frags;
2672 	fragfrom = &skb_shinfo(skb)->frags[from];
2673 
2674 	/* Actual merge is delayed until the point when we know we can
2675 	 * commit all, so that we don't have to undo partial changes
2676 	 */
2677 	if (!to ||
2678 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2679 			      fragfrom->page_offset)) {
2680 		merge = -1;
2681 	} else {
2682 		merge = to - 1;
2683 
2684 		todo -= skb_frag_size(fragfrom);
2685 		if (todo < 0) {
2686 			if (skb_prepare_for_shift(skb) ||
2687 			    skb_prepare_for_shift(tgt))
2688 				return 0;
2689 
2690 			/* All previous frag pointers might be stale! */
2691 			fragfrom = &skb_shinfo(skb)->frags[from];
2692 			fragto = &skb_shinfo(tgt)->frags[merge];
2693 
2694 			skb_frag_size_add(fragto, shiftlen);
2695 			skb_frag_size_sub(fragfrom, shiftlen);
2696 			fragfrom->page_offset += shiftlen;
2697 
2698 			goto onlymerged;
2699 		}
2700 
2701 		from++;
2702 	}
2703 
2704 	/* Skip full, not-fitting skb to avoid expensive operations */
2705 	if ((shiftlen == skb->len) &&
2706 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2707 		return 0;
2708 
2709 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2710 		return 0;
2711 
2712 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2713 		if (to == MAX_SKB_FRAGS)
2714 			return 0;
2715 
2716 		fragfrom = &skb_shinfo(skb)->frags[from];
2717 		fragto = &skb_shinfo(tgt)->frags[to];
2718 
2719 		if (todo >= skb_frag_size(fragfrom)) {
2720 			*fragto = *fragfrom;
2721 			todo -= skb_frag_size(fragfrom);
2722 			from++;
2723 			to++;
2724 
2725 		} else {
2726 			__skb_frag_ref(fragfrom);
2727 			fragto->page = fragfrom->page;
2728 			fragto->page_offset = fragfrom->page_offset;
2729 			skb_frag_size_set(fragto, todo);
2730 
2731 			fragfrom->page_offset += todo;
2732 			skb_frag_size_sub(fragfrom, todo);
2733 			todo = 0;
2734 
2735 			to++;
2736 			break;
2737 		}
2738 	}
2739 
2740 	/* Ready to "commit" this state change to tgt */
2741 	skb_shinfo(tgt)->nr_frags = to;
2742 
2743 	if (merge >= 0) {
2744 		fragfrom = &skb_shinfo(skb)->frags[0];
2745 		fragto = &skb_shinfo(tgt)->frags[merge];
2746 
2747 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2748 		__skb_frag_unref(fragfrom);
2749 	}
2750 
2751 	/* Reposition in the original skb */
2752 	to = 0;
2753 	while (from < skb_shinfo(skb)->nr_frags)
2754 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2755 	skb_shinfo(skb)->nr_frags = to;
2756 
2757 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2758 
2759 onlymerged:
2760 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2761 	 * the other hand might need it if it needs to be resent
2762 	 */
2763 	tgt->ip_summed = CHECKSUM_PARTIAL;
2764 	skb->ip_summed = CHECKSUM_PARTIAL;
2765 
2766 	/* Yak, is it really working this way? Some helper please? */
2767 	skb->len -= shiftlen;
2768 	skb->data_len -= shiftlen;
2769 	skb->truesize -= shiftlen;
2770 	tgt->len += shiftlen;
2771 	tgt->data_len += shiftlen;
2772 	tgt->truesize += shiftlen;
2773 
2774 	return shiftlen;
2775 }
2776 
2777 /**
2778  * skb_prepare_seq_read - Prepare a sequential read of skb data
2779  * @skb: the buffer to read
2780  * @from: lower offset of data to be read
2781  * @to: upper offset of data to be read
2782  * @st: state variable
2783  *
2784  * Initializes the specified state variable. Must be called before
2785  * invoking skb_seq_read() for the first time.
2786  */
2787 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2788 			  unsigned int to, struct skb_seq_state *st)
2789 {
2790 	st->lower_offset = from;
2791 	st->upper_offset = to;
2792 	st->root_skb = st->cur_skb = skb;
2793 	st->frag_idx = st->stepped_offset = 0;
2794 	st->frag_data = NULL;
2795 }
2796 EXPORT_SYMBOL(skb_prepare_seq_read);
2797 
2798 /**
2799  * skb_seq_read - Sequentially read skb data
2800  * @consumed: number of bytes consumed by the caller so far
2801  * @data: destination pointer for data to be returned
2802  * @st: state variable
2803  *
2804  * Reads a block of skb data at @consumed relative to the
2805  * lower offset specified to skb_prepare_seq_read(). Assigns
2806  * the head of the data block to @data and returns the length
2807  * of the block or 0 if the end of the skb data or the upper
2808  * offset has been reached.
2809  *
2810  * The caller is not required to consume all of the data
2811  * returned, i.e. @consumed is typically set to the number
2812  * of bytes already consumed and the next call to
2813  * skb_seq_read() will return the remaining part of the block.
2814  *
2815  * Note 1: The size of each block of data returned can be arbitrary,
2816  *       this limitation is the cost for zerocopy sequential
2817  *       reads of potentially non linear data.
2818  *
2819  * Note 2: Fragment lists within fragments are not implemented
2820  *       at the moment, state->root_skb could be replaced with
2821  *       a stack for this purpose.
2822  */
2823 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2824 			  struct skb_seq_state *st)
2825 {
2826 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2827 	skb_frag_t *frag;
2828 
2829 	if (unlikely(abs_offset >= st->upper_offset)) {
2830 		if (st->frag_data) {
2831 			kunmap_atomic(st->frag_data);
2832 			st->frag_data = NULL;
2833 		}
2834 		return 0;
2835 	}
2836 
2837 next_skb:
2838 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2839 
2840 	if (abs_offset < block_limit && !st->frag_data) {
2841 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2842 		return block_limit - abs_offset;
2843 	}
2844 
2845 	if (st->frag_idx == 0 && !st->frag_data)
2846 		st->stepped_offset += skb_headlen(st->cur_skb);
2847 
2848 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2849 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2850 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2851 
2852 		if (abs_offset < block_limit) {
2853 			if (!st->frag_data)
2854 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2855 
2856 			*data = (u8 *) st->frag_data + frag->page_offset +
2857 				(abs_offset - st->stepped_offset);
2858 
2859 			return block_limit - abs_offset;
2860 		}
2861 
2862 		if (st->frag_data) {
2863 			kunmap_atomic(st->frag_data);
2864 			st->frag_data = NULL;
2865 		}
2866 
2867 		st->frag_idx++;
2868 		st->stepped_offset += skb_frag_size(frag);
2869 	}
2870 
2871 	if (st->frag_data) {
2872 		kunmap_atomic(st->frag_data);
2873 		st->frag_data = NULL;
2874 	}
2875 
2876 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2877 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2878 		st->frag_idx = 0;
2879 		goto next_skb;
2880 	} else if (st->cur_skb->next) {
2881 		st->cur_skb = st->cur_skb->next;
2882 		st->frag_idx = 0;
2883 		goto next_skb;
2884 	}
2885 
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL(skb_seq_read);
2889 
2890 /**
2891  * skb_abort_seq_read - Abort a sequential read of skb data
2892  * @st: state variable
2893  *
2894  * Must be called if skb_seq_read() was not called until it
2895  * returned 0.
2896  */
2897 void skb_abort_seq_read(struct skb_seq_state *st)
2898 {
2899 	if (st->frag_data)
2900 		kunmap_atomic(st->frag_data);
2901 }
2902 EXPORT_SYMBOL(skb_abort_seq_read);
2903 
2904 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2905 
2906 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2907 					  struct ts_config *conf,
2908 					  struct ts_state *state)
2909 {
2910 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2911 }
2912 
2913 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2914 {
2915 	skb_abort_seq_read(TS_SKB_CB(state));
2916 }
2917 
2918 /**
2919  * skb_find_text - Find a text pattern in skb data
2920  * @skb: the buffer to look in
2921  * @from: search offset
2922  * @to: search limit
2923  * @config: textsearch configuration
2924  *
2925  * Finds a pattern in the skb data according to the specified
2926  * textsearch configuration. Use textsearch_next() to retrieve
2927  * subsequent occurrences of the pattern. Returns the offset
2928  * to the first occurrence or UINT_MAX if no match was found.
2929  */
2930 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2931 			   unsigned int to, struct ts_config *config)
2932 {
2933 	struct ts_state state;
2934 	unsigned int ret;
2935 
2936 	config->get_next_block = skb_ts_get_next_block;
2937 	config->finish = skb_ts_finish;
2938 
2939 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2940 
2941 	ret = textsearch_find(config, &state);
2942 	return (ret <= to - from ? ret : UINT_MAX);
2943 }
2944 EXPORT_SYMBOL(skb_find_text);
2945 
2946 /**
2947  * skb_append_datato_frags - append the user data to a skb
2948  * @sk: sock  structure
2949  * @skb: skb structure to be appended with user data.
2950  * @getfrag: call back function to be used for getting the user data
2951  * @from: pointer to user message iov
2952  * @length: length of the iov message
2953  *
2954  * Description: This procedure append the user data in the fragment part
2955  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2956  */
2957 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2958 			int (*getfrag)(void *from, char *to, int offset,
2959 					int len, int odd, struct sk_buff *skb),
2960 			void *from, int length)
2961 {
2962 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2963 	int copy;
2964 	int offset = 0;
2965 	int ret;
2966 	struct page_frag *pfrag = &current->task_frag;
2967 
2968 	do {
2969 		/* Return error if we don't have space for new frag */
2970 		if (frg_cnt >= MAX_SKB_FRAGS)
2971 			return -EMSGSIZE;
2972 
2973 		if (!sk_page_frag_refill(sk, pfrag))
2974 			return -ENOMEM;
2975 
2976 		/* copy the user data to page */
2977 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2978 
2979 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2980 			      offset, copy, 0, skb);
2981 		if (ret < 0)
2982 			return -EFAULT;
2983 
2984 		/* copy was successful so update the size parameters */
2985 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2986 				   copy);
2987 		frg_cnt++;
2988 		pfrag->offset += copy;
2989 		get_page(pfrag->page);
2990 
2991 		skb->truesize += copy;
2992 		atomic_add(copy, &sk->sk_wmem_alloc);
2993 		skb->len += copy;
2994 		skb->data_len += copy;
2995 		offset += copy;
2996 		length -= copy;
2997 
2998 	} while (length > 0);
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(skb_append_datato_frags);
3003 
3004 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3005 			 int offset, size_t size)
3006 {
3007 	int i = skb_shinfo(skb)->nr_frags;
3008 
3009 	if (skb_can_coalesce(skb, i, page, offset)) {
3010 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3011 	} else if (i < MAX_SKB_FRAGS) {
3012 		get_page(page);
3013 		skb_fill_page_desc(skb, i, page, offset, size);
3014 	} else {
3015 		return -EMSGSIZE;
3016 	}
3017 
3018 	return 0;
3019 }
3020 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3021 
3022 /**
3023  *	skb_pull_rcsum - pull skb and update receive checksum
3024  *	@skb: buffer to update
3025  *	@len: length of data pulled
3026  *
3027  *	This function performs an skb_pull on the packet and updates
3028  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3029  *	receive path processing instead of skb_pull unless you know
3030  *	that the checksum difference is zero (e.g., a valid IP header)
3031  *	or you are setting ip_summed to CHECKSUM_NONE.
3032  */
3033 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3034 {
3035 	unsigned char *data = skb->data;
3036 
3037 	BUG_ON(len > skb->len);
3038 	__skb_pull(skb, len);
3039 	skb_postpull_rcsum(skb, data, len);
3040 	return skb->data;
3041 }
3042 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3043 
3044 /**
3045  *	skb_segment - Perform protocol segmentation on skb.
3046  *	@head_skb: buffer to segment
3047  *	@features: features for the output path (see dev->features)
3048  *
3049  *	This function performs segmentation on the given skb.  It returns
3050  *	a pointer to the first in a list of new skbs for the segments.
3051  *	In case of error it returns ERR_PTR(err).
3052  */
3053 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3054 			    netdev_features_t features)
3055 {
3056 	struct sk_buff *segs = NULL;
3057 	struct sk_buff *tail = NULL;
3058 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3059 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3060 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3061 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3062 	struct sk_buff *frag_skb = head_skb;
3063 	unsigned int offset = doffset;
3064 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3065 	unsigned int partial_segs = 0;
3066 	unsigned int headroom;
3067 	unsigned int len = head_skb->len;
3068 	__be16 proto;
3069 	bool csum, sg;
3070 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3071 	int err = -ENOMEM;
3072 	int i = 0;
3073 	int pos;
3074 	int dummy;
3075 
3076 	__skb_push(head_skb, doffset);
3077 	proto = skb_network_protocol(head_skb, &dummy);
3078 	if (unlikely(!proto))
3079 		return ERR_PTR(-EINVAL);
3080 
3081 	sg = !!(features & NETIF_F_SG);
3082 	csum = !!can_checksum_protocol(features, proto);
3083 
3084 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3085 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3086 			struct sk_buff *iter;
3087 			unsigned int frag_len;
3088 
3089 			if (!list_skb ||
3090 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3091 				goto normal;
3092 
3093 			/* If we get here then all the required
3094 			 * GSO features except frag_list are supported.
3095 			 * Try to split the SKB to multiple GSO SKBs
3096 			 * with no frag_list.
3097 			 * Currently we can do that only when the buffers don't
3098 			 * have a linear part and all the buffers except
3099 			 * the last are of the same length.
3100 			 */
3101 			frag_len = list_skb->len;
3102 			skb_walk_frags(head_skb, iter) {
3103 				if (frag_len != iter->len && iter->next)
3104 					goto normal;
3105 				if (skb_headlen(iter))
3106 					goto normal;
3107 
3108 				len -= iter->len;
3109 			}
3110 
3111 			if (len != frag_len)
3112 				goto normal;
3113 		}
3114 
3115 		/* GSO partial only requires that we trim off any excess that
3116 		 * doesn't fit into an MSS sized block, so take care of that
3117 		 * now.
3118 		 */
3119 		partial_segs = len / mss;
3120 		if (partial_segs > 1)
3121 			mss *= partial_segs;
3122 		else
3123 			partial_segs = 0;
3124 	}
3125 
3126 normal:
3127 	headroom = skb_headroom(head_skb);
3128 	pos = skb_headlen(head_skb);
3129 
3130 	do {
3131 		struct sk_buff *nskb;
3132 		skb_frag_t *nskb_frag;
3133 		int hsize;
3134 		int size;
3135 
3136 		if (unlikely(mss == GSO_BY_FRAGS)) {
3137 			len = list_skb->len;
3138 		} else {
3139 			len = head_skb->len - offset;
3140 			if (len > mss)
3141 				len = mss;
3142 		}
3143 
3144 		hsize = skb_headlen(head_skb) - offset;
3145 		if (hsize < 0)
3146 			hsize = 0;
3147 		if (hsize > len || !sg)
3148 			hsize = len;
3149 
3150 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3151 		    (skb_headlen(list_skb) == len || sg)) {
3152 			BUG_ON(skb_headlen(list_skb) > len);
3153 
3154 			i = 0;
3155 			nfrags = skb_shinfo(list_skb)->nr_frags;
3156 			frag = skb_shinfo(list_skb)->frags;
3157 			frag_skb = list_skb;
3158 			pos += skb_headlen(list_skb);
3159 
3160 			while (pos < offset + len) {
3161 				BUG_ON(i >= nfrags);
3162 
3163 				size = skb_frag_size(frag);
3164 				if (pos + size > offset + len)
3165 					break;
3166 
3167 				i++;
3168 				pos += size;
3169 				frag++;
3170 			}
3171 
3172 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3173 			list_skb = list_skb->next;
3174 
3175 			if (unlikely(!nskb))
3176 				goto err;
3177 
3178 			if (unlikely(pskb_trim(nskb, len))) {
3179 				kfree_skb(nskb);
3180 				goto err;
3181 			}
3182 
3183 			hsize = skb_end_offset(nskb);
3184 			if (skb_cow_head(nskb, doffset + headroom)) {
3185 				kfree_skb(nskb);
3186 				goto err;
3187 			}
3188 
3189 			nskb->truesize += skb_end_offset(nskb) - hsize;
3190 			skb_release_head_state(nskb);
3191 			__skb_push(nskb, doffset);
3192 		} else {
3193 			nskb = __alloc_skb(hsize + doffset + headroom,
3194 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3195 					   NUMA_NO_NODE);
3196 
3197 			if (unlikely(!nskb))
3198 				goto err;
3199 
3200 			skb_reserve(nskb, headroom);
3201 			__skb_put(nskb, doffset);
3202 		}
3203 
3204 		if (segs)
3205 			tail->next = nskb;
3206 		else
3207 			segs = nskb;
3208 		tail = nskb;
3209 
3210 		__copy_skb_header(nskb, head_skb);
3211 
3212 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3213 		skb_reset_mac_len(nskb);
3214 
3215 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3216 						 nskb->data - tnl_hlen,
3217 						 doffset + tnl_hlen);
3218 
3219 		if (nskb->len == len + doffset)
3220 			goto perform_csum_check;
3221 
3222 		if (!sg) {
3223 			if (!nskb->remcsum_offload)
3224 				nskb->ip_summed = CHECKSUM_NONE;
3225 			SKB_GSO_CB(nskb)->csum =
3226 				skb_copy_and_csum_bits(head_skb, offset,
3227 						       skb_put(nskb, len),
3228 						       len, 0);
3229 			SKB_GSO_CB(nskb)->csum_start =
3230 				skb_headroom(nskb) + doffset;
3231 			continue;
3232 		}
3233 
3234 		nskb_frag = skb_shinfo(nskb)->frags;
3235 
3236 		skb_copy_from_linear_data_offset(head_skb, offset,
3237 						 skb_put(nskb, hsize), hsize);
3238 
3239 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3240 			SKBTX_SHARED_FRAG;
3241 
3242 		while (pos < offset + len) {
3243 			if (i >= nfrags) {
3244 				BUG_ON(skb_headlen(list_skb));
3245 
3246 				i = 0;
3247 				nfrags = skb_shinfo(list_skb)->nr_frags;
3248 				frag = skb_shinfo(list_skb)->frags;
3249 				frag_skb = list_skb;
3250 
3251 				BUG_ON(!nfrags);
3252 
3253 				list_skb = list_skb->next;
3254 			}
3255 
3256 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3257 				     MAX_SKB_FRAGS)) {
3258 				net_warn_ratelimited(
3259 					"skb_segment: too many frags: %u %u\n",
3260 					pos, mss);
3261 				goto err;
3262 			}
3263 
3264 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3265 				goto err;
3266 
3267 			*nskb_frag = *frag;
3268 			__skb_frag_ref(nskb_frag);
3269 			size = skb_frag_size(nskb_frag);
3270 
3271 			if (pos < offset) {
3272 				nskb_frag->page_offset += offset - pos;
3273 				skb_frag_size_sub(nskb_frag, offset - pos);
3274 			}
3275 
3276 			skb_shinfo(nskb)->nr_frags++;
3277 
3278 			if (pos + size <= offset + len) {
3279 				i++;
3280 				frag++;
3281 				pos += size;
3282 			} else {
3283 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3284 				goto skip_fraglist;
3285 			}
3286 
3287 			nskb_frag++;
3288 		}
3289 
3290 skip_fraglist:
3291 		nskb->data_len = len - hsize;
3292 		nskb->len += nskb->data_len;
3293 		nskb->truesize += nskb->data_len;
3294 
3295 perform_csum_check:
3296 		if (!csum) {
3297 			if (skb_has_shared_frag(nskb)) {
3298 				err = __skb_linearize(nskb);
3299 				if (err)
3300 					goto err;
3301 			}
3302 			if (!nskb->remcsum_offload)
3303 				nskb->ip_summed = CHECKSUM_NONE;
3304 			SKB_GSO_CB(nskb)->csum =
3305 				skb_checksum(nskb, doffset,
3306 					     nskb->len - doffset, 0);
3307 			SKB_GSO_CB(nskb)->csum_start =
3308 				skb_headroom(nskb) + doffset;
3309 		}
3310 	} while ((offset += len) < head_skb->len);
3311 
3312 	/* Some callers want to get the end of the list.
3313 	 * Put it in segs->prev to avoid walking the list.
3314 	 * (see validate_xmit_skb_list() for example)
3315 	 */
3316 	segs->prev = tail;
3317 
3318 	if (partial_segs) {
3319 		struct sk_buff *iter;
3320 		int type = skb_shinfo(head_skb)->gso_type;
3321 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3322 
3323 		/* Update type to add partial and then remove dodgy if set */
3324 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3325 		type &= ~SKB_GSO_DODGY;
3326 
3327 		/* Update GSO info and prepare to start updating headers on
3328 		 * our way back down the stack of protocols.
3329 		 */
3330 		for (iter = segs; iter; iter = iter->next) {
3331 			skb_shinfo(iter)->gso_size = gso_size;
3332 			skb_shinfo(iter)->gso_segs = partial_segs;
3333 			skb_shinfo(iter)->gso_type = type;
3334 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3335 		}
3336 
3337 		if (tail->len - doffset <= gso_size)
3338 			skb_shinfo(tail)->gso_size = 0;
3339 		else if (tail != segs)
3340 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3341 	}
3342 
3343 	/* Following permits correct backpressure, for protocols
3344 	 * using skb_set_owner_w().
3345 	 * Idea is to tranfert ownership from head_skb to last segment.
3346 	 */
3347 	if (head_skb->destructor == sock_wfree) {
3348 		swap(tail->truesize, head_skb->truesize);
3349 		swap(tail->destructor, head_skb->destructor);
3350 		swap(tail->sk, head_skb->sk);
3351 	}
3352 	return segs;
3353 
3354 err:
3355 	kfree_skb_list(segs);
3356 	return ERR_PTR(err);
3357 }
3358 EXPORT_SYMBOL_GPL(skb_segment);
3359 
3360 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3361 {
3362 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3363 	unsigned int offset = skb_gro_offset(skb);
3364 	unsigned int headlen = skb_headlen(skb);
3365 	unsigned int len = skb_gro_len(skb);
3366 	struct sk_buff *lp, *p = *head;
3367 	unsigned int delta_truesize;
3368 
3369 	if (unlikely(p->len + len >= 65536))
3370 		return -E2BIG;
3371 
3372 	lp = NAPI_GRO_CB(p)->last;
3373 	pinfo = skb_shinfo(lp);
3374 
3375 	if (headlen <= offset) {
3376 		skb_frag_t *frag;
3377 		skb_frag_t *frag2;
3378 		int i = skbinfo->nr_frags;
3379 		int nr_frags = pinfo->nr_frags + i;
3380 
3381 		if (nr_frags > MAX_SKB_FRAGS)
3382 			goto merge;
3383 
3384 		offset -= headlen;
3385 		pinfo->nr_frags = nr_frags;
3386 		skbinfo->nr_frags = 0;
3387 
3388 		frag = pinfo->frags + nr_frags;
3389 		frag2 = skbinfo->frags + i;
3390 		do {
3391 			*--frag = *--frag2;
3392 		} while (--i);
3393 
3394 		frag->page_offset += offset;
3395 		skb_frag_size_sub(frag, offset);
3396 
3397 		/* all fragments truesize : remove (head size + sk_buff) */
3398 		delta_truesize = skb->truesize -
3399 				 SKB_TRUESIZE(skb_end_offset(skb));
3400 
3401 		skb->truesize -= skb->data_len;
3402 		skb->len -= skb->data_len;
3403 		skb->data_len = 0;
3404 
3405 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3406 		goto done;
3407 	} else if (skb->head_frag) {
3408 		int nr_frags = pinfo->nr_frags;
3409 		skb_frag_t *frag = pinfo->frags + nr_frags;
3410 		struct page *page = virt_to_head_page(skb->head);
3411 		unsigned int first_size = headlen - offset;
3412 		unsigned int first_offset;
3413 
3414 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3415 			goto merge;
3416 
3417 		first_offset = skb->data -
3418 			       (unsigned char *)page_address(page) +
3419 			       offset;
3420 
3421 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3422 
3423 		frag->page.p	  = page;
3424 		frag->page_offset = first_offset;
3425 		skb_frag_size_set(frag, first_size);
3426 
3427 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3428 		/* We dont need to clear skbinfo->nr_frags here */
3429 
3430 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3431 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3432 		goto done;
3433 	}
3434 
3435 merge:
3436 	delta_truesize = skb->truesize;
3437 	if (offset > headlen) {
3438 		unsigned int eat = offset - headlen;
3439 
3440 		skbinfo->frags[0].page_offset += eat;
3441 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3442 		skb->data_len -= eat;
3443 		skb->len -= eat;
3444 		offset = headlen;
3445 	}
3446 
3447 	__skb_pull(skb, offset);
3448 
3449 	if (NAPI_GRO_CB(p)->last == p)
3450 		skb_shinfo(p)->frag_list = skb;
3451 	else
3452 		NAPI_GRO_CB(p)->last->next = skb;
3453 	NAPI_GRO_CB(p)->last = skb;
3454 	__skb_header_release(skb);
3455 	lp = p;
3456 
3457 done:
3458 	NAPI_GRO_CB(p)->count++;
3459 	p->data_len += len;
3460 	p->truesize += delta_truesize;
3461 	p->len += len;
3462 	if (lp != p) {
3463 		lp->data_len += len;
3464 		lp->truesize += delta_truesize;
3465 		lp->len += len;
3466 	}
3467 	NAPI_GRO_CB(skb)->same_flow = 1;
3468 	return 0;
3469 }
3470 EXPORT_SYMBOL_GPL(skb_gro_receive);
3471 
3472 void __init skb_init(void)
3473 {
3474 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3475 					      sizeof(struct sk_buff),
3476 					      0,
3477 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3478 					      NULL);
3479 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3480 						sizeof(struct sk_buff_fclones),
3481 						0,
3482 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3483 						NULL);
3484 }
3485 
3486 /**
3487  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3488  *	@skb: Socket buffer containing the buffers to be mapped
3489  *	@sg: The scatter-gather list to map into
3490  *	@offset: The offset into the buffer's contents to start mapping
3491  *	@len: Length of buffer space to be mapped
3492  *
3493  *	Fill the specified scatter-gather list with mappings/pointers into a
3494  *	region of the buffer space attached to a socket buffer.
3495  */
3496 static int
3497 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3498 {
3499 	int start = skb_headlen(skb);
3500 	int i, copy = start - offset;
3501 	struct sk_buff *frag_iter;
3502 	int elt = 0;
3503 
3504 	if (copy > 0) {
3505 		if (copy > len)
3506 			copy = len;
3507 		sg_set_buf(sg, skb->data + offset, copy);
3508 		elt++;
3509 		if ((len -= copy) == 0)
3510 			return elt;
3511 		offset += copy;
3512 	}
3513 
3514 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3515 		int end;
3516 
3517 		WARN_ON(start > offset + len);
3518 
3519 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3520 		if ((copy = end - offset) > 0) {
3521 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3522 
3523 			if (copy > len)
3524 				copy = len;
3525 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3526 					frag->page_offset+offset-start);
3527 			elt++;
3528 			if (!(len -= copy))
3529 				return elt;
3530 			offset += copy;
3531 		}
3532 		start = end;
3533 	}
3534 
3535 	skb_walk_frags(skb, frag_iter) {
3536 		int end;
3537 
3538 		WARN_ON(start > offset + len);
3539 
3540 		end = start + frag_iter->len;
3541 		if ((copy = end - offset) > 0) {
3542 			if (copy > len)
3543 				copy = len;
3544 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3545 					      copy);
3546 			if ((len -= copy) == 0)
3547 				return elt;
3548 			offset += copy;
3549 		}
3550 		start = end;
3551 	}
3552 	BUG_ON(len);
3553 	return elt;
3554 }
3555 
3556 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3557  * sglist without mark the sg which contain last skb data as the end.
3558  * So the caller can mannipulate sg list as will when padding new data after
3559  * the first call without calling sg_unmark_end to expend sg list.
3560  *
3561  * Scenario to use skb_to_sgvec_nomark:
3562  * 1. sg_init_table
3563  * 2. skb_to_sgvec_nomark(payload1)
3564  * 3. skb_to_sgvec_nomark(payload2)
3565  *
3566  * This is equivalent to:
3567  * 1. sg_init_table
3568  * 2. skb_to_sgvec(payload1)
3569  * 3. sg_unmark_end
3570  * 4. skb_to_sgvec(payload2)
3571  *
3572  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3573  * is more preferable.
3574  */
3575 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3576 			int offset, int len)
3577 {
3578 	return __skb_to_sgvec(skb, sg, offset, len);
3579 }
3580 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3581 
3582 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3583 {
3584 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3585 
3586 	sg_mark_end(&sg[nsg - 1]);
3587 
3588 	return nsg;
3589 }
3590 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3591 
3592 /**
3593  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3594  *	@skb: The socket buffer to check.
3595  *	@tailbits: Amount of trailing space to be added
3596  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3597  *
3598  *	Make sure that the data buffers attached to a socket buffer are
3599  *	writable. If they are not, private copies are made of the data buffers
3600  *	and the socket buffer is set to use these instead.
3601  *
3602  *	If @tailbits is given, make sure that there is space to write @tailbits
3603  *	bytes of data beyond current end of socket buffer.  @trailer will be
3604  *	set to point to the skb in which this space begins.
3605  *
3606  *	The number of scatterlist elements required to completely map the
3607  *	COW'd and extended socket buffer will be returned.
3608  */
3609 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3610 {
3611 	int copyflag;
3612 	int elt;
3613 	struct sk_buff *skb1, **skb_p;
3614 
3615 	/* If skb is cloned or its head is paged, reallocate
3616 	 * head pulling out all the pages (pages are considered not writable
3617 	 * at the moment even if they are anonymous).
3618 	 */
3619 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3620 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3621 		return -ENOMEM;
3622 
3623 	/* Easy case. Most of packets will go this way. */
3624 	if (!skb_has_frag_list(skb)) {
3625 		/* A little of trouble, not enough of space for trailer.
3626 		 * This should not happen, when stack is tuned to generate
3627 		 * good frames. OK, on miss we reallocate and reserve even more
3628 		 * space, 128 bytes is fair. */
3629 
3630 		if (skb_tailroom(skb) < tailbits &&
3631 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3632 			return -ENOMEM;
3633 
3634 		/* Voila! */
3635 		*trailer = skb;
3636 		return 1;
3637 	}
3638 
3639 	/* Misery. We are in troubles, going to mincer fragments... */
3640 
3641 	elt = 1;
3642 	skb_p = &skb_shinfo(skb)->frag_list;
3643 	copyflag = 0;
3644 
3645 	while ((skb1 = *skb_p) != NULL) {
3646 		int ntail = 0;
3647 
3648 		/* The fragment is partially pulled by someone,
3649 		 * this can happen on input. Copy it and everything
3650 		 * after it. */
3651 
3652 		if (skb_shared(skb1))
3653 			copyflag = 1;
3654 
3655 		/* If the skb is the last, worry about trailer. */
3656 
3657 		if (skb1->next == NULL && tailbits) {
3658 			if (skb_shinfo(skb1)->nr_frags ||
3659 			    skb_has_frag_list(skb1) ||
3660 			    skb_tailroom(skb1) < tailbits)
3661 				ntail = tailbits + 128;
3662 		}
3663 
3664 		if (copyflag ||
3665 		    skb_cloned(skb1) ||
3666 		    ntail ||
3667 		    skb_shinfo(skb1)->nr_frags ||
3668 		    skb_has_frag_list(skb1)) {
3669 			struct sk_buff *skb2;
3670 
3671 			/* Fuck, we are miserable poor guys... */
3672 			if (ntail == 0)
3673 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3674 			else
3675 				skb2 = skb_copy_expand(skb1,
3676 						       skb_headroom(skb1),
3677 						       ntail,
3678 						       GFP_ATOMIC);
3679 			if (unlikely(skb2 == NULL))
3680 				return -ENOMEM;
3681 
3682 			if (skb1->sk)
3683 				skb_set_owner_w(skb2, skb1->sk);
3684 
3685 			/* Looking around. Are we still alive?
3686 			 * OK, link new skb, drop old one */
3687 
3688 			skb2->next = skb1->next;
3689 			*skb_p = skb2;
3690 			kfree_skb(skb1);
3691 			skb1 = skb2;
3692 		}
3693 		elt++;
3694 		*trailer = skb1;
3695 		skb_p = &skb1->next;
3696 	}
3697 
3698 	return elt;
3699 }
3700 EXPORT_SYMBOL_GPL(skb_cow_data);
3701 
3702 static void sock_rmem_free(struct sk_buff *skb)
3703 {
3704 	struct sock *sk = skb->sk;
3705 
3706 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3707 }
3708 
3709 static void skb_set_err_queue(struct sk_buff *skb)
3710 {
3711 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3712 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
3713 	 */
3714 	skb->pkt_type = PACKET_OUTGOING;
3715 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
3716 }
3717 
3718 /*
3719  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3720  */
3721 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3722 {
3723 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3724 	    (unsigned int)sk->sk_rcvbuf)
3725 		return -ENOMEM;
3726 
3727 	skb_orphan(skb);
3728 	skb->sk = sk;
3729 	skb->destructor = sock_rmem_free;
3730 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3731 	skb_set_err_queue(skb);
3732 
3733 	/* before exiting rcu section, make sure dst is refcounted */
3734 	skb_dst_force(skb);
3735 
3736 	skb_queue_tail(&sk->sk_error_queue, skb);
3737 	if (!sock_flag(sk, SOCK_DEAD))
3738 		sk->sk_data_ready(sk);
3739 	return 0;
3740 }
3741 EXPORT_SYMBOL(sock_queue_err_skb);
3742 
3743 static bool is_icmp_err_skb(const struct sk_buff *skb)
3744 {
3745 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3746 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3747 }
3748 
3749 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3750 {
3751 	struct sk_buff_head *q = &sk->sk_error_queue;
3752 	struct sk_buff *skb, *skb_next = NULL;
3753 	bool icmp_next = false;
3754 	unsigned long flags;
3755 
3756 	spin_lock_irqsave(&q->lock, flags);
3757 	skb = __skb_dequeue(q);
3758 	if (skb && (skb_next = skb_peek(q)))
3759 		icmp_next = is_icmp_err_skb(skb_next);
3760 	spin_unlock_irqrestore(&q->lock, flags);
3761 
3762 	if (is_icmp_err_skb(skb) && !icmp_next)
3763 		sk->sk_err = 0;
3764 
3765 	if (skb_next)
3766 		sk->sk_error_report(sk);
3767 
3768 	return skb;
3769 }
3770 EXPORT_SYMBOL(sock_dequeue_err_skb);
3771 
3772 /**
3773  * skb_clone_sk - create clone of skb, and take reference to socket
3774  * @skb: the skb to clone
3775  *
3776  * This function creates a clone of a buffer that holds a reference on
3777  * sk_refcnt.  Buffers created via this function are meant to be
3778  * returned using sock_queue_err_skb, or free via kfree_skb.
3779  *
3780  * When passing buffers allocated with this function to sock_queue_err_skb
3781  * it is necessary to wrap the call with sock_hold/sock_put in order to
3782  * prevent the socket from being released prior to being enqueued on
3783  * the sk_error_queue.
3784  */
3785 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3786 {
3787 	struct sock *sk = skb->sk;
3788 	struct sk_buff *clone;
3789 
3790 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3791 		return NULL;
3792 
3793 	clone = skb_clone(skb, GFP_ATOMIC);
3794 	if (!clone) {
3795 		sock_put(sk);
3796 		return NULL;
3797 	}
3798 
3799 	clone->sk = sk;
3800 	clone->destructor = sock_efree;
3801 
3802 	return clone;
3803 }
3804 EXPORT_SYMBOL(skb_clone_sk);
3805 
3806 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3807 					struct sock *sk,
3808 					int tstype,
3809 					bool opt_stats)
3810 {
3811 	struct sock_exterr_skb *serr;
3812 	int err;
3813 
3814 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3815 
3816 	serr = SKB_EXT_ERR(skb);
3817 	memset(serr, 0, sizeof(*serr));
3818 	serr->ee.ee_errno = ENOMSG;
3819 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3820 	serr->ee.ee_info = tstype;
3821 	serr->opt_stats = opt_stats;
3822 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3823 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3824 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3825 		if (sk->sk_protocol == IPPROTO_TCP &&
3826 		    sk->sk_type == SOCK_STREAM)
3827 			serr->ee.ee_data -= sk->sk_tskey;
3828 	}
3829 
3830 	err = sock_queue_err_skb(sk, skb);
3831 
3832 	if (err)
3833 		kfree_skb(skb);
3834 }
3835 
3836 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3837 {
3838 	bool ret;
3839 
3840 	if (likely(sysctl_tstamp_allow_data || tsonly))
3841 		return true;
3842 
3843 	read_lock_bh(&sk->sk_callback_lock);
3844 	ret = sk->sk_socket && sk->sk_socket->file &&
3845 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3846 	read_unlock_bh(&sk->sk_callback_lock);
3847 	return ret;
3848 }
3849 
3850 void skb_complete_tx_timestamp(struct sk_buff *skb,
3851 			       struct skb_shared_hwtstamps *hwtstamps)
3852 {
3853 	struct sock *sk = skb->sk;
3854 
3855 	if (!skb_may_tx_timestamp(sk, false))
3856 		return;
3857 
3858 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3859 	 * but only if the socket refcount is not zero.
3860 	 */
3861 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3862 		*skb_hwtstamps(skb) = *hwtstamps;
3863 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3864 		sock_put(sk);
3865 	}
3866 }
3867 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3868 
3869 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3870 		     struct skb_shared_hwtstamps *hwtstamps,
3871 		     struct sock *sk, int tstype)
3872 {
3873 	struct sk_buff *skb;
3874 	bool tsonly, opt_stats = false;
3875 
3876 	if (!sk)
3877 		return;
3878 
3879 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3880 	if (!skb_may_tx_timestamp(sk, tsonly))
3881 		return;
3882 
3883 	if (tsonly) {
3884 #ifdef CONFIG_INET
3885 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3886 		    sk->sk_protocol == IPPROTO_TCP &&
3887 		    sk->sk_type == SOCK_STREAM) {
3888 			skb = tcp_get_timestamping_opt_stats(sk);
3889 			opt_stats = true;
3890 		} else
3891 #endif
3892 			skb = alloc_skb(0, GFP_ATOMIC);
3893 	} else {
3894 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3895 	}
3896 	if (!skb)
3897 		return;
3898 
3899 	if (tsonly) {
3900 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3901 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3902 	}
3903 
3904 	if (hwtstamps)
3905 		*skb_hwtstamps(skb) = *hwtstamps;
3906 	else
3907 		skb->tstamp = ktime_get_real();
3908 
3909 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3910 }
3911 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3912 
3913 void skb_tstamp_tx(struct sk_buff *orig_skb,
3914 		   struct skb_shared_hwtstamps *hwtstamps)
3915 {
3916 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3917 			       SCM_TSTAMP_SND);
3918 }
3919 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3920 
3921 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3922 {
3923 	struct sock *sk = skb->sk;
3924 	struct sock_exterr_skb *serr;
3925 	int err = 1;
3926 
3927 	skb->wifi_acked_valid = 1;
3928 	skb->wifi_acked = acked;
3929 
3930 	serr = SKB_EXT_ERR(skb);
3931 	memset(serr, 0, sizeof(*serr));
3932 	serr->ee.ee_errno = ENOMSG;
3933 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3934 
3935 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3936 	 * but only if the socket refcount is not zero.
3937 	 */
3938 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3939 		err = sock_queue_err_skb(sk, skb);
3940 		sock_put(sk);
3941 	}
3942 	if (err)
3943 		kfree_skb(skb);
3944 }
3945 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3946 
3947 /**
3948  * skb_partial_csum_set - set up and verify partial csum values for packet
3949  * @skb: the skb to set
3950  * @start: the number of bytes after skb->data to start checksumming.
3951  * @off: the offset from start to place the checksum.
3952  *
3953  * For untrusted partially-checksummed packets, we need to make sure the values
3954  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3955  *
3956  * This function checks and sets those values and skb->ip_summed: if this
3957  * returns false you should drop the packet.
3958  */
3959 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3960 {
3961 	if (unlikely(start > skb_headlen(skb)) ||
3962 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3963 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3964 				     start, off, skb_headlen(skb));
3965 		return false;
3966 	}
3967 	skb->ip_summed = CHECKSUM_PARTIAL;
3968 	skb->csum_start = skb_headroom(skb) + start;
3969 	skb->csum_offset = off;
3970 	skb_set_transport_header(skb, start);
3971 	return true;
3972 }
3973 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3974 
3975 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3976 			       unsigned int max)
3977 {
3978 	if (skb_headlen(skb) >= len)
3979 		return 0;
3980 
3981 	/* If we need to pullup then pullup to the max, so we
3982 	 * won't need to do it again.
3983 	 */
3984 	if (max > skb->len)
3985 		max = skb->len;
3986 
3987 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3988 		return -ENOMEM;
3989 
3990 	if (skb_headlen(skb) < len)
3991 		return -EPROTO;
3992 
3993 	return 0;
3994 }
3995 
3996 #define MAX_TCP_HDR_LEN (15 * 4)
3997 
3998 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3999 				      typeof(IPPROTO_IP) proto,
4000 				      unsigned int off)
4001 {
4002 	switch (proto) {
4003 		int err;
4004 
4005 	case IPPROTO_TCP:
4006 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4007 					  off + MAX_TCP_HDR_LEN);
4008 		if (!err && !skb_partial_csum_set(skb, off,
4009 						  offsetof(struct tcphdr,
4010 							   check)))
4011 			err = -EPROTO;
4012 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4013 
4014 	case IPPROTO_UDP:
4015 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4016 					  off + sizeof(struct udphdr));
4017 		if (!err && !skb_partial_csum_set(skb, off,
4018 						  offsetof(struct udphdr,
4019 							   check)))
4020 			err = -EPROTO;
4021 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4022 	}
4023 
4024 	return ERR_PTR(-EPROTO);
4025 }
4026 
4027 /* This value should be large enough to cover a tagged ethernet header plus
4028  * maximally sized IP and TCP or UDP headers.
4029  */
4030 #define MAX_IP_HDR_LEN 128
4031 
4032 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4033 {
4034 	unsigned int off;
4035 	bool fragment;
4036 	__sum16 *csum;
4037 	int err;
4038 
4039 	fragment = false;
4040 
4041 	err = skb_maybe_pull_tail(skb,
4042 				  sizeof(struct iphdr),
4043 				  MAX_IP_HDR_LEN);
4044 	if (err < 0)
4045 		goto out;
4046 
4047 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4048 		fragment = true;
4049 
4050 	off = ip_hdrlen(skb);
4051 
4052 	err = -EPROTO;
4053 
4054 	if (fragment)
4055 		goto out;
4056 
4057 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4058 	if (IS_ERR(csum))
4059 		return PTR_ERR(csum);
4060 
4061 	if (recalculate)
4062 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4063 					   ip_hdr(skb)->daddr,
4064 					   skb->len - off,
4065 					   ip_hdr(skb)->protocol, 0);
4066 	err = 0;
4067 
4068 out:
4069 	return err;
4070 }
4071 
4072 /* This value should be large enough to cover a tagged ethernet header plus
4073  * an IPv6 header, all options, and a maximal TCP or UDP header.
4074  */
4075 #define MAX_IPV6_HDR_LEN 256
4076 
4077 #define OPT_HDR(type, skb, off) \
4078 	(type *)(skb_network_header(skb) + (off))
4079 
4080 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4081 {
4082 	int err;
4083 	u8 nexthdr;
4084 	unsigned int off;
4085 	unsigned int len;
4086 	bool fragment;
4087 	bool done;
4088 	__sum16 *csum;
4089 
4090 	fragment = false;
4091 	done = false;
4092 
4093 	off = sizeof(struct ipv6hdr);
4094 
4095 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4096 	if (err < 0)
4097 		goto out;
4098 
4099 	nexthdr = ipv6_hdr(skb)->nexthdr;
4100 
4101 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4102 	while (off <= len && !done) {
4103 		switch (nexthdr) {
4104 		case IPPROTO_DSTOPTS:
4105 		case IPPROTO_HOPOPTS:
4106 		case IPPROTO_ROUTING: {
4107 			struct ipv6_opt_hdr *hp;
4108 
4109 			err = skb_maybe_pull_tail(skb,
4110 						  off +
4111 						  sizeof(struct ipv6_opt_hdr),
4112 						  MAX_IPV6_HDR_LEN);
4113 			if (err < 0)
4114 				goto out;
4115 
4116 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4117 			nexthdr = hp->nexthdr;
4118 			off += ipv6_optlen(hp);
4119 			break;
4120 		}
4121 		case IPPROTO_AH: {
4122 			struct ip_auth_hdr *hp;
4123 
4124 			err = skb_maybe_pull_tail(skb,
4125 						  off +
4126 						  sizeof(struct ip_auth_hdr),
4127 						  MAX_IPV6_HDR_LEN);
4128 			if (err < 0)
4129 				goto out;
4130 
4131 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4132 			nexthdr = hp->nexthdr;
4133 			off += ipv6_authlen(hp);
4134 			break;
4135 		}
4136 		case IPPROTO_FRAGMENT: {
4137 			struct frag_hdr *hp;
4138 
4139 			err = skb_maybe_pull_tail(skb,
4140 						  off +
4141 						  sizeof(struct frag_hdr),
4142 						  MAX_IPV6_HDR_LEN);
4143 			if (err < 0)
4144 				goto out;
4145 
4146 			hp = OPT_HDR(struct frag_hdr, skb, off);
4147 
4148 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4149 				fragment = true;
4150 
4151 			nexthdr = hp->nexthdr;
4152 			off += sizeof(struct frag_hdr);
4153 			break;
4154 		}
4155 		default:
4156 			done = true;
4157 			break;
4158 		}
4159 	}
4160 
4161 	err = -EPROTO;
4162 
4163 	if (!done || fragment)
4164 		goto out;
4165 
4166 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4167 	if (IS_ERR(csum))
4168 		return PTR_ERR(csum);
4169 
4170 	if (recalculate)
4171 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4172 					 &ipv6_hdr(skb)->daddr,
4173 					 skb->len - off, nexthdr, 0);
4174 	err = 0;
4175 
4176 out:
4177 	return err;
4178 }
4179 
4180 /**
4181  * skb_checksum_setup - set up partial checksum offset
4182  * @skb: the skb to set up
4183  * @recalculate: if true the pseudo-header checksum will be recalculated
4184  */
4185 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4186 {
4187 	int err;
4188 
4189 	switch (skb->protocol) {
4190 	case htons(ETH_P_IP):
4191 		err = skb_checksum_setup_ipv4(skb, recalculate);
4192 		break;
4193 
4194 	case htons(ETH_P_IPV6):
4195 		err = skb_checksum_setup_ipv6(skb, recalculate);
4196 		break;
4197 
4198 	default:
4199 		err = -EPROTO;
4200 		break;
4201 	}
4202 
4203 	return err;
4204 }
4205 EXPORT_SYMBOL(skb_checksum_setup);
4206 
4207 /**
4208  * skb_checksum_maybe_trim - maybe trims the given skb
4209  * @skb: the skb to check
4210  * @transport_len: the data length beyond the network header
4211  *
4212  * Checks whether the given skb has data beyond the given transport length.
4213  * If so, returns a cloned skb trimmed to this transport length.
4214  * Otherwise returns the provided skb. Returns NULL in error cases
4215  * (e.g. transport_len exceeds skb length or out-of-memory).
4216  *
4217  * Caller needs to set the skb transport header and free any returned skb if it
4218  * differs from the provided skb.
4219  */
4220 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4221 					       unsigned int transport_len)
4222 {
4223 	struct sk_buff *skb_chk;
4224 	unsigned int len = skb_transport_offset(skb) + transport_len;
4225 	int ret;
4226 
4227 	if (skb->len < len)
4228 		return NULL;
4229 	else if (skb->len == len)
4230 		return skb;
4231 
4232 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4233 	if (!skb_chk)
4234 		return NULL;
4235 
4236 	ret = pskb_trim_rcsum(skb_chk, len);
4237 	if (ret) {
4238 		kfree_skb(skb_chk);
4239 		return NULL;
4240 	}
4241 
4242 	return skb_chk;
4243 }
4244 
4245 /**
4246  * skb_checksum_trimmed - validate checksum of an skb
4247  * @skb: the skb to check
4248  * @transport_len: the data length beyond the network header
4249  * @skb_chkf: checksum function to use
4250  *
4251  * Applies the given checksum function skb_chkf to the provided skb.
4252  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4253  *
4254  * If the skb has data beyond the given transport length, then a
4255  * trimmed & cloned skb is checked and returned.
4256  *
4257  * Caller needs to set the skb transport header and free any returned skb if it
4258  * differs from the provided skb.
4259  */
4260 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4261 				     unsigned int transport_len,
4262 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4263 {
4264 	struct sk_buff *skb_chk;
4265 	unsigned int offset = skb_transport_offset(skb);
4266 	__sum16 ret;
4267 
4268 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4269 	if (!skb_chk)
4270 		goto err;
4271 
4272 	if (!pskb_may_pull(skb_chk, offset))
4273 		goto err;
4274 
4275 	skb_pull_rcsum(skb_chk, offset);
4276 	ret = skb_chkf(skb_chk);
4277 	skb_push_rcsum(skb_chk, offset);
4278 
4279 	if (ret)
4280 		goto err;
4281 
4282 	return skb_chk;
4283 
4284 err:
4285 	if (skb_chk && skb_chk != skb)
4286 		kfree_skb(skb_chk);
4287 
4288 	return NULL;
4289 
4290 }
4291 EXPORT_SYMBOL(skb_checksum_trimmed);
4292 
4293 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4294 {
4295 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4296 			     skb->dev->name);
4297 }
4298 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4299 
4300 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4301 {
4302 	if (head_stolen) {
4303 		skb_release_head_state(skb);
4304 		kmem_cache_free(skbuff_head_cache, skb);
4305 	} else {
4306 		__kfree_skb(skb);
4307 	}
4308 }
4309 EXPORT_SYMBOL(kfree_skb_partial);
4310 
4311 /**
4312  * skb_try_coalesce - try to merge skb to prior one
4313  * @to: prior buffer
4314  * @from: buffer to add
4315  * @fragstolen: pointer to boolean
4316  * @delta_truesize: how much more was allocated than was requested
4317  */
4318 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4319 		      bool *fragstolen, int *delta_truesize)
4320 {
4321 	int i, delta, len = from->len;
4322 
4323 	*fragstolen = false;
4324 
4325 	if (skb_cloned(to))
4326 		return false;
4327 
4328 	if (len <= skb_tailroom(to)) {
4329 		if (len)
4330 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4331 		*delta_truesize = 0;
4332 		return true;
4333 	}
4334 
4335 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4336 		return false;
4337 
4338 	if (skb_headlen(from) != 0) {
4339 		struct page *page;
4340 		unsigned int offset;
4341 
4342 		if (skb_shinfo(to)->nr_frags +
4343 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4344 			return false;
4345 
4346 		if (skb_head_is_locked(from))
4347 			return false;
4348 
4349 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4350 
4351 		page = virt_to_head_page(from->head);
4352 		offset = from->data - (unsigned char *)page_address(page);
4353 
4354 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4355 				   page, offset, skb_headlen(from));
4356 		*fragstolen = true;
4357 	} else {
4358 		if (skb_shinfo(to)->nr_frags +
4359 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4360 			return false;
4361 
4362 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4363 	}
4364 
4365 	WARN_ON_ONCE(delta < len);
4366 
4367 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4368 	       skb_shinfo(from)->frags,
4369 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4370 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4371 
4372 	if (!skb_cloned(from))
4373 		skb_shinfo(from)->nr_frags = 0;
4374 
4375 	/* if the skb is not cloned this does nothing
4376 	 * since we set nr_frags to 0.
4377 	 */
4378 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4379 		skb_frag_ref(from, i);
4380 
4381 	to->truesize += delta;
4382 	to->len += len;
4383 	to->data_len += len;
4384 
4385 	*delta_truesize = delta;
4386 	return true;
4387 }
4388 EXPORT_SYMBOL(skb_try_coalesce);
4389 
4390 /**
4391  * skb_scrub_packet - scrub an skb
4392  *
4393  * @skb: buffer to clean
4394  * @xnet: packet is crossing netns
4395  *
4396  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4397  * into/from a tunnel. Some information have to be cleared during these
4398  * operations.
4399  * skb_scrub_packet can also be used to clean a skb before injecting it in
4400  * another namespace (@xnet == true). We have to clear all information in the
4401  * skb that could impact namespace isolation.
4402  */
4403 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4404 {
4405 	skb->tstamp = 0;
4406 	skb->pkt_type = PACKET_HOST;
4407 	skb->skb_iif = 0;
4408 	skb->ignore_df = 0;
4409 	skb_dst_drop(skb);
4410 	secpath_reset(skb);
4411 	nf_reset(skb);
4412 	nf_reset_trace(skb);
4413 
4414 	if (!xnet)
4415 		return;
4416 
4417 	skb_orphan(skb);
4418 	skb->mark = 0;
4419 }
4420 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4421 
4422 /**
4423  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4424  *
4425  * @skb: GSO skb
4426  *
4427  * skb_gso_transport_seglen is used to determine the real size of the
4428  * individual segments, including Layer4 headers (TCP/UDP).
4429  *
4430  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4431  */
4432 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4433 {
4434 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4435 	unsigned int thlen = 0;
4436 
4437 	if (skb->encapsulation) {
4438 		thlen = skb_inner_transport_header(skb) -
4439 			skb_transport_header(skb);
4440 
4441 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4442 			thlen += inner_tcp_hdrlen(skb);
4443 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4444 		thlen = tcp_hdrlen(skb);
4445 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4446 		thlen = sizeof(struct sctphdr);
4447 	}
4448 	/* UFO sets gso_size to the size of the fragmentation
4449 	 * payload, i.e. the size of the L4 (UDP) header is already
4450 	 * accounted for.
4451 	 */
4452 	return thlen + shinfo->gso_size;
4453 }
4454 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4455 
4456 /**
4457  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4458  *
4459  * @skb: GSO skb
4460  * @mtu: MTU to validate against
4461  *
4462  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4463  * once split.
4464  */
4465 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4466 {
4467 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4468 	const struct sk_buff *iter;
4469 	unsigned int hlen;
4470 
4471 	hlen = skb_gso_network_seglen(skb);
4472 
4473 	if (shinfo->gso_size != GSO_BY_FRAGS)
4474 		return hlen <= mtu;
4475 
4476 	/* Undo this so we can re-use header sizes */
4477 	hlen -= GSO_BY_FRAGS;
4478 
4479 	skb_walk_frags(skb, iter) {
4480 		if (hlen + skb_headlen(iter) > mtu)
4481 			return false;
4482 	}
4483 
4484 	return true;
4485 }
4486 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4487 
4488 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4489 {
4490 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4491 		kfree_skb(skb);
4492 		return NULL;
4493 	}
4494 
4495 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4496 		2 * ETH_ALEN);
4497 	skb->mac_header += VLAN_HLEN;
4498 	return skb;
4499 }
4500 
4501 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4502 {
4503 	struct vlan_hdr *vhdr;
4504 	u16 vlan_tci;
4505 
4506 	if (unlikely(skb_vlan_tag_present(skb))) {
4507 		/* vlan_tci is already set-up so leave this for another time */
4508 		return skb;
4509 	}
4510 
4511 	skb = skb_share_check(skb, GFP_ATOMIC);
4512 	if (unlikely(!skb))
4513 		goto err_free;
4514 
4515 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4516 		goto err_free;
4517 
4518 	vhdr = (struct vlan_hdr *)skb->data;
4519 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4520 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4521 
4522 	skb_pull_rcsum(skb, VLAN_HLEN);
4523 	vlan_set_encap_proto(skb, vhdr);
4524 
4525 	skb = skb_reorder_vlan_header(skb);
4526 	if (unlikely(!skb))
4527 		goto err_free;
4528 
4529 	skb_reset_network_header(skb);
4530 	skb_reset_transport_header(skb);
4531 	skb_reset_mac_len(skb);
4532 
4533 	return skb;
4534 
4535 err_free:
4536 	kfree_skb(skb);
4537 	return NULL;
4538 }
4539 EXPORT_SYMBOL(skb_vlan_untag);
4540 
4541 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4542 {
4543 	if (!pskb_may_pull(skb, write_len))
4544 		return -ENOMEM;
4545 
4546 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4547 		return 0;
4548 
4549 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4550 }
4551 EXPORT_SYMBOL(skb_ensure_writable);
4552 
4553 /* remove VLAN header from packet and update csum accordingly.
4554  * expects a non skb_vlan_tag_present skb with a vlan tag payload
4555  */
4556 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4557 {
4558 	struct vlan_hdr *vhdr;
4559 	int offset = skb->data - skb_mac_header(skb);
4560 	int err;
4561 
4562 	if (WARN_ONCE(offset,
4563 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4564 		      offset)) {
4565 		return -EINVAL;
4566 	}
4567 
4568 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4569 	if (unlikely(err))
4570 		return err;
4571 
4572 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4573 
4574 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4575 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4576 
4577 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4578 	__skb_pull(skb, VLAN_HLEN);
4579 
4580 	vlan_set_encap_proto(skb, vhdr);
4581 	skb->mac_header += VLAN_HLEN;
4582 
4583 	if (skb_network_offset(skb) < ETH_HLEN)
4584 		skb_set_network_header(skb, ETH_HLEN);
4585 
4586 	skb_reset_mac_len(skb);
4587 
4588 	return err;
4589 }
4590 EXPORT_SYMBOL(__skb_vlan_pop);
4591 
4592 /* Pop a vlan tag either from hwaccel or from payload.
4593  * Expects skb->data at mac header.
4594  */
4595 int skb_vlan_pop(struct sk_buff *skb)
4596 {
4597 	u16 vlan_tci;
4598 	__be16 vlan_proto;
4599 	int err;
4600 
4601 	if (likely(skb_vlan_tag_present(skb))) {
4602 		skb->vlan_tci = 0;
4603 	} else {
4604 		if (unlikely(!eth_type_vlan(skb->protocol)))
4605 			return 0;
4606 
4607 		err = __skb_vlan_pop(skb, &vlan_tci);
4608 		if (err)
4609 			return err;
4610 	}
4611 	/* move next vlan tag to hw accel tag */
4612 	if (likely(!eth_type_vlan(skb->protocol)))
4613 		return 0;
4614 
4615 	vlan_proto = skb->protocol;
4616 	err = __skb_vlan_pop(skb, &vlan_tci);
4617 	if (unlikely(err))
4618 		return err;
4619 
4620 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4621 	return 0;
4622 }
4623 EXPORT_SYMBOL(skb_vlan_pop);
4624 
4625 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4626  * Expects skb->data at mac header.
4627  */
4628 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4629 {
4630 	if (skb_vlan_tag_present(skb)) {
4631 		int offset = skb->data - skb_mac_header(skb);
4632 		int err;
4633 
4634 		if (WARN_ONCE(offset,
4635 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4636 			      offset)) {
4637 			return -EINVAL;
4638 		}
4639 
4640 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4641 					skb_vlan_tag_get(skb));
4642 		if (err)
4643 			return err;
4644 
4645 		skb->protocol = skb->vlan_proto;
4646 		skb->mac_len += VLAN_HLEN;
4647 
4648 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4649 	}
4650 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4651 	return 0;
4652 }
4653 EXPORT_SYMBOL(skb_vlan_push);
4654 
4655 /**
4656  * alloc_skb_with_frags - allocate skb with page frags
4657  *
4658  * @header_len: size of linear part
4659  * @data_len: needed length in frags
4660  * @max_page_order: max page order desired.
4661  * @errcode: pointer to error code if any
4662  * @gfp_mask: allocation mask
4663  *
4664  * This can be used to allocate a paged skb, given a maximal order for frags.
4665  */
4666 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4667 				     unsigned long data_len,
4668 				     int max_page_order,
4669 				     int *errcode,
4670 				     gfp_t gfp_mask)
4671 {
4672 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4673 	unsigned long chunk;
4674 	struct sk_buff *skb;
4675 	struct page *page;
4676 	gfp_t gfp_head;
4677 	int i;
4678 
4679 	*errcode = -EMSGSIZE;
4680 	/* Note this test could be relaxed, if we succeed to allocate
4681 	 * high order pages...
4682 	 */
4683 	if (npages > MAX_SKB_FRAGS)
4684 		return NULL;
4685 
4686 	gfp_head = gfp_mask;
4687 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4688 		gfp_head |= __GFP_REPEAT;
4689 
4690 	*errcode = -ENOBUFS;
4691 	skb = alloc_skb(header_len, gfp_head);
4692 	if (!skb)
4693 		return NULL;
4694 
4695 	skb->truesize += npages << PAGE_SHIFT;
4696 
4697 	for (i = 0; npages > 0; i++) {
4698 		int order = max_page_order;
4699 
4700 		while (order) {
4701 			if (npages >= 1 << order) {
4702 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4703 						   __GFP_COMP |
4704 						   __GFP_NOWARN |
4705 						   __GFP_NORETRY,
4706 						   order);
4707 				if (page)
4708 					goto fill_page;
4709 				/* Do not retry other high order allocations */
4710 				order = 1;
4711 				max_page_order = 0;
4712 			}
4713 			order--;
4714 		}
4715 		page = alloc_page(gfp_mask);
4716 		if (!page)
4717 			goto failure;
4718 fill_page:
4719 		chunk = min_t(unsigned long, data_len,
4720 			      PAGE_SIZE << order);
4721 		skb_fill_page_desc(skb, i, page, 0, chunk);
4722 		data_len -= chunk;
4723 		npages -= 1 << order;
4724 	}
4725 	return skb;
4726 
4727 failure:
4728 	kfree_skb(skb);
4729 	return NULL;
4730 }
4731 EXPORT_SYMBOL(alloc_skb_with_frags);
4732 
4733 /* carve out the first off bytes from skb when off < headlen */
4734 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4735 				    const int headlen, gfp_t gfp_mask)
4736 {
4737 	int i;
4738 	int size = skb_end_offset(skb);
4739 	int new_hlen = headlen - off;
4740 	u8 *data;
4741 
4742 	size = SKB_DATA_ALIGN(size);
4743 
4744 	if (skb_pfmemalloc(skb))
4745 		gfp_mask |= __GFP_MEMALLOC;
4746 	data = kmalloc_reserve(size +
4747 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4748 			       gfp_mask, NUMA_NO_NODE, NULL);
4749 	if (!data)
4750 		return -ENOMEM;
4751 
4752 	size = SKB_WITH_OVERHEAD(ksize(data));
4753 
4754 	/* Copy real data, and all frags */
4755 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4756 	skb->len -= off;
4757 
4758 	memcpy((struct skb_shared_info *)(data + size),
4759 	       skb_shinfo(skb),
4760 	       offsetof(struct skb_shared_info,
4761 			frags[skb_shinfo(skb)->nr_frags]));
4762 	if (skb_cloned(skb)) {
4763 		/* drop the old head gracefully */
4764 		if (skb_orphan_frags(skb, gfp_mask)) {
4765 			kfree(data);
4766 			return -ENOMEM;
4767 		}
4768 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4769 			skb_frag_ref(skb, i);
4770 		if (skb_has_frag_list(skb))
4771 			skb_clone_fraglist(skb);
4772 		skb_release_data(skb);
4773 	} else {
4774 		/* we can reuse existing recount- all we did was
4775 		 * relocate values
4776 		 */
4777 		skb_free_head(skb);
4778 	}
4779 
4780 	skb->head = data;
4781 	skb->data = data;
4782 	skb->head_frag = 0;
4783 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4784 	skb->end = size;
4785 #else
4786 	skb->end = skb->head + size;
4787 #endif
4788 	skb_set_tail_pointer(skb, skb_headlen(skb));
4789 	skb_headers_offset_update(skb, 0);
4790 	skb->cloned = 0;
4791 	skb->hdr_len = 0;
4792 	skb->nohdr = 0;
4793 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4794 
4795 	return 0;
4796 }
4797 
4798 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4799 
4800 /* carve out the first eat bytes from skb's frag_list. May recurse into
4801  * pskb_carve()
4802  */
4803 static int pskb_carve_frag_list(struct sk_buff *skb,
4804 				struct skb_shared_info *shinfo, int eat,
4805 				gfp_t gfp_mask)
4806 {
4807 	struct sk_buff *list = shinfo->frag_list;
4808 	struct sk_buff *clone = NULL;
4809 	struct sk_buff *insp = NULL;
4810 
4811 	do {
4812 		if (!list) {
4813 			pr_err("Not enough bytes to eat. Want %d\n", eat);
4814 			return -EFAULT;
4815 		}
4816 		if (list->len <= eat) {
4817 			/* Eaten as whole. */
4818 			eat -= list->len;
4819 			list = list->next;
4820 			insp = list;
4821 		} else {
4822 			/* Eaten partially. */
4823 			if (skb_shared(list)) {
4824 				clone = skb_clone(list, gfp_mask);
4825 				if (!clone)
4826 					return -ENOMEM;
4827 				insp = list->next;
4828 				list = clone;
4829 			} else {
4830 				/* This may be pulled without problems. */
4831 				insp = list;
4832 			}
4833 			if (pskb_carve(list, eat, gfp_mask) < 0) {
4834 				kfree_skb(clone);
4835 				return -ENOMEM;
4836 			}
4837 			break;
4838 		}
4839 	} while (eat);
4840 
4841 	/* Free pulled out fragments. */
4842 	while ((list = shinfo->frag_list) != insp) {
4843 		shinfo->frag_list = list->next;
4844 		kfree_skb(list);
4845 	}
4846 	/* And insert new clone at head. */
4847 	if (clone) {
4848 		clone->next = list;
4849 		shinfo->frag_list = clone;
4850 	}
4851 	return 0;
4852 }
4853 
4854 /* carve off first len bytes from skb. Split line (off) is in the
4855  * non-linear part of skb
4856  */
4857 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4858 				       int pos, gfp_t gfp_mask)
4859 {
4860 	int i, k = 0;
4861 	int size = skb_end_offset(skb);
4862 	u8 *data;
4863 	const int nfrags = skb_shinfo(skb)->nr_frags;
4864 	struct skb_shared_info *shinfo;
4865 
4866 	size = SKB_DATA_ALIGN(size);
4867 
4868 	if (skb_pfmemalloc(skb))
4869 		gfp_mask |= __GFP_MEMALLOC;
4870 	data = kmalloc_reserve(size +
4871 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4872 			       gfp_mask, NUMA_NO_NODE, NULL);
4873 	if (!data)
4874 		return -ENOMEM;
4875 
4876 	size = SKB_WITH_OVERHEAD(ksize(data));
4877 
4878 	memcpy((struct skb_shared_info *)(data + size),
4879 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
4880 					 frags[skb_shinfo(skb)->nr_frags]));
4881 	if (skb_orphan_frags(skb, gfp_mask)) {
4882 		kfree(data);
4883 		return -ENOMEM;
4884 	}
4885 	shinfo = (struct skb_shared_info *)(data + size);
4886 	for (i = 0; i < nfrags; i++) {
4887 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4888 
4889 		if (pos + fsize > off) {
4890 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4891 
4892 			if (pos < off) {
4893 				/* Split frag.
4894 				 * We have two variants in this case:
4895 				 * 1. Move all the frag to the second
4896 				 *    part, if it is possible. F.e.
4897 				 *    this approach is mandatory for TUX,
4898 				 *    where splitting is expensive.
4899 				 * 2. Split is accurately. We make this.
4900 				 */
4901 				shinfo->frags[0].page_offset += off - pos;
4902 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
4903 			}
4904 			skb_frag_ref(skb, i);
4905 			k++;
4906 		}
4907 		pos += fsize;
4908 	}
4909 	shinfo->nr_frags = k;
4910 	if (skb_has_frag_list(skb))
4911 		skb_clone_fraglist(skb);
4912 
4913 	if (k == 0) {
4914 		/* split line is in frag list */
4915 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4916 	}
4917 	skb_release_data(skb);
4918 
4919 	skb->head = data;
4920 	skb->head_frag = 0;
4921 	skb->data = data;
4922 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4923 	skb->end = size;
4924 #else
4925 	skb->end = skb->head + size;
4926 #endif
4927 	skb_reset_tail_pointer(skb);
4928 	skb_headers_offset_update(skb, 0);
4929 	skb->cloned   = 0;
4930 	skb->hdr_len  = 0;
4931 	skb->nohdr    = 0;
4932 	skb->len -= off;
4933 	skb->data_len = skb->len;
4934 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4935 	return 0;
4936 }
4937 
4938 /* remove len bytes from the beginning of the skb */
4939 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4940 {
4941 	int headlen = skb_headlen(skb);
4942 
4943 	if (len < headlen)
4944 		return pskb_carve_inside_header(skb, len, headlen, gfp);
4945 	else
4946 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4947 }
4948 
4949 /* Extract to_copy bytes starting at off from skb, and return this in
4950  * a new skb
4951  */
4952 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4953 			     int to_copy, gfp_t gfp)
4954 {
4955 	struct sk_buff  *clone = skb_clone(skb, gfp);
4956 
4957 	if (!clone)
4958 		return NULL;
4959 
4960 	if (pskb_carve(clone, off, gfp) < 0 ||
4961 	    pskb_trim(clone, to_copy)) {
4962 		kfree_skb(clone);
4963 		return NULL;
4964 	}
4965 	return clone;
4966 }
4967 EXPORT_SYMBOL(pskb_extract);
4968 
4969 /**
4970  * skb_condense - try to get rid of fragments/frag_list if possible
4971  * @skb: buffer
4972  *
4973  * Can be used to save memory before skb is added to a busy queue.
4974  * If packet has bytes in frags and enough tail room in skb->head,
4975  * pull all of them, so that we can free the frags right now and adjust
4976  * truesize.
4977  * Notes:
4978  *	We do not reallocate skb->head thus can not fail.
4979  *	Caller must re-evaluate skb->truesize if needed.
4980  */
4981 void skb_condense(struct sk_buff *skb)
4982 {
4983 	if (skb->data_len) {
4984 		if (skb->data_len > skb->end - skb->tail ||
4985 		    skb_cloned(skb))
4986 			return;
4987 
4988 		/* Nice, we can free page frag(s) right now */
4989 		__pskb_pull_tail(skb, skb->data_len);
4990 	}
4991 	/* At this point, skb->truesize might be over estimated,
4992 	 * because skb had a fragment, and fragments do not tell
4993 	 * their truesize.
4994 	 * When we pulled its content into skb->head, fragment
4995 	 * was freed, but __pskb_pull_tail() could not possibly
4996 	 * adjust skb->truesize, not knowing the frag truesize.
4997 	 */
4998 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4999 }
5000