xref: /openbmc/linux/net/core/skbuff.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 
82 #include "datagram.h"
83 
84 struct kmem_cache *skbuff_head_cache __ro_after_init;
85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86 #ifdef CONFIG_SKB_EXTENSIONS
87 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88 #endif
89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90 EXPORT_SYMBOL(sysctl_max_skb_frags);
91 
92 /**
93  *	skb_panic - private function for out-of-line support
94  *	@skb:	buffer
95  *	@sz:	size
96  *	@addr:	address
97  *	@msg:	skb_over_panic or skb_under_panic
98  *
99  *	Out-of-line support for skb_put() and skb_push().
100  *	Called via the wrapper skb_over_panic() or skb_under_panic().
101  *	Keep out of line to prevent kernel bloat.
102  *	__builtin_return_address is not used because it is not always reliable.
103  */
104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 		      const char msg[])
106 {
107 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 		 msg, addr, skb->len, sz, skb->head, skb->data,
109 		 (unsigned long)skb->tail, (unsigned long)skb->end,
110 		 skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 {
116 	skb_panic(skb, sz, addr, __func__);
117 }
118 
119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 {
121 	skb_panic(skb, sz, addr, __func__);
122 }
123 
124 #define NAPI_SKB_CACHE_SIZE	64
125 #define NAPI_SKB_CACHE_BULK	16
126 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
127 
128 struct napi_alloc_cache {
129 	struct page_frag_cache page;
130 	unsigned int skb_count;
131 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
132 };
133 
134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136 
137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 				unsigned int align_mask)
139 {
140 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141 
142 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143 }
144 
145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146 {
147 	fragsz = SKB_DATA_ALIGN(fragsz);
148 
149 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150 }
151 EXPORT_SYMBOL(__napi_alloc_frag_align);
152 
153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154 {
155 	struct page_frag_cache *nc;
156 	void *data;
157 
158 	fragsz = SKB_DATA_ALIGN(fragsz);
159 	if (in_hardirq() || irqs_disabled()) {
160 		nc = this_cpu_ptr(&netdev_alloc_cache);
161 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 	} else {
163 		local_bh_disable();
164 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 		local_bh_enable();
166 	}
167 	return data;
168 }
169 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 
171 static struct sk_buff *napi_skb_cache_get(void)
172 {
173 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 	struct sk_buff *skb;
175 
176 	if (unlikely(!nc->skb_count))
177 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 						      GFP_ATOMIC,
179 						      NAPI_SKB_CACHE_BULK,
180 						      nc->skb_cache);
181 	if (unlikely(!nc->skb_count))
182 		return NULL;
183 
184 	skb = nc->skb_cache[--nc->skb_count];
185 	kasan_unpoison_object_data(skbuff_head_cache, skb);
186 
187 	return skb;
188 }
189 
190 /* Caller must provide SKB that is memset cleared */
191 static void __build_skb_around(struct sk_buff *skb, void *data,
192 			       unsigned int frag_size)
193 {
194 	struct skb_shared_info *shinfo;
195 	unsigned int size = frag_size ? : ksize(data);
196 
197 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 
199 	/* Assumes caller memset cleared SKB */
200 	skb->truesize = SKB_TRUESIZE(size);
201 	refcount_set(&skb->users, 1);
202 	skb->head = data;
203 	skb->data = data;
204 	skb_reset_tail_pointer(skb);
205 	skb->end = skb->tail + size;
206 	skb->mac_header = (typeof(skb->mac_header))~0U;
207 	skb->transport_header = (typeof(skb->transport_header))~0U;
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 
214 	skb_set_kcov_handle(skb, kcov_common_handle());
215 }
216 
217 /**
218  * __build_skb - build a network buffer
219  * @data: data buffer provided by caller
220  * @frag_size: size of data, or 0 if head was kmalloced
221  *
222  * Allocate a new &sk_buff. Caller provides space holding head and
223  * skb_shared_info. @data must have been allocated by kmalloc() only if
224  * @frag_size is 0, otherwise data should come from the page allocator
225  *  or vmalloc()
226  * The return is the new skb buffer.
227  * On a failure the return is %NULL, and @data is not freed.
228  * Notes :
229  *  Before IO, driver allocates only data buffer where NIC put incoming frame
230  *  Driver should add room at head (NET_SKB_PAD) and
231  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
233  *  before giving packet to stack.
234  *  RX rings only contains data buffers, not full skbs.
235  */
236 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237 {
238 	struct sk_buff *skb;
239 
240 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 	if (unlikely(!skb))
242 		return NULL;
243 
244 	memset(skb, 0, offsetof(struct sk_buff, tail));
245 	__build_skb_around(skb, data, frag_size);
246 
247 	return skb;
248 }
249 
250 /* build_skb() is wrapper over __build_skb(), that specifically
251  * takes care of skb->head and skb->pfmemalloc
252  * This means that if @frag_size is not zero, then @data must be backed
253  * by a page fragment, not kmalloc() or vmalloc()
254  */
255 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 {
257 	struct sk_buff *skb = __build_skb(data, frag_size);
258 
259 	if (skb && frag_size) {
260 		skb->head_frag = 1;
261 		if (page_is_pfmemalloc(virt_to_head_page(data)))
262 			skb->pfmemalloc = 1;
263 	}
264 	return skb;
265 }
266 EXPORT_SYMBOL(build_skb);
267 
268 /**
269  * build_skb_around - build a network buffer around provided skb
270  * @skb: sk_buff provide by caller, must be memset cleared
271  * @data: data buffer provided by caller
272  * @frag_size: size of data, or 0 if head was kmalloced
273  */
274 struct sk_buff *build_skb_around(struct sk_buff *skb,
275 				 void *data, unsigned int frag_size)
276 {
277 	if (unlikely(!skb))
278 		return NULL;
279 
280 	__build_skb_around(skb, data, frag_size);
281 
282 	if (frag_size) {
283 		skb->head_frag = 1;
284 		if (page_is_pfmemalloc(virt_to_head_page(data)))
285 			skb->pfmemalloc = 1;
286 	}
287 	return skb;
288 }
289 EXPORT_SYMBOL(build_skb_around);
290 
291 /**
292  * __napi_build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of data, or 0 if head was kmalloced
295  *
296  * Version of __build_skb() that uses NAPI percpu caches to obtain
297  * skbuff_head instead of inplace allocation.
298  *
299  * Returns a new &sk_buff on success, %NULL on allocation failure.
300  */
301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302 {
303 	struct sk_buff *skb;
304 
305 	skb = napi_skb_cache_get();
306 	if (unlikely(!skb))
307 		return NULL;
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	__build_skb_around(skb, data, frag_size);
311 
312 	return skb;
313 }
314 
315 /**
316  * napi_build_skb - build a network buffer
317  * @data: data buffer provided by caller
318  * @frag_size: size of data, or 0 if head was kmalloced
319  *
320  * Version of __napi_build_skb() that takes care of skb->head_frag
321  * and skb->pfmemalloc when the data is a page or page fragment.
322  *
323  * Returns a new &sk_buff on success, %NULL on allocation failure.
324  */
325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 
329 	if (likely(skb) && frag_size) {
330 		skb->head_frag = 1;
331 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 	}
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(napi_build_skb);
337 
338 /*
339  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340  * the caller if emergency pfmemalloc reserves are being used. If it is and
341  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342  * may be used. Otherwise, the packet data may be discarded until enough
343  * memory is free
344  */
345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 			     bool *pfmemalloc)
347 {
348 	void *obj;
349 	bool ret_pfmemalloc = false;
350 
351 	/*
352 	 * Try a regular allocation, when that fails and we're not entitled
353 	 * to the reserves, fail.
354 	 */
355 	obj = kmalloc_node_track_caller(size,
356 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 					node);
358 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 		goto out;
360 
361 	/* Try again but now we are using pfmemalloc reserves */
362 	ret_pfmemalloc = true;
363 	obj = kmalloc_node_track_caller(size, flags, node);
364 
365 out:
366 	if (pfmemalloc)
367 		*pfmemalloc = ret_pfmemalloc;
368 
369 	return obj;
370 }
371 
372 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
373  *	'private' fields and also do memory statistics to find all the
374  *	[BEEP] leaks.
375  *
376  */
377 
378 /**
379  *	__alloc_skb	-	allocate a network buffer
380  *	@size: size to allocate
381  *	@gfp_mask: allocation mask
382  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383  *		instead of head cache and allocate a cloned (child) skb.
384  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385  *		allocations in case the data is required for writeback
386  *	@node: numa node to allocate memory on
387  *
388  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
389  *	tail room of at least size bytes. The object has a reference count
390  *	of one. The return is the buffer. On a failure the return is %NULL.
391  *
392  *	Buffers may only be allocated from interrupts using a @gfp_mask of
393  *	%GFP_ATOMIC.
394  */
395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 			    int flags, int node)
397 {
398 	struct kmem_cache *cache;
399 	struct sk_buff *skb;
400 	u8 *data;
401 	bool pfmemalloc;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	size = SKB_WITH_OVERHEAD(ksize(data));
434 	prefetchw(data + size);
435 
436 	/*
437 	 * Only clear those fields we need to clear, not those that we will
438 	 * actually initialise below. Hence, don't put any more fields after
439 	 * the tail pointer in struct sk_buff!
440 	 */
441 	memset(skb, 0, offsetof(struct sk_buff, tail));
442 	__build_skb_around(skb, data, 0);
443 	skb->pfmemalloc = pfmemalloc;
444 
445 	if (flags & SKB_ALLOC_FCLONE) {
446 		struct sk_buff_fclones *fclones;
447 
448 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
449 
450 		skb->fclone = SKB_FCLONE_ORIG;
451 		refcount_set(&fclones->fclone_ref, 1);
452 
453 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 	}
455 
456 	return skb;
457 
458 nodata:
459 	kmem_cache_free(cache, skb);
460 	return NULL;
461 }
462 EXPORT_SYMBOL(__alloc_skb);
463 
464 /**
465  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
466  *	@dev: network device to receive on
467  *	@len: length to allocate
468  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
469  *
470  *	Allocate a new &sk_buff and assign it a usage count of one. The
471  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
472  *	the headroom they think they need without accounting for the
473  *	built in space. The built in space is used for optimisations.
474  *
475  *	%NULL is returned if there is no free memory.
476  */
477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 				   gfp_t gfp_mask)
479 {
480 	struct page_frag_cache *nc;
481 	struct sk_buff *skb;
482 	bool pfmemalloc;
483 	void *data;
484 
485 	len += NET_SKB_PAD;
486 
487 	/* If requested length is either too small or too big,
488 	 * we use kmalloc() for skb->head allocation.
489 	 */
490 	if (len <= SKB_WITH_OVERHEAD(1024) ||
491 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 		if (!skb)
495 			goto skb_fail;
496 		goto skb_success;
497 	}
498 
499 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 	len = SKB_DATA_ALIGN(len);
501 
502 	if (sk_memalloc_socks())
503 		gfp_mask |= __GFP_MEMALLOC;
504 
505 	if (in_hardirq() || irqs_disabled()) {
506 		nc = this_cpu_ptr(&netdev_alloc_cache);
507 		data = page_frag_alloc(nc, len, gfp_mask);
508 		pfmemalloc = nc->pfmemalloc;
509 	} else {
510 		local_bh_disable();
511 		nc = this_cpu_ptr(&napi_alloc_cache.page);
512 		data = page_frag_alloc(nc, len, gfp_mask);
513 		pfmemalloc = nc->pfmemalloc;
514 		local_bh_enable();
515 	}
516 
517 	if (unlikely(!data))
518 		return NULL;
519 
520 	skb = __build_skb(data, len);
521 	if (unlikely(!skb)) {
522 		skb_free_frag(data);
523 		return NULL;
524 	}
525 
526 	if (pfmemalloc)
527 		skb->pfmemalloc = 1;
528 	skb->head_frag = 1;
529 
530 skb_success:
531 	skb_reserve(skb, NET_SKB_PAD);
532 	skb->dev = dev;
533 
534 skb_fail:
535 	return skb;
536 }
537 EXPORT_SYMBOL(__netdev_alloc_skb);
538 
539 /**
540  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541  *	@napi: napi instance this buffer was allocated for
542  *	@len: length to allocate
543  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544  *
545  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
546  *	attempt to allocate the head from a special reserved region used
547  *	only for NAPI Rx allocation.  By doing this we can save several
548  *	CPU cycles by avoiding having to disable and re-enable IRQs.
549  *
550  *	%NULL is returned if there is no free memory.
551  */
552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 				 gfp_t gfp_mask)
554 {
555 	struct napi_alloc_cache *nc;
556 	struct sk_buff *skb;
557 	void *data;
558 
559 	len += NET_SKB_PAD + NET_IP_ALIGN;
560 
561 	/* If requested length is either too small or too big,
562 	 * we use kmalloc() for skb->head allocation.
563 	 */
564 	if (len <= SKB_WITH_OVERHEAD(1024) ||
565 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 				  NUMA_NO_NODE);
569 		if (!skb)
570 			goto skb_fail;
571 		goto skb_success;
572 	}
573 
574 	nc = this_cpu_ptr(&napi_alloc_cache);
575 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 	len = SKB_DATA_ALIGN(len);
577 
578 	if (sk_memalloc_socks())
579 		gfp_mask |= __GFP_MEMALLOC;
580 
581 	data = page_frag_alloc(&nc->page, len, gfp_mask);
582 	if (unlikely(!data))
583 		return NULL;
584 
585 	skb = __napi_build_skb(data, len);
586 	if (unlikely(!skb)) {
587 		skb_free_frag(data);
588 		return NULL;
589 	}
590 
591 	if (nc->page.pfmemalloc)
592 		skb->pfmemalloc = 1;
593 	skb->head_frag = 1;
594 
595 skb_success:
596 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 	skb->dev = napi->dev;
598 
599 skb_fail:
600 	return skb;
601 }
602 EXPORT_SYMBOL(__napi_alloc_skb);
603 
604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 		     int size, unsigned int truesize)
606 {
607 	skb_fill_page_desc(skb, i, page, off, size);
608 	skb->len += size;
609 	skb->data_len += size;
610 	skb->truesize += truesize;
611 }
612 EXPORT_SYMBOL(skb_add_rx_frag);
613 
614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 			  unsigned int truesize)
616 {
617 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618 
619 	skb_frag_size_add(frag, size);
620 	skb->len += size;
621 	skb->data_len += size;
622 	skb->truesize += truesize;
623 }
624 EXPORT_SYMBOL(skb_coalesce_rx_frag);
625 
626 static void skb_drop_list(struct sk_buff **listp)
627 {
628 	kfree_skb_list(*listp);
629 	*listp = NULL;
630 }
631 
632 static inline void skb_drop_fraglist(struct sk_buff *skb)
633 {
634 	skb_drop_list(&skb_shinfo(skb)->frag_list);
635 }
636 
637 static void skb_clone_fraglist(struct sk_buff *skb)
638 {
639 	struct sk_buff *list;
640 
641 	skb_walk_frags(skb, list)
642 		skb_get(list);
643 }
644 
645 static void skb_free_head(struct sk_buff *skb)
646 {
647 	unsigned char *head = skb->head;
648 
649 	if (skb->head_frag) {
650 		if (skb_pp_recycle(skb, head))
651 			return;
652 		skb_free_frag(head);
653 	} else {
654 		kfree(head);
655 	}
656 }
657 
658 static void skb_release_data(struct sk_buff *skb)
659 {
660 	struct skb_shared_info *shinfo = skb_shinfo(skb);
661 	int i;
662 
663 	if (skb->cloned &&
664 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 			      &shinfo->dataref))
666 		goto exit;
667 
668 	skb_zcopy_clear(skb, true);
669 
670 	for (i = 0; i < shinfo->nr_frags; i++)
671 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672 
673 	if (shinfo->frag_list)
674 		kfree_skb_list(shinfo->frag_list);
675 
676 	skb_free_head(skb);
677 exit:
678 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
679 	 * bit is only set on the head though, so in order to avoid races
680 	 * while trying to recycle fragments on __skb_frag_unref() we need
681 	 * to make one SKB responsible for triggering the recycle path.
682 	 * So disable the recycling bit if an SKB is cloned and we have
683 	 * additional references to to the fragmented part of the SKB.
684 	 * Eventually the last SKB will have the recycling bit set and it's
685 	 * dataref set to 0, which will trigger the recycling
686 	 */
687 	skb->pp_recycle = 0;
688 }
689 
690 /*
691  *	Free an skbuff by memory without cleaning the state.
692  */
693 static void kfree_skbmem(struct sk_buff *skb)
694 {
695 	struct sk_buff_fclones *fclones;
696 
697 	switch (skb->fclone) {
698 	case SKB_FCLONE_UNAVAILABLE:
699 		kmem_cache_free(skbuff_head_cache, skb);
700 		return;
701 
702 	case SKB_FCLONE_ORIG:
703 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
704 
705 		/* We usually free the clone (TX completion) before original skb
706 		 * This test would have no chance to be true for the clone,
707 		 * while here, branch prediction will be good.
708 		 */
709 		if (refcount_read(&fclones->fclone_ref) == 1)
710 			goto fastpath;
711 		break;
712 
713 	default: /* SKB_FCLONE_CLONE */
714 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
715 		break;
716 	}
717 	if (!refcount_dec_and_test(&fclones->fclone_ref))
718 		return;
719 fastpath:
720 	kmem_cache_free(skbuff_fclone_cache, fclones);
721 }
722 
723 void skb_release_head_state(struct sk_buff *skb)
724 {
725 	skb_dst_drop(skb);
726 	if (skb->destructor) {
727 		WARN_ON(in_hardirq());
728 		skb->destructor(skb);
729 	}
730 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
731 	nf_conntrack_put(skb_nfct(skb));
732 #endif
733 	skb_ext_put(skb);
734 }
735 
736 /* Free everything but the sk_buff shell. */
737 static void skb_release_all(struct sk_buff *skb)
738 {
739 	skb_release_head_state(skb);
740 	if (likely(skb->head))
741 		skb_release_data(skb);
742 }
743 
744 /**
745  *	__kfree_skb - private function
746  *	@skb: buffer
747  *
748  *	Free an sk_buff. Release anything attached to the buffer.
749  *	Clean the state. This is an internal helper function. Users should
750  *	always call kfree_skb
751  */
752 
753 void __kfree_skb(struct sk_buff *skb)
754 {
755 	skb_release_all(skb);
756 	kfree_skbmem(skb);
757 }
758 EXPORT_SYMBOL(__kfree_skb);
759 
760 /**
761  *	kfree_skb - free an sk_buff
762  *	@skb: buffer to free
763  *
764  *	Drop a reference to the buffer and free it if the usage count has
765  *	hit zero.
766  */
767 void kfree_skb(struct sk_buff *skb)
768 {
769 	if (!skb_unref(skb))
770 		return;
771 
772 	trace_kfree_skb(skb, __builtin_return_address(0));
773 	__kfree_skb(skb);
774 }
775 EXPORT_SYMBOL(kfree_skb);
776 
777 void kfree_skb_list(struct sk_buff *segs)
778 {
779 	while (segs) {
780 		struct sk_buff *next = segs->next;
781 
782 		kfree_skb(segs);
783 		segs = next;
784 	}
785 }
786 EXPORT_SYMBOL(kfree_skb_list);
787 
788 /* Dump skb information and contents.
789  *
790  * Must only be called from net_ratelimit()-ed paths.
791  *
792  * Dumps whole packets if full_pkt, only headers otherwise.
793  */
794 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
795 {
796 	struct skb_shared_info *sh = skb_shinfo(skb);
797 	struct net_device *dev = skb->dev;
798 	struct sock *sk = skb->sk;
799 	struct sk_buff *list_skb;
800 	bool has_mac, has_trans;
801 	int headroom, tailroom;
802 	int i, len, seg_len;
803 
804 	if (full_pkt)
805 		len = skb->len;
806 	else
807 		len = min_t(int, skb->len, MAX_HEADER + 128);
808 
809 	headroom = skb_headroom(skb);
810 	tailroom = skb_tailroom(skb);
811 
812 	has_mac = skb_mac_header_was_set(skb);
813 	has_trans = skb_transport_header_was_set(skb);
814 
815 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
816 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
817 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
818 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
819 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
820 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
821 	       has_mac ? skb->mac_header : -1,
822 	       has_mac ? skb_mac_header_len(skb) : -1,
823 	       skb->network_header,
824 	       has_trans ? skb_network_header_len(skb) : -1,
825 	       has_trans ? skb->transport_header : -1,
826 	       sh->tx_flags, sh->nr_frags,
827 	       sh->gso_size, sh->gso_type, sh->gso_segs,
828 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
829 	       skb->csum_valid, skb->csum_level,
830 	       skb->hash, skb->sw_hash, skb->l4_hash,
831 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
832 
833 	if (dev)
834 		printk("%sdev name=%s feat=0x%pNF\n",
835 		       level, dev->name, &dev->features);
836 	if (sk)
837 		printk("%ssk family=%hu type=%u proto=%u\n",
838 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
839 
840 	if (full_pkt && headroom)
841 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
842 			       16, 1, skb->head, headroom, false);
843 
844 	seg_len = min_t(int, skb_headlen(skb), len);
845 	if (seg_len)
846 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
847 			       16, 1, skb->data, seg_len, false);
848 	len -= seg_len;
849 
850 	if (full_pkt && tailroom)
851 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
852 			       16, 1, skb_tail_pointer(skb), tailroom, false);
853 
854 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
855 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 		u32 p_off, p_len, copied;
857 		struct page *p;
858 		u8 *vaddr;
859 
860 		skb_frag_foreach_page(frag, skb_frag_off(frag),
861 				      skb_frag_size(frag), p, p_off, p_len,
862 				      copied) {
863 			seg_len = min_t(int, p_len, len);
864 			vaddr = kmap_atomic(p);
865 			print_hex_dump(level, "skb frag:     ",
866 				       DUMP_PREFIX_OFFSET,
867 				       16, 1, vaddr + p_off, seg_len, false);
868 			kunmap_atomic(vaddr);
869 			len -= seg_len;
870 			if (!len)
871 				break;
872 		}
873 	}
874 
875 	if (full_pkt && skb_has_frag_list(skb)) {
876 		printk("skb fraglist:\n");
877 		skb_walk_frags(skb, list_skb)
878 			skb_dump(level, list_skb, true);
879 	}
880 }
881 EXPORT_SYMBOL(skb_dump);
882 
883 /**
884  *	skb_tx_error - report an sk_buff xmit error
885  *	@skb: buffer that triggered an error
886  *
887  *	Report xmit error if a device callback is tracking this skb.
888  *	skb must be freed afterwards.
889  */
890 void skb_tx_error(struct sk_buff *skb)
891 {
892 	skb_zcopy_clear(skb, true);
893 }
894 EXPORT_SYMBOL(skb_tx_error);
895 
896 #ifdef CONFIG_TRACEPOINTS
897 /**
898  *	consume_skb - free an skbuff
899  *	@skb: buffer to free
900  *
901  *	Drop a ref to the buffer and free it if the usage count has hit zero
902  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
903  *	is being dropped after a failure and notes that
904  */
905 void consume_skb(struct sk_buff *skb)
906 {
907 	if (!skb_unref(skb))
908 		return;
909 
910 	trace_consume_skb(skb);
911 	__kfree_skb(skb);
912 }
913 EXPORT_SYMBOL(consume_skb);
914 #endif
915 
916 /**
917  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
918  *	@skb: buffer to free
919  *
920  *	Alike consume_skb(), but this variant assumes that this is the last
921  *	skb reference and all the head states have been already dropped
922  */
923 void __consume_stateless_skb(struct sk_buff *skb)
924 {
925 	trace_consume_skb(skb);
926 	skb_release_data(skb);
927 	kfree_skbmem(skb);
928 }
929 
930 static void napi_skb_cache_put(struct sk_buff *skb)
931 {
932 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
933 	u32 i;
934 
935 	kasan_poison_object_data(skbuff_head_cache, skb);
936 	nc->skb_cache[nc->skb_count++] = skb;
937 
938 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
939 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
940 			kasan_unpoison_object_data(skbuff_head_cache,
941 						   nc->skb_cache[i]);
942 
943 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
944 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
945 		nc->skb_count = NAPI_SKB_CACHE_HALF;
946 	}
947 }
948 
949 void __kfree_skb_defer(struct sk_buff *skb)
950 {
951 	skb_release_all(skb);
952 	napi_skb_cache_put(skb);
953 }
954 
955 void napi_skb_free_stolen_head(struct sk_buff *skb)
956 {
957 	if (unlikely(skb->slow_gro)) {
958 		nf_reset_ct(skb);
959 		skb_dst_drop(skb);
960 		skb_ext_put(skb);
961 		skb_orphan(skb);
962 		skb->slow_gro = 0;
963 	}
964 	napi_skb_cache_put(skb);
965 }
966 
967 void napi_consume_skb(struct sk_buff *skb, int budget)
968 {
969 	/* Zero budget indicate non-NAPI context called us, like netpoll */
970 	if (unlikely(!budget)) {
971 		dev_consume_skb_any(skb);
972 		return;
973 	}
974 
975 	lockdep_assert_in_softirq();
976 
977 	if (!skb_unref(skb))
978 		return;
979 
980 	/* if reaching here SKB is ready to free */
981 	trace_consume_skb(skb);
982 
983 	/* if SKB is a clone, don't handle this case */
984 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
985 		__kfree_skb(skb);
986 		return;
987 	}
988 
989 	skb_release_all(skb);
990 	napi_skb_cache_put(skb);
991 }
992 EXPORT_SYMBOL(napi_consume_skb);
993 
994 /* Make sure a field is enclosed inside headers_start/headers_end section */
995 #define CHECK_SKB_FIELD(field) \
996 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
997 		     offsetof(struct sk_buff, headers_start));	\
998 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
999 		     offsetof(struct sk_buff, headers_end));	\
1000 
1001 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1002 {
1003 	new->tstamp		= old->tstamp;
1004 	/* We do not copy old->sk */
1005 	new->dev		= old->dev;
1006 	memcpy(new->cb, old->cb, sizeof(old->cb));
1007 	skb_dst_copy(new, old);
1008 	__skb_ext_copy(new, old);
1009 	__nf_copy(new, old, false);
1010 
1011 	/* Note : this field could be in headers_start/headers_end section
1012 	 * It is not yet because we do not want to have a 16 bit hole
1013 	 */
1014 	new->queue_mapping = old->queue_mapping;
1015 
1016 	memcpy(&new->headers_start, &old->headers_start,
1017 	       offsetof(struct sk_buff, headers_end) -
1018 	       offsetof(struct sk_buff, headers_start));
1019 	CHECK_SKB_FIELD(protocol);
1020 	CHECK_SKB_FIELD(csum);
1021 	CHECK_SKB_FIELD(hash);
1022 	CHECK_SKB_FIELD(priority);
1023 	CHECK_SKB_FIELD(skb_iif);
1024 	CHECK_SKB_FIELD(vlan_proto);
1025 	CHECK_SKB_FIELD(vlan_tci);
1026 	CHECK_SKB_FIELD(transport_header);
1027 	CHECK_SKB_FIELD(network_header);
1028 	CHECK_SKB_FIELD(mac_header);
1029 	CHECK_SKB_FIELD(inner_protocol);
1030 	CHECK_SKB_FIELD(inner_transport_header);
1031 	CHECK_SKB_FIELD(inner_network_header);
1032 	CHECK_SKB_FIELD(inner_mac_header);
1033 	CHECK_SKB_FIELD(mark);
1034 #ifdef CONFIG_NETWORK_SECMARK
1035 	CHECK_SKB_FIELD(secmark);
1036 #endif
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 	CHECK_SKB_FIELD(napi_id);
1039 #endif
1040 #ifdef CONFIG_XPS
1041 	CHECK_SKB_FIELD(sender_cpu);
1042 #endif
1043 #ifdef CONFIG_NET_SCHED
1044 	CHECK_SKB_FIELD(tc_index);
1045 #endif
1046 
1047 }
1048 
1049 /*
1050  * You should not add any new code to this function.  Add it to
1051  * __copy_skb_header above instead.
1052  */
1053 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1054 {
1055 #define C(x) n->x = skb->x
1056 
1057 	n->next = n->prev = NULL;
1058 	n->sk = NULL;
1059 	__copy_skb_header(n, skb);
1060 
1061 	C(len);
1062 	C(data_len);
1063 	C(mac_len);
1064 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1065 	n->cloned = 1;
1066 	n->nohdr = 0;
1067 	n->peeked = 0;
1068 	C(pfmemalloc);
1069 	C(pp_recycle);
1070 	n->destructor = NULL;
1071 	C(tail);
1072 	C(end);
1073 	C(head);
1074 	C(head_frag);
1075 	C(data);
1076 	C(truesize);
1077 	refcount_set(&n->users, 1);
1078 
1079 	atomic_inc(&(skb_shinfo(skb)->dataref));
1080 	skb->cloned = 1;
1081 
1082 	return n;
1083 #undef C
1084 }
1085 
1086 /**
1087  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1088  * @first: first sk_buff of the msg
1089  */
1090 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1091 {
1092 	struct sk_buff *n;
1093 
1094 	n = alloc_skb(0, GFP_ATOMIC);
1095 	if (!n)
1096 		return NULL;
1097 
1098 	n->len = first->len;
1099 	n->data_len = first->len;
1100 	n->truesize = first->truesize;
1101 
1102 	skb_shinfo(n)->frag_list = first;
1103 
1104 	__copy_skb_header(n, first);
1105 	n->destructor = NULL;
1106 
1107 	return n;
1108 }
1109 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1110 
1111 /**
1112  *	skb_morph	-	morph one skb into another
1113  *	@dst: the skb to receive the contents
1114  *	@src: the skb to supply the contents
1115  *
1116  *	This is identical to skb_clone except that the target skb is
1117  *	supplied by the user.
1118  *
1119  *	The target skb is returned upon exit.
1120  */
1121 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1122 {
1123 	skb_release_all(dst);
1124 	return __skb_clone(dst, src);
1125 }
1126 EXPORT_SYMBOL_GPL(skb_morph);
1127 
1128 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1129 {
1130 	unsigned long max_pg, num_pg, new_pg, old_pg;
1131 	struct user_struct *user;
1132 
1133 	if (capable(CAP_IPC_LOCK) || !size)
1134 		return 0;
1135 
1136 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1137 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1138 	user = mmp->user ? : current_user();
1139 
1140 	do {
1141 		old_pg = atomic_long_read(&user->locked_vm);
1142 		new_pg = old_pg + num_pg;
1143 		if (new_pg > max_pg)
1144 			return -ENOBUFS;
1145 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1146 		 old_pg);
1147 
1148 	if (!mmp->user) {
1149 		mmp->user = get_uid(user);
1150 		mmp->num_pg = num_pg;
1151 	} else {
1152 		mmp->num_pg += num_pg;
1153 	}
1154 
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1158 
1159 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1160 {
1161 	if (mmp->user) {
1162 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1163 		free_uid(mmp->user);
1164 	}
1165 }
1166 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1167 
1168 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1169 {
1170 	struct ubuf_info *uarg;
1171 	struct sk_buff *skb;
1172 
1173 	WARN_ON_ONCE(!in_task());
1174 
1175 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1176 	if (!skb)
1177 		return NULL;
1178 
1179 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1180 	uarg = (void *)skb->cb;
1181 	uarg->mmp.user = NULL;
1182 
1183 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1184 		kfree_skb(skb);
1185 		return NULL;
1186 	}
1187 
1188 	uarg->callback = msg_zerocopy_callback;
1189 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1190 	uarg->len = 1;
1191 	uarg->bytelen = size;
1192 	uarg->zerocopy = 1;
1193 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1194 	refcount_set(&uarg->refcnt, 1);
1195 	sock_hold(sk);
1196 
1197 	return uarg;
1198 }
1199 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1200 
1201 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1202 {
1203 	return container_of((void *)uarg, struct sk_buff, cb);
1204 }
1205 
1206 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1207 				       struct ubuf_info *uarg)
1208 {
1209 	if (uarg) {
1210 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1211 		u32 bytelen, next;
1212 
1213 		/* realloc only when socket is locked (TCP, UDP cork),
1214 		 * so uarg->len and sk_zckey access is serialized
1215 		 */
1216 		if (!sock_owned_by_user(sk)) {
1217 			WARN_ON_ONCE(1);
1218 			return NULL;
1219 		}
1220 
1221 		bytelen = uarg->bytelen + size;
1222 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1223 			/* TCP can create new skb to attach new uarg */
1224 			if (sk->sk_type == SOCK_STREAM)
1225 				goto new_alloc;
1226 			return NULL;
1227 		}
1228 
1229 		next = (u32)atomic_read(&sk->sk_zckey);
1230 		if ((u32)(uarg->id + uarg->len) == next) {
1231 			if (mm_account_pinned_pages(&uarg->mmp, size))
1232 				return NULL;
1233 			uarg->len++;
1234 			uarg->bytelen = bytelen;
1235 			atomic_set(&sk->sk_zckey, ++next);
1236 
1237 			/* no extra ref when appending to datagram (MSG_MORE) */
1238 			if (sk->sk_type == SOCK_STREAM)
1239 				net_zcopy_get(uarg);
1240 
1241 			return uarg;
1242 		}
1243 	}
1244 
1245 new_alloc:
1246 	return msg_zerocopy_alloc(sk, size);
1247 }
1248 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1249 
1250 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1251 {
1252 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1253 	u32 old_lo, old_hi;
1254 	u64 sum_len;
1255 
1256 	old_lo = serr->ee.ee_info;
1257 	old_hi = serr->ee.ee_data;
1258 	sum_len = old_hi - old_lo + 1ULL + len;
1259 
1260 	if (sum_len >= (1ULL << 32))
1261 		return false;
1262 
1263 	if (lo != old_hi + 1)
1264 		return false;
1265 
1266 	serr->ee.ee_data += len;
1267 	return true;
1268 }
1269 
1270 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1271 {
1272 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1273 	struct sock_exterr_skb *serr;
1274 	struct sock *sk = skb->sk;
1275 	struct sk_buff_head *q;
1276 	unsigned long flags;
1277 	bool is_zerocopy;
1278 	u32 lo, hi;
1279 	u16 len;
1280 
1281 	mm_unaccount_pinned_pages(&uarg->mmp);
1282 
1283 	/* if !len, there was only 1 call, and it was aborted
1284 	 * so do not queue a completion notification
1285 	 */
1286 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1287 		goto release;
1288 
1289 	len = uarg->len;
1290 	lo = uarg->id;
1291 	hi = uarg->id + len - 1;
1292 	is_zerocopy = uarg->zerocopy;
1293 
1294 	serr = SKB_EXT_ERR(skb);
1295 	memset(serr, 0, sizeof(*serr));
1296 	serr->ee.ee_errno = 0;
1297 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1298 	serr->ee.ee_data = hi;
1299 	serr->ee.ee_info = lo;
1300 	if (!is_zerocopy)
1301 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1302 
1303 	q = &sk->sk_error_queue;
1304 	spin_lock_irqsave(&q->lock, flags);
1305 	tail = skb_peek_tail(q);
1306 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1307 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1308 		__skb_queue_tail(q, skb);
1309 		skb = NULL;
1310 	}
1311 	spin_unlock_irqrestore(&q->lock, flags);
1312 
1313 	sk_error_report(sk);
1314 
1315 release:
1316 	consume_skb(skb);
1317 	sock_put(sk);
1318 }
1319 
1320 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1321 			   bool success)
1322 {
1323 	uarg->zerocopy = uarg->zerocopy & success;
1324 
1325 	if (refcount_dec_and_test(&uarg->refcnt))
1326 		__msg_zerocopy_callback(uarg);
1327 }
1328 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1329 
1330 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1331 {
1332 	struct sock *sk = skb_from_uarg(uarg)->sk;
1333 
1334 	atomic_dec(&sk->sk_zckey);
1335 	uarg->len--;
1336 
1337 	if (have_uref)
1338 		msg_zerocopy_callback(NULL, uarg, true);
1339 }
1340 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1341 
1342 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1343 {
1344 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1345 }
1346 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1347 
1348 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1349 			     struct msghdr *msg, int len,
1350 			     struct ubuf_info *uarg)
1351 {
1352 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1353 	struct iov_iter orig_iter = msg->msg_iter;
1354 	int err, orig_len = skb->len;
1355 
1356 	/* An skb can only point to one uarg. This edge case happens when
1357 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1358 	 */
1359 	if (orig_uarg && uarg != orig_uarg)
1360 		return -EEXIST;
1361 
1362 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1363 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1364 		struct sock *save_sk = skb->sk;
1365 
1366 		/* Streams do not free skb on error. Reset to prev state. */
1367 		msg->msg_iter = orig_iter;
1368 		skb->sk = sk;
1369 		___pskb_trim(skb, orig_len);
1370 		skb->sk = save_sk;
1371 		return err;
1372 	}
1373 
1374 	skb_zcopy_set(skb, uarg, NULL);
1375 	return skb->len - orig_len;
1376 }
1377 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1378 
1379 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1380 			      gfp_t gfp_mask)
1381 {
1382 	if (skb_zcopy(orig)) {
1383 		if (skb_zcopy(nskb)) {
1384 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1385 			if (!gfp_mask) {
1386 				WARN_ON_ONCE(1);
1387 				return -ENOMEM;
1388 			}
1389 			if (skb_uarg(nskb) == skb_uarg(orig))
1390 				return 0;
1391 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1392 				return -EIO;
1393 		}
1394 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1395 	}
1396 	return 0;
1397 }
1398 
1399 /**
1400  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1401  *	@skb: the skb to modify
1402  *	@gfp_mask: allocation priority
1403  *
1404  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1405  *	It will copy all frags into kernel and drop the reference
1406  *	to userspace pages.
1407  *
1408  *	If this function is called from an interrupt gfp_mask() must be
1409  *	%GFP_ATOMIC.
1410  *
1411  *	Returns 0 on success or a negative error code on failure
1412  *	to allocate kernel memory to copy to.
1413  */
1414 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1415 {
1416 	int num_frags = skb_shinfo(skb)->nr_frags;
1417 	struct page *page, *head = NULL;
1418 	int i, new_frags;
1419 	u32 d_off;
1420 
1421 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1422 		return -EINVAL;
1423 
1424 	if (!num_frags)
1425 		goto release;
1426 
1427 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1428 	for (i = 0; i < new_frags; i++) {
1429 		page = alloc_page(gfp_mask);
1430 		if (!page) {
1431 			while (head) {
1432 				struct page *next = (struct page *)page_private(head);
1433 				put_page(head);
1434 				head = next;
1435 			}
1436 			return -ENOMEM;
1437 		}
1438 		set_page_private(page, (unsigned long)head);
1439 		head = page;
1440 	}
1441 
1442 	page = head;
1443 	d_off = 0;
1444 	for (i = 0; i < num_frags; i++) {
1445 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1446 		u32 p_off, p_len, copied;
1447 		struct page *p;
1448 		u8 *vaddr;
1449 
1450 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1451 				      p, p_off, p_len, copied) {
1452 			u32 copy, done = 0;
1453 			vaddr = kmap_atomic(p);
1454 
1455 			while (done < p_len) {
1456 				if (d_off == PAGE_SIZE) {
1457 					d_off = 0;
1458 					page = (struct page *)page_private(page);
1459 				}
1460 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1461 				memcpy(page_address(page) + d_off,
1462 				       vaddr + p_off + done, copy);
1463 				done += copy;
1464 				d_off += copy;
1465 			}
1466 			kunmap_atomic(vaddr);
1467 		}
1468 	}
1469 
1470 	/* skb frags release userspace buffers */
1471 	for (i = 0; i < num_frags; i++)
1472 		skb_frag_unref(skb, i);
1473 
1474 	/* skb frags point to kernel buffers */
1475 	for (i = 0; i < new_frags - 1; i++) {
1476 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1477 		head = (struct page *)page_private(head);
1478 	}
1479 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1480 	skb_shinfo(skb)->nr_frags = new_frags;
1481 
1482 release:
1483 	skb_zcopy_clear(skb, false);
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1487 
1488 /**
1489  *	skb_clone	-	duplicate an sk_buff
1490  *	@skb: buffer to clone
1491  *	@gfp_mask: allocation priority
1492  *
1493  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1494  *	copies share the same packet data but not structure. The new
1495  *	buffer has a reference count of 1. If the allocation fails the
1496  *	function returns %NULL otherwise the new buffer is returned.
1497  *
1498  *	If this function is called from an interrupt gfp_mask() must be
1499  *	%GFP_ATOMIC.
1500  */
1501 
1502 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1503 {
1504 	struct sk_buff_fclones *fclones = container_of(skb,
1505 						       struct sk_buff_fclones,
1506 						       skb1);
1507 	struct sk_buff *n;
1508 
1509 	if (skb_orphan_frags(skb, gfp_mask))
1510 		return NULL;
1511 
1512 	if (skb->fclone == SKB_FCLONE_ORIG &&
1513 	    refcount_read(&fclones->fclone_ref) == 1) {
1514 		n = &fclones->skb2;
1515 		refcount_set(&fclones->fclone_ref, 2);
1516 	} else {
1517 		if (skb_pfmemalloc(skb))
1518 			gfp_mask |= __GFP_MEMALLOC;
1519 
1520 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1521 		if (!n)
1522 			return NULL;
1523 
1524 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1525 	}
1526 
1527 	return __skb_clone(n, skb);
1528 }
1529 EXPORT_SYMBOL(skb_clone);
1530 
1531 void skb_headers_offset_update(struct sk_buff *skb, int off)
1532 {
1533 	/* Only adjust this if it actually is csum_start rather than csum */
1534 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1535 		skb->csum_start += off;
1536 	/* {transport,network,mac}_header and tail are relative to skb->head */
1537 	skb->transport_header += off;
1538 	skb->network_header   += off;
1539 	if (skb_mac_header_was_set(skb))
1540 		skb->mac_header += off;
1541 	skb->inner_transport_header += off;
1542 	skb->inner_network_header += off;
1543 	skb->inner_mac_header += off;
1544 }
1545 EXPORT_SYMBOL(skb_headers_offset_update);
1546 
1547 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1548 {
1549 	__copy_skb_header(new, old);
1550 
1551 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1552 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1553 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1554 }
1555 EXPORT_SYMBOL(skb_copy_header);
1556 
1557 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1558 {
1559 	if (skb_pfmemalloc(skb))
1560 		return SKB_ALLOC_RX;
1561 	return 0;
1562 }
1563 
1564 /**
1565  *	skb_copy	-	create private copy of an sk_buff
1566  *	@skb: buffer to copy
1567  *	@gfp_mask: allocation priority
1568  *
1569  *	Make a copy of both an &sk_buff and its data. This is used when the
1570  *	caller wishes to modify the data and needs a private copy of the
1571  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1572  *	on success. The returned buffer has a reference count of 1.
1573  *
1574  *	As by-product this function converts non-linear &sk_buff to linear
1575  *	one, so that &sk_buff becomes completely private and caller is allowed
1576  *	to modify all the data of returned buffer. This means that this
1577  *	function is not recommended for use in circumstances when only
1578  *	header is going to be modified. Use pskb_copy() instead.
1579  */
1580 
1581 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1582 {
1583 	int headerlen = skb_headroom(skb);
1584 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1585 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1586 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1587 
1588 	if (!n)
1589 		return NULL;
1590 
1591 	/* Set the data pointer */
1592 	skb_reserve(n, headerlen);
1593 	/* Set the tail pointer and length */
1594 	skb_put(n, skb->len);
1595 
1596 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1597 
1598 	skb_copy_header(n, skb);
1599 	return n;
1600 }
1601 EXPORT_SYMBOL(skb_copy);
1602 
1603 /**
1604  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1605  *	@skb: buffer to copy
1606  *	@headroom: headroom of new skb
1607  *	@gfp_mask: allocation priority
1608  *	@fclone: if true allocate the copy of the skb from the fclone
1609  *	cache instead of the head cache; it is recommended to set this
1610  *	to true for the cases where the copy will likely be cloned
1611  *
1612  *	Make a copy of both an &sk_buff and part of its data, located
1613  *	in header. Fragmented data remain shared. This is used when
1614  *	the caller wishes to modify only header of &sk_buff and needs
1615  *	private copy of the header to alter. Returns %NULL on failure
1616  *	or the pointer to the buffer on success.
1617  *	The returned buffer has a reference count of 1.
1618  */
1619 
1620 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1621 				   gfp_t gfp_mask, bool fclone)
1622 {
1623 	unsigned int size = skb_headlen(skb) + headroom;
1624 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1625 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1626 
1627 	if (!n)
1628 		goto out;
1629 
1630 	/* Set the data pointer */
1631 	skb_reserve(n, headroom);
1632 	/* Set the tail pointer and length */
1633 	skb_put(n, skb_headlen(skb));
1634 	/* Copy the bytes */
1635 	skb_copy_from_linear_data(skb, n->data, n->len);
1636 
1637 	n->truesize += skb->data_len;
1638 	n->data_len  = skb->data_len;
1639 	n->len	     = skb->len;
1640 
1641 	if (skb_shinfo(skb)->nr_frags) {
1642 		int i;
1643 
1644 		if (skb_orphan_frags(skb, gfp_mask) ||
1645 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1646 			kfree_skb(n);
1647 			n = NULL;
1648 			goto out;
1649 		}
1650 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1652 			skb_frag_ref(skb, i);
1653 		}
1654 		skb_shinfo(n)->nr_frags = i;
1655 	}
1656 
1657 	if (skb_has_frag_list(skb)) {
1658 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1659 		skb_clone_fraglist(n);
1660 	}
1661 
1662 	skb_copy_header(n, skb);
1663 out:
1664 	return n;
1665 }
1666 EXPORT_SYMBOL(__pskb_copy_fclone);
1667 
1668 /**
1669  *	pskb_expand_head - reallocate header of &sk_buff
1670  *	@skb: buffer to reallocate
1671  *	@nhead: room to add at head
1672  *	@ntail: room to add at tail
1673  *	@gfp_mask: allocation priority
1674  *
1675  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1676  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1677  *	reference count of 1. Returns zero in the case of success or error,
1678  *	if expansion failed. In the last case, &sk_buff is not changed.
1679  *
1680  *	All the pointers pointing into skb header may change and must be
1681  *	reloaded after call to this function.
1682  */
1683 
1684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1685 		     gfp_t gfp_mask)
1686 {
1687 	int i, osize = skb_end_offset(skb);
1688 	int size = osize + nhead + ntail;
1689 	long off;
1690 	u8 *data;
1691 
1692 	BUG_ON(nhead < 0);
1693 
1694 	BUG_ON(skb_shared(skb));
1695 
1696 	size = SKB_DATA_ALIGN(size);
1697 
1698 	if (skb_pfmemalloc(skb))
1699 		gfp_mask |= __GFP_MEMALLOC;
1700 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1701 			       gfp_mask, NUMA_NO_NODE, NULL);
1702 	if (!data)
1703 		goto nodata;
1704 	size = SKB_WITH_OVERHEAD(ksize(data));
1705 
1706 	/* Copy only real data... and, alas, header. This should be
1707 	 * optimized for the cases when header is void.
1708 	 */
1709 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1710 
1711 	memcpy((struct skb_shared_info *)(data + size),
1712 	       skb_shinfo(skb),
1713 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1714 
1715 	/*
1716 	 * if shinfo is shared we must drop the old head gracefully, but if it
1717 	 * is not we can just drop the old head and let the existing refcount
1718 	 * be since all we did is relocate the values
1719 	 */
1720 	if (skb_cloned(skb)) {
1721 		if (skb_orphan_frags(skb, gfp_mask))
1722 			goto nofrags;
1723 		if (skb_zcopy(skb))
1724 			refcount_inc(&skb_uarg(skb)->refcnt);
1725 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1726 			skb_frag_ref(skb, i);
1727 
1728 		if (skb_has_frag_list(skb))
1729 			skb_clone_fraglist(skb);
1730 
1731 		skb_release_data(skb);
1732 	} else {
1733 		skb_free_head(skb);
1734 	}
1735 	off = (data + nhead) - skb->head;
1736 
1737 	skb->head     = data;
1738 	skb->head_frag = 0;
1739 	skb->data    += off;
1740 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1741 	skb->end      = size;
1742 	off           = nhead;
1743 #else
1744 	skb->end      = skb->head + size;
1745 #endif
1746 	skb->tail	      += off;
1747 	skb_headers_offset_update(skb, nhead);
1748 	skb->cloned   = 0;
1749 	skb->hdr_len  = 0;
1750 	skb->nohdr    = 0;
1751 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1752 
1753 	skb_metadata_clear(skb);
1754 
1755 	/* It is not generally safe to change skb->truesize.
1756 	 * For the moment, we really care of rx path, or
1757 	 * when skb is orphaned (not attached to a socket).
1758 	 */
1759 	if (!skb->sk || skb->destructor == sock_edemux)
1760 		skb->truesize += size - osize;
1761 
1762 	return 0;
1763 
1764 nofrags:
1765 	kfree(data);
1766 nodata:
1767 	return -ENOMEM;
1768 }
1769 EXPORT_SYMBOL(pskb_expand_head);
1770 
1771 /* Make private copy of skb with writable head and some headroom */
1772 
1773 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1774 {
1775 	struct sk_buff *skb2;
1776 	int delta = headroom - skb_headroom(skb);
1777 
1778 	if (delta <= 0)
1779 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1780 	else {
1781 		skb2 = skb_clone(skb, GFP_ATOMIC);
1782 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1783 					     GFP_ATOMIC)) {
1784 			kfree_skb(skb2);
1785 			skb2 = NULL;
1786 		}
1787 	}
1788 	return skb2;
1789 }
1790 EXPORT_SYMBOL(skb_realloc_headroom);
1791 
1792 /**
1793  *	skb_expand_head - reallocate header of &sk_buff
1794  *	@skb: buffer to reallocate
1795  *	@headroom: needed headroom
1796  *
1797  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1798  *	if possible; copies skb->sk to new skb as needed
1799  *	and frees original skb in case of failures.
1800  *
1801  *	It expect increased headroom and generates warning otherwise.
1802  */
1803 
1804 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1805 {
1806 	int delta = headroom - skb_headroom(skb);
1807 
1808 	if (WARN_ONCE(delta <= 0,
1809 		      "%s is expecting an increase in the headroom", __func__))
1810 		return skb;
1811 
1812 	/* pskb_expand_head() might crash, if skb is shared */
1813 	if (skb_shared(skb)) {
1814 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1815 
1816 		if (likely(nskb)) {
1817 			if (skb->sk)
1818 				skb_set_owner_w(nskb, skb->sk);
1819 			consume_skb(skb);
1820 		} else {
1821 			kfree_skb(skb);
1822 		}
1823 		skb = nskb;
1824 	}
1825 	if (skb &&
1826 	    pskb_expand_head(skb, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) {
1827 		kfree_skb(skb);
1828 		skb = NULL;
1829 	}
1830 	return skb;
1831 }
1832 EXPORT_SYMBOL(skb_expand_head);
1833 
1834 /**
1835  *	skb_copy_expand	-	copy and expand sk_buff
1836  *	@skb: buffer to copy
1837  *	@newheadroom: new free bytes at head
1838  *	@newtailroom: new free bytes at tail
1839  *	@gfp_mask: allocation priority
1840  *
1841  *	Make a copy of both an &sk_buff and its data and while doing so
1842  *	allocate additional space.
1843  *
1844  *	This is used when the caller wishes to modify the data and needs a
1845  *	private copy of the data to alter as well as more space for new fields.
1846  *	Returns %NULL on failure or the pointer to the buffer
1847  *	on success. The returned buffer has a reference count of 1.
1848  *
1849  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1850  *	is called from an interrupt.
1851  */
1852 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1853 				int newheadroom, int newtailroom,
1854 				gfp_t gfp_mask)
1855 {
1856 	/*
1857 	 *	Allocate the copy buffer
1858 	 */
1859 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1860 					gfp_mask, skb_alloc_rx_flag(skb),
1861 					NUMA_NO_NODE);
1862 	int oldheadroom = skb_headroom(skb);
1863 	int head_copy_len, head_copy_off;
1864 
1865 	if (!n)
1866 		return NULL;
1867 
1868 	skb_reserve(n, newheadroom);
1869 
1870 	/* Set the tail pointer and length */
1871 	skb_put(n, skb->len);
1872 
1873 	head_copy_len = oldheadroom;
1874 	head_copy_off = 0;
1875 	if (newheadroom <= head_copy_len)
1876 		head_copy_len = newheadroom;
1877 	else
1878 		head_copy_off = newheadroom - head_copy_len;
1879 
1880 	/* Copy the linear header and data. */
1881 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1882 			     skb->len + head_copy_len));
1883 
1884 	skb_copy_header(n, skb);
1885 
1886 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1887 
1888 	return n;
1889 }
1890 EXPORT_SYMBOL(skb_copy_expand);
1891 
1892 /**
1893  *	__skb_pad		-	zero pad the tail of an skb
1894  *	@skb: buffer to pad
1895  *	@pad: space to pad
1896  *	@free_on_error: free buffer on error
1897  *
1898  *	Ensure that a buffer is followed by a padding area that is zero
1899  *	filled. Used by network drivers which may DMA or transfer data
1900  *	beyond the buffer end onto the wire.
1901  *
1902  *	May return error in out of memory cases. The skb is freed on error
1903  *	if @free_on_error is true.
1904  */
1905 
1906 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1907 {
1908 	int err;
1909 	int ntail;
1910 
1911 	/* If the skbuff is non linear tailroom is always zero.. */
1912 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1913 		memset(skb->data+skb->len, 0, pad);
1914 		return 0;
1915 	}
1916 
1917 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1918 	if (likely(skb_cloned(skb) || ntail > 0)) {
1919 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1920 		if (unlikely(err))
1921 			goto free_skb;
1922 	}
1923 
1924 	/* FIXME: The use of this function with non-linear skb's really needs
1925 	 * to be audited.
1926 	 */
1927 	err = skb_linearize(skb);
1928 	if (unlikely(err))
1929 		goto free_skb;
1930 
1931 	memset(skb->data + skb->len, 0, pad);
1932 	return 0;
1933 
1934 free_skb:
1935 	if (free_on_error)
1936 		kfree_skb(skb);
1937 	return err;
1938 }
1939 EXPORT_SYMBOL(__skb_pad);
1940 
1941 /**
1942  *	pskb_put - add data to the tail of a potentially fragmented buffer
1943  *	@skb: start of the buffer to use
1944  *	@tail: tail fragment of the buffer to use
1945  *	@len: amount of data to add
1946  *
1947  *	This function extends the used data area of the potentially
1948  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1949  *	@skb itself. If this would exceed the total buffer size the kernel
1950  *	will panic. A pointer to the first byte of the extra data is
1951  *	returned.
1952  */
1953 
1954 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1955 {
1956 	if (tail != skb) {
1957 		skb->data_len += len;
1958 		skb->len += len;
1959 	}
1960 	return skb_put(tail, len);
1961 }
1962 EXPORT_SYMBOL_GPL(pskb_put);
1963 
1964 /**
1965  *	skb_put - add data to a buffer
1966  *	@skb: buffer to use
1967  *	@len: amount of data to add
1968  *
1969  *	This function extends the used data area of the buffer. If this would
1970  *	exceed the total buffer size the kernel will panic. A pointer to the
1971  *	first byte of the extra data is returned.
1972  */
1973 void *skb_put(struct sk_buff *skb, unsigned int len)
1974 {
1975 	void *tmp = skb_tail_pointer(skb);
1976 	SKB_LINEAR_ASSERT(skb);
1977 	skb->tail += len;
1978 	skb->len  += len;
1979 	if (unlikely(skb->tail > skb->end))
1980 		skb_over_panic(skb, len, __builtin_return_address(0));
1981 	return tmp;
1982 }
1983 EXPORT_SYMBOL(skb_put);
1984 
1985 /**
1986  *	skb_push - add data to the start of a buffer
1987  *	@skb: buffer to use
1988  *	@len: amount of data to add
1989  *
1990  *	This function extends the used data area of the buffer at the buffer
1991  *	start. If this would exceed the total buffer headroom the kernel will
1992  *	panic. A pointer to the first byte of the extra data is returned.
1993  */
1994 void *skb_push(struct sk_buff *skb, unsigned int len)
1995 {
1996 	skb->data -= len;
1997 	skb->len  += len;
1998 	if (unlikely(skb->data < skb->head))
1999 		skb_under_panic(skb, len, __builtin_return_address(0));
2000 	return skb->data;
2001 }
2002 EXPORT_SYMBOL(skb_push);
2003 
2004 /**
2005  *	skb_pull - remove data from the start of a buffer
2006  *	@skb: buffer to use
2007  *	@len: amount of data to remove
2008  *
2009  *	This function removes data from the start of a buffer, returning
2010  *	the memory to the headroom. A pointer to the next data in the buffer
2011  *	is returned. Once the data has been pulled future pushes will overwrite
2012  *	the old data.
2013  */
2014 void *skb_pull(struct sk_buff *skb, unsigned int len)
2015 {
2016 	return skb_pull_inline(skb, len);
2017 }
2018 EXPORT_SYMBOL(skb_pull);
2019 
2020 /**
2021  *	skb_trim - remove end from a buffer
2022  *	@skb: buffer to alter
2023  *	@len: new length
2024  *
2025  *	Cut the length of a buffer down by removing data from the tail. If
2026  *	the buffer is already under the length specified it is not modified.
2027  *	The skb must be linear.
2028  */
2029 void skb_trim(struct sk_buff *skb, unsigned int len)
2030 {
2031 	if (skb->len > len)
2032 		__skb_trim(skb, len);
2033 }
2034 EXPORT_SYMBOL(skb_trim);
2035 
2036 /* Trims skb to length len. It can change skb pointers.
2037  */
2038 
2039 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2040 {
2041 	struct sk_buff **fragp;
2042 	struct sk_buff *frag;
2043 	int offset = skb_headlen(skb);
2044 	int nfrags = skb_shinfo(skb)->nr_frags;
2045 	int i;
2046 	int err;
2047 
2048 	if (skb_cloned(skb) &&
2049 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2050 		return err;
2051 
2052 	i = 0;
2053 	if (offset >= len)
2054 		goto drop_pages;
2055 
2056 	for (; i < nfrags; i++) {
2057 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2058 
2059 		if (end < len) {
2060 			offset = end;
2061 			continue;
2062 		}
2063 
2064 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2065 
2066 drop_pages:
2067 		skb_shinfo(skb)->nr_frags = i;
2068 
2069 		for (; i < nfrags; i++)
2070 			skb_frag_unref(skb, i);
2071 
2072 		if (skb_has_frag_list(skb))
2073 			skb_drop_fraglist(skb);
2074 		goto done;
2075 	}
2076 
2077 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2078 	     fragp = &frag->next) {
2079 		int end = offset + frag->len;
2080 
2081 		if (skb_shared(frag)) {
2082 			struct sk_buff *nfrag;
2083 
2084 			nfrag = skb_clone(frag, GFP_ATOMIC);
2085 			if (unlikely(!nfrag))
2086 				return -ENOMEM;
2087 
2088 			nfrag->next = frag->next;
2089 			consume_skb(frag);
2090 			frag = nfrag;
2091 			*fragp = frag;
2092 		}
2093 
2094 		if (end < len) {
2095 			offset = end;
2096 			continue;
2097 		}
2098 
2099 		if (end > len &&
2100 		    unlikely((err = pskb_trim(frag, len - offset))))
2101 			return err;
2102 
2103 		if (frag->next)
2104 			skb_drop_list(&frag->next);
2105 		break;
2106 	}
2107 
2108 done:
2109 	if (len > skb_headlen(skb)) {
2110 		skb->data_len -= skb->len - len;
2111 		skb->len       = len;
2112 	} else {
2113 		skb->len       = len;
2114 		skb->data_len  = 0;
2115 		skb_set_tail_pointer(skb, len);
2116 	}
2117 
2118 	if (!skb->sk || skb->destructor == sock_edemux)
2119 		skb_condense(skb);
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(___pskb_trim);
2123 
2124 /* Note : use pskb_trim_rcsum() instead of calling this directly
2125  */
2126 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2127 {
2128 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2129 		int delta = skb->len - len;
2130 
2131 		skb->csum = csum_block_sub(skb->csum,
2132 					   skb_checksum(skb, len, delta, 0),
2133 					   len);
2134 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2135 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2136 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2137 
2138 		if (offset + sizeof(__sum16) > hdlen)
2139 			return -EINVAL;
2140 	}
2141 	return __pskb_trim(skb, len);
2142 }
2143 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2144 
2145 /**
2146  *	__pskb_pull_tail - advance tail of skb header
2147  *	@skb: buffer to reallocate
2148  *	@delta: number of bytes to advance tail
2149  *
2150  *	The function makes a sense only on a fragmented &sk_buff,
2151  *	it expands header moving its tail forward and copying necessary
2152  *	data from fragmented part.
2153  *
2154  *	&sk_buff MUST have reference count of 1.
2155  *
2156  *	Returns %NULL (and &sk_buff does not change) if pull failed
2157  *	or value of new tail of skb in the case of success.
2158  *
2159  *	All the pointers pointing into skb header may change and must be
2160  *	reloaded after call to this function.
2161  */
2162 
2163 /* Moves tail of skb head forward, copying data from fragmented part,
2164  * when it is necessary.
2165  * 1. It may fail due to malloc failure.
2166  * 2. It may change skb pointers.
2167  *
2168  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2169  */
2170 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2171 {
2172 	/* If skb has not enough free space at tail, get new one
2173 	 * plus 128 bytes for future expansions. If we have enough
2174 	 * room at tail, reallocate without expansion only if skb is cloned.
2175 	 */
2176 	int i, k, eat = (skb->tail + delta) - skb->end;
2177 
2178 	if (eat > 0 || skb_cloned(skb)) {
2179 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2180 				     GFP_ATOMIC))
2181 			return NULL;
2182 	}
2183 
2184 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2185 			     skb_tail_pointer(skb), delta));
2186 
2187 	/* Optimization: no fragments, no reasons to preestimate
2188 	 * size of pulled pages. Superb.
2189 	 */
2190 	if (!skb_has_frag_list(skb))
2191 		goto pull_pages;
2192 
2193 	/* Estimate size of pulled pages. */
2194 	eat = delta;
2195 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2196 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2197 
2198 		if (size >= eat)
2199 			goto pull_pages;
2200 		eat -= size;
2201 	}
2202 
2203 	/* If we need update frag list, we are in troubles.
2204 	 * Certainly, it is possible to add an offset to skb data,
2205 	 * but taking into account that pulling is expected to
2206 	 * be very rare operation, it is worth to fight against
2207 	 * further bloating skb head and crucify ourselves here instead.
2208 	 * Pure masohism, indeed. 8)8)
2209 	 */
2210 	if (eat) {
2211 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2212 		struct sk_buff *clone = NULL;
2213 		struct sk_buff *insp = NULL;
2214 
2215 		do {
2216 			if (list->len <= eat) {
2217 				/* Eaten as whole. */
2218 				eat -= list->len;
2219 				list = list->next;
2220 				insp = list;
2221 			} else {
2222 				/* Eaten partially. */
2223 
2224 				if (skb_shared(list)) {
2225 					/* Sucks! We need to fork list. :-( */
2226 					clone = skb_clone(list, GFP_ATOMIC);
2227 					if (!clone)
2228 						return NULL;
2229 					insp = list->next;
2230 					list = clone;
2231 				} else {
2232 					/* This may be pulled without
2233 					 * problems. */
2234 					insp = list;
2235 				}
2236 				if (!pskb_pull(list, eat)) {
2237 					kfree_skb(clone);
2238 					return NULL;
2239 				}
2240 				break;
2241 			}
2242 		} while (eat);
2243 
2244 		/* Free pulled out fragments. */
2245 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2246 			skb_shinfo(skb)->frag_list = list->next;
2247 			kfree_skb(list);
2248 		}
2249 		/* And insert new clone at head. */
2250 		if (clone) {
2251 			clone->next = list;
2252 			skb_shinfo(skb)->frag_list = clone;
2253 		}
2254 	}
2255 	/* Success! Now we may commit changes to skb data. */
2256 
2257 pull_pages:
2258 	eat = delta;
2259 	k = 0;
2260 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2261 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2262 
2263 		if (size <= eat) {
2264 			skb_frag_unref(skb, i);
2265 			eat -= size;
2266 		} else {
2267 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2268 
2269 			*frag = skb_shinfo(skb)->frags[i];
2270 			if (eat) {
2271 				skb_frag_off_add(frag, eat);
2272 				skb_frag_size_sub(frag, eat);
2273 				if (!i)
2274 					goto end;
2275 				eat = 0;
2276 			}
2277 			k++;
2278 		}
2279 	}
2280 	skb_shinfo(skb)->nr_frags = k;
2281 
2282 end:
2283 	skb->tail     += delta;
2284 	skb->data_len -= delta;
2285 
2286 	if (!skb->data_len)
2287 		skb_zcopy_clear(skb, false);
2288 
2289 	return skb_tail_pointer(skb);
2290 }
2291 EXPORT_SYMBOL(__pskb_pull_tail);
2292 
2293 /**
2294  *	skb_copy_bits - copy bits from skb to kernel buffer
2295  *	@skb: source skb
2296  *	@offset: offset in source
2297  *	@to: destination buffer
2298  *	@len: number of bytes to copy
2299  *
2300  *	Copy the specified number of bytes from the source skb to the
2301  *	destination buffer.
2302  *
2303  *	CAUTION ! :
2304  *		If its prototype is ever changed,
2305  *		check arch/{*}/net/{*}.S files,
2306  *		since it is called from BPF assembly code.
2307  */
2308 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2309 {
2310 	int start = skb_headlen(skb);
2311 	struct sk_buff *frag_iter;
2312 	int i, copy;
2313 
2314 	if (offset > (int)skb->len - len)
2315 		goto fault;
2316 
2317 	/* Copy header. */
2318 	if ((copy = start - offset) > 0) {
2319 		if (copy > len)
2320 			copy = len;
2321 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2322 		if ((len -= copy) == 0)
2323 			return 0;
2324 		offset += copy;
2325 		to     += copy;
2326 	}
2327 
2328 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2329 		int end;
2330 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2331 
2332 		WARN_ON(start > offset + len);
2333 
2334 		end = start + skb_frag_size(f);
2335 		if ((copy = end - offset) > 0) {
2336 			u32 p_off, p_len, copied;
2337 			struct page *p;
2338 			u8 *vaddr;
2339 
2340 			if (copy > len)
2341 				copy = len;
2342 
2343 			skb_frag_foreach_page(f,
2344 					      skb_frag_off(f) + offset - start,
2345 					      copy, p, p_off, p_len, copied) {
2346 				vaddr = kmap_atomic(p);
2347 				memcpy(to + copied, vaddr + p_off, p_len);
2348 				kunmap_atomic(vaddr);
2349 			}
2350 
2351 			if ((len -= copy) == 0)
2352 				return 0;
2353 			offset += copy;
2354 			to     += copy;
2355 		}
2356 		start = end;
2357 	}
2358 
2359 	skb_walk_frags(skb, frag_iter) {
2360 		int end;
2361 
2362 		WARN_ON(start > offset + len);
2363 
2364 		end = start + frag_iter->len;
2365 		if ((copy = end - offset) > 0) {
2366 			if (copy > len)
2367 				copy = len;
2368 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2369 				goto fault;
2370 			if ((len -= copy) == 0)
2371 				return 0;
2372 			offset += copy;
2373 			to     += copy;
2374 		}
2375 		start = end;
2376 	}
2377 
2378 	if (!len)
2379 		return 0;
2380 
2381 fault:
2382 	return -EFAULT;
2383 }
2384 EXPORT_SYMBOL(skb_copy_bits);
2385 
2386 /*
2387  * Callback from splice_to_pipe(), if we need to release some pages
2388  * at the end of the spd in case we error'ed out in filling the pipe.
2389  */
2390 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2391 {
2392 	put_page(spd->pages[i]);
2393 }
2394 
2395 static struct page *linear_to_page(struct page *page, unsigned int *len,
2396 				   unsigned int *offset,
2397 				   struct sock *sk)
2398 {
2399 	struct page_frag *pfrag = sk_page_frag(sk);
2400 
2401 	if (!sk_page_frag_refill(sk, pfrag))
2402 		return NULL;
2403 
2404 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2405 
2406 	memcpy(page_address(pfrag->page) + pfrag->offset,
2407 	       page_address(page) + *offset, *len);
2408 	*offset = pfrag->offset;
2409 	pfrag->offset += *len;
2410 
2411 	return pfrag->page;
2412 }
2413 
2414 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2415 			     struct page *page,
2416 			     unsigned int offset)
2417 {
2418 	return	spd->nr_pages &&
2419 		spd->pages[spd->nr_pages - 1] == page &&
2420 		(spd->partial[spd->nr_pages - 1].offset +
2421 		 spd->partial[spd->nr_pages - 1].len == offset);
2422 }
2423 
2424 /*
2425  * Fill page/offset/length into spd, if it can hold more pages.
2426  */
2427 static bool spd_fill_page(struct splice_pipe_desc *spd,
2428 			  struct pipe_inode_info *pipe, struct page *page,
2429 			  unsigned int *len, unsigned int offset,
2430 			  bool linear,
2431 			  struct sock *sk)
2432 {
2433 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2434 		return true;
2435 
2436 	if (linear) {
2437 		page = linear_to_page(page, len, &offset, sk);
2438 		if (!page)
2439 			return true;
2440 	}
2441 	if (spd_can_coalesce(spd, page, offset)) {
2442 		spd->partial[spd->nr_pages - 1].len += *len;
2443 		return false;
2444 	}
2445 	get_page(page);
2446 	spd->pages[spd->nr_pages] = page;
2447 	spd->partial[spd->nr_pages].len = *len;
2448 	spd->partial[spd->nr_pages].offset = offset;
2449 	spd->nr_pages++;
2450 
2451 	return false;
2452 }
2453 
2454 static bool __splice_segment(struct page *page, unsigned int poff,
2455 			     unsigned int plen, unsigned int *off,
2456 			     unsigned int *len,
2457 			     struct splice_pipe_desc *spd, bool linear,
2458 			     struct sock *sk,
2459 			     struct pipe_inode_info *pipe)
2460 {
2461 	if (!*len)
2462 		return true;
2463 
2464 	/* skip this segment if already processed */
2465 	if (*off >= plen) {
2466 		*off -= plen;
2467 		return false;
2468 	}
2469 
2470 	/* ignore any bits we already processed */
2471 	poff += *off;
2472 	plen -= *off;
2473 	*off = 0;
2474 
2475 	do {
2476 		unsigned int flen = min(*len, plen);
2477 
2478 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2479 				  linear, sk))
2480 			return true;
2481 		poff += flen;
2482 		plen -= flen;
2483 		*len -= flen;
2484 	} while (*len && plen);
2485 
2486 	return false;
2487 }
2488 
2489 /*
2490  * Map linear and fragment data from the skb to spd. It reports true if the
2491  * pipe is full or if we already spliced the requested length.
2492  */
2493 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2494 			      unsigned int *offset, unsigned int *len,
2495 			      struct splice_pipe_desc *spd, struct sock *sk)
2496 {
2497 	int seg;
2498 	struct sk_buff *iter;
2499 
2500 	/* map the linear part :
2501 	 * If skb->head_frag is set, this 'linear' part is backed by a
2502 	 * fragment, and if the head is not shared with any clones then
2503 	 * we can avoid a copy since we own the head portion of this page.
2504 	 */
2505 	if (__splice_segment(virt_to_page(skb->data),
2506 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2507 			     skb_headlen(skb),
2508 			     offset, len, spd,
2509 			     skb_head_is_locked(skb),
2510 			     sk, pipe))
2511 		return true;
2512 
2513 	/*
2514 	 * then map the fragments
2515 	 */
2516 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2517 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2518 
2519 		if (__splice_segment(skb_frag_page(f),
2520 				     skb_frag_off(f), skb_frag_size(f),
2521 				     offset, len, spd, false, sk, pipe))
2522 			return true;
2523 	}
2524 
2525 	skb_walk_frags(skb, iter) {
2526 		if (*offset >= iter->len) {
2527 			*offset -= iter->len;
2528 			continue;
2529 		}
2530 		/* __skb_splice_bits() only fails if the output has no room
2531 		 * left, so no point in going over the frag_list for the error
2532 		 * case.
2533 		 */
2534 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2535 			return true;
2536 	}
2537 
2538 	return false;
2539 }
2540 
2541 /*
2542  * Map data from the skb to a pipe. Should handle both the linear part,
2543  * the fragments, and the frag list.
2544  */
2545 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2546 		    struct pipe_inode_info *pipe, unsigned int tlen,
2547 		    unsigned int flags)
2548 {
2549 	struct partial_page partial[MAX_SKB_FRAGS];
2550 	struct page *pages[MAX_SKB_FRAGS];
2551 	struct splice_pipe_desc spd = {
2552 		.pages = pages,
2553 		.partial = partial,
2554 		.nr_pages_max = MAX_SKB_FRAGS,
2555 		.ops = &nosteal_pipe_buf_ops,
2556 		.spd_release = sock_spd_release,
2557 	};
2558 	int ret = 0;
2559 
2560 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2561 
2562 	if (spd.nr_pages)
2563 		ret = splice_to_pipe(pipe, &spd);
2564 
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(skb_splice_bits);
2568 
2569 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2570 			    struct kvec *vec, size_t num, size_t size)
2571 {
2572 	struct socket *sock = sk->sk_socket;
2573 
2574 	if (!sock)
2575 		return -EINVAL;
2576 	return kernel_sendmsg(sock, msg, vec, num, size);
2577 }
2578 
2579 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2580 			     size_t size, int flags)
2581 {
2582 	struct socket *sock = sk->sk_socket;
2583 
2584 	if (!sock)
2585 		return -EINVAL;
2586 	return kernel_sendpage(sock, page, offset, size, flags);
2587 }
2588 
2589 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2590 			    struct kvec *vec, size_t num, size_t size);
2591 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2592 			     size_t size, int flags);
2593 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2594 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2595 {
2596 	unsigned int orig_len = len;
2597 	struct sk_buff *head = skb;
2598 	unsigned short fragidx;
2599 	int slen, ret;
2600 
2601 do_frag_list:
2602 
2603 	/* Deal with head data */
2604 	while (offset < skb_headlen(skb) && len) {
2605 		struct kvec kv;
2606 		struct msghdr msg;
2607 
2608 		slen = min_t(int, len, skb_headlen(skb) - offset);
2609 		kv.iov_base = skb->data + offset;
2610 		kv.iov_len = slen;
2611 		memset(&msg, 0, sizeof(msg));
2612 		msg.msg_flags = MSG_DONTWAIT;
2613 
2614 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2615 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2616 		if (ret <= 0)
2617 			goto error;
2618 
2619 		offset += ret;
2620 		len -= ret;
2621 	}
2622 
2623 	/* All the data was skb head? */
2624 	if (!len)
2625 		goto out;
2626 
2627 	/* Make offset relative to start of frags */
2628 	offset -= skb_headlen(skb);
2629 
2630 	/* Find where we are in frag list */
2631 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2632 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2633 
2634 		if (offset < skb_frag_size(frag))
2635 			break;
2636 
2637 		offset -= skb_frag_size(frag);
2638 	}
2639 
2640 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2641 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2642 
2643 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2644 
2645 		while (slen) {
2646 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2647 					      sendpage_unlocked, sk,
2648 					      skb_frag_page(frag),
2649 					      skb_frag_off(frag) + offset,
2650 					      slen, MSG_DONTWAIT);
2651 			if (ret <= 0)
2652 				goto error;
2653 
2654 			len -= ret;
2655 			offset += ret;
2656 			slen -= ret;
2657 		}
2658 
2659 		offset = 0;
2660 	}
2661 
2662 	if (len) {
2663 		/* Process any frag lists */
2664 
2665 		if (skb == head) {
2666 			if (skb_has_frag_list(skb)) {
2667 				skb = skb_shinfo(skb)->frag_list;
2668 				goto do_frag_list;
2669 			}
2670 		} else if (skb->next) {
2671 			skb = skb->next;
2672 			goto do_frag_list;
2673 		}
2674 	}
2675 
2676 out:
2677 	return orig_len - len;
2678 
2679 error:
2680 	return orig_len == len ? ret : orig_len - len;
2681 }
2682 
2683 /* Send skb data on a socket. Socket must be locked. */
2684 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2685 			 int len)
2686 {
2687 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2688 			       kernel_sendpage_locked);
2689 }
2690 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2691 
2692 /* Send skb data on a socket. Socket must be unlocked. */
2693 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2694 {
2695 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2696 			       sendpage_unlocked);
2697 }
2698 
2699 /**
2700  *	skb_store_bits - store bits from kernel buffer to skb
2701  *	@skb: destination buffer
2702  *	@offset: offset in destination
2703  *	@from: source buffer
2704  *	@len: number of bytes to copy
2705  *
2706  *	Copy the specified number of bytes from the source buffer to the
2707  *	destination skb.  This function handles all the messy bits of
2708  *	traversing fragment lists and such.
2709  */
2710 
2711 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2712 {
2713 	int start = skb_headlen(skb);
2714 	struct sk_buff *frag_iter;
2715 	int i, copy;
2716 
2717 	if (offset > (int)skb->len - len)
2718 		goto fault;
2719 
2720 	if ((copy = start - offset) > 0) {
2721 		if (copy > len)
2722 			copy = len;
2723 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2724 		if ((len -= copy) == 0)
2725 			return 0;
2726 		offset += copy;
2727 		from += copy;
2728 	}
2729 
2730 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2731 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2732 		int end;
2733 
2734 		WARN_ON(start > offset + len);
2735 
2736 		end = start + skb_frag_size(frag);
2737 		if ((copy = end - offset) > 0) {
2738 			u32 p_off, p_len, copied;
2739 			struct page *p;
2740 			u8 *vaddr;
2741 
2742 			if (copy > len)
2743 				copy = len;
2744 
2745 			skb_frag_foreach_page(frag,
2746 					      skb_frag_off(frag) + offset - start,
2747 					      copy, p, p_off, p_len, copied) {
2748 				vaddr = kmap_atomic(p);
2749 				memcpy(vaddr + p_off, from + copied, p_len);
2750 				kunmap_atomic(vaddr);
2751 			}
2752 
2753 			if ((len -= copy) == 0)
2754 				return 0;
2755 			offset += copy;
2756 			from += copy;
2757 		}
2758 		start = end;
2759 	}
2760 
2761 	skb_walk_frags(skb, frag_iter) {
2762 		int end;
2763 
2764 		WARN_ON(start > offset + len);
2765 
2766 		end = start + frag_iter->len;
2767 		if ((copy = end - offset) > 0) {
2768 			if (copy > len)
2769 				copy = len;
2770 			if (skb_store_bits(frag_iter, offset - start,
2771 					   from, copy))
2772 				goto fault;
2773 			if ((len -= copy) == 0)
2774 				return 0;
2775 			offset += copy;
2776 			from += copy;
2777 		}
2778 		start = end;
2779 	}
2780 	if (!len)
2781 		return 0;
2782 
2783 fault:
2784 	return -EFAULT;
2785 }
2786 EXPORT_SYMBOL(skb_store_bits);
2787 
2788 /* Checksum skb data. */
2789 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2790 		      __wsum csum, const struct skb_checksum_ops *ops)
2791 {
2792 	int start = skb_headlen(skb);
2793 	int i, copy = start - offset;
2794 	struct sk_buff *frag_iter;
2795 	int pos = 0;
2796 
2797 	/* Checksum header. */
2798 	if (copy > 0) {
2799 		if (copy > len)
2800 			copy = len;
2801 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2802 				       skb->data + offset, copy, csum);
2803 		if ((len -= copy) == 0)
2804 			return csum;
2805 		offset += copy;
2806 		pos	= copy;
2807 	}
2808 
2809 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2810 		int end;
2811 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2812 
2813 		WARN_ON(start > offset + len);
2814 
2815 		end = start + skb_frag_size(frag);
2816 		if ((copy = end - offset) > 0) {
2817 			u32 p_off, p_len, copied;
2818 			struct page *p;
2819 			__wsum csum2;
2820 			u8 *vaddr;
2821 
2822 			if (copy > len)
2823 				copy = len;
2824 
2825 			skb_frag_foreach_page(frag,
2826 					      skb_frag_off(frag) + offset - start,
2827 					      copy, p, p_off, p_len, copied) {
2828 				vaddr = kmap_atomic(p);
2829 				csum2 = INDIRECT_CALL_1(ops->update,
2830 							csum_partial_ext,
2831 							vaddr + p_off, p_len, 0);
2832 				kunmap_atomic(vaddr);
2833 				csum = INDIRECT_CALL_1(ops->combine,
2834 						       csum_block_add_ext, csum,
2835 						       csum2, pos, p_len);
2836 				pos += p_len;
2837 			}
2838 
2839 			if (!(len -= copy))
2840 				return csum;
2841 			offset += copy;
2842 		}
2843 		start = end;
2844 	}
2845 
2846 	skb_walk_frags(skb, frag_iter) {
2847 		int end;
2848 
2849 		WARN_ON(start > offset + len);
2850 
2851 		end = start + frag_iter->len;
2852 		if ((copy = end - offset) > 0) {
2853 			__wsum csum2;
2854 			if (copy > len)
2855 				copy = len;
2856 			csum2 = __skb_checksum(frag_iter, offset - start,
2857 					       copy, 0, ops);
2858 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2859 					       csum, csum2, pos, copy);
2860 			if ((len -= copy) == 0)
2861 				return csum;
2862 			offset += copy;
2863 			pos    += copy;
2864 		}
2865 		start = end;
2866 	}
2867 	BUG_ON(len);
2868 
2869 	return csum;
2870 }
2871 EXPORT_SYMBOL(__skb_checksum);
2872 
2873 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2874 		    int len, __wsum csum)
2875 {
2876 	const struct skb_checksum_ops ops = {
2877 		.update  = csum_partial_ext,
2878 		.combine = csum_block_add_ext,
2879 	};
2880 
2881 	return __skb_checksum(skb, offset, len, csum, &ops);
2882 }
2883 EXPORT_SYMBOL(skb_checksum);
2884 
2885 /* Both of above in one bottle. */
2886 
2887 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2888 				    u8 *to, int len)
2889 {
2890 	int start = skb_headlen(skb);
2891 	int i, copy = start - offset;
2892 	struct sk_buff *frag_iter;
2893 	int pos = 0;
2894 	__wsum csum = 0;
2895 
2896 	/* Copy header. */
2897 	if (copy > 0) {
2898 		if (copy > len)
2899 			copy = len;
2900 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2901 						 copy);
2902 		if ((len -= copy) == 0)
2903 			return csum;
2904 		offset += copy;
2905 		to     += copy;
2906 		pos	= copy;
2907 	}
2908 
2909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2910 		int end;
2911 
2912 		WARN_ON(start > offset + len);
2913 
2914 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2915 		if ((copy = end - offset) > 0) {
2916 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2917 			u32 p_off, p_len, copied;
2918 			struct page *p;
2919 			__wsum csum2;
2920 			u8 *vaddr;
2921 
2922 			if (copy > len)
2923 				copy = len;
2924 
2925 			skb_frag_foreach_page(frag,
2926 					      skb_frag_off(frag) + offset - start,
2927 					      copy, p, p_off, p_len, copied) {
2928 				vaddr = kmap_atomic(p);
2929 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2930 								  to + copied,
2931 								  p_len);
2932 				kunmap_atomic(vaddr);
2933 				csum = csum_block_add(csum, csum2, pos);
2934 				pos += p_len;
2935 			}
2936 
2937 			if (!(len -= copy))
2938 				return csum;
2939 			offset += copy;
2940 			to     += copy;
2941 		}
2942 		start = end;
2943 	}
2944 
2945 	skb_walk_frags(skb, frag_iter) {
2946 		__wsum csum2;
2947 		int end;
2948 
2949 		WARN_ON(start > offset + len);
2950 
2951 		end = start + frag_iter->len;
2952 		if ((copy = end - offset) > 0) {
2953 			if (copy > len)
2954 				copy = len;
2955 			csum2 = skb_copy_and_csum_bits(frag_iter,
2956 						       offset - start,
2957 						       to, copy);
2958 			csum = csum_block_add(csum, csum2, pos);
2959 			if ((len -= copy) == 0)
2960 				return csum;
2961 			offset += copy;
2962 			to     += copy;
2963 			pos    += copy;
2964 		}
2965 		start = end;
2966 	}
2967 	BUG_ON(len);
2968 	return csum;
2969 }
2970 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2971 
2972 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2973 {
2974 	__sum16 sum;
2975 
2976 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2977 	/* See comments in __skb_checksum_complete(). */
2978 	if (likely(!sum)) {
2979 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2980 		    !skb->csum_complete_sw)
2981 			netdev_rx_csum_fault(skb->dev, skb);
2982 	}
2983 	if (!skb_shared(skb))
2984 		skb->csum_valid = !sum;
2985 	return sum;
2986 }
2987 EXPORT_SYMBOL(__skb_checksum_complete_head);
2988 
2989 /* This function assumes skb->csum already holds pseudo header's checksum,
2990  * which has been changed from the hardware checksum, for example, by
2991  * __skb_checksum_validate_complete(). And, the original skb->csum must
2992  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2993  *
2994  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2995  * zero. The new checksum is stored back into skb->csum unless the skb is
2996  * shared.
2997  */
2998 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2999 {
3000 	__wsum csum;
3001 	__sum16 sum;
3002 
3003 	csum = skb_checksum(skb, 0, skb->len, 0);
3004 
3005 	sum = csum_fold(csum_add(skb->csum, csum));
3006 	/* This check is inverted, because we already knew the hardware
3007 	 * checksum is invalid before calling this function. So, if the
3008 	 * re-computed checksum is valid instead, then we have a mismatch
3009 	 * between the original skb->csum and skb_checksum(). This means either
3010 	 * the original hardware checksum is incorrect or we screw up skb->csum
3011 	 * when moving skb->data around.
3012 	 */
3013 	if (likely(!sum)) {
3014 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3015 		    !skb->csum_complete_sw)
3016 			netdev_rx_csum_fault(skb->dev, skb);
3017 	}
3018 
3019 	if (!skb_shared(skb)) {
3020 		/* Save full packet checksum */
3021 		skb->csum = csum;
3022 		skb->ip_summed = CHECKSUM_COMPLETE;
3023 		skb->csum_complete_sw = 1;
3024 		skb->csum_valid = !sum;
3025 	}
3026 
3027 	return sum;
3028 }
3029 EXPORT_SYMBOL(__skb_checksum_complete);
3030 
3031 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3032 {
3033 	net_warn_ratelimited(
3034 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3035 		__func__);
3036 	return 0;
3037 }
3038 
3039 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3040 				       int offset, int len)
3041 {
3042 	net_warn_ratelimited(
3043 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3044 		__func__);
3045 	return 0;
3046 }
3047 
3048 static const struct skb_checksum_ops default_crc32c_ops = {
3049 	.update  = warn_crc32c_csum_update,
3050 	.combine = warn_crc32c_csum_combine,
3051 };
3052 
3053 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3054 	&default_crc32c_ops;
3055 EXPORT_SYMBOL(crc32c_csum_stub);
3056 
3057  /**
3058  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3059  *	@from: source buffer
3060  *
3061  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3062  *	into skb_zerocopy().
3063  */
3064 unsigned int
3065 skb_zerocopy_headlen(const struct sk_buff *from)
3066 {
3067 	unsigned int hlen = 0;
3068 
3069 	if (!from->head_frag ||
3070 	    skb_headlen(from) < L1_CACHE_BYTES ||
3071 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3072 		hlen = skb_headlen(from);
3073 		if (!hlen)
3074 			hlen = from->len;
3075 	}
3076 
3077 	if (skb_has_frag_list(from))
3078 		hlen = from->len;
3079 
3080 	return hlen;
3081 }
3082 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3083 
3084 /**
3085  *	skb_zerocopy - Zero copy skb to skb
3086  *	@to: destination buffer
3087  *	@from: source buffer
3088  *	@len: number of bytes to copy from source buffer
3089  *	@hlen: size of linear headroom in destination buffer
3090  *
3091  *	Copies up to `len` bytes from `from` to `to` by creating references
3092  *	to the frags in the source buffer.
3093  *
3094  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3095  *	headroom in the `to` buffer.
3096  *
3097  *	Return value:
3098  *	0: everything is OK
3099  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3100  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3101  */
3102 int
3103 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3104 {
3105 	int i, j = 0;
3106 	int plen = 0; /* length of skb->head fragment */
3107 	int ret;
3108 	struct page *page;
3109 	unsigned int offset;
3110 
3111 	BUG_ON(!from->head_frag && !hlen);
3112 
3113 	/* dont bother with small payloads */
3114 	if (len <= skb_tailroom(to))
3115 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3116 
3117 	if (hlen) {
3118 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3119 		if (unlikely(ret))
3120 			return ret;
3121 		len -= hlen;
3122 	} else {
3123 		plen = min_t(int, skb_headlen(from), len);
3124 		if (plen) {
3125 			page = virt_to_head_page(from->head);
3126 			offset = from->data - (unsigned char *)page_address(page);
3127 			__skb_fill_page_desc(to, 0, page, offset, plen);
3128 			get_page(page);
3129 			j = 1;
3130 			len -= plen;
3131 		}
3132 	}
3133 
3134 	to->truesize += len + plen;
3135 	to->len += len + plen;
3136 	to->data_len += len + plen;
3137 
3138 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3139 		skb_tx_error(from);
3140 		return -ENOMEM;
3141 	}
3142 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3143 
3144 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3145 		int size;
3146 
3147 		if (!len)
3148 			break;
3149 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3150 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3151 					len);
3152 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3153 		len -= size;
3154 		skb_frag_ref(to, j);
3155 		j++;
3156 	}
3157 	skb_shinfo(to)->nr_frags = j;
3158 
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(skb_zerocopy);
3162 
3163 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3164 {
3165 	__wsum csum;
3166 	long csstart;
3167 
3168 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3169 		csstart = skb_checksum_start_offset(skb);
3170 	else
3171 		csstart = skb_headlen(skb);
3172 
3173 	BUG_ON(csstart > skb_headlen(skb));
3174 
3175 	skb_copy_from_linear_data(skb, to, csstart);
3176 
3177 	csum = 0;
3178 	if (csstart != skb->len)
3179 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3180 					      skb->len - csstart);
3181 
3182 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3183 		long csstuff = csstart + skb->csum_offset;
3184 
3185 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3186 	}
3187 }
3188 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3189 
3190 /**
3191  *	skb_dequeue - remove from the head of the queue
3192  *	@list: list to dequeue from
3193  *
3194  *	Remove the head of the list. The list lock is taken so the function
3195  *	may be used safely with other locking list functions. The head item is
3196  *	returned or %NULL if the list is empty.
3197  */
3198 
3199 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3200 {
3201 	unsigned long flags;
3202 	struct sk_buff *result;
3203 
3204 	spin_lock_irqsave(&list->lock, flags);
3205 	result = __skb_dequeue(list);
3206 	spin_unlock_irqrestore(&list->lock, flags);
3207 	return result;
3208 }
3209 EXPORT_SYMBOL(skb_dequeue);
3210 
3211 /**
3212  *	skb_dequeue_tail - remove from the tail of the queue
3213  *	@list: list to dequeue from
3214  *
3215  *	Remove the tail of the list. The list lock is taken so the function
3216  *	may be used safely with other locking list functions. The tail item is
3217  *	returned or %NULL if the list is empty.
3218  */
3219 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3220 {
3221 	unsigned long flags;
3222 	struct sk_buff *result;
3223 
3224 	spin_lock_irqsave(&list->lock, flags);
3225 	result = __skb_dequeue_tail(list);
3226 	spin_unlock_irqrestore(&list->lock, flags);
3227 	return result;
3228 }
3229 EXPORT_SYMBOL(skb_dequeue_tail);
3230 
3231 /**
3232  *	skb_queue_purge - empty a list
3233  *	@list: list to empty
3234  *
3235  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3236  *	the list and one reference dropped. This function takes the list
3237  *	lock and is atomic with respect to other list locking functions.
3238  */
3239 void skb_queue_purge(struct sk_buff_head *list)
3240 {
3241 	struct sk_buff *skb;
3242 	while ((skb = skb_dequeue(list)) != NULL)
3243 		kfree_skb(skb);
3244 }
3245 EXPORT_SYMBOL(skb_queue_purge);
3246 
3247 /**
3248  *	skb_rbtree_purge - empty a skb rbtree
3249  *	@root: root of the rbtree to empty
3250  *	Return value: the sum of truesizes of all purged skbs.
3251  *
3252  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3253  *	the list and one reference dropped. This function does not take
3254  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3255  *	out-of-order queue is protected by the socket lock).
3256  */
3257 unsigned int skb_rbtree_purge(struct rb_root *root)
3258 {
3259 	struct rb_node *p = rb_first(root);
3260 	unsigned int sum = 0;
3261 
3262 	while (p) {
3263 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3264 
3265 		p = rb_next(p);
3266 		rb_erase(&skb->rbnode, root);
3267 		sum += skb->truesize;
3268 		kfree_skb(skb);
3269 	}
3270 	return sum;
3271 }
3272 
3273 /**
3274  *	skb_queue_head - queue a buffer at the list head
3275  *	@list: list to use
3276  *	@newsk: buffer to queue
3277  *
3278  *	Queue a buffer at the start of the list. This function takes the
3279  *	list lock and can be used safely with other locking &sk_buff functions
3280  *	safely.
3281  *
3282  *	A buffer cannot be placed on two lists at the same time.
3283  */
3284 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3285 {
3286 	unsigned long flags;
3287 
3288 	spin_lock_irqsave(&list->lock, flags);
3289 	__skb_queue_head(list, newsk);
3290 	spin_unlock_irqrestore(&list->lock, flags);
3291 }
3292 EXPORT_SYMBOL(skb_queue_head);
3293 
3294 /**
3295  *	skb_queue_tail - queue a buffer at the list tail
3296  *	@list: list to use
3297  *	@newsk: buffer to queue
3298  *
3299  *	Queue a buffer at the tail of the list. This function takes the
3300  *	list lock and can be used safely with other locking &sk_buff functions
3301  *	safely.
3302  *
3303  *	A buffer cannot be placed on two lists at the same time.
3304  */
3305 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3306 {
3307 	unsigned long flags;
3308 
3309 	spin_lock_irqsave(&list->lock, flags);
3310 	__skb_queue_tail(list, newsk);
3311 	spin_unlock_irqrestore(&list->lock, flags);
3312 }
3313 EXPORT_SYMBOL(skb_queue_tail);
3314 
3315 /**
3316  *	skb_unlink	-	remove a buffer from a list
3317  *	@skb: buffer to remove
3318  *	@list: list to use
3319  *
3320  *	Remove a packet from a list. The list locks are taken and this
3321  *	function is atomic with respect to other list locked calls
3322  *
3323  *	You must know what list the SKB is on.
3324  */
3325 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3326 {
3327 	unsigned long flags;
3328 
3329 	spin_lock_irqsave(&list->lock, flags);
3330 	__skb_unlink(skb, list);
3331 	spin_unlock_irqrestore(&list->lock, flags);
3332 }
3333 EXPORT_SYMBOL(skb_unlink);
3334 
3335 /**
3336  *	skb_append	-	append a buffer
3337  *	@old: buffer to insert after
3338  *	@newsk: buffer to insert
3339  *	@list: list to use
3340  *
3341  *	Place a packet after a given packet in a list. The list locks are taken
3342  *	and this function is atomic with respect to other list locked calls.
3343  *	A buffer cannot be placed on two lists at the same time.
3344  */
3345 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3346 {
3347 	unsigned long flags;
3348 
3349 	spin_lock_irqsave(&list->lock, flags);
3350 	__skb_queue_after(list, old, newsk);
3351 	spin_unlock_irqrestore(&list->lock, flags);
3352 }
3353 EXPORT_SYMBOL(skb_append);
3354 
3355 static inline void skb_split_inside_header(struct sk_buff *skb,
3356 					   struct sk_buff* skb1,
3357 					   const u32 len, const int pos)
3358 {
3359 	int i;
3360 
3361 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3362 					 pos - len);
3363 	/* And move data appendix as is. */
3364 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3365 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3366 
3367 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3368 	skb_shinfo(skb)->nr_frags  = 0;
3369 	skb1->data_len		   = skb->data_len;
3370 	skb1->len		   += skb1->data_len;
3371 	skb->data_len		   = 0;
3372 	skb->len		   = len;
3373 	skb_set_tail_pointer(skb, len);
3374 }
3375 
3376 static inline void skb_split_no_header(struct sk_buff *skb,
3377 				       struct sk_buff* skb1,
3378 				       const u32 len, int pos)
3379 {
3380 	int i, k = 0;
3381 	const int nfrags = skb_shinfo(skb)->nr_frags;
3382 
3383 	skb_shinfo(skb)->nr_frags = 0;
3384 	skb1->len		  = skb1->data_len = skb->len - len;
3385 	skb->len		  = len;
3386 	skb->data_len		  = len - pos;
3387 
3388 	for (i = 0; i < nfrags; i++) {
3389 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3390 
3391 		if (pos + size > len) {
3392 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3393 
3394 			if (pos < len) {
3395 				/* Split frag.
3396 				 * We have two variants in this case:
3397 				 * 1. Move all the frag to the second
3398 				 *    part, if it is possible. F.e.
3399 				 *    this approach is mandatory for TUX,
3400 				 *    where splitting is expensive.
3401 				 * 2. Split is accurately. We make this.
3402 				 */
3403 				skb_frag_ref(skb, i);
3404 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3405 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3406 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3407 				skb_shinfo(skb)->nr_frags++;
3408 			}
3409 			k++;
3410 		} else
3411 			skb_shinfo(skb)->nr_frags++;
3412 		pos += size;
3413 	}
3414 	skb_shinfo(skb1)->nr_frags = k;
3415 }
3416 
3417 /**
3418  * skb_split - Split fragmented skb to two parts at length len.
3419  * @skb: the buffer to split
3420  * @skb1: the buffer to receive the second part
3421  * @len: new length for skb
3422  */
3423 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3424 {
3425 	int pos = skb_headlen(skb);
3426 
3427 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3428 	skb_zerocopy_clone(skb1, skb, 0);
3429 	if (len < pos)	/* Split line is inside header. */
3430 		skb_split_inside_header(skb, skb1, len, pos);
3431 	else		/* Second chunk has no header, nothing to copy. */
3432 		skb_split_no_header(skb, skb1, len, pos);
3433 }
3434 EXPORT_SYMBOL(skb_split);
3435 
3436 /* Shifting from/to a cloned skb is a no-go.
3437  *
3438  * Caller cannot keep skb_shinfo related pointers past calling here!
3439  */
3440 static int skb_prepare_for_shift(struct sk_buff *skb)
3441 {
3442 	int ret = 0;
3443 
3444 	if (skb_cloned(skb)) {
3445 		/* Save and restore truesize: pskb_expand_head() may reallocate
3446 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3447 		 * cannot change truesize at this point.
3448 		 */
3449 		unsigned int save_truesize = skb->truesize;
3450 
3451 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3452 		skb->truesize = save_truesize;
3453 	}
3454 	return ret;
3455 }
3456 
3457 /**
3458  * skb_shift - Shifts paged data partially from skb to another
3459  * @tgt: buffer into which tail data gets added
3460  * @skb: buffer from which the paged data comes from
3461  * @shiftlen: shift up to this many bytes
3462  *
3463  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3464  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3465  * It's up to caller to free skb if everything was shifted.
3466  *
3467  * If @tgt runs out of frags, the whole operation is aborted.
3468  *
3469  * Skb cannot include anything else but paged data while tgt is allowed
3470  * to have non-paged data as well.
3471  *
3472  * TODO: full sized shift could be optimized but that would need
3473  * specialized skb free'er to handle frags without up-to-date nr_frags.
3474  */
3475 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3476 {
3477 	int from, to, merge, todo;
3478 	skb_frag_t *fragfrom, *fragto;
3479 
3480 	BUG_ON(shiftlen > skb->len);
3481 
3482 	if (skb_headlen(skb))
3483 		return 0;
3484 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3485 		return 0;
3486 
3487 	todo = shiftlen;
3488 	from = 0;
3489 	to = skb_shinfo(tgt)->nr_frags;
3490 	fragfrom = &skb_shinfo(skb)->frags[from];
3491 
3492 	/* Actual merge is delayed until the point when we know we can
3493 	 * commit all, so that we don't have to undo partial changes
3494 	 */
3495 	if (!to ||
3496 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3497 			      skb_frag_off(fragfrom))) {
3498 		merge = -1;
3499 	} else {
3500 		merge = to - 1;
3501 
3502 		todo -= skb_frag_size(fragfrom);
3503 		if (todo < 0) {
3504 			if (skb_prepare_for_shift(skb) ||
3505 			    skb_prepare_for_shift(tgt))
3506 				return 0;
3507 
3508 			/* All previous frag pointers might be stale! */
3509 			fragfrom = &skb_shinfo(skb)->frags[from];
3510 			fragto = &skb_shinfo(tgt)->frags[merge];
3511 
3512 			skb_frag_size_add(fragto, shiftlen);
3513 			skb_frag_size_sub(fragfrom, shiftlen);
3514 			skb_frag_off_add(fragfrom, shiftlen);
3515 
3516 			goto onlymerged;
3517 		}
3518 
3519 		from++;
3520 	}
3521 
3522 	/* Skip full, not-fitting skb to avoid expensive operations */
3523 	if ((shiftlen == skb->len) &&
3524 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3525 		return 0;
3526 
3527 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3528 		return 0;
3529 
3530 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3531 		if (to == MAX_SKB_FRAGS)
3532 			return 0;
3533 
3534 		fragfrom = &skb_shinfo(skb)->frags[from];
3535 		fragto = &skb_shinfo(tgt)->frags[to];
3536 
3537 		if (todo >= skb_frag_size(fragfrom)) {
3538 			*fragto = *fragfrom;
3539 			todo -= skb_frag_size(fragfrom);
3540 			from++;
3541 			to++;
3542 
3543 		} else {
3544 			__skb_frag_ref(fragfrom);
3545 			skb_frag_page_copy(fragto, fragfrom);
3546 			skb_frag_off_copy(fragto, fragfrom);
3547 			skb_frag_size_set(fragto, todo);
3548 
3549 			skb_frag_off_add(fragfrom, todo);
3550 			skb_frag_size_sub(fragfrom, todo);
3551 			todo = 0;
3552 
3553 			to++;
3554 			break;
3555 		}
3556 	}
3557 
3558 	/* Ready to "commit" this state change to tgt */
3559 	skb_shinfo(tgt)->nr_frags = to;
3560 
3561 	if (merge >= 0) {
3562 		fragfrom = &skb_shinfo(skb)->frags[0];
3563 		fragto = &skb_shinfo(tgt)->frags[merge];
3564 
3565 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3566 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3567 	}
3568 
3569 	/* Reposition in the original skb */
3570 	to = 0;
3571 	while (from < skb_shinfo(skb)->nr_frags)
3572 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3573 	skb_shinfo(skb)->nr_frags = to;
3574 
3575 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3576 
3577 onlymerged:
3578 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3579 	 * the other hand might need it if it needs to be resent
3580 	 */
3581 	tgt->ip_summed = CHECKSUM_PARTIAL;
3582 	skb->ip_summed = CHECKSUM_PARTIAL;
3583 
3584 	/* Yak, is it really working this way? Some helper please? */
3585 	skb->len -= shiftlen;
3586 	skb->data_len -= shiftlen;
3587 	skb->truesize -= shiftlen;
3588 	tgt->len += shiftlen;
3589 	tgt->data_len += shiftlen;
3590 	tgt->truesize += shiftlen;
3591 
3592 	return shiftlen;
3593 }
3594 
3595 /**
3596  * skb_prepare_seq_read - Prepare a sequential read of skb data
3597  * @skb: the buffer to read
3598  * @from: lower offset of data to be read
3599  * @to: upper offset of data to be read
3600  * @st: state variable
3601  *
3602  * Initializes the specified state variable. Must be called before
3603  * invoking skb_seq_read() for the first time.
3604  */
3605 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3606 			  unsigned int to, struct skb_seq_state *st)
3607 {
3608 	st->lower_offset = from;
3609 	st->upper_offset = to;
3610 	st->root_skb = st->cur_skb = skb;
3611 	st->frag_idx = st->stepped_offset = 0;
3612 	st->frag_data = NULL;
3613 	st->frag_off = 0;
3614 }
3615 EXPORT_SYMBOL(skb_prepare_seq_read);
3616 
3617 /**
3618  * skb_seq_read - Sequentially read skb data
3619  * @consumed: number of bytes consumed by the caller so far
3620  * @data: destination pointer for data to be returned
3621  * @st: state variable
3622  *
3623  * Reads a block of skb data at @consumed relative to the
3624  * lower offset specified to skb_prepare_seq_read(). Assigns
3625  * the head of the data block to @data and returns the length
3626  * of the block or 0 if the end of the skb data or the upper
3627  * offset has been reached.
3628  *
3629  * The caller is not required to consume all of the data
3630  * returned, i.e. @consumed is typically set to the number
3631  * of bytes already consumed and the next call to
3632  * skb_seq_read() will return the remaining part of the block.
3633  *
3634  * Note 1: The size of each block of data returned can be arbitrary,
3635  *       this limitation is the cost for zerocopy sequential
3636  *       reads of potentially non linear data.
3637  *
3638  * Note 2: Fragment lists within fragments are not implemented
3639  *       at the moment, state->root_skb could be replaced with
3640  *       a stack for this purpose.
3641  */
3642 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3643 			  struct skb_seq_state *st)
3644 {
3645 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3646 	skb_frag_t *frag;
3647 
3648 	if (unlikely(abs_offset >= st->upper_offset)) {
3649 		if (st->frag_data) {
3650 			kunmap_atomic(st->frag_data);
3651 			st->frag_data = NULL;
3652 		}
3653 		return 0;
3654 	}
3655 
3656 next_skb:
3657 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3658 
3659 	if (abs_offset < block_limit && !st->frag_data) {
3660 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3661 		return block_limit - abs_offset;
3662 	}
3663 
3664 	if (st->frag_idx == 0 && !st->frag_data)
3665 		st->stepped_offset += skb_headlen(st->cur_skb);
3666 
3667 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3668 		unsigned int pg_idx, pg_off, pg_sz;
3669 
3670 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3671 
3672 		pg_idx = 0;
3673 		pg_off = skb_frag_off(frag);
3674 		pg_sz = skb_frag_size(frag);
3675 
3676 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3677 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3678 			pg_off = offset_in_page(pg_off + st->frag_off);
3679 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3680 						    PAGE_SIZE - pg_off);
3681 		}
3682 
3683 		block_limit = pg_sz + st->stepped_offset;
3684 		if (abs_offset < block_limit) {
3685 			if (!st->frag_data)
3686 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3687 
3688 			*data = (u8 *)st->frag_data + pg_off +
3689 				(abs_offset - st->stepped_offset);
3690 
3691 			return block_limit - abs_offset;
3692 		}
3693 
3694 		if (st->frag_data) {
3695 			kunmap_atomic(st->frag_data);
3696 			st->frag_data = NULL;
3697 		}
3698 
3699 		st->stepped_offset += pg_sz;
3700 		st->frag_off += pg_sz;
3701 		if (st->frag_off == skb_frag_size(frag)) {
3702 			st->frag_off = 0;
3703 			st->frag_idx++;
3704 		}
3705 	}
3706 
3707 	if (st->frag_data) {
3708 		kunmap_atomic(st->frag_data);
3709 		st->frag_data = NULL;
3710 	}
3711 
3712 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3713 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3714 		st->frag_idx = 0;
3715 		goto next_skb;
3716 	} else if (st->cur_skb->next) {
3717 		st->cur_skb = st->cur_skb->next;
3718 		st->frag_idx = 0;
3719 		goto next_skb;
3720 	}
3721 
3722 	return 0;
3723 }
3724 EXPORT_SYMBOL(skb_seq_read);
3725 
3726 /**
3727  * skb_abort_seq_read - Abort a sequential read of skb data
3728  * @st: state variable
3729  *
3730  * Must be called if skb_seq_read() was not called until it
3731  * returned 0.
3732  */
3733 void skb_abort_seq_read(struct skb_seq_state *st)
3734 {
3735 	if (st->frag_data)
3736 		kunmap_atomic(st->frag_data);
3737 }
3738 EXPORT_SYMBOL(skb_abort_seq_read);
3739 
3740 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3741 
3742 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3743 					  struct ts_config *conf,
3744 					  struct ts_state *state)
3745 {
3746 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3747 }
3748 
3749 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3750 {
3751 	skb_abort_seq_read(TS_SKB_CB(state));
3752 }
3753 
3754 /**
3755  * skb_find_text - Find a text pattern in skb data
3756  * @skb: the buffer to look in
3757  * @from: search offset
3758  * @to: search limit
3759  * @config: textsearch configuration
3760  *
3761  * Finds a pattern in the skb data according to the specified
3762  * textsearch configuration. Use textsearch_next() to retrieve
3763  * subsequent occurrences of the pattern. Returns the offset
3764  * to the first occurrence or UINT_MAX if no match was found.
3765  */
3766 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3767 			   unsigned int to, struct ts_config *config)
3768 {
3769 	struct ts_state state;
3770 	unsigned int ret;
3771 
3772 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3773 
3774 	config->get_next_block = skb_ts_get_next_block;
3775 	config->finish = skb_ts_finish;
3776 
3777 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3778 
3779 	ret = textsearch_find(config, &state);
3780 	return (ret <= to - from ? ret : UINT_MAX);
3781 }
3782 EXPORT_SYMBOL(skb_find_text);
3783 
3784 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3785 			 int offset, size_t size)
3786 {
3787 	int i = skb_shinfo(skb)->nr_frags;
3788 
3789 	if (skb_can_coalesce(skb, i, page, offset)) {
3790 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3791 	} else if (i < MAX_SKB_FRAGS) {
3792 		get_page(page);
3793 		skb_fill_page_desc(skb, i, page, offset, size);
3794 	} else {
3795 		return -EMSGSIZE;
3796 	}
3797 
3798 	return 0;
3799 }
3800 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3801 
3802 /**
3803  *	skb_pull_rcsum - pull skb and update receive checksum
3804  *	@skb: buffer to update
3805  *	@len: length of data pulled
3806  *
3807  *	This function performs an skb_pull on the packet and updates
3808  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3809  *	receive path processing instead of skb_pull unless you know
3810  *	that the checksum difference is zero (e.g., a valid IP header)
3811  *	or you are setting ip_summed to CHECKSUM_NONE.
3812  */
3813 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3814 {
3815 	unsigned char *data = skb->data;
3816 
3817 	BUG_ON(len > skb->len);
3818 	__skb_pull(skb, len);
3819 	skb_postpull_rcsum(skb, data, len);
3820 	return skb->data;
3821 }
3822 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3823 
3824 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3825 {
3826 	skb_frag_t head_frag;
3827 	struct page *page;
3828 
3829 	page = virt_to_head_page(frag_skb->head);
3830 	__skb_frag_set_page(&head_frag, page);
3831 	skb_frag_off_set(&head_frag, frag_skb->data -
3832 			 (unsigned char *)page_address(page));
3833 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3834 	return head_frag;
3835 }
3836 
3837 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3838 				 netdev_features_t features,
3839 				 unsigned int offset)
3840 {
3841 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3842 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3843 	unsigned int delta_truesize = 0;
3844 	unsigned int delta_len = 0;
3845 	struct sk_buff *tail = NULL;
3846 	struct sk_buff *nskb, *tmp;
3847 	int err;
3848 
3849 	skb_push(skb, -skb_network_offset(skb) + offset);
3850 
3851 	skb_shinfo(skb)->frag_list = NULL;
3852 
3853 	do {
3854 		nskb = list_skb;
3855 		list_skb = list_skb->next;
3856 
3857 		err = 0;
3858 		if (skb_shared(nskb)) {
3859 			tmp = skb_clone(nskb, GFP_ATOMIC);
3860 			if (tmp) {
3861 				consume_skb(nskb);
3862 				nskb = tmp;
3863 				err = skb_unclone(nskb, GFP_ATOMIC);
3864 			} else {
3865 				err = -ENOMEM;
3866 			}
3867 		}
3868 
3869 		if (!tail)
3870 			skb->next = nskb;
3871 		else
3872 			tail->next = nskb;
3873 
3874 		if (unlikely(err)) {
3875 			nskb->next = list_skb;
3876 			goto err_linearize;
3877 		}
3878 
3879 		tail = nskb;
3880 
3881 		delta_len += nskb->len;
3882 		delta_truesize += nskb->truesize;
3883 
3884 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3885 
3886 		skb_release_head_state(nskb);
3887 		 __copy_skb_header(nskb, skb);
3888 
3889 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3890 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3891 						 nskb->data - tnl_hlen,
3892 						 offset + tnl_hlen);
3893 
3894 		if (skb_needs_linearize(nskb, features) &&
3895 		    __skb_linearize(nskb))
3896 			goto err_linearize;
3897 
3898 	} while (list_skb);
3899 
3900 	skb->truesize = skb->truesize - delta_truesize;
3901 	skb->data_len = skb->data_len - delta_len;
3902 	skb->len = skb->len - delta_len;
3903 
3904 	skb_gso_reset(skb);
3905 
3906 	skb->prev = tail;
3907 
3908 	if (skb_needs_linearize(skb, features) &&
3909 	    __skb_linearize(skb))
3910 		goto err_linearize;
3911 
3912 	skb_get(skb);
3913 
3914 	return skb;
3915 
3916 err_linearize:
3917 	kfree_skb_list(skb->next);
3918 	skb->next = NULL;
3919 	return ERR_PTR(-ENOMEM);
3920 }
3921 EXPORT_SYMBOL_GPL(skb_segment_list);
3922 
3923 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3924 {
3925 	if (unlikely(p->len + skb->len >= 65536))
3926 		return -E2BIG;
3927 
3928 	if (NAPI_GRO_CB(p)->last == p)
3929 		skb_shinfo(p)->frag_list = skb;
3930 	else
3931 		NAPI_GRO_CB(p)->last->next = skb;
3932 
3933 	skb_pull(skb, skb_gro_offset(skb));
3934 
3935 	NAPI_GRO_CB(p)->last = skb;
3936 	NAPI_GRO_CB(p)->count++;
3937 	p->data_len += skb->len;
3938 
3939 	/* sk owenrship - if any - completely transferred to the aggregated packet */
3940 	skb->destructor = NULL;
3941 	p->truesize += skb->truesize;
3942 	p->len += skb->len;
3943 
3944 	NAPI_GRO_CB(skb)->same_flow = 1;
3945 
3946 	return 0;
3947 }
3948 
3949 /**
3950  *	skb_segment - Perform protocol segmentation on skb.
3951  *	@head_skb: buffer to segment
3952  *	@features: features for the output path (see dev->features)
3953  *
3954  *	This function performs segmentation on the given skb.  It returns
3955  *	a pointer to the first in a list of new skbs for the segments.
3956  *	In case of error it returns ERR_PTR(err).
3957  */
3958 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3959 			    netdev_features_t features)
3960 {
3961 	struct sk_buff *segs = NULL;
3962 	struct sk_buff *tail = NULL;
3963 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3964 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3965 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3966 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3967 	struct sk_buff *frag_skb = head_skb;
3968 	unsigned int offset = doffset;
3969 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3970 	unsigned int partial_segs = 0;
3971 	unsigned int headroom;
3972 	unsigned int len = head_skb->len;
3973 	__be16 proto;
3974 	bool csum, sg;
3975 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3976 	int err = -ENOMEM;
3977 	int i = 0;
3978 	int pos;
3979 
3980 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3981 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3982 		/* gso_size is untrusted, and we have a frag_list with a linear
3983 		 * non head_frag head.
3984 		 *
3985 		 * (we assume checking the first list_skb member suffices;
3986 		 * i.e if either of the list_skb members have non head_frag
3987 		 * head, then the first one has too).
3988 		 *
3989 		 * If head_skb's headlen does not fit requested gso_size, it
3990 		 * means that the frag_list members do NOT terminate on exact
3991 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3992 		 * sharing. Therefore we must fallback to copying the frag_list
3993 		 * skbs; we do so by disabling SG.
3994 		 */
3995 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3996 			features &= ~NETIF_F_SG;
3997 	}
3998 
3999 	__skb_push(head_skb, doffset);
4000 	proto = skb_network_protocol(head_skb, NULL);
4001 	if (unlikely(!proto))
4002 		return ERR_PTR(-EINVAL);
4003 
4004 	sg = !!(features & NETIF_F_SG);
4005 	csum = !!can_checksum_protocol(features, proto);
4006 
4007 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4008 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4009 			struct sk_buff *iter;
4010 			unsigned int frag_len;
4011 
4012 			if (!list_skb ||
4013 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4014 				goto normal;
4015 
4016 			/* If we get here then all the required
4017 			 * GSO features except frag_list are supported.
4018 			 * Try to split the SKB to multiple GSO SKBs
4019 			 * with no frag_list.
4020 			 * Currently we can do that only when the buffers don't
4021 			 * have a linear part and all the buffers except
4022 			 * the last are of the same length.
4023 			 */
4024 			frag_len = list_skb->len;
4025 			skb_walk_frags(head_skb, iter) {
4026 				if (frag_len != iter->len && iter->next)
4027 					goto normal;
4028 				if (skb_headlen(iter) && !iter->head_frag)
4029 					goto normal;
4030 
4031 				len -= iter->len;
4032 			}
4033 
4034 			if (len != frag_len)
4035 				goto normal;
4036 		}
4037 
4038 		/* GSO partial only requires that we trim off any excess that
4039 		 * doesn't fit into an MSS sized block, so take care of that
4040 		 * now.
4041 		 */
4042 		partial_segs = len / mss;
4043 		if (partial_segs > 1)
4044 			mss *= partial_segs;
4045 		else
4046 			partial_segs = 0;
4047 	}
4048 
4049 normal:
4050 	headroom = skb_headroom(head_skb);
4051 	pos = skb_headlen(head_skb);
4052 
4053 	do {
4054 		struct sk_buff *nskb;
4055 		skb_frag_t *nskb_frag;
4056 		int hsize;
4057 		int size;
4058 
4059 		if (unlikely(mss == GSO_BY_FRAGS)) {
4060 			len = list_skb->len;
4061 		} else {
4062 			len = head_skb->len - offset;
4063 			if (len > mss)
4064 				len = mss;
4065 		}
4066 
4067 		hsize = skb_headlen(head_skb) - offset;
4068 
4069 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4070 		    (skb_headlen(list_skb) == len || sg)) {
4071 			BUG_ON(skb_headlen(list_skb) > len);
4072 
4073 			i = 0;
4074 			nfrags = skb_shinfo(list_skb)->nr_frags;
4075 			frag = skb_shinfo(list_skb)->frags;
4076 			frag_skb = list_skb;
4077 			pos += skb_headlen(list_skb);
4078 
4079 			while (pos < offset + len) {
4080 				BUG_ON(i >= nfrags);
4081 
4082 				size = skb_frag_size(frag);
4083 				if (pos + size > offset + len)
4084 					break;
4085 
4086 				i++;
4087 				pos += size;
4088 				frag++;
4089 			}
4090 
4091 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4092 			list_skb = list_skb->next;
4093 
4094 			if (unlikely(!nskb))
4095 				goto err;
4096 
4097 			if (unlikely(pskb_trim(nskb, len))) {
4098 				kfree_skb(nskb);
4099 				goto err;
4100 			}
4101 
4102 			hsize = skb_end_offset(nskb);
4103 			if (skb_cow_head(nskb, doffset + headroom)) {
4104 				kfree_skb(nskb);
4105 				goto err;
4106 			}
4107 
4108 			nskb->truesize += skb_end_offset(nskb) - hsize;
4109 			skb_release_head_state(nskb);
4110 			__skb_push(nskb, doffset);
4111 		} else {
4112 			if (hsize < 0)
4113 				hsize = 0;
4114 			if (hsize > len || !sg)
4115 				hsize = len;
4116 
4117 			nskb = __alloc_skb(hsize + doffset + headroom,
4118 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4119 					   NUMA_NO_NODE);
4120 
4121 			if (unlikely(!nskb))
4122 				goto err;
4123 
4124 			skb_reserve(nskb, headroom);
4125 			__skb_put(nskb, doffset);
4126 		}
4127 
4128 		if (segs)
4129 			tail->next = nskb;
4130 		else
4131 			segs = nskb;
4132 		tail = nskb;
4133 
4134 		__copy_skb_header(nskb, head_skb);
4135 
4136 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4137 		skb_reset_mac_len(nskb);
4138 
4139 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4140 						 nskb->data - tnl_hlen,
4141 						 doffset + tnl_hlen);
4142 
4143 		if (nskb->len == len + doffset)
4144 			goto perform_csum_check;
4145 
4146 		if (!sg) {
4147 			if (!csum) {
4148 				if (!nskb->remcsum_offload)
4149 					nskb->ip_summed = CHECKSUM_NONE;
4150 				SKB_GSO_CB(nskb)->csum =
4151 					skb_copy_and_csum_bits(head_skb, offset,
4152 							       skb_put(nskb,
4153 								       len),
4154 							       len);
4155 				SKB_GSO_CB(nskb)->csum_start =
4156 					skb_headroom(nskb) + doffset;
4157 			} else {
4158 				skb_copy_bits(head_skb, offset,
4159 					      skb_put(nskb, len),
4160 					      len);
4161 			}
4162 			continue;
4163 		}
4164 
4165 		nskb_frag = skb_shinfo(nskb)->frags;
4166 
4167 		skb_copy_from_linear_data_offset(head_skb, offset,
4168 						 skb_put(nskb, hsize), hsize);
4169 
4170 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4171 					   SKBFL_SHARED_FRAG;
4172 
4173 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4174 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4175 			goto err;
4176 
4177 		while (pos < offset + len) {
4178 			if (i >= nfrags) {
4179 				i = 0;
4180 				nfrags = skb_shinfo(list_skb)->nr_frags;
4181 				frag = skb_shinfo(list_skb)->frags;
4182 				frag_skb = list_skb;
4183 				if (!skb_headlen(list_skb)) {
4184 					BUG_ON(!nfrags);
4185 				} else {
4186 					BUG_ON(!list_skb->head_frag);
4187 
4188 					/* to make room for head_frag. */
4189 					i--;
4190 					frag--;
4191 				}
4192 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4193 				    skb_zerocopy_clone(nskb, frag_skb,
4194 						       GFP_ATOMIC))
4195 					goto err;
4196 
4197 				list_skb = list_skb->next;
4198 			}
4199 
4200 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4201 				     MAX_SKB_FRAGS)) {
4202 				net_warn_ratelimited(
4203 					"skb_segment: too many frags: %u %u\n",
4204 					pos, mss);
4205 				err = -EINVAL;
4206 				goto err;
4207 			}
4208 
4209 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4210 			__skb_frag_ref(nskb_frag);
4211 			size = skb_frag_size(nskb_frag);
4212 
4213 			if (pos < offset) {
4214 				skb_frag_off_add(nskb_frag, offset - pos);
4215 				skb_frag_size_sub(nskb_frag, offset - pos);
4216 			}
4217 
4218 			skb_shinfo(nskb)->nr_frags++;
4219 
4220 			if (pos + size <= offset + len) {
4221 				i++;
4222 				frag++;
4223 				pos += size;
4224 			} else {
4225 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4226 				goto skip_fraglist;
4227 			}
4228 
4229 			nskb_frag++;
4230 		}
4231 
4232 skip_fraglist:
4233 		nskb->data_len = len - hsize;
4234 		nskb->len += nskb->data_len;
4235 		nskb->truesize += nskb->data_len;
4236 
4237 perform_csum_check:
4238 		if (!csum) {
4239 			if (skb_has_shared_frag(nskb) &&
4240 			    __skb_linearize(nskb))
4241 				goto err;
4242 
4243 			if (!nskb->remcsum_offload)
4244 				nskb->ip_summed = CHECKSUM_NONE;
4245 			SKB_GSO_CB(nskb)->csum =
4246 				skb_checksum(nskb, doffset,
4247 					     nskb->len - doffset, 0);
4248 			SKB_GSO_CB(nskb)->csum_start =
4249 				skb_headroom(nskb) + doffset;
4250 		}
4251 	} while ((offset += len) < head_skb->len);
4252 
4253 	/* Some callers want to get the end of the list.
4254 	 * Put it in segs->prev to avoid walking the list.
4255 	 * (see validate_xmit_skb_list() for example)
4256 	 */
4257 	segs->prev = tail;
4258 
4259 	if (partial_segs) {
4260 		struct sk_buff *iter;
4261 		int type = skb_shinfo(head_skb)->gso_type;
4262 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4263 
4264 		/* Update type to add partial and then remove dodgy if set */
4265 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4266 		type &= ~SKB_GSO_DODGY;
4267 
4268 		/* Update GSO info and prepare to start updating headers on
4269 		 * our way back down the stack of protocols.
4270 		 */
4271 		for (iter = segs; iter; iter = iter->next) {
4272 			skb_shinfo(iter)->gso_size = gso_size;
4273 			skb_shinfo(iter)->gso_segs = partial_segs;
4274 			skb_shinfo(iter)->gso_type = type;
4275 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4276 		}
4277 
4278 		if (tail->len - doffset <= gso_size)
4279 			skb_shinfo(tail)->gso_size = 0;
4280 		else if (tail != segs)
4281 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4282 	}
4283 
4284 	/* Following permits correct backpressure, for protocols
4285 	 * using skb_set_owner_w().
4286 	 * Idea is to tranfert ownership from head_skb to last segment.
4287 	 */
4288 	if (head_skb->destructor == sock_wfree) {
4289 		swap(tail->truesize, head_skb->truesize);
4290 		swap(tail->destructor, head_skb->destructor);
4291 		swap(tail->sk, head_skb->sk);
4292 	}
4293 	return segs;
4294 
4295 err:
4296 	kfree_skb_list(segs);
4297 	return ERR_PTR(err);
4298 }
4299 EXPORT_SYMBOL_GPL(skb_segment);
4300 
4301 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4302 {
4303 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4304 	unsigned int offset = skb_gro_offset(skb);
4305 	unsigned int headlen = skb_headlen(skb);
4306 	unsigned int len = skb_gro_len(skb);
4307 	unsigned int delta_truesize;
4308 	unsigned int new_truesize;
4309 	struct sk_buff *lp;
4310 
4311 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4312 		return -E2BIG;
4313 
4314 	lp = NAPI_GRO_CB(p)->last;
4315 	pinfo = skb_shinfo(lp);
4316 
4317 	if (headlen <= offset) {
4318 		skb_frag_t *frag;
4319 		skb_frag_t *frag2;
4320 		int i = skbinfo->nr_frags;
4321 		int nr_frags = pinfo->nr_frags + i;
4322 
4323 		if (nr_frags > MAX_SKB_FRAGS)
4324 			goto merge;
4325 
4326 		offset -= headlen;
4327 		pinfo->nr_frags = nr_frags;
4328 		skbinfo->nr_frags = 0;
4329 
4330 		frag = pinfo->frags + nr_frags;
4331 		frag2 = skbinfo->frags + i;
4332 		do {
4333 			*--frag = *--frag2;
4334 		} while (--i);
4335 
4336 		skb_frag_off_add(frag, offset);
4337 		skb_frag_size_sub(frag, offset);
4338 
4339 		/* all fragments truesize : remove (head size + sk_buff) */
4340 		new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4341 		delta_truesize = skb->truesize - new_truesize;
4342 
4343 		skb->truesize = new_truesize;
4344 		skb->len -= skb->data_len;
4345 		skb->data_len = 0;
4346 
4347 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4348 		goto done;
4349 	} else if (skb->head_frag) {
4350 		int nr_frags = pinfo->nr_frags;
4351 		skb_frag_t *frag = pinfo->frags + nr_frags;
4352 		struct page *page = virt_to_head_page(skb->head);
4353 		unsigned int first_size = headlen - offset;
4354 		unsigned int first_offset;
4355 
4356 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4357 			goto merge;
4358 
4359 		first_offset = skb->data -
4360 			       (unsigned char *)page_address(page) +
4361 			       offset;
4362 
4363 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4364 
4365 		__skb_frag_set_page(frag, page);
4366 		skb_frag_off_set(frag, first_offset);
4367 		skb_frag_size_set(frag, first_size);
4368 
4369 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4370 		/* We dont need to clear skbinfo->nr_frags here */
4371 
4372 		new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4373 		delta_truesize = skb->truesize - new_truesize;
4374 		skb->truesize = new_truesize;
4375 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4376 		goto done;
4377 	}
4378 
4379 merge:
4380 	/* sk owenrship - if any - completely transferred to the aggregated packet */
4381 	skb->destructor = NULL;
4382 	delta_truesize = skb->truesize;
4383 	if (offset > headlen) {
4384 		unsigned int eat = offset - headlen;
4385 
4386 		skb_frag_off_add(&skbinfo->frags[0], eat);
4387 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4388 		skb->data_len -= eat;
4389 		skb->len -= eat;
4390 		offset = headlen;
4391 	}
4392 
4393 	__skb_pull(skb, offset);
4394 
4395 	if (NAPI_GRO_CB(p)->last == p)
4396 		skb_shinfo(p)->frag_list = skb;
4397 	else
4398 		NAPI_GRO_CB(p)->last->next = skb;
4399 	NAPI_GRO_CB(p)->last = skb;
4400 	__skb_header_release(skb);
4401 	lp = p;
4402 
4403 done:
4404 	NAPI_GRO_CB(p)->count++;
4405 	p->data_len += len;
4406 	p->truesize += delta_truesize;
4407 	p->len += len;
4408 	if (lp != p) {
4409 		lp->data_len += len;
4410 		lp->truesize += delta_truesize;
4411 		lp->len += len;
4412 	}
4413 	NAPI_GRO_CB(skb)->same_flow = 1;
4414 	return 0;
4415 }
4416 
4417 #ifdef CONFIG_SKB_EXTENSIONS
4418 #define SKB_EXT_ALIGN_VALUE	8
4419 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4420 
4421 static const u8 skb_ext_type_len[] = {
4422 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4423 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4424 #endif
4425 #ifdef CONFIG_XFRM
4426 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4427 #endif
4428 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4429 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4430 #endif
4431 #if IS_ENABLED(CONFIG_MPTCP)
4432 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4433 #endif
4434 };
4435 
4436 static __always_inline unsigned int skb_ext_total_length(void)
4437 {
4438 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4439 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4440 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4441 #endif
4442 #ifdef CONFIG_XFRM
4443 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4444 #endif
4445 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4446 		skb_ext_type_len[TC_SKB_EXT] +
4447 #endif
4448 #if IS_ENABLED(CONFIG_MPTCP)
4449 		skb_ext_type_len[SKB_EXT_MPTCP] +
4450 #endif
4451 		0;
4452 }
4453 
4454 static void skb_extensions_init(void)
4455 {
4456 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4457 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4458 
4459 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4460 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4461 					     0,
4462 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4463 					     NULL);
4464 }
4465 #else
4466 static void skb_extensions_init(void) {}
4467 #endif
4468 
4469 void __init skb_init(void)
4470 {
4471 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4472 					      sizeof(struct sk_buff),
4473 					      0,
4474 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4475 					      offsetof(struct sk_buff, cb),
4476 					      sizeof_field(struct sk_buff, cb),
4477 					      NULL);
4478 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4479 						sizeof(struct sk_buff_fclones),
4480 						0,
4481 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4482 						NULL);
4483 	skb_extensions_init();
4484 }
4485 
4486 static int
4487 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4488 	       unsigned int recursion_level)
4489 {
4490 	int start = skb_headlen(skb);
4491 	int i, copy = start - offset;
4492 	struct sk_buff *frag_iter;
4493 	int elt = 0;
4494 
4495 	if (unlikely(recursion_level >= 24))
4496 		return -EMSGSIZE;
4497 
4498 	if (copy > 0) {
4499 		if (copy > len)
4500 			copy = len;
4501 		sg_set_buf(sg, skb->data + offset, copy);
4502 		elt++;
4503 		if ((len -= copy) == 0)
4504 			return elt;
4505 		offset += copy;
4506 	}
4507 
4508 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4509 		int end;
4510 
4511 		WARN_ON(start > offset + len);
4512 
4513 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4514 		if ((copy = end - offset) > 0) {
4515 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4516 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4517 				return -EMSGSIZE;
4518 
4519 			if (copy > len)
4520 				copy = len;
4521 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4522 				    skb_frag_off(frag) + offset - start);
4523 			elt++;
4524 			if (!(len -= copy))
4525 				return elt;
4526 			offset += copy;
4527 		}
4528 		start = end;
4529 	}
4530 
4531 	skb_walk_frags(skb, frag_iter) {
4532 		int end, ret;
4533 
4534 		WARN_ON(start > offset + len);
4535 
4536 		end = start + frag_iter->len;
4537 		if ((copy = end - offset) > 0) {
4538 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4539 				return -EMSGSIZE;
4540 
4541 			if (copy > len)
4542 				copy = len;
4543 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4544 					      copy, recursion_level + 1);
4545 			if (unlikely(ret < 0))
4546 				return ret;
4547 			elt += ret;
4548 			if ((len -= copy) == 0)
4549 				return elt;
4550 			offset += copy;
4551 		}
4552 		start = end;
4553 	}
4554 	BUG_ON(len);
4555 	return elt;
4556 }
4557 
4558 /**
4559  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4560  *	@skb: Socket buffer containing the buffers to be mapped
4561  *	@sg: The scatter-gather list to map into
4562  *	@offset: The offset into the buffer's contents to start mapping
4563  *	@len: Length of buffer space to be mapped
4564  *
4565  *	Fill the specified scatter-gather list with mappings/pointers into a
4566  *	region of the buffer space attached to a socket buffer. Returns either
4567  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4568  *	could not fit.
4569  */
4570 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4571 {
4572 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4573 
4574 	if (nsg <= 0)
4575 		return nsg;
4576 
4577 	sg_mark_end(&sg[nsg - 1]);
4578 
4579 	return nsg;
4580 }
4581 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4582 
4583 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4584  * sglist without mark the sg which contain last skb data as the end.
4585  * So the caller can mannipulate sg list as will when padding new data after
4586  * the first call without calling sg_unmark_end to expend sg list.
4587  *
4588  * Scenario to use skb_to_sgvec_nomark:
4589  * 1. sg_init_table
4590  * 2. skb_to_sgvec_nomark(payload1)
4591  * 3. skb_to_sgvec_nomark(payload2)
4592  *
4593  * This is equivalent to:
4594  * 1. sg_init_table
4595  * 2. skb_to_sgvec(payload1)
4596  * 3. sg_unmark_end
4597  * 4. skb_to_sgvec(payload2)
4598  *
4599  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4600  * is more preferable.
4601  */
4602 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4603 			int offset, int len)
4604 {
4605 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4606 }
4607 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4608 
4609 
4610 
4611 /**
4612  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4613  *	@skb: The socket buffer to check.
4614  *	@tailbits: Amount of trailing space to be added
4615  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4616  *
4617  *	Make sure that the data buffers attached to a socket buffer are
4618  *	writable. If they are not, private copies are made of the data buffers
4619  *	and the socket buffer is set to use these instead.
4620  *
4621  *	If @tailbits is given, make sure that there is space to write @tailbits
4622  *	bytes of data beyond current end of socket buffer.  @trailer will be
4623  *	set to point to the skb in which this space begins.
4624  *
4625  *	The number of scatterlist elements required to completely map the
4626  *	COW'd and extended socket buffer will be returned.
4627  */
4628 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4629 {
4630 	int copyflag;
4631 	int elt;
4632 	struct sk_buff *skb1, **skb_p;
4633 
4634 	/* If skb is cloned or its head is paged, reallocate
4635 	 * head pulling out all the pages (pages are considered not writable
4636 	 * at the moment even if they are anonymous).
4637 	 */
4638 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4639 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4640 		return -ENOMEM;
4641 
4642 	/* Easy case. Most of packets will go this way. */
4643 	if (!skb_has_frag_list(skb)) {
4644 		/* A little of trouble, not enough of space for trailer.
4645 		 * This should not happen, when stack is tuned to generate
4646 		 * good frames. OK, on miss we reallocate and reserve even more
4647 		 * space, 128 bytes is fair. */
4648 
4649 		if (skb_tailroom(skb) < tailbits &&
4650 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4651 			return -ENOMEM;
4652 
4653 		/* Voila! */
4654 		*trailer = skb;
4655 		return 1;
4656 	}
4657 
4658 	/* Misery. We are in troubles, going to mincer fragments... */
4659 
4660 	elt = 1;
4661 	skb_p = &skb_shinfo(skb)->frag_list;
4662 	copyflag = 0;
4663 
4664 	while ((skb1 = *skb_p) != NULL) {
4665 		int ntail = 0;
4666 
4667 		/* The fragment is partially pulled by someone,
4668 		 * this can happen on input. Copy it and everything
4669 		 * after it. */
4670 
4671 		if (skb_shared(skb1))
4672 			copyflag = 1;
4673 
4674 		/* If the skb is the last, worry about trailer. */
4675 
4676 		if (skb1->next == NULL && tailbits) {
4677 			if (skb_shinfo(skb1)->nr_frags ||
4678 			    skb_has_frag_list(skb1) ||
4679 			    skb_tailroom(skb1) < tailbits)
4680 				ntail = tailbits + 128;
4681 		}
4682 
4683 		if (copyflag ||
4684 		    skb_cloned(skb1) ||
4685 		    ntail ||
4686 		    skb_shinfo(skb1)->nr_frags ||
4687 		    skb_has_frag_list(skb1)) {
4688 			struct sk_buff *skb2;
4689 
4690 			/* Fuck, we are miserable poor guys... */
4691 			if (ntail == 0)
4692 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4693 			else
4694 				skb2 = skb_copy_expand(skb1,
4695 						       skb_headroom(skb1),
4696 						       ntail,
4697 						       GFP_ATOMIC);
4698 			if (unlikely(skb2 == NULL))
4699 				return -ENOMEM;
4700 
4701 			if (skb1->sk)
4702 				skb_set_owner_w(skb2, skb1->sk);
4703 
4704 			/* Looking around. Are we still alive?
4705 			 * OK, link new skb, drop old one */
4706 
4707 			skb2->next = skb1->next;
4708 			*skb_p = skb2;
4709 			kfree_skb(skb1);
4710 			skb1 = skb2;
4711 		}
4712 		elt++;
4713 		*trailer = skb1;
4714 		skb_p = &skb1->next;
4715 	}
4716 
4717 	return elt;
4718 }
4719 EXPORT_SYMBOL_GPL(skb_cow_data);
4720 
4721 static void sock_rmem_free(struct sk_buff *skb)
4722 {
4723 	struct sock *sk = skb->sk;
4724 
4725 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4726 }
4727 
4728 static void skb_set_err_queue(struct sk_buff *skb)
4729 {
4730 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4731 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4732 	 */
4733 	skb->pkt_type = PACKET_OUTGOING;
4734 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4735 }
4736 
4737 /*
4738  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4739  */
4740 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4741 {
4742 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4743 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4744 		return -ENOMEM;
4745 
4746 	skb_orphan(skb);
4747 	skb->sk = sk;
4748 	skb->destructor = sock_rmem_free;
4749 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4750 	skb_set_err_queue(skb);
4751 
4752 	/* before exiting rcu section, make sure dst is refcounted */
4753 	skb_dst_force(skb);
4754 
4755 	skb_queue_tail(&sk->sk_error_queue, skb);
4756 	if (!sock_flag(sk, SOCK_DEAD))
4757 		sk_error_report(sk);
4758 	return 0;
4759 }
4760 EXPORT_SYMBOL(sock_queue_err_skb);
4761 
4762 static bool is_icmp_err_skb(const struct sk_buff *skb)
4763 {
4764 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4765 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4766 }
4767 
4768 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4769 {
4770 	struct sk_buff_head *q = &sk->sk_error_queue;
4771 	struct sk_buff *skb, *skb_next = NULL;
4772 	bool icmp_next = false;
4773 	unsigned long flags;
4774 
4775 	spin_lock_irqsave(&q->lock, flags);
4776 	skb = __skb_dequeue(q);
4777 	if (skb && (skb_next = skb_peek(q))) {
4778 		icmp_next = is_icmp_err_skb(skb_next);
4779 		if (icmp_next)
4780 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4781 	}
4782 	spin_unlock_irqrestore(&q->lock, flags);
4783 
4784 	if (is_icmp_err_skb(skb) && !icmp_next)
4785 		sk->sk_err = 0;
4786 
4787 	if (skb_next)
4788 		sk_error_report(sk);
4789 
4790 	return skb;
4791 }
4792 EXPORT_SYMBOL(sock_dequeue_err_skb);
4793 
4794 /**
4795  * skb_clone_sk - create clone of skb, and take reference to socket
4796  * @skb: the skb to clone
4797  *
4798  * This function creates a clone of a buffer that holds a reference on
4799  * sk_refcnt.  Buffers created via this function are meant to be
4800  * returned using sock_queue_err_skb, or free via kfree_skb.
4801  *
4802  * When passing buffers allocated with this function to sock_queue_err_skb
4803  * it is necessary to wrap the call with sock_hold/sock_put in order to
4804  * prevent the socket from being released prior to being enqueued on
4805  * the sk_error_queue.
4806  */
4807 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4808 {
4809 	struct sock *sk = skb->sk;
4810 	struct sk_buff *clone;
4811 
4812 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4813 		return NULL;
4814 
4815 	clone = skb_clone(skb, GFP_ATOMIC);
4816 	if (!clone) {
4817 		sock_put(sk);
4818 		return NULL;
4819 	}
4820 
4821 	clone->sk = sk;
4822 	clone->destructor = sock_efree;
4823 
4824 	return clone;
4825 }
4826 EXPORT_SYMBOL(skb_clone_sk);
4827 
4828 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4829 					struct sock *sk,
4830 					int tstype,
4831 					bool opt_stats)
4832 {
4833 	struct sock_exterr_skb *serr;
4834 	int err;
4835 
4836 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4837 
4838 	serr = SKB_EXT_ERR(skb);
4839 	memset(serr, 0, sizeof(*serr));
4840 	serr->ee.ee_errno = ENOMSG;
4841 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4842 	serr->ee.ee_info = tstype;
4843 	serr->opt_stats = opt_stats;
4844 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4845 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4846 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4847 		if (sk->sk_protocol == IPPROTO_TCP &&
4848 		    sk->sk_type == SOCK_STREAM)
4849 			serr->ee.ee_data -= sk->sk_tskey;
4850 	}
4851 
4852 	err = sock_queue_err_skb(sk, skb);
4853 
4854 	if (err)
4855 		kfree_skb(skb);
4856 }
4857 
4858 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4859 {
4860 	bool ret;
4861 
4862 	if (likely(sysctl_tstamp_allow_data || tsonly))
4863 		return true;
4864 
4865 	read_lock_bh(&sk->sk_callback_lock);
4866 	ret = sk->sk_socket && sk->sk_socket->file &&
4867 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4868 	read_unlock_bh(&sk->sk_callback_lock);
4869 	return ret;
4870 }
4871 
4872 void skb_complete_tx_timestamp(struct sk_buff *skb,
4873 			       struct skb_shared_hwtstamps *hwtstamps)
4874 {
4875 	struct sock *sk = skb->sk;
4876 
4877 	if (!skb_may_tx_timestamp(sk, false))
4878 		goto err;
4879 
4880 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4881 	 * but only if the socket refcount is not zero.
4882 	 */
4883 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4884 		*skb_hwtstamps(skb) = *hwtstamps;
4885 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4886 		sock_put(sk);
4887 		return;
4888 	}
4889 
4890 err:
4891 	kfree_skb(skb);
4892 }
4893 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4894 
4895 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4896 		     const struct sk_buff *ack_skb,
4897 		     struct skb_shared_hwtstamps *hwtstamps,
4898 		     struct sock *sk, int tstype)
4899 {
4900 	struct sk_buff *skb;
4901 	bool tsonly, opt_stats = false;
4902 
4903 	if (!sk)
4904 		return;
4905 
4906 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4907 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4908 		return;
4909 
4910 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4911 	if (!skb_may_tx_timestamp(sk, tsonly))
4912 		return;
4913 
4914 	if (tsonly) {
4915 #ifdef CONFIG_INET
4916 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4917 		    sk->sk_protocol == IPPROTO_TCP &&
4918 		    sk->sk_type == SOCK_STREAM) {
4919 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4920 							     ack_skb);
4921 			opt_stats = true;
4922 		} else
4923 #endif
4924 			skb = alloc_skb(0, GFP_ATOMIC);
4925 	} else {
4926 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4927 	}
4928 	if (!skb)
4929 		return;
4930 
4931 	if (tsonly) {
4932 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4933 					     SKBTX_ANY_TSTAMP;
4934 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4935 	}
4936 
4937 	if (hwtstamps)
4938 		*skb_hwtstamps(skb) = *hwtstamps;
4939 	else
4940 		skb->tstamp = ktime_get_real();
4941 
4942 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4943 }
4944 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4945 
4946 void skb_tstamp_tx(struct sk_buff *orig_skb,
4947 		   struct skb_shared_hwtstamps *hwtstamps)
4948 {
4949 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4950 			       SCM_TSTAMP_SND);
4951 }
4952 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4953 
4954 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4955 {
4956 	struct sock *sk = skb->sk;
4957 	struct sock_exterr_skb *serr;
4958 	int err = 1;
4959 
4960 	skb->wifi_acked_valid = 1;
4961 	skb->wifi_acked = acked;
4962 
4963 	serr = SKB_EXT_ERR(skb);
4964 	memset(serr, 0, sizeof(*serr));
4965 	serr->ee.ee_errno = ENOMSG;
4966 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4967 
4968 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4969 	 * but only if the socket refcount is not zero.
4970 	 */
4971 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4972 		err = sock_queue_err_skb(sk, skb);
4973 		sock_put(sk);
4974 	}
4975 	if (err)
4976 		kfree_skb(skb);
4977 }
4978 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4979 
4980 /**
4981  * skb_partial_csum_set - set up and verify partial csum values for packet
4982  * @skb: the skb to set
4983  * @start: the number of bytes after skb->data to start checksumming.
4984  * @off: the offset from start to place the checksum.
4985  *
4986  * For untrusted partially-checksummed packets, we need to make sure the values
4987  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4988  *
4989  * This function checks and sets those values and skb->ip_summed: if this
4990  * returns false you should drop the packet.
4991  */
4992 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4993 {
4994 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4995 	u32 csum_start = skb_headroom(skb) + (u32)start;
4996 
4997 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4998 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4999 				     start, off, skb_headroom(skb), skb_headlen(skb));
5000 		return false;
5001 	}
5002 	skb->ip_summed = CHECKSUM_PARTIAL;
5003 	skb->csum_start = csum_start;
5004 	skb->csum_offset = off;
5005 	skb_set_transport_header(skb, start);
5006 	return true;
5007 }
5008 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5009 
5010 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5011 			       unsigned int max)
5012 {
5013 	if (skb_headlen(skb) >= len)
5014 		return 0;
5015 
5016 	/* If we need to pullup then pullup to the max, so we
5017 	 * won't need to do it again.
5018 	 */
5019 	if (max > skb->len)
5020 		max = skb->len;
5021 
5022 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5023 		return -ENOMEM;
5024 
5025 	if (skb_headlen(skb) < len)
5026 		return -EPROTO;
5027 
5028 	return 0;
5029 }
5030 
5031 #define MAX_TCP_HDR_LEN (15 * 4)
5032 
5033 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5034 				      typeof(IPPROTO_IP) proto,
5035 				      unsigned int off)
5036 {
5037 	int err;
5038 
5039 	switch (proto) {
5040 	case IPPROTO_TCP:
5041 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5042 					  off + MAX_TCP_HDR_LEN);
5043 		if (!err && !skb_partial_csum_set(skb, off,
5044 						  offsetof(struct tcphdr,
5045 							   check)))
5046 			err = -EPROTO;
5047 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5048 
5049 	case IPPROTO_UDP:
5050 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5051 					  off + sizeof(struct udphdr));
5052 		if (!err && !skb_partial_csum_set(skb, off,
5053 						  offsetof(struct udphdr,
5054 							   check)))
5055 			err = -EPROTO;
5056 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5057 	}
5058 
5059 	return ERR_PTR(-EPROTO);
5060 }
5061 
5062 /* This value should be large enough to cover a tagged ethernet header plus
5063  * maximally sized IP and TCP or UDP headers.
5064  */
5065 #define MAX_IP_HDR_LEN 128
5066 
5067 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5068 {
5069 	unsigned int off;
5070 	bool fragment;
5071 	__sum16 *csum;
5072 	int err;
5073 
5074 	fragment = false;
5075 
5076 	err = skb_maybe_pull_tail(skb,
5077 				  sizeof(struct iphdr),
5078 				  MAX_IP_HDR_LEN);
5079 	if (err < 0)
5080 		goto out;
5081 
5082 	if (ip_is_fragment(ip_hdr(skb)))
5083 		fragment = true;
5084 
5085 	off = ip_hdrlen(skb);
5086 
5087 	err = -EPROTO;
5088 
5089 	if (fragment)
5090 		goto out;
5091 
5092 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5093 	if (IS_ERR(csum))
5094 		return PTR_ERR(csum);
5095 
5096 	if (recalculate)
5097 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5098 					   ip_hdr(skb)->daddr,
5099 					   skb->len - off,
5100 					   ip_hdr(skb)->protocol, 0);
5101 	err = 0;
5102 
5103 out:
5104 	return err;
5105 }
5106 
5107 /* This value should be large enough to cover a tagged ethernet header plus
5108  * an IPv6 header, all options, and a maximal TCP or UDP header.
5109  */
5110 #define MAX_IPV6_HDR_LEN 256
5111 
5112 #define OPT_HDR(type, skb, off) \
5113 	(type *)(skb_network_header(skb) + (off))
5114 
5115 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5116 {
5117 	int err;
5118 	u8 nexthdr;
5119 	unsigned int off;
5120 	unsigned int len;
5121 	bool fragment;
5122 	bool done;
5123 	__sum16 *csum;
5124 
5125 	fragment = false;
5126 	done = false;
5127 
5128 	off = sizeof(struct ipv6hdr);
5129 
5130 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5131 	if (err < 0)
5132 		goto out;
5133 
5134 	nexthdr = ipv6_hdr(skb)->nexthdr;
5135 
5136 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5137 	while (off <= len && !done) {
5138 		switch (nexthdr) {
5139 		case IPPROTO_DSTOPTS:
5140 		case IPPROTO_HOPOPTS:
5141 		case IPPROTO_ROUTING: {
5142 			struct ipv6_opt_hdr *hp;
5143 
5144 			err = skb_maybe_pull_tail(skb,
5145 						  off +
5146 						  sizeof(struct ipv6_opt_hdr),
5147 						  MAX_IPV6_HDR_LEN);
5148 			if (err < 0)
5149 				goto out;
5150 
5151 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5152 			nexthdr = hp->nexthdr;
5153 			off += ipv6_optlen(hp);
5154 			break;
5155 		}
5156 		case IPPROTO_AH: {
5157 			struct ip_auth_hdr *hp;
5158 
5159 			err = skb_maybe_pull_tail(skb,
5160 						  off +
5161 						  sizeof(struct ip_auth_hdr),
5162 						  MAX_IPV6_HDR_LEN);
5163 			if (err < 0)
5164 				goto out;
5165 
5166 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5167 			nexthdr = hp->nexthdr;
5168 			off += ipv6_authlen(hp);
5169 			break;
5170 		}
5171 		case IPPROTO_FRAGMENT: {
5172 			struct frag_hdr *hp;
5173 
5174 			err = skb_maybe_pull_tail(skb,
5175 						  off +
5176 						  sizeof(struct frag_hdr),
5177 						  MAX_IPV6_HDR_LEN);
5178 			if (err < 0)
5179 				goto out;
5180 
5181 			hp = OPT_HDR(struct frag_hdr, skb, off);
5182 
5183 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5184 				fragment = true;
5185 
5186 			nexthdr = hp->nexthdr;
5187 			off += sizeof(struct frag_hdr);
5188 			break;
5189 		}
5190 		default:
5191 			done = true;
5192 			break;
5193 		}
5194 	}
5195 
5196 	err = -EPROTO;
5197 
5198 	if (!done || fragment)
5199 		goto out;
5200 
5201 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5202 	if (IS_ERR(csum))
5203 		return PTR_ERR(csum);
5204 
5205 	if (recalculate)
5206 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5207 					 &ipv6_hdr(skb)->daddr,
5208 					 skb->len - off, nexthdr, 0);
5209 	err = 0;
5210 
5211 out:
5212 	return err;
5213 }
5214 
5215 /**
5216  * skb_checksum_setup - set up partial checksum offset
5217  * @skb: the skb to set up
5218  * @recalculate: if true the pseudo-header checksum will be recalculated
5219  */
5220 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5221 {
5222 	int err;
5223 
5224 	switch (skb->protocol) {
5225 	case htons(ETH_P_IP):
5226 		err = skb_checksum_setup_ipv4(skb, recalculate);
5227 		break;
5228 
5229 	case htons(ETH_P_IPV6):
5230 		err = skb_checksum_setup_ipv6(skb, recalculate);
5231 		break;
5232 
5233 	default:
5234 		err = -EPROTO;
5235 		break;
5236 	}
5237 
5238 	return err;
5239 }
5240 EXPORT_SYMBOL(skb_checksum_setup);
5241 
5242 /**
5243  * skb_checksum_maybe_trim - maybe trims the given skb
5244  * @skb: the skb to check
5245  * @transport_len: the data length beyond the network header
5246  *
5247  * Checks whether the given skb has data beyond the given transport length.
5248  * If so, returns a cloned skb trimmed to this transport length.
5249  * Otherwise returns the provided skb. Returns NULL in error cases
5250  * (e.g. transport_len exceeds skb length or out-of-memory).
5251  *
5252  * Caller needs to set the skb transport header and free any returned skb if it
5253  * differs from the provided skb.
5254  */
5255 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5256 					       unsigned int transport_len)
5257 {
5258 	struct sk_buff *skb_chk;
5259 	unsigned int len = skb_transport_offset(skb) + transport_len;
5260 	int ret;
5261 
5262 	if (skb->len < len)
5263 		return NULL;
5264 	else if (skb->len == len)
5265 		return skb;
5266 
5267 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5268 	if (!skb_chk)
5269 		return NULL;
5270 
5271 	ret = pskb_trim_rcsum(skb_chk, len);
5272 	if (ret) {
5273 		kfree_skb(skb_chk);
5274 		return NULL;
5275 	}
5276 
5277 	return skb_chk;
5278 }
5279 
5280 /**
5281  * skb_checksum_trimmed - validate checksum of an skb
5282  * @skb: the skb to check
5283  * @transport_len: the data length beyond the network header
5284  * @skb_chkf: checksum function to use
5285  *
5286  * Applies the given checksum function skb_chkf to the provided skb.
5287  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5288  *
5289  * If the skb has data beyond the given transport length, then a
5290  * trimmed & cloned skb is checked and returned.
5291  *
5292  * Caller needs to set the skb transport header and free any returned skb if it
5293  * differs from the provided skb.
5294  */
5295 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5296 				     unsigned int transport_len,
5297 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5298 {
5299 	struct sk_buff *skb_chk;
5300 	unsigned int offset = skb_transport_offset(skb);
5301 	__sum16 ret;
5302 
5303 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5304 	if (!skb_chk)
5305 		goto err;
5306 
5307 	if (!pskb_may_pull(skb_chk, offset))
5308 		goto err;
5309 
5310 	skb_pull_rcsum(skb_chk, offset);
5311 	ret = skb_chkf(skb_chk);
5312 	skb_push_rcsum(skb_chk, offset);
5313 
5314 	if (ret)
5315 		goto err;
5316 
5317 	return skb_chk;
5318 
5319 err:
5320 	if (skb_chk && skb_chk != skb)
5321 		kfree_skb(skb_chk);
5322 
5323 	return NULL;
5324 
5325 }
5326 EXPORT_SYMBOL(skb_checksum_trimmed);
5327 
5328 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5329 {
5330 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5331 			     skb->dev->name);
5332 }
5333 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5334 
5335 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5336 {
5337 	if (head_stolen) {
5338 		skb_release_head_state(skb);
5339 		kmem_cache_free(skbuff_head_cache, skb);
5340 	} else {
5341 		__kfree_skb(skb);
5342 	}
5343 }
5344 EXPORT_SYMBOL(kfree_skb_partial);
5345 
5346 /**
5347  * skb_try_coalesce - try to merge skb to prior one
5348  * @to: prior buffer
5349  * @from: buffer to add
5350  * @fragstolen: pointer to boolean
5351  * @delta_truesize: how much more was allocated than was requested
5352  */
5353 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5354 		      bool *fragstolen, int *delta_truesize)
5355 {
5356 	struct skb_shared_info *to_shinfo, *from_shinfo;
5357 	int i, delta, len = from->len;
5358 
5359 	*fragstolen = false;
5360 
5361 	if (skb_cloned(to))
5362 		return false;
5363 
5364 	/* The page pool signature of struct page will eventually figure out
5365 	 * which pages can be recycled or not but for now let's prohibit slab
5366 	 * allocated and page_pool allocated SKBs from being coalesced.
5367 	 */
5368 	if (to->pp_recycle != from->pp_recycle)
5369 		return false;
5370 
5371 	if (len <= skb_tailroom(to)) {
5372 		if (len)
5373 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5374 		*delta_truesize = 0;
5375 		return true;
5376 	}
5377 
5378 	to_shinfo = skb_shinfo(to);
5379 	from_shinfo = skb_shinfo(from);
5380 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5381 		return false;
5382 	if (skb_zcopy(to) || skb_zcopy(from))
5383 		return false;
5384 
5385 	if (skb_headlen(from) != 0) {
5386 		struct page *page;
5387 		unsigned int offset;
5388 
5389 		if (to_shinfo->nr_frags +
5390 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5391 			return false;
5392 
5393 		if (skb_head_is_locked(from))
5394 			return false;
5395 
5396 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5397 
5398 		page = virt_to_head_page(from->head);
5399 		offset = from->data - (unsigned char *)page_address(page);
5400 
5401 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5402 				   page, offset, skb_headlen(from));
5403 		*fragstolen = true;
5404 	} else {
5405 		if (to_shinfo->nr_frags +
5406 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5407 			return false;
5408 
5409 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5410 	}
5411 
5412 	WARN_ON_ONCE(delta < len);
5413 
5414 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5415 	       from_shinfo->frags,
5416 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5417 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5418 
5419 	if (!skb_cloned(from))
5420 		from_shinfo->nr_frags = 0;
5421 
5422 	/* if the skb is not cloned this does nothing
5423 	 * since we set nr_frags to 0.
5424 	 */
5425 	for (i = 0; i < from_shinfo->nr_frags; i++)
5426 		__skb_frag_ref(&from_shinfo->frags[i]);
5427 
5428 	to->truesize += delta;
5429 	to->len += len;
5430 	to->data_len += len;
5431 
5432 	*delta_truesize = delta;
5433 	return true;
5434 }
5435 EXPORT_SYMBOL(skb_try_coalesce);
5436 
5437 /**
5438  * skb_scrub_packet - scrub an skb
5439  *
5440  * @skb: buffer to clean
5441  * @xnet: packet is crossing netns
5442  *
5443  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5444  * into/from a tunnel. Some information have to be cleared during these
5445  * operations.
5446  * skb_scrub_packet can also be used to clean a skb before injecting it in
5447  * another namespace (@xnet == true). We have to clear all information in the
5448  * skb that could impact namespace isolation.
5449  */
5450 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5451 {
5452 	skb->pkt_type = PACKET_HOST;
5453 	skb->skb_iif = 0;
5454 	skb->ignore_df = 0;
5455 	skb_dst_drop(skb);
5456 	skb_ext_reset(skb);
5457 	nf_reset_ct(skb);
5458 	nf_reset_trace(skb);
5459 
5460 #ifdef CONFIG_NET_SWITCHDEV
5461 	skb->offload_fwd_mark = 0;
5462 	skb->offload_l3_fwd_mark = 0;
5463 #endif
5464 
5465 	if (!xnet)
5466 		return;
5467 
5468 	ipvs_reset(skb);
5469 	skb->mark = 0;
5470 	skb->tstamp = 0;
5471 }
5472 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5473 
5474 /**
5475  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5476  *
5477  * @skb: GSO skb
5478  *
5479  * skb_gso_transport_seglen is used to determine the real size of the
5480  * individual segments, including Layer4 headers (TCP/UDP).
5481  *
5482  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5483  */
5484 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5485 {
5486 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5487 	unsigned int thlen = 0;
5488 
5489 	if (skb->encapsulation) {
5490 		thlen = skb_inner_transport_header(skb) -
5491 			skb_transport_header(skb);
5492 
5493 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5494 			thlen += inner_tcp_hdrlen(skb);
5495 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5496 		thlen = tcp_hdrlen(skb);
5497 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5498 		thlen = sizeof(struct sctphdr);
5499 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5500 		thlen = sizeof(struct udphdr);
5501 	}
5502 	/* UFO sets gso_size to the size of the fragmentation
5503 	 * payload, i.e. the size of the L4 (UDP) header is already
5504 	 * accounted for.
5505 	 */
5506 	return thlen + shinfo->gso_size;
5507 }
5508 
5509 /**
5510  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5511  *
5512  * @skb: GSO skb
5513  *
5514  * skb_gso_network_seglen is used to determine the real size of the
5515  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5516  *
5517  * The MAC/L2 header is not accounted for.
5518  */
5519 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5520 {
5521 	unsigned int hdr_len = skb_transport_header(skb) -
5522 			       skb_network_header(skb);
5523 
5524 	return hdr_len + skb_gso_transport_seglen(skb);
5525 }
5526 
5527 /**
5528  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5529  *
5530  * @skb: GSO skb
5531  *
5532  * skb_gso_mac_seglen is used to determine the real size of the
5533  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5534  * headers (TCP/UDP).
5535  */
5536 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5537 {
5538 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5539 
5540 	return hdr_len + skb_gso_transport_seglen(skb);
5541 }
5542 
5543 /**
5544  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5545  *
5546  * There are a couple of instances where we have a GSO skb, and we
5547  * want to determine what size it would be after it is segmented.
5548  *
5549  * We might want to check:
5550  * -    L3+L4+payload size (e.g. IP forwarding)
5551  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5552  *
5553  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5554  *
5555  * @skb: GSO skb
5556  *
5557  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5558  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5559  *
5560  * @max_len: The maximum permissible length.
5561  *
5562  * Returns true if the segmented length <= max length.
5563  */
5564 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5565 				      unsigned int seg_len,
5566 				      unsigned int max_len) {
5567 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5568 	const struct sk_buff *iter;
5569 
5570 	if (shinfo->gso_size != GSO_BY_FRAGS)
5571 		return seg_len <= max_len;
5572 
5573 	/* Undo this so we can re-use header sizes */
5574 	seg_len -= GSO_BY_FRAGS;
5575 
5576 	skb_walk_frags(skb, iter) {
5577 		if (seg_len + skb_headlen(iter) > max_len)
5578 			return false;
5579 	}
5580 
5581 	return true;
5582 }
5583 
5584 /**
5585  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5586  *
5587  * @skb: GSO skb
5588  * @mtu: MTU to validate against
5589  *
5590  * skb_gso_validate_network_len validates if a given skb will fit a
5591  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5592  * payload.
5593  */
5594 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5595 {
5596 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5597 }
5598 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5599 
5600 /**
5601  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5602  *
5603  * @skb: GSO skb
5604  * @len: length to validate against
5605  *
5606  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5607  * length once split, including L2, L3 and L4 headers and the payload.
5608  */
5609 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5610 {
5611 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5612 }
5613 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5614 
5615 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5616 {
5617 	int mac_len, meta_len;
5618 	void *meta;
5619 
5620 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5621 		kfree_skb(skb);
5622 		return NULL;
5623 	}
5624 
5625 	mac_len = skb->data - skb_mac_header(skb);
5626 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5627 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5628 			mac_len - VLAN_HLEN - ETH_TLEN);
5629 	}
5630 
5631 	meta_len = skb_metadata_len(skb);
5632 	if (meta_len) {
5633 		meta = skb_metadata_end(skb) - meta_len;
5634 		memmove(meta + VLAN_HLEN, meta, meta_len);
5635 	}
5636 
5637 	skb->mac_header += VLAN_HLEN;
5638 	return skb;
5639 }
5640 
5641 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5642 {
5643 	struct vlan_hdr *vhdr;
5644 	u16 vlan_tci;
5645 
5646 	if (unlikely(skb_vlan_tag_present(skb))) {
5647 		/* vlan_tci is already set-up so leave this for another time */
5648 		return skb;
5649 	}
5650 
5651 	skb = skb_share_check(skb, GFP_ATOMIC);
5652 	if (unlikely(!skb))
5653 		goto err_free;
5654 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5655 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5656 		goto err_free;
5657 
5658 	vhdr = (struct vlan_hdr *)skb->data;
5659 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5660 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5661 
5662 	skb_pull_rcsum(skb, VLAN_HLEN);
5663 	vlan_set_encap_proto(skb, vhdr);
5664 
5665 	skb = skb_reorder_vlan_header(skb);
5666 	if (unlikely(!skb))
5667 		goto err_free;
5668 
5669 	skb_reset_network_header(skb);
5670 	if (!skb_transport_header_was_set(skb))
5671 		skb_reset_transport_header(skb);
5672 	skb_reset_mac_len(skb);
5673 
5674 	return skb;
5675 
5676 err_free:
5677 	kfree_skb(skb);
5678 	return NULL;
5679 }
5680 EXPORT_SYMBOL(skb_vlan_untag);
5681 
5682 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5683 {
5684 	if (!pskb_may_pull(skb, write_len))
5685 		return -ENOMEM;
5686 
5687 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5688 		return 0;
5689 
5690 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5691 }
5692 EXPORT_SYMBOL(skb_ensure_writable);
5693 
5694 /* remove VLAN header from packet and update csum accordingly.
5695  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5696  */
5697 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5698 {
5699 	struct vlan_hdr *vhdr;
5700 	int offset = skb->data - skb_mac_header(skb);
5701 	int err;
5702 
5703 	if (WARN_ONCE(offset,
5704 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5705 		      offset)) {
5706 		return -EINVAL;
5707 	}
5708 
5709 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5710 	if (unlikely(err))
5711 		return err;
5712 
5713 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5714 
5715 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5716 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5717 
5718 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5719 	__skb_pull(skb, VLAN_HLEN);
5720 
5721 	vlan_set_encap_proto(skb, vhdr);
5722 	skb->mac_header += VLAN_HLEN;
5723 
5724 	if (skb_network_offset(skb) < ETH_HLEN)
5725 		skb_set_network_header(skb, ETH_HLEN);
5726 
5727 	skb_reset_mac_len(skb);
5728 
5729 	return err;
5730 }
5731 EXPORT_SYMBOL(__skb_vlan_pop);
5732 
5733 /* Pop a vlan tag either from hwaccel or from payload.
5734  * Expects skb->data at mac header.
5735  */
5736 int skb_vlan_pop(struct sk_buff *skb)
5737 {
5738 	u16 vlan_tci;
5739 	__be16 vlan_proto;
5740 	int err;
5741 
5742 	if (likely(skb_vlan_tag_present(skb))) {
5743 		__vlan_hwaccel_clear_tag(skb);
5744 	} else {
5745 		if (unlikely(!eth_type_vlan(skb->protocol)))
5746 			return 0;
5747 
5748 		err = __skb_vlan_pop(skb, &vlan_tci);
5749 		if (err)
5750 			return err;
5751 	}
5752 	/* move next vlan tag to hw accel tag */
5753 	if (likely(!eth_type_vlan(skb->protocol)))
5754 		return 0;
5755 
5756 	vlan_proto = skb->protocol;
5757 	err = __skb_vlan_pop(skb, &vlan_tci);
5758 	if (unlikely(err))
5759 		return err;
5760 
5761 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5762 	return 0;
5763 }
5764 EXPORT_SYMBOL(skb_vlan_pop);
5765 
5766 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5767  * Expects skb->data at mac header.
5768  */
5769 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5770 {
5771 	if (skb_vlan_tag_present(skb)) {
5772 		int offset = skb->data - skb_mac_header(skb);
5773 		int err;
5774 
5775 		if (WARN_ONCE(offset,
5776 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5777 			      offset)) {
5778 			return -EINVAL;
5779 		}
5780 
5781 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5782 					skb_vlan_tag_get(skb));
5783 		if (err)
5784 			return err;
5785 
5786 		skb->protocol = skb->vlan_proto;
5787 		skb->mac_len += VLAN_HLEN;
5788 
5789 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5790 	}
5791 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5792 	return 0;
5793 }
5794 EXPORT_SYMBOL(skb_vlan_push);
5795 
5796 /**
5797  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5798  *
5799  * @skb: Socket buffer to modify
5800  *
5801  * Drop the Ethernet header of @skb.
5802  *
5803  * Expects that skb->data points to the mac header and that no VLAN tags are
5804  * present.
5805  *
5806  * Returns 0 on success, -errno otherwise.
5807  */
5808 int skb_eth_pop(struct sk_buff *skb)
5809 {
5810 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5811 	    skb_network_offset(skb) < ETH_HLEN)
5812 		return -EPROTO;
5813 
5814 	skb_pull_rcsum(skb, ETH_HLEN);
5815 	skb_reset_mac_header(skb);
5816 	skb_reset_mac_len(skb);
5817 
5818 	return 0;
5819 }
5820 EXPORT_SYMBOL(skb_eth_pop);
5821 
5822 /**
5823  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5824  *
5825  * @skb: Socket buffer to modify
5826  * @dst: Destination MAC address of the new header
5827  * @src: Source MAC address of the new header
5828  *
5829  * Prepend @skb with a new Ethernet header.
5830  *
5831  * Expects that skb->data points to the mac header, which must be empty.
5832  *
5833  * Returns 0 on success, -errno otherwise.
5834  */
5835 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5836 		 const unsigned char *src)
5837 {
5838 	struct ethhdr *eth;
5839 	int err;
5840 
5841 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5842 		return -EPROTO;
5843 
5844 	err = skb_cow_head(skb, sizeof(*eth));
5845 	if (err < 0)
5846 		return err;
5847 
5848 	skb_push(skb, sizeof(*eth));
5849 	skb_reset_mac_header(skb);
5850 	skb_reset_mac_len(skb);
5851 
5852 	eth = eth_hdr(skb);
5853 	ether_addr_copy(eth->h_dest, dst);
5854 	ether_addr_copy(eth->h_source, src);
5855 	eth->h_proto = skb->protocol;
5856 
5857 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5858 
5859 	return 0;
5860 }
5861 EXPORT_SYMBOL(skb_eth_push);
5862 
5863 /* Update the ethertype of hdr and the skb csum value if required. */
5864 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5865 			     __be16 ethertype)
5866 {
5867 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5868 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5869 
5870 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5871 	}
5872 
5873 	hdr->h_proto = ethertype;
5874 }
5875 
5876 /**
5877  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5878  *                   the packet
5879  *
5880  * @skb: buffer
5881  * @mpls_lse: MPLS label stack entry to push
5882  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5883  * @mac_len: length of the MAC header
5884  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5885  *            ethernet
5886  *
5887  * Expects skb->data at mac header.
5888  *
5889  * Returns 0 on success, -errno otherwise.
5890  */
5891 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5892 		  int mac_len, bool ethernet)
5893 {
5894 	struct mpls_shim_hdr *lse;
5895 	int err;
5896 
5897 	if (unlikely(!eth_p_mpls(mpls_proto)))
5898 		return -EINVAL;
5899 
5900 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5901 	if (skb->encapsulation)
5902 		return -EINVAL;
5903 
5904 	err = skb_cow_head(skb, MPLS_HLEN);
5905 	if (unlikely(err))
5906 		return err;
5907 
5908 	if (!skb->inner_protocol) {
5909 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5910 		skb_set_inner_protocol(skb, skb->protocol);
5911 	}
5912 
5913 	skb_push(skb, MPLS_HLEN);
5914 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5915 		mac_len);
5916 	skb_reset_mac_header(skb);
5917 	skb_set_network_header(skb, mac_len);
5918 	skb_reset_mac_len(skb);
5919 
5920 	lse = mpls_hdr(skb);
5921 	lse->label_stack_entry = mpls_lse;
5922 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5923 
5924 	if (ethernet && mac_len >= ETH_HLEN)
5925 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5926 	skb->protocol = mpls_proto;
5927 
5928 	return 0;
5929 }
5930 EXPORT_SYMBOL_GPL(skb_mpls_push);
5931 
5932 /**
5933  * skb_mpls_pop() - pop the outermost MPLS header
5934  *
5935  * @skb: buffer
5936  * @next_proto: ethertype of header after popped MPLS header
5937  * @mac_len: length of the MAC header
5938  * @ethernet: flag to indicate if the packet is ethernet
5939  *
5940  * Expects skb->data at mac header.
5941  *
5942  * Returns 0 on success, -errno otherwise.
5943  */
5944 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5945 		 bool ethernet)
5946 {
5947 	int err;
5948 
5949 	if (unlikely(!eth_p_mpls(skb->protocol)))
5950 		return 0;
5951 
5952 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5953 	if (unlikely(err))
5954 		return err;
5955 
5956 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5957 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5958 		mac_len);
5959 
5960 	__skb_pull(skb, MPLS_HLEN);
5961 	skb_reset_mac_header(skb);
5962 	skb_set_network_header(skb, mac_len);
5963 
5964 	if (ethernet && mac_len >= ETH_HLEN) {
5965 		struct ethhdr *hdr;
5966 
5967 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5968 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5969 		skb_mod_eth_type(skb, hdr, next_proto);
5970 	}
5971 	skb->protocol = next_proto;
5972 
5973 	return 0;
5974 }
5975 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5976 
5977 /**
5978  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5979  *
5980  * @skb: buffer
5981  * @mpls_lse: new MPLS label stack entry to update to
5982  *
5983  * Expects skb->data at mac header.
5984  *
5985  * Returns 0 on success, -errno otherwise.
5986  */
5987 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5988 {
5989 	int err;
5990 
5991 	if (unlikely(!eth_p_mpls(skb->protocol)))
5992 		return -EINVAL;
5993 
5994 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5995 	if (unlikely(err))
5996 		return err;
5997 
5998 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5999 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6000 
6001 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6002 	}
6003 
6004 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6005 
6006 	return 0;
6007 }
6008 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6009 
6010 /**
6011  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6012  *
6013  * @skb: buffer
6014  *
6015  * Expects skb->data at mac header.
6016  *
6017  * Returns 0 on success, -errno otherwise.
6018  */
6019 int skb_mpls_dec_ttl(struct sk_buff *skb)
6020 {
6021 	u32 lse;
6022 	u8 ttl;
6023 
6024 	if (unlikely(!eth_p_mpls(skb->protocol)))
6025 		return -EINVAL;
6026 
6027 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6028 		return -ENOMEM;
6029 
6030 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6031 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6032 	if (!--ttl)
6033 		return -EINVAL;
6034 
6035 	lse &= ~MPLS_LS_TTL_MASK;
6036 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6037 
6038 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6039 }
6040 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6041 
6042 /**
6043  * alloc_skb_with_frags - allocate skb with page frags
6044  *
6045  * @header_len: size of linear part
6046  * @data_len: needed length in frags
6047  * @max_page_order: max page order desired.
6048  * @errcode: pointer to error code if any
6049  * @gfp_mask: allocation mask
6050  *
6051  * This can be used to allocate a paged skb, given a maximal order for frags.
6052  */
6053 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6054 				     unsigned long data_len,
6055 				     int max_page_order,
6056 				     int *errcode,
6057 				     gfp_t gfp_mask)
6058 {
6059 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6060 	unsigned long chunk;
6061 	struct sk_buff *skb;
6062 	struct page *page;
6063 	int i;
6064 
6065 	*errcode = -EMSGSIZE;
6066 	/* Note this test could be relaxed, if we succeed to allocate
6067 	 * high order pages...
6068 	 */
6069 	if (npages > MAX_SKB_FRAGS)
6070 		return NULL;
6071 
6072 	*errcode = -ENOBUFS;
6073 	skb = alloc_skb(header_len, gfp_mask);
6074 	if (!skb)
6075 		return NULL;
6076 
6077 	skb->truesize += npages << PAGE_SHIFT;
6078 
6079 	for (i = 0; npages > 0; i++) {
6080 		int order = max_page_order;
6081 
6082 		while (order) {
6083 			if (npages >= 1 << order) {
6084 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6085 						   __GFP_COMP |
6086 						   __GFP_NOWARN,
6087 						   order);
6088 				if (page)
6089 					goto fill_page;
6090 				/* Do not retry other high order allocations */
6091 				order = 1;
6092 				max_page_order = 0;
6093 			}
6094 			order--;
6095 		}
6096 		page = alloc_page(gfp_mask);
6097 		if (!page)
6098 			goto failure;
6099 fill_page:
6100 		chunk = min_t(unsigned long, data_len,
6101 			      PAGE_SIZE << order);
6102 		skb_fill_page_desc(skb, i, page, 0, chunk);
6103 		data_len -= chunk;
6104 		npages -= 1 << order;
6105 	}
6106 	return skb;
6107 
6108 failure:
6109 	kfree_skb(skb);
6110 	return NULL;
6111 }
6112 EXPORT_SYMBOL(alloc_skb_with_frags);
6113 
6114 /* carve out the first off bytes from skb when off < headlen */
6115 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6116 				    const int headlen, gfp_t gfp_mask)
6117 {
6118 	int i;
6119 	int size = skb_end_offset(skb);
6120 	int new_hlen = headlen - off;
6121 	u8 *data;
6122 
6123 	size = SKB_DATA_ALIGN(size);
6124 
6125 	if (skb_pfmemalloc(skb))
6126 		gfp_mask |= __GFP_MEMALLOC;
6127 	data = kmalloc_reserve(size +
6128 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6129 			       gfp_mask, NUMA_NO_NODE, NULL);
6130 	if (!data)
6131 		return -ENOMEM;
6132 
6133 	size = SKB_WITH_OVERHEAD(ksize(data));
6134 
6135 	/* Copy real data, and all frags */
6136 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6137 	skb->len -= off;
6138 
6139 	memcpy((struct skb_shared_info *)(data + size),
6140 	       skb_shinfo(skb),
6141 	       offsetof(struct skb_shared_info,
6142 			frags[skb_shinfo(skb)->nr_frags]));
6143 	if (skb_cloned(skb)) {
6144 		/* drop the old head gracefully */
6145 		if (skb_orphan_frags(skb, gfp_mask)) {
6146 			kfree(data);
6147 			return -ENOMEM;
6148 		}
6149 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6150 			skb_frag_ref(skb, i);
6151 		if (skb_has_frag_list(skb))
6152 			skb_clone_fraglist(skb);
6153 		skb_release_data(skb);
6154 	} else {
6155 		/* we can reuse existing recount- all we did was
6156 		 * relocate values
6157 		 */
6158 		skb_free_head(skb);
6159 	}
6160 
6161 	skb->head = data;
6162 	skb->data = data;
6163 	skb->head_frag = 0;
6164 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6165 	skb->end = size;
6166 #else
6167 	skb->end = skb->head + size;
6168 #endif
6169 	skb_set_tail_pointer(skb, skb_headlen(skb));
6170 	skb_headers_offset_update(skb, 0);
6171 	skb->cloned = 0;
6172 	skb->hdr_len = 0;
6173 	skb->nohdr = 0;
6174 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6175 
6176 	return 0;
6177 }
6178 
6179 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6180 
6181 /* carve out the first eat bytes from skb's frag_list. May recurse into
6182  * pskb_carve()
6183  */
6184 static int pskb_carve_frag_list(struct sk_buff *skb,
6185 				struct skb_shared_info *shinfo, int eat,
6186 				gfp_t gfp_mask)
6187 {
6188 	struct sk_buff *list = shinfo->frag_list;
6189 	struct sk_buff *clone = NULL;
6190 	struct sk_buff *insp = NULL;
6191 
6192 	do {
6193 		if (!list) {
6194 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6195 			return -EFAULT;
6196 		}
6197 		if (list->len <= eat) {
6198 			/* Eaten as whole. */
6199 			eat -= list->len;
6200 			list = list->next;
6201 			insp = list;
6202 		} else {
6203 			/* Eaten partially. */
6204 			if (skb_shared(list)) {
6205 				clone = skb_clone(list, gfp_mask);
6206 				if (!clone)
6207 					return -ENOMEM;
6208 				insp = list->next;
6209 				list = clone;
6210 			} else {
6211 				/* This may be pulled without problems. */
6212 				insp = list;
6213 			}
6214 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6215 				kfree_skb(clone);
6216 				return -ENOMEM;
6217 			}
6218 			break;
6219 		}
6220 	} while (eat);
6221 
6222 	/* Free pulled out fragments. */
6223 	while ((list = shinfo->frag_list) != insp) {
6224 		shinfo->frag_list = list->next;
6225 		kfree_skb(list);
6226 	}
6227 	/* And insert new clone at head. */
6228 	if (clone) {
6229 		clone->next = list;
6230 		shinfo->frag_list = clone;
6231 	}
6232 	return 0;
6233 }
6234 
6235 /* carve off first len bytes from skb. Split line (off) is in the
6236  * non-linear part of skb
6237  */
6238 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6239 				       int pos, gfp_t gfp_mask)
6240 {
6241 	int i, k = 0;
6242 	int size = skb_end_offset(skb);
6243 	u8 *data;
6244 	const int nfrags = skb_shinfo(skb)->nr_frags;
6245 	struct skb_shared_info *shinfo;
6246 
6247 	size = SKB_DATA_ALIGN(size);
6248 
6249 	if (skb_pfmemalloc(skb))
6250 		gfp_mask |= __GFP_MEMALLOC;
6251 	data = kmalloc_reserve(size +
6252 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6253 			       gfp_mask, NUMA_NO_NODE, NULL);
6254 	if (!data)
6255 		return -ENOMEM;
6256 
6257 	size = SKB_WITH_OVERHEAD(ksize(data));
6258 
6259 	memcpy((struct skb_shared_info *)(data + size),
6260 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6261 	if (skb_orphan_frags(skb, gfp_mask)) {
6262 		kfree(data);
6263 		return -ENOMEM;
6264 	}
6265 	shinfo = (struct skb_shared_info *)(data + size);
6266 	for (i = 0; i < nfrags; i++) {
6267 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6268 
6269 		if (pos + fsize > off) {
6270 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6271 
6272 			if (pos < off) {
6273 				/* Split frag.
6274 				 * We have two variants in this case:
6275 				 * 1. Move all the frag to the second
6276 				 *    part, if it is possible. F.e.
6277 				 *    this approach is mandatory for TUX,
6278 				 *    where splitting is expensive.
6279 				 * 2. Split is accurately. We make this.
6280 				 */
6281 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6282 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6283 			}
6284 			skb_frag_ref(skb, i);
6285 			k++;
6286 		}
6287 		pos += fsize;
6288 	}
6289 	shinfo->nr_frags = k;
6290 	if (skb_has_frag_list(skb))
6291 		skb_clone_fraglist(skb);
6292 
6293 	/* split line is in frag list */
6294 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6295 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6296 		if (skb_has_frag_list(skb))
6297 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6298 		kfree(data);
6299 		return -ENOMEM;
6300 	}
6301 	skb_release_data(skb);
6302 
6303 	skb->head = data;
6304 	skb->head_frag = 0;
6305 	skb->data = data;
6306 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6307 	skb->end = size;
6308 #else
6309 	skb->end = skb->head + size;
6310 #endif
6311 	skb_reset_tail_pointer(skb);
6312 	skb_headers_offset_update(skb, 0);
6313 	skb->cloned   = 0;
6314 	skb->hdr_len  = 0;
6315 	skb->nohdr    = 0;
6316 	skb->len -= off;
6317 	skb->data_len = skb->len;
6318 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6319 	return 0;
6320 }
6321 
6322 /* remove len bytes from the beginning of the skb */
6323 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6324 {
6325 	int headlen = skb_headlen(skb);
6326 
6327 	if (len < headlen)
6328 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6329 	else
6330 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6331 }
6332 
6333 /* Extract to_copy bytes starting at off from skb, and return this in
6334  * a new skb
6335  */
6336 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6337 			     int to_copy, gfp_t gfp)
6338 {
6339 	struct sk_buff  *clone = skb_clone(skb, gfp);
6340 
6341 	if (!clone)
6342 		return NULL;
6343 
6344 	if (pskb_carve(clone, off, gfp) < 0 ||
6345 	    pskb_trim(clone, to_copy)) {
6346 		kfree_skb(clone);
6347 		return NULL;
6348 	}
6349 	return clone;
6350 }
6351 EXPORT_SYMBOL(pskb_extract);
6352 
6353 /**
6354  * skb_condense - try to get rid of fragments/frag_list if possible
6355  * @skb: buffer
6356  *
6357  * Can be used to save memory before skb is added to a busy queue.
6358  * If packet has bytes in frags and enough tail room in skb->head,
6359  * pull all of them, so that we can free the frags right now and adjust
6360  * truesize.
6361  * Notes:
6362  *	We do not reallocate skb->head thus can not fail.
6363  *	Caller must re-evaluate skb->truesize if needed.
6364  */
6365 void skb_condense(struct sk_buff *skb)
6366 {
6367 	if (skb->data_len) {
6368 		if (skb->data_len > skb->end - skb->tail ||
6369 		    skb_cloned(skb))
6370 			return;
6371 
6372 		/* Nice, we can free page frag(s) right now */
6373 		__pskb_pull_tail(skb, skb->data_len);
6374 	}
6375 	/* At this point, skb->truesize might be over estimated,
6376 	 * because skb had a fragment, and fragments do not tell
6377 	 * their truesize.
6378 	 * When we pulled its content into skb->head, fragment
6379 	 * was freed, but __pskb_pull_tail() could not possibly
6380 	 * adjust skb->truesize, not knowing the frag truesize.
6381 	 */
6382 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6383 }
6384 
6385 #ifdef CONFIG_SKB_EXTENSIONS
6386 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6387 {
6388 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6389 }
6390 
6391 /**
6392  * __skb_ext_alloc - allocate a new skb extensions storage
6393  *
6394  * @flags: See kmalloc().
6395  *
6396  * Returns the newly allocated pointer. The pointer can later attached to a
6397  * skb via __skb_ext_set().
6398  * Note: caller must handle the skb_ext as an opaque data.
6399  */
6400 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6401 {
6402 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6403 
6404 	if (new) {
6405 		memset(new->offset, 0, sizeof(new->offset));
6406 		refcount_set(&new->refcnt, 1);
6407 	}
6408 
6409 	return new;
6410 }
6411 
6412 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6413 					 unsigned int old_active)
6414 {
6415 	struct skb_ext *new;
6416 
6417 	if (refcount_read(&old->refcnt) == 1)
6418 		return old;
6419 
6420 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6421 	if (!new)
6422 		return NULL;
6423 
6424 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6425 	refcount_set(&new->refcnt, 1);
6426 
6427 #ifdef CONFIG_XFRM
6428 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6429 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6430 		unsigned int i;
6431 
6432 		for (i = 0; i < sp->len; i++)
6433 			xfrm_state_hold(sp->xvec[i]);
6434 	}
6435 #endif
6436 	__skb_ext_put(old);
6437 	return new;
6438 }
6439 
6440 /**
6441  * __skb_ext_set - attach the specified extension storage to this skb
6442  * @skb: buffer
6443  * @id: extension id
6444  * @ext: extension storage previously allocated via __skb_ext_alloc()
6445  *
6446  * Existing extensions, if any, are cleared.
6447  *
6448  * Returns the pointer to the extension.
6449  */
6450 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6451 		    struct skb_ext *ext)
6452 {
6453 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6454 
6455 	skb_ext_put(skb);
6456 	newlen = newoff + skb_ext_type_len[id];
6457 	ext->chunks = newlen;
6458 	ext->offset[id] = newoff;
6459 	skb->extensions = ext;
6460 	skb->active_extensions = 1 << id;
6461 	return skb_ext_get_ptr(ext, id);
6462 }
6463 
6464 /**
6465  * skb_ext_add - allocate space for given extension, COW if needed
6466  * @skb: buffer
6467  * @id: extension to allocate space for
6468  *
6469  * Allocates enough space for the given extension.
6470  * If the extension is already present, a pointer to that extension
6471  * is returned.
6472  *
6473  * If the skb was cloned, COW applies and the returned memory can be
6474  * modified without changing the extension space of clones buffers.
6475  *
6476  * Returns pointer to the extension or NULL on allocation failure.
6477  */
6478 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6479 {
6480 	struct skb_ext *new, *old = NULL;
6481 	unsigned int newlen, newoff;
6482 
6483 	if (skb->active_extensions) {
6484 		old = skb->extensions;
6485 
6486 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6487 		if (!new)
6488 			return NULL;
6489 
6490 		if (__skb_ext_exist(new, id))
6491 			goto set_active;
6492 
6493 		newoff = new->chunks;
6494 	} else {
6495 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6496 
6497 		new = __skb_ext_alloc(GFP_ATOMIC);
6498 		if (!new)
6499 			return NULL;
6500 	}
6501 
6502 	newlen = newoff + skb_ext_type_len[id];
6503 	new->chunks = newlen;
6504 	new->offset[id] = newoff;
6505 set_active:
6506 	skb->slow_gro = 1;
6507 	skb->extensions = new;
6508 	skb->active_extensions |= 1 << id;
6509 	return skb_ext_get_ptr(new, id);
6510 }
6511 EXPORT_SYMBOL(skb_ext_add);
6512 
6513 #ifdef CONFIG_XFRM
6514 static void skb_ext_put_sp(struct sec_path *sp)
6515 {
6516 	unsigned int i;
6517 
6518 	for (i = 0; i < sp->len; i++)
6519 		xfrm_state_put(sp->xvec[i]);
6520 }
6521 #endif
6522 
6523 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6524 {
6525 	struct skb_ext *ext = skb->extensions;
6526 
6527 	skb->active_extensions &= ~(1 << id);
6528 	if (skb->active_extensions == 0) {
6529 		skb->extensions = NULL;
6530 		__skb_ext_put(ext);
6531 #ifdef CONFIG_XFRM
6532 	} else if (id == SKB_EXT_SEC_PATH &&
6533 		   refcount_read(&ext->refcnt) == 1) {
6534 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6535 
6536 		skb_ext_put_sp(sp);
6537 		sp->len = 0;
6538 #endif
6539 	}
6540 }
6541 EXPORT_SYMBOL(__skb_ext_del);
6542 
6543 void __skb_ext_put(struct skb_ext *ext)
6544 {
6545 	/* If this is last clone, nothing can increment
6546 	 * it after check passes.  Avoids one atomic op.
6547 	 */
6548 	if (refcount_read(&ext->refcnt) == 1)
6549 		goto free_now;
6550 
6551 	if (!refcount_dec_and_test(&ext->refcnt))
6552 		return;
6553 free_now:
6554 #ifdef CONFIG_XFRM
6555 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6556 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6557 #endif
6558 
6559 	kmem_cache_free(skbuff_ext_cache, ext);
6560 }
6561 EXPORT_SYMBOL(__skb_ext_put);
6562 #endif /* CONFIG_SKB_EXTENSIONS */
6563