1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/page_pool.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 #include <linux/indirect_call_wrapper.h> 81 82 #include "datagram.h" 83 84 struct kmem_cache *skbuff_head_cache __ro_after_init; 85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 86 #ifdef CONFIG_SKB_EXTENSIONS 87 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 88 #endif 89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 90 EXPORT_SYMBOL(sysctl_max_skb_frags); 91 92 /** 93 * skb_panic - private function for out-of-line support 94 * @skb: buffer 95 * @sz: size 96 * @addr: address 97 * @msg: skb_over_panic or skb_under_panic 98 * 99 * Out-of-line support for skb_put() and skb_push(). 100 * Called via the wrapper skb_over_panic() or skb_under_panic(). 101 * Keep out of line to prevent kernel bloat. 102 * __builtin_return_address is not used because it is not always reliable. 103 */ 104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 105 const char msg[]) 106 { 107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 108 msg, addr, skb->len, sz, skb->head, skb->data, 109 (unsigned long)skb->tail, (unsigned long)skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 115 { 116 skb_panic(skb, sz, addr, __func__); 117 } 118 119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 #define NAPI_SKB_CACHE_SIZE 64 125 #define NAPI_SKB_CACHE_BULK 16 126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 127 128 struct napi_alloc_cache { 129 struct page_frag_cache page; 130 unsigned int skb_count; 131 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 132 }; 133 134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 136 137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 138 unsigned int align_mask) 139 { 140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 141 142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 143 } 144 145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 146 { 147 fragsz = SKB_DATA_ALIGN(fragsz); 148 149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 150 } 151 EXPORT_SYMBOL(__napi_alloc_frag_align); 152 153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 154 { 155 struct page_frag_cache *nc; 156 void *data; 157 158 fragsz = SKB_DATA_ALIGN(fragsz); 159 if (in_hardirq() || irqs_disabled()) { 160 nc = this_cpu_ptr(&netdev_alloc_cache); 161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 162 } else { 163 local_bh_disable(); 164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 165 local_bh_enable(); 166 } 167 return data; 168 } 169 EXPORT_SYMBOL(__netdev_alloc_frag_align); 170 171 static struct sk_buff *napi_skb_cache_get(void) 172 { 173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 174 struct sk_buff *skb; 175 176 if (unlikely(!nc->skb_count)) 177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 178 GFP_ATOMIC, 179 NAPI_SKB_CACHE_BULK, 180 nc->skb_cache); 181 if (unlikely(!nc->skb_count)) 182 return NULL; 183 184 skb = nc->skb_cache[--nc->skb_count]; 185 kasan_unpoison_object_data(skbuff_head_cache, skb); 186 187 return skb; 188 } 189 190 /* Caller must provide SKB that is memset cleared */ 191 static void __build_skb_around(struct sk_buff *skb, void *data, 192 unsigned int frag_size) 193 { 194 struct skb_shared_info *shinfo; 195 unsigned int size = frag_size ? : ksize(data); 196 197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 198 199 /* Assumes caller memset cleared SKB */ 200 skb->truesize = SKB_TRUESIZE(size); 201 refcount_set(&skb->users, 1); 202 skb->head = data; 203 skb->data = data; 204 skb_reset_tail_pointer(skb); 205 skb->end = skb->tail + size; 206 skb->mac_header = (typeof(skb->mac_header))~0U; 207 skb->transport_header = (typeof(skb->transport_header))~0U; 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 214 skb_set_kcov_handle(skb, kcov_common_handle()); 215 } 216 217 /** 218 * __build_skb - build a network buffer 219 * @data: data buffer provided by caller 220 * @frag_size: size of data, or 0 if head was kmalloced 221 * 222 * Allocate a new &sk_buff. Caller provides space holding head and 223 * skb_shared_info. @data must have been allocated by kmalloc() only if 224 * @frag_size is 0, otherwise data should come from the page allocator 225 * or vmalloc() 226 * The return is the new skb buffer. 227 * On a failure the return is %NULL, and @data is not freed. 228 * Notes : 229 * Before IO, driver allocates only data buffer where NIC put incoming frame 230 * Driver should add room at head (NET_SKB_PAD) and 231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 233 * before giving packet to stack. 234 * RX rings only contains data buffers, not full skbs. 235 */ 236 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 237 { 238 struct sk_buff *skb; 239 240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 241 if (unlikely(!skb)) 242 return NULL; 243 244 memset(skb, 0, offsetof(struct sk_buff, tail)); 245 __build_skb_around(skb, data, frag_size); 246 247 return skb; 248 } 249 250 /* build_skb() is wrapper over __build_skb(), that specifically 251 * takes care of skb->head and skb->pfmemalloc 252 * This means that if @frag_size is not zero, then @data must be backed 253 * by a page fragment, not kmalloc() or vmalloc() 254 */ 255 struct sk_buff *build_skb(void *data, unsigned int frag_size) 256 { 257 struct sk_buff *skb = __build_skb(data, frag_size); 258 259 if (skb && frag_size) { 260 skb->head_frag = 1; 261 if (page_is_pfmemalloc(virt_to_head_page(data))) 262 skb->pfmemalloc = 1; 263 } 264 return skb; 265 } 266 EXPORT_SYMBOL(build_skb); 267 268 /** 269 * build_skb_around - build a network buffer around provided skb 270 * @skb: sk_buff provide by caller, must be memset cleared 271 * @data: data buffer provided by caller 272 * @frag_size: size of data, or 0 if head was kmalloced 273 */ 274 struct sk_buff *build_skb_around(struct sk_buff *skb, 275 void *data, unsigned int frag_size) 276 { 277 if (unlikely(!skb)) 278 return NULL; 279 280 __build_skb_around(skb, data, frag_size); 281 282 if (frag_size) { 283 skb->head_frag = 1; 284 if (page_is_pfmemalloc(virt_to_head_page(data))) 285 skb->pfmemalloc = 1; 286 } 287 return skb; 288 } 289 EXPORT_SYMBOL(build_skb_around); 290 291 /** 292 * __napi_build_skb - build a network buffer 293 * @data: data buffer provided by caller 294 * @frag_size: size of data, or 0 if head was kmalloced 295 * 296 * Version of __build_skb() that uses NAPI percpu caches to obtain 297 * skbuff_head instead of inplace allocation. 298 * 299 * Returns a new &sk_buff on success, %NULL on allocation failure. 300 */ 301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 302 { 303 struct sk_buff *skb; 304 305 skb = napi_skb_cache_get(); 306 if (unlikely(!skb)) 307 return NULL; 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 __build_skb_around(skb, data, frag_size); 311 312 return skb; 313 } 314 315 /** 316 * napi_build_skb - build a network buffer 317 * @data: data buffer provided by caller 318 * @frag_size: size of data, or 0 if head was kmalloced 319 * 320 * Version of __napi_build_skb() that takes care of skb->head_frag 321 * and skb->pfmemalloc when the data is a page or page fragment. 322 * 323 * Returns a new &sk_buff on success, %NULL on allocation failure. 324 */ 325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 326 { 327 struct sk_buff *skb = __napi_build_skb(data, frag_size); 328 329 if (likely(skb) && frag_size) { 330 skb->head_frag = 1; 331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 332 } 333 334 return skb; 335 } 336 EXPORT_SYMBOL(napi_build_skb); 337 338 /* 339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 340 * the caller if emergency pfmemalloc reserves are being used. If it is and 341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 342 * may be used. Otherwise, the packet data may be discarded until enough 343 * memory is free 344 */ 345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 346 bool *pfmemalloc) 347 { 348 void *obj; 349 bool ret_pfmemalloc = false; 350 351 /* 352 * Try a regular allocation, when that fails and we're not entitled 353 * to the reserves, fail. 354 */ 355 obj = kmalloc_node_track_caller(size, 356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 357 node); 358 if (obj || !(gfp_pfmemalloc_allowed(flags))) 359 goto out; 360 361 /* Try again but now we are using pfmemalloc reserves */ 362 ret_pfmemalloc = true; 363 obj = kmalloc_node_track_caller(size, flags, node); 364 365 out: 366 if (pfmemalloc) 367 *pfmemalloc = ret_pfmemalloc; 368 369 return obj; 370 } 371 372 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 373 * 'private' fields and also do memory statistics to find all the 374 * [BEEP] leaks. 375 * 376 */ 377 378 /** 379 * __alloc_skb - allocate a network buffer 380 * @size: size to allocate 381 * @gfp_mask: allocation mask 382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 383 * instead of head cache and allocate a cloned (child) skb. 384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 385 * allocations in case the data is required for writeback 386 * @node: numa node to allocate memory on 387 * 388 * Allocate a new &sk_buff. The returned buffer has no headroom and a 389 * tail room of at least size bytes. The object has a reference count 390 * of one. The return is the buffer. On a failure the return is %NULL. 391 * 392 * Buffers may only be allocated from interrupts using a @gfp_mask of 393 * %GFP_ATOMIC. 394 */ 395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 396 int flags, int node) 397 { 398 struct kmem_cache *cache; 399 struct sk_buff *skb; 400 u8 *data; 401 bool pfmemalloc; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 size = SKB_WITH_OVERHEAD(ksize(data)); 434 prefetchw(data + size); 435 436 /* 437 * Only clear those fields we need to clear, not those that we will 438 * actually initialise below. Hence, don't put any more fields after 439 * the tail pointer in struct sk_buff! 440 */ 441 memset(skb, 0, offsetof(struct sk_buff, tail)); 442 __build_skb_around(skb, data, 0); 443 skb->pfmemalloc = pfmemalloc; 444 445 if (flags & SKB_ALLOC_FCLONE) { 446 struct sk_buff_fclones *fclones; 447 448 fclones = container_of(skb, struct sk_buff_fclones, skb1); 449 450 skb->fclone = SKB_FCLONE_ORIG; 451 refcount_set(&fclones->fclone_ref, 1); 452 453 fclones->skb2.fclone = SKB_FCLONE_CLONE; 454 } 455 456 return skb; 457 458 nodata: 459 kmem_cache_free(cache, skb); 460 return NULL; 461 } 462 EXPORT_SYMBOL(__alloc_skb); 463 464 /** 465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 466 * @dev: network device to receive on 467 * @len: length to allocate 468 * @gfp_mask: get_free_pages mask, passed to alloc_skb 469 * 470 * Allocate a new &sk_buff and assign it a usage count of one. The 471 * buffer has NET_SKB_PAD headroom built in. Users should allocate 472 * the headroom they think they need without accounting for the 473 * built in space. The built in space is used for optimisations. 474 * 475 * %NULL is returned if there is no free memory. 476 */ 477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 478 gfp_t gfp_mask) 479 { 480 struct page_frag_cache *nc; 481 struct sk_buff *skb; 482 bool pfmemalloc; 483 void *data; 484 485 len += NET_SKB_PAD; 486 487 /* If requested length is either too small or too big, 488 * we use kmalloc() for skb->head allocation. 489 */ 490 if (len <= SKB_WITH_OVERHEAD(1024) || 491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 494 if (!skb) 495 goto skb_fail; 496 goto skb_success; 497 } 498 499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 500 len = SKB_DATA_ALIGN(len); 501 502 if (sk_memalloc_socks()) 503 gfp_mask |= __GFP_MEMALLOC; 504 505 if (in_hardirq() || irqs_disabled()) { 506 nc = this_cpu_ptr(&netdev_alloc_cache); 507 data = page_frag_alloc(nc, len, gfp_mask); 508 pfmemalloc = nc->pfmemalloc; 509 } else { 510 local_bh_disable(); 511 nc = this_cpu_ptr(&napi_alloc_cache.page); 512 data = page_frag_alloc(nc, len, gfp_mask); 513 pfmemalloc = nc->pfmemalloc; 514 local_bh_enable(); 515 } 516 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 if (pfmemalloc) 527 skb->pfmemalloc = 1; 528 skb->head_frag = 1; 529 530 skb_success: 531 skb_reserve(skb, NET_SKB_PAD); 532 skb->dev = dev; 533 534 skb_fail: 535 return skb; 536 } 537 EXPORT_SYMBOL(__netdev_alloc_skb); 538 539 /** 540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 541 * @napi: napi instance this buffer was allocated for 542 * @len: length to allocate 543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 544 * 545 * Allocate a new sk_buff for use in NAPI receive. This buffer will 546 * attempt to allocate the head from a special reserved region used 547 * only for NAPI Rx allocation. By doing this we can save several 548 * CPU cycles by avoiding having to disable and re-enable IRQs. 549 * 550 * %NULL is returned if there is no free memory. 551 */ 552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 553 gfp_t gfp_mask) 554 { 555 struct napi_alloc_cache *nc; 556 struct sk_buff *skb; 557 void *data; 558 559 len += NET_SKB_PAD + NET_IP_ALIGN; 560 561 /* If requested length is either too small or too big, 562 * we use kmalloc() for skb->head allocation. 563 */ 564 if (len <= SKB_WITH_OVERHEAD(1024) || 565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 568 NUMA_NO_NODE); 569 if (!skb) 570 goto skb_fail; 571 goto skb_success; 572 } 573 574 nc = this_cpu_ptr(&napi_alloc_cache); 575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 576 len = SKB_DATA_ALIGN(len); 577 578 if (sk_memalloc_socks()) 579 gfp_mask |= __GFP_MEMALLOC; 580 581 data = page_frag_alloc(&nc->page, len, gfp_mask); 582 if (unlikely(!data)) 583 return NULL; 584 585 skb = __napi_build_skb(data, len); 586 if (unlikely(!skb)) { 587 skb_free_frag(data); 588 return NULL; 589 } 590 591 if (nc->page.pfmemalloc) 592 skb->pfmemalloc = 1; 593 skb->head_frag = 1; 594 595 skb_success: 596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 597 skb->dev = napi->dev; 598 599 skb_fail: 600 return skb; 601 } 602 EXPORT_SYMBOL(__napi_alloc_skb); 603 604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 605 int size, unsigned int truesize) 606 { 607 skb_fill_page_desc(skb, i, page, off, size); 608 skb->len += size; 609 skb->data_len += size; 610 skb->truesize += truesize; 611 } 612 EXPORT_SYMBOL(skb_add_rx_frag); 613 614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 615 unsigned int truesize) 616 { 617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 618 619 skb_frag_size_add(frag, size); 620 skb->len += size; 621 skb->data_len += size; 622 skb->truesize += truesize; 623 } 624 EXPORT_SYMBOL(skb_coalesce_rx_frag); 625 626 static void skb_drop_list(struct sk_buff **listp) 627 { 628 kfree_skb_list(*listp); 629 *listp = NULL; 630 } 631 632 static inline void skb_drop_fraglist(struct sk_buff *skb) 633 { 634 skb_drop_list(&skb_shinfo(skb)->frag_list); 635 } 636 637 static void skb_clone_fraglist(struct sk_buff *skb) 638 { 639 struct sk_buff *list; 640 641 skb_walk_frags(skb, list) 642 skb_get(list); 643 } 644 645 static void skb_free_head(struct sk_buff *skb) 646 { 647 unsigned char *head = skb->head; 648 649 if (skb->head_frag) { 650 if (skb_pp_recycle(skb, head)) 651 return; 652 skb_free_frag(head); 653 } else { 654 kfree(head); 655 } 656 } 657 658 static void skb_release_data(struct sk_buff *skb) 659 { 660 struct skb_shared_info *shinfo = skb_shinfo(skb); 661 int i; 662 663 if (skb->cloned && 664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 665 &shinfo->dataref)) 666 goto exit; 667 668 skb_zcopy_clear(skb, true); 669 670 for (i = 0; i < shinfo->nr_frags; i++) 671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 672 673 if (shinfo->frag_list) 674 kfree_skb_list(shinfo->frag_list); 675 676 skb_free_head(skb); 677 exit: 678 /* When we clone an SKB we copy the reycling bit. The pp_recycle 679 * bit is only set on the head though, so in order to avoid races 680 * while trying to recycle fragments on __skb_frag_unref() we need 681 * to make one SKB responsible for triggering the recycle path. 682 * So disable the recycling bit if an SKB is cloned and we have 683 * additional references to to the fragmented part of the SKB. 684 * Eventually the last SKB will have the recycling bit set and it's 685 * dataref set to 0, which will trigger the recycling 686 */ 687 skb->pp_recycle = 0; 688 } 689 690 /* 691 * Free an skbuff by memory without cleaning the state. 692 */ 693 static void kfree_skbmem(struct sk_buff *skb) 694 { 695 struct sk_buff_fclones *fclones; 696 697 switch (skb->fclone) { 698 case SKB_FCLONE_UNAVAILABLE: 699 kmem_cache_free(skbuff_head_cache, skb); 700 return; 701 702 case SKB_FCLONE_ORIG: 703 fclones = container_of(skb, struct sk_buff_fclones, skb1); 704 705 /* We usually free the clone (TX completion) before original skb 706 * This test would have no chance to be true for the clone, 707 * while here, branch prediction will be good. 708 */ 709 if (refcount_read(&fclones->fclone_ref) == 1) 710 goto fastpath; 711 break; 712 713 default: /* SKB_FCLONE_CLONE */ 714 fclones = container_of(skb, struct sk_buff_fclones, skb2); 715 break; 716 } 717 if (!refcount_dec_and_test(&fclones->fclone_ref)) 718 return; 719 fastpath: 720 kmem_cache_free(skbuff_fclone_cache, fclones); 721 } 722 723 void skb_release_head_state(struct sk_buff *skb) 724 { 725 skb_dst_drop(skb); 726 if (skb->destructor) { 727 WARN_ON(in_hardirq()); 728 skb->destructor(skb); 729 } 730 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 731 nf_conntrack_put(skb_nfct(skb)); 732 #endif 733 skb_ext_put(skb); 734 } 735 736 /* Free everything but the sk_buff shell. */ 737 static void skb_release_all(struct sk_buff *skb) 738 { 739 skb_release_head_state(skb); 740 if (likely(skb->head)) 741 skb_release_data(skb); 742 } 743 744 /** 745 * __kfree_skb - private function 746 * @skb: buffer 747 * 748 * Free an sk_buff. Release anything attached to the buffer. 749 * Clean the state. This is an internal helper function. Users should 750 * always call kfree_skb 751 */ 752 753 void __kfree_skb(struct sk_buff *skb) 754 { 755 skb_release_all(skb); 756 kfree_skbmem(skb); 757 } 758 EXPORT_SYMBOL(__kfree_skb); 759 760 /** 761 * kfree_skb - free an sk_buff 762 * @skb: buffer to free 763 * 764 * Drop a reference to the buffer and free it if the usage count has 765 * hit zero. 766 */ 767 void kfree_skb(struct sk_buff *skb) 768 { 769 if (!skb_unref(skb)) 770 return; 771 772 trace_kfree_skb(skb, __builtin_return_address(0)); 773 __kfree_skb(skb); 774 } 775 EXPORT_SYMBOL(kfree_skb); 776 777 void kfree_skb_list(struct sk_buff *segs) 778 { 779 while (segs) { 780 struct sk_buff *next = segs->next; 781 782 kfree_skb(segs); 783 segs = next; 784 } 785 } 786 EXPORT_SYMBOL(kfree_skb_list); 787 788 /* Dump skb information and contents. 789 * 790 * Must only be called from net_ratelimit()-ed paths. 791 * 792 * Dumps whole packets if full_pkt, only headers otherwise. 793 */ 794 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 795 { 796 struct skb_shared_info *sh = skb_shinfo(skb); 797 struct net_device *dev = skb->dev; 798 struct sock *sk = skb->sk; 799 struct sk_buff *list_skb; 800 bool has_mac, has_trans; 801 int headroom, tailroom; 802 int i, len, seg_len; 803 804 if (full_pkt) 805 len = skb->len; 806 else 807 len = min_t(int, skb->len, MAX_HEADER + 128); 808 809 headroom = skb_headroom(skb); 810 tailroom = skb_tailroom(skb); 811 812 has_mac = skb_mac_header_was_set(skb); 813 has_trans = skb_transport_header_was_set(skb); 814 815 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 816 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 817 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 818 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 819 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 820 level, skb->len, headroom, skb_headlen(skb), tailroom, 821 has_mac ? skb->mac_header : -1, 822 has_mac ? skb_mac_header_len(skb) : -1, 823 skb->network_header, 824 has_trans ? skb_network_header_len(skb) : -1, 825 has_trans ? skb->transport_header : -1, 826 sh->tx_flags, sh->nr_frags, 827 sh->gso_size, sh->gso_type, sh->gso_segs, 828 skb->csum, skb->ip_summed, skb->csum_complete_sw, 829 skb->csum_valid, skb->csum_level, 830 skb->hash, skb->sw_hash, skb->l4_hash, 831 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 832 833 if (dev) 834 printk("%sdev name=%s feat=0x%pNF\n", 835 level, dev->name, &dev->features); 836 if (sk) 837 printk("%ssk family=%hu type=%u proto=%u\n", 838 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 839 840 if (full_pkt && headroom) 841 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 842 16, 1, skb->head, headroom, false); 843 844 seg_len = min_t(int, skb_headlen(skb), len); 845 if (seg_len) 846 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 847 16, 1, skb->data, seg_len, false); 848 len -= seg_len; 849 850 if (full_pkt && tailroom) 851 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 852 16, 1, skb_tail_pointer(skb), tailroom, false); 853 854 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 855 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 856 u32 p_off, p_len, copied; 857 struct page *p; 858 u8 *vaddr; 859 860 skb_frag_foreach_page(frag, skb_frag_off(frag), 861 skb_frag_size(frag), p, p_off, p_len, 862 copied) { 863 seg_len = min_t(int, p_len, len); 864 vaddr = kmap_atomic(p); 865 print_hex_dump(level, "skb frag: ", 866 DUMP_PREFIX_OFFSET, 867 16, 1, vaddr + p_off, seg_len, false); 868 kunmap_atomic(vaddr); 869 len -= seg_len; 870 if (!len) 871 break; 872 } 873 } 874 875 if (full_pkt && skb_has_frag_list(skb)) { 876 printk("skb fraglist:\n"); 877 skb_walk_frags(skb, list_skb) 878 skb_dump(level, list_skb, true); 879 } 880 } 881 EXPORT_SYMBOL(skb_dump); 882 883 /** 884 * skb_tx_error - report an sk_buff xmit error 885 * @skb: buffer that triggered an error 886 * 887 * Report xmit error if a device callback is tracking this skb. 888 * skb must be freed afterwards. 889 */ 890 void skb_tx_error(struct sk_buff *skb) 891 { 892 skb_zcopy_clear(skb, true); 893 } 894 EXPORT_SYMBOL(skb_tx_error); 895 896 #ifdef CONFIG_TRACEPOINTS 897 /** 898 * consume_skb - free an skbuff 899 * @skb: buffer to free 900 * 901 * Drop a ref to the buffer and free it if the usage count has hit zero 902 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 903 * is being dropped after a failure and notes that 904 */ 905 void consume_skb(struct sk_buff *skb) 906 { 907 if (!skb_unref(skb)) 908 return; 909 910 trace_consume_skb(skb); 911 __kfree_skb(skb); 912 } 913 EXPORT_SYMBOL(consume_skb); 914 #endif 915 916 /** 917 * __consume_stateless_skb - free an skbuff, assuming it is stateless 918 * @skb: buffer to free 919 * 920 * Alike consume_skb(), but this variant assumes that this is the last 921 * skb reference and all the head states have been already dropped 922 */ 923 void __consume_stateless_skb(struct sk_buff *skb) 924 { 925 trace_consume_skb(skb); 926 skb_release_data(skb); 927 kfree_skbmem(skb); 928 } 929 930 static void napi_skb_cache_put(struct sk_buff *skb) 931 { 932 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 933 u32 i; 934 935 kasan_poison_object_data(skbuff_head_cache, skb); 936 nc->skb_cache[nc->skb_count++] = skb; 937 938 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 939 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 940 kasan_unpoison_object_data(skbuff_head_cache, 941 nc->skb_cache[i]); 942 943 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 944 nc->skb_cache + NAPI_SKB_CACHE_HALF); 945 nc->skb_count = NAPI_SKB_CACHE_HALF; 946 } 947 } 948 949 void __kfree_skb_defer(struct sk_buff *skb) 950 { 951 skb_release_all(skb); 952 napi_skb_cache_put(skb); 953 } 954 955 void napi_skb_free_stolen_head(struct sk_buff *skb) 956 { 957 if (unlikely(skb->slow_gro)) { 958 nf_reset_ct(skb); 959 skb_dst_drop(skb); 960 skb_ext_put(skb); 961 skb_orphan(skb); 962 skb->slow_gro = 0; 963 } 964 napi_skb_cache_put(skb); 965 } 966 967 void napi_consume_skb(struct sk_buff *skb, int budget) 968 { 969 /* Zero budget indicate non-NAPI context called us, like netpoll */ 970 if (unlikely(!budget)) { 971 dev_consume_skb_any(skb); 972 return; 973 } 974 975 lockdep_assert_in_softirq(); 976 977 if (!skb_unref(skb)) 978 return; 979 980 /* if reaching here SKB is ready to free */ 981 trace_consume_skb(skb); 982 983 /* if SKB is a clone, don't handle this case */ 984 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 985 __kfree_skb(skb); 986 return; 987 } 988 989 skb_release_all(skb); 990 napi_skb_cache_put(skb); 991 } 992 EXPORT_SYMBOL(napi_consume_skb); 993 994 /* Make sure a field is enclosed inside headers_start/headers_end section */ 995 #define CHECK_SKB_FIELD(field) \ 996 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 997 offsetof(struct sk_buff, headers_start)); \ 998 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 999 offsetof(struct sk_buff, headers_end)); \ 1000 1001 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1002 { 1003 new->tstamp = old->tstamp; 1004 /* We do not copy old->sk */ 1005 new->dev = old->dev; 1006 memcpy(new->cb, old->cb, sizeof(old->cb)); 1007 skb_dst_copy(new, old); 1008 __skb_ext_copy(new, old); 1009 __nf_copy(new, old, false); 1010 1011 /* Note : this field could be in headers_start/headers_end section 1012 * It is not yet because we do not want to have a 16 bit hole 1013 */ 1014 new->queue_mapping = old->queue_mapping; 1015 1016 memcpy(&new->headers_start, &old->headers_start, 1017 offsetof(struct sk_buff, headers_end) - 1018 offsetof(struct sk_buff, headers_start)); 1019 CHECK_SKB_FIELD(protocol); 1020 CHECK_SKB_FIELD(csum); 1021 CHECK_SKB_FIELD(hash); 1022 CHECK_SKB_FIELD(priority); 1023 CHECK_SKB_FIELD(skb_iif); 1024 CHECK_SKB_FIELD(vlan_proto); 1025 CHECK_SKB_FIELD(vlan_tci); 1026 CHECK_SKB_FIELD(transport_header); 1027 CHECK_SKB_FIELD(network_header); 1028 CHECK_SKB_FIELD(mac_header); 1029 CHECK_SKB_FIELD(inner_protocol); 1030 CHECK_SKB_FIELD(inner_transport_header); 1031 CHECK_SKB_FIELD(inner_network_header); 1032 CHECK_SKB_FIELD(inner_mac_header); 1033 CHECK_SKB_FIELD(mark); 1034 #ifdef CONFIG_NETWORK_SECMARK 1035 CHECK_SKB_FIELD(secmark); 1036 #endif 1037 #ifdef CONFIG_NET_RX_BUSY_POLL 1038 CHECK_SKB_FIELD(napi_id); 1039 #endif 1040 #ifdef CONFIG_XPS 1041 CHECK_SKB_FIELD(sender_cpu); 1042 #endif 1043 #ifdef CONFIG_NET_SCHED 1044 CHECK_SKB_FIELD(tc_index); 1045 #endif 1046 1047 } 1048 1049 /* 1050 * You should not add any new code to this function. Add it to 1051 * __copy_skb_header above instead. 1052 */ 1053 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1054 { 1055 #define C(x) n->x = skb->x 1056 1057 n->next = n->prev = NULL; 1058 n->sk = NULL; 1059 __copy_skb_header(n, skb); 1060 1061 C(len); 1062 C(data_len); 1063 C(mac_len); 1064 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1065 n->cloned = 1; 1066 n->nohdr = 0; 1067 n->peeked = 0; 1068 C(pfmemalloc); 1069 C(pp_recycle); 1070 n->destructor = NULL; 1071 C(tail); 1072 C(end); 1073 C(head); 1074 C(head_frag); 1075 C(data); 1076 C(truesize); 1077 refcount_set(&n->users, 1); 1078 1079 atomic_inc(&(skb_shinfo(skb)->dataref)); 1080 skb->cloned = 1; 1081 1082 return n; 1083 #undef C 1084 } 1085 1086 /** 1087 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1088 * @first: first sk_buff of the msg 1089 */ 1090 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1091 { 1092 struct sk_buff *n; 1093 1094 n = alloc_skb(0, GFP_ATOMIC); 1095 if (!n) 1096 return NULL; 1097 1098 n->len = first->len; 1099 n->data_len = first->len; 1100 n->truesize = first->truesize; 1101 1102 skb_shinfo(n)->frag_list = first; 1103 1104 __copy_skb_header(n, first); 1105 n->destructor = NULL; 1106 1107 return n; 1108 } 1109 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1110 1111 /** 1112 * skb_morph - morph one skb into another 1113 * @dst: the skb to receive the contents 1114 * @src: the skb to supply the contents 1115 * 1116 * This is identical to skb_clone except that the target skb is 1117 * supplied by the user. 1118 * 1119 * The target skb is returned upon exit. 1120 */ 1121 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1122 { 1123 skb_release_all(dst); 1124 return __skb_clone(dst, src); 1125 } 1126 EXPORT_SYMBOL_GPL(skb_morph); 1127 1128 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1129 { 1130 unsigned long max_pg, num_pg, new_pg, old_pg; 1131 struct user_struct *user; 1132 1133 if (capable(CAP_IPC_LOCK) || !size) 1134 return 0; 1135 1136 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1137 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1138 user = mmp->user ? : current_user(); 1139 1140 do { 1141 old_pg = atomic_long_read(&user->locked_vm); 1142 new_pg = old_pg + num_pg; 1143 if (new_pg > max_pg) 1144 return -ENOBUFS; 1145 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1146 old_pg); 1147 1148 if (!mmp->user) { 1149 mmp->user = get_uid(user); 1150 mmp->num_pg = num_pg; 1151 } else { 1152 mmp->num_pg += num_pg; 1153 } 1154 1155 return 0; 1156 } 1157 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1158 1159 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1160 { 1161 if (mmp->user) { 1162 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1163 free_uid(mmp->user); 1164 } 1165 } 1166 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1167 1168 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1169 { 1170 struct ubuf_info *uarg; 1171 struct sk_buff *skb; 1172 1173 WARN_ON_ONCE(!in_task()); 1174 1175 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1176 if (!skb) 1177 return NULL; 1178 1179 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1180 uarg = (void *)skb->cb; 1181 uarg->mmp.user = NULL; 1182 1183 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1184 kfree_skb(skb); 1185 return NULL; 1186 } 1187 1188 uarg->callback = msg_zerocopy_callback; 1189 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1190 uarg->len = 1; 1191 uarg->bytelen = size; 1192 uarg->zerocopy = 1; 1193 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1194 refcount_set(&uarg->refcnt, 1); 1195 sock_hold(sk); 1196 1197 return uarg; 1198 } 1199 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1200 1201 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1202 { 1203 return container_of((void *)uarg, struct sk_buff, cb); 1204 } 1205 1206 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1207 struct ubuf_info *uarg) 1208 { 1209 if (uarg) { 1210 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1211 u32 bytelen, next; 1212 1213 /* realloc only when socket is locked (TCP, UDP cork), 1214 * so uarg->len and sk_zckey access is serialized 1215 */ 1216 if (!sock_owned_by_user(sk)) { 1217 WARN_ON_ONCE(1); 1218 return NULL; 1219 } 1220 1221 bytelen = uarg->bytelen + size; 1222 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1223 /* TCP can create new skb to attach new uarg */ 1224 if (sk->sk_type == SOCK_STREAM) 1225 goto new_alloc; 1226 return NULL; 1227 } 1228 1229 next = (u32)atomic_read(&sk->sk_zckey); 1230 if ((u32)(uarg->id + uarg->len) == next) { 1231 if (mm_account_pinned_pages(&uarg->mmp, size)) 1232 return NULL; 1233 uarg->len++; 1234 uarg->bytelen = bytelen; 1235 atomic_set(&sk->sk_zckey, ++next); 1236 1237 /* no extra ref when appending to datagram (MSG_MORE) */ 1238 if (sk->sk_type == SOCK_STREAM) 1239 net_zcopy_get(uarg); 1240 1241 return uarg; 1242 } 1243 } 1244 1245 new_alloc: 1246 return msg_zerocopy_alloc(sk, size); 1247 } 1248 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1249 1250 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1251 { 1252 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1253 u32 old_lo, old_hi; 1254 u64 sum_len; 1255 1256 old_lo = serr->ee.ee_info; 1257 old_hi = serr->ee.ee_data; 1258 sum_len = old_hi - old_lo + 1ULL + len; 1259 1260 if (sum_len >= (1ULL << 32)) 1261 return false; 1262 1263 if (lo != old_hi + 1) 1264 return false; 1265 1266 serr->ee.ee_data += len; 1267 return true; 1268 } 1269 1270 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1271 { 1272 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1273 struct sock_exterr_skb *serr; 1274 struct sock *sk = skb->sk; 1275 struct sk_buff_head *q; 1276 unsigned long flags; 1277 bool is_zerocopy; 1278 u32 lo, hi; 1279 u16 len; 1280 1281 mm_unaccount_pinned_pages(&uarg->mmp); 1282 1283 /* if !len, there was only 1 call, and it was aborted 1284 * so do not queue a completion notification 1285 */ 1286 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1287 goto release; 1288 1289 len = uarg->len; 1290 lo = uarg->id; 1291 hi = uarg->id + len - 1; 1292 is_zerocopy = uarg->zerocopy; 1293 1294 serr = SKB_EXT_ERR(skb); 1295 memset(serr, 0, sizeof(*serr)); 1296 serr->ee.ee_errno = 0; 1297 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1298 serr->ee.ee_data = hi; 1299 serr->ee.ee_info = lo; 1300 if (!is_zerocopy) 1301 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1302 1303 q = &sk->sk_error_queue; 1304 spin_lock_irqsave(&q->lock, flags); 1305 tail = skb_peek_tail(q); 1306 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1307 !skb_zerocopy_notify_extend(tail, lo, len)) { 1308 __skb_queue_tail(q, skb); 1309 skb = NULL; 1310 } 1311 spin_unlock_irqrestore(&q->lock, flags); 1312 1313 sk_error_report(sk); 1314 1315 release: 1316 consume_skb(skb); 1317 sock_put(sk); 1318 } 1319 1320 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1321 bool success) 1322 { 1323 uarg->zerocopy = uarg->zerocopy & success; 1324 1325 if (refcount_dec_and_test(&uarg->refcnt)) 1326 __msg_zerocopy_callback(uarg); 1327 } 1328 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1329 1330 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1331 { 1332 struct sock *sk = skb_from_uarg(uarg)->sk; 1333 1334 atomic_dec(&sk->sk_zckey); 1335 uarg->len--; 1336 1337 if (have_uref) 1338 msg_zerocopy_callback(NULL, uarg, true); 1339 } 1340 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1341 1342 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1343 { 1344 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1345 } 1346 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1347 1348 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1349 struct msghdr *msg, int len, 1350 struct ubuf_info *uarg) 1351 { 1352 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1353 struct iov_iter orig_iter = msg->msg_iter; 1354 int err, orig_len = skb->len; 1355 1356 /* An skb can only point to one uarg. This edge case happens when 1357 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1358 */ 1359 if (orig_uarg && uarg != orig_uarg) 1360 return -EEXIST; 1361 1362 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1363 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1364 struct sock *save_sk = skb->sk; 1365 1366 /* Streams do not free skb on error. Reset to prev state. */ 1367 msg->msg_iter = orig_iter; 1368 skb->sk = sk; 1369 ___pskb_trim(skb, orig_len); 1370 skb->sk = save_sk; 1371 return err; 1372 } 1373 1374 skb_zcopy_set(skb, uarg, NULL); 1375 return skb->len - orig_len; 1376 } 1377 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1378 1379 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1380 gfp_t gfp_mask) 1381 { 1382 if (skb_zcopy(orig)) { 1383 if (skb_zcopy(nskb)) { 1384 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1385 if (!gfp_mask) { 1386 WARN_ON_ONCE(1); 1387 return -ENOMEM; 1388 } 1389 if (skb_uarg(nskb) == skb_uarg(orig)) 1390 return 0; 1391 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1392 return -EIO; 1393 } 1394 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1395 } 1396 return 0; 1397 } 1398 1399 /** 1400 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1401 * @skb: the skb to modify 1402 * @gfp_mask: allocation priority 1403 * 1404 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1405 * It will copy all frags into kernel and drop the reference 1406 * to userspace pages. 1407 * 1408 * If this function is called from an interrupt gfp_mask() must be 1409 * %GFP_ATOMIC. 1410 * 1411 * Returns 0 on success or a negative error code on failure 1412 * to allocate kernel memory to copy to. 1413 */ 1414 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1415 { 1416 int num_frags = skb_shinfo(skb)->nr_frags; 1417 struct page *page, *head = NULL; 1418 int i, new_frags; 1419 u32 d_off; 1420 1421 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1422 return -EINVAL; 1423 1424 if (!num_frags) 1425 goto release; 1426 1427 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1428 for (i = 0; i < new_frags; i++) { 1429 page = alloc_page(gfp_mask); 1430 if (!page) { 1431 while (head) { 1432 struct page *next = (struct page *)page_private(head); 1433 put_page(head); 1434 head = next; 1435 } 1436 return -ENOMEM; 1437 } 1438 set_page_private(page, (unsigned long)head); 1439 head = page; 1440 } 1441 1442 page = head; 1443 d_off = 0; 1444 for (i = 0; i < num_frags; i++) { 1445 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1446 u32 p_off, p_len, copied; 1447 struct page *p; 1448 u8 *vaddr; 1449 1450 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1451 p, p_off, p_len, copied) { 1452 u32 copy, done = 0; 1453 vaddr = kmap_atomic(p); 1454 1455 while (done < p_len) { 1456 if (d_off == PAGE_SIZE) { 1457 d_off = 0; 1458 page = (struct page *)page_private(page); 1459 } 1460 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1461 memcpy(page_address(page) + d_off, 1462 vaddr + p_off + done, copy); 1463 done += copy; 1464 d_off += copy; 1465 } 1466 kunmap_atomic(vaddr); 1467 } 1468 } 1469 1470 /* skb frags release userspace buffers */ 1471 for (i = 0; i < num_frags; i++) 1472 skb_frag_unref(skb, i); 1473 1474 /* skb frags point to kernel buffers */ 1475 for (i = 0; i < new_frags - 1; i++) { 1476 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1477 head = (struct page *)page_private(head); 1478 } 1479 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1480 skb_shinfo(skb)->nr_frags = new_frags; 1481 1482 release: 1483 skb_zcopy_clear(skb, false); 1484 return 0; 1485 } 1486 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1487 1488 /** 1489 * skb_clone - duplicate an sk_buff 1490 * @skb: buffer to clone 1491 * @gfp_mask: allocation priority 1492 * 1493 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1494 * copies share the same packet data but not structure. The new 1495 * buffer has a reference count of 1. If the allocation fails the 1496 * function returns %NULL otherwise the new buffer is returned. 1497 * 1498 * If this function is called from an interrupt gfp_mask() must be 1499 * %GFP_ATOMIC. 1500 */ 1501 1502 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1503 { 1504 struct sk_buff_fclones *fclones = container_of(skb, 1505 struct sk_buff_fclones, 1506 skb1); 1507 struct sk_buff *n; 1508 1509 if (skb_orphan_frags(skb, gfp_mask)) 1510 return NULL; 1511 1512 if (skb->fclone == SKB_FCLONE_ORIG && 1513 refcount_read(&fclones->fclone_ref) == 1) { 1514 n = &fclones->skb2; 1515 refcount_set(&fclones->fclone_ref, 2); 1516 } else { 1517 if (skb_pfmemalloc(skb)) 1518 gfp_mask |= __GFP_MEMALLOC; 1519 1520 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1521 if (!n) 1522 return NULL; 1523 1524 n->fclone = SKB_FCLONE_UNAVAILABLE; 1525 } 1526 1527 return __skb_clone(n, skb); 1528 } 1529 EXPORT_SYMBOL(skb_clone); 1530 1531 void skb_headers_offset_update(struct sk_buff *skb, int off) 1532 { 1533 /* Only adjust this if it actually is csum_start rather than csum */ 1534 if (skb->ip_summed == CHECKSUM_PARTIAL) 1535 skb->csum_start += off; 1536 /* {transport,network,mac}_header and tail are relative to skb->head */ 1537 skb->transport_header += off; 1538 skb->network_header += off; 1539 if (skb_mac_header_was_set(skb)) 1540 skb->mac_header += off; 1541 skb->inner_transport_header += off; 1542 skb->inner_network_header += off; 1543 skb->inner_mac_header += off; 1544 } 1545 EXPORT_SYMBOL(skb_headers_offset_update); 1546 1547 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1548 { 1549 __copy_skb_header(new, old); 1550 1551 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1552 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1553 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1554 } 1555 EXPORT_SYMBOL(skb_copy_header); 1556 1557 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1558 { 1559 if (skb_pfmemalloc(skb)) 1560 return SKB_ALLOC_RX; 1561 return 0; 1562 } 1563 1564 /** 1565 * skb_copy - create private copy of an sk_buff 1566 * @skb: buffer to copy 1567 * @gfp_mask: allocation priority 1568 * 1569 * Make a copy of both an &sk_buff and its data. This is used when the 1570 * caller wishes to modify the data and needs a private copy of the 1571 * data to alter. Returns %NULL on failure or the pointer to the buffer 1572 * on success. The returned buffer has a reference count of 1. 1573 * 1574 * As by-product this function converts non-linear &sk_buff to linear 1575 * one, so that &sk_buff becomes completely private and caller is allowed 1576 * to modify all the data of returned buffer. This means that this 1577 * function is not recommended for use in circumstances when only 1578 * header is going to be modified. Use pskb_copy() instead. 1579 */ 1580 1581 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1582 { 1583 int headerlen = skb_headroom(skb); 1584 unsigned int size = skb_end_offset(skb) + skb->data_len; 1585 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1586 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1587 1588 if (!n) 1589 return NULL; 1590 1591 /* Set the data pointer */ 1592 skb_reserve(n, headerlen); 1593 /* Set the tail pointer and length */ 1594 skb_put(n, skb->len); 1595 1596 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1597 1598 skb_copy_header(n, skb); 1599 return n; 1600 } 1601 EXPORT_SYMBOL(skb_copy); 1602 1603 /** 1604 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1605 * @skb: buffer to copy 1606 * @headroom: headroom of new skb 1607 * @gfp_mask: allocation priority 1608 * @fclone: if true allocate the copy of the skb from the fclone 1609 * cache instead of the head cache; it is recommended to set this 1610 * to true for the cases where the copy will likely be cloned 1611 * 1612 * Make a copy of both an &sk_buff and part of its data, located 1613 * in header. Fragmented data remain shared. This is used when 1614 * the caller wishes to modify only header of &sk_buff and needs 1615 * private copy of the header to alter. Returns %NULL on failure 1616 * or the pointer to the buffer on success. 1617 * The returned buffer has a reference count of 1. 1618 */ 1619 1620 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1621 gfp_t gfp_mask, bool fclone) 1622 { 1623 unsigned int size = skb_headlen(skb) + headroom; 1624 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1625 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1626 1627 if (!n) 1628 goto out; 1629 1630 /* Set the data pointer */ 1631 skb_reserve(n, headroom); 1632 /* Set the tail pointer and length */ 1633 skb_put(n, skb_headlen(skb)); 1634 /* Copy the bytes */ 1635 skb_copy_from_linear_data(skb, n->data, n->len); 1636 1637 n->truesize += skb->data_len; 1638 n->data_len = skb->data_len; 1639 n->len = skb->len; 1640 1641 if (skb_shinfo(skb)->nr_frags) { 1642 int i; 1643 1644 if (skb_orphan_frags(skb, gfp_mask) || 1645 skb_zerocopy_clone(n, skb, gfp_mask)) { 1646 kfree_skb(n); 1647 n = NULL; 1648 goto out; 1649 } 1650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1651 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1652 skb_frag_ref(skb, i); 1653 } 1654 skb_shinfo(n)->nr_frags = i; 1655 } 1656 1657 if (skb_has_frag_list(skb)) { 1658 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1659 skb_clone_fraglist(n); 1660 } 1661 1662 skb_copy_header(n, skb); 1663 out: 1664 return n; 1665 } 1666 EXPORT_SYMBOL(__pskb_copy_fclone); 1667 1668 /** 1669 * pskb_expand_head - reallocate header of &sk_buff 1670 * @skb: buffer to reallocate 1671 * @nhead: room to add at head 1672 * @ntail: room to add at tail 1673 * @gfp_mask: allocation priority 1674 * 1675 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1676 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1677 * reference count of 1. Returns zero in the case of success or error, 1678 * if expansion failed. In the last case, &sk_buff is not changed. 1679 * 1680 * All the pointers pointing into skb header may change and must be 1681 * reloaded after call to this function. 1682 */ 1683 1684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1685 gfp_t gfp_mask) 1686 { 1687 int i, osize = skb_end_offset(skb); 1688 int size = osize + nhead + ntail; 1689 long off; 1690 u8 *data; 1691 1692 BUG_ON(nhead < 0); 1693 1694 BUG_ON(skb_shared(skb)); 1695 1696 size = SKB_DATA_ALIGN(size); 1697 1698 if (skb_pfmemalloc(skb)) 1699 gfp_mask |= __GFP_MEMALLOC; 1700 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1701 gfp_mask, NUMA_NO_NODE, NULL); 1702 if (!data) 1703 goto nodata; 1704 size = SKB_WITH_OVERHEAD(ksize(data)); 1705 1706 /* Copy only real data... and, alas, header. This should be 1707 * optimized for the cases when header is void. 1708 */ 1709 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1710 1711 memcpy((struct skb_shared_info *)(data + size), 1712 skb_shinfo(skb), 1713 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1714 1715 /* 1716 * if shinfo is shared we must drop the old head gracefully, but if it 1717 * is not we can just drop the old head and let the existing refcount 1718 * be since all we did is relocate the values 1719 */ 1720 if (skb_cloned(skb)) { 1721 if (skb_orphan_frags(skb, gfp_mask)) 1722 goto nofrags; 1723 if (skb_zcopy(skb)) 1724 refcount_inc(&skb_uarg(skb)->refcnt); 1725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1726 skb_frag_ref(skb, i); 1727 1728 if (skb_has_frag_list(skb)) 1729 skb_clone_fraglist(skb); 1730 1731 skb_release_data(skb); 1732 } else { 1733 skb_free_head(skb); 1734 } 1735 off = (data + nhead) - skb->head; 1736 1737 skb->head = data; 1738 skb->head_frag = 0; 1739 skb->data += off; 1740 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1741 skb->end = size; 1742 off = nhead; 1743 #else 1744 skb->end = skb->head + size; 1745 #endif 1746 skb->tail += off; 1747 skb_headers_offset_update(skb, nhead); 1748 skb->cloned = 0; 1749 skb->hdr_len = 0; 1750 skb->nohdr = 0; 1751 atomic_set(&skb_shinfo(skb)->dataref, 1); 1752 1753 skb_metadata_clear(skb); 1754 1755 /* It is not generally safe to change skb->truesize. 1756 * For the moment, we really care of rx path, or 1757 * when skb is orphaned (not attached to a socket). 1758 */ 1759 if (!skb->sk || skb->destructor == sock_edemux) 1760 skb->truesize += size - osize; 1761 1762 return 0; 1763 1764 nofrags: 1765 kfree(data); 1766 nodata: 1767 return -ENOMEM; 1768 } 1769 EXPORT_SYMBOL(pskb_expand_head); 1770 1771 /* Make private copy of skb with writable head and some headroom */ 1772 1773 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1774 { 1775 struct sk_buff *skb2; 1776 int delta = headroom - skb_headroom(skb); 1777 1778 if (delta <= 0) 1779 skb2 = pskb_copy(skb, GFP_ATOMIC); 1780 else { 1781 skb2 = skb_clone(skb, GFP_ATOMIC); 1782 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1783 GFP_ATOMIC)) { 1784 kfree_skb(skb2); 1785 skb2 = NULL; 1786 } 1787 } 1788 return skb2; 1789 } 1790 EXPORT_SYMBOL(skb_realloc_headroom); 1791 1792 /** 1793 * skb_expand_head - reallocate header of &sk_buff 1794 * @skb: buffer to reallocate 1795 * @headroom: needed headroom 1796 * 1797 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1798 * if possible; copies skb->sk to new skb as needed 1799 * and frees original skb in case of failures. 1800 * 1801 * It expect increased headroom and generates warning otherwise. 1802 */ 1803 1804 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1805 { 1806 int delta = headroom - skb_headroom(skb); 1807 1808 if (WARN_ONCE(delta <= 0, 1809 "%s is expecting an increase in the headroom", __func__)) 1810 return skb; 1811 1812 /* pskb_expand_head() might crash, if skb is shared */ 1813 if (skb_shared(skb)) { 1814 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1815 1816 if (likely(nskb)) { 1817 if (skb->sk) 1818 skb_set_owner_w(nskb, skb->sk); 1819 consume_skb(skb); 1820 } else { 1821 kfree_skb(skb); 1822 } 1823 skb = nskb; 1824 } 1825 if (skb && 1826 pskb_expand_head(skb, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { 1827 kfree_skb(skb); 1828 skb = NULL; 1829 } 1830 return skb; 1831 } 1832 EXPORT_SYMBOL(skb_expand_head); 1833 1834 /** 1835 * skb_copy_expand - copy and expand sk_buff 1836 * @skb: buffer to copy 1837 * @newheadroom: new free bytes at head 1838 * @newtailroom: new free bytes at tail 1839 * @gfp_mask: allocation priority 1840 * 1841 * Make a copy of both an &sk_buff and its data and while doing so 1842 * allocate additional space. 1843 * 1844 * This is used when the caller wishes to modify the data and needs a 1845 * private copy of the data to alter as well as more space for new fields. 1846 * Returns %NULL on failure or the pointer to the buffer 1847 * on success. The returned buffer has a reference count of 1. 1848 * 1849 * You must pass %GFP_ATOMIC as the allocation priority if this function 1850 * is called from an interrupt. 1851 */ 1852 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1853 int newheadroom, int newtailroom, 1854 gfp_t gfp_mask) 1855 { 1856 /* 1857 * Allocate the copy buffer 1858 */ 1859 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1860 gfp_mask, skb_alloc_rx_flag(skb), 1861 NUMA_NO_NODE); 1862 int oldheadroom = skb_headroom(skb); 1863 int head_copy_len, head_copy_off; 1864 1865 if (!n) 1866 return NULL; 1867 1868 skb_reserve(n, newheadroom); 1869 1870 /* Set the tail pointer and length */ 1871 skb_put(n, skb->len); 1872 1873 head_copy_len = oldheadroom; 1874 head_copy_off = 0; 1875 if (newheadroom <= head_copy_len) 1876 head_copy_len = newheadroom; 1877 else 1878 head_copy_off = newheadroom - head_copy_len; 1879 1880 /* Copy the linear header and data. */ 1881 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1882 skb->len + head_copy_len)); 1883 1884 skb_copy_header(n, skb); 1885 1886 skb_headers_offset_update(n, newheadroom - oldheadroom); 1887 1888 return n; 1889 } 1890 EXPORT_SYMBOL(skb_copy_expand); 1891 1892 /** 1893 * __skb_pad - zero pad the tail of an skb 1894 * @skb: buffer to pad 1895 * @pad: space to pad 1896 * @free_on_error: free buffer on error 1897 * 1898 * Ensure that a buffer is followed by a padding area that is zero 1899 * filled. Used by network drivers which may DMA or transfer data 1900 * beyond the buffer end onto the wire. 1901 * 1902 * May return error in out of memory cases. The skb is freed on error 1903 * if @free_on_error is true. 1904 */ 1905 1906 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1907 { 1908 int err; 1909 int ntail; 1910 1911 /* If the skbuff is non linear tailroom is always zero.. */ 1912 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1913 memset(skb->data+skb->len, 0, pad); 1914 return 0; 1915 } 1916 1917 ntail = skb->data_len + pad - (skb->end - skb->tail); 1918 if (likely(skb_cloned(skb) || ntail > 0)) { 1919 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1920 if (unlikely(err)) 1921 goto free_skb; 1922 } 1923 1924 /* FIXME: The use of this function with non-linear skb's really needs 1925 * to be audited. 1926 */ 1927 err = skb_linearize(skb); 1928 if (unlikely(err)) 1929 goto free_skb; 1930 1931 memset(skb->data + skb->len, 0, pad); 1932 return 0; 1933 1934 free_skb: 1935 if (free_on_error) 1936 kfree_skb(skb); 1937 return err; 1938 } 1939 EXPORT_SYMBOL(__skb_pad); 1940 1941 /** 1942 * pskb_put - add data to the tail of a potentially fragmented buffer 1943 * @skb: start of the buffer to use 1944 * @tail: tail fragment of the buffer to use 1945 * @len: amount of data to add 1946 * 1947 * This function extends the used data area of the potentially 1948 * fragmented buffer. @tail must be the last fragment of @skb -- or 1949 * @skb itself. If this would exceed the total buffer size the kernel 1950 * will panic. A pointer to the first byte of the extra data is 1951 * returned. 1952 */ 1953 1954 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1955 { 1956 if (tail != skb) { 1957 skb->data_len += len; 1958 skb->len += len; 1959 } 1960 return skb_put(tail, len); 1961 } 1962 EXPORT_SYMBOL_GPL(pskb_put); 1963 1964 /** 1965 * skb_put - add data to a buffer 1966 * @skb: buffer to use 1967 * @len: amount of data to add 1968 * 1969 * This function extends the used data area of the buffer. If this would 1970 * exceed the total buffer size the kernel will panic. A pointer to the 1971 * first byte of the extra data is returned. 1972 */ 1973 void *skb_put(struct sk_buff *skb, unsigned int len) 1974 { 1975 void *tmp = skb_tail_pointer(skb); 1976 SKB_LINEAR_ASSERT(skb); 1977 skb->tail += len; 1978 skb->len += len; 1979 if (unlikely(skb->tail > skb->end)) 1980 skb_over_panic(skb, len, __builtin_return_address(0)); 1981 return tmp; 1982 } 1983 EXPORT_SYMBOL(skb_put); 1984 1985 /** 1986 * skb_push - add data to the start of a buffer 1987 * @skb: buffer to use 1988 * @len: amount of data to add 1989 * 1990 * This function extends the used data area of the buffer at the buffer 1991 * start. If this would exceed the total buffer headroom the kernel will 1992 * panic. A pointer to the first byte of the extra data is returned. 1993 */ 1994 void *skb_push(struct sk_buff *skb, unsigned int len) 1995 { 1996 skb->data -= len; 1997 skb->len += len; 1998 if (unlikely(skb->data < skb->head)) 1999 skb_under_panic(skb, len, __builtin_return_address(0)); 2000 return skb->data; 2001 } 2002 EXPORT_SYMBOL(skb_push); 2003 2004 /** 2005 * skb_pull - remove data from the start of a buffer 2006 * @skb: buffer to use 2007 * @len: amount of data to remove 2008 * 2009 * This function removes data from the start of a buffer, returning 2010 * the memory to the headroom. A pointer to the next data in the buffer 2011 * is returned. Once the data has been pulled future pushes will overwrite 2012 * the old data. 2013 */ 2014 void *skb_pull(struct sk_buff *skb, unsigned int len) 2015 { 2016 return skb_pull_inline(skb, len); 2017 } 2018 EXPORT_SYMBOL(skb_pull); 2019 2020 /** 2021 * skb_trim - remove end from a buffer 2022 * @skb: buffer to alter 2023 * @len: new length 2024 * 2025 * Cut the length of a buffer down by removing data from the tail. If 2026 * the buffer is already under the length specified it is not modified. 2027 * The skb must be linear. 2028 */ 2029 void skb_trim(struct sk_buff *skb, unsigned int len) 2030 { 2031 if (skb->len > len) 2032 __skb_trim(skb, len); 2033 } 2034 EXPORT_SYMBOL(skb_trim); 2035 2036 /* Trims skb to length len. It can change skb pointers. 2037 */ 2038 2039 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2040 { 2041 struct sk_buff **fragp; 2042 struct sk_buff *frag; 2043 int offset = skb_headlen(skb); 2044 int nfrags = skb_shinfo(skb)->nr_frags; 2045 int i; 2046 int err; 2047 2048 if (skb_cloned(skb) && 2049 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2050 return err; 2051 2052 i = 0; 2053 if (offset >= len) 2054 goto drop_pages; 2055 2056 for (; i < nfrags; i++) { 2057 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2058 2059 if (end < len) { 2060 offset = end; 2061 continue; 2062 } 2063 2064 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2065 2066 drop_pages: 2067 skb_shinfo(skb)->nr_frags = i; 2068 2069 for (; i < nfrags; i++) 2070 skb_frag_unref(skb, i); 2071 2072 if (skb_has_frag_list(skb)) 2073 skb_drop_fraglist(skb); 2074 goto done; 2075 } 2076 2077 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2078 fragp = &frag->next) { 2079 int end = offset + frag->len; 2080 2081 if (skb_shared(frag)) { 2082 struct sk_buff *nfrag; 2083 2084 nfrag = skb_clone(frag, GFP_ATOMIC); 2085 if (unlikely(!nfrag)) 2086 return -ENOMEM; 2087 2088 nfrag->next = frag->next; 2089 consume_skb(frag); 2090 frag = nfrag; 2091 *fragp = frag; 2092 } 2093 2094 if (end < len) { 2095 offset = end; 2096 continue; 2097 } 2098 2099 if (end > len && 2100 unlikely((err = pskb_trim(frag, len - offset)))) 2101 return err; 2102 2103 if (frag->next) 2104 skb_drop_list(&frag->next); 2105 break; 2106 } 2107 2108 done: 2109 if (len > skb_headlen(skb)) { 2110 skb->data_len -= skb->len - len; 2111 skb->len = len; 2112 } else { 2113 skb->len = len; 2114 skb->data_len = 0; 2115 skb_set_tail_pointer(skb, len); 2116 } 2117 2118 if (!skb->sk || skb->destructor == sock_edemux) 2119 skb_condense(skb); 2120 return 0; 2121 } 2122 EXPORT_SYMBOL(___pskb_trim); 2123 2124 /* Note : use pskb_trim_rcsum() instead of calling this directly 2125 */ 2126 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2127 { 2128 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2129 int delta = skb->len - len; 2130 2131 skb->csum = csum_block_sub(skb->csum, 2132 skb_checksum(skb, len, delta, 0), 2133 len); 2134 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2135 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2136 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2137 2138 if (offset + sizeof(__sum16) > hdlen) 2139 return -EINVAL; 2140 } 2141 return __pskb_trim(skb, len); 2142 } 2143 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2144 2145 /** 2146 * __pskb_pull_tail - advance tail of skb header 2147 * @skb: buffer to reallocate 2148 * @delta: number of bytes to advance tail 2149 * 2150 * The function makes a sense only on a fragmented &sk_buff, 2151 * it expands header moving its tail forward and copying necessary 2152 * data from fragmented part. 2153 * 2154 * &sk_buff MUST have reference count of 1. 2155 * 2156 * Returns %NULL (and &sk_buff does not change) if pull failed 2157 * or value of new tail of skb in the case of success. 2158 * 2159 * All the pointers pointing into skb header may change and must be 2160 * reloaded after call to this function. 2161 */ 2162 2163 /* Moves tail of skb head forward, copying data from fragmented part, 2164 * when it is necessary. 2165 * 1. It may fail due to malloc failure. 2166 * 2. It may change skb pointers. 2167 * 2168 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2169 */ 2170 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2171 { 2172 /* If skb has not enough free space at tail, get new one 2173 * plus 128 bytes for future expansions. If we have enough 2174 * room at tail, reallocate without expansion only if skb is cloned. 2175 */ 2176 int i, k, eat = (skb->tail + delta) - skb->end; 2177 2178 if (eat > 0 || skb_cloned(skb)) { 2179 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2180 GFP_ATOMIC)) 2181 return NULL; 2182 } 2183 2184 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2185 skb_tail_pointer(skb), delta)); 2186 2187 /* Optimization: no fragments, no reasons to preestimate 2188 * size of pulled pages. Superb. 2189 */ 2190 if (!skb_has_frag_list(skb)) 2191 goto pull_pages; 2192 2193 /* Estimate size of pulled pages. */ 2194 eat = delta; 2195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2196 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2197 2198 if (size >= eat) 2199 goto pull_pages; 2200 eat -= size; 2201 } 2202 2203 /* If we need update frag list, we are in troubles. 2204 * Certainly, it is possible to add an offset to skb data, 2205 * but taking into account that pulling is expected to 2206 * be very rare operation, it is worth to fight against 2207 * further bloating skb head and crucify ourselves here instead. 2208 * Pure masohism, indeed. 8)8) 2209 */ 2210 if (eat) { 2211 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2212 struct sk_buff *clone = NULL; 2213 struct sk_buff *insp = NULL; 2214 2215 do { 2216 if (list->len <= eat) { 2217 /* Eaten as whole. */ 2218 eat -= list->len; 2219 list = list->next; 2220 insp = list; 2221 } else { 2222 /* Eaten partially. */ 2223 2224 if (skb_shared(list)) { 2225 /* Sucks! We need to fork list. :-( */ 2226 clone = skb_clone(list, GFP_ATOMIC); 2227 if (!clone) 2228 return NULL; 2229 insp = list->next; 2230 list = clone; 2231 } else { 2232 /* This may be pulled without 2233 * problems. */ 2234 insp = list; 2235 } 2236 if (!pskb_pull(list, eat)) { 2237 kfree_skb(clone); 2238 return NULL; 2239 } 2240 break; 2241 } 2242 } while (eat); 2243 2244 /* Free pulled out fragments. */ 2245 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2246 skb_shinfo(skb)->frag_list = list->next; 2247 kfree_skb(list); 2248 } 2249 /* And insert new clone at head. */ 2250 if (clone) { 2251 clone->next = list; 2252 skb_shinfo(skb)->frag_list = clone; 2253 } 2254 } 2255 /* Success! Now we may commit changes to skb data. */ 2256 2257 pull_pages: 2258 eat = delta; 2259 k = 0; 2260 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2261 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2262 2263 if (size <= eat) { 2264 skb_frag_unref(skb, i); 2265 eat -= size; 2266 } else { 2267 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2268 2269 *frag = skb_shinfo(skb)->frags[i]; 2270 if (eat) { 2271 skb_frag_off_add(frag, eat); 2272 skb_frag_size_sub(frag, eat); 2273 if (!i) 2274 goto end; 2275 eat = 0; 2276 } 2277 k++; 2278 } 2279 } 2280 skb_shinfo(skb)->nr_frags = k; 2281 2282 end: 2283 skb->tail += delta; 2284 skb->data_len -= delta; 2285 2286 if (!skb->data_len) 2287 skb_zcopy_clear(skb, false); 2288 2289 return skb_tail_pointer(skb); 2290 } 2291 EXPORT_SYMBOL(__pskb_pull_tail); 2292 2293 /** 2294 * skb_copy_bits - copy bits from skb to kernel buffer 2295 * @skb: source skb 2296 * @offset: offset in source 2297 * @to: destination buffer 2298 * @len: number of bytes to copy 2299 * 2300 * Copy the specified number of bytes from the source skb to the 2301 * destination buffer. 2302 * 2303 * CAUTION ! : 2304 * If its prototype is ever changed, 2305 * check arch/{*}/net/{*}.S files, 2306 * since it is called from BPF assembly code. 2307 */ 2308 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2309 { 2310 int start = skb_headlen(skb); 2311 struct sk_buff *frag_iter; 2312 int i, copy; 2313 2314 if (offset > (int)skb->len - len) 2315 goto fault; 2316 2317 /* Copy header. */ 2318 if ((copy = start - offset) > 0) { 2319 if (copy > len) 2320 copy = len; 2321 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2322 if ((len -= copy) == 0) 2323 return 0; 2324 offset += copy; 2325 to += copy; 2326 } 2327 2328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2329 int end; 2330 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2331 2332 WARN_ON(start > offset + len); 2333 2334 end = start + skb_frag_size(f); 2335 if ((copy = end - offset) > 0) { 2336 u32 p_off, p_len, copied; 2337 struct page *p; 2338 u8 *vaddr; 2339 2340 if (copy > len) 2341 copy = len; 2342 2343 skb_frag_foreach_page(f, 2344 skb_frag_off(f) + offset - start, 2345 copy, p, p_off, p_len, copied) { 2346 vaddr = kmap_atomic(p); 2347 memcpy(to + copied, vaddr + p_off, p_len); 2348 kunmap_atomic(vaddr); 2349 } 2350 2351 if ((len -= copy) == 0) 2352 return 0; 2353 offset += copy; 2354 to += copy; 2355 } 2356 start = end; 2357 } 2358 2359 skb_walk_frags(skb, frag_iter) { 2360 int end; 2361 2362 WARN_ON(start > offset + len); 2363 2364 end = start + frag_iter->len; 2365 if ((copy = end - offset) > 0) { 2366 if (copy > len) 2367 copy = len; 2368 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2369 goto fault; 2370 if ((len -= copy) == 0) 2371 return 0; 2372 offset += copy; 2373 to += copy; 2374 } 2375 start = end; 2376 } 2377 2378 if (!len) 2379 return 0; 2380 2381 fault: 2382 return -EFAULT; 2383 } 2384 EXPORT_SYMBOL(skb_copy_bits); 2385 2386 /* 2387 * Callback from splice_to_pipe(), if we need to release some pages 2388 * at the end of the spd in case we error'ed out in filling the pipe. 2389 */ 2390 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2391 { 2392 put_page(spd->pages[i]); 2393 } 2394 2395 static struct page *linear_to_page(struct page *page, unsigned int *len, 2396 unsigned int *offset, 2397 struct sock *sk) 2398 { 2399 struct page_frag *pfrag = sk_page_frag(sk); 2400 2401 if (!sk_page_frag_refill(sk, pfrag)) 2402 return NULL; 2403 2404 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2405 2406 memcpy(page_address(pfrag->page) + pfrag->offset, 2407 page_address(page) + *offset, *len); 2408 *offset = pfrag->offset; 2409 pfrag->offset += *len; 2410 2411 return pfrag->page; 2412 } 2413 2414 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2415 struct page *page, 2416 unsigned int offset) 2417 { 2418 return spd->nr_pages && 2419 spd->pages[spd->nr_pages - 1] == page && 2420 (spd->partial[spd->nr_pages - 1].offset + 2421 spd->partial[spd->nr_pages - 1].len == offset); 2422 } 2423 2424 /* 2425 * Fill page/offset/length into spd, if it can hold more pages. 2426 */ 2427 static bool spd_fill_page(struct splice_pipe_desc *spd, 2428 struct pipe_inode_info *pipe, struct page *page, 2429 unsigned int *len, unsigned int offset, 2430 bool linear, 2431 struct sock *sk) 2432 { 2433 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2434 return true; 2435 2436 if (linear) { 2437 page = linear_to_page(page, len, &offset, sk); 2438 if (!page) 2439 return true; 2440 } 2441 if (spd_can_coalesce(spd, page, offset)) { 2442 spd->partial[spd->nr_pages - 1].len += *len; 2443 return false; 2444 } 2445 get_page(page); 2446 spd->pages[spd->nr_pages] = page; 2447 spd->partial[spd->nr_pages].len = *len; 2448 spd->partial[spd->nr_pages].offset = offset; 2449 spd->nr_pages++; 2450 2451 return false; 2452 } 2453 2454 static bool __splice_segment(struct page *page, unsigned int poff, 2455 unsigned int plen, unsigned int *off, 2456 unsigned int *len, 2457 struct splice_pipe_desc *spd, bool linear, 2458 struct sock *sk, 2459 struct pipe_inode_info *pipe) 2460 { 2461 if (!*len) 2462 return true; 2463 2464 /* skip this segment if already processed */ 2465 if (*off >= plen) { 2466 *off -= plen; 2467 return false; 2468 } 2469 2470 /* ignore any bits we already processed */ 2471 poff += *off; 2472 plen -= *off; 2473 *off = 0; 2474 2475 do { 2476 unsigned int flen = min(*len, plen); 2477 2478 if (spd_fill_page(spd, pipe, page, &flen, poff, 2479 linear, sk)) 2480 return true; 2481 poff += flen; 2482 plen -= flen; 2483 *len -= flen; 2484 } while (*len && plen); 2485 2486 return false; 2487 } 2488 2489 /* 2490 * Map linear and fragment data from the skb to spd. It reports true if the 2491 * pipe is full or if we already spliced the requested length. 2492 */ 2493 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2494 unsigned int *offset, unsigned int *len, 2495 struct splice_pipe_desc *spd, struct sock *sk) 2496 { 2497 int seg; 2498 struct sk_buff *iter; 2499 2500 /* map the linear part : 2501 * If skb->head_frag is set, this 'linear' part is backed by a 2502 * fragment, and if the head is not shared with any clones then 2503 * we can avoid a copy since we own the head portion of this page. 2504 */ 2505 if (__splice_segment(virt_to_page(skb->data), 2506 (unsigned long) skb->data & (PAGE_SIZE - 1), 2507 skb_headlen(skb), 2508 offset, len, spd, 2509 skb_head_is_locked(skb), 2510 sk, pipe)) 2511 return true; 2512 2513 /* 2514 * then map the fragments 2515 */ 2516 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2517 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2518 2519 if (__splice_segment(skb_frag_page(f), 2520 skb_frag_off(f), skb_frag_size(f), 2521 offset, len, spd, false, sk, pipe)) 2522 return true; 2523 } 2524 2525 skb_walk_frags(skb, iter) { 2526 if (*offset >= iter->len) { 2527 *offset -= iter->len; 2528 continue; 2529 } 2530 /* __skb_splice_bits() only fails if the output has no room 2531 * left, so no point in going over the frag_list for the error 2532 * case. 2533 */ 2534 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2535 return true; 2536 } 2537 2538 return false; 2539 } 2540 2541 /* 2542 * Map data from the skb to a pipe. Should handle both the linear part, 2543 * the fragments, and the frag list. 2544 */ 2545 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2546 struct pipe_inode_info *pipe, unsigned int tlen, 2547 unsigned int flags) 2548 { 2549 struct partial_page partial[MAX_SKB_FRAGS]; 2550 struct page *pages[MAX_SKB_FRAGS]; 2551 struct splice_pipe_desc spd = { 2552 .pages = pages, 2553 .partial = partial, 2554 .nr_pages_max = MAX_SKB_FRAGS, 2555 .ops = &nosteal_pipe_buf_ops, 2556 .spd_release = sock_spd_release, 2557 }; 2558 int ret = 0; 2559 2560 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2561 2562 if (spd.nr_pages) 2563 ret = splice_to_pipe(pipe, &spd); 2564 2565 return ret; 2566 } 2567 EXPORT_SYMBOL_GPL(skb_splice_bits); 2568 2569 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2570 struct kvec *vec, size_t num, size_t size) 2571 { 2572 struct socket *sock = sk->sk_socket; 2573 2574 if (!sock) 2575 return -EINVAL; 2576 return kernel_sendmsg(sock, msg, vec, num, size); 2577 } 2578 2579 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2580 size_t size, int flags) 2581 { 2582 struct socket *sock = sk->sk_socket; 2583 2584 if (!sock) 2585 return -EINVAL; 2586 return kernel_sendpage(sock, page, offset, size, flags); 2587 } 2588 2589 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2590 struct kvec *vec, size_t num, size_t size); 2591 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2592 size_t size, int flags); 2593 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2594 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2595 { 2596 unsigned int orig_len = len; 2597 struct sk_buff *head = skb; 2598 unsigned short fragidx; 2599 int slen, ret; 2600 2601 do_frag_list: 2602 2603 /* Deal with head data */ 2604 while (offset < skb_headlen(skb) && len) { 2605 struct kvec kv; 2606 struct msghdr msg; 2607 2608 slen = min_t(int, len, skb_headlen(skb) - offset); 2609 kv.iov_base = skb->data + offset; 2610 kv.iov_len = slen; 2611 memset(&msg, 0, sizeof(msg)); 2612 msg.msg_flags = MSG_DONTWAIT; 2613 2614 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2615 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2616 if (ret <= 0) 2617 goto error; 2618 2619 offset += ret; 2620 len -= ret; 2621 } 2622 2623 /* All the data was skb head? */ 2624 if (!len) 2625 goto out; 2626 2627 /* Make offset relative to start of frags */ 2628 offset -= skb_headlen(skb); 2629 2630 /* Find where we are in frag list */ 2631 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2632 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2633 2634 if (offset < skb_frag_size(frag)) 2635 break; 2636 2637 offset -= skb_frag_size(frag); 2638 } 2639 2640 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2641 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2642 2643 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2644 2645 while (slen) { 2646 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2647 sendpage_unlocked, sk, 2648 skb_frag_page(frag), 2649 skb_frag_off(frag) + offset, 2650 slen, MSG_DONTWAIT); 2651 if (ret <= 0) 2652 goto error; 2653 2654 len -= ret; 2655 offset += ret; 2656 slen -= ret; 2657 } 2658 2659 offset = 0; 2660 } 2661 2662 if (len) { 2663 /* Process any frag lists */ 2664 2665 if (skb == head) { 2666 if (skb_has_frag_list(skb)) { 2667 skb = skb_shinfo(skb)->frag_list; 2668 goto do_frag_list; 2669 } 2670 } else if (skb->next) { 2671 skb = skb->next; 2672 goto do_frag_list; 2673 } 2674 } 2675 2676 out: 2677 return orig_len - len; 2678 2679 error: 2680 return orig_len == len ? ret : orig_len - len; 2681 } 2682 2683 /* Send skb data on a socket. Socket must be locked. */ 2684 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2685 int len) 2686 { 2687 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2688 kernel_sendpage_locked); 2689 } 2690 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2691 2692 /* Send skb data on a socket. Socket must be unlocked. */ 2693 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2694 { 2695 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2696 sendpage_unlocked); 2697 } 2698 2699 /** 2700 * skb_store_bits - store bits from kernel buffer to skb 2701 * @skb: destination buffer 2702 * @offset: offset in destination 2703 * @from: source buffer 2704 * @len: number of bytes to copy 2705 * 2706 * Copy the specified number of bytes from the source buffer to the 2707 * destination skb. This function handles all the messy bits of 2708 * traversing fragment lists and such. 2709 */ 2710 2711 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2712 { 2713 int start = skb_headlen(skb); 2714 struct sk_buff *frag_iter; 2715 int i, copy; 2716 2717 if (offset > (int)skb->len - len) 2718 goto fault; 2719 2720 if ((copy = start - offset) > 0) { 2721 if (copy > len) 2722 copy = len; 2723 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2724 if ((len -= copy) == 0) 2725 return 0; 2726 offset += copy; 2727 from += copy; 2728 } 2729 2730 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2731 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2732 int end; 2733 2734 WARN_ON(start > offset + len); 2735 2736 end = start + skb_frag_size(frag); 2737 if ((copy = end - offset) > 0) { 2738 u32 p_off, p_len, copied; 2739 struct page *p; 2740 u8 *vaddr; 2741 2742 if (copy > len) 2743 copy = len; 2744 2745 skb_frag_foreach_page(frag, 2746 skb_frag_off(frag) + offset - start, 2747 copy, p, p_off, p_len, copied) { 2748 vaddr = kmap_atomic(p); 2749 memcpy(vaddr + p_off, from + copied, p_len); 2750 kunmap_atomic(vaddr); 2751 } 2752 2753 if ((len -= copy) == 0) 2754 return 0; 2755 offset += copy; 2756 from += copy; 2757 } 2758 start = end; 2759 } 2760 2761 skb_walk_frags(skb, frag_iter) { 2762 int end; 2763 2764 WARN_ON(start > offset + len); 2765 2766 end = start + frag_iter->len; 2767 if ((copy = end - offset) > 0) { 2768 if (copy > len) 2769 copy = len; 2770 if (skb_store_bits(frag_iter, offset - start, 2771 from, copy)) 2772 goto fault; 2773 if ((len -= copy) == 0) 2774 return 0; 2775 offset += copy; 2776 from += copy; 2777 } 2778 start = end; 2779 } 2780 if (!len) 2781 return 0; 2782 2783 fault: 2784 return -EFAULT; 2785 } 2786 EXPORT_SYMBOL(skb_store_bits); 2787 2788 /* Checksum skb data. */ 2789 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2790 __wsum csum, const struct skb_checksum_ops *ops) 2791 { 2792 int start = skb_headlen(skb); 2793 int i, copy = start - offset; 2794 struct sk_buff *frag_iter; 2795 int pos = 0; 2796 2797 /* Checksum header. */ 2798 if (copy > 0) { 2799 if (copy > len) 2800 copy = len; 2801 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2802 skb->data + offset, copy, csum); 2803 if ((len -= copy) == 0) 2804 return csum; 2805 offset += copy; 2806 pos = copy; 2807 } 2808 2809 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2810 int end; 2811 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2812 2813 WARN_ON(start > offset + len); 2814 2815 end = start + skb_frag_size(frag); 2816 if ((copy = end - offset) > 0) { 2817 u32 p_off, p_len, copied; 2818 struct page *p; 2819 __wsum csum2; 2820 u8 *vaddr; 2821 2822 if (copy > len) 2823 copy = len; 2824 2825 skb_frag_foreach_page(frag, 2826 skb_frag_off(frag) + offset - start, 2827 copy, p, p_off, p_len, copied) { 2828 vaddr = kmap_atomic(p); 2829 csum2 = INDIRECT_CALL_1(ops->update, 2830 csum_partial_ext, 2831 vaddr + p_off, p_len, 0); 2832 kunmap_atomic(vaddr); 2833 csum = INDIRECT_CALL_1(ops->combine, 2834 csum_block_add_ext, csum, 2835 csum2, pos, p_len); 2836 pos += p_len; 2837 } 2838 2839 if (!(len -= copy)) 2840 return csum; 2841 offset += copy; 2842 } 2843 start = end; 2844 } 2845 2846 skb_walk_frags(skb, frag_iter) { 2847 int end; 2848 2849 WARN_ON(start > offset + len); 2850 2851 end = start + frag_iter->len; 2852 if ((copy = end - offset) > 0) { 2853 __wsum csum2; 2854 if (copy > len) 2855 copy = len; 2856 csum2 = __skb_checksum(frag_iter, offset - start, 2857 copy, 0, ops); 2858 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2859 csum, csum2, pos, copy); 2860 if ((len -= copy) == 0) 2861 return csum; 2862 offset += copy; 2863 pos += copy; 2864 } 2865 start = end; 2866 } 2867 BUG_ON(len); 2868 2869 return csum; 2870 } 2871 EXPORT_SYMBOL(__skb_checksum); 2872 2873 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2874 int len, __wsum csum) 2875 { 2876 const struct skb_checksum_ops ops = { 2877 .update = csum_partial_ext, 2878 .combine = csum_block_add_ext, 2879 }; 2880 2881 return __skb_checksum(skb, offset, len, csum, &ops); 2882 } 2883 EXPORT_SYMBOL(skb_checksum); 2884 2885 /* Both of above in one bottle. */ 2886 2887 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2888 u8 *to, int len) 2889 { 2890 int start = skb_headlen(skb); 2891 int i, copy = start - offset; 2892 struct sk_buff *frag_iter; 2893 int pos = 0; 2894 __wsum csum = 0; 2895 2896 /* Copy header. */ 2897 if (copy > 0) { 2898 if (copy > len) 2899 copy = len; 2900 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2901 copy); 2902 if ((len -= copy) == 0) 2903 return csum; 2904 offset += copy; 2905 to += copy; 2906 pos = copy; 2907 } 2908 2909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2910 int end; 2911 2912 WARN_ON(start > offset + len); 2913 2914 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2915 if ((copy = end - offset) > 0) { 2916 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2917 u32 p_off, p_len, copied; 2918 struct page *p; 2919 __wsum csum2; 2920 u8 *vaddr; 2921 2922 if (copy > len) 2923 copy = len; 2924 2925 skb_frag_foreach_page(frag, 2926 skb_frag_off(frag) + offset - start, 2927 copy, p, p_off, p_len, copied) { 2928 vaddr = kmap_atomic(p); 2929 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2930 to + copied, 2931 p_len); 2932 kunmap_atomic(vaddr); 2933 csum = csum_block_add(csum, csum2, pos); 2934 pos += p_len; 2935 } 2936 2937 if (!(len -= copy)) 2938 return csum; 2939 offset += copy; 2940 to += copy; 2941 } 2942 start = end; 2943 } 2944 2945 skb_walk_frags(skb, frag_iter) { 2946 __wsum csum2; 2947 int end; 2948 2949 WARN_ON(start > offset + len); 2950 2951 end = start + frag_iter->len; 2952 if ((copy = end - offset) > 0) { 2953 if (copy > len) 2954 copy = len; 2955 csum2 = skb_copy_and_csum_bits(frag_iter, 2956 offset - start, 2957 to, copy); 2958 csum = csum_block_add(csum, csum2, pos); 2959 if ((len -= copy) == 0) 2960 return csum; 2961 offset += copy; 2962 to += copy; 2963 pos += copy; 2964 } 2965 start = end; 2966 } 2967 BUG_ON(len); 2968 return csum; 2969 } 2970 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2971 2972 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2973 { 2974 __sum16 sum; 2975 2976 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2977 /* See comments in __skb_checksum_complete(). */ 2978 if (likely(!sum)) { 2979 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2980 !skb->csum_complete_sw) 2981 netdev_rx_csum_fault(skb->dev, skb); 2982 } 2983 if (!skb_shared(skb)) 2984 skb->csum_valid = !sum; 2985 return sum; 2986 } 2987 EXPORT_SYMBOL(__skb_checksum_complete_head); 2988 2989 /* This function assumes skb->csum already holds pseudo header's checksum, 2990 * which has been changed from the hardware checksum, for example, by 2991 * __skb_checksum_validate_complete(). And, the original skb->csum must 2992 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2993 * 2994 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2995 * zero. The new checksum is stored back into skb->csum unless the skb is 2996 * shared. 2997 */ 2998 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2999 { 3000 __wsum csum; 3001 __sum16 sum; 3002 3003 csum = skb_checksum(skb, 0, skb->len, 0); 3004 3005 sum = csum_fold(csum_add(skb->csum, csum)); 3006 /* This check is inverted, because we already knew the hardware 3007 * checksum is invalid before calling this function. So, if the 3008 * re-computed checksum is valid instead, then we have a mismatch 3009 * between the original skb->csum and skb_checksum(). This means either 3010 * the original hardware checksum is incorrect or we screw up skb->csum 3011 * when moving skb->data around. 3012 */ 3013 if (likely(!sum)) { 3014 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3015 !skb->csum_complete_sw) 3016 netdev_rx_csum_fault(skb->dev, skb); 3017 } 3018 3019 if (!skb_shared(skb)) { 3020 /* Save full packet checksum */ 3021 skb->csum = csum; 3022 skb->ip_summed = CHECKSUM_COMPLETE; 3023 skb->csum_complete_sw = 1; 3024 skb->csum_valid = !sum; 3025 } 3026 3027 return sum; 3028 } 3029 EXPORT_SYMBOL(__skb_checksum_complete); 3030 3031 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3032 { 3033 net_warn_ratelimited( 3034 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3035 __func__); 3036 return 0; 3037 } 3038 3039 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3040 int offset, int len) 3041 { 3042 net_warn_ratelimited( 3043 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3044 __func__); 3045 return 0; 3046 } 3047 3048 static const struct skb_checksum_ops default_crc32c_ops = { 3049 .update = warn_crc32c_csum_update, 3050 .combine = warn_crc32c_csum_combine, 3051 }; 3052 3053 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3054 &default_crc32c_ops; 3055 EXPORT_SYMBOL(crc32c_csum_stub); 3056 3057 /** 3058 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3059 * @from: source buffer 3060 * 3061 * Calculates the amount of linear headroom needed in the 'to' skb passed 3062 * into skb_zerocopy(). 3063 */ 3064 unsigned int 3065 skb_zerocopy_headlen(const struct sk_buff *from) 3066 { 3067 unsigned int hlen = 0; 3068 3069 if (!from->head_frag || 3070 skb_headlen(from) < L1_CACHE_BYTES || 3071 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3072 hlen = skb_headlen(from); 3073 if (!hlen) 3074 hlen = from->len; 3075 } 3076 3077 if (skb_has_frag_list(from)) 3078 hlen = from->len; 3079 3080 return hlen; 3081 } 3082 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3083 3084 /** 3085 * skb_zerocopy - Zero copy skb to skb 3086 * @to: destination buffer 3087 * @from: source buffer 3088 * @len: number of bytes to copy from source buffer 3089 * @hlen: size of linear headroom in destination buffer 3090 * 3091 * Copies up to `len` bytes from `from` to `to` by creating references 3092 * to the frags in the source buffer. 3093 * 3094 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3095 * headroom in the `to` buffer. 3096 * 3097 * Return value: 3098 * 0: everything is OK 3099 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3100 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3101 */ 3102 int 3103 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3104 { 3105 int i, j = 0; 3106 int plen = 0; /* length of skb->head fragment */ 3107 int ret; 3108 struct page *page; 3109 unsigned int offset; 3110 3111 BUG_ON(!from->head_frag && !hlen); 3112 3113 /* dont bother with small payloads */ 3114 if (len <= skb_tailroom(to)) 3115 return skb_copy_bits(from, 0, skb_put(to, len), len); 3116 3117 if (hlen) { 3118 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3119 if (unlikely(ret)) 3120 return ret; 3121 len -= hlen; 3122 } else { 3123 plen = min_t(int, skb_headlen(from), len); 3124 if (plen) { 3125 page = virt_to_head_page(from->head); 3126 offset = from->data - (unsigned char *)page_address(page); 3127 __skb_fill_page_desc(to, 0, page, offset, plen); 3128 get_page(page); 3129 j = 1; 3130 len -= plen; 3131 } 3132 } 3133 3134 to->truesize += len + plen; 3135 to->len += len + plen; 3136 to->data_len += len + plen; 3137 3138 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3139 skb_tx_error(from); 3140 return -ENOMEM; 3141 } 3142 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3143 3144 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3145 int size; 3146 3147 if (!len) 3148 break; 3149 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3150 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3151 len); 3152 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3153 len -= size; 3154 skb_frag_ref(to, j); 3155 j++; 3156 } 3157 skb_shinfo(to)->nr_frags = j; 3158 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(skb_zerocopy); 3162 3163 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3164 { 3165 __wsum csum; 3166 long csstart; 3167 3168 if (skb->ip_summed == CHECKSUM_PARTIAL) 3169 csstart = skb_checksum_start_offset(skb); 3170 else 3171 csstart = skb_headlen(skb); 3172 3173 BUG_ON(csstart > skb_headlen(skb)); 3174 3175 skb_copy_from_linear_data(skb, to, csstart); 3176 3177 csum = 0; 3178 if (csstart != skb->len) 3179 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3180 skb->len - csstart); 3181 3182 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3183 long csstuff = csstart + skb->csum_offset; 3184 3185 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3186 } 3187 } 3188 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3189 3190 /** 3191 * skb_dequeue - remove from the head of the queue 3192 * @list: list to dequeue from 3193 * 3194 * Remove the head of the list. The list lock is taken so the function 3195 * may be used safely with other locking list functions. The head item is 3196 * returned or %NULL if the list is empty. 3197 */ 3198 3199 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3200 { 3201 unsigned long flags; 3202 struct sk_buff *result; 3203 3204 spin_lock_irqsave(&list->lock, flags); 3205 result = __skb_dequeue(list); 3206 spin_unlock_irqrestore(&list->lock, flags); 3207 return result; 3208 } 3209 EXPORT_SYMBOL(skb_dequeue); 3210 3211 /** 3212 * skb_dequeue_tail - remove from the tail of the queue 3213 * @list: list to dequeue from 3214 * 3215 * Remove the tail of the list. The list lock is taken so the function 3216 * may be used safely with other locking list functions. The tail item is 3217 * returned or %NULL if the list is empty. 3218 */ 3219 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3220 { 3221 unsigned long flags; 3222 struct sk_buff *result; 3223 3224 spin_lock_irqsave(&list->lock, flags); 3225 result = __skb_dequeue_tail(list); 3226 spin_unlock_irqrestore(&list->lock, flags); 3227 return result; 3228 } 3229 EXPORT_SYMBOL(skb_dequeue_tail); 3230 3231 /** 3232 * skb_queue_purge - empty a list 3233 * @list: list to empty 3234 * 3235 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3236 * the list and one reference dropped. This function takes the list 3237 * lock and is atomic with respect to other list locking functions. 3238 */ 3239 void skb_queue_purge(struct sk_buff_head *list) 3240 { 3241 struct sk_buff *skb; 3242 while ((skb = skb_dequeue(list)) != NULL) 3243 kfree_skb(skb); 3244 } 3245 EXPORT_SYMBOL(skb_queue_purge); 3246 3247 /** 3248 * skb_rbtree_purge - empty a skb rbtree 3249 * @root: root of the rbtree to empty 3250 * Return value: the sum of truesizes of all purged skbs. 3251 * 3252 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3253 * the list and one reference dropped. This function does not take 3254 * any lock. Synchronization should be handled by the caller (e.g., TCP 3255 * out-of-order queue is protected by the socket lock). 3256 */ 3257 unsigned int skb_rbtree_purge(struct rb_root *root) 3258 { 3259 struct rb_node *p = rb_first(root); 3260 unsigned int sum = 0; 3261 3262 while (p) { 3263 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3264 3265 p = rb_next(p); 3266 rb_erase(&skb->rbnode, root); 3267 sum += skb->truesize; 3268 kfree_skb(skb); 3269 } 3270 return sum; 3271 } 3272 3273 /** 3274 * skb_queue_head - queue a buffer at the list head 3275 * @list: list to use 3276 * @newsk: buffer to queue 3277 * 3278 * Queue a buffer at the start of the list. This function takes the 3279 * list lock and can be used safely with other locking &sk_buff functions 3280 * safely. 3281 * 3282 * A buffer cannot be placed on two lists at the same time. 3283 */ 3284 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3285 { 3286 unsigned long flags; 3287 3288 spin_lock_irqsave(&list->lock, flags); 3289 __skb_queue_head(list, newsk); 3290 spin_unlock_irqrestore(&list->lock, flags); 3291 } 3292 EXPORT_SYMBOL(skb_queue_head); 3293 3294 /** 3295 * skb_queue_tail - queue a buffer at the list tail 3296 * @list: list to use 3297 * @newsk: buffer to queue 3298 * 3299 * Queue a buffer at the tail of the list. This function takes the 3300 * list lock and can be used safely with other locking &sk_buff functions 3301 * safely. 3302 * 3303 * A buffer cannot be placed on two lists at the same time. 3304 */ 3305 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3306 { 3307 unsigned long flags; 3308 3309 spin_lock_irqsave(&list->lock, flags); 3310 __skb_queue_tail(list, newsk); 3311 spin_unlock_irqrestore(&list->lock, flags); 3312 } 3313 EXPORT_SYMBOL(skb_queue_tail); 3314 3315 /** 3316 * skb_unlink - remove a buffer from a list 3317 * @skb: buffer to remove 3318 * @list: list to use 3319 * 3320 * Remove a packet from a list. The list locks are taken and this 3321 * function is atomic with respect to other list locked calls 3322 * 3323 * You must know what list the SKB is on. 3324 */ 3325 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3326 { 3327 unsigned long flags; 3328 3329 spin_lock_irqsave(&list->lock, flags); 3330 __skb_unlink(skb, list); 3331 spin_unlock_irqrestore(&list->lock, flags); 3332 } 3333 EXPORT_SYMBOL(skb_unlink); 3334 3335 /** 3336 * skb_append - append a buffer 3337 * @old: buffer to insert after 3338 * @newsk: buffer to insert 3339 * @list: list to use 3340 * 3341 * Place a packet after a given packet in a list. The list locks are taken 3342 * and this function is atomic with respect to other list locked calls. 3343 * A buffer cannot be placed on two lists at the same time. 3344 */ 3345 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3346 { 3347 unsigned long flags; 3348 3349 spin_lock_irqsave(&list->lock, flags); 3350 __skb_queue_after(list, old, newsk); 3351 spin_unlock_irqrestore(&list->lock, flags); 3352 } 3353 EXPORT_SYMBOL(skb_append); 3354 3355 static inline void skb_split_inside_header(struct sk_buff *skb, 3356 struct sk_buff* skb1, 3357 const u32 len, const int pos) 3358 { 3359 int i; 3360 3361 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3362 pos - len); 3363 /* And move data appendix as is. */ 3364 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3365 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3366 3367 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3368 skb_shinfo(skb)->nr_frags = 0; 3369 skb1->data_len = skb->data_len; 3370 skb1->len += skb1->data_len; 3371 skb->data_len = 0; 3372 skb->len = len; 3373 skb_set_tail_pointer(skb, len); 3374 } 3375 3376 static inline void skb_split_no_header(struct sk_buff *skb, 3377 struct sk_buff* skb1, 3378 const u32 len, int pos) 3379 { 3380 int i, k = 0; 3381 const int nfrags = skb_shinfo(skb)->nr_frags; 3382 3383 skb_shinfo(skb)->nr_frags = 0; 3384 skb1->len = skb1->data_len = skb->len - len; 3385 skb->len = len; 3386 skb->data_len = len - pos; 3387 3388 for (i = 0; i < nfrags; i++) { 3389 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3390 3391 if (pos + size > len) { 3392 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3393 3394 if (pos < len) { 3395 /* Split frag. 3396 * We have two variants in this case: 3397 * 1. Move all the frag to the second 3398 * part, if it is possible. F.e. 3399 * this approach is mandatory for TUX, 3400 * where splitting is expensive. 3401 * 2. Split is accurately. We make this. 3402 */ 3403 skb_frag_ref(skb, i); 3404 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3405 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3406 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3407 skb_shinfo(skb)->nr_frags++; 3408 } 3409 k++; 3410 } else 3411 skb_shinfo(skb)->nr_frags++; 3412 pos += size; 3413 } 3414 skb_shinfo(skb1)->nr_frags = k; 3415 } 3416 3417 /** 3418 * skb_split - Split fragmented skb to two parts at length len. 3419 * @skb: the buffer to split 3420 * @skb1: the buffer to receive the second part 3421 * @len: new length for skb 3422 */ 3423 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3424 { 3425 int pos = skb_headlen(skb); 3426 3427 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3428 skb_zerocopy_clone(skb1, skb, 0); 3429 if (len < pos) /* Split line is inside header. */ 3430 skb_split_inside_header(skb, skb1, len, pos); 3431 else /* Second chunk has no header, nothing to copy. */ 3432 skb_split_no_header(skb, skb1, len, pos); 3433 } 3434 EXPORT_SYMBOL(skb_split); 3435 3436 /* Shifting from/to a cloned skb is a no-go. 3437 * 3438 * Caller cannot keep skb_shinfo related pointers past calling here! 3439 */ 3440 static int skb_prepare_for_shift(struct sk_buff *skb) 3441 { 3442 int ret = 0; 3443 3444 if (skb_cloned(skb)) { 3445 /* Save and restore truesize: pskb_expand_head() may reallocate 3446 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3447 * cannot change truesize at this point. 3448 */ 3449 unsigned int save_truesize = skb->truesize; 3450 3451 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3452 skb->truesize = save_truesize; 3453 } 3454 return ret; 3455 } 3456 3457 /** 3458 * skb_shift - Shifts paged data partially from skb to another 3459 * @tgt: buffer into which tail data gets added 3460 * @skb: buffer from which the paged data comes from 3461 * @shiftlen: shift up to this many bytes 3462 * 3463 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3464 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3465 * It's up to caller to free skb if everything was shifted. 3466 * 3467 * If @tgt runs out of frags, the whole operation is aborted. 3468 * 3469 * Skb cannot include anything else but paged data while tgt is allowed 3470 * to have non-paged data as well. 3471 * 3472 * TODO: full sized shift could be optimized but that would need 3473 * specialized skb free'er to handle frags without up-to-date nr_frags. 3474 */ 3475 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3476 { 3477 int from, to, merge, todo; 3478 skb_frag_t *fragfrom, *fragto; 3479 3480 BUG_ON(shiftlen > skb->len); 3481 3482 if (skb_headlen(skb)) 3483 return 0; 3484 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3485 return 0; 3486 3487 todo = shiftlen; 3488 from = 0; 3489 to = skb_shinfo(tgt)->nr_frags; 3490 fragfrom = &skb_shinfo(skb)->frags[from]; 3491 3492 /* Actual merge is delayed until the point when we know we can 3493 * commit all, so that we don't have to undo partial changes 3494 */ 3495 if (!to || 3496 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3497 skb_frag_off(fragfrom))) { 3498 merge = -1; 3499 } else { 3500 merge = to - 1; 3501 3502 todo -= skb_frag_size(fragfrom); 3503 if (todo < 0) { 3504 if (skb_prepare_for_shift(skb) || 3505 skb_prepare_for_shift(tgt)) 3506 return 0; 3507 3508 /* All previous frag pointers might be stale! */ 3509 fragfrom = &skb_shinfo(skb)->frags[from]; 3510 fragto = &skb_shinfo(tgt)->frags[merge]; 3511 3512 skb_frag_size_add(fragto, shiftlen); 3513 skb_frag_size_sub(fragfrom, shiftlen); 3514 skb_frag_off_add(fragfrom, shiftlen); 3515 3516 goto onlymerged; 3517 } 3518 3519 from++; 3520 } 3521 3522 /* Skip full, not-fitting skb to avoid expensive operations */ 3523 if ((shiftlen == skb->len) && 3524 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3525 return 0; 3526 3527 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3528 return 0; 3529 3530 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3531 if (to == MAX_SKB_FRAGS) 3532 return 0; 3533 3534 fragfrom = &skb_shinfo(skb)->frags[from]; 3535 fragto = &skb_shinfo(tgt)->frags[to]; 3536 3537 if (todo >= skb_frag_size(fragfrom)) { 3538 *fragto = *fragfrom; 3539 todo -= skb_frag_size(fragfrom); 3540 from++; 3541 to++; 3542 3543 } else { 3544 __skb_frag_ref(fragfrom); 3545 skb_frag_page_copy(fragto, fragfrom); 3546 skb_frag_off_copy(fragto, fragfrom); 3547 skb_frag_size_set(fragto, todo); 3548 3549 skb_frag_off_add(fragfrom, todo); 3550 skb_frag_size_sub(fragfrom, todo); 3551 todo = 0; 3552 3553 to++; 3554 break; 3555 } 3556 } 3557 3558 /* Ready to "commit" this state change to tgt */ 3559 skb_shinfo(tgt)->nr_frags = to; 3560 3561 if (merge >= 0) { 3562 fragfrom = &skb_shinfo(skb)->frags[0]; 3563 fragto = &skb_shinfo(tgt)->frags[merge]; 3564 3565 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3566 __skb_frag_unref(fragfrom, skb->pp_recycle); 3567 } 3568 3569 /* Reposition in the original skb */ 3570 to = 0; 3571 while (from < skb_shinfo(skb)->nr_frags) 3572 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3573 skb_shinfo(skb)->nr_frags = to; 3574 3575 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3576 3577 onlymerged: 3578 /* Most likely the tgt won't ever need its checksum anymore, skb on 3579 * the other hand might need it if it needs to be resent 3580 */ 3581 tgt->ip_summed = CHECKSUM_PARTIAL; 3582 skb->ip_summed = CHECKSUM_PARTIAL; 3583 3584 /* Yak, is it really working this way? Some helper please? */ 3585 skb->len -= shiftlen; 3586 skb->data_len -= shiftlen; 3587 skb->truesize -= shiftlen; 3588 tgt->len += shiftlen; 3589 tgt->data_len += shiftlen; 3590 tgt->truesize += shiftlen; 3591 3592 return shiftlen; 3593 } 3594 3595 /** 3596 * skb_prepare_seq_read - Prepare a sequential read of skb data 3597 * @skb: the buffer to read 3598 * @from: lower offset of data to be read 3599 * @to: upper offset of data to be read 3600 * @st: state variable 3601 * 3602 * Initializes the specified state variable. Must be called before 3603 * invoking skb_seq_read() for the first time. 3604 */ 3605 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3606 unsigned int to, struct skb_seq_state *st) 3607 { 3608 st->lower_offset = from; 3609 st->upper_offset = to; 3610 st->root_skb = st->cur_skb = skb; 3611 st->frag_idx = st->stepped_offset = 0; 3612 st->frag_data = NULL; 3613 st->frag_off = 0; 3614 } 3615 EXPORT_SYMBOL(skb_prepare_seq_read); 3616 3617 /** 3618 * skb_seq_read - Sequentially read skb data 3619 * @consumed: number of bytes consumed by the caller so far 3620 * @data: destination pointer for data to be returned 3621 * @st: state variable 3622 * 3623 * Reads a block of skb data at @consumed relative to the 3624 * lower offset specified to skb_prepare_seq_read(). Assigns 3625 * the head of the data block to @data and returns the length 3626 * of the block or 0 if the end of the skb data or the upper 3627 * offset has been reached. 3628 * 3629 * The caller is not required to consume all of the data 3630 * returned, i.e. @consumed is typically set to the number 3631 * of bytes already consumed and the next call to 3632 * skb_seq_read() will return the remaining part of the block. 3633 * 3634 * Note 1: The size of each block of data returned can be arbitrary, 3635 * this limitation is the cost for zerocopy sequential 3636 * reads of potentially non linear data. 3637 * 3638 * Note 2: Fragment lists within fragments are not implemented 3639 * at the moment, state->root_skb could be replaced with 3640 * a stack for this purpose. 3641 */ 3642 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3643 struct skb_seq_state *st) 3644 { 3645 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3646 skb_frag_t *frag; 3647 3648 if (unlikely(abs_offset >= st->upper_offset)) { 3649 if (st->frag_data) { 3650 kunmap_atomic(st->frag_data); 3651 st->frag_data = NULL; 3652 } 3653 return 0; 3654 } 3655 3656 next_skb: 3657 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3658 3659 if (abs_offset < block_limit && !st->frag_data) { 3660 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3661 return block_limit - abs_offset; 3662 } 3663 3664 if (st->frag_idx == 0 && !st->frag_data) 3665 st->stepped_offset += skb_headlen(st->cur_skb); 3666 3667 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3668 unsigned int pg_idx, pg_off, pg_sz; 3669 3670 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3671 3672 pg_idx = 0; 3673 pg_off = skb_frag_off(frag); 3674 pg_sz = skb_frag_size(frag); 3675 3676 if (skb_frag_must_loop(skb_frag_page(frag))) { 3677 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3678 pg_off = offset_in_page(pg_off + st->frag_off); 3679 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3680 PAGE_SIZE - pg_off); 3681 } 3682 3683 block_limit = pg_sz + st->stepped_offset; 3684 if (abs_offset < block_limit) { 3685 if (!st->frag_data) 3686 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3687 3688 *data = (u8 *)st->frag_data + pg_off + 3689 (abs_offset - st->stepped_offset); 3690 3691 return block_limit - abs_offset; 3692 } 3693 3694 if (st->frag_data) { 3695 kunmap_atomic(st->frag_data); 3696 st->frag_data = NULL; 3697 } 3698 3699 st->stepped_offset += pg_sz; 3700 st->frag_off += pg_sz; 3701 if (st->frag_off == skb_frag_size(frag)) { 3702 st->frag_off = 0; 3703 st->frag_idx++; 3704 } 3705 } 3706 3707 if (st->frag_data) { 3708 kunmap_atomic(st->frag_data); 3709 st->frag_data = NULL; 3710 } 3711 3712 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3713 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3714 st->frag_idx = 0; 3715 goto next_skb; 3716 } else if (st->cur_skb->next) { 3717 st->cur_skb = st->cur_skb->next; 3718 st->frag_idx = 0; 3719 goto next_skb; 3720 } 3721 3722 return 0; 3723 } 3724 EXPORT_SYMBOL(skb_seq_read); 3725 3726 /** 3727 * skb_abort_seq_read - Abort a sequential read of skb data 3728 * @st: state variable 3729 * 3730 * Must be called if skb_seq_read() was not called until it 3731 * returned 0. 3732 */ 3733 void skb_abort_seq_read(struct skb_seq_state *st) 3734 { 3735 if (st->frag_data) 3736 kunmap_atomic(st->frag_data); 3737 } 3738 EXPORT_SYMBOL(skb_abort_seq_read); 3739 3740 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3741 3742 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3743 struct ts_config *conf, 3744 struct ts_state *state) 3745 { 3746 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3747 } 3748 3749 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3750 { 3751 skb_abort_seq_read(TS_SKB_CB(state)); 3752 } 3753 3754 /** 3755 * skb_find_text - Find a text pattern in skb data 3756 * @skb: the buffer to look in 3757 * @from: search offset 3758 * @to: search limit 3759 * @config: textsearch configuration 3760 * 3761 * Finds a pattern in the skb data according to the specified 3762 * textsearch configuration. Use textsearch_next() to retrieve 3763 * subsequent occurrences of the pattern. Returns the offset 3764 * to the first occurrence or UINT_MAX if no match was found. 3765 */ 3766 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3767 unsigned int to, struct ts_config *config) 3768 { 3769 struct ts_state state; 3770 unsigned int ret; 3771 3772 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3773 3774 config->get_next_block = skb_ts_get_next_block; 3775 config->finish = skb_ts_finish; 3776 3777 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3778 3779 ret = textsearch_find(config, &state); 3780 return (ret <= to - from ? ret : UINT_MAX); 3781 } 3782 EXPORT_SYMBOL(skb_find_text); 3783 3784 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3785 int offset, size_t size) 3786 { 3787 int i = skb_shinfo(skb)->nr_frags; 3788 3789 if (skb_can_coalesce(skb, i, page, offset)) { 3790 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3791 } else if (i < MAX_SKB_FRAGS) { 3792 get_page(page); 3793 skb_fill_page_desc(skb, i, page, offset, size); 3794 } else { 3795 return -EMSGSIZE; 3796 } 3797 3798 return 0; 3799 } 3800 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3801 3802 /** 3803 * skb_pull_rcsum - pull skb and update receive checksum 3804 * @skb: buffer to update 3805 * @len: length of data pulled 3806 * 3807 * This function performs an skb_pull on the packet and updates 3808 * the CHECKSUM_COMPLETE checksum. It should be used on 3809 * receive path processing instead of skb_pull unless you know 3810 * that the checksum difference is zero (e.g., a valid IP header) 3811 * or you are setting ip_summed to CHECKSUM_NONE. 3812 */ 3813 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3814 { 3815 unsigned char *data = skb->data; 3816 3817 BUG_ON(len > skb->len); 3818 __skb_pull(skb, len); 3819 skb_postpull_rcsum(skb, data, len); 3820 return skb->data; 3821 } 3822 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3823 3824 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3825 { 3826 skb_frag_t head_frag; 3827 struct page *page; 3828 3829 page = virt_to_head_page(frag_skb->head); 3830 __skb_frag_set_page(&head_frag, page); 3831 skb_frag_off_set(&head_frag, frag_skb->data - 3832 (unsigned char *)page_address(page)); 3833 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3834 return head_frag; 3835 } 3836 3837 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3838 netdev_features_t features, 3839 unsigned int offset) 3840 { 3841 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3842 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3843 unsigned int delta_truesize = 0; 3844 unsigned int delta_len = 0; 3845 struct sk_buff *tail = NULL; 3846 struct sk_buff *nskb, *tmp; 3847 int err; 3848 3849 skb_push(skb, -skb_network_offset(skb) + offset); 3850 3851 skb_shinfo(skb)->frag_list = NULL; 3852 3853 do { 3854 nskb = list_skb; 3855 list_skb = list_skb->next; 3856 3857 err = 0; 3858 if (skb_shared(nskb)) { 3859 tmp = skb_clone(nskb, GFP_ATOMIC); 3860 if (tmp) { 3861 consume_skb(nskb); 3862 nskb = tmp; 3863 err = skb_unclone(nskb, GFP_ATOMIC); 3864 } else { 3865 err = -ENOMEM; 3866 } 3867 } 3868 3869 if (!tail) 3870 skb->next = nskb; 3871 else 3872 tail->next = nskb; 3873 3874 if (unlikely(err)) { 3875 nskb->next = list_skb; 3876 goto err_linearize; 3877 } 3878 3879 tail = nskb; 3880 3881 delta_len += nskb->len; 3882 delta_truesize += nskb->truesize; 3883 3884 skb_push(nskb, -skb_network_offset(nskb) + offset); 3885 3886 skb_release_head_state(nskb); 3887 __copy_skb_header(nskb, skb); 3888 3889 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3890 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3891 nskb->data - tnl_hlen, 3892 offset + tnl_hlen); 3893 3894 if (skb_needs_linearize(nskb, features) && 3895 __skb_linearize(nskb)) 3896 goto err_linearize; 3897 3898 } while (list_skb); 3899 3900 skb->truesize = skb->truesize - delta_truesize; 3901 skb->data_len = skb->data_len - delta_len; 3902 skb->len = skb->len - delta_len; 3903 3904 skb_gso_reset(skb); 3905 3906 skb->prev = tail; 3907 3908 if (skb_needs_linearize(skb, features) && 3909 __skb_linearize(skb)) 3910 goto err_linearize; 3911 3912 skb_get(skb); 3913 3914 return skb; 3915 3916 err_linearize: 3917 kfree_skb_list(skb->next); 3918 skb->next = NULL; 3919 return ERR_PTR(-ENOMEM); 3920 } 3921 EXPORT_SYMBOL_GPL(skb_segment_list); 3922 3923 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3924 { 3925 if (unlikely(p->len + skb->len >= 65536)) 3926 return -E2BIG; 3927 3928 if (NAPI_GRO_CB(p)->last == p) 3929 skb_shinfo(p)->frag_list = skb; 3930 else 3931 NAPI_GRO_CB(p)->last->next = skb; 3932 3933 skb_pull(skb, skb_gro_offset(skb)); 3934 3935 NAPI_GRO_CB(p)->last = skb; 3936 NAPI_GRO_CB(p)->count++; 3937 p->data_len += skb->len; 3938 3939 /* sk owenrship - if any - completely transferred to the aggregated packet */ 3940 skb->destructor = NULL; 3941 p->truesize += skb->truesize; 3942 p->len += skb->len; 3943 3944 NAPI_GRO_CB(skb)->same_flow = 1; 3945 3946 return 0; 3947 } 3948 3949 /** 3950 * skb_segment - Perform protocol segmentation on skb. 3951 * @head_skb: buffer to segment 3952 * @features: features for the output path (see dev->features) 3953 * 3954 * This function performs segmentation on the given skb. It returns 3955 * a pointer to the first in a list of new skbs for the segments. 3956 * In case of error it returns ERR_PTR(err). 3957 */ 3958 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3959 netdev_features_t features) 3960 { 3961 struct sk_buff *segs = NULL; 3962 struct sk_buff *tail = NULL; 3963 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3964 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3965 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3966 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3967 struct sk_buff *frag_skb = head_skb; 3968 unsigned int offset = doffset; 3969 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3970 unsigned int partial_segs = 0; 3971 unsigned int headroom; 3972 unsigned int len = head_skb->len; 3973 __be16 proto; 3974 bool csum, sg; 3975 int nfrags = skb_shinfo(head_skb)->nr_frags; 3976 int err = -ENOMEM; 3977 int i = 0; 3978 int pos; 3979 3980 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3981 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3982 /* gso_size is untrusted, and we have a frag_list with a linear 3983 * non head_frag head. 3984 * 3985 * (we assume checking the first list_skb member suffices; 3986 * i.e if either of the list_skb members have non head_frag 3987 * head, then the first one has too). 3988 * 3989 * If head_skb's headlen does not fit requested gso_size, it 3990 * means that the frag_list members do NOT terminate on exact 3991 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3992 * sharing. Therefore we must fallback to copying the frag_list 3993 * skbs; we do so by disabling SG. 3994 */ 3995 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3996 features &= ~NETIF_F_SG; 3997 } 3998 3999 __skb_push(head_skb, doffset); 4000 proto = skb_network_protocol(head_skb, NULL); 4001 if (unlikely(!proto)) 4002 return ERR_PTR(-EINVAL); 4003 4004 sg = !!(features & NETIF_F_SG); 4005 csum = !!can_checksum_protocol(features, proto); 4006 4007 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4008 if (!(features & NETIF_F_GSO_PARTIAL)) { 4009 struct sk_buff *iter; 4010 unsigned int frag_len; 4011 4012 if (!list_skb || 4013 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4014 goto normal; 4015 4016 /* If we get here then all the required 4017 * GSO features except frag_list are supported. 4018 * Try to split the SKB to multiple GSO SKBs 4019 * with no frag_list. 4020 * Currently we can do that only when the buffers don't 4021 * have a linear part and all the buffers except 4022 * the last are of the same length. 4023 */ 4024 frag_len = list_skb->len; 4025 skb_walk_frags(head_skb, iter) { 4026 if (frag_len != iter->len && iter->next) 4027 goto normal; 4028 if (skb_headlen(iter) && !iter->head_frag) 4029 goto normal; 4030 4031 len -= iter->len; 4032 } 4033 4034 if (len != frag_len) 4035 goto normal; 4036 } 4037 4038 /* GSO partial only requires that we trim off any excess that 4039 * doesn't fit into an MSS sized block, so take care of that 4040 * now. 4041 */ 4042 partial_segs = len / mss; 4043 if (partial_segs > 1) 4044 mss *= partial_segs; 4045 else 4046 partial_segs = 0; 4047 } 4048 4049 normal: 4050 headroom = skb_headroom(head_skb); 4051 pos = skb_headlen(head_skb); 4052 4053 do { 4054 struct sk_buff *nskb; 4055 skb_frag_t *nskb_frag; 4056 int hsize; 4057 int size; 4058 4059 if (unlikely(mss == GSO_BY_FRAGS)) { 4060 len = list_skb->len; 4061 } else { 4062 len = head_skb->len - offset; 4063 if (len > mss) 4064 len = mss; 4065 } 4066 4067 hsize = skb_headlen(head_skb) - offset; 4068 4069 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4070 (skb_headlen(list_skb) == len || sg)) { 4071 BUG_ON(skb_headlen(list_skb) > len); 4072 4073 i = 0; 4074 nfrags = skb_shinfo(list_skb)->nr_frags; 4075 frag = skb_shinfo(list_skb)->frags; 4076 frag_skb = list_skb; 4077 pos += skb_headlen(list_skb); 4078 4079 while (pos < offset + len) { 4080 BUG_ON(i >= nfrags); 4081 4082 size = skb_frag_size(frag); 4083 if (pos + size > offset + len) 4084 break; 4085 4086 i++; 4087 pos += size; 4088 frag++; 4089 } 4090 4091 nskb = skb_clone(list_skb, GFP_ATOMIC); 4092 list_skb = list_skb->next; 4093 4094 if (unlikely(!nskb)) 4095 goto err; 4096 4097 if (unlikely(pskb_trim(nskb, len))) { 4098 kfree_skb(nskb); 4099 goto err; 4100 } 4101 4102 hsize = skb_end_offset(nskb); 4103 if (skb_cow_head(nskb, doffset + headroom)) { 4104 kfree_skb(nskb); 4105 goto err; 4106 } 4107 4108 nskb->truesize += skb_end_offset(nskb) - hsize; 4109 skb_release_head_state(nskb); 4110 __skb_push(nskb, doffset); 4111 } else { 4112 if (hsize < 0) 4113 hsize = 0; 4114 if (hsize > len || !sg) 4115 hsize = len; 4116 4117 nskb = __alloc_skb(hsize + doffset + headroom, 4118 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4119 NUMA_NO_NODE); 4120 4121 if (unlikely(!nskb)) 4122 goto err; 4123 4124 skb_reserve(nskb, headroom); 4125 __skb_put(nskb, doffset); 4126 } 4127 4128 if (segs) 4129 tail->next = nskb; 4130 else 4131 segs = nskb; 4132 tail = nskb; 4133 4134 __copy_skb_header(nskb, head_skb); 4135 4136 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4137 skb_reset_mac_len(nskb); 4138 4139 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4140 nskb->data - tnl_hlen, 4141 doffset + tnl_hlen); 4142 4143 if (nskb->len == len + doffset) 4144 goto perform_csum_check; 4145 4146 if (!sg) { 4147 if (!csum) { 4148 if (!nskb->remcsum_offload) 4149 nskb->ip_summed = CHECKSUM_NONE; 4150 SKB_GSO_CB(nskb)->csum = 4151 skb_copy_and_csum_bits(head_skb, offset, 4152 skb_put(nskb, 4153 len), 4154 len); 4155 SKB_GSO_CB(nskb)->csum_start = 4156 skb_headroom(nskb) + doffset; 4157 } else { 4158 skb_copy_bits(head_skb, offset, 4159 skb_put(nskb, len), 4160 len); 4161 } 4162 continue; 4163 } 4164 4165 nskb_frag = skb_shinfo(nskb)->frags; 4166 4167 skb_copy_from_linear_data_offset(head_skb, offset, 4168 skb_put(nskb, hsize), hsize); 4169 4170 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4171 SKBFL_SHARED_FRAG; 4172 4173 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4174 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4175 goto err; 4176 4177 while (pos < offset + len) { 4178 if (i >= nfrags) { 4179 i = 0; 4180 nfrags = skb_shinfo(list_skb)->nr_frags; 4181 frag = skb_shinfo(list_skb)->frags; 4182 frag_skb = list_skb; 4183 if (!skb_headlen(list_skb)) { 4184 BUG_ON(!nfrags); 4185 } else { 4186 BUG_ON(!list_skb->head_frag); 4187 4188 /* to make room for head_frag. */ 4189 i--; 4190 frag--; 4191 } 4192 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4193 skb_zerocopy_clone(nskb, frag_skb, 4194 GFP_ATOMIC)) 4195 goto err; 4196 4197 list_skb = list_skb->next; 4198 } 4199 4200 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4201 MAX_SKB_FRAGS)) { 4202 net_warn_ratelimited( 4203 "skb_segment: too many frags: %u %u\n", 4204 pos, mss); 4205 err = -EINVAL; 4206 goto err; 4207 } 4208 4209 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4210 __skb_frag_ref(nskb_frag); 4211 size = skb_frag_size(nskb_frag); 4212 4213 if (pos < offset) { 4214 skb_frag_off_add(nskb_frag, offset - pos); 4215 skb_frag_size_sub(nskb_frag, offset - pos); 4216 } 4217 4218 skb_shinfo(nskb)->nr_frags++; 4219 4220 if (pos + size <= offset + len) { 4221 i++; 4222 frag++; 4223 pos += size; 4224 } else { 4225 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4226 goto skip_fraglist; 4227 } 4228 4229 nskb_frag++; 4230 } 4231 4232 skip_fraglist: 4233 nskb->data_len = len - hsize; 4234 nskb->len += nskb->data_len; 4235 nskb->truesize += nskb->data_len; 4236 4237 perform_csum_check: 4238 if (!csum) { 4239 if (skb_has_shared_frag(nskb) && 4240 __skb_linearize(nskb)) 4241 goto err; 4242 4243 if (!nskb->remcsum_offload) 4244 nskb->ip_summed = CHECKSUM_NONE; 4245 SKB_GSO_CB(nskb)->csum = 4246 skb_checksum(nskb, doffset, 4247 nskb->len - doffset, 0); 4248 SKB_GSO_CB(nskb)->csum_start = 4249 skb_headroom(nskb) + doffset; 4250 } 4251 } while ((offset += len) < head_skb->len); 4252 4253 /* Some callers want to get the end of the list. 4254 * Put it in segs->prev to avoid walking the list. 4255 * (see validate_xmit_skb_list() for example) 4256 */ 4257 segs->prev = tail; 4258 4259 if (partial_segs) { 4260 struct sk_buff *iter; 4261 int type = skb_shinfo(head_skb)->gso_type; 4262 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4263 4264 /* Update type to add partial and then remove dodgy if set */ 4265 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4266 type &= ~SKB_GSO_DODGY; 4267 4268 /* Update GSO info and prepare to start updating headers on 4269 * our way back down the stack of protocols. 4270 */ 4271 for (iter = segs; iter; iter = iter->next) { 4272 skb_shinfo(iter)->gso_size = gso_size; 4273 skb_shinfo(iter)->gso_segs = partial_segs; 4274 skb_shinfo(iter)->gso_type = type; 4275 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4276 } 4277 4278 if (tail->len - doffset <= gso_size) 4279 skb_shinfo(tail)->gso_size = 0; 4280 else if (tail != segs) 4281 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4282 } 4283 4284 /* Following permits correct backpressure, for protocols 4285 * using skb_set_owner_w(). 4286 * Idea is to tranfert ownership from head_skb to last segment. 4287 */ 4288 if (head_skb->destructor == sock_wfree) { 4289 swap(tail->truesize, head_skb->truesize); 4290 swap(tail->destructor, head_skb->destructor); 4291 swap(tail->sk, head_skb->sk); 4292 } 4293 return segs; 4294 4295 err: 4296 kfree_skb_list(segs); 4297 return ERR_PTR(err); 4298 } 4299 EXPORT_SYMBOL_GPL(skb_segment); 4300 4301 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4302 { 4303 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4304 unsigned int offset = skb_gro_offset(skb); 4305 unsigned int headlen = skb_headlen(skb); 4306 unsigned int len = skb_gro_len(skb); 4307 unsigned int delta_truesize; 4308 unsigned int new_truesize; 4309 struct sk_buff *lp; 4310 4311 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4312 return -E2BIG; 4313 4314 lp = NAPI_GRO_CB(p)->last; 4315 pinfo = skb_shinfo(lp); 4316 4317 if (headlen <= offset) { 4318 skb_frag_t *frag; 4319 skb_frag_t *frag2; 4320 int i = skbinfo->nr_frags; 4321 int nr_frags = pinfo->nr_frags + i; 4322 4323 if (nr_frags > MAX_SKB_FRAGS) 4324 goto merge; 4325 4326 offset -= headlen; 4327 pinfo->nr_frags = nr_frags; 4328 skbinfo->nr_frags = 0; 4329 4330 frag = pinfo->frags + nr_frags; 4331 frag2 = skbinfo->frags + i; 4332 do { 4333 *--frag = *--frag2; 4334 } while (--i); 4335 4336 skb_frag_off_add(frag, offset); 4337 skb_frag_size_sub(frag, offset); 4338 4339 /* all fragments truesize : remove (head size + sk_buff) */ 4340 new_truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4341 delta_truesize = skb->truesize - new_truesize; 4342 4343 skb->truesize = new_truesize; 4344 skb->len -= skb->data_len; 4345 skb->data_len = 0; 4346 4347 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4348 goto done; 4349 } else if (skb->head_frag) { 4350 int nr_frags = pinfo->nr_frags; 4351 skb_frag_t *frag = pinfo->frags + nr_frags; 4352 struct page *page = virt_to_head_page(skb->head); 4353 unsigned int first_size = headlen - offset; 4354 unsigned int first_offset; 4355 4356 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4357 goto merge; 4358 4359 first_offset = skb->data - 4360 (unsigned char *)page_address(page) + 4361 offset; 4362 4363 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4364 4365 __skb_frag_set_page(frag, page); 4366 skb_frag_off_set(frag, first_offset); 4367 skb_frag_size_set(frag, first_size); 4368 4369 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4370 /* We dont need to clear skbinfo->nr_frags here */ 4371 4372 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4373 delta_truesize = skb->truesize - new_truesize; 4374 skb->truesize = new_truesize; 4375 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4376 goto done; 4377 } 4378 4379 merge: 4380 /* sk owenrship - if any - completely transferred to the aggregated packet */ 4381 skb->destructor = NULL; 4382 delta_truesize = skb->truesize; 4383 if (offset > headlen) { 4384 unsigned int eat = offset - headlen; 4385 4386 skb_frag_off_add(&skbinfo->frags[0], eat); 4387 skb_frag_size_sub(&skbinfo->frags[0], eat); 4388 skb->data_len -= eat; 4389 skb->len -= eat; 4390 offset = headlen; 4391 } 4392 4393 __skb_pull(skb, offset); 4394 4395 if (NAPI_GRO_CB(p)->last == p) 4396 skb_shinfo(p)->frag_list = skb; 4397 else 4398 NAPI_GRO_CB(p)->last->next = skb; 4399 NAPI_GRO_CB(p)->last = skb; 4400 __skb_header_release(skb); 4401 lp = p; 4402 4403 done: 4404 NAPI_GRO_CB(p)->count++; 4405 p->data_len += len; 4406 p->truesize += delta_truesize; 4407 p->len += len; 4408 if (lp != p) { 4409 lp->data_len += len; 4410 lp->truesize += delta_truesize; 4411 lp->len += len; 4412 } 4413 NAPI_GRO_CB(skb)->same_flow = 1; 4414 return 0; 4415 } 4416 4417 #ifdef CONFIG_SKB_EXTENSIONS 4418 #define SKB_EXT_ALIGN_VALUE 8 4419 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4420 4421 static const u8 skb_ext_type_len[] = { 4422 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4423 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4424 #endif 4425 #ifdef CONFIG_XFRM 4426 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4427 #endif 4428 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4429 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4430 #endif 4431 #if IS_ENABLED(CONFIG_MPTCP) 4432 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4433 #endif 4434 }; 4435 4436 static __always_inline unsigned int skb_ext_total_length(void) 4437 { 4438 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4439 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4440 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4441 #endif 4442 #ifdef CONFIG_XFRM 4443 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4444 #endif 4445 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4446 skb_ext_type_len[TC_SKB_EXT] + 4447 #endif 4448 #if IS_ENABLED(CONFIG_MPTCP) 4449 skb_ext_type_len[SKB_EXT_MPTCP] + 4450 #endif 4451 0; 4452 } 4453 4454 static void skb_extensions_init(void) 4455 { 4456 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4457 BUILD_BUG_ON(skb_ext_total_length() > 255); 4458 4459 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4460 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4461 0, 4462 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4463 NULL); 4464 } 4465 #else 4466 static void skb_extensions_init(void) {} 4467 #endif 4468 4469 void __init skb_init(void) 4470 { 4471 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4472 sizeof(struct sk_buff), 4473 0, 4474 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4475 offsetof(struct sk_buff, cb), 4476 sizeof_field(struct sk_buff, cb), 4477 NULL); 4478 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4479 sizeof(struct sk_buff_fclones), 4480 0, 4481 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4482 NULL); 4483 skb_extensions_init(); 4484 } 4485 4486 static int 4487 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4488 unsigned int recursion_level) 4489 { 4490 int start = skb_headlen(skb); 4491 int i, copy = start - offset; 4492 struct sk_buff *frag_iter; 4493 int elt = 0; 4494 4495 if (unlikely(recursion_level >= 24)) 4496 return -EMSGSIZE; 4497 4498 if (copy > 0) { 4499 if (copy > len) 4500 copy = len; 4501 sg_set_buf(sg, skb->data + offset, copy); 4502 elt++; 4503 if ((len -= copy) == 0) 4504 return elt; 4505 offset += copy; 4506 } 4507 4508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4509 int end; 4510 4511 WARN_ON(start > offset + len); 4512 4513 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4514 if ((copy = end - offset) > 0) { 4515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4516 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4517 return -EMSGSIZE; 4518 4519 if (copy > len) 4520 copy = len; 4521 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4522 skb_frag_off(frag) + offset - start); 4523 elt++; 4524 if (!(len -= copy)) 4525 return elt; 4526 offset += copy; 4527 } 4528 start = end; 4529 } 4530 4531 skb_walk_frags(skb, frag_iter) { 4532 int end, ret; 4533 4534 WARN_ON(start > offset + len); 4535 4536 end = start + frag_iter->len; 4537 if ((copy = end - offset) > 0) { 4538 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4539 return -EMSGSIZE; 4540 4541 if (copy > len) 4542 copy = len; 4543 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4544 copy, recursion_level + 1); 4545 if (unlikely(ret < 0)) 4546 return ret; 4547 elt += ret; 4548 if ((len -= copy) == 0) 4549 return elt; 4550 offset += copy; 4551 } 4552 start = end; 4553 } 4554 BUG_ON(len); 4555 return elt; 4556 } 4557 4558 /** 4559 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4560 * @skb: Socket buffer containing the buffers to be mapped 4561 * @sg: The scatter-gather list to map into 4562 * @offset: The offset into the buffer's contents to start mapping 4563 * @len: Length of buffer space to be mapped 4564 * 4565 * Fill the specified scatter-gather list with mappings/pointers into a 4566 * region of the buffer space attached to a socket buffer. Returns either 4567 * the number of scatterlist items used, or -EMSGSIZE if the contents 4568 * could not fit. 4569 */ 4570 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4571 { 4572 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4573 4574 if (nsg <= 0) 4575 return nsg; 4576 4577 sg_mark_end(&sg[nsg - 1]); 4578 4579 return nsg; 4580 } 4581 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4582 4583 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4584 * sglist without mark the sg which contain last skb data as the end. 4585 * So the caller can mannipulate sg list as will when padding new data after 4586 * the first call without calling sg_unmark_end to expend sg list. 4587 * 4588 * Scenario to use skb_to_sgvec_nomark: 4589 * 1. sg_init_table 4590 * 2. skb_to_sgvec_nomark(payload1) 4591 * 3. skb_to_sgvec_nomark(payload2) 4592 * 4593 * This is equivalent to: 4594 * 1. sg_init_table 4595 * 2. skb_to_sgvec(payload1) 4596 * 3. sg_unmark_end 4597 * 4. skb_to_sgvec(payload2) 4598 * 4599 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4600 * is more preferable. 4601 */ 4602 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4603 int offset, int len) 4604 { 4605 return __skb_to_sgvec(skb, sg, offset, len, 0); 4606 } 4607 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4608 4609 4610 4611 /** 4612 * skb_cow_data - Check that a socket buffer's data buffers are writable 4613 * @skb: The socket buffer to check. 4614 * @tailbits: Amount of trailing space to be added 4615 * @trailer: Returned pointer to the skb where the @tailbits space begins 4616 * 4617 * Make sure that the data buffers attached to a socket buffer are 4618 * writable. If they are not, private copies are made of the data buffers 4619 * and the socket buffer is set to use these instead. 4620 * 4621 * If @tailbits is given, make sure that there is space to write @tailbits 4622 * bytes of data beyond current end of socket buffer. @trailer will be 4623 * set to point to the skb in which this space begins. 4624 * 4625 * The number of scatterlist elements required to completely map the 4626 * COW'd and extended socket buffer will be returned. 4627 */ 4628 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4629 { 4630 int copyflag; 4631 int elt; 4632 struct sk_buff *skb1, **skb_p; 4633 4634 /* If skb is cloned or its head is paged, reallocate 4635 * head pulling out all the pages (pages are considered not writable 4636 * at the moment even if they are anonymous). 4637 */ 4638 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4639 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4640 return -ENOMEM; 4641 4642 /* Easy case. Most of packets will go this way. */ 4643 if (!skb_has_frag_list(skb)) { 4644 /* A little of trouble, not enough of space for trailer. 4645 * This should not happen, when stack is tuned to generate 4646 * good frames. OK, on miss we reallocate and reserve even more 4647 * space, 128 bytes is fair. */ 4648 4649 if (skb_tailroom(skb) < tailbits && 4650 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4651 return -ENOMEM; 4652 4653 /* Voila! */ 4654 *trailer = skb; 4655 return 1; 4656 } 4657 4658 /* Misery. We are in troubles, going to mincer fragments... */ 4659 4660 elt = 1; 4661 skb_p = &skb_shinfo(skb)->frag_list; 4662 copyflag = 0; 4663 4664 while ((skb1 = *skb_p) != NULL) { 4665 int ntail = 0; 4666 4667 /* The fragment is partially pulled by someone, 4668 * this can happen on input. Copy it and everything 4669 * after it. */ 4670 4671 if (skb_shared(skb1)) 4672 copyflag = 1; 4673 4674 /* If the skb is the last, worry about trailer. */ 4675 4676 if (skb1->next == NULL && tailbits) { 4677 if (skb_shinfo(skb1)->nr_frags || 4678 skb_has_frag_list(skb1) || 4679 skb_tailroom(skb1) < tailbits) 4680 ntail = tailbits + 128; 4681 } 4682 4683 if (copyflag || 4684 skb_cloned(skb1) || 4685 ntail || 4686 skb_shinfo(skb1)->nr_frags || 4687 skb_has_frag_list(skb1)) { 4688 struct sk_buff *skb2; 4689 4690 /* Fuck, we are miserable poor guys... */ 4691 if (ntail == 0) 4692 skb2 = skb_copy(skb1, GFP_ATOMIC); 4693 else 4694 skb2 = skb_copy_expand(skb1, 4695 skb_headroom(skb1), 4696 ntail, 4697 GFP_ATOMIC); 4698 if (unlikely(skb2 == NULL)) 4699 return -ENOMEM; 4700 4701 if (skb1->sk) 4702 skb_set_owner_w(skb2, skb1->sk); 4703 4704 /* Looking around. Are we still alive? 4705 * OK, link new skb, drop old one */ 4706 4707 skb2->next = skb1->next; 4708 *skb_p = skb2; 4709 kfree_skb(skb1); 4710 skb1 = skb2; 4711 } 4712 elt++; 4713 *trailer = skb1; 4714 skb_p = &skb1->next; 4715 } 4716 4717 return elt; 4718 } 4719 EXPORT_SYMBOL_GPL(skb_cow_data); 4720 4721 static void sock_rmem_free(struct sk_buff *skb) 4722 { 4723 struct sock *sk = skb->sk; 4724 4725 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4726 } 4727 4728 static void skb_set_err_queue(struct sk_buff *skb) 4729 { 4730 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4731 * So, it is safe to (mis)use it to mark skbs on the error queue. 4732 */ 4733 skb->pkt_type = PACKET_OUTGOING; 4734 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4735 } 4736 4737 /* 4738 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4739 */ 4740 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4741 { 4742 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4743 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4744 return -ENOMEM; 4745 4746 skb_orphan(skb); 4747 skb->sk = sk; 4748 skb->destructor = sock_rmem_free; 4749 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4750 skb_set_err_queue(skb); 4751 4752 /* before exiting rcu section, make sure dst is refcounted */ 4753 skb_dst_force(skb); 4754 4755 skb_queue_tail(&sk->sk_error_queue, skb); 4756 if (!sock_flag(sk, SOCK_DEAD)) 4757 sk_error_report(sk); 4758 return 0; 4759 } 4760 EXPORT_SYMBOL(sock_queue_err_skb); 4761 4762 static bool is_icmp_err_skb(const struct sk_buff *skb) 4763 { 4764 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4765 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4766 } 4767 4768 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4769 { 4770 struct sk_buff_head *q = &sk->sk_error_queue; 4771 struct sk_buff *skb, *skb_next = NULL; 4772 bool icmp_next = false; 4773 unsigned long flags; 4774 4775 spin_lock_irqsave(&q->lock, flags); 4776 skb = __skb_dequeue(q); 4777 if (skb && (skb_next = skb_peek(q))) { 4778 icmp_next = is_icmp_err_skb(skb_next); 4779 if (icmp_next) 4780 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4781 } 4782 spin_unlock_irqrestore(&q->lock, flags); 4783 4784 if (is_icmp_err_skb(skb) && !icmp_next) 4785 sk->sk_err = 0; 4786 4787 if (skb_next) 4788 sk_error_report(sk); 4789 4790 return skb; 4791 } 4792 EXPORT_SYMBOL(sock_dequeue_err_skb); 4793 4794 /** 4795 * skb_clone_sk - create clone of skb, and take reference to socket 4796 * @skb: the skb to clone 4797 * 4798 * This function creates a clone of a buffer that holds a reference on 4799 * sk_refcnt. Buffers created via this function are meant to be 4800 * returned using sock_queue_err_skb, or free via kfree_skb. 4801 * 4802 * When passing buffers allocated with this function to sock_queue_err_skb 4803 * it is necessary to wrap the call with sock_hold/sock_put in order to 4804 * prevent the socket from being released prior to being enqueued on 4805 * the sk_error_queue. 4806 */ 4807 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4808 { 4809 struct sock *sk = skb->sk; 4810 struct sk_buff *clone; 4811 4812 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4813 return NULL; 4814 4815 clone = skb_clone(skb, GFP_ATOMIC); 4816 if (!clone) { 4817 sock_put(sk); 4818 return NULL; 4819 } 4820 4821 clone->sk = sk; 4822 clone->destructor = sock_efree; 4823 4824 return clone; 4825 } 4826 EXPORT_SYMBOL(skb_clone_sk); 4827 4828 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4829 struct sock *sk, 4830 int tstype, 4831 bool opt_stats) 4832 { 4833 struct sock_exterr_skb *serr; 4834 int err; 4835 4836 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4837 4838 serr = SKB_EXT_ERR(skb); 4839 memset(serr, 0, sizeof(*serr)); 4840 serr->ee.ee_errno = ENOMSG; 4841 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4842 serr->ee.ee_info = tstype; 4843 serr->opt_stats = opt_stats; 4844 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4845 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4846 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4847 if (sk->sk_protocol == IPPROTO_TCP && 4848 sk->sk_type == SOCK_STREAM) 4849 serr->ee.ee_data -= sk->sk_tskey; 4850 } 4851 4852 err = sock_queue_err_skb(sk, skb); 4853 4854 if (err) 4855 kfree_skb(skb); 4856 } 4857 4858 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4859 { 4860 bool ret; 4861 4862 if (likely(sysctl_tstamp_allow_data || tsonly)) 4863 return true; 4864 4865 read_lock_bh(&sk->sk_callback_lock); 4866 ret = sk->sk_socket && sk->sk_socket->file && 4867 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4868 read_unlock_bh(&sk->sk_callback_lock); 4869 return ret; 4870 } 4871 4872 void skb_complete_tx_timestamp(struct sk_buff *skb, 4873 struct skb_shared_hwtstamps *hwtstamps) 4874 { 4875 struct sock *sk = skb->sk; 4876 4877 if (!skb_may_tx_timestamp(sk, false)) 4878 goto err; 4879 4880 /* Take a reference to prevent skb_orphan() from freeing the socket, 4881 * but only if the socket refcount is not zero. 4882 */ 4883 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4884 *skb_hwtstamps(skb) = *hwtstamps; 4885 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4886 sock_put(sk); 4887 return; 4888 } 4889 4890 err: 4891 kfree_skb(skb); 4892 } 4893 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4894 4895 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4896 const struct sk_buff *ack_skb, 4897 struct skb_shared_hwtstamps *hwtstamps, 4898 struct sock *sk, int tstype) 4899 { 4900 struct sk_buff *skb; 4901 bool tsonly, opt_stats = false; 4902 4903 if (!sk) 4904 return; 4905 4906 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4907 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4908 return; 4909 4910 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4911 if (!skb_may_tx_timestamp(sk, tsonly)) 4912 return; 4913 4914 if (tsonly) { 4915 #ifdef CONFIG_INET 4916 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4917 sk->sk_protocol == IPPROTO_TCP && 4918 sk->sk_type == SOCK_STREAM) { 4919 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4920 ack_skb); 4921 opt_stats = true; 4922 } else 4923 #endif 4924 skb = alloc_skb(0, GFP_ATOMIC); 4925 } else { 4926 skb = skb_clone(orig_skb, GFP_ATOMIC); 4927 } 4928 if (!skb) 4929 return; 4930 4931 if (tsonly) { 4932 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4933 SKBTX_ANY_TSTAMP; 4934 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4935 } 4936 4937 if (hwtstamps) 4938 *skb_hwtstamps(skb) = *hwtstamps; 4939 else 4940 skb->tstamp = ktime_get_real(); 4941 4942 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4943 } 4944 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4945 4946 void skb_tstamp_tx(struct sk_buff *orig_skb, 4947 struct skb_shared_hwtstamps *hwtstamps) 4948 { 4949 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4950 SCM_TSTAMP_SND); 4951 } 4952 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4953 4954 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4955 { 4956 struct sock *sk = skb->sk; 4957 struct sock_exterr_skb *serr; 4958 int err = 1; 4959 4960 skb->wifi_acked_valid = 1; 4961 skb->wifi_acked = acked; 4962 4963 serr = SKB_EXT_ERR(skb); 4964 memset(serr, 0, sizeof(*serr)); 4965 serr->ee.ee_errno = ENOMSG; 4966 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4967 4968 /* Take a reference to prevent skb_orphan() from freeing the socket, 4969 * but only if the socket refcount is not zero. 4970 */ 4971 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4972 err = sock_queue_err_skb(sk, skb); 4973 sock_put(sk); 4974 } 4975 if (err) 4976 kfree_skb(skb); 4977 } 4978 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4979 4980 /** 4981 * skb_partial_csum_set - set up and verify partial csum values for packet 4982 * @skb: the skb to set 4983 * @start: the number of bytes after skb->data to start checksumming. 4984 * @off: the offset from start to place the checksum. 4985 * 4986 * For untrusted partially-checksummed packets, we need to make sure the values 4987 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4988 * 4989 * This function checks and sets those values and skb->ip_summed: if this 4990 * returns false you should drop the packet. 4991 */ 4992 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4993 { 4994 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4995 u32 csum_start = skb_headroom(skb) + (u32)start; 4996 4997 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4998 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4999 start, off, skb_headroom(skb), skb_headlen(skb)); 5000 return false; 5001 } 5002 skb->ip_summed = CHECKSUM_PARTIAL; 5003 skb->csum_start = csum_start; 5004 skb->csum_offset = off; 5005 skb_set_transport_header(skb, start); 5006 return true; 5007 } 5008 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5009 5010 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5011 unsigned int max) 5012 { 5013 if (skb_headlen(skb) >= len) 5014 return 0; 5015 5016 /* If we need to pullup then pullup to the max, so we 5017 * won't need to do it again. 5018 */ 5019 if (max > skb->len) 5020 max = skb->len; 5021 5022 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5023 return -ENOMEM; 5024 5025 if (skb_headlen(skb) < len) 5026 return -EPROTO; 5027 5028 return 0; 5029 } 5030 5031 #define MAX_TCP_HDR_LEN (15 * 4) 5032 5033 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5034 typeof(IPPROTO_IP) proto, 5035 unsigned int off) 5036 { 5037 int err; 5038 5039 switch (proto) { 5040 case IPPROTO_TCP: 5041 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5042 off + MAX_TCP_HDR_LEN); 5043 if (!err && !skb_partial_csum_set(skb, off, 5044 offsetof(struct tcphdr, 5045 check))) 5046 err = -EPROTO; 5047 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5048 5049 case IPPROTO_UDP: 5050 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5051 off + sizeof(struct udphdr)); 5052 if (!err && !skb_partial_csum_set(skb, off, 5053 offsetof(struct udphdr, 5054 check))) 5055 err = -EPROTO; 5056 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5057 } 5058 5059 return ERR_PTR(-EPROTO); 5060 } 5061 5062 /* This value should be large enough to cover a tagged ethernet header plus 5063 * maximally sized IP and TCP or UDP headers. 5064 */ 5065 #define MAX_IP_HDR_LEN 128 5066 5067 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5068 { 5069 unsigned int off; 5070 bool fragment; 5071 __sum16 *csum; 5072 int err; 5073 5074 fragment = false; 5075 5076 err = skb_maybe_pull_tail(skb, 5077 sizeof(struct iphdr), 5078 MAX_IP_HDR_LEN); 5079 if (err < 0) 5080 goto out; 5081 5082 if (ip_is_fragment(ip_hdr(skb))) 5083 fragment = true; 5084 5085 off = ip_hdrlen(skb); 5086 5087 err = -EPROTO; 5088 5089 if (fragment) 5090 goto out; 5091 5092 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5093 if (IS_ERR(csum)) 5094 return PTR_ERR(csum); 5095 5096 if (recalculate) 5097 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5098 ip_hdr(skb)->daddr, 5099 skb->len - off, 5100 ip_hdr(skb)->protocol, 0); 5101 err = 0; 5102 5103 out: 5104 return err; 5105 } 5106 5107 /* This value should be large enough to cover a tagged ethernet header plus 5108 * an IPv6 header, all options, and a maximal TCP or UDP header. 5109 */ 5110 #define MAX_IPV6_HDR_LEN 256 5111 5112 #define OPT_HDR(type, skb, off) \ 5113 (type *)(skb_network_header(skb) + (off)) 5114 5115 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5116 { 5117 int err; 5118 u8 nexthdr; 5119 unsigned int off; 5120 unsigned int len; 5121 bool fragment; 5122 bool done; 5123 __sum16 *csum; 5124 5125 fragment = false; 5126 done = false; 5127 5128 off = sizeof(struct ipv6hdr); 5129 5130 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5131 if (err < 0) 5132 goto out; 5133 5134 nexthdr = ipv6_hdr(skb)->nexthdr; 5135 5136 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5137 while (off <= len && !done) { 5138 switch (nexthdr) { 5139 case IPPROTO_DSTOPTS: 5140 case IPPROTO_HOPOPTS: 5141 case IPPROTO_ROUTING: { 5142 struct ipv6_opt_hdr *hp; 5143 5144 err = skb_maybe_pull_tail(skb, 5145 off + 5146 sizeof(struct ipv6_opt_hdr), 5147 MAX_IPV6_HDR_LEN); 5148 if (err < 0) 5149 goto out; 5150 5151 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5152 nexthdr = hp->nexthdr; 5153 off += ipv6_optlen(hp); 5154 break; 5155 } 5156 case IPPROTO_AH: { 5157 struct ip_auth_hdr *hp; 5158 5159 err = skb_maybe_pull_tail(skb, 5160 off + 5161 sizeof(struct ip_auth_hdr), 5162 MAX_IPV6_HDR_LEN); 5163 if (err < 0) 5164 goto out; 5165 5166 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5167 nexthdr = hp->nexthdr; 5168 off += ipv6_authlen(hp); 5169 break; 5170 } 5171 case IPPROTO_FRAGMENT: { 5172 struct frag_hdr *hp; 5173 5174 err = skb_maybe_pull_tail(skb, 5175 off + 5176 sizeof(struct frag_hdr), 5177 MAX_IPV6_HDR_LEN); 5178 if (err < 0) 5179 goto out; 5180 5181 hp = OPT_HDR(struct frag_hdr, skb, off); 5182 5183 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5184 fragment = true; 5185 5186 nexthdr = hp->nexthdr; 5187 off += sizeof(struct frag_hdr); 5188 break; 5189 } 5190 default: 5191 done = true; 5192 break; 5193 } 5194 } 5195 5196 err = -EPROTO; 5197 5198 if (!done || fragment) 5199 goto out; 5200 5201 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5202 if (IS_ERR(csum)) 5203 return PTR_ERR(csum); 5204 5205 if (recalculate) 5206 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5207 &ipv6_hdr(skb)->daddr, 5208 skb->len - off, nexthdr, 0); 5209 err = 0; 5210 5211 out: 5212 return err; 5213 } 5214 5215 /** 5216 * skb_checksum_setup - set up partial checksum offset 5217 * @skb: the skb to set up 5218 * @recalculate: if true the pseudo-header checksum will be recalculated 5219 */ 5220 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5221 { 5222 int err; 5223 5224 switch (skb->protocol) { 5225 case htons(ETH_P_IP): 5226 err = skb_checksum_setup_ipv4(skb, recalculate); 5227 break; 5228 5229 case htons(ETH_P_IPV6): 5230 err = skb_checksum_setup_ipv6(skb, recalculate); 5231 break; 5232 5233 default: 5234 err = -EPROTO; 5235 break; 5236 } 5237 5238 return err; 5239 } 5240 EXPORT_SYMBOL(skb_checksum_setup); 5241 5242 /** 5243 * skb_checksum_maybe_trim - maybe trims the given skb 5244 * @skb: the skb to check 5245 * @transport_len: the data length beyond the network header 5246 * 5247 * Checks whether the given skb has data beyond the given transport length. 5248 * If so, returns a cloned skb trimmed to this transport length. 5249 * Otherwise returns the provided skb. Returns NULL in error cases 5250 * (e.g. transport_len exceeds skb length or out-of-memory). 5251 * 5252 * Caller needs to set the skb transport header and free any returned skb if it 5253 * differs from the provided skb. 5254 */ 5255 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5256 unsigned int transport_len) 5257 { 5258 struct sk_buff *skb_chk; 5259 unsigned int len = skb_transport_offset(skb) + transport_len; 5260 int ret; 5261 5262 if (skb->len < len) 5263 return NULL; 5264 else if (skb->len == len) 5265 return skb; 5266 5267 skb_chk = skb_clone(skb, GFP_ATOMIC); 5268 if (!skb_chk) 5269 return NULL; 5270 5271 ret = pskb_trim_rcsum(skb_chk, len); 5272 if (ret) { 5273 kfree_skb(skb_chk); 5274 return NULL; 5275 } 5276 5277 return skb_chk; 5278 } 5279 5280 /** 5281 * skb_checksum_trimmed - validate checksum of an skb 5282 * @skb: the skb to check 5283 * @transport_len: the data length beyond the network header 5284 * @skb_chkf: checksum function to use 5285 * 5286 * Applies the given checksum function skb_chkf to the provided skb. 5287 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5288 * 5289 * If the skb has data beyond the given transport length, then a 5290 * trimmed & cloned skb is checked and returned. 5291 * 5292 * Caller needs to set the skb transport header and free any returned skb if it 5293 * differs from the provided skb. 5294 */ 5295 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5296 unsigned int transport_len, 5297 __sum16(*skb_chkf)(struct sk_buff *skb)) 5298 { 5299 struct sk_buff *skb_chk; 5300 unsigned int offset = skb_transport_offset(skb); 5301 __sum16 ret; 5302 5303 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5304 if (!skb_chk) 5305 goto err; 5306 5307 if (!pskb_may_pull(skb_chk, offset)) 5308 goto err; 5309 5310 skb_pull_rcsum(skb_chk, offset); 5311 ret = skb_chkf(skb_chk); 5312 skb_push_rcsum(skb_chk, offset); 5313 5314 if (ret) 5315 goto err; 5316 5317 return skb_chk; 5318 5319 err: 5320 if (skb_chk && skb_chk != skb) 5321 kfree_skb(skb_chk); 5322 5323 return NULL; 5324 5325 } 5326 EXPORT_SYMBOL(skb_checksum_trimmed); 5327 5328 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5329 { 5330 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5331 skb->dev->name); 5332 } 5333 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5334 5335 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5336 { 5337 if (head_stolen) { 5338 skb_release_head_state(skb); 5339 kmem_cache_free(skbuff_head_cache, skb); 5340 } else { 5341 __kfree_skb(skb); 5342 } 5343 } 5344 EXPORT_SYMBOL(kfree_skb_partial); 5345 5346 /** 5347 * skb_try_coalesce - try to merge skb to prior one 5348 * @to: prior buffer 5349 * @from: buffer to add 5350 * @fragstolen: pointer to boolean 5351 * @delta_truesize: how much more was allocated than was requested 5352 */ 5353 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5354 bool *fragstolen, int *delta_truesize) 5355 { 5356 struct skb_shared_info *to_shinfo, *from_shinfo; 5357 int i, delta, len = from->len; 5358 5359 *fragstolen = false; 5360 5361 if (skb_cloned(to)) 5362 return false; 5363 5364 /* The page pool signature of struct page will eventually figure out 5365 * which pages can be recycled or not but for now let's prohibit slab 5366 * allocated and page_pool allocated SKBs from being coalesced. 5367 */ 5368 if (to->pp_recycle != from->pp_recycle) 5369 return false; 5370 5371 if (len <= skb_tailroom(to)) { 5372 if (len) 5373 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5374 *delta_truesize = 0; 5375 return true; 5376 } 5377 5378 to_shinfo = skb_shinfo(to); 5379 from_shinfo = skb_shinfo(from); 5380 if (to_shinfo->frag_list || from_shinfo->frag_list) 5381 return false; 5382 if (skb_zcopy(to) || skb_zcopy(from)) 5383 return false; 5384 5385 if (skb_headlen(from) != 0) { 5386 struct page *page; 5387 unsigned int offset; 5388 5389 if (to_shinfo->nr_frags + 5390 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5391 return false; 5392 5393 if (skb_head_is_locked(from)) 5394 return false; 5395 5396 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5397 5398 page = virt_to_head_page(from->head); 5399 offset = from->data - (unsigned char *)page_address(page); 5400 5401 skb_fill_page_desc(to, to_shinfo->nr_frags, 5402 page, offset, skb_headlen(from)); 5403 *fragstolen = true; 5404 } else { 5405 if (to_shinfo->nr_frags + 5406 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5407 return false; 5408 5409 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5410 } 5411 5412 WARN_ON_ONCE(delta < len); 5413 5414 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5415 from_shinfo->frags, 5416 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5417 to_shinfo->nr_frags += from_shinfo->nr_frags; 5418 5419 if (!skb_cloned(from)) 5420 from_shinfo->nr_frags = 0; 5421 5422 /* if the skb is not cloned this does nothing 5423 * since we set nr_frags to 0. 5424 */ 5425 for (i = 0; i < from_shinfo->nr_frags; i++) 5426 __skb_frag_ref(&from_shinfo->frags[i]); 5427 5428 to->truesize += delta; 5429 to->len += len; 5430 to->data_len += len; 5431 5432 *delta_truesize = delta; 5433 return true; 5434 } 5435 EXPORT_SYMBOL(skb_try_coalesce); 5436 5437 /** 5438 * skb_scrub_packet - scrub an skb 5439 * 5440 * @skb: buffer to clean 5441 * @xnet: packet is crossing netns 5442 * 5443 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5444 * into/from a tunnel. Some information have to be cleared during these 5445 * operations. 5446 * skb_scrub_packet can also be used to clean a skb before injecting it in 5447 * another namespace (@xnet == true). We have to clear all information in the 5448 * skb that could impact namespace isolation. 5449 */ 5450 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5451 { 5452 skb->pkt_type = PACKET_HOST; 5453 skb->skb_iif = 0; 5454 skb->ignore_df = 0; 5455 skb_dst_drop(skb); 5456 skb_ext_reset(skb); 5457 nf_reset_ct(skb); 5458 nf_reset_trace(skb); 5459 5460 #ifdef CONFIG_NET_SWITCHDEV 5461 skb->offload_fwd_mark = 0; 5462 skb->offload_l3_fwd_mark = 0; 5463 #endif 5464 5465 if (!xnet) 5466 return; 5467 5468 ipvs_reset(skb); 5469 skb->mark = 0; 5470 skb->tstamp = 0; 5471 } 5472 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5473 5474 /** 5475 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5476 * 5477 * @skb: GSO skb 5478 * 5479 * skb_gso_transport_seglen is used to determine the real size of the 5480 * individual segments, including Layer4 headers (TCP/UDP). 5481 * 5482 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5483 */ 5484 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5485 { 5486 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5487 unsigned int thlen = 0; 5488 5489 if (skb->encapsulation) { 5490 thlen = skb_inner_transport_header(skb) - 5491 skb_transport_header(skb); 5492 5493 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5494 thlen += inner_tcp_hdrlen(skb); 5495 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5496 thlen = tcp_hdrlen(skb); 5497 } else if (unlikely(skb_is_gso_sctp(skb))) { 5498 thlen = sizeof(struct sctphdr); 5499 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5500 thlen = sizeof(struct udphdr); 5501 } 5502 /* UFO sets gso_size to the size of the fragmentation 5503 * payload, i.e. the size of the L4 (UDP) header is already 5504 * accounted for. 5505 */ 5506 return thlen + shinfo->gso_size; 5507 } 5508 5509 /** 5510 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5511 * 5512 * @skb: GSO skb 5513 * 5514 * skb_gso_network_seglen is used to determine the real size of the 5515 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5516 * 5517 * The MAC/L2 header is not accounted for. 5518 */ 5519 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5520 { 5521 unsigned int hdr_len = skb_transport_header(skb) - 5522 skb_network_header(skb); 5523 5524 return hdr_len + skb_gso_transport_seglen(skb); 5525 } 5526 5527 /** 5528 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5529 * 5530 * @skb: GSO skb 5531 * 5532 * skb_gso_mac_seglen is used to determine the real size of the 5533 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5534 * headers (TCP/UDP). 5535 */ 5536 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5537 { 5538 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5539 5540 return hdr_len + skb_gso_transport_seglen(skb); 5541 } 5542 5543 /** 5544 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5545 * 5546 * There are a couple of instances where we have a GSO skb, and we 5547 * want to determine what size it would be after it is segmented. 5548 * 5549 * We might want to check: 5550 * - L3+L4+payload size (e.g. IP forwarding) 5551 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5552 * 5553 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5554 * 5555 * @skb: GSO skb 5556 * 5557 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5558 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5559 * 5560 * @max_len: The maximum permissible length. 5561 * 5562 * Returns true if the segmented length <= max length. 5563 */ 5564 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5565 unsigned int seg_len, 5566 unsigned int max_len) { 5567 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5568 const struct sk_buff *iter; 5569 5570 if (shinfo->gso_size != GSO_BY_FRAGS) 5571 return seg_len <= max_len; 5572 5573 /* Undo this so we can re-use header sizes */ 5574 seg_len -= GSO_BY_FRAGS; 5575 5576 skb_walk_frags(skb, iter) { 5577 if (seg_len + skb_headlen(iter) > max_len) 5578 return false; 5579 } 5580 5581 return true; 5582 } 5583 5584 /** 5585 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5586 * 5587 * @skb: GSO skb 5588 * @mtu: MTU to validate against 5589 * 5590 * skb_gso_validate_network_len validates if a given skb will fit a 5591 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5592 * payload. 5593 */ 5594 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5595 { 5596 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5597 } 5598 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5599 5600 /** 5601 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5602 * 5603 * @skb: GSO skb 5604 * @len: length to validate against 5605 * 5606 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5607 * length once split, including L2, L3 and L4 headers and the payload. 5608 */ 5609 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5610 { 5611 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5612 } 5613 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5614 5615 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5616 { 5617 int mac_len, meta_len; 5618 void *meta; 5619 5620 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5621 kfree_skb(skb); 5622 return NULL; 5623 } 5624 5625 mac_len = skb->data - skb_mac_header(skb); 5626 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5627 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5628 mac_len - VLAN_HLEN - ETH_TLEN); 5629 } 5630 5631 meta_len = skb_metadata_len(skb); 5632 if (meta_len) { 5633 meta = skb_metadata_end(skb) - meta_len; 5634 memmove(meta + VLAN_HLEN, meta, meta_len); 5635 } 5636 5637 skb->mac_header += VLAN_HLEN; 5638 return skb; 5639 } 5640 5641 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5642 { 5643 struct vlan_hdr *vhdr; 5644 u16 vlan_tci; 5645 5646 if (unlikely(skb_vlan_tag_present(skb))) { 5647 /* vlan_tci is already set-up so leave this for another time */ 5648 return skb; 5649 } 5650 5651 skb = skb_share_check(skb, GFP_ATOMIC); 5652 if (unlikely(!skb)) 5653 goto err_free; 5654 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5655 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5656 goto err_free; 5657 5658 vhdr = (struct vlan_hdr *)skb->data; 5659 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5660 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5661 5662 skb_pull_rcsum(skb, VLAN_HLEN); 5663 vlan_set_encap_proto(skb, vhdr); 5664 5665 skb = skb_reorder_vlan_header(skb); 5666 if (unlikely(!skb)) 5667 goto err_free; 5668 5669 skb_reset_network_header(skb); 5670 if (!skb_transport_header_was_set(skb)) 5671 skb_reset_transport_header(skb); 5672 skb_reset_mac_len(skb); 5673 5674 return skb; 5675 5676 err_free: 5677 kfree_skb(skb); 5678 return NULL; 5679 } 5680 EXPORT_SYMBOL(skb_vlan_untag); 5681 5682 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5683 { 5684 if (!pskb_may_pull(skb, write_len)) 5685 return -ENOMEM; 5686 5687 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5688 return 0; 5689 5690 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5691 } 5692 EXPORT_SYMBOL(skb_ensure_writable); 5693 5694 /* remove VLAN header from packet and update csum accordingly. 5695 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5696 */ 5697 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5698 { 5699 struct vlan_hdr *vhdr; 5700 int offset = skb->data - skb_mac_header(skb); 5701 int err; 5702 5703 if (WARN_ONCE(offset, 5704 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5705 offset)) { 5706 return -EINVAL; 5707 } 5708 5709 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5710 if (unlikely(err)) 5711 return err; 5712 5713 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5714 5715 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5716 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5717 5718 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5719 __skb_pull(skb, VLAN_HLEN); 5720 5721 vlan_set_encap_proto(skb, vhdr); 5722 skb->mac_header += VLAN_HLEN; 5723 5724 if (skb_network_offset(skb) < ETH_HLEN) 5725 skb_set_network_header(skb, ETH_HLEN); 5726 5727 skb_reset_mac_len(skb); 5728 5729 return err; 5730 } 5731 EXPORT_SYMBOL(__skb_vlan_pop); 5732 5733 /* Pop a vlan tag either from hwaccel or from payload. 5734 * Expects skb->data at mac header. 5735 */ 5736 int skb_vlan_pop(struct sk_buff *skb) 5737 { 5738 u16 vlan_tci; 5739 __be16 vlan_proto; 5740 int err; 5741 5742 if (likely(skb_vlan_tag_present(skb))) { 5743 __vlan_hwaccel_clear_tag(skb); 5744 } else { 5745 if (unlikely(!eth_type_vlan(skb->protocol))) 5746 return 0; 5747 5748 err = __skb_vlan_pop(skb, &vlan_tci); 5749 if (err) 5750 return err; 5751 } 5752 /* move next vlan tag to hw accel tag */ 5753 if (likely(!eth_type_vlan(skb->protocol))) 5754 return 0; 5755 5756 vlan_proto = skb->protocol; 5757 err = __skb_vlan_pop(skb, &vlan_tci); 5758 if (unlikely(err)) 5759 return err; 5760 5761 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5762 return 0; 5763 } 5764 EXPORT_SYMBOL(skb_vlan_pop); 5765 5766 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5767 * Expects skb->data at mac header. 5768 */ 5769 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5770 { 5771 if (skb_vlan_tag_present(skb)) { 5772 int offset = skb->data - skb_mac_header(skb); 5773 int err; 5774 5775 if (WARN_ONCE(offset, 5776 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5777 offset)) { 5778 return -EINVAL; 5779 } 5780 5781 err = __vlan_insert_tag(skb, skb->vlan_proto, 5782 skb_vlan_tag_get(skb)); 5783 if (err) 5784 return err; 5785 5786 skb->protocol = skb->vlan_proto; 5787 skb->mac_len += VLAN_HLEN; 5788 5789 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5790 } 5791 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5792 return 0; 5793 } 5794 EXPORT_SYMBOL(skb_vlan_push); 5795 5796 /** 5797 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5798 * 5799 * @skb: Socket buffer to modify 5800 * 5801 * Drop the Ethernet header of @skb. 5802 * 5803 * Expects that skb->data points to the mac header and that no VLAN tags are 5804 * present. 5805 * 5806 * Returns 0 on success, -errno otherwise. 5807 */ 5808 int skb_eth_pop(struct sk_buff *skb) 5809 { 5810 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5811 skb_network_offset(skb) < ETH_HLEN) 5812 return -EPROTO; 5813 5814 skb_pull_rcsum(skb, ETH_HLEN); 5815 skb_reset_mac_header(skb); 5816 skb_reset_mac_len(skb); 5817 5818 return 0; 5819 } 5820 EXPORT_SYMBOL(skb_eth_pop); 5821 5822 /** 5823 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5824 * 5825 * @skb: Socket buffer to modify 5826 * @dst: Destination MAC address of the new header 5827 * @src: Source MAC address of the new header 5828 * 5829 * Prepend @skb with a new Ethernet header. 5830 * 5831 * Expects that skb->data points to the mac header, which must be empty. 5832 * 5833 * Returns 0 on success, -errno otherwise. 5834 */ 5835 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5836 const unsigned char *src) 5837 { 5838 struct ethhdr *eth; 5839 int err; 5840 5841 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5842 return -EPROTO; 5843 5844 err = skb_cow_head(skb, sizeof(*eth)); 5845 if (err < 0) 5846 return err; 5847 5848 skb_push(skb, sizeof(*eth)); 5849 skb_reset_mac_header(skb); 5850 skb_reset_mac_len(skb); 5851 5852 eth = eth_hdr(skb); 5853 ether_addr_copy(eth->h_dest, dst); 5854 ether_addr_copy(eth->h_source, src); 5855 eth->h_proto = skb->protocol; 5856 5857 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5858 5859 return 0; 5860 } 5861 EXPORT_SYMBOL(skb_eth_push); 5862 5863 /* Update the ethertype of hdr and the skb csum value if required. */ 5864 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5865 __be16 ethertype) 5866 { 5867 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5868 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5869 5870 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5871 } 5872 5873 hdr->h_proto = ethertype; 5874 } 5875 5876 /** 5877 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5878 * the packet 5879 * 5880 * @skb: buffer 5881 * @mpls_lse: MPLS label stack entry to push 5882 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5883 * @mac_len: length of the MAC header 5884 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5885 * ethernet 5886 * 5887 * Expects skb->data at mac header. 5888 * 5889 * Returns 0 on success, -errno otherwise. 5890 */ 5891 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5892 int mac_len, bool ethernet) 5893 { 5894 struct mpls_shim_hdr *lse; 5895 int err; 5896 5897 if (unlikely(!eth_p_mpls(mpls_proto))) 5898 return -EINVAL; 5899 5900 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5901 if (skb->encapsulation) 5902 return -EINVAL; 5903 5904 err = skb_cow_head(skb, MPLS_HLEN); 5905 if (unlikely(err)) 5906 return err; 5907 5908 if (!skb->inner_protocol) { 5909 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5910 skb_set_inner_protocol(skb, skb->protocol); 5911 } 5912 5913 skb_push(skb, MPLS_HLEN); 5914 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5915 mac_len); 5916 skb_reset_mac_header(skb); 5917 skb_set_network_header(skb, mac_len); 5918 skb_reset_mac_len(skb); 5919 5920 lse = mpls_hdr(skb); 5921 lse->label_stack_entry = mpls_lse; 5922 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5923 5924 if (ethernet && mac_len >= ETH_HLEN) 5925 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5926 skb->protocol = mpls_proto; 5927 5928 return 0; 5929 } 5930 EXPORT_SYMBOL_GPL(skb_mpls_push); 5931 5932 /** 5933 * skb_mpls_pop() - pop the outermost MPLS header 5934 * 5935 * @skb: buffer 5936 * @next_proto: ethertype of header after popped MPLS header 5937 * @mac_len: length of the MAC header 5938 * @ethernet: flag to indicate if the packet is ethernet 5939 * 5940 * Expects skb->data at mac header. 5941 * 5942 * Returns 0 on success, -errno otherwise. 5943 */ 5944 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5945 bool ethernet) 5946 { 5947 int err; 5948 5949 if (unlikely(!eth_p_mpls(skb->protocol))) 5950 return 0; 5951 5952 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5953 if (unlikely(err)) 5954 return err; 5955 5956 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5957 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5958 mac_len); 5959 5960 __skb_pull(skb, MPLS_HLEN); 5961 skb_reset_mac_header(skb); 5962 skb_set_network_header(skb, mac_len); 5963 5964 if (ethernet && mac_len >= ETH_HLEN) { 5965 struct ethhdr *hdr; 5966 5967 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5968 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5969 skb_mod_eth_type(skb, hdr, next_proto); 5970 } 5971 skb->protocol = next_proto; 5972 5973 return 0; 5974 } 5975 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5976 5977 /** 5978 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5979 * 5980 * @skb: buffer 5981 * @mpls_lse: new MPLS label stack entry to update to 5982 * 5983 * Expects skb->data at mac header. 5984 * 5985 * Returns 0 on success, -errno otherwise. 5986 */ 5987 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5988 { 5989 int err; 5990 5991 if (unlikely(!eth_p_mpls(skb->protocol))) 5992 return -EINVAL; 5993 5994 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5995 if (unlikely(err)) 5996 return err; 5997 5998 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5999 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6000 6001 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6002 } 6003 6004 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6005 6006 return 0; 6007 } 6008 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6009 6010 /** 6011 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6012 * 6013 * @skb: buffer 6014 * 6015 * Expects skb->data at mac header. 6016 * 6017 * Returns 0 on success, -errno otherwise. 6018 */ 6019 int skb_mpls_dec_ttl(struct sk_buff *skb) 6020 { 6021 u32 lse; 6022 u8 ttl; 6023 6024 if (unlikely(!eth_p_mpls(skb->protocol))) 6025 return -EINVAL; 6026 6027 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6028 return -ENOMEM; 6029 6030 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6031 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6032 if (!--ttl) 6033 return -EINVAL; 6034 6035 lse &= ~MPLS_LS_TTL_MASK; 6036 lse |= ttl << MPLS_LS_TTL_SHIFT; 6037 6038 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6039 } 6040 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6041 6042 /** 6043 * alloc_skb_with_frags - allocate skb with page frags 6044 * 6045 * @header_len: size of linear part 6046 * @data_len: needed length in frags 6047 * @max_page_order: max page order desired. 6048 * @errcode: pointer to error code if any 6049 * @gfp_mask: allocation mask 6050 * 6051 * This can be used to allocate a paged skb, given a maximal order for frags. 6052 */ 6053 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6054 unsigned long data_len, 6055 int max_page_order, 6056 int *errcode, 6057 gfp_t gfp_mask) 6058 { 6059 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6060 unsigned long chunk; 6061 struct sk_buff *skb; 6062 struct page *page; 6063 int i; 6064 6065 *errcode = -EMSGSIZE; 6066 /* Note this test could be relaxed, if we succeed to allocate 6067 * high order pages... 6068 */ 6069 if (npages > MAX_SKB_FRAGS) 6070 return NULL; 6071 6072 *errcode = -ENOBUFS; 6073 skb = alloc_skb(header_len, gfp_mask); 6074 if (!skb) 6075 return NULL; 6076 6077 skb->truesize += npages << PAGE_SHIFT; 6078 6079 for (i = 0; npages > 0; i++) { 6080 int order = max_page_order; 6081 6082 while (order) { 6083 if (npages >= 1 << order) { 6084 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6085 __GFP_COMP | 6086 __GFP_NOWARN, 6087 order); 6088 if (page) 6089 goto fill_page; 6090 /* Do not retry other high order allocations */ 6091 order = 1; 6092 max_page_order = 0; 6093 } 6094 order--; 6095 } 6096 page = alloc_page(gfp_mask); 6097 if (!page) 6098 goto failure; 6099 fill_page: 6100 chunk = min_t(unsigned long, data_len, 6101 PAGE_SIZE << order); 6102 skb_fill_page_desc(skb, i, page, 0, chunk); 6103 data_len -= chunk; 6104 npages -= 1 << order; 6105 } 6106 return skb; 6107 6108 failure: 6109 kfree_skb(skb); 6110 return NULL; 6111 } 6112 EXPORT_SYMBOL(alloc_skb_with_frags); 6113 6114 /* carve out the first off bytes from skb when off < headlen */ 6115 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6116 const int headlen, gfp_t gfp_mask) 6117 { 6118 int i; 6119 int size = skb_end_offset(skb); 6120 int new_hlen = headlen - off; 6121 u8 *data; 6122 6123 size = SKB_DATA_ALIGN(size); 6124 6125 if (skb_pfmemalloc(skb)) 6126 gfp_mask |= __GFP_MEMALLOC; 6127 data = kmalloc_reserve(size + 6128 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6129 gfp_mask, NUMA_NO_NODE, NULL); 6130 if (!data) 6131 return -ENOMEM; 6132 6133 size = SKB_WITH_OVERHEAD(ksize(data)); 6134 6135 /* Copy real data, and all frags */ 6136 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6137 skb->len -= off; 6138 6139 memcpy((struct skb_shared_info *)(data + size), 6140 skb_shinfo(skb), 6141 offsetof(struct skb_shared_info, 6142 frags[skb_shinfo(skb)->nr_frags])); 6143 if (skb_cloned(skb)) { 6144 /* drop the old head gracefully */ 6145 if (skb_orphan_frags(skb, gfp_mask)) { 6146 kfree(data); 6147 return -ENOMEM; 6148 } 6149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6150 skb_frag_ref(skb, i); 6151 if (skb_has_frag_list(skb)) 6152 skb_clone_fraglist(skb); 6153 skb_release_data(skb); 6154 } else { 6155 /* we can reuse existing recount- all we did was 6156 * relocate values 6157 */ 6158 skb_free_head(skb); 6159 } 6160 6161 skb->head = data; 6162 skb->data = data; 6163 skb->head_frag = 0; 6164 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6165 skb->end = size; 6166 #else 6167 skb->end = skb->head + size; 6168 #endif 6169 skb_set_tail_pointer(skb, skb_headlen(skb)); 6170 skb_headers_offset_update(skb, 0); 6171 skb->cloned = 0; 6172 skb->hdr_len = 0; 6173 skb->nohdr = 0; 6174 atomic_set(&skb_shinfo(skb)->dataref, 1); 6175 6176 return 0; 6177 } 6178 6179 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6180 6181 /* carve out the first eat bytes from skb's frag_list. May recurse into 6182 * pskb_carve() 6183 */ 6184 static int pskb_carve_frag_list(struct sk_buff *skb, 6185 struct skb_shared_info *shinfo, int eat, 6186 gfp_t gfp_mask) 6187 { 6188 struct sk_buff *list = shinfo->frag_list; 6189 struct sk_buff *clone = NULL; 6190 struct sk_buff *insp = NULL; 6191 6192 do { 6193 if (!list) { 6194 pr_err("Not enough bytes to eat. Want %d\n", eat); 6195 return -EFAULT; 6196 } 6197 if (list->len <= eat) { 6198 /* Eaten as whole. */ 6199 eat -= list->len; 6200 list = list->next; 6201 insp = list; 6202 } else { 6203 /* Eaten partially. */ 6204 if (skb_shared(list)) { 6205 clone = skb_clone(list, gfp_mask); 6206 if (!clone) 6207 return -ENOMEM; 6208 insp = list->next; 6209 list = clone; 6210 } else { 6211 /* This may be pulled without problems. */ 6212 insp = list; 6213 } 6214 if (pskb_carve(list, eat, gfp_mask) < 0) { 6215 kfree_skb(clone); 6216 return -ENOMEM; 6217 } 6218 break; 6219 } 6220 } while (eat); 6221 6222 /* Free pulled out fragments. */ 6223 while ((list = shinfo->frag_list) != insp) { 6224 shinfo->frag_list = list->next; 6225 kfree_skb(list); 6226 } 6227 /* And insert new clone at head. */ 6228 if (clone) { 6229 clone->next = list; 6230 shinfo->frag_list = clone; 6231 } 6232 return 0; 6233 } 6234 6235 /* carve off first len bytes from skb. Split line (off) is in the 6236 * non-linear part of skb 6237 */ 6238 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6239 int pos, gfp_t gfp_mask) 6240 { 6241 int i, k = 0; 6242 int size = skb_end_offset(skb); 6243 u8 *data; 6244 const int nfrags = skb_shinfo(skb)->nr_frags; 6245 struct skb_shared_info *shinfo; 6246 6247 size = SKB_DATA_ALIGN(size); 6248 6249 if (skb_pfmemalloc(skb)) 6250 gfp_mask |= __GFP_MEMALLOC; 6251 data = kmalloc_reserve(size + 6252 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6253 gfp_mask, NUMA_NO_NODE, NULL); 6254 if (!data) 6255 return -ENOMEM; 6256 6257 size = SKB_WITH_OVERHEAD(ksize(data)); 6258 6259 memcpy((struct skb_shared_info *)(data + size), 6260 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6261 if (skb_orphan_frags(skb, gfp_mask)) { 6262 kfree(data); 6263 return -ENOMEM; 6264 } 6265 shinfo = (struct skb_shared_info *)(data + size); 6266 for (i = 0; i < nfrags; i++) { 6267 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6268 6269 if (pos + fsize > off) { 6270 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6271 6272 if (pos < off) { 6273 /* Split frag. 6274 * We have two variants in this case: 6275 * 1. Move all the frag to the second 6276 * part, if it is possible. F.e. 6277 * this approach is mandatory for TUX, 6278 * where splitting is expensive. 6279 * 2. Split is accurately. We make this. 6280 */ 6281 skb_frag_off_add(&shinfo->frags[0], off - pos); 6282 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6283 } 6284 skb_frag_ref(skb, i); 6285 k++; 6286 } 6287 pos += fsize; 6288 } 6289 shinfo->nr_frags = k; 6290 if (skb_has_frag_list(skb)) 6291 skb_clone_fraglist(skb); 6292 6293 /* split line is in frag list */ 6294 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6295 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6296 if (skb_has_frag_list(skb)) 6297 kfree_skb_list(skb_shinfo(skb)->frag_list); 6298 kfree(data); 6299 return -ENOMEM; 6300 } 6301 skb_release_data(skb); 6302 6303 skb->head = data; 6304 skb->head_frag = 0; 6305 skb->data = data; 6306 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6307 skb->end = size; 6308 #else 6309 skb->end = skb->head + size; 6310 #endif 6311 skb_reset_tail_pointer(skb); 6312 skb_headers_offset_update(skb, 0); 6313 skb->cloned = 0; 6314 skb->hdr_len = 0; 6315 skb->nohdr = 0; 6316 skb->len -= off; 6317 skb->data_len = skb->len; 6318 atomic_set(&skb_shinfo(skb)->dataref, 1); 6319 return 0; 6320 } 6321 6322 /* remove len bytes from the beginning of the skb */ 6323 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6324 { 6325 int headlen = skb_headlen(skb); 6326 6327 if (len < headlen) 6328 return pskb_carve_inside_header(skb, len, headlen, gfp); 6329 else 6330 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6331 } 6332 6333 /* Extract to_copy bytes starting at off from skb, and return this in 6334 * a new skb 6335 */ 6336 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6337 int to_copy, gfp_t gfp) 6338 { 6339 struct sk_buff *clone = skb_clone(skb, gfp); 6340 6341 if (!clone) 6342 return NULL; 6343 6344 if (pskb_carve(clone, off, gfp) < 0 || 6345 pskb_trim(clone, to_copy)) { 6346 kfree_skb(clone); 6347 return NULL; 6348 } 6349 return clone; 6350 } 6351 EXPORT_SYMBOL(pskb_extract); 6352 6353 /** 6354 * skb_condense - try to get rid of fragments/frag_list if possible 6355 * @skb: buffer 6356 * 6357 * Can be used to save memory before skb is added to a busy queue. 6358 * If packet has bytes in frags and enough tail room in skb->head, 6359 * pull all of them, so that we can free the frags right now and adjust 6360 * truesize. 6361 * Notes: 6362 * We do not reallocate skb->head thus can not fail. 6363 * Caller must re-evaluate skb->truesize if needed. 6364 */ 6365 void skb_condense(struct sk_buff *skb) 6366 { 6367 if (skb->data_len) { 6368 if (skb->data_len > skb->end - skb->tail || 6369 skb_cloned(skb)) 6370 return; 6371 6372 /* Nice, we can free page frag(s) right now */ 6373 __pskb_pull_tail(skb, skb->data_len); 6374 } 6375 /* At this point, skb->truesize might be over estimated, 6376 * because skb had a fragment, and fragments do not tell 6377 * their truesize. 6378 * When we pulled its content into skb->head, fragment 6379 * was freed, but __pskb_pull_tail() could not possibly 6380 * adjust skb->truesize, not knowing the frag truesize. 6381 */ 6382 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6383 } 6384 6385 #ifdef CONFIG_SKB_EXTENSIONS 6386 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6387 { 6388 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6389 } 6390 6391 /** 6392 * __skb_ext_alloc - allocate a new skb extensions storage 6393 * 6394 * @flags: See kmalloc(). 6395 * 6396 * Returns the newly allocated pointer. The pointer can later attached to a 6397 * skb via __skb_ext_set(). 6398 * Note: caller must handle the skb_ext as an opaque data. 6399 */ 6400 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6401 { 6402 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6403 6404 if (new) { 6405 memset(new->offset, 0, sizeof(new->offset)); 6406 refcount_set(&new->refcnt, 1); 6407 } 6408 6409 return new; 6410 } 6411 6412 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6413 unsigned int old_active) 6414 { 6415 struct skb_ext *new; 6416 6417 if (refcount_read(&old->refcnt) == 1) 6418 return old; 6419 6420 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6421 if (!new) 6422 return NULL; 6423 6424 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6425 refcount_set(&new->refcnt, 1); 6426 6427 #ifdef CONFIG_XFRM 6428 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6429 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6430 unsigned int i; 6431 6432 for (i = 0; i < sp->len; i++) 6433 xfrm_state_hold(sp->xvec[i]); 6434 } 6435 #endif 6436 __skb_ext_put(old); 6437 return new; 6438 } 6439 6440 /** 6441 * __skb_ext_set - attach the specified extension storage to this skb 6442 * @skb: buffer 6443 * @id: extension id 6444 * @ext: extension storage previously allocated via __skb_ext_alloc() 6445 * 6446 * Existing extensions, if any, are cleared. 6447 * 6448 * Returns the pointer to the extension. 6449 */ 6450 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6451 struct skb_ext *ext) 6452 { 6453 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6454 6455 skb_ext_put(skb); 6456 newlen = newoff + skb_ext_type_len[id]; 6457 ext->chunks = newlen; 6458 ext->offset[id] = newoff; 6459 skb->extensions = ext; 6460 skb->active_extensions = 1 << id; 6461 return skb_ext_get_ptr(ext, id); 6462 } 6463 6464 /** 6465 * skb_ext_add - allocate space for given extension, COW if needed 6466 * @skb: buffer 6467 * @id: extension to allocate space for 6468 * 6469 * Allocates enough space for the given extension. 6470 * If the extension is already present, a pointer to that extension 6471 * is returned. 6472 * 6473 * If the skb was cloned, COW applies and the returned memory can be 6474 * modified without changing the extension space of clones buffers. 6475 * 6476 * Returns pointer to the extension or NULL on allocation failure. 6477 */ 6478 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6479 { 6480 struct skb_ext *new, *old = NULL; 6481 unsigned int newlen, newoff; 6482 6483 if (skb->active_extensions) { 6484 old = skb->extensions; 6485 6486 new = skb_ext_maybe_cow(old, skb->active_extensions); 6487 if (!new) 6488 return NULL; 6489 6490 if (__skb_ext_exist(new, id)) 6491 goto set_active; 6492 6493 newoff = new->chunks; 6494 } else { 6495 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6496 6497 new = __skb_ext_alloc(GFP_ATOMIC); 6498 if (!new) 6499 return NULL; 6500 } 6501 6502 newlen = newoff + skb_ext_type_len[id]; 6503 new->chunks = newlen; 6504 new->offset[id] = newoff; 6505 set_active: 6506 skb->slow_gro = 1; 6507 skb->extensions = new; 6508 skb->active_extensions |= 1 << id; 6509 return skb_ext_get_ptr(new, id); 6510 } 6511 EXPORT_SYMBOL(skb_ext_add); 6512 6513 #ifdef CONFIG_XFRM 6514 static void skb_ext_put_sp(struct sec_path *sp) 6515 { 6516 unsigned int i; 6517 6518 for (i = 0; i < sp->len; i++) 6519 xfrm_state_put(sp->xvec[i]); 6520 } 6521 #endif 6522 6523 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6524 { 6525 struct skb_ext *ext = skb->extensions; 6526 6527 skb->active_extensions &= ~(1 << id); 6528 if (skb->active_extensions == 0) { 6529 skb->extensions = NULL; 6530 __skb_ext_put(ext); 6531 #ifdef CONFIG_XFRM 6532 } else if (id == SKB_EXT_SEC_PATH && 6533 refcount_read(&ext->refcnt) == 1) { 6534 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6535 6536 skb_ext_put_sp(sp); 6537 sp->len = 0; 6538 #endif 6539 } 6540 } 6541 EXPORT_SYMBOL(__skb_ext_del); 6542 6543 void __skb_ext_put(struct skb_ext *ext) 6544 { 6545 /* If this is last clone, nothing can increment 6546 * it after check passes. Avoids one atomic op. 6547 */ 6548 if (refcount_read(&ext->refcnt) == 1) 6549 goto free_now; 6550 6551 if (!refcount_dec_and_test(&ext->refcnt)) 6552 return; 6553 free_now: 6554 #ifdef CONFIG_XFRM 6555 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6556 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6557 #endif 6558 6559 kmem_cache_free(skbuff_ext_cache, ext); 6560 } 6561 EXPORT_SYMBOL(__skb_ext_put); 6562 #endif /* CONFIG_SKB_EXTENSIONS */ 6563