1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 441 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 442 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 443 if (!skb) 444 goto skb_fail; 445 goto skb_success; 446 } 447 448 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 449 len = SKB_DATA_ALIGN(len); 450 451 if (sk_memalloc_socks()) 452 gfp_mask |= __GFP_MEMALLOC; 453 454 if (in_irq() || irqs_disabled()) { 455 nc = this_cpu_ptr(&netdev_alloc_cache); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 } else { 459 local_bh_disable(); 460 nc = this_cpu_ptr(&napi_alloc_cache.page); 461 data = page_frag_alloc(nc, len, gfp_mask); 462 pfmemalloc = nc->pfmemalloc; 463 local_bh_enable(); 464 } 465 466 if (unlikely(!data)) 467 return NULL; 468 469 skb = __build_skb(data, len); 470 if (unlikely(!skb)) { 471 skb_free_frag(data); 472 return NULL; 473 } 474 475 if (pfmemalloc) 476 skb->pfmemalloc = 1; 477 skb->head_frag = 1; 478 479 skb_success: 480 skb_reserve(skb, NET_SKB_PAD); 481 skb->dev = dev; 482 483 skb_fail: 484 return skb; 485 } 486 EXPORT_SYMBOL(__netdev_alloc_skb); 487 488 /** 489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 490 * @napi: napi instance this buffer was allocated for 491 * @len: length to allocate 492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 493 * 494 * Allocate a new sk_buff for use in NAPI receive. This buffer will 495 * attempt to allocate the head from a special reserved region used 496 * only for NAPI Rx allocation. By doing this we can save several 497 * CPU cycles by avoiding having to disable and re-enable IRQs. 498 * 499 * %NULL is returned if there is no free memory. 500 */ 501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 502 gfp_t gfp_mask) 503 { 504 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 505 struct sk_buff *skb; 506 void *data; 507 508 len += NET_SKB_PAD + NET_IP_ALIGN; 509 510 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 511 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 512 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 513 if (!skb) 514 goto skb_fail; 515 goto skb_success; 516 } 517 518 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 519 len = SKB_DATA_ALIGN(len); 520 521 if (sk_memalloc_socks()) 522 gfp_mask |= __GFP_MEMALLOC; 523 524 data = page_frag_alloc(&nc->page, len, gfp_mask); 525 if (unlikely(!data)) 526 return NULL; 527 528 skb = __build_skb(data, len); 529 if (unlikely(!skb)) { 530 skb_free_frag(data); 531 return NULL; 532 } 533 534 if (nc->page.pfmemalloc) 535 skb->pfmemalloc = 1; 536 skb->head_frag = 1; 537 538 skb_success: 539 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 540 skb->dev = napi->dev; 541 542 skb_fail: 543 return skb; 544 } 545 EXPORT_SYMBOL(__napi_alloc_skb); 546 547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 548 int size, unsigned int truesize) 549 { 550 skb_fill_page_desc(skb, i, page, off, size); 551 skb->len += size; 552 skb->data_len += size; 553 skb->truesize += truesize; 554 } 555 EXPORT_SYMBOL(skb_add_rx_frag); 556 557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 558 unsigned int truesize) 559 { 560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 561 562 skb_frag_size_add(frag, size); 563 skb->len += size; 564 skb->data_len += size; 565 skb->truesize += truesize; 566 } 567 EXPORT_SYMBOL(skb_coalesce_rx_frag); 568 569 static void skb_drop_list(struct sk_buff **listp) 570 { 571 kfree_skb_list(*listp); 572 *listp = NULL; 573 } 574 575 static inline void skb_drop_fraglist(struct sk_buff *skb) 576 { 577 skb_drop_list(&skb_shinfo(skb)->frag_list); 578 } 579 580 static void skb_clone_fraglist(struct sk_buff *skb) 581 { 582 struct sk_buff *list; 583 584 skb_walk_frags(skb, list) 585 skb_get(list); 586 } 587 588 static void skb_free_head(struct sk_buff *skb) 589 { 590 unsigned char *head = skb->head; 591 592 if (skb->head_frag) 593 skb_free_frag(head); 594 else 595 kfree(head); 596 } 597 598 static void skb_release_data(struct sk_buff *skb) 599 { 600 struct skb_shared_info *shinfo = skb_shinfo(skb); 601 int i; 602 603 if (skb->cloned && 604 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 605 &shinfo->dataref)) 606 return; 607 608 for (i = 0; i < shinfo->nr_frags; i++) 609 __skb_frag_unref(&shinfo->frags[i]); 610 611 if (shinfo->frag_list) 612 kfree_skb_list(shinfo->frag_list); 613 614 skb_zcopy_clear(skb, true); 615 skb_free_head(skb); 616 } 617 618 /* 619 * Free an skbuff by memory without cleaning the state. 620 */ 621 static void kfree_skbmem(struct sk_buff *skb) 622 { 623 struct sk_buff_fclones *fclones; 624 625 switch (skb->fclone) { 626 case SKB_FCLONE_UNAVAILABLE: 627 kmem_cache_free(skbuff_head_cache, skb); 628 return; 629 630 case SKB_FCLONE_ORIG: 631 fclones = container_of(skb, struct sk_buff_fclones, skb1); 632 633 /* We usually free the clone (TX completion) before original skb 634 * This test would have no chance to be true for the clone, 635 * while here, branch prediction will be good. 636 */ 637 if (refcount_read(&fclones->fclone_ref) == 1) 638 goto fastpath; 639 break; 640 641 default: /* SKB_FCLONE_CLONE */ 642 fclones = container_of(skb, struct sk_buff_fclones, skb2); 643 break; 644 } 645 if (!refcount_dec_and_test(&fclones->fclone_ref)) 646 return; 647 fastpath: 648 kmem_cache_free(skbuff_fclone_cache, fclones); 649 } 650 651 void skb_release_head_state(struct sk_buff *skb) 652 { 653 skb_dst_drop(skb); 654 if (skb->destructor) { 655 WARN_ON(in_irq()); 656 skb->destructor(skb); 657 } 658 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 659 nf_conntrack_put(skb_nfct(skb)); 660 #endif 661 skb_ext_put(skb); 662 } 663 664 /* Free everything but the sk_buff shell. */ 665 static void skb_release_all(struct sk_buff *skb) 666 { 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670 } 671 672 /** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681 void __kfree_skb(struct sk_buff *skb) 682 { 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685 } 686 EXPORT_SYMBOL(__kfree_skb); 687 688 /** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695 void kfree_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_kfree_skb(skb, __builtin_return_address(0)); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(kfree_skb); 704 705 void kfree_skb_list(struct sk_buff *segs) 706 { 707 while (segs) { 708 struct sk_buff *next = segs->next; 709 710 kfree_skb(segs); 711 segs = next; 712 } 713 } 714 EXPORT_SYMBOL(kfree_skb_list); 715 716 /* Dump skb information and contents. 717 * 718 * Must only be called from net_ratelimit()-ed paths. 719 * 720 * Dumps whole packets if full_pkt, only headers otherwise. 721 */ 722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 723 { 724 struct skb_shared_info *sh = skb_shinfo(skb); 725 struct net_device *dev = skb->dev; 726 struct sock *sk = skb->sk; 727 struct sk_buff *list_skb; 728 bool has_mac, has_trans; 729 int headroom, tailroom; 730 int i, len, seg_len; 731 732 if (full_pkt) 733 len = skb->len; 734 else 735 len = min_t(int, skb->len, MAX_HEADER + 128); 736 737 headroom = skb_headroom(skb); 738 tailroom = skb_tailroom(skb); 739 740 has_mac = skb_mac_header_was_set(skb); 741 has_trans = skb_transport_header_was_set(skb); 742 743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 744 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 748 level, skb->len, headroom, skb_headlen(skb), tailroom, 749 has_mac ? skb->mac_header : -1, 750 has_mac ? skb_mac_header_len(skb) : -1, 751 skb->network_header, 752 has_trans ? skb_network_header_len(skb) : -1, 753 has_trans ? skb->transport_header : -1, 754 sh->tx_flags, sh->nr_frags, 755 sh->gso_size, sh->gso_type, sh->gso_segs, 756 skb->csum, skb->ip_summed, skb->csum_complete_sw, 757 skb->csum_valid, skb->csum_level, 758 skb->hash, skb->sw_hash, skb->l4_hash, 759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 760 761 if (dev) 762 printk("%sdev name=%s feat=0x%pNF\n", 763 level, dev->name, &dev->features); 764 if (sk) 765 printk("%ssk family=%hu type=%u proto=%u\n", 766 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 767 768 if (full_pkt && headroom) 769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 770 16, 1, skb->head, headroom, false); 771 772 seg_len = min_t(int, skb_headlen(skb), len); 773 if (seg_len) 774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->data, seg_len, false); 776 len -= seg_len; 777 778 if (full_pkt && tailroom) 779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb_tail_pointer(skb), tailroom, false); 781 782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 784 u32 p_off, p_len, copied; 785 struct page *p; 786 u8 *vaddr; 787 788 skb_frag_foreach_page(frag, skb_frag_off(frag), 789 skb_frag_size(frag), p, p_off, p_len, 790 copied) { 791 seg_len = min_t(int, p_len, len); 792 vaddr = kmap_atomic(p); 793 print_hex_dump(level, "skb frag: ", 794 DUMP_PREFIX_OFFSET, 795 16, 1, vaddr + p_off, seg_len, false); 796 kunmap_atomic(vaddr); 797 len -= seg_len; 798 if (!len) 799 break; 800 } 801 } 802 803 if (full_pkt && skb_has_frag_list(skb)) { 804 printk("skb fraglist:\n"); 805 skb_walk_frags(skb, list_skb) 806 skb_dump(level, list_skb, true); 807 } 808 } 809 EXPORT_SYMBOL(skb_dump); 810 811 /** 812 * skb_tx_error - report an sk_buff xmit error 813 * @skb: buffer that triggered an error 814 * 815 * Report xmit error if a device callback is tracking this skb. 816 * skb must be freed afterwards. 817 */ 818 void skb_tx_error(struct sk_buff *skb) 819 { 820 skb_zcopy_clear(skb, true); 821 } 822 EXPORT_SYMBOL(skb_tx_error); 823 824 #ifdef CONFIG_TRACEPOINTS 825 /** 826 * consume_skb - free an skbuff 827 * @skb: buffer to free 828 * 829 * Drop a ref to the buffer and free it if the usage count has hit zero 830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 831 * is being dropped after a failure and notes that 832 */ 833 void consume_skb(struct sk_buff *skb) 834 { 835 if (!skb_unref(skb)) 836 return; 837 838 trace_consume_skb(skb); 839 __kfree_skb(skb); 840 } 841 EXPORT_SYMBOL(consume_skb); 842 #endif 843 844 /** 845 * __consume_stateless_skb - free an skbuff, assuming it is stateless 846 * @skb: buffer to free 847 * 848 * Alike consume_skb(), but this variant assumes that this is the last 849 * skb reference and all the head states have been already dropped 850 */ 851 void __consume_stateless_skb(struct sk_buff *skb) 852 { 853 trace_consume_skb(skb); 854 skb_release_data(skb); 855 kfree_skbmem(skb); 856 } 857 858 void __kfree_skb_flush(void) 859 { 860 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 861 862 /* flush skb_cache if containing objects */ 863 if (nc->skb_count) { 864 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 865 nc->skb_cache); 866 nc->skb_count = 0; 867 } 868 } 869 870 static inline void _kfree_skb_defer(struct sk_buff *skb) 871 { 872 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 873 874 /* drop skb->head and call any destructors for packet */ 875 skb_release_all(skb); 876 877 /* record skb to CPU local list */ 878 nc->skb_cache[nc->skb_count++] = skb; 879 880 #ifdef CONFIG_SLUB 881 /* SLUB writes into objects when freeing */ 882 prefetchw(skb); 883 #endif 884 885 /* flush skb_cache if it is filled */ 886 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 887 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 888 nc->skb_cache); 889 nc->skb_count = 0; 890 } 891 } 892 void __kfree_skb_defer(struct sk_buff *skb) 893 { 894 _kfree_skb_defer(skb); 895 } 896 897 void napi_consume_skb(struct sk_buff *skb, int budget) 898 { 899 /* Zero budget indicate non-NAPI context called us, like netpoll */ 900 if (unlikely(!budget)) { 901 dev_consume_skb_any(skb); 902 return; 903 } 904 905 lockdep_assert_in_softirq(); 906 907 if (!skb_unref(skb)) 908 return; 909 910 /* if reaching here SKB is ready to free */ 911 trace_consume_skb(skb); 912 913 /* if SKB is a clone, don't handle this case */ 914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 915 __kfree_skb(skb); 916 return; 917 } 918 919 _kfree_skb_defer(skb); 920 } 921 EXPORT_SYMBOL(napi_consume_skb); 922 923 /* Make sure a field is enclosed inside headers_start/headers_end section */ 924 #define CHECK_SKB_FIELD(field) \ 925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 926 offsetof(struct sk_buff, headers_start)); \ 927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 928 offsetof(struct sk_buff, headers_end)); \ 929 930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 931 { 932 new->tstamp = old->tstamp; 933 /* We do not copy old->sk */ 934 new->dev = old->dev; 935 memcpy(new->cb, old->cb, sizeof(old->cb)); 936 skb_dst_copy(new, old); 937 __skb_ext_copy(new, old); 938 __nf_copy(new, old, false); 939 940 /* Note : this field could be in headers_start/headers_end section 941 * It is not yet because we do not want to have a 16 bit hole 942 */ 943 new->queue_mapping = old->queue_mapping; 944 945 memcpy(&new->headers_start, &old->headers_start, 946 offsetof(struct sk_buff, headers_end) - 947 offsetof(struct sk_buff, headers_start)); 948 CHECK_SKB_FIELD(protocol); 949 CHECK_SKB_FIELD(csum); 950 CHECK_SKB_FIELD(hash); 951 CHECK_SKB_FIELD(priority); 952 CHECK_SKB_FIELD(skb_iif); 953 CHECK_SKB_FIELD(vlan_proto); 954 CHECK_SKB_FIELD(vlan_tci); 955 CHECK_SKB_FIELD(transport_header); 956 CHECK_SKB_FIELD(network_header); 957 CHECK_SKB_FIELD(mac_header); 958 CHECK_SKB_FIELD(inner_protocol); 959 CHECK_SKB_FIELD(inner_transport_header); 960 CHECK_SKB_FIELD(inner_network_header); 961 CHECK_SKB_FIELD(inner_mac_header); 962 CHECK_SKB_FIELD(mark); 963 #ifdef CONFIG_NETWORK_SECMARK 964 CHECK_SKB_FIELD(secmark); 965 #endif 966 #ifdef CONFIG_NET_RX_BUSY_POLL 967 CHECK_SKB_FIELD(napi_id); 968 #endif 969 #ifdef CONFIG_XPS 970 CHECK_SKB_FIELD(sender_cpu); 971 #endif 972 #ifdef CONFIG_NET_SCHED 973 CHECK_SKB_FIELD(tc_index); 974 #endif 975 976 } 977 978 /* 979 * You should not add any new code to this function. Add it to 980 * __copy_skb_header above instead. 981 */ 982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 983 { 984 #define C(x) n->x = skb->x 985 986 n->next = n->prev = NULL; 987 n->sk = NULL; 988 __copy_skb_header(n, skb); 989 990 C(len); 991 C(data_len); 992 C(mac_len); 993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 994 n->cloned = 1; 995 n->nohdr = 0; 996 n->peeked = 0; 997 C(pfmemalloc); 998 n->destructor = NULL; 999 C(tail); 1000 C(end); 1001 C(head); 1002 C(head_frag); 1003 C(data); 1004 C(truesize); 1005 refcount_set(&n->users, 1); 1006 1007 atomic_inc(&(skb_shinfo(skb)->dataref)); 1008 skb->cloned = 1; 1009 1010 return n; 1011 #undef C 1012 } 1013 1014 /** 1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1016 * @first: first sk_buff of the msg 1017 */ 1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1019 { 1020 struct sk_buff *n; 1021 1022 n = alloc_skb(0, GFP_ATOMIC); 1023 if (!n) 1024 return NULL; 1025 1026 n->len = first->len; 1027 n->data_len = first->len; 1028 n->truesize = first->truesize; 1029 1030 skb_shinfo(n)->frag_list = first; 1031 1032 __copy_skb_header(n, first); 1033 n->destructor = NULL; 1034 1035 return n; 1036 } 1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1038 1039 /** 1040 * skb_morph - morph one skb into another 1041 * @dst: the skb to receive the contents 1042 * @src: the skb to supply the contents 1043 * 1044 * This is identical to skb_clone except that the target skb is 1045 * supplied by the user. 1046 * 1047 * The target skb is returned upon exit. 1048 */ 1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1050 { 1051 skb_release_all(dst); 1052 return __skb_clone(dst, src); 1053 } 1054 EXPORT_SYMBOL_GPL(skb_morph); 1055 1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1057 { 1058 unsigned long max_pg, num_pg, new_pg, old_pg; 1059 struct user_struct *user; 1060 1061 if (capable(CAP_IPC_LOCK) || !size) 1062 return 0; 1063 1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1066 user = mmp->user ? : current_user(); 1067 1068 do { 1069 old_pg = atomic_long_read(&user->locked_vm); 1070 new_pg = old_pg + num_pg; 1071 if (new_pg > max_pg) 1072 return -ENOBUFS; 1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1074 old_pg); 1075 1076 if (!mmp->user) { 1077 mmp->user = get_uid(user); 1078 mmp->num_pg = num_pg; 1079 } else { 1080 mmp->num_pg += num_pg; 1081 } 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1086 1087 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1088 { 1089 if (mmp->user) { 1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1091 free_uid(mmp->user); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1095 1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1097 { 1098 struct ubuf_info *uarg; 1099 struct sk_buff *skb; 1100 1101 WARN_ON_ONCE(!in_task()); 1102 1103 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1104 if (!skb) 1105 return NULL; 1106 1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1108 uarg = (void *)skb->cb; 1109 uarg->mmp.user = NULL; 1110 1111 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1112 kfree_skb(skb); 1113 return NULL; 1114 } 1115 1116 uarg->callback = sock_zerocopy_callback; 1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1118 uarg->len = 1; 1119 uarg->bytelen = size; 1120 uarg->zerocopy = 1; 1121 refcount_set(&uarg->refcnt, 1); 1122 sock_hold(sk); 1123 1124 return uarg; 1125 } 1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1127 1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1129 { 1130 return container_of((void *)uarg, struct sk_buff, cb); 1131 } 1132 1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1134 struct ubuf_info *uarg) 1135 { 1136 if (uarg) { 1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1138 u32 bytelen, next; 1139 1140 /* realloc only when socket is locked (TCP, UDP cork), 1141 * so uarg->len and sk_zckey access is serialized 1142 */ 1143 if (!sock_owned_by_user(sk)) { 1144 WARN_ON_ONCE(1); 1145 return NULL; 1146 } 1147 1148 bytelen = uarg->bytelen + size; 1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1150 /* TCP can create new skb to attach new uarg */ 1151 if (sk->sk_type == SOCK_STREAM) 1152 goto new_alloc; 1153 return NULL; 1154 } 1155 1156 next = (u32)atomic_read(&sk->sk_zckey); 1157 if ((u32)(uarg->id + uarg->len) == next) { 1158 if (mm_account_pinned_pages(&uarg->mmp, size)) 1159 return NULL; 1160 uarg->len++; 1161 uarg->bytelen = bytelen; 1162 atomic_set(&sk->sk_zckey, ++next); 1163 1164 /* no extra ref when appending to datagram (MSG_MORE) */ 1165 if (sk->sk_type == SOCK_STREAM) 1166 sock_zerocopy_get(uarg); 1167 1168 return uarg; 1169 } 1170 } 1171 1172 new_alloc: 1173 return sock_zerocopy_alloc(sk, size); 1174 } 1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1176 1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1178 { 1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1180 u32 old_lo, old_hi; 1181 u64 sum_len; 1182 1183 old_lo = serr->ee.ee_info; 1184 old_hi = serr->ee.ee_data; 1185 sum_len = old_hi - old_lo + 1ULL + len; 1186 1187 if (sum_len >= (1ULL << 32)) 1188 return false; 1189 1190 if (lo != old_hi + 1) 1191 return false; 1192 1193 serr->ee.ee_data += len; 1194 return true; 1195 } 1196 1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1198 { 1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1200 struct sock_exterr_skb *serr; 1201 struct sock *sk = skb->sk; 1202 struct sk_buff_head *q; 1203 unsigned long flags; 1204 u32 lo, hi; 1205 u16 len; 1206 1207 mm_unaccount_pinned_pages(&uarg->mmp); 1208 1209 /* if !len, there was only 1 call, and it was aborted 1210 * so do not queue a completion notification 1211 */ 1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1213 goto release; 1214 1215 len = uarg->len; 1216 lo = uarg->id; 1217 hi = uarg->id + len - 1; 1218 1219 serr = SKB_EXT_ERR(skb); 1220 memset(serr, 0, sizeof(*serr)); 1221 serr->ee.ee_errno = 0; 1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1223 serr->ee.ee_data = hi; 1224 serr->ee.ee_info = lo; 1225 if (!success) 1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1227 1228 q = &sk->sk_error_queue; 1229 spin_lock_irqsave(&q->lock, flags); 1230 tail = skb_peek_tail(q); 1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1232 !skb_zerocopy_notify_extend(tail, lo, len)) { 1233 __skb_queue_tail(q, skb); 1234 skb = NULL; 1235 } 1236 spin_unlock_irqrestore(&q->lock, flags); 1237 1238 sk->sk_error_report(sk); 1239 1240 release: 1241 consume_skb(skb); 1242 sock_put(sk); 1243 } 1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1245 1246 void sock_zerocopy_put(struct ubuf_info *uarg) 1247 { 1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1249 if (uarg->callback) 1250 uarg->callback(uarg, uarg->zerocopy); 1251 else 1252 consume_skb(skb_from_uarg(uarg)); 1253 } 1254 } 1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1256 1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1258 { 1259 if (uarg) { 1260 struct sock *sk = skb_from_uarg(uarg)->sk; 1261 1262 atomic_dec(&sk->sk_zckey); 1263 uarg->len--; 1264 1265 if (have_uref) 1266 sock_zerocopy_put(uarg); 1267 } 1268 } 1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1270 1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1272 { 1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1274 } 1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1276 1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1278 struct msghdr *msg, int len, 1279 struct ubuf_info *uarg) 1280 { 1281 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1282 struct iov_iter orig_iter = msg->msg_iter; 1283 int err, orig_len = skb->len; 1284 1285 /* An skb can only point to one uarg. This edge case happens when 1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1287 */ 1288 if (orig_uarg && uarg != orig_uarg) 1289 return -EEXIST; 1290 1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1293 struct sock *save_sk = skb->sk; 1294 1295 /* Streams do not free skb on error. Reset to prev state. */ 1296 msg->msg_iter = orig_iter; 1297 skb->sk = sk; 1298 ___pskb_trim(skb, orig_len); 1299 skb->sk = save_sk; 1300 return err; 1301 } 1302 1303 skb_zcopy_set(skb, uarg, NULL); 1304 return skb->len - orig_len; 1305 } 1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1307 1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1309 gfp_t gfp_mask) 1310 { 1311 if (skb_zcopy(orig)) { 1312 if (skb_zcopy(nskb)) { 1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1314 if (!gfp_mask) { 1315 WARN_ON_ONCE(1); 1316 return -ENOMEM; 1317 } 1318 if (skb_uarg(nskb) == skb_uarg(orig)) 1319 return 0; 1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1321 return -EIO; 1322 } 1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1324 } 1325 return 0; 1326 } 1327 1328 /** 1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1330 * @skb: the skb to modify 1331 * @gfp_mask: allocation priority 1332 * 1333 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1334 * It will copy all frags into kernel and drop the reference 1335 * to userspace pages. 1336 * 1337 * If this function is called from an interrupt gfp_mask() must be 1338 * %GFP_ATOMIC. 1339 * 1340 * Returns 0 on success or a negative error code on failure 1341 * to allocate kernel memory to copy to. 1342 */ 1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1344 { 1345 int num_frags = skb_shinfo(skb)->nr_frags; 1346 struct page *page, *head = NULL; 1347 int i, new_frags; 1348 u32 d_off; 1349 1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1351 return -EINVAL; 1352 1353 if (!num_frags) 1354 goto release; 1355 1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1357 for (i = 0; i < new_frags; i++) { 1358 page = alloc_page(gfp_mask); 1359 if (!page) { 1360 while (head) { 1361 struct page *next = (struct page *)page_private(head); 1362 put_page(head); 1363 head = next; 1364 } 1365 return -ENOMEM; 1366 } 1367 set_page_private(page, (unsigned long)head); 1368 head = page; 1369 } 1370 1371 page = head; 1372 d_off = 0; 1373 for (i = 0; i < num_frags; i++) { 1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1375 u32 p_off, p_len, copied; 1376 struct page *p; 1377 u8 *vaddr; 1378 1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1380 p, p_off, p_len, copied) { 1381 u32 copy, done = 0; 1382 vaddr = kmap_atomic(p); 1383 1384 while (done < p_len) { 1385 if (d_off == PAGE_SIZE) { 1386 d_off = 0; 1387 page = (struct page *)page_private(page); 1388 } 1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1390 memcpy(page_address(page) + d_off, 1391 vaddr + p_off + done, copy); 1392 done += copy; 1393 d_off += copy; 1394 } 1395 kunmap_atomic(vaddr); 1396 } 1397 } 1398 1399 /* skb frags release userspace buffers */ 1400 for (i = 0; i < num_frags; i++) 1401 skb_frag_unref(skb, i); 1402 1403 /* skb frags point to kernel buffers */ 1404 for (i = 0; i < new_frags - 1; i++) { 1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1406 head = (struct page *)page_private(head); 1407 } 1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1409 skb_shinfo(skb)->nr_frags = new_frags; 1410 1411 release: 1412 skb_zcopy_clear(skb, false); 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1416 1417 /** 1418 * skb_clone - duplicate an sk_buff 1419 * @skb: buffer to clone 1420 * @gfp_mask: allocation priority 1421 * 1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1423 * copies share the same packet data but not structure. The new 1424 * buffer has a reference count of 1. If the allocation fails the 1425 * function returns %NULL otherwise the new buffer is returned. 1426 * 1427 * If this function is called from an interrupt gfp_mask() must be 1428 * %GFP_ATOMIC. 1429 */ 1430 1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1432 { 1433 struct sk_buff_fclones *fclones = container_of(skb, 1434 struct sk_buff_fclones, 1435 skb1); 1436 struct sk_buff *n; 1437 1438 if (skb_orphan_frags(skb, gfp_mask)) 1439 return NULL; 1440 1441 if (skb->fclone == SKB_FCLONE_ORIG && 1442 refcount_read(&fclones->fclone_ref) == 1) { 1443 n = &fclones->skb2; 1444 refcount_set(&fclones->fclone_ref, 2); 1445 } else { 1446 if (skb_pfmemalloc(skb)) 1447 gfp_mask |= __GFP_MEMALLOC; 1448 1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1450 if (!n) 1451 return NULL; 1452 1453 n->fclone = SKB_FCLONE_UNAVAILABLE; 1454 } 1455 1456 return __skb_clone(n, skb); 1457 } 1458 EXPORT_SYMBOL(skb_clone); 1459 1460 void skb_headers_offset_update(struct sk_buff *skb, int off) 1461 { 1462 /* Only adjust this if it actually is csum_start rather than csum */ 1463 if (skb->ip_summed == CHECKSUM_PARTIAL) 1464 skb->csum_start += off; 1465 /* {transport,network,mac}_header and tail are relative to skb->head */ 1466 skb->transport_header += off; 1467 skb->network_header += off; 1468 if (skb_mac_header_was_set(skb)) 1469 skb->mac_header += off; 1470 skb->inner_transport_header += off; 1471 skb->inner_network_header += off; 1472 skb->inner_mac_header += off; 1473 } 1474 EXPORT_SYMBOL(skb_headers_offset_update); 1475 1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1477 { 1478 __copy_skb_header(new, old); 1479 1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1483 } 1484 EXPORT_SYMBOL(skb_copy_header); 1485 1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1487 { 1488 if (skb_pfmemalloc(skb)) 1489 return SKB_ALLOC_RX; 1490 return 0; 1491 } 1492 1493 /** 1494 * skb_copy - create private copy of an sk_buff 1495 * @skb: buffer to copy 1496 * @gfp_mask: allocation priority 1497 * 1498 * Make a copy of both an &sk_buff and its data. This is used when the 1499 * caller wishes to modify the data and needs a private copy of the 1500 * data to alter. Returns %NULL on failure or the pointer to the buffer 1501 * on success. The returned buffer has a reference count of 1. 1502 * 1503 * As by-product this function converts non-linear &sk_buff to linear 1504 * one, so that &sk_buff becomes completely private and caller is allowed 1505 * to modify all the data of returned buffer. This means that this 1506 * function is not recommended for use in circumstances when only 1507 * header is going to be modified. Use pskb_copy() instead. 1508 */ 1509 1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1511 { 1512 int headerlen = skb_headroom(skb); 1513 unsigned int size = skb_end_offset(skb) + skb->data_len; 1514 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1516 1517 if (!n) 1518 return NULL; 1519 1520 /* Set the data pointer */ 1521 skb_reserve(n, headerlen); 1522 /* Set the tail pointer and length */ 1523 skb_put(n, skb->len); 1524 1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1526 1527 skb_copy_header(n, skb); 1528 return n; 1529 } 1530 EXPORT_SYMBOL(skb_copy); 1531 1532 /** 1533 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1534 * @skb: buffer to copy 1535 * @headroom: headroom of new skb 1536 * @gfp_mask: allocation priority 1537 * @fclone: if true allocate the copy of the skb from the fclone 1538 * cache instead of the head cache; it is recommended to set this 1539 * to true for the cases where the copy will likely be cloned 1540 * 1541 * Make a copy of both an &sk_buff and part of its data, located 1542 * in header. Fragmented data remain shared. This is used when 1543 * the caller wishes to modify only header of &sk_buff and needs 1544 * private copy of the header to alter. Returns %NULL on failure 1545 * or the pointer to the buffer on success. 1546 * The returned buffer has a reference count of 1. 1547 */ 1548 1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1550 gfp_t gfp_mask, bool fclone) 1551 { 1552 unsigned int size = skb_headlen(skb) + headroom; 1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1555 1556 if (!n) 1557 goto out; 1558 1559 /* Set the data pointer */ 1560 skb_reserve(n, headroom); 1561 /* Set the tail pointer and length */ 1562 skb_put(n, skb_headlen(skb)); 1563 /* Copy the bytes */ 1564 skb_copy_from_linear_data(skb, n->data, n->len); 1565 1566 n->truesize += skb->data_len; 1567 n->data_len = skb->data_len; 1568 n->len = skb->len; 1569 1570 if (skb_shinfo(skb)->nr_frags) { 1571 int i; 1572 1573 if (skb_orphan_frags(skb, gfp_mask) || 1574 skb_zerocopy_clone(n, skb, gfp_mask)) { 1575 kfree_skb(n); 1576 n = NULL; 1577 goto out; 1578 } 1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1581 skb_frag_ref(skb, i); 1582 } 1583 skb_shinfo(n)->nr_frags = i; 1584 } 1585 1586 if (skb_has_frag_list(skb)) { 1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1588 skb_clone_fraglist(n); 1589 } 1590 1591 skb_copy_header(n, skb); 1592 out: 1593 return n; 1594 } 1595 EXPORT_SYMBOL(__pskb_copy_fclone); 1596 1597 /** 1598 * pskb_expand_head - reallocate header of &sk_buff 1599 * @skb: buffer to reallocate 1600 * @nhead: room to add at head 1601 * @ntail: room to add at tail 1602 * @gfp_mask: allocation priority 1603 * 1604 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1606 * reference count of 1. Returns zero in the case of success or error, 1607 * if expansion failed. In the last case, &sk_buff is not changed. 1608 * 1609 * All the pointers pointing into skb header may change and must be 1610 * reloaded after call to this function. 1611 */ 1612 1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1614 gfp_t gfp_mask) 1615 { 1616 int i, osize = skb_end_offset(skb); 1617 int size = osize + nhead + ntail; 1618 long off; 1619 u8 *data; 1620 1621 BUG_ON(nhead < 0); 1622 1623 BUG_ON(skb_shared(skb)); 1624 1625 size = SKB_DATA_ALIGN(size); 1626 1627 if (skb_pfmemalloc(skb)) 1628 gfp_mask |= __GFP_MEMALLOC; 1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1630 gfp_mask, NUMA_NO_NODE, NULL); 1631 if (!data) 1632 goto nodata; 1633 size = SKB_WITH_OVERHEAD(ksize(data)); 1634 1635 /* Copy only real data... and, alas, header. This should be 1636 * optimized for the cases when header is void. 1637 */ 1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1639 1640 memcpy((struct skb_shared_info *)(data + size), 1641 skb_shinfo(skb), 1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1643 1644 /* 1645 * if shinfo is shared we must drop the old head gracefully, but if it 1646 * is not we can just drop the old head and let the existing refcount 1647 * be since all we did is relocate the values 1648 */ 1649 if (skb_cloned(skb)) { 1650 if (skb_orphan_frags(skb, gfp_mask)) 1651 goto nofrags; 1652 if (skb_zcopy(skb)) 1653 refcount_inc(&skb_uarg(skb)->refcnt); 1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1655 skb_frag_ref(skb, i); 1656 1657 if (skb_has_frag_list(skb)) 1658 skb_clone_fraglist(skb); 1659 1660 skb_release_data(skb); 1661 } else { 1662 skb_free_head(skb); 1663 } 1664 off = (data + nhead) - skb->head; 1665 1666 skb->head = data; 1667 skb->head_frag = 0; 1668 skb->data += off; 1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1670 skb->end = size; 1671 off = nhead; 1672 #else 1673 skb->end = skb->head + size; 1674 #endif 1675 skb->tail += off; 1676 skb_headers_offset_update(skb, nhead); 1677 skb->cloned = 0; 1678 skb->hdr_len = 0; 1679 skb->nohdr = 0; 1680 atomic_set(&skb_shinfo(skb)->dataref, 1); 1681 1682 skb_metadata_clear(skb); 1683 1684 /* It is not generally safe to change skb->truesize. 1685 * For the moment, we really care of rx path, or 1686 * when skb is orphaned (not attached to a socket). 1687 */ 1688 if (!skb->sk || skb->destructor == sock_edemux) 1689 skb->truesize += size - osize; 1690 1691 return 0; 1692 1693 nofrags: 1694 kfree(data); 1695 nodata: 1696 return -ENOMEM; 1697 } 1698 EXPORT_SYMBOL(pskb_expand_head); 1699 1700 /* Make private copy of skb with writable head and some headroom */ 1701 1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1703 { 1704 struct sk_buff *skb2; 1705 int delta = headroom - skb_headroom(skb); 1706 1707 if (delta <= 0) 1708 skb2 = pskb_copy(skb, GFP_ATOMIC); 1709 else { 1710 skb2 = skb_clone(skb, GFP_ATOMIC); 1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1712 GFP_ATOMIC)) { 1713 kfree_skb(skb2); 1714 skb2 = NULL; 1715 } 1716 } 1717 return skb2; 1718 } 1719 EXPORT_SYMBOL(skb_realloc_headroom); 1720 1721 /** 1722 * skb_copy_expand - copy and expand sk_buff 1723 * @skb: buffer to copy 1724 * @newheadroom: new free bytes at head 1725 * @newtailroom: new free bytes at tail 1726 * @gfp_mask: allocation priority 1727 * 1728 * Make a copy of both an &sk_buff and its data and while doing so 1729 * allocate additional space. 1730 * 1731 * This is used when the caller wishes to modify the data and needs a 1732 * private copy of the data to alter as well as more space for new fields. 1733 * Returns %NULL on failure or the pointer to the buffer 1734 * on success. The returned buffer has a reference count of 1. 1735 * 1736 * You must pass %GFP_ATOMIC as the allocation priority if this function 1737 * is called from an interrupt. 1738 */ 1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1740 int newheadroom, int newtailroom, 1741 gfp_t gfp_mask) 1742 { 1743 /* 1744 * Allocate the copy buffer 1745 */ 1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1747 gfp_mask, skb_alloc_rx_flag(skb), 1748 NUMA_NO_NODE); 1749 int oldheadroom = skb_headroom(skb); 1750 int head_copy_len, head_copy_off; 1751 1752 if (!n) 1753 return NULL; 1754 1755 skb_reserve(n, newheadroom); 1756 1757 /* Set the tail pointer and length */ 1758 skb_put(n, skb->len); 1759 1760 head_copy_len = oldheadroom; 1761 head_copy_off = 0; 1762 if (newheadroom <= head_copy_len) 1763 head_copy_len = newheadroom; 1764 else 1765 head_copy_off = newheadroom - head_copy_len; 1766 1767 /* Copy the linear header and data. */ 1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1769 skb->len + head_copy_len)); 1770 1771 skb_copy_header(n, skb); 1772 1773 skb_headers_offset_update(n, newheadroom - oldheadroom); 1774 1775 return n; 1776 } 1777 EXPORT_SYMBOL(skb_copy_expand); 1778 1779 /** 1780 * __skb_pad - zero pad the tail of an skb 1781 * @skb: buffer to pad 1782 * @pad: space to pad 1783 * @free_on_error: free buffer on error 1784 * 1785 * Ensure that a buffer is followed by a padding area that is zero 1786 * filled. Used by network drivers which may DMA or transfer data 1787 * beyond the buffer end onto the wire. 1788 * 1789 * May return error in out of memory cases. The skb is freed on error 1790 * if @free_on_error is true. 1791 */ 1792 1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1794 { 1795 int err; 1796 int ntail; 1797 1798 /* If the skbuff is non linear tailroom is always zero.. */ 1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1800 memset(skb->data+skb->len, 0, pad); 1801 return 0; 1802 } 1803 1804 ntail = skb->data_len + pad - (skb->end - skb->tail); 1805 if (likely(skb_cloned(skb) || ntail > 0)) { 1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1807 if (unlikely(err)) 1808 goto free_skb; 1809 } 1810 1811 /* FIXME: The use of this function with non-linear skb's really needs 1812 * to be audited. 1813 */ 1814 err = skb_linearize(skb); 1815 if (unlikely(err)) 1816 goto free_skb; 1817 1818 memset(skb->data + skb->len, 0, pad); 1819 return 0; 1820 1821 free_skb: 1822 if (free_on_error) 1823 kfree_skb(skb); 1824 return err; 1825 } 1826 EXPORT_SYMBOL(__skb_pad); 1827 1828 /** 1829 * pskb_put - add data to the tail of a potentially fragmented buffer 1830 * @skb: start of the buffer to use 1831 * @tail: tail fragment of the buffer to use 1832 * @len: amount of data to add 1833 * 1834 * This function extends the used data area of the potentially 1835 * fragmented buffer. @tail must be the last fragment of @skb -- or 1836 * @skb itself. If this would exceed the total buffer size the kernel 1837 * will panic. A pointer to the first byte of the extra data is 1838 * returned. 1839 */ 1840 1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1842 { 1843 if (tail != skb) { 1844 skb->data_len += len; 1845 skb->len += len; 1846 } 1847 return skb_put(tail, len); 1848 } 1849 EXPORT_SYMBOL_GPL(pskb_put); 1850 1851 /** 1852 * skb_put - add data to a buffer 1853 * @skb: buffer to use 1854 * @len: amount of data to add 1855 * 1856 * This function extends the used data area of the buffer. If this would 1857 * exceed the total buffer size the kernel will panic. A pointer to the 1858 * first byte of the extra data is returned. 1859 */ 1860 void *skb_put(struct sk_buff *skb, unsigned int len) 1861 { 1862 void *tmp = skb_tail_pointer(skb); 1863 SKB_LINEAR_ASSERT(skb); 1864 skb->tail += len; 1865 skb->len += len; 1866 if (unlikely(skb->tail > skb->end)) 1867 skb_over_panic(skb, len, __builtin_return_address(0)); 1868 return tmp; 1869 } 1870 EXPORT_SYMBOL(skb_put); 1871 1872 /** 1873 * skb_push - add data to the start of a buffer 1874 * @skb: buffer to use 1875 * @len: amount of data to add 1876 * 1877 * This function extends the used data area of the buffer at the buffer 1878 * start. If this would exceed the total buffer headroom the kernel will 1879 * panic. A pointer to the first byte of the extra data is returned. 1880 */ 1881 void *skb_push(struct sk_buff *skb, unsigned int len) 1882 { 1883 skb->data -= len; 1884 skb->len += len; 1885 if (unlikely(skb->data < skb->head)) 1886 skb_under_panic(skb, len, __builtin_return_address(0)); 1887 return skb->data; 1888 } 1889 EXPORT_SYMBOL(skb_push); 1890 1891 /** 1892 * skb_pull - remove data from the start of a buffer 1893 * @skb: buffer to use 1894 * @len: amount of data to remove 1895 * 1896 * This function removes data from the start of a buffer, returning 1897 * the memory to the headroom. A pointer to the next data in the buffer 1898 * is returned. Once the data has been pulled future pushes will overwrite 1899 * the old data. 1900 */ 1901 void *skb_pull(struct sk_buff *skb, unsigned int len) 1902 { 1903 return skb_pull_inline(skb, len); 1904 } 1905 EXPORT_SYMBOL(skb_pull); 1906 1907 /** 1908 * skb_trim - remove end from a buffer 1909 * @skb: buffer to alter 1910 * @len: new length 1911 * 1912 * Cut the length of a buffer down by removing data from the tail. If 1913 * the buffer is already under the length specified it is not modified. 1914 * The skb must be linear. 1915 */ 1916 void skb_trim(struct sk_buff *skb, unsigned int len) 1917 { 1918 if (skb->len > len) 1919 __skb_trim(skb, len); 1920 } 1921 EXPORT_SYMBOL(skb_trim); 1922 1923 /* Trims skb to length len. It can change skb pointers. 1924 */ 1925 1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1927 { 1928 struct sk_buff **fragp; 1929 struct sk_buff *frag; 1930 int offset = skb_headlen(skb); 1931 int nfrags = skb_shinfo(skb)->nr_frags; 1932 int i; 1933 int err; 1934 1935 if (skb_cloned(skb) && 1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1937 return err; 1938 1939 i = 0; 1940 if (offset >= len) 1941 goto drop_pages; 1942 1943 for (; i < nfrags; i++) { 1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1945 1946 if (end < len) { 1947 offset = end; 1948 continue; 1949 } 1950 1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1952 1953 drop_pages: 1954 skb_shinfo(skb)->nr_frags = i; 1955 1956 for (; i < nfrags; i++) 1957 skb_frag_unref(skb, i); 1958 1959 if (skb_has_frag_list(skb)) 1960 skb_drop_fraglist(skb); 1961 goto done; 1962 } 1963 1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1965 fragp = &frag->next) { 1966 int end = offset + frag->len; 1967 1968 if (skb_shared(frag)) { 1969 struct sk_buff *nfrag; 1970 1971 nfrag = skb_clone(frag, GFP_ATOMIC); 1972 if (unlikely(!nfrag)) 1973 return -ENOMEM; 1974 1975 nfrag->next = frag->next; 1976 consume_skb(frag); 1977 frag = nfrag; 1978 *fragp = frag; 1979 } 1980 1981 if (end < len) { 1982 offset = end; 1983 continue; 1984 } 1985 1986 if (end > len && 1987 unlikely((err = pskb_trim(frag, len - offset)))) 1988 return err; 1989 1990 if (frag->next) 1991 skb_drop_list(&frag->next); 1992 break; 1993 } 1994 1995 done: 1996 if (len > skb_headlen(skb)) { 1997 skb->data_len -= skb->len - len; 1998 skb->len = len; 1999 } else { 2000 skb->len = len; 2001 skb->data_len = 0; 2002 skb_set_tail_pointer(skb, len); 2003 } 2004 2005 if (!skb->sk || skb->destructor == sock_edemux) 2006 skb_condense(skb); 2007 return 0; 2008 } 2009 EXPORT_SYMBOL(___pskb_trim); 2010 2011 /* Note : use pskb_trim_rcsum() instead of calling this directly 2012 */ 2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2014 { 2015 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2016 int delta = skb->len - len; 2017 2018 skb->csum = csum_block_sub(skb->csum, 2019 skb_checksum(skb, len, delta, 0), 2020 len); 2021 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2022 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2023 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2024 2025 if (offset + sizeof(__sum16) > hdlen) 2026 return -EINVAL; 2027 } 2028 return __pskb_trim(skb, len); 2029 } 2030 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2031 2032 /** 2033 * __pskb_pull_tail - advance tail of skb header 2034 * @skb: buffer to reallocate 2035 * @delta: number of bytes to advance tail 2036 * 2037 * The function makes a sense only on a fragmented &sk_buff, 2038 * it expands header moving its tail forward and copying necessary 2039 * data from fragmented part. 2040 * 2041 * &sk_buff MUST have reference count of 1. 2042 * 2043 * Returns %NULL (and &sk_buff does not change) if pull failed 2044 * or value of new tail of skb in the case of success. 2045 * 2046 * All the pointers pointing into skb header may change and must be 2047 * reloaded after call to this function. 2048 */ 2049 2050 /* Moves tail of skb head forward, copying data from fragmented part, 2051 * when it is necessary. 2052 * 1. It may fail due to malloc failure. 2053 * 2. It may change skb pointers. 2054 * 2055 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2056 */ 2057 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2058 { 2059 /* If skb has not enough free space at tail, get new one 2060 * plus 128 bytes for future expansions. If we have enough 2061 * room at tail, reallocate without expansion only if skb is cloned. 2062 */ 2063 int i, k, eat = (skb->tail + delta) - skb->end; 2064 2065 if (eat > 0 || skb_cloned(skb)) { 2066 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2067 GFP_ATOMIC)) 2068 return NULL; 2069 } 2070 2071 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2072 skb_tail_pointer(skb), delta)); 2073 2074 /* Optimization: no fragments, no reasons to preestimate 2075 * size of pulled pages. Superb. 2076 */ 2077 if (!skb_has_frag_list(skb)) 2078 goto pull_pages; 2079 2080 /* Estimate size of pulled pages. */ 2081 eat = delta; 2082 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2083 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2084 2085 if (size >= eat) 2086 goto pull_pages; 2087 eat -= size; 2088 } 2089 2090 /* If we need update frag list, we are in troubles. 2091 * Certainly, it is possible to add an offset to skb data, 2092 * but taking into account that pulling is expected to 2093 * be very rare operation, it is worth to fight against 2094 * further bloating skb head and crucify ourselves here instead. 2095 * Pure masohism, indeed. 8)8) 2096 */ 2097 if (eat) { 2098 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2099 struct sk_buff *clone = NULL; 2100 struct sk_buff *insp = NULL; 2101 2102 do { 2103 if (list->len <= eat) { 2104 /* Eaten as whole. */ 2105 eat -= list->len; 2106 list = list->next; 2107 insp = list; 2108 } else { 2109 /* Eaten partially. */ 2110 2111 if (skb_shared(list)) { 2112 /* Sucks! We need to fork list. :-( */ 2113 clone = skb_clone(list, GFP_ATOMIC); 2114 if (!clone) 2115 return NULL; 2116 insp = list->next; 2117 list = clone; 2118 } else { 2119 /* This may be pulled without 2120 * problems. */ 2121 insp = list; 2122 } 2123 if (!pskb_pull(list, eat)) { 2124 kfree_skb(clone); 2125 return NULL; 2126 } 2127 break; 2128 } 2129 } while (eat); 2130 2131 /* Free pulled out fragments. */ 2132 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2133 skb_shinfo(skb)->frag_list = list->next; 2134 kfree_skb(list); 2135 } 2136 /* And insert new clone at head. */ 2137 if (clone) { 2138 clone->next = list; 2139 skb_shinfo(skb)->frag_list = clone; 2140 } 2141 } 2142 /* Success! Now we may commit changes to skb data. */ 2143 2144 pull_pages: 2145 eat = delta; 2146 k = 0; 2147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2148 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2149 2150 if (size <= eat) { 2151 skb_frag_unref(skb, i); 2152 eat -= size; 2153 } else { 2154 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2155 2156 *frag = skb_shinfo(skb)->frags[i]; 2157 if (eat) { 2158 skb_frag_off_add(frag, eat); 2159 skb_frag_size_sub(frag, eat); 2160 if (!i) 2161 goto end; 2162 eat = 0; 2163 } 2164 k++; 2165 } 2166 } 2167 skb_shinfo(skb)->nr_frags = k; 2168 2169 end: 2170 skb->tail += delta; 2171 skb->data_len -= delta; 2172 2173 if (!skb->data_len) 2174 skb_zcopy_clear(skb, false); 2175 2176 return skb_tail_pointer(skb); 2177 } 2178 EXPORT_SYMBOL(__pskb_pull_tail); 2179 2180 /** 2181 * skb_copy_bits - copy bits from skb to kernel buffer 2182 * @skb: source skb 2183 * @offset: offset in source 2184 * @to: destination buffer 2185 * @len: number of bytes to copy 2186 * 2187 * Copy the specified number of bytes from the source skb to the 2188 * destination buffer. 2189 * 2190 * CAUTION ! : 2191 * If its prototype is ever changed, 2192 * check arch/{*}/net/{*}.S files, 2193 * since it is called from BPF assembly code. 2194 */ 2195 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2196 { 2197 int start = skb_headlen(skb); 2198 struct sk_buff *frag_iter; 2199 int i, copy; 2200 2201 if (offset > (int)skb->len - len) 2202 goto fault; 2203 2204 /* Copy header. */ 2205 if ((copy = start - offset) > 0) { 2206 if (copy > len) 2207 copy = len; 2208 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2209 if ((len -= copy) == 0) 2210 return 0; 2211 offset += copy; 2212 to += copy; 2213 } 2214 2215 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2216 int end; 2217 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2218 2219 WARN_ON(start > offset + len); 2220 2221 end = start + skb_frag_size(f); 2222 if ((copy = end - offset) > 0) { 2223 u32 p_off, p_len, copied; 2224 struct page *p; 2225 u8 *vaddr; 2226 2227 if (copy > len) 2228 copy = len; 2229 2230 skb_frag_foreach_page(f, 2231 skb_frag_off(f) + offset - start, 2232 copy, p, p_off, p_len, copied) { 2233 vaddr = kmap_atomic(p); 2234 memcpy(to + copied, vaddr + p_off, p_len); 2235 kunmap_atomic(vaddr); 2236 } 2237 2238 if ((len -= copy) == 0) 2239 return 0; 2240 offset += copy; 2241 to += copy; 2242 } 2243 start = end; 2244 } 2245 2246 skb_walk_frags(skb, frag_iter) { 2247 int end; 2248 2249 WARN_ON(start > offset + len); 2250 2251 end = start + frag_iter->len; 2252 if ((copy = end - offset) > 0) { 2253 if (copy > len) 2254 copy = len; 2255 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2256 goto fault; 2257 if ((len -= copy) == 0) 2258 return 0; 2259 offset += copy; 2260 to += copy; 2261 } 2262 start = end; 2263 } 2264 2265 if (!len) 2266 return 0; 2267 2268 fault: 2269 return -EFAULT; 2270 } 2271 EXPORT_SYMBOL(skb_copy_bits); 2272 2273 /* 2274 * Callback from splice_to_pipe(), if we need to release some pages 2275 * at the end of the spd in case we error'ed out in filling the pipe. 2276 */ 2277 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2278 { 2279 put_page(spd->pages[i]); 2280 } 2281 2282 static struct page *linear_to_page(struct page *page, unsigned int *len, 2283 unsigned int *offset, 2284 struct sock *sk) 2285 { 2286 struct page_frag *pfrag = sk_page_frag(sk); 2287 2288 if (!sk_page_frag_refill(sk, pfrag)) 2289 return NULL; 2290 2291 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2292 2293 memcpy(page_address(pfrag->page) + pfrag->offset, 2294 page_address(page) + *offset, *len); 2295 *offset = pfrag->offset; 2296 pfrag->offset += *len; 2297 2298 return pfrag->page; 2299 } 2300 2301 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2302 struct page *page, 2303 unsigned int offset) 2304 { 2305 return spd->nr_pages && 2306 spd->pages[spd->nr_pages - 1] == page && 2307 (spd->partial[spd->nr_pages - 1].offset + 2308 spd->partial[spd->nr_pages - 1].len == offset); 2309 } 2310 2311 /* 2312 * Fill page/offset/length into spd, if it can hold more pages. 2313 */ 2314 static bool spd_fill_page(struct splice_pipe_desc *spd, 2315 struct pipe_inode_info *pipe, struct page *page, 2316 unsigned int *len, unsigned int offset, 2317 bool linear, 2318 struct sock *sk) 2319 { 2320 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2321 return true; 2322 2323 if (linear) { 2324 page = linear_to_page(page, len, &offset, sk); 2325 if (!page) 2326 return true; 2327 } 2328 if (spd_can_coalesce(spd, page, offset)) { 2329 spd->partial[spd->nr_pages - 1].len += *len; 2330 return false; 2331 } 2332 get_page(page); 2333 spd->pages[spd->nr_pages] = page; 2334 spd->partial[spd->nr_pages].len = *len; 2335 spd->partial[spd->nr_pages].offset = offset; 2336 spd->nr_pages++; 2337 2338 return false; 2339 } 2340 2341 static bool __splice_segment(struct page *page, unsigned int poff, 2342 unsigned int plen, unsigned int *off, 2343 unsigned int *len, 2344 struct splice_pipe_desc *spd, bool linear, 2345 struct sock *sk, 2346 struct pipe_inode_info *pipe) 2347 { 2348 if (!*len) 2349 return true; 2350 2351 /* skip this segment if already processed */ 2352 if (*off >= plen) { 2353 *off -= plen; 2354 return false; 2355 } 2356 2357 /* ignore any bits we already processed */ 2358 poff += *off; 2359 plen -= *off; 2360 *off = 0; 2361 2362 do { 2363 unsigned int flen = min(*len, plen); 2364 2365 if (spd_fill_page(spd, pipe, page, &flen, poff, 2366 linear, sk)) 2367 return true; 2368 poff += flen; 2369 plen -= flen; 2370 *len -= flen; 2371 } while (*len && plen); 2372 2373 return false; 2374 } 2375 2376 /* 2377 * Map linear and fragment data from the skb to spd. It reports true if the 2378 * pipe is full or if we already spliced the requested length. 2379 */ 2380 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2381 unsigned int *offset, unsigned int *len, 2382 struct splice_pipe_desc *spd, struct sock *sk) 2383 { 2384 int seg; 2385 struct sk_buff *iter; 2386 2387 /* map the linear part : 2388 * If skb->head_frag is set, this 'linear' part is backed by a 2389 * fragment, and if the head is not shared with any clones then 2390 * we can avoid a copy since we own the head portion of this page. 2391 */ 2392 if (__splice_segment(virt_to_page(skb->data), 2393 (unsigned long) skb->data & (PAGE_SIZE - 1), 2394 skb_headlen(skb), 2395 offset, len, spd, 2396 skb_head_is_locked(skb), 2397 sk, pipe)) 2398 return true; 2399 2400 /* 2401 * then map the fragments 2402 */ 2403 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2404 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2405 2406 if (__splice_segment(skb_frag_page(f), 2407 skb_frag_off(f), skb_frag_size(f), 2408 offset, len, spd, false, sk, pipe)) 2409 return true; 2410 } 2411 2412 skb_walk_frags(skb, iter) { 2413 if (*offset >= iter->len) { 2414 *offset -= iter->len; 2415 continue; 2416 } 2417 /* __skb_splice_bits() only fails if the output has no room 2418 * left, so no point in going over the frag_list for the error 2419 * case. 2420 */ 2421 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2422 return true; 2423 } 2424 2425 return false; 2426 } 2427 2428 /* 2429 * Map data from the skb to a pipe. Should handle both the linear part, 2430 * the fragments, and the frag list. 2431 */ 2432 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2433 struct pipe_inode_info *pipe, unsigned int tlen, 2434 unsigned int flags) 2435 { 2436 struct partial_page partial[MAX_SKB_FRAGS]; 2437 struct page *pages[MAX_SKB_FRAGS]; 2438 struct splice_pipe_desc spd = { 2439 .pages = pages, 2440 .partial = partial, 2441 .nr_pages_max = MAX_SKB_FRAGS, 2442 .ops = &nosteal_pipe_buf_ops, 2443 .spd_release = sock_spd_release, 2444 }; 2445 int ret = 0; 2446 2447 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2448 2449 if (spd.nr_pages) 2450 ret = splice_to_pipe(pipe, &spd); 2451 2452 return ret; 2453 } 2454 EXPORT_SYMBOL_GPL(skb_splice_bits); 2455 2456 /* Send skb data on a socket. Socket must be locked. */ 2457 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2458 int len) 2459 { 2460 unsigned int orig_len = len; 2461 struct sk_buff *head = skb; 2462 unsigned short fragidx; 2463 int slen, ret; 2464 2465 do_frag_list: 2466 2467 /* Deal with head data */ 2468 while (offset < skb_headlen(skb) && len) { 2469 struct kvec kv; 2470 struct msghdr msg; 2471 2472 slen = min_t(int, len, skb_headlen(skb) - offset); 2473 kv.iov_base = skb->data + offset; 2474 kv.iov_len = slen; 2475 memset(&msg, 0, sizeof(msg)); 2476 msg.msg_flags = MSG_DONTWAIT; 2477 2478 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2479 if (ret <= 0) 2480 goto error; 2481 2482 offset += ret; 2483 len -= ret; 2484 } 2485 2486 /* All the data was skb head? */ 2487 if (!len) 2488 goto out; 2489 2490 /* Make offset relative to start of frags */ 2491 offset -= skb_headlen(skb); 2492 2493 /* Find where we are in frag list */ 2494 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2495 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2496 2497 if (offset < skb_frag_size(frag)) 2498 break; 2499 2500 offset -= skb_frag_size(frag); 2501 } 2502 2503 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2504 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2505 2506 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2507 2508 while (slen) { 2509 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2510 skb_frag_off(frag) + offset, 2511 slen, MSG_DONTWAIT); 2512 if (ret <= 0) 2513 goto error; 2514 2515 len -= ret; 2516 offset += ret; 2517 slen -= ret; 2518 } 2519 2520 offset = 0; 2521 } 2522 2523 if (len) { 2524 /* Process any frag lists */ 2525 2526 if (skb == head) { 2527 if (skb_has_frag_list(skb)) { 2528 skb = skb_shinfo(skb)->frag_list; 2529 goto do_frag_list; 2530 } 2531 } else if (skb->next) { 2532 skb = skb->next; 2533 goto do_frag_list; 2534 } 2535 } 2536 2537 out: 2538 return orig_len - len; 2539 2540 error: 2541 return orig_len == len ? ret : orig_len - len; 2542 } 2543 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2544 2545 /** 2546 * skb_store_bits - store bits from kernel buffer to skb 2547 * @skb: destination buffer 2548 * @offset: offset in destination 2549 * @from: source buffer 2550 * @len: number of bytes to copy 2551 * 2552 * Copy the specified number of bytes from the source buffer to the 2553 * destination skb. This function handles all the messy bits of 2554 * traversing fragment lists and such. 2555 */ 2556 2557 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2558 { 2559 int start = skb_headlen(skb); 2560 struct sk_buff *frag_iter; 2561 int i, copy; 2562 2563 if (offset > (int)skb->len - len) 2564 goto fault; 2565 2566 if ((copy = start - offset) > 0) { 2567 if (copy > len) 2568 copy = len; 2569 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2570 if ((len -= copy) == 0) 2571 return 0; 2572 offset += copy; 2573 from += copy; 2574 } 2575 2576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2578 int end; 2579 2580 WARN_ON(start > offset + len); 2581 2582 end = start + skb_frag_size(frag); 2583 if ((copy = end - offset) > 0) { 2584 u32 p_off, p_len, copied; 2585 struct page *p; 2586 u8 *vaddr; 2587 2588 if (copy > len) 2589 copy = len; 2590 2591 skb_frag_foreach_page(frag, 2592 skb_frag_off(frag) + offset - start, 2593 copy, p, p_off, p_len, copied) { 2594 vaddr = kmap_atomic(p); 2595 memcpy(vaddr + p_off, from + copied, p_len); 2596 kunmap_atomic(vaddr); 2597 } 2598 2599 if ((len -= copy) == 0) 2600 return 0; 2601 offset += copy; 2602 from += copy; 2603 } 2604 start = end; 2605 } 2606 2607 skb_walk_frags(skb, frag_iter) { 2608 int end; 2609 2610 WARN_ON(start > offset + len); 2611 2612 end = start + frag_iter->len; 2613 if ((copy = end - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 if (skb_store_bits(frag_iter, offset - start, 2617 from, copy)) 2618 goto fault; 2619 if ((len -= copy) == 0) 2620 return 0; 2621 offset += copy; 2622 from += copy; 2623 } 2624 start = end; 2625 } 2626 if (!len) 2627 return 0; 2628 2629 fault: 2630 return -EFAULT; 2631 } 2632 EXPORT_SYMBOL(skb_store_bits); 2633 2634 /* Checksum skb data. */ 2635 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2636 __wsum csum, const struct skb_checksum_ops *ops) 2637 { 2638 int start = skb_headlen(skb); 2639 int i, copy = start - offset; 2640 struct sk_buff *frag_iter; 2641 int pos = 0; 2642 2643 /* Checksum header. */ 2644 if (copy > 0) { 2645 if (copy > len) 2646 copy = len; 2647 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2648 skb->data + offset, copy, csum); 2649 if ((len -= copy) == 0) 2650 return csum; 2651 offset += copy; 2652 pos = copy; 2653 } 2654 2655 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2656 int end; 2657 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2658 2659 WARN_ON(start > offset + len); 2660 2661 end = start + skb_frag_size(frag); 2662 if ((copy = end - offset) > 0) { 2663 u32 p_off, p_len, copied; 2664 struct page *p; 2665 __wsum csum2; 2666 u8 *vaddr; 2667 2668 if (copy > len) 2669 copy = len; 2670 2671 skb_frag_foreach_page(frag, 2672 skb_frag_off(frag) + offset - start, 2673 copy, p, p_off, p_len, copied) { 2674 vaddr = kmap_atomic(p); 2675 csum2 = INDIRECT_CALL_1(ops->update, 2676 csum_partial_ext, 2677 vaddr + p_off, p_len, 0); 2678 kunmap_atomic(vaddr); 2679 csum = INDIRECT_CALL_1(ops->combine, 2680 csum_block_add_ext, csum, 2681 csum2, pos, p_len); 2682 pos += p_len; 2683 } 2684 2685 if (!(len -= copy)) 2686 return csum; 2687 offset += copy; 2688 } 2689 start = end; 2690 } 2691 2692 skb_walk_frags(skb, frag_iter) { 2693 int end; 2694 2695 WARN_ON(start > offset + len); 2696 2697 end = start + frag_iter->len; 2698 if ((copy = end - offset) > 0) { 2699 __wsum csum2; 2700 if (copy > len) 2701 copy = len; 2702 csum2 = __skb_checksum(frag_iter, offset - start, 2703 copy, 0, ops); 2704 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2705 csum, csum2, pos, copy); 2706 if ((len -= copy) == 0) 2707 return csum; 2708 offset += copy; 2709 pos += copy; 2710 } 2711 start = end; 2712 } 2713 BUG_ON(len); 2714 2715 return csum; 2716 } 2717 EXPORT_SYMBOL(__skb_checksum); 2718 2719 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2720 int len, __wsum csum) 2721 { 2722 const struct skb_checksum_ops ops = { 2723 .update = csum_partial_ext, 2724 .combine = csum_block_add_ext, 2725 }; 2726 2727 return __skb_checksum(skb, offset, len, csum, &ops); 2728 } 2729 EXPORT_SYMBOL(skb_checksum); 2730 2731 /* Both of above in one bottle. */ 2732 2733 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2734 u8 *to, int len) 2735 { 2736 int start = skb_headlen(skb); 2737 int i, copy = start - offset; 2738 struct sk_buff *frag_iter; 2739 int pos = 0; 2740 __wsum csum = 0; 2741 2742 /* Copy header. */ 2743 if (copy > 0) { 2744 if (copy > len) 2745 copy = len; 2746 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2747 copy); 2748 if ((len -= copy) == 0) 2749 return csum; 2750 offset += copy; 2751 to += copy; 2752 pos = copy; 2753 } 2754 2755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2756 int end; 2757 2758 WARN_ON(start > offset + len); 2759 2760 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2761 if ((copy = end - offset) > 0) { 2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2763 u32 p_off, p_len, copied; 2764 struct page *p; 2765 __wsum csum2; 2766 u8 *vaddr; 2767 2768 if (copy > len) 2769 copy = len; 2770 2771 skb_frag_foreach_page(frag, 2772 skb_frag_off(frag) + offset - start, 2773 copy, p, p_off, p_len, copied) { 2774 vaddr = kmap_atomic(p); 2775 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2776 to + copied, 2777 p_len); 2778 kunmap_atomic(vaddr); 2779 csum = csum_block_add(csum, csum2, pos); 2780 pos += p_len; 2781 } 2782 2783 if (!(len -= copy)) 2784 return csum; 2785 offset += copy; 2786 to += copy; 2787 } 2788 start = end; 2789 } 2790 2791 skb_walk_frags(skb, frag_iter) { 2792 __wsum csum2; 2793 int end; 2794 2795 WARN_ON(start > offset + len); 2796 2797 end = start + frag_iter->len; 2798 if ((copy = end - offset) > 0) { 2799 if (copy > len) 2800 copy = len; 2801 csum2 = skb_copy_and_csum_bits(frag_iter, 2802 offset - start, 2803 to, copy); 2804 csum = csum_block_add(csum, csum2, pos); 2805 if ((len -= copy) == 0) 2806 return csum; 2807 offset += copy; 2808 to += copy; 2809 pos += copy; 2810 } 2811 start = end; 2812 } 2813 BUG_ON(len); 2814 return csum; 2815 } 2816 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2817 2818 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2819 { 2820 __sum16 sum; 2821 2822 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2823 /* See comments in __skb_checksum_complete(). */ 2824 if (likely(!sum)) { 2825 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2826 !skb->csum_complete_sw) 2827 netdev_rx_csum_fault(skb->dev, skb); 2828 } 2829 if (!skb_shared(skb)) 2830 skb->csum_valid = !sum; 2831 return sum; 2832 } 2833 EXPORT_SYMBOL(__skb_checksum_complete_head); 2834 2835 /* This function assumes skb->csum already holds pseudo header's checksum, 2836 * which has been changed from the hardware checksum, for example, by 2837 * __skb_checksum_validate_complete(). And, the original skb->csum must 2838 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2839 * 2840 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2841 * zero. The new checksum is stored back into skb->csum unless the skb is 2842 * shared. 2843 */ 2844 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2845 { 2846 __wsum csum; 2847 __sum16 sum; 2848 2849 csum = skb_checksum(skb, 0, skb->len, 0); 2850 2851 sum = csum_fold(csum_add(skb->csum, csum)); 2852 /* This check is inverted, because we already knew the hardware 2853 * checksum is invalid before calling this function. So, if the 2854 * re-computed checksum is valid instead, then we have a mismatch 2855 * between the original skb->csum and skb_checksum(). This means either 2856 * the original hardware checksum is incorrect or we screw up skb->csum 2857 * when moving skb->data around. 2858 */ 2859 if (likely(!sum)) { 2860 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2861 !skb->csum_complete_sw) 2862 netdev_rx_csum_fault(skb->dev, skb); 2863 } 2864 2865 if (!skb_shared(skb)) { 2866 /* Save full packet checksum */ 2867 skb->csum = csum; 2868 skb->ip_summed = CHECKSUM_COMPLETE; 2869 skb->csum_complete_sw = 1; 2870 skb->csum_valid = !sum; 2871 } 2872 2873 return sum; 2874 } 2875 EXPORT_SYMBOL(__skb_checksum_complete); 2876 2877 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2878 { 2879 net_warn_ratelimited( 2880 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2881 __func__); 2882 return 0; 2883 } 2884 2885 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2886 int offset, int len) 2887 { 2888 net_warn_ratelimited( 2889 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2890 __func__); 2891 return 0; 2892 } 2893 2894 static const struct skb_checksum_ops default_crc32c_ops = { 2895 .update = warn_crc32c_csum_update, 2896 .combine = warn_crc32c_csum_combine, 2897 }; 2898 2899 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2900 &default_crc32c_ops; 2901 EXPORT_SYMBOL(crc32c_csum_stub); 2902 2903 /** 2904 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2905 * @from: source buffer 2906 * 2907 * Calculates the amount of linear headroom needed in the 'to' skb passed 2908 * into skb_zerocopy(). 2909 */ 2910 unsigned int 2911 skb_zerocopy_headlen(const struct sk_buff *from) 2912 { 2913 unsigned int hlen = 0; 2914 2915 if (!from->head_frag || 2916 skb_headlen(from) < L1_CACHE_BYTES || 2917 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2918 hlen = skb_headlen(from); 2919 2920 if (skb_has_frag_list(from)) 2921 hlen = from->len; 2922 2923 return hlen; 2924 } 2925 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2926 2927 /** 2928 * skb_zerocopy - Zero copy skb to skb 2929 * @to: destination buffer 2930 * @from: source buffer 2931 * @len: number of bytes to copy from source buffer 2932 * @hlen: size of linear headroom in destination buffer 2933 * 2934 * Copies up to `len` bytes from `from` to `to` by creating references 2935 * to the frags in the source buffer. 2936 * 2937 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2938 * headroom in the `to` buffer. 2939 * 2940 * Return value: 2941 * 0: everything is OK 2942 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2943 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2944 */ 2945 int 2946 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2947 { 2948 int i, j = 0; 2949 int plen = 0; /* length of skb->head fragment */ 2950 int ret; 2951 struct page *page; 2952 unsigned int offset; 2953 2954 BUG_ON(!from->head_frag && !hlen); 2955 2956 /* dont bother with small payloads */ 2957 if (len <= skb_tailroom(to)) 2958 return skb_copy_bits(from, 0, skb_put(to, len), len); 2959 2960 if (hlen) { 2961 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2962 if (unlikely(ret)) 2963 return ret; 2964 len -= hlen; 2965 } else { 2966 plen = min_t(int, skb_headlen(from), len); 2967 if (plen) { 2968 page = virt_to_head_page(from->head); 2969 offset = from->data - (unsigned char *)page_address(page); 2970 __skb_fill_page_desc(to, 0, page, offset, plen); 2971 get_page(page); 2972 j = 1; 2973 len -= plen; 2974 } 2975 } 2976 2977 to->truesize += len + plen; 2978 to->len += len + plen; 2979 to->data_len += len + plen; 2980 2981 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2982 skb_tx_error(from); 2983 return -ENOMEM; 2984 } 2985 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2986 2987 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2988 int size; 2989 2990 if (!len) 2991 break; 2992 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2993 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2994 len); 2995 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2996 len -= size; 2997 skb_frag_ref(to, j); 2998 j++; 2999 } 3000 skb_shinfo(to)->nr_frags = j; 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL_GPL(skb_zerocopy); 3005 3006 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3007 { 3008 __wsum csum; 3009 long csstart; 3010 3011 if (skb->ip_summed == CHECKSUM_PARTIAL) 3012 csstart = skb_checksum_start_offset(skb); 3013 else 3014 csstart = skb_headlen(skb); 3015 3016 BUG_ON(csstart > skb_headlen(skb)); 3017 3018 skb_copy_from_linear_data(skb, to, csstart); 3019 3020 csum = 0; 3021 if (csstart != skb->len) 3022 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3023 skb->len - csstart); 3024 3025 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3026 long csstuff = csstart + skb->csum_offset; 3027 3028 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3029 } 3030 } 3031 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3032 3033 /** 3034 * skb_dequeue - remove from the head of the queue 3035 * @list: list to dequeue from 3036 * 3037 * Remove the head of the list. The list lock is taken so the function 3038 * may be used safely with other locking list functions. The head item is 3039 * returned or %NULL if the list is empty. 3040 */ 3041 3042 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3043 { 3044 unsigned long flags; 3045 struct sk_buff *result; 3046 3047 spin_lock_irqsave(&list->lock, flags); 3048 result = __skb_dequeue(list); 3049 spin_unlock_irqrestore(&list->lock, flags); 3050 return result; 3051 } 3052 EXPORT_SYMBOL(skb_dequeue); 3053 3054 /** 3055 * skb_dequeue_tail - remove from the tail of the queue 3056 * @list: list to dequeue from 3057 * 3058 * Remove the tail of the list. The list lock is taken so the function 3059 * may be used safely with other locking list functions. The tail item is 3060 * returned or %NULL if the list is empty. 3061 */ 3062 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3063 { 3064 unsigned long flags; 3065 struct sk_buff *result; 3066 3067 spin_lock_irqsave(&list->lock, flags); 3068 result = __skb_dequeue_tail(list); 3069 spin_unlock_irqrestore(&list->lock, flags); 3070 return result; 3071 } 3072 EXPORT_SYMBOL(skb_dequeue_tail); 3073 3074 /** 3075 * skb_queue_purge - empty a list 3076 * @list: list to empty 3077 * 3078 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3079 * the list and one reference dropped. This function takes the list 3080 * lock and is atomic with respect to other list locking functions. 3081 */ 3082 void skb_queue_purge(struct sk_buff_head *list) 3083 { 3084 struct sk_buff *skb; 3085 while ((skb = skb_dequeue(list)) != NULL) 3086 kfree_skb(skb); 3087 } 3088 EXPORT_SYMBOL(skb_queue_purge); 3089 3090 /** 3091 * skb_rbtree_purge - empty a skb rbtree 3092 * @root: root of the rbtree to empty 3093 * Return value: the sum of truesizes of all purged skbs. 3094 * 3095 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3096 * the list and one reference dropped. This function does not take 3097 * any lock. Synchronization should be handled by the caller (e.g., TCP 3098 * out-of-order queue is protected by the socket lock). 3099 */ 3100 unsigned int skb_rbtree_purge(struct rb_root *root) 3101 { 3102 struct rb_node *p = rb_first(root); 3103 unsigned int sum = 0; 3104 3105 while (p) { 3106 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3107 3108 p = rb_next(p); 3109 rb_erase(&skb->rbnode, root); 3110 sum += skb->truesize; 3111 kfree_skb(skb); 3112 } 3113 return sum; 3114 } 3115 3116 /** 3117 * skb_queue_head - queue a buffer at the list head 3118 * @list: list to use 3119 * @newsk: buffer to queue 3120 * 3121 * Queue a buffer at the start of the list. This function takes the 3122 * list lock and can be used safely with other locking &sk_buff functions 3123 * safely. 3124 * 3125 * A buffer cannot be placed on two lists at the same time. 3126 */ 3127 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3128 { 3129 unsigned long flags; 3130 3131 spin_lock_irqsave(&list->lock, flags); 3132 __skb_queue_head(list, newsk); 3133 spin_unlock_irqrestore(&list->lock, flags); 3134 } 3135 EXPORT_SYMBOL(skb_queue_head); 3136 3137 /** 3138 * skb_queue_tail - queue a buffer at the list tail 3139 * @list: list to use 3140 * @newsk: buffer to queue 3141 * 3142 * Queue a buffer at the tail of the list. This function takes the 3143 * list lock and can be used safely with other locking &sk_buff functions 3144 * safely. 3145 * 3146 * A buffer cannot be placed on two lists at the same time. 3147 */ 3148 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3149 { 3150 unsigned long flags; 3151 3152 spin_lock_irqsave(&list->lock, flags); 3153 __skb_queue_tail(list, newsk); 3154 spin_unlock_irqrestore(&list->lock, flags); 3155 } 3156 EXPORT_SYMBOL(skb_queue_tail); 3157 3158 /** 3159 * skb_unlink - remove a buffer from a list 3160 * @skb: buffer to remove 3161 * @list: list to use 3162 * 3163 * Remove a packet from a list. The list locks are taken and this 3164 * function is atomic with respect to other list locked calls 3165 * 3166 * You must know what list the SKB is on. 3167 */ 3168 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3169 { 3170 unsigned long flags; 3171 3172 spin_lock_irqsave(&list->lock, flags); 3173 __skb_unlink(skb, list); 3174 spin_unlock_irqrestore(&list->lock, flags); 3175 } 3176 EXPORT_SYMBOL(skb_unlink); 3177 3178 /** 3179 * skb_append - append a buffer 3180 * @old: buffer to insert after 3181 * @newsk: buffer to insert 3182 * @list: list to use 3183 * 3184 * Place a packet after a given packet in a list. The list locks are taken 3185 * and this function is atomic with respect to other list locked calls. 3186 * A buffer cannot be placed on two lists at the same time. 3187 */ 3188 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3189 { 3190 unsigned long flags; 3191 3192 spin_lock_irqsave(&list->lock, flags); 3193 __skb_queue_after(list, old, newsk); 3194 spin_unlock_irqrestore(&list->lock, flags); 3195 } 3196 EXPORT_SYMBOL(skb_append); 3197 3198 static inline void skb_split_inside_header(struct sk_buff *skb, 3199 struct sk_buff* skb1, 3200 const u32 len, const int pos) 3201 { 3202 int i; 3203 3204 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3205 pos - len); 3206 /* And move data appendix as is. */ 3207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3208 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3209 3210 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3211 skb_shinfo(skb)->nr_frags = 0; 3212 skb1->data_len = skb->data_len; 3213 skb1->len += skb1->data_len; 3214 skb->data_len = 0; 3215 skb->len = len; 3216 skb_set_tail_pointer(skb, len); 3217 } 3218 3219 static inline void skb_split_no_header(struct sk_buff *skb, 3220 struct sk_buff* skb1, 3221 const u32 len, int pos) 3222 { 3223 int i, k = 0; 3224 const int nfrags = skb_shinfo(skb)->nr_frags; 3225 3226 skb_shinfo(skb)->nr_frags = 0; 3227 skb1->len = skb1->data_len = skb->len - len; 3228 skb->len = len; 3229 skb->data_len = len - pos; 3230 3231 for (i = 0; i < nfrags; i++) { 3232 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3233 3234 if (pos + size > len) { 3235 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3236 3237 if (pos < len) { 3238 /* Split frag. 3239 * We have two variants in this case: 3240 * 1. Move all the frag to the second 3241 * part, if it is possible. F.e. 3242 * this approach is mandatory for TUX, 3243 * where splitting is expensive. 3244 * 2. Split is accurately. We make this. 3245 */ 3246 skb_frag_ref(skb, i); 3247 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3248 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3249 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3250 skb_shinfo(skb)->nr_frags++; 3251 } 3252 k++; 3253 } else 3254 skb_shinfo(skb)->nr_frags++; 3255 pos += size; 3256 } 3257 skb_shinfo(skb1)->nr_frags = k; 3258 } 3259 3260 /** 3261 * skb_split - Split fragmented skb to two parts at length len. 3262 * @skb: the buffer to split 3263 * @skb1: the buffer to receive the second part 3264 * @len: new length for skb 3265 */ 3266 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3267 { 3268 int pos = skb_headlen(skb); 3269 3270 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3271 SKBTX_SHARED_FRAG; 3272 skb_zerocopy_clone(skb1, skb, 0); 3273 if (len < pos) /* Split line is inside header. */ 3274 skb_split_inside_header(skb, skb1, len, pos); 3275 else /* Second chunk has no header, nothing to copy. */ 3276 skb_split_no_header(skb, skb1, len, pos); 3277 } 3278 EXPORT_SYMBOL(skb_split); 3279 3280 /* Shifting from/to a cloned skb is a no-go. 3281 * 3282 * Caller cannot keep skb_shinfo related pointers past calling here! 3283 */ 3284 static int skb_prepare_for_shift(struct sk_buff *skb) 3285 { 3286 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3287 } 3288 3289 /** 3290 * skb_shift - Shifts paged data partially from skb to another 3291 * @tgt: buffer into which tail data gets added 3292 * @skb: buffer from which the paged data comes from 3293 * @shiftlen: shift up to this many bytes 3294 * 3295 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3296 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3297 * It's up to caller to free skb if everything was shifted. 3298 * 3299 * If @tgt runs out of frags, the whole operation is aborted. 3300 * 3301 * Skb cannot include anything else but paged data while tgt is allowed 3302 * to have non-paged data as well. 3303 * 3304 * TODO: full sized shift could be optimized but that would need 3305 * specialized skb free'er to handle frags without up-to-date nr_frags. 3306 */ 3307 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3308 { 3309 int from, to, merge, todo; 3310 skb_frag_t *fragfrom, *fragto; 3311 3312 BUG_ON(shiftlen > skb->len); 3313 3314 if (skb_headlen(skb)) 3315 return 0; 3316 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3317 return 0; 3318 3319 todo = shiftlen; 3320 from = 0; 3321 to = skb_shinfo(tgt)->nr_frags; 3322 fragfrom = &skb_shinfo(skb)->frags[from]; 3323 3324 /* Actual merge is delayed until the point when we know we can 3325 * commit all, so that we don't have to undo partial changes 3326 */ 3327 if (!to || 3328 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3329 skb_frag_off(fragfrom))) { 3330 merge = -1; 3331 } else { 3332 merge = to - 1; 3333 3334 todo -= skb_frag_size(fragfrom); 3335 if (todo < 0) { 3336 if (skb_prepare_for_shift(skb) || 3337 skb_prepare_for_shift(tgt)) 3338 return 0; 3339 3340 /* All previous frag pointers might be stale! */ 3341 fragfrom = &skb_shinfo(skb)->frags[from]; 3342 fragto = &skb_shinfo(tgt)->frags[merge]; 3343 3344 skb_frag_size_add(fragto, shiftlen); 3345 skb_frag_size_sub(fragfrom, shiftlen); 3346 skb_frag_off_add(fragfrom, shiftlen); 3347 3348 goto onlymerged; 3349 } 3350 3351 from++; 3352 } 3353 3354 /* Skip full, not-fitting skb to avoid expensive operations */ 3355 if ((shiftlen == skb->len) && 3356 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3357 return 0; 3358 3359 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3360 return 0; 3361 3362 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3363 if (to == MAX_SKB_FRAGS) 3364 return 0; 3365 3366 fragfrom = &skb_shinfo(skb)->frags[from]; 3367 fragto = &skb_shinfo(tgt)->frags[to]; 3368 3369 if (todo >= skb_frag_size(fragfrom)) { 3370 *fragto = *fragfrom; 3371 todo -= skb_frag_size(fragfrom); 3372 from++; 3373 to++; 3374 3375 } else { 3376 __skb_frag_ref(fragfrom); 3377 skb_frag_page_copy(fragto, fragfrom); 3378 skb_frag_off_copy(fragto, fragfrom); 3379 skb_frag_size_set(fragto, todo); 3380 3381 skb_frag_off_add(fragfrom, todo); 3382 skb_frag_size_sub(fragfrom, todo); 3383 todo = 0; 3384 3385 to++; 3386 break; 3387 } 3388 } 3389 3390 /* Ready to "commit" this state change to tgt */ 3391 skb_shinfo(tgt)->nr_frags = to; 3392 3393 if (merge >= 0) { 3394 fragfrom = &skb_shinfo(skb)->frags[0]; 3395 fragto = &skb_shinfo(tgt)->frags[merge]; 3396 3397 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3398 __skb_frag_unref(fragfrom); 3399 } 3400 3401 /* Reposition in the original skb */ 3402 to = 0; 3403 while (from < skb_shinfo(skb)->nr_frags) 3404 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3405 skb_shinfo(skb)->nr_frags = to; 3406 3407 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3408 3409 onlymerged: 3410 /* Most likely the tgt won't ever need its checksum anymore, skb on 3411 * the other hand might need it if it needs to be resent 3412 */ 3413 tgt->ip_summed = CHECKSUM_PARTIAL; 3414 skb->ip_summed = CHECKSUM_PARTIAL; 3415 3416 /* Yak, is it really working this way? Some helper please? */ 3417 skb->len -= shiftlen; 3418 skb->data_len -= shiftlen; 3419 skb->truesize -= shiftlen; 3420 tgt->len += shiftlen; 3421 tgt->data_len += shiftlen; 3422 tgt->truesize += shiftlen; 3423 3424 return shiftlen; 3425 } 3426 3427 /** 3428 * skb_prepare_seq_read - Prepare a sequential read of skb data 3429 * @skb: the buffer to read 3430 * @from: lower offset of data to be read 3431 * @to: upper offset of data to be read 3432 * @st: state variable 3433 * 3434 * Initializes the specified state variable. Must be called before 3435 * invoking skb_seq_read() for the first time. 3436 */ 3437 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3438 unsigned int to, struct skb_seq_state *st) 3439 { 3440 st->lower_offset = from; 3441 st->upper_offset = to; 3442 st->root_skb = st->cur_skb = skb; 3443 st->frag_idx = st->stepped_offset = 0; 3444 st->frag_data = NULL; 3445 st->frag_off = 0; 3446 } 3447 EXPORT_SYMBOL(skb_prepare_seq_read); 3448 3449 /** 3450 * skb_seq_read - Sequentially read skb data 3451 * @consumed: number of bytes consumed by the caller so far 3452 * @data: destination pointer for data to be returned 3453 * @st: state variable 3454 * 3455 * Reads a block of skb data at @consumed relative to the 3456 * lower offset specified to skb_prepare_seq_read(). Assigns 3457 * the head of the data block to @data and returns the length 3458 * of the block or 0 if the end of the skb data or the upper 3459 * offset has been reached. 3460 * 3461 * The caller is not required to consume all of the data 3462 * returned, i.e. @consumed is typically set to the number 3463 * of bytes already consumed and the next call to 3464 * skb_seq_read() will return the remaining part of the block. 3465 * 3466 * Note 1: The size of each block of data returned can be arbitrary, 3467 * this limitation is the cost for zerocopy sequential 3468 * reads of potentially non linear data. 3469 * 3470 * Note 2: Fragment lists within fragments are not implemented 3471 * at the moment, state->root_skb could be replaced with 3472 * a stack for this purpose. 3473 */ 3474 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3475 struct skb_seq_state *st) 3476 { 3477 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3478 skb_frag_t *frag; 3479 3480 if (unlikely(abs_offset >= st->upper_offset)) { 3481 if (st->frag_data) { 3482 kunmap_atomic(st->frag_data); 3483 st->frag_data = NULL; 3484 } 3485 return 0; 3486 } 3487 3488 next_skb: 3489 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3490 3491 if (abs_offset < block_limit && !st->frag_data) { 3492 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3493 return block_limit - abs_offset; 3494 } 3495 3496 if (st->frag_idx == 0 && !st->frag_data) 3497 st->stepped_offset += skb_headlen(st->cur_skb); 3498 3499 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3500 unsigned int pg_idx, pg_off, pg_sz; 3501 3502 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3503 3504 pg_idx = 0; 3505 pg_off = skb_frag_off(frag); 3506 pg_sz = skb_frag_size(frag); 3507 3508 if (skb_frag_must_loop(skb_frag_page(frag))) { 3509 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3510 pg_off = offset_in_page(pg_off + st->frag_off); 3511 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3512 PAGE_SIZE - pg_off); 3513 } 3514 3515 block_limit = pg_sz + st->stepped_offset; 3516 if (abs_offset < block_limit) { 3517 if (!st->frag_data) 3518 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3519 3520 *data = (u8 *)st->frag_data + pg_off + 3521 (abs_offset - st->stepped_offset); 3522 3523 return block_limit - abs_offset; 3524 } 3525 3526 if (st->frag_data) { 3527 kunmap_atomic(st->frag_data); 3528 st->frag_data = NULL; 3529 } 3530 3531 st->stepped_offset += pg_sz; 3532 st->frag_off += pg_sz; 3533 if (st->frag_off == skb_frag_size(frag)) { 3534 st->frag_off = 0; 3535 st->frag_idx++; 3536 } 3537 } 3538 3539 if (st->frag_data) { 3540 kunmap_atomic(st->frag_data); 3541 st->frag_data = NULL; 3542 } 3543 3544 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3545 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3546 st->frag_idx = 0; 3547 goto next_skb; 3548 } else if (st->cur_skb->next) { 3549 st->cur_skb = st->cur_skb->next; 3550 st->frag_idx = 0; 3551 goto next_skb; 3552 } 3553 3554 return 0; 3555 } 3556 EXPORT_SYMBOL(skb_seq_read); 3557 3558 /** 3559 * skb_abort_seq_read - Abort a sequential read of skb data 3560 * @st: state variable 3561 * 3562 * Must be called if skb_seq_read() was not called until it 3563 * returned 0. 3564 */ 3565 void skb_abort_seq_read(struct skb_seq_state *st) 3566 { 3567 if (st->frag_data) 3568 kunmap_atomic(st->frag_data); 3569 } 3570 EXPORT_SYMBOL(skb_abort_seq_read); 3571 3572 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3573 3574 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3575 struct ts_config *conf, 3576 struct ts_state *state) 3577 { 3578 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3579 } 3580 3581 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3582 { 3583 skb_abort_seq_read(TS_SKB_CB(state)); 3584 } 3585 3586 /** 3587 * skb_find_text - Find a text pattern in skb data 3588 * @skb: the buffer to look in 3589 * @from: search offset 3590 * @to: search limit 3591 * @config: textsearch configuration 3592 * 3593 * Finds a pattern in the skb data according to the specified 3594 * textsearch configuration. Use textsearch_next() to retrieve 3595 * subsequent occurrences of the pattern. Returns the offset 3596 * to the first occurrence or UINT_MAX if no match was found. 3597 */ 3598 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3599 unsigned int to, struct ts_config *config) 3600 { 3601 struct ts_state state; 3602 unsigned int ret; 3603 3604 config->get_next_block = skb_ts_get_next_block; 3605 config->finish = skb_ts_finish; 3606 3607 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3608 3609 ret = textsearch_find(config, &state); 3610 return (ret <= to - from ? ret : UINT_MAX); 3611 } 3612 EXPORT_SYMBOL(skb_find_text); 3613 3614 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3615 int offset, size_t size) 3616 { 3617 int i = skb_shinfo(skb)->nr_frags; 3618 3619 if (skb_can_coalesce(skb, i, page, offset)) { 3620 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3621 } else if (i < MAX_SKB_FRAGS) { 3622 get_page(page); 3623 skb_fill_page_desc(skb, i, page, offset, size); 3624 } else { 3625 return -EMSGSIZE; 3626 } 3627 3628 return 0; 3629 } 3630 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3631 3632 /** 3633 * skb_pull_rcsum - pull skb and update receive checksum 3634 * @skb: buffer to update 3635 * @len: length of data pulled 3636 * 3637 * This function performs an skb_pull on the packet and updates 3638 * the CHECKSUM_COMPLETE checksum. It should be used on 3639 * receive path processing instead of skb_pull unless you know 3640 * that the checksum difference is zero (e.g., a valid IP header) 3641 * or you are setting ip_summed to CHECKSUM_NONE. 3642 */ 3643 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3644 { 3645 unsigned char *data = skb->data; 3646 3647 BUG_ON(len > skb->len); 3648 __skb_pull(skb, len); 3649 skb_postpull_rcsum(skb, data, len); 3650 return skb->data; 3651 } 3652 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3653 3654 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3655 { 3656 skb_frag_t head_frag; 3657 struct page *page; 3658 3659 page = virt_to_head_page(frag_skb->head); 3660 __skb_frag_set_page(&head_frag, page); 3661 skb_frag_off_set(&head_frag, frag_skb->data - 3662 (unsigned char *)page_address(page)); 3663 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3664 return head_frag; 3665 } 3666 3667 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3668 netdev_features_t features, 3669 unsigned int offset) 3670 { 3671 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3672 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3673 unsigned int delta_truesize = 0; 3674 unsigned int delta_len = 0; 3675 struct sk_buff *tail = NULL; 3676 struct sk_buff *nskb, *tmp; 3677 int err; 3678 3679 skb_push(skb, -skb_network_offset(skb) + offset); 3680 3681 skb_shinfo(skb)->frag_list = NULL; 3682 3683 do { 3684 nskb = list_skb; 3685 list_skb = list_skb->next; 3686 3687 err = 0; 3688 if (skb_shared(nskb)) { 3689 tmp = skb_clone(nskb, GFP_ATOMIC); 3690 if (tmp) { 3691 consume_skb(nskb); 3692 nskb = tmp; 3693 err = skb_unclone(nskb, GFP_ATOMIC); 3694 } else { 3695 err = -ENOMEM; 3696 } 3697 } 3698 3699 if (!tail) 3700 skb->next = nskb; 3701 else 3702 tail->next = nskb; 3703 3704 if (unlikely(err)) { 3705 nskb->next = list_skb; 3706 goto err_linearize; 3707 } 3708 3709 tail = nskb; 3710 3711 delta_len += nskb->len; 3712 delta_truesize += nskb->truesize; 3713 3714 skb_push(nskb, -skb_network_offset(nskb) + offset); 3715 3716 skb_release_head_state(nskb); 3717 __copy_skb_header(nskb, skb); 3718 3719 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3720 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3721 nskb->data - tnl_hlen, 3722 offset + tnl_hlen); 3723 3724 if (skb_needs_linearize(nskb, features) && 3725 __skb_linearize(nskb)) 3726 goto err_linearize; 3727 3728 } while (list_skb); 3729 3730 skb->truesize = skb->truesize - delta_truesize; 3731 skb->data_len = skb->data_len - delta_len; 3732 skb->len = skb->len - delta_len; 3733 3734 skb_gso_reset(skb); 3735 3736 skb->prev = tail; 3737 3738 if (skb_needs_linearize(skb, features) && 3739 __skb_linearize(skb)) 3740 goto err_linearize; 3741 3742 skb_get(skb); 3743 3744 return skb; 3745 3746 err_linearize: 3747 kfree_skb_list(skb->next); 3748 skb->next = NULL; 3749 return ERR_PTR(-ENOMEM); 3750 } 3751 EXPORT_SYMBOL_GPL(skb_segment_list); 3752 3753 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3754 { 3755 if (unlikely(p->len + skb->len >= 65536)) 3756 return -E2BIG; 3757 3758 if (NAPI_GRO_CB(p)->last == p) 3759 skb_shinfo(p)->frag_list = skb; 3760 else 3761 NAPI_GRO_CB(p)->last->next = skb; 3762 3763 skb_pull(skb, skb_gro_offset(skb)); 3764 3765 NAPI_GRO_CB(p)->last = skb; 3766 NAPI_GRO_CB(p)->count++; 3767 p->data_len += skb->len; 3768 p->truesize += skb->truesize; 3769 p->len += skb->len; 3770 3771 NAPI_GRO_CB(skb)->same_flow = 1; 3772 3773 return 0; 3774 } 3775 3776 /** 3777 * skb_segment - Perform protocol segmentation on skb. 3778 * @head_skb: buffer to segment 3779 * @features: features for the output path (see dev->features) 3780 * 3781 * This function performs segmentation on the given skb. It returns 3782 * a pointer to the first in a list of new skbs for the segments. 3783 * In case of error it returns ERR_PTR(err). 3784 */ 3785 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3786 netdev_features_t features) 3787 { 3788 struct sk_buff *segs = NULL; 3789 struct sk_buff *tail = NULL; 3790 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3791 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3792 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3793 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3794 struct sk_buff *frag_skb = head_skb; 3795 unsigned int offset = doffset; 3796 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3797 unsigned int partial_segs = 0; 3798 unsigned int headroom; 3799 unsigned int len = head_skb->len; 3800 __be16 proto; 3801 bool csum, sg; 3802 int nfrags = skb_shinfo(head_skb)->nr_frags; 3803 int err = -ENOMEM; 3804 int i = 0; 3805 int pos; 3806 3807 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3808 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3809 /* gso_size is untrusted, and we have a frag_list with a linear 3810 * non head_frag head. 3811 * 3812 * (we assume checking the first list_skb member suffices; 3813 * i.e if either of the list_skb members have non head_frag 3814 * head, then the first one has too). 3815 * 3816 * If head_skb's headlen does not fit requested gso_size, it 3817 * means that the frag_list members do NOT terminate on exact 3818 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3819 * sharing. Therefore we must fallback to copying the frag_list 3820 * skbs; we do so by disabling SG. 3821 */ 3822 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3823 features &= ~NETIF_F_SG; 3824 } 3825 3826 __skb_push(head_skb, doffset); 3827 proto = skb_network_protocol(head_skb, NULL); 3828 if (unlikely(!proto)) 3829 return ERR_PTR(-EINVAL); 3830 3831 sg = !!(features & NETIF_F_SG); 3832 csum = !!can_checksum_protocol(features, proto); 3833 3834 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3835 if (!(features & NETIF_F_GSO_PARTIAL)) { 3836 struct sk_buff *iter; 3837 unsigned int frag_len; 3838 3839 if (!list_skb || 3840 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3841 goto normal; 3842 3843 /* If we get here then all the required 3844 * GSO features except frag_list are supported. 3845 * Try to split the SKB to multiple GSO SKBs 3846 * with no frag_list. 3847 * Currently we can do that only when the buffers don't 3848 * have a linear part and all the buffers except 3849 * the last are of the same length. 3850 */ 3851 frag_len = list_skb->len; 3852 skb_walk_frags(head_skb, iter) { 3853 if (frag_len != iter->len && iter->next) 3854 goto normal; 3855 if (skb_headlen(iter) && !iter->head_frag) 3856 goto normal; 3857 3858 len -= iter->len; 3859 } 3860 3861 if (len != frag_len) 3862 goto normal; 3863 } 3864 3865 /* GSO partial only requires that we trim off any excess that 3866 * doesn't fit into an MSS sized block, so take care of that 3867 * now. 3868 */ 3869 partial_segs = len / mss; 3870 if (partial_segs > 1) 3871 mss *= partial_segs; 3872 else 3873 partial_segs = 0; 3874 } 3875 3876 normal: 3877 headroom = skb_headroom(head_skb); 3878 pos = skb_headlen(head_skb); 3879 3880 do { 3881 struct sk_buff *nskb; 3882 skb_frag_t *nskb_frag; 3883 int hsize; 3884 int size; 3885 3886 if (unlikely(mss == GSO_BY_FRAGS)) { 3887 len = list_skb->len; 3888 } else { 3889 len = head_skb->len - offset; 3890 if (len > mss) 3891 len = mss; 3892 } 3893 3894 hsize = skb_headlen(head_skb) - offset; 3895 if (hsize < 0) 3896 hsize = 0; 3897 if (hsize > len || !sg) 3898 hsize = len; 3899 3900 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3901 (skb_headlen(list_skb) == len || sg)) { 3902 BUG_ON(skb_headlen(list_skb) > len); 3903 3904 i = 0; 3905 nfrags = skb_shinfo(list_skb)->nr_frags; 3906 frag = skb_shinfo(list_skb)->frags; 3907 frag_skb = list_skb; 3908 pos += skb_headlen(list_skb); 3909 3910 while (pos < offset + len) { 3911 BUG_ON(i >= nfrags); 3912 3913 size = skb_frag_size(frag); 3914 if (pos + size > offset + len) 3915 break; 3916 3917 i++; 3918 pos += size; 3919 frag++; 3920 } 3921 3922 nskb = skb_clone(list_skb, GFP_ATOMIC); 3923 list_skb = list_skb->next; 3924 3925 if (unlikely(!nskb)) 3926 goto err; 3927 3928 if (unlikely(pskb_trim(nskb, len))) { 3929 kfree_skb(nskb); 3930 goto err; 3931 } 3932 3933 hsize = skb_end_offset(nskb); 3934 if (skb_cow_head(nskb, doffset + headroom)) { 3935 kfree_skb(nskb); 3936 goto err; 3937 } 3938 3939 nskb->truesize += skb_end_offset(nskb) - hsize; 3940 skb_release_head_state(nskb); 3941 __skb_push(nskb, doffset); 3942 } else { 3943 nskb = __alloc_skb(hsize + doffset + headroom, 3944 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3945 NUMA_NO_NODE); 3946 3947 if (unlikely(!nskb)) 3948 goto err; 3949 3950 skb_reserve(nskb, headroom); 3951 __skb_put(nskb, doffset); 3952 } 3953 3954 if (segs) 3955 tail->next = nskb; 3956 else 3957 segs = nskb; 3958 tail = nskb; 3959 3960 __copy_skb_header(nskb, head_skb); 3961 3962 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3963 skb_reset_mac_len(nskb); 3964 3965 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3966 nskb->data - tnl_hlen, 3967 doffset + tnl_hlen); 3968 3969 if (nskb->len == len + doffset) 3970 goto perform_csum_check; 3971 3972 if (!sg) { 3973 if (!csum) { 3974 if (!nskb->remcsum_offload) 3975 nskb->ip_summed = CHECKSUM_NONE; 3976 SKB_GSO_CB(nskb)->csum = 3977 skb_copy_and_csum_bits(head_skb, offset, 3978 skb_put(nskb, 3979 len), 3980 len); 3981 SKB_GSO_CB(nskb)->csum_start = 3982 skb_headroom(nskb) + doffset; 3983 } else { 3984 skb_copy_bits(head_skb, offset, 3985 skb_put(nskb, len), 3986 len); 3987 } 3988 continue; 3989 } 3990 3991 nskb_frag = skb_shinfo(nskb)->frags; 3992 3993 skb_copy_from_linear_data_offset(head_skb, offset, 3994 skb_put(nskb, hsize), hsize); 3995 3996 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3997 SKBTX_SHARED_FRAG; 3998 3999 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4000 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4001 goto err; 4002 4003 while (pos < offset + len) { 4004 if (i >= nfrags) { 4005 i = 0; 4006 nfrags = skb_shinfo(list_skb)->nr_frags; 4007 frag = skb_shinfo(list_skb)->frags; 4008 frag_skb = list_skb; 4009 if (!skb_headlen(list_skb)) { 4010 BUG_ON(!nfrags); 4011 } else { 4012 BUG_ON(!list_skb->head_frag); 4013 4014 /* to make room for head_frag. */ 4015 i--; 4016 frag--; 4017 } 4018 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4019 skb_zerocopy_clone(nskb, frag_skb, 4020 GFP_ATOMIC)) 4021 goto err; 4022 4023 list_skb = list_skb->next; 4024 } 4025 4026 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4027 MAX_SKB_FRAGS)) { 4028 net_warn_ratelimited( 4029 "skb_segment: too many frags: %u %u\n", 4030 pos, mss); 4031 err = -EINVAL; 4032 goto err; 4033 } 4034 4035 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4036 __skb_frag_ref(nskb_frag); 4037 size = skb_frag_size(nskb_frag); 4038 4039 if (pos < offset) { 4040 skb_frag_off_add(nskb_frag, offset - pos); 4041 skb_frag_size_sub(nskb_frag, offset - pos); 4042 } 4043 4044 skb_shinfo(nskb)->nr_frags++; 4045 4046 if (pos + size <= offset + len) { 4047 i++; 4048 frag++; 4049 pos += size; 4050 } else { 4051 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4052 goto skip_fraglist; 4053 } 4054 4055 nskb_frag++; 4056 } 4057 4058 skip_fraglist: 4059 nskb->data_len = len - hsize; 4060 nskb->len += nskb->data_len; 4061 nskb->truesize += nskb->data_len; 4062 4063 perform_csum_check: 4064 if (!csum) { 4065 if (skb_has_shared_frag(nskb) && 4066 __skb_linearize(nskb)) 4067 goto err; 4068 4069 if (!nskb->remcsum_offload) 4070 nskb->ip_summed = CHECKSUM_NONE; 4071 SKB_GSO_CB(nskb)->csum = 4072 skb_checksum(nskb, doffset, 4073 nskb->len - doffset, 0); 4074 SKB_GSO_CB(nskb)->csum_start = 4075 skb_headroom(nskb) + doffset; 4076 } 4077 } while ((offset += len) < head_skb->len); 4078 4079 /* Some callers want to get the end of the list. 4080 * Put it in segs->prev to avoid walking the list. 4081 * (see validate_xmit_skb_list() for example) 4082 */ 4083 segs->prev = tail; 4084 4085 if (partial_segs) { 4086 struct sk_buff *iter; 4087 int type = skb_shinfo(head_skb)->gso_type; 4088 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4089 4090 /* Update type to add partial and then remove dodgy if set */ 4091 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4092 type &= ~SKB_GSO_DODGY; 4093 4094 /* Update GSO info and prepare to start updating headers on 4095 * our way back down the stack of protocols. 4096 */ 4097 for (iter = segs; iter; iter = iter->next) { 4098 skb_shinfo(iter)->gso_size = gso_size; 4099 skb_shinfo(iter)->gso_segs = partial_segs; 4100 skb_shinfo(iter)->gso_type = type; 4101 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4102 } 4103 4104 if (tail->len - doffset <= gso_size) 4105 skb_shinfo(tail)->gso_size = 0; 4106 else if (tail != segs) 4107 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4108 } 4109 4110 /* Following permits correct backpressure, for protocols 4111 * using skb_set_owner_w(). 4112 * Idea is to tranfert ownership from head_skb to last segment. 4113 */ 4114 if (head_skb->destructor == sock_wfree) { 4115 swap(tail->truesize, head_skb->truesize); 4116 swap(tail->destructor, head_skb->destructor); 4117 swap(tail->sk, head_skb->sk); 4118 } 4119 return segs; 4120 4121 err: 4122 kfree_skb_list(segs); 4123 return ERR_PTR(err); 4124 } 4125 EXPORT_SYMBOL_GPL(skb_segment); 4126 4127 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4128 { 4129 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4130 unsigned int offset = skb_gro_offset(skb); 4131 unsigned int headlen = skb_headlen(skb); 4132 unsigned int len = skb_gro_len(skb); 4133 unsigned int delta_truesize; 4134 struct sk_buff *lp; 4135 4136 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4137 return -E2BIG; 4138 4139 lp = NAPI_GRO_CB(p)->last; 4140 pinfo = skb_shinfo(lp); 4141 4142 if (headlen <= offset) { 4143 skb_frag_t *frag; 4144 skb_frag_t *frag2; 4145 int i = skbinfo->nr_frags; 4146 int nr_frags = pinfo->nr_frags + i; 4147 4148 if (nr_frags > MAX_SKB_FRAGS) 4149 goto merge; 4150 4151 offset -= headlen; 4152 pinfo->nr_frags = nr_frags; 4153 skbinfo->nr_frags = 0; 4154 4155 frag = pinfo->frags + nr_frags; 4156 frag2 = skbinfo->frags + i; 4157 do { 4158 *--frag = *--frag2; 4159 } while (--i); 4160 4161 skb_frag_off_add(frag, offset); 4162 skb_frag_size_sub(frag, offset); 4163 4164 /* all fragments truesize : remove (head size + sk_buff) */ 4165 delta_truesize = skb->truesize - 4166 SKB_TRUESIZE(skb_end_offset(skb)); 4167 4168 skb->truesize -= skb->data_len; 4169 skb->len -= skb->data_len; 4170 skb->data_len = 0; 4171 4172 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4173 goto done; 4174 } else if (skb->head_frag) { 4175 int nr_frags = pinfo->nr_frags; 4176 skb_frag_t *frag = pinfo->frags + nr_frags; 4177 struct page *page = virt_to_head_page(skb->head); 4178 unsigned int first_size = headlen - offset; 4179 unsigned int first_offset; 4180 4181 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4182 goto merge; 4183 4184 first_offset = skb->data - 4185 (unsigned char *)page_address(page) + 4186 offset; 4187 4188 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4189 4190 __skb_frag_set_page(frag, page); 4191 skb_frag_off_set(frag, first_offset); 4192 skb_frag_size_set(frag, first_size); 4193 4194 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4195 /* We dont need to clear skbinfo->nr_frags here */ 4196 4197 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4198 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4199 goto done; 4200 } 4201 4202 merge: 4203 delta_truesize = skb->truesize; 4204 if (offset > headlen) { 4205 unsigned int eat = offset - headlen; 4206 4207 skb_frag_off_add(&skbinfo->frags[0], eat); 4208 skb_frag_size_sub(&skbinfo->frags[0], eat); 4209 skb->data_len -= eat; 4210 skb->len -= eat; 4211 offset = headlen; 4212 } 4213 4214 __skb_pull(skb, offset); 4215 4216 if (NAPI_GRO_CB(p)->last == p) 4217 skb_shinfo(p)->frag_list = skb; 4218 else 4219 NAPI_GRO_CB(p)->last->next = skb; 4220 NAPI_GRO_CB(p)->last = skb; 4221 __skb_header_release(skb); 4222 lp = p; 4223 4224 done: 4225 NAPI_GRO_CB(p)->count++; 4226 p->data_len += len; 4227 p->truesize += delta_truesize; 4228 p->len += len; 4229 if (lp != p) { 4230 lp->data_len += len; 4231 lp->truesize += delta_truesize; 4232 lp->len += len; 4233 } 4234 NAPI_GRO_CB(skb)->same_flow = 1; 4235 return 0; 4236 } 4237 4238 #ifdef CONFIG_SKB_EXTENSIONS 4239 #define SKB_EXT_ALIGN_VALUE 8 4240 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4241 4242 static const u8 skb_ext_type_len[] = { 4243 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4244 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4245 #endif 4246 #ifdef CONFIG_XFRM 4247 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4248 #endif 4249 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4250 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4251 #endif 4252 #if IS_ENABLED(CONFIG_MPTCP) 4253 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4254 #endif 4255 }; 4256 4257 static __always_inline unsigned int skb_ext_total_length(void) 4258 { 4259 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4260 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4261 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4262 #endif 4263 #ifdef CONFIG_XFRM 4264 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4265 #endif 4266 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4267 skb_ext_type_len[TC_SKB_EXT] + 4268 #endif 4269 #if IS_ENABLED(CONFIG_MPTCP) 4270 skb_ext_type_len[SKB_EXT_MPTCP] + 4271 #endif 4272 0; 4273 } 4274 4275 static void skb_extensions_init(void) 4276 { 4277 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4278 BUILD_BUG_ON(skb_ext_total_length() > 255); 4279 4280 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4281 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4282 0, 4283 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4284 NULL); 4285 } 4286 #else 4287 static void skb_extensions_init(void) {} 4288 #endif 4289 4290 void __init skb_init(void) 4291 { 4292 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4293 sizeof(struct sk_buff), 4294 0, 4295 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4296 offsetof(struct sk_buff, cb), 4297 sizeof_field(struct sk_buff, cb), 4298 NULL); 4299 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4300 sizeof(struct sk_buff_fclones), 4301 0, 4302 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4303 NULL); 4304 skb_extensions_init(); 4305 } 4306 4307 static int 4308 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4309 unsigned int recursion_level) 4310 { 4311 int start = skb_headlen(skb); 4312 int i, copy = start - offset; 4313 struct sk_buff *frag_iter; 4314 int elt = 0; 4315 4316 if (unlikely(recursion_level >= 24)) 4317 return -EMSGSIZE; 4318 4319 if (copy > 0) { 4320 if (copy > len) 4321 copy = len; 4322 sg_set_buf(sg, skb->data + offset, copy); 4323 elt++; 4324 if ((len -= copy) == 0) 4325 return elt; 4326 offset += copy; 4327 } 4328 4329 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4330 int end; 4331 4332 WARN_ON(start > offset + len); 4333 4334 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4335 if ((copy = end - offset) > 0) { 4336 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4337 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4338 return -EMSGSIZE; 4339 4340 if (copy > len) 4341 copy = len; 4342 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4343 skb_frag_off(frag) + offset - start); 4344 elt++; 4345 if (!(len -= copy)) 4346 return elt; 4347 offset += copy; 4348 } 4349 start = end; 4350 } 4351 4352 skb_walk_frags(skb, frag_iter) { 4353 int end, ret; 4354 4355 WARN_ON(start > offset + len); 4356 4357 end = start + frag_iter->len; 4358 if ((copy = end - offset) > 0) { 4359 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4360 return -EMSGSIZE; 4361 4362 if (copy > len) 4363 copy = len; 4364 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4365 copy, recursion_level + 1); 4366 if (unlikely(ret < 0)) 4367 return ret; 4368 elt += ret; 4369 if ((len -= copy) == 0) 4370 return elt; 4371 offset += copy; 4372 } 4373 start = end; 4374 } 4375 BUG_ON(len); 4376 return elt; 4377 } 4378 4379 /** 4380 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4381 * @skb: Socket buffer containing the buffers to be mapped 4382 * @sg: The scatter-gather list to map into 4383 * @offset: The offset into the buffer's contents to start mapping 4384 * @len: Length of buffer space to be mapped 4385 * 4386 * Fill the specified scatter-gather list with mappings/pointers into a 4387 * region of the buffer space attached to a socket buffer. Returns either 4388 * the number of scatterlist items used, or -EMSGSIZE if the contents 4389 * could not fit. 4390 */ 4391 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4392 { 4393 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4394 4395 if (nsg <= 0) 4396 return nsg; 4397 4398 sg_mark_end(&sg[nsg - 1]); 4399 4400 return nsg; 4401 } 4402 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4403 4404 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4405 * sglist without mark the sg which contain last skb data as the end. 4406 * So the caller can mannipulate sg list as will when padding new data after 4407 * the first call without calling sg_unmark_end to expend sg list. 4408 * 4409 * Scenario to use skb_to_sgvec_nomark: 4410 * 1. sg_init_table 4411 * 2. skb_to_sgvec_nomark(payload1) 4412 * 3. skb_to_sgvec_nomark(payload2) 4413 * 4414 * This is equivalent to: 4415 * 1. sg_init_table 4416 * 2. skb_to_sgvec(payload1) 4417 * 3. sg_unmark_end 4418 * 4. skb_to_sgvec(payload2) 4419 * 4420 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4421 * is more preferable. 4422 */ 4423 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4424 int offset, int len) 4425 { 4426 return __skb_to_sgvec(skb, sg, offset, len, 0); 4427 } 4428 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4429 4430 4431 4432 /** 4433 * skb_cow_data - Check that a socket buffer's data buffers are writable 4434 * @skb: The socket buffer to check. 4435 * @tailbits: Amount of trailing space to be added 4436 * @trailer: Returned pointer to the skb where the @tailbits space begins 4437 * 4438 * Make sure that the data buffers attached to a socket buffer are 4439 * writable. If they are not, private copies are made of the data buffers 4440 * and the socket buffer is set to use these instead. 4441 * 4442 * If @tailbits is given, make sure that there is space to write @tailbits 4443 * bytes of data beyond current end of socket buffer. @trailer will be 4444 * set to point to the skb in which this space begins. 4445 * 4446 * The number of scatterlist elements required to completely map the 4447 * COW'd and extended socket buffer will be returned. 4448 */ 4449 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4450 { 4451 int copyflag; 4452 int elt; 4453 struct sk_buff *skb1, **skb_p; 4454 4455 /* If skb is cloned or its head is paged, reallocate 4456 * head pulling out all the pages (pages are considered not writable 4457 * at the moment even if they are anonymous). 4458 */ 4459 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4460 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4461 return -ENOMEM; 4462 4463 /* Easy case. Most of packets will go this way. */ 4464 if (!skb_has_frag_list(skb)) { 4465 /* A little of trouble, not enough of space for trailer. 4466 * This should not happen, when stack is tuned to generate 4467 * good frames. OK, on miss we reallocate and reserve even more 4468 * space, 128 bytes is fair. */ 4469 4470 if (skb_tailroom(skb) < tailbits && 4471 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4472 return -ENOMEM; 4473 4474 /* Voila! */ 4475 *trailer = skb; 4476 return 1; 4477 } 4478 4479 /* Misery. We are in troubles, going to mincer fragments... */ 4480 4481 elt = 1; 4482 skb_p = &skb_shinfo(skb)->frag_list; 4483 copyflag = 0; 4484 4485 while ((skb1 = *skb_p) != NULL) { 4486 int ntail = 0; 4487 4488 /* The fragment is partially pulled by someone, 4489 * this can happen on input. Copy it and everything 4490 * after it. */ 4491 4492 if (skb_shared(skb1)) 4493 copyflag = 1; 4494 4495 /* If the skb is the last, worry about trailer. */ 4496 4497 if (skb1->next == NULL && tailbits) { 4498 if (skb_shinfo(skb1)->nr_frags || 4499 skb_has_frag_list(skb1) || 4500 skb_tailroom(skb1) < tailbits) 4501 ntail = tailbits + 128; 4502 } 4503 4504 if (copyflag || 4505 skb_cloned(skb1) || 4506 ntail || 4507 skb_shinfo(skb1)->nr_frags || 4508 skb_has_frag_list(skb1)) { 4509 struct sk_buff *skb2; 4510 4511 /* Fuck, we are miserable poor guys... */ 4512 if (ntail == 0) 4513 skb2 = skb_copy(skb1, GFP_ATOMIC); 4514 else 4515 skb2 = skb_copy_expand(skb1, 4516 skb_headroom(skb1), 4517 ntail, 4518 GFP_ATOMIC); 4519 if (unlikely(skb2 == NULL)) 4520 return -ENOMEM; 4521 4522 if (skb1->sk) 4523 skb_set_owner_w(skb2, skb1->sk); 4524 4525 /* Looking around. Are we still alive? 4526 * OK, link new skb, drop old one */ 4527 4528 skb2->next = skb1->next; 4529 *skb_p = skb2; 4530 kfree_skb(skb1); 4531 skb1 = skb2; 4532 } 4533 elt++; 4534 *trailer = skb1; 4535 skb_p = &skb1->next; 4536 } 4537 4538 return elt; 4539 } 4540 EXPORT_SYMBOL_GPL(skb_cow_data); 4541 4542 static void sock_rmem_free(struct sk_buff *skb) 4543 { 4544 struct sock *sk = skb->sk; 4545 4546 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4547 } 4548 4549 static void skb_set_err_queue(struct sk_buff *skb) 4550 { 4551 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4552 * So, it is safe to (mis)use it to mark skbs on the error queue. 4553 */ 4554 skb->pkt_type = PACKET_OUTGOING; 4555 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4556 } 4557 4558 /* 4559 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4560 */ 4561 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4562 { 4563 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4564 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4565 return -ENOMEM; 4566 4567 skb_orphan(skb); 4568 skb->sk = sk; 4569 skb->destructor = sock_rmem_free; 4570 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4571 skb_set_err_queue(skb); 4572 4573 /* before exiting rcu section, make sure dst is refcounted */ 4574 skb_dst_force(skb); 4575 4576 skb_queue_tail(&sk->sk_error_queue, skb); 4577 if (!sock_flag(sk, SOCK_DEAD)) 4578 sk->sk_error_report(sk); 4579 return 0; 4580 } 4581 EXPORT_SYMBOL(sock_queue_err_skb); 4582 4583 static bool is_icmp_err_skb(const struct sk_buff *skb) 4584 { 4585 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4586 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4587 } 4588 4589 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4590 { 4591 struct sk_buff_head *q = &sk->sk_error_queue; 4592 struct sk_buff *skb, *skb_next = NULL; 4593 bool icmp_next = false; 4594 unsigned long flags; 4595 4596 spin_lock_irqsave(&q->lock, flags); 4597 skb = __skb_dequeue(q); 4598 if (skb && (skb_next = skb_peek(q))) { 4599 icmp_next = is_icmp_err_skb(skb_next); 4600 if (icmp_next) 4601 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4602 } 4603 spin_unlock_irqrestore(&q->lock, flags); 4604 4605 if (is_icmp_err_skb(skb) && !icmp_next) 4606 sk->sk_err = 0; 4607 4608 if (skb_next) 4609 sk->sk_error_report(sk); 4610 4611 return skb; 4612 } 4613 EXPORT_SYMBOL(sock_dequeue_err_skb); 4614 4615 /** 4616 * skb_clone_sk - create clone of skb, and take reference to socket 4617 * @skb: the skb to clone 4618 * 4619 * This function creates a clone of a buffer that holds a reference on 4620 * sk_refcnt. Buffers created via this function are meant to be 4621 * returned using sock_queue_err_skb, or free via kfree_skb. 4622 * 4623 * When passing buffers allocated with this function to sock_queue_err_skb 4624 * it is necessary to wrap the call with sock_hold/sock_put in order to 4625 * prevent the socket from being released prior to being enqueued on 4626 * the sk_error_queue. 4627 */ 4628 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4629 { 4630 struct sock *sk = skb->sk; 4631 struct sk_buff *clone; 4632 4633 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4634 return NULL; 4635 4636 clone = skb_clone(skb, GFP_ATOMIC); 4637 if (!clone) { 4638 sock_put(sk); 4639 return NULL; 4640 } 4641 4642 clone->sk = sk; 4643 clone->destructor = sock_efree; 4644 4645 return clone; 4646 } 4647 EXPORT_SYMBOL(skb_clone_sk); 4648 4649 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4650 struct sock *sk, 4651 int tstype, 4652 bool opt_stats) 4653 { 4654 struct sock_exterr_skb *serr; 4655 int err; 4656 4657 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4658 4659 serr = SKB_EXT_ERR(skb); 4660 memset(serr, 0, sizeof(*serr)); 4661 serr->ee.ee_errno = ENOMSG; 4662 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4663 serr->ee.ee_info = tstype; 4664 serr->opt_stats = opt_stats; 4665 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4666 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4667 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4668 if (sk->sk_protocol == IPPROTO_TCP && 4669 sk->sk_type == SOCK_STREAM) 4670 serr->ee.ee_data -= sk->sk_tskey; 4671 } 4672 4673 err = sock_queue_err_skb(sk, skb); 4674 4675 if (err) 4676 kfree_skb(skb); 4677 } 4678 4679 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4680 { 4681 bool ret; 4682 4683 if (likely(sysctl_tstamp_allow_data || tsonly)) 4684 return true; 4685 4686 read_lock_bh(&sk->sk_callback_lock); 4687 ret = sk->sk_socket && sk->sk_socket->file && 4688 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4689 read_unlock_bh(&sk->sk_callback_lock); 4690 return ret; 4691 } 4692 4693 void skb_complete_tx_timestamp(struct sk_buff *skb, 4694 struct skb_shared_hwtstamps *hwtstamps) 4695 { 4696 struct sock *sk = skb->sk; 4697 4698 if (!skb_may_tx_timestamp(sk, false)) 4699 goto err; 4700 4701 /* Take a reference to prevent skb_orphan() from freeing the socket, 4702 * but only if the socket refcount is not zero. 4703 */ 4704 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4705 *skb_hwtstamps(skb) = *hwtstamps; 4706 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4707 sock_put(sk); 4708 return; 4709 } 4710 4711 err: 4712 kfree_skb(skb); 4713 } 4714 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4715 4716 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4717 struct skb_shared_hwtstamps *hwtstamps, 4718 struct sock *sk, int tstype) 4719 { 4720 struct sk_buff *skb; 4721 bool tsonly, opt_stats = false; 4722 4723 if (!sk) 4724 return; 4725 4726 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4727 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4728 return; 4729 4730 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4731 if (!skb_may_tx_timestamp(sk, tsonly)) 4732 return; 4733 4734 if (tsonly) { 4735 #ifdef CONFIG_INET 4736 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4737 sk->sk_protocol == IPPROTO_TCP && 4738 sk->sk_type == SOCK_STREAM) { 4739 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4740 opt_stats = true; 4741 } else 4742 #endif 4743 skb = alloc_skb(0, GFP_ATOMIC); 4744 } else { 4745 skb = skb_clone(orig_skb, GFP_ATOMIC); 4746 } 4747 if (!skb) 4748 return; 4749 4750 if (tsonly) { 4751 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4752 SKBTX_ANY_TSTAMP; 4753 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4754 } 4755 4756 if (hwtstamps) 4757 *skb_hwtstamps(skb) = *hwtstamps; 4758 else 4759 skb->tstamp = ktime_get_real(); 4760 4761 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4762 } 4763 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4764 4765 void skb_tstamp_tx(struct sk_buff *orig_skb, 4766 struct skb_shared_hwtstamps *hwtstamps) 4767 { 4768 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4769 SCM_TSTAMP_SND); 4770 } 4771 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4772 4773 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4774 { 4775 struct sock *sk = skb->sk; 4776 struct sock_exterr_skb *serr; 4777 int err = 1; 4778 4779 skb->wifi_acked_valid = 1; 4780 skb->wifi_acked = acked; 4781 4782 serr = SKB_EXT_ERR(skb); 4783 memset(serr, 0, sizeof(*serr)); 4784 serr->ee.ee_errno = ENOMSG; 4785 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4786 4787 /* Take a reference to prevent skb_orphan() from freeing the socket, 4788 * but only if the socket refcount is not zero. 4789 */ 4790 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4791 err = sock_queue_err_skb(sk, skb); 4792 sock_put(sk); 4793 } 4794 if (err) 4795 kfree_skb(skb); 4796 } 4797 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4798 4799 /** 4800 * skb_partial_csum_set - set up and verify partial csum values for packet 4801 * @skb: the skb to set 4802 * @start: the number of bytes after skb->data to start checksumming. 4803 * @off: the offset from start to place the checksum. 4804 * 4805 * For untrusted partially-checksummed packets, we need to make sure the values 4806 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4807 * 4808 * This function checks and sets those values and skb->ip_summed: if this 4809 * returns false you should drop the packet. 4810 */ 4811 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4812 { 4813 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4814 u32 csum_start = skb_headroom(skb) + (u32)start; 4815 4816 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4817 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4818 start, off, skb_headroom(skb), skb_headlen(skb)); 4819 return false; 4820 } 4821 skb->ip_summed = CHECKSUM_PARTIAL; 4822 skb->csum_start = csum_start; 4823 skb->csum_offset = off; 4824 skb_set_transport_header(skb, start); 4825 return true; 4826 } 4827 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4828 4829 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4830 unsigned int max) 4831 { 4832 if (skb_headlen(skb) >= len) 4833 return 0; 4834 4835 /* If we need to pullup then pullup to the max, so we 4836 * won't need to do it again. 4837 */ 4838 if (max > skb->len) 4839 max = skb->len; 4840 4841 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4842 return -ENOMEM; 4843 4844 if (skb_headlen(skb) < len) 4845 return -EPROTO; 4846 4847 return 0; 4848 } 4849 4850 #define MAX_TCP_HDR_LEN (15 * 4) 4851 4852 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4853 typeof(IPPROTO_IP) proto, 4854 unsigned int off) 4855 { 4856 int err; 4857 4858 switch (proto) { 4859 case IPPROTO_TCP: 4860 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4861 off + MAX_TCP_HDR_LEN); 4862 if (!err && !skb_partial_csum_set(skb, off, 4863 offsetof(struct tcphdr, 4864 check))) 4865 err = -EPROTO; 4866 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4867 4868 case IPPROTO_UDP: 4869 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4870 off + sizeof(struct udphdr)); 4871 if (!err && !skb_partial_csum_set(skb, off, 4872 offsetof(struct udphdr, 4873 check))) 4874 err = -EPROTO; 4875 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4876 } 4877 4878 return ERR_PTR(-EPROTO); 4879 } 4880 4881 /* This value should be large enough to cover a tagged ethernet header plus 4882 * maximally sized IP and TCP or UDP headers. 4883 */ 4884 #define MAX_IP_HDR_LEN 128 4885 4886 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4887 { 4888 unsigned int off; 4889 bool fragment; 4890 __sum16 *csum; 4891 int err; 4892 4893 fragment = false; 4894 4895 err = skb_maybe_pull_tail(skb, 4896 sizeof(struct iphdr), 4897 MAX_IP_HDR_LEN); 4898 if (err < 0) 4899 goto out; 4900 4901 if (ip_is_fragment(ip_hdr(skb))) 4902 fragment = true; 4903 4904 off = ip_hdrlen(skb); 4905 4906 err = -EPROTO; 4907 4908 if (fragment) 4909 goto out; 4910 4911 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4912 if (IS_ERR(csum)) 4913 return PTR_ERR(csum); 4914 4915 if (recalculate) 4916 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4917 ip_hdr(skb)->daddr, 4918 skb->len - off, 4919 ip_hdr(skb)->protocol, 0); 4920 err = 0; 4921 4922 out: 4923 return err; 4924 } 4925 4926 /* This value should be large enough to cover a tagged ethernet header plus 4927 * an IPv6 header, all options, and a maximal TCP or UDP header. 4928 */ 4929 #define MAX_IPV6_HDR_LEN 256 4930 4931 #define OPT_HDR(type, skb, off) \ 4932 (type *)(skb_network_header(skb) + (off)) 4933 4934 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4935 { 4936 int err; 4937 u8 nexthdr; 4938 unsigned int off; 4939 unsigned int len; 4940 bool fragment; 4941 bool done; 4942 __sum16 *csum; 4943 4944 fragment = false; 4945 done = false; 4946 4947 off = sizeof(struct ipv6hdr); 4948 4949 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4950 if (err < 0) 4951 goto out; 4952 4953 nexthdr = ipv6_hdr(skb)->nexthdr; 4954 4955 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4956 while (off <= len && !done) { 4957 switch (nexthdr) { 4958 case IPPROTO_DSTOPTS: 4959 case IPPROTO_HOPOPTS: 4960 case IPPROTO_ROUTING: { 4961 struct ipv6_opt_hdr *hp; 4962 4963 err = skb_maybe_pull_tail(skb, 4964 off + 4965 sizeof(struct ipv6_opt_hdr), 4966 MAX_IPV6_HDR_LEN); 4967 if (err < 0) 4968 goto out; 4969 4970 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4971 nexthdr = hp->nexthdr; 4972 off += ipv6_optlen(hp); 4973 break; 4974 } 4975 case IPPROTO_AH: { 4976 struct ip_auth_hdr *hp; 4977 4978 err = skb_maybe_pull_tail(skb, 4979 off + 4980 sizeof(struct ip_auth_hdr), 4981 MAX_IPV6_HDR_LEN); 4982 if (err < 0) 4983 goto out; 4984 4985 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4986 nexthdr = hp->nexthdr; 4987 off += ipv6_authlen(hp); 4988 break; 4989 } 4990 case IPPROTO_FRAGMENT: { 4991 struct frag_hdr *hp; 4992 4993 err = skb_maybe_pull_tail(skb, 4994 off + 4995 sizeof(struct frag_hdr), 4996 MAX_IPV6_HDR_LEN); 4997 if (err < 0) 4998 goto out; 4999 5000 hp = OPT_HDR(struct frag_hdr, skb, off); 5001 5002 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5003 fragment = true; 5004 5005 nexthdr = hp->nexthdr; 5006 off += sizeof(struct frag_hdr); 5007 break; 5008 } 5009 default: 5010 done = true; 5011 break; 5012 } 5013 } 5014 5015 err = -EPROTO; 5016 5017 if (!done || fragment) 5018 goto out; 5019 5020 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5021 if (IS_ERR(csum)) 5022 return PTR_ERR(csum); 5023 5024 if (recalculate) 5025 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5026 &ipv6_hdr(skb)->daddr, 5027 skb->len - off, nexthdr, 0); 5028 err = 0; 5029 5030 out: 5031 return err; 5032 } 5033 5034 /** 5035 * skb_checksum_setup - set up partial checksum offset 5036 * @skb: the skb to set up 5037 * @recalculate: if true the pseudo-header checksum will be recalculated 5038 */ 5039 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5040 { 5041 int err; 5042 5043 switch (skb->protocol) { 5044 case htons(ETH_P_IP): 5045 err = skb_checksum_setup_ipv4(skb, recalculate); 5046 break; 5047 5048 case htons(ETH_P_IPV6): 5049 err = skb_checksum_setup_ipv6(skb, recalculate); 5050 break; 5051 5052 default: 5053 err = -EPROTO; 5054 break; 5055 } 5056 5057 return err; 5058 } 5059 EXPORT_SYMBOL(skb_checksum_setup); 5060 5061 /** 5062 * skb_checksum_maybe_trim - maybe trims the given skb 5063 * @skb: the skb to check 5064 * @transport_len: the data length beyond the network header 5065 * 5066 * Checks whether the given skb has data beyond the given transport length. 5067 * If so, returns a cloned skb trimmed to this transport length. 5068 * Otherwise returns the provided skb. Returns NULL in error cases 5069 * (e.g. transport_len exceeds skb length or out-of-memory). 5070 * 5071 * Caller needs to set the skb transport header and free any returned skb if it 5072 * differs from the provided skb. 5073 */ 5074 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5075 unsigned int transport_len) 5076 { 5077 struct sk_buff *skb_chk; 5078 unsigned int len = skb_transport_offset(skb) + transport_len; 5079 int ret; 5080 5081 if (skb->len < len) 5082 return NULL; 5083 else if (skb->len == len) 5084 return skb; 5085 5086 skb_chk = skb_clone(skb, GFP_ATOMIC); 5087 if (!skb_chk) 5088 return NULL; 5089 5090 ret = pskb_trim_rcsum(skb_chk, len); 5091 if (ret) { 5092 kfree_skb(skb_chk); 5093 return NULL; 5094 } 5095 5096 return skb_chk; 5097 } 5098 5099 /** 5100 * skb_checksum_trimmed - validate checksum of an skb 5101 * @skb: the skb to check 5102 * @transport_len: the data length beyond the network header 5103 * @skb_chkf: checksum function to use 5104 * 5105 * Applies the given checksum function skb_chkf to the provided skb. 5106 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5107 * 5108 * If the skb has data beyond the given transport length, then a 5109 * trimmed & cloned skb is checked and returned. 5110 * 5111 * Caller needs to set the skb transport header and free any returned skb if it 5112 * differs from the provided skb. 5113 */ 5114 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5115 unsigned int transport_len, 5116 __sum16(*skb_chkf)(struct sk_buff *skb)) 5117 { 5118 struct sk_buff *skb_chk; 5119 unsigned int offset = skb_transport_offset(skb); 5120 __sum16 ret; 5121 5122 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5123 if (!skb_chk) 5124 goto err; 5125 5126 if (!pskb_may_pull(skb_chk, offset)) 5127 goto err; 5128 5129 skb_pull_rcsum(skb_chk, offset); 5130 ret = skb_chkf(skb_chk); 5131 skb_push_rcsum(skb_chk, offset); 5132 5133 if (ret) 5134 goto err; 5135 5136 return skb_chk; 5137 5138 err: 5139 if (skb_chk && skb_chk != skb) 5140 kfree_skb(skb_chk); 5141 5142 return NULL; 5143 5144 } 5145 EXPORT_SYMBOL(skb_checksum_trimmed); 5146 5147 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5148 { 5149 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5150 skb->dev->name); 5151 } 5152 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5153 5154 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5155 { 5156 if (head_stolen) { 5157 skb_release_head_state(skb); 5158 kmem_cache_free(skbuff_head_cache, skb); 5159 } else { 5160 __kfree_skb(skb); 5161 } 5162 } 5163 EXPORT_SYMBOL(kfree_skb_partial); 5164 5165 /** 5166 * skb_try_coalesce - try to merge skb to prior one 5167 * @to: prior buffer 5168 * @from: buffer to add 5169 * @fragstolen: pointer to boolean 5170 * @delta_truesize: how much more was allocated than was requested 5171 */ 5172 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5173 bool *fragstolen, int *delta_truesize) 5174 { 5175 struct skb_shared_info *to_shinfo, *from_shinfo; 5176 int i, delta, len = from->len; 5177 5178 *fragstolen = false; 5179 5180 if (skb_cloned(to)) 5181 return false; 5182 5183 if (len <= skb_tailroom(to)) { 5184 if (len) 5185 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5186 *delta_truesize = 0; 5187 return true; 5188 } 5189 5190 to_shinfo = skb_shinfo(to); 5191 from_shinfo = skb_shinfo(from); 5192 if (to_shinfo->frag_list || from_shinfo->frag_list) 5193 return false; 5194 if (skb_zcopy(to) || skb_zcopy(from)) 5195 return false; 5196 5197 if (skb_headlen(from) != 0) { 5198 struct page *page; 5199 unsigned int offset; 5200 5201 if (to_shinfo->nr_frags + 5202 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5203 return false; 5204 5205 if (skb_head_is_locked(from)) 5206 return false; 5207 5208 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5209 5210 page = virt_to_head_page(from->head); 5211 offset = from->data - (unsigned char *)page_address(page); 5212 5213 skb_fill_page_desc(to, to_shinfo->nr_frags, 5214 page, offset, skb_headlen(from)); 5215 *fragstolen = true; 5216 } else { 5217 if (to_shinfo->nr_frags + 5218 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5219 return false; 5220 5221 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5222 } 5223 5224 WARN_ON_ONCE(delta < len); 5225 5226 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5227 from_shinfo->frags, 5228 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5229 to_shinfo->nr_frags += from_shinfo->nr_frags; 5230 5231 if (!skb_cloned(from)) 5232 from_shinfo->nr_frags = 0; 5233 5234 /* if the skb is not cloned this does nothing 5235 * since we set nr_frags to 0. 5236 */ 5237 for (i = 0; i < from_shinfo->nr_frags; i++) 5238 __skb_frag_ref(&from_shinfo->frags[i]); 5239 5240 to->truesize += delta; 5241 to->len += len; 5242 to->data_len += len; 5243 5244 *delta_truesize = delta; 5245 return true; 5246 } 5247 EXPORT_SYMBOL(skb_try_coalesce); 5248 5249 /** 5250 * skb_scrub_packet - scrub an skb 5251 * 5252 * @skb: buffer to clean 5253 * @xnet: packet is crossing netns 5254 * 5255 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5256 * into/from a tunnel. Some information have to be cleared during these 5257 * operations. 5258 * skb_scrub_packet can also be used to clean a skb before injecting it in 5259 * another namespace (@xnet == true). We have to clear all information in the 5260 * skb that could impact namespace isolation. 5261 */ 5262 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5263 { 5264 skb->pkt_type = PACKET_HOST; 5265 skb->skb_iif = 0; 5266 skb->ignore_df = 0; 5267 skb_dst_drop(skb); 5268 skb_ext_reset(skb); 5269 nf_reset_ct(skb); 5270 nf_reset_trace(skb); 5271 5272 #ifdef CONFIG_NET_SWITCHDEV 5273 skb->offload_fwd_mark = 0; 5274 skb->offload_l3_fwd_mark = 0; 5275 #endif 5276 5277 if (!xnet) 5278 return; 5279 5280 ipvs_reset(skb); 5281 skb->mark = 0; 5282 skb->tstamp = 0; 5283 } 5284 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5285 5286 /** 5287 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5288 * 5289 * @skb: GSO skb 5290 * 5291 * skb_gso_transport_seglen is used to determine the real size of the 5292 * individual segments, including Layer4 headers (TCP/UDP). 5293 * 5294 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5295 */ 5296 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5297 { 5298 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5299 unsigned int thlen = 0; 5300 5301 if (skb->encapsulation) { 5302 thlen = skb_inner_transport_header(skb) - 5303 skb_transport_header(skb); 5304 5305 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5306 thlen += inner_tcp_hdrlen(skb); 5307 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5308 thlen = tcp_hdrlen(skb); 5309 } else if (unlikely(skb_is_gso_sctp(skb))) { 5310 thlen = sizeof(struct sctphdr); 5311 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5312 thlen = sizeof(struct udphdr); 5313 } 5314 /* UFO sets gso_size to the size of the fragmentation 5315 * payload, i.e. the size of the L4 (UDP) header is already 5316 * accounted for. 5317 */ 5318 return thlen + shinfo->gso_size; 5319 } 5320 5321 /** 5322 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5323 * 5324 * @skb: GSO skb 5325 * 5326 * skb_gso_network_seglen is used to determine the real size of the 5327 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5328 * 5329 * The MAC/L2 header is not accounted for. 5330 */ 5331 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5332 { 5333 unsigned int hdr_len = skb_transport_header(skb) - 5334 skb_network_header(skb); 5335 5336 return hdr_len + skb_gso_transport_seglen(skb); 5337 } 5338 5339 /** 5340 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5341 * 5342 * @skb: GSO skb 5343 * 5344 * skb_gso_mac_seglen is used to determine the real size of the 5345 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5346 * headers (TCP/UDP). 5347 */ 5348 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5349 { 5350 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5351 5352 return hdr_len + skb_gso_transport_seglen(skb); 5353 } 5354 5355 /** 5356 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5357 * 5358 * There are a couple of instances where we have a GSO skb, and we 5359 * want to determine what size it would be after it is segmented. 5360 * 5361 * We might want to check: 5362 * - L3+L4+payload size (e.g. IP forwarding) 5363 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5364 * 5365 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5366 * 5367 * @skb: GSO skb 5368 * 5369 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5370 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5371 * 5372 * @max_len: The maximum permissible length. 5373 * 5374 * Returns true if the segmented length <= max length. 5375 */ 5376 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5377 unsigned int seg_len, 5378 unsigned int max_len) { 5379 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5380 const struct sk_buff *iter; 5381 5382 if (shinfo->gso_size != GSO_BY_FRAGS) 5383 return seg_len <= max_len; 5384 5385 /* Undo this so we can re-use header sizes */ 5386 seg_len -= GSO_BY_FRAGS; 5387 5388 skb_walk_frags(skb, iter) { 5389 if (seg_len + skb_headlen(iter) > max_len) 5390 return false; 5391 } 5392 5393 return true; 5394 } 5395 5396 /** 5397 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5398 * 5399 * @skb: GSO skb 5400 * @mtu: MTU to validate against 5401 * 5402 * skb_gso_validate_network_len validates if a given skb will fit a 5403 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5404 * payload. 5405 */ 5406 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5407 { 5408 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5409 } 5410 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5411 5412 /** 5413 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5414 * 5415 * @skb: GSO skb 5416 * @len: length to validate against 5417 * 5418 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5419 * length once split, including L2, L3 and L4 headers and the payload. 5420 */ 5421 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5422 { 5423 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5424 } 5425 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5426 5427 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5428 { 5429 int mac_len, meta_len; 5430 void *meta; 5431 5432 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5433 kfree_skb(skb); 5434 return NULL; 5435 } 5436 5437 mac_len = skb->data - skb_mac_header(skb); 5438 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5439 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5440 mac_len - VLAN_HLEN - ETH_TLEN); 5441 } 5442 5443 meta_len = skb_metadata_len(skb); 5444 if (meta_len) { 5445 meta = skb_metadata_end(skb) - meta_len; 5446 memmove(meta + VLAN_HLEN, meta, meta_len); 5447 } 5448 5449 skb->mac_header += VLAN_HLEN; 5450 return skb; 5451 } 5452 5453 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5454 { 5455 struct vlan_hdr *vhdr; 5456 u16 vlan_tci; 5457 5458 if (unlikely(skb_vlan_tag_present(skb))) { 5459 /* vlan_tci is already set-up so leave this for another time */ 5460 return skb; 5461 } 5462 5463 skb = skb_share_check(skb, GFP_ATOMIC); 5464 if (unlikely(!skb)) 5465 goto err_free; 5466 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5467 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5468 goto err_free; 5469 5470 vhdr = (struct vlan_hdr *)skb->data; 5471 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5472 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5473 5474 skb_pull_rcsum(skb, VLAN_HLEN); 5475 vlan_set_encap_proto(skb, vhdr); 5476 5477 skb = skb_reorder_vlan_header(skb); 5478 if (unlikely(!skb)) 5479 goto err_free; 5480 5481 skb_reset_network_header(skb); 5482 if (!skb_transport_header_was_set(skb)) 5483 skb_reset_transport_header(skb); 5484 skb_reset_mac_len(skb); 5485 5486 return skb; 5487 5488 err_free: 5489 kfree_skb(skb); 5490 return NULL; 5491 } 5492 EXPORT_SYMBOL(skb_vlan_untag); 5493 5494 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5495 { 5496 if (!pskb_may_pull(skb, write_len)) 5497 return -ENOMEM; 5498 5499 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5500 return 0; 5501 5502 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5503 } 5504 EXPORT_SYMBOL(skb_ensure_writable); 5505 5506 /* remove VLAN header from packet and update csum accordingly. 5507 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5508 */ 5509 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5510 { 5511 struct vlan_hdr *vhdr; 5512 int offset = skb->data - skb_mac_header(skb); 5513 int err; 5514 5515 if (WARN_ONCE(offset, 5516 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5517 offset)) { 5518 return -EINVAL; 5519 } 5520 5521 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5522 if (unlikely(err)) 5523 return err; 5524 5525 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5526 5527 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5528 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5529 5530 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5531 __skb_pull(skb, VLAN_HLEN); 5532 5533 vlan_set_encap_proto(skb, vhdr); 5534 skb->mac_header += VLAN_HLEN; 5535 5536 if (skb_network_offset(skb) < ETH_HLEN) 5537 skb_set_network_header(skb, ETH_HLEN); 5538 5539 skb_reset_mac_len(skb); 5540 5541 return err; 5542 } 5543 EXPORT_SYMBOL(__skb_vlan_pop); 5544 5545 /* Pop a vlan tag either from hwaccel or from payload. 5546 * Expects skb->data at mac header. 5547 */ 5548 int skb_vlan_pop(struct sk_buff *skb) 5549 { 5550 u16 vlan_tci; 5551 __be16 vlan_proto; 5552 int err; 5553 5554 if (likely(skb_vlan_tag_present(skb))) { 5555 __vlan_hwaccel_clear_tag(skb); 5556 } else { 5557 if (unlikely(!eth_type_vlan(skb->protocol))) 5558 return 0; 5559 5560 err = __skb_vlan_pop(skb, &vlan_tci); 5561 if (err) 5562 return err; 5563 } 5564 /* move next vlan tag to hw accel tag */ 5565 if (likely(!eth_type_vlan(skb->protocol))) 5566 return 0; 5567 5568 vlan_proto = skb->protocol; 5569 err = __skb_vlan_pop(skb, &vlan_tci); 5570 if (unlikely(err)) 5571 return err; 5572 5573 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5574 return 0; 5575 } 5576 EXPORT_SYMBOL(skb_vlan_pop); 5577 5578 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5579 * Expects skb->data at mac header. 5580 */ 5581 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5582 { 5583 if (skb_vlan_tag_present(skb)) { 5584 int offset = skb->data - skb_mac_header(skb); 5585 int err; 5586 5587 if (WARN_ONCE(offset, 5588 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5589 offset)) { 5590 return -EINVAL; 5591 } 5592 5593 err = __vlan_insert_tag(skb, skb->vlan_proto, 5594 skb_vlan_tag_get(skb)); 5595 if (err) 5596 return err; 5597 5598 skb->protocol = skb->vlan_proto; 5599 skb->mac_len += VLAN_HLEN; 5600 5601 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5602 } 5603 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5604 return 0; 5605 } 5606 EXPORT_SYMBOL(skb_vlan_push); 5607 5608 /** 5609 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5610 * 5611 * @skb: Socket buffer to modify 5612 * 5613 * Drop the Ethernet header of @skb. 5614 * 5615 * Expects that skb->data points to the mac header and that no VLAN tags are 5616 * present. 5617 * 5618 * Returns 0 on success, -errno otherwise. 5619 */ 5620 int skb_eth_pop(struct sk_buff *skb) 5621 { 5622 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5623 skb_network_offset(skb) < ETH_HLEN) 5624 return -EPROTO; 5625 5626 skb_pull_rcsum(skb, ETH_HLEN); 5627 skb_reset_mac_header(skb); 5628 skb_reset_mac_len(skb); 5629 5630 return 0; 5631 } 5632 EXPORT_SYMBOL(skb_eth_pop); 5633 5634 /** 5635 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5636 * 5637 * @skb: Socket buffer to modify 5638 * @dst: Destination MAC address of the new header 5639 * @src: Source MAC address of the new header 5640 * 5641 * Prepend @skb with a new Ethernet header. 5642 * 5643 * Expects that skb->data points to the mac header, which must be empty. 5644 * 5645 * Returns 0 on success, -errno otherwise. 5646 */ 5647 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5648 const unsigned char *src) 5649 { 5650 struct ethhdr *eth; 5651 int err; 5652 5653 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5654 return -EPROTO; 5655 5656 err = skb_cow_head(skb, sizeof(*eth)); 5657 if (err < 0) 5658 return err; 5659 5660 skb_push(skb, sizeof(*eth)); 5661 skb_reset_mac_header(skb); 5662 skb_reset_mac_len(skb); 5663 5664 eth = eth_hdr(skb); 5665 ether_addr_copy(eth->h_dest, dst); 5666 ether_addr_copy(eth->h_source, src); 5667 eth->h_proto = skb->protocol; 5668 5669 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5670 5671 return 0; 5672 } 5673 EXPORT_SYMBOL(skb_eth_push); 5674 5675 /* Update the ethertype of hdr and the skb csum value if required. */ 5676 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5677 __be16 ethertype) 5678 { 5679 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5680 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5681 5682 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5683 } 5684 5685 hdr->h_proto = ethertype; 5686 } 5687 5688 /** 5689 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5690 * the packet 5691 * 5692 * @skb: buffer 5693 * @mpls_lse: MPLS label stack entry to push 5694 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5695 * @mac_len: length of the MAC header 5696 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5697 * ethernet 5698 * 5699 * Expects skb->data at mac header. 5700 * 5701 * Returns 0 on success, -errno otherwise. 5702 */ 5703 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5704 int mac_len, bool ethernet) 5705 { 5706 struct mpls_shim_hdr *lse; 5707 int err; 5708 5709 if (unlikely(!eth_p_mpls(mpls_proto))) 5710 return -EINVAL; 5711 5712 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5713 if (skb->encapsulation) 5714 return -EINVAL; 5715 5716 err = skb_cow_head(skb, MPLS_HLEN); 5717 if (unlikely(err)) 5718 return err; 5719 5720 if (!skb->inner_protocol) { 5721 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5722 skb_set_inner_protocol(skb, skb->protocol); 5723 } 5724 5725 skb_push(skb, MPLS_HLEN); 5726 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5727 mac_len); 5728 skb_reset_mac_header(skb); 5729 skb_set_network_header(skb, mac_len); 5730 skb_reset_mac_len(skb); 5731 5732 lse = mpls_hdr(skb); 5733 lse->label_stack_entry = mpls_lse; 5734 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5735 5736 if (ethernet && mac_len >= ETH_HLEN) 5737 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5738 skb->protocol = mpls_proto; 5739 5740 return 0; 5741 } 5742 EXPORT_SYMBOL_GPL(skb_mpls_push); 5743 5744 /** 5745 * skb_mpls_pop() - pop the outermost MPLS header 5746 * 5747 * @skb: buffer 5748 * @next_proto: ethertype of header after popped MPLS header 5749 * @mac_len: length of the MAC header 5750 * @ethernet: flag to indicate if the packet is ethernet 5751 * 5752 * Expects skb->data at mac header. 5753 * 5754 * Returns 0 on success, -errno otherwise. 5755 */ 5756 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5757 bool ethernet) 5758 { 5759 int err; 5760 5761 if (unlikely(!eth_p_mpls(skb->protocol))) 5762 return 0; 5763 5764 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5765 if (unlikely(err)) 5766 return err; 5767 5768 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5769 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5770 mac_len); 5771 5772 __skb_pull(skb, MPLS_HLEN); 5773 skb_reset_mac_header(skb); 5774 skb_set_network_header(skb, mac_len); 5775 5776 if (ethernet && mac_len >= ETH_HLEN) { 5777 struct ethhdr *hdr; 5778 5779 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5780 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5781 skb_mod_eth_type(skb, hdr, next_proto); 5782 } 5783 skb->protocol = next_proto; 5784 5785 return 0; 5786 } 5787 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5788 5789 /** 5790 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5791 * 5792 * @skb: buffer 5793 * @mpls_lse: new MPLS label stack entry to update to 5794 * 5795 * Expects skb->data at mac header. 5796 * 5797 * Returns 0 on success, -errno otherwise. 5798 */ 5799 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5800 { 5801 int err; 5802 5803 if (unlikely(!eth_p_mpls(skb->protocol))) 5804 return -EINVAL; 5805 5806 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5807 if (unlikely(err)) 5808 return err; 5809 5810 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5811 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5812 5813 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5814 } 5815 5816 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5817 5818 return 0; 5819 } 5820 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5821 5822 /** 5823 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5824 * 5825 * @skb: buffer 5826 * 5827 * Expects skb->data at mac header. 5828 * 5829 * Returns 0 on success, -errno otherwise. 5830 */ 5831 int skb_mpls_dec_ttl(struct sk_buff *skb) 5832 { 5833 u32 lse; 5834 u8 ttl; 5835 5836 if (unlikely(!eth_p_mpls(skb->protocol))) 5837 return -EINVAL; 5838 5839 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5840 return -ENOMEM; 5841 5842 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5843 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5844 if (!--ttl) 5845 return -EINVAL; 5846 5847 lse &= ~MPLS_LS_TTL_MASK; 5848 lse |= ttl << MPLS_LS_TTL_SHIFT; 5849 5850 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5851 } 5852 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5853 5854 /** 5855 * alloc_skb_with_frags - allocate skb with page frags 5856 * 5857 * @header_len: size of linear part 5858 * @data_len: needed length in frags 5859 * @max_page_order: max page order desired. 5860 * @errcode: pointer to error code if any 5861 * @gfp_mask: allocation mask 5862 * 5863 * This can be used to allocate a paged skb, given a maximal order for frags. 5864 */ 5865 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5866 unsigned long data_len, 5867 int max_page_order, 5868 int *errcode, 5869 gfp_t gfp_mask) 5870 { 5871 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5872 unsigned long chunk; 5873 struct sk_buff *skb; 5874 struct page *page; 5875 int i; 5876 5877 *errcode = -EMSGSIZE; 5878 /* Note this test could be relaxed, if we succeed to allocate 5879 * high order pages... 5880 */ 5881 if (npages > MAX_SKB_FRAGS) 5882 return NULL; 5883 5884 *errcode = -ENOBUFS; 5885 skb = alloc_skb(header_len, gfp_mask); 5886 if (!skb) 5887 return NULL; 5888 5889 skb->truesize += npages << PAGE_SHIFT; 5890 5891 for (i = 0; npages > 0; i++) { 5892 int order = max_page_order; 5893 5894 while (order) { 5895 if (npages >= 1 << order) { 5896 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5897 __GFP_COMP | 5898 __GFP_NOWARN, 5899 order); 5900 if (page) 5901 goto fill_page; 5902 /* Do not retry other high order allocations */ 5903 order = 1; 5904 max_page_order = 0; 5905 } 5906 order--; 5907 } 5908 page = alloc_page(gfp_mask); 5909 if (!page) 5910 goto failure; 5911 fill_page: 5912 chunk = min_t(unsigned long, data_len, 5913 PAGE_SIZE << order); 5914 skb_fill_page_desc(skb, i, page, 0, chunk); 5915 data_len -= chunk; 5916 npages -= 1 << order; 5917 } 5918 return skb; 5919 5920 failure: 5921 kfree_skb(skb); 5922 return NULL; 5923 } 5924 EXPORT_SYMBOL(alloc_skb_with_frags); 5925 5926 /* carve out the first off bytes from skb when off < headlen */ 5927 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5928 const int headlen, gfp_t gfp_mask) 5929 { 5930 int i; 5931 int size = skb_end_offset(skb); 5932 int new_hlen = headlen - off; 5933 u8 *data; 5934 5935 size = SKB_DATA_ALIGN(size); 5936 5937 if (skb_pfmemalloc(skb)) 5938 gfp_mask |= __GFP_MEMALLOC; 5939 data = kmalloc_reserve(size + 5940 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5941 gfp_mask, NUMA_NO_NODE, NULL); 5942 if (!data) 5943 return -ENOMEM; 5944 5945 size = SKB_WITH_OVERHEAD(ksize(data)); 5946 5947 /* Copy real data, and all frags */ 5948 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5949 skb->len -= off; 5950 5951 memcpy((struct skb_shared_info *)(data + size), 5952 skb_shinfo(skb), 5953 offsetof(struct skb_shared_info, 5954 frags[skb_shinfo(skb)->nr_frags])); 5955 if (skb_cloned(skb)) { 5956 /* drop the old head gracefully */ 5957 if (skb_orphan_frags(skb, gfp_mask)) { 5958 kfree(data); 5959 return -ENOMEM; 5960 } 5961 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5962 skb_frag_ref(skb, i); 5963 if (skb_has_frag_list(skb)) 5964 skb_clone_fraglist(skb); 5965 skb_release_data(skb); 5966 } else { 5967 /* we can reuse existing recount- all we did was 5968 * relocate values 5969 */ 5970 skb_free_head(skb); 5971 } 5972 5973 skb->head = data; 5974 skb->data = data; 5975 skb->head_frag = 0; 5976 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5977 skb->end = size; 5978 #else 5979 skb->end = skb->head + size; 5980 #endif 5981 skb_set_tail_pointer(skb, skb_headlen(skb)); 5982 skb_headers_offset_update(skb, 0); 5983 skb->cloned = 0; 5984 skb->hdr_len = 0; 5985 skb->nohdr = 0; 5986 atomic_set(&skb_shinfo(skb)->dataref, 1); 5987 5988 return 0; 5989 } 5990 5991 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5992 5993 /* carve out the first eat bytes from skb's frag_list. May recurse into 5994 * pskb_carve() 5995 */ 5996 static int pskb_carve_frag_list(struct sk_buff *skb, 5997 struct skb_shared_info *shinfo, int eat, 5998 gfp_t gfp_mask) 5999 { 6000 struct sk_buff *list = shinfo->frag_list; 6001 struct sk_buff *clone = NULL; 6002 struct sk_buff *insp = NULL; 6003 6004 do { 6005 if (!list) { 6006 pr_err("Not enough bytes to eat. Want %d\n", eat); 6007 return -EFAULT; 6008 } 6009 if (list->len <= eat) { 6010 /* Eaten as whole. */ 6011 eat -= list->len; 6012 list = list->next; 6013 insp = list; 6014 } else { 6015 /* Eaten partially. */ 6016 if (skb_shared(list)) { 6017 clone = skb_clone(list, gfp_mask); 6018 if (!clone) 6019 return -ENOMEM; 6020 insp = list->next; 6021 list = clone; 6022 } else { 6023 /* This may be pulled without problems. */ 6024 insp = list; 6025 } 6026 if (pskb_carve(list, eat, gfp_mask) < 0) { 6027 kfree_skb(clone); 6028 return -ENOMEM; 6029 } 6030 break; 6031 } 6032 } while (eat); 6033 6034 /* Free pulled out fragments. */ 6035 while ((list = shinfo->frag_list) != insp) { 6036 shinfo->frag_list = list->next; 6037 kfree_skb(list); 6038 } 6039 /* And insert new clone at head. */ 6040 if (clone) { 6041 clone->next = list; 6042 shinfo->frag_list = clone; 6043 } 6044 return 0; 6045 } 6046 6047 /* carve off first len bytes from skb. Split line (off) is in the 6048 * non-linear part of skb 6049 */ 6050 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6051 int pos, gfp_t gfp_mask) 6052 { 6053 int i, k = 0; 6054 int size = skb_end_offset(skb); 6055 u8 *data; 6056 const int nfrags = skb_shinfo(skb)->nr_frags; 6057 struct skb_shared_info *shinfo; 6058 6059 size = SKB_DATA_ALIGN(size); 6060 6061 if (skb_pfmemalloc(skb)) 6062 gfp_mask |= __GFP_MEMALLOC; 6063 data = kmalloc_reserve(size + 6064 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6065 gfp_mask, NUMA_NO_NODE, NULL); 6066 if (!data) 6067 return -ENOMEM; 6068 6069 size = SKB_WITH_OVERHEAD(ksize(data)); 6070 6071 memcpy((struct skb_shared_info *)(data + size), 6072 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6073 if (skb_orphan_frags(skb, gfp_mask)) { 6074 kfree(data); 6075 return -ENOMEM; 6076 } 6077 shinfo = (struct skb_shared_info *)(data + size); 6078 for (i = 0; i < nfrags; i++) { 6079 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6080 6081 if (pos + fsize > off) { 6082 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6083 6084 if (pos < off) { 6085 /* Split frag. 6086 * We have two variants in this case: 6087 * 1. Move all the frag to the second 6088 * part, if it is possible. F.e. 6089 * this approach is mandatory for TUX, 6090 * where splitting is expensive. 6091 * 2. Split is accurately. We make this. 6092 */ 6093 skb_frag_off_add(&shinfo->frags[0], off - pos); 6094 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6095 } 6096 skb_frag_ref(skb, i); 6097 k++; 6098 } 6099 pos += fsize; 6100 } 6101 shinfo->nr_frags = k; 6102 if (skb_has_frag_list(skb)) 6103 skb_clone_fraglist(skb); 6104 6105 /* split line is in frag list */ 6106 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6107 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6108 if (skb_has_frag_list(skb)) 6109 kfree_skb_list(skb_shinfo(skb)->frag_list); 6110 kfree(data); 6111 return -ENOMEM; 6112 } 6113 skb_release_data(skb); 6114 6115 skb->head = data; 6116 skb->head_frag = 0; 6117 skb->data = data; 6118 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6119 skb->end = size; 6120 #else 6121 skb->end = skb->head + size; 6122 #endif 6123 skb_reset_tail_pointer(skb); 6124 skb_headers_offset_update(skb, 0); 6125 skb->cloned = 0; 6126 skb->hdr_len = 0; 6127 skb->nohdr = 0; 6128 skb->len -= off; 6129 skb->data_len = skb->len; 6130 atomic_set(&skb_shinfo(skb)->dataref, 1); 6131 return 0; 6132 } 6133 6134 /* remove len bytes from the beginning of the skb */ 6135 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6136 { 6137 int headlen = skb_headlen(skb); 6138 6139 if (len < headlen) 6140 return pskb_carve_inside_header(skb, len, headlen, gfp); 6141 else 6142 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6143 } 6144 6145 /* Extract to_copy bytes starting at off from skb, and return this in 6146 * a new skb 6147 */ 6148 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6149 int to_copy, gfp_t gfp) 6150 { 6151 struct sk_buff *clone = skb_clone(skb, gfp); 6152 6153 if (!clone) 6154 return NULL; 6155 6156 if (pskb_carve(clone, off, gfp) < 0 || 6157 pskb_trim(clone, to_copy)) { 6158 kfree_skb(clone); 6159 return NULL; 6160 } 6161 return clone; 6162 } 6163 EXPORT_SYMBOL(pskb_extract); 6164 6165 /** 6166 * skb_condense - try to get rid of fragments/frag_list if possible 6167 * @skb: buffer 6168 * 6169 * Can be used to save memory before skb is added to a busy queue. 6170 * If packet has bytes in frags and enough tail room in skb->head, 6171 * pull all of them, so that we can free the frags right now and adjust 6172 * truesize. 6173 * Notes: 6174 * We do not reallocate skb->head thus can not fail. 6175 * Caller must re-evaluate skb->truesize if needed. 6176 */ 6177 void skb_condense(struct sk_buff *skb) 6178 { 6179 if (skb->data_len) { 6180 if (skb->data_len > skb->end - skb->tail || 6181 skb_cloned(skb)) 6182 return; 6183 6184 /* Nice, we can free page frag(s) right now */ 6185 __pskb_pull_tail(skb, skb->data_len); 6186 } 6187 /* At this point, skb->truesize might be over estimated, 6188 * because skb had a fragment, and fragments do not tell 6189 * their truesize. 6190 * When we pulled its content into skb->head, fragment 6191 * was freed, but __pskb_pull_tail() could not possibly 6192 * adjust skb->truesize, not knowing the frag truesize. 6193 */ 6194 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6195 } 6196 6197 #ifdef CONFIG_SKB_EXTENSIONS 6198 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6199 { 6200 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6201 } 6202 6203 /** 6204 * __skb_ext_alloc - allocate a new skb extensions storage 6205 * 6206 * @flags: See kmalloc(). 6207 * 6208 * Returns the newly allocated pointer. The pointer can later attached to a 6209 * skb via __skb_ext_set(). 6210 * Note: caller must handle the skb_ext as an opaque data. 6211 */ 6212 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6213 { 6214 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6215 6216 if (new) { 6217 memset(new->offset, 0, sizeof(new->offset)); 6218 refcount_set(&new->refcnt, 1); 6219 } 6220 6221 return new; 6222 } 6223 6224 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6225 unsigned int old_active) 6226 { 6227 struct skb_ext *new; 6228 6229 if (refcount_read(&old->refcnt) == 1) 6230 return old; 6231 6232 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6233 if (!new) 6234 return NULL; 6235 6236 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6237 refcount_set(&new->refcnt, 1); 6238 6239 #ifdef CONFIG_XFRM 6240 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6241 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6242 unsigned int i; 6243 6244 for (i = 0; i < sp->len; i++) 6245 xfrm_state_hold(sp->xvec[i]); 6246 } 6247 #endif 6248 __skb_ext_put(old); 6249 return new; 6250 } 6251 6252 /** 6253 * __skb_ext_set - attach the specified extension storage to this skb 6254 * @skb: buffer 6255 * @id: extension id 6256 * @ext: extension storage previously allocated via __skb_ext_alloc() 6257 * 6258 * Existing extensions, if any, are cleared. 6259 * 6260 * Returns the pointer to the extension. 6261 */ 6262 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6263 struct skb_ext *ext) 6264 { 6265 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6266 6267 skb_ext_put(skb); 6268 newlen = newoff + skb_ext_type_len[id]; 6269 ext->chunks = newlen; 6270 ext->offset[id] = newoff; 6271 skb->extensions = ext; 6272 skb->active_extensions = 1 << id; 6273 return skb_ext_get_ptr(ext, id); 6274 } 6275 6276 /** 6277 * skb_ext_add - allocate space for given extension, COW if needed 6278 * @skb: buffer 6279 * @id: extension to allocate space for 6280 * 6281 * Allocates enough space for the given extension. 6282 * If the extension is already present, a pointer to that extension 6283 * is returned. 6284 * 6285 * If the skb was cloned, COW applies and the returned memory can be 6286 * modified without changing the extension space of clones buffers. 6287 * 6288 * Returns pointer to the extension or NULL on allocation failure. 6289 */ 6290 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6291 { 6292 struct skb_ext *new, *old = NULL; 6293 unsigned int newlen, newoff; 6294 6295 if (skb->active_extensions) { 6296 old = skb->extensions; 6297 6298 new = skb_ext_maybe_cow(old, skb->active_extensions); 6299 if (!new) 6300 return NULL; 6301 6302 if (__skb_ext_exist(new, id)) 6303 goto set_active; 6304 6305 newoff = new->chunks; 6306 } else { 6307 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6308 6309 new = __skb_ext_alloc(GFP_ATOMIC); 6310 if (!new) 6311 return NULL; 6312 } 6313 6314 newlen = newoff + skb_ext_type_len[id]; 6315 new->chunks = newlen; 6316 new->offset[id] = newoff; 6317 set_active: 6318 skb->extensions = new; 6319 skb->active_extensions |= 1 << id; 6320 return skb_ext_get_ptr(new, id); 6321 } 6322 EXPORT_SYMBOL(skb_ext_add); 6323 6324 #ifdef CONFIG_XFRM 6325 static void skb_ext_put_sp(struct sec_path *sp) 6326 { 6327 unsigned int i; 6328 6329 for (i = 0; i < sp->len; i++) 6330 xfrm_state_put(sp->xvec[i]); 6331 } 6332 #endif 6333 6334 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6335 { 6336 struct skb_ext *ext = skb->extensions; 6337 6338 skb->active_extensions &= ~(1 << id); 6339 if (skb->active_extensions == 0) { 6340 skb->extensions = NULL; 6341 __skb_ext_put(ext); 6342 #ifdef CONFIG_XFRM 6343 } else if (id == SKB_EXT_SEC_PATH && 6344 refcount_read(&ext->refcnt) == 1) { 6345 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6346 6347 skb_ext_put_sp(sp); 6348 sp->len = 0; 6349 #endif 6350 } 6351 } 6352 EXPORT_SYMBOL(__skb_ext_del); 6353 6354 void __skb_ext_put(struct skb_ext *ext) 6355 { 6356 /* If this is last clone, nothing can increment 6357 * it after check passes. Avoids one atomic op. 6358 */ 6359 if (refcount_read(&ext->refcnt) == 1) 6360 goto free_now; 6361 6362 if (!refcount_dec_and_test(&ext->refcnt)) 6363 return; 6364 free_now: 6365 #ifdef CONFIG_XFRM 6366 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6367 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6368 #endif 6369 6370 kmem_cache_free(skbuff_ext_cache, ext); 6371 } 6372 EXPORT_SYMBOL(__skb_ext_put); 6373 #endif /* CONFIG_SKB_EXTENSIONS */ 6374