1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 #define NAPI_SKB_CACHE_SIZE 64 123 #define NAPI_SKB_CACHE_BULK 16 124 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 125 126 struct napi_alloc_cache { 127 struct page_frag_cache page; 128 unsigned int skb_count; 129 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 130 }; 131 132 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 133 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 134 135 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 136 unsigned int align_mask) 137 { 138 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 139 140 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 141 } 142 143 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 144 { 145 fragsz = SKB_DATA_ALIGN(fragsz); 146 147 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 148 } 149 EXPORT_SYMBOL(__napi_alloc_frag_align); 150 151 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 152 { 153 struct page_frag_cache *nc; 154 void *data; 155 156 fragsz = SKB_DATA_ALIGN(fragsz); 157 if (in_irq() || irqs_disabled()) { 158 nc = this_cpu_ptr(&netdev_alloc_cache); 159 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 160 } else { 161 local_bh_disable(); 162 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 163 local_bh_enable(); 164 } 165 return data; 166 } 167 EXPORT_SYMBOL(__netdev_alloc_frag_align); 168 169 static struct sk_buff *napi_skb_cache_get(void) 170 { 171 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 172 struct sk_buff *skb; 173 174 if (unlikely(!nc->skb_count)) 175 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 176 GFP_ATOMIC, 177 NAPI_SKB_CACHE_BULK, 178 nc->skb_cache); 179 if (unlikely(!nc->skb_count)) 180 return NULL; 181 182 skb = nc->skb_cache[--nc->skb_count]; 183 kasan_unpoison_object_data(skbuff_head_cache, skb); 184 185 return skb; 186 } 187 188 /* Caller must provide SKB that is memset cleared */ 189 static void __build_skb_around(struct sk_buff *skb, void *data, 190 unsigned int frag_size) 191 { 192 struct skb_shared_info *shinfo; 193 unsigned int size = frag_size ? : ksize(data); 194 195 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 196 197 /* Assumes caller memset cleared SKB */ 198 skb->truesize = SKB_TRUESIZE(size); 199 refcount_set(&skb->users, 1); 200 skb->head = data; 201 skb->data = data; 202 skb_reset_tail_pointer(skb); 203 skb->end = skb->tail + size; 204 skb->mac_header = (typeof(skb->mac_header))~0U; 205 skb->transport_header = (typeof(skb->transport_header))~0U; 206 207 /* make sure we initialize shinfo sequentially */ 208 shinfo = skb_shinfo(skb); 209 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 210 atomic_set(&shinfo->dataref, 1); 211 212 skb_set_kcov_handle(skb, kcov_common_handle()); 213 } 214 215 /** 216 * __build_skb - build a network buffer 217 * @data: data buffer provided by caller 218 * @frag_size: size of data, or 0 if head was kmalloced 219 * 220 * Allocate a new &sk_buff. Caller provides space holding head and 221 * skb_shared_info. @data must have been allocated by kmalloc() only if 222 * @frag_size is 0, otherwise data should come from the page allocator 223 * or vmalloc() 224 * The return is the new skb buffer. 225 * On a failure the return is %NULL, and @data is not freed. 226 * Notes : 227 * Before IO, driver allocates only data buffer where NIC put incoming frame 228 * Driver should add room at head (NET_SKB_PAD) and 229 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 230 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 231 * before giving packet to stack. 232 * RX rings only contains data buffers, not full skbs. 233 */ 234 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 235 { 236 struct sk_buff *skb; 237 238 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 239 if (unlikely(!skb)) 240 return NULL; 241 242 memset(skb, 0, offsetof(struct sk_buff, tail)); 243 __build_skb_around(skb, data, frag_size); 244 245 return skb; 246 } 247 248 /* build_skb() is wrapper over __build_skb(), that specifically 249 * takes care of skb->head and skb->pfmemalloc 250 * This means that if @frag_size is not zero, then @data must be backed 251 * by a page fragment, not kmalloc() or vmalloc() 252 */ 253 struct sk_buff *build_skb(void *data, unsigned int frag_size) 254 { 255 struct sk_buff *skb = __build_skb(data, frag_size); 256 257 if (skb && frag_size) { 258 skb->head_frag = 1; 259 if (page_is_pfmemalloc(virt_to_head_page(data))) 260 skb->pfmemalloc = 1; 261 } 262 return skb; 263 } 264 EXPORT_SYMBOL(build_skb); 265 266 /** 267 * build_skb_around - build a network buffer around provided skb 268 * @skb: sk_buff provide by caller, must be memset cleared 269 * @data: data buffer provided by caller 270 * @frag_size: size of data, or 0 if head was kmalloced 271 */ 272 struct sk_buff *build_skb_around(struct sk_buff *skb, 273 void *data, unsigned int frag_size) 274 { 275 if (unlikely(!skb)) 276 return NULL; 277 278 __build_skb_around(skb, data, frag_size); 279 280 if (frag_size) { 281 skb->head_frag = 1; 282 if (page_is_pfmemalloc(virt_to_head_page(data))) 283 skb->pfmemalloc = 1; 284 } 285 return skb; 286 } 287 EXPORT_SYMBOL(build_skb_around); 288 289 /** 290 * __napi_build_skb - build a network buffer 291 * @data: data buffer provided by caller 292 * @frag_size: size of data, or 0 if head was kmalloced 293 * 294 * Version of __build_skb() that uses NAPI percpu caches to obtain 295 * skbuff_head instead of inplace allocation. 296 * 297 * Returns a new &sk_buff on success, %NULL on allocation failure. 298 */ 299 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 300 { 301 struct sk_buff *skb; 302 303 skb = napi_skb_cache_get(); 304 if (unlikely(!skb)) 305 return NULL; 306 307 memset(skb, 0, offsetof(struct sk_buff, tail)); 308 __build_skb_around(skb, data, frag_size); 309 310 return skb; 311 } 312 313 /** 314 * napi_build_skb - build a network buffer 315 * @data: data buffer provided by caller 316 * @frag_size: size of data, or 0 if head was kmalloced 317 * 318 * Version of __napi_build_skb() that takes care of skb->head_frag 319 * and skb->pfmemalloc when the data is a page or page fragment. 320 * 321 * Returns a new &sk_buff on success, %NULL on allocation failure. 322 */ 323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 324 { 325 struct sk_buff *skb = __napi_build_skb(data, frag_size); 326 327 if (likely(skb) && frag_size) { 328 skb->head_frag = 1; 329 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 330 } 331 332 return skb; 333 } 334 EXPORT_SYMBOL(napi_build_skb); 335 336 /* 337 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 338 * the caller if emergency pfmemalloc reserves are being used. If it is and 339 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 340 * may be used. Otherwise, the packet data may be discarded until enough 341 * memory is free 342 */ 343 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 344 bool *pfmemalloc) 345 { 346 void *obj; 347 bool ret_pfmemalloc = false; 348 349 /* 350 * Try a regular allocation, when that fails and we're not entitled 351 * to the reserves, fail. 352 */ 353 obj = kmalloc_node_track_caller(size, 354 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 355 node); 356 if (obj || !(gfp_pfmemalloc_allowed(flags))) 357 goto out; 358 359 /* Try again but now we are using pfmemalloc reserves */ 360 ret_pfmemalloc = true; 361 obj = kmalloc_node_track_caller(size, flags, node); 362 363 out: 364 if (pfmemalloc) 365 *pfmemalloc = ret_pfmemalloc; 366 367 return obj; 368 } 369 370 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 371 * 'private' fields and also do memory statistics to find all the 372 * [BEEP] leaks. 373 * 374 */ 375 376 /** 377 * __alloc_skb - allocate a network buffer 378 * @size: size to allocate 379 * @gfp_mask: allocation mask 380 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 381 * instead of head cache and allocate a cloned (child) skb. 382 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 383 * allocations in case the data is required for writeback 384 * @node: numa node to allocate memory on 385 * 386 * Allocate a new &sk_buff. The returned buffer has no headroom and a 387 * tail room of at least size bytes. The object has a reference count 388 * of one. The return is the buffer. On a failure the return is %NULL. 389 * 390 * Buffers may only be allocated from interrupts using a @gfp_mask of 391 * %GFP_ATOMIC. 392 */ 393 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 394 int flags, int node) 395 { 396 struct kmem_cache *cache; 397 struct sk_buff *skb; 398 u8 *data; 399 bool pfmemalloc; 400 401 cache = (flags & SKB_ALLOC_FCLONE) 402 ? skbuff_fclone_cache : skbuff_head_cache; 403 404 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 405 gfp_mask |= __GFP_MEMALLOC; 406 407 /* Get the HEAD */ 408 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 409 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 410 skb = napi_skb_cache_get(); 411 else 412 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 413 if (unlikely(!skb)) 414 return NULL; 415 prefetchw(skb); 416 417 /* We do our best to align skb_shared_info on a separate cache 418 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 419 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 420 * Both skb->head and skb_shared_info are cache line aligned. 421 */ 422 size = SKB_DATA_ALIGN(size); 423 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 424 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 425 if (unlikely(!data)) 426 goto nodata; 427 /* kmalloc(size) might give us more room than requested. 428 * Put skb_shared_info exactly at the end of allocated zone, 429 * to allow max possible filling before reallocation. 430 */ 431 size = SKB_WITH_OVERHEAD(ksize(data)); 432 prefetchw(data + size); 433 434 /* 435 * Only clear those fields we need to clear, not those that we will 436 * actually initialise below. Hence, don't put any more fields after 437 * the tail pointer in struct sk_buff! 438 */ 439 memset(skb, 0, offsetof(struct sk_buff, tail)); 440 __build_skb_around(skb, data, 0); 441 skb->pfmemalloc = pfmemalloc; 442 443 if (flags & SKB_ALLOC_FCLONE) { 444 struct sk_buff_fclones *fclones; 445 446 fclones = container_of(skb, struct sk_buff_fclones, skb1); 447 448 skb->fclone = SKB_FCLONE_ORIG; 449 refcount_set(&fclones->fclone_ref, 1); 450 451 fclones->skb2.fclone = SKB_FCLONE_CLONE; 452 } 453 454 return skb; 455 456 nodata: 457 kmem_cache_free(cache, skb); 458 return NULL; 459 } 460 EXPORT_SYMBOL(__alloc_skb); 461 462 /** 463 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 464 * @dev: network device to receive on 465 * @len: length to allocate 466 * @gfp_mask: get_free_pages mask, passed to alloc_skb 467 * 468 * Allocate a new &sk_buff and assign it a usage count of one. The 469 * buffer has NET_SKB_PAD headroom built in. Users should allocate 470 * the headroom they think they need without accounting for the 471 * built in space. The built in space is used for optimisations. 472 * 473 * %NULL is returned if there is no free memory. 474 */ 475 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 476 gfp_t gfp_mask) 477 { 478 struct page_frag_cache *nc; 479 struct sk_buff *skb; 480 bool pfmemalloc; 481 void *data; 482 483 len += NET_SKB_PAD; 484 485 /* If requested length is either too small or too big, 486 * we use kmalloc() for skb->head allocation. 487 */ 488 if (len <= SKB_WITH_OVERHEAD(1024) || 489 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 490 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 491 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 492 if (!skb) 493 goto skb_fail; 494 goto skb_success; 495 } 496 497 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 498 len = SKB_DATA_ALIGN(len); 499 500 if (sk_memalloc_socks()) 501 gfp_mask |= __GFP_MEMALLOC; 502 503 if (in_irq() || irqs_disabled()) { 504 nc = this_cpu_ptr(&netdev_alloc_cache); 505 data = page_frag_alloc(nc, len, gfp_mask); 506 pfmemalloc = nc->pfmemalloc; 507 } else { 508 local_bh_disable(); 509 nc = this_cpu_ptr(&napi_alloc_cache.page); 510 data = page_frag_alloc(nc, len, gfp_mask); 511 pfmemalloc = nc->pfmemalloc; 512 local_bh_enable(); 513 } 514 515 if (unlikely(!data)) 516 return NULL; 517 518 skb = __build_skb(data, len); 519 if (unlikely(!skb)) { 520 skb_free_frag(data); 521 return NULL; 522 } 523 524 if (pfmemalloc) 525 skb->pfmemalloc = 1; 526 skb->head_frag = 1; 527 528 skb_success: 529 skb_reserve(skb, NET_SKB_PAD); 530 skb->dev = dev; 531 532 skb_fail: 533 return skb; 534 } 535 EXPORT_SYMBOL(__netdev_alloc_skb); 536 537 /** 538 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 539 * @napi: napi instance this buffer was allocated for 540 * @len: length to allocate 541 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 542 * 543 * Allocate a new sk_buff for use in NAPI receive. This buffer will 544 * attempt to allocate the head from a special reserved region used 545 * only for NAPI Rx allocation. By doing this we can save several 546 * CPU cycles by avoiding having to disable and re-enable IRQs. 547 * 548 * %NULL is returned if there is no free memory. 549 */ 550 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 551 gfp_t gfp_mask) 552 { 553 struct napi_alloc_cache *nc; 554 struct sk_buff *skb; 555 void *data; 556 557 len += NET_SKB_PAD + NET_IP_ALIGN; 558 559 /* If requested length is either too small or too big, 560 * we use kmalloc() for skb->head allocation. 561 */ 562 if (len <= SKB_WITH_OVERHEAD(1024) || 563 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 564 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 565 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 566 NUMA_NO_NODE); 567 if (!skb) 568 goto skb_fail; 569 goto skb_success; 570 } 571 572 nc = this_cpu_ptr(&napi_alloc_cache); 573 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 574 len = SKB_DATA_ALIGN(len); 575 576 if (sk_memalloc_socks()) 577 gfp_mask |= __GFP_MEMALLOC; 578 579 data = page_frag_alloc(&nc->page, len, gfp_mask); 580 if (unlikely(!data)) 581 return NULL; 582 583 skb = __napi_build_skb(data, len); 584 if (unlikely(!skb)) { 585 skb_free_frag(data); 586 return NULL; 587 } 588 589 if (nc->page.pfmemalloc) 590 skb->pfmemalloc = 1; 591 skb->head_frag = 1; 592 593 skb_success: 594 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 595 skb->dev = napi->dev; 596 597 skb_fail: 598 return skb; 599 } 600 EXPORT_SYMBOL(__napi_alloc_skb); 601 602 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 603 int size, unsigned int truesize) 604 { 605 skb_fill_page_desc(skb, i, page, off, size); 606 skb->len += size; 607 skb->data_len += size; 608 skb->truesize += truesize; 609 } 610 EXPORT_SYMBOL(skb_add_rx_frag); 611 612 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 613 unsigned int truesize) 614 { 615 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 616 617 skb_frag_size_add(frag, size); 618 skb->len += size; 619 skb->data_len += size; 620 skb->truesize += truesize; 621 } 622 EXPORT_SYMBOL(skb_coalesce_rx_frag); 623 624 static void skb_drop_list(struct sk_buff **listp) 625 { 626 kfree_skb_list(*listp); 627 *listp = NULL; 628 } 629 630 static inline void skb_drop_fraglist(struct sk_buff *skb) 631 { 632 skb_drop_list(&skb_shinfo(skb)->frag_list); 633 } 634 635 static void skb_clone_fraglist(struct sk_buff *skb) 636 { 637 struct sk_buff *list; 638 639 skb_walk_frags(skb, list) 640 skb_get(list); 641 } 642 643 static void skb_free_head(struct sk_buff *skb) 644 { 645 unsigned char *head = skb->head; 646 647 if (skb->head_frag) 648 skb_free_frag(head); 649 else 650 kfree(head); 651 } 652 653 static void skb_release_data(struct sk_buff *skb) 654 { 655 struct skb_shared_info *shinfo = skb_shinfo(skb); 656 int i; 657 658 if (skb->cloned && 659 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 660 &shinfo->dataref)) 661 return; 662 663 skb_zcopy_clear(skb, true); 664 665 for (i = 0; i < shinfo->nr_frags; i++) 666 __skb_frag_unref(&shinfo->frags[i]); 667 668 if (shinfo->frag_list) 669 kfree_skb_list(shinfo->frag_list); 670 671 skb_free_head(skb); 672 } 673 674 /* 675 * Free an skbuff by memory without cleaning the state. 676 */ 677 static void kfree_skbmem(struct sk_buff *skb) 678 { 679 struct sk_buff_fclones *fclones; 680 681 switch (skb->fclone) { 682 case SKB_FCLONE_UNAVAILABLE: 683 kmem_cache_free(skbuff_head_cache, skb); 684 return; 685 686 case SKB_FCLONE_ORIG: 687 fclones = container_of(skb, struct sk_buff_fclones, skb1); 688 689 /* We usually free the clone (TX completion) before original skb 690 * This test would have no chance to be true for the clone, 691 * while here, branch prediction will be good. 692 */ 693 if (refcount_read(&fclones->fclone_ref) == 1) 694 goto fastpath; 695 break; 696 697 default: /* SKB_FCLONE_CLONE */ 698 fclones = container_of(skb, struct sk_buff_fclones, skb2); 699 break; 700 } 701 if (!refcount_dec_and_test(&fclones->fclone_ref)) 702 return; 703 fastpath: 704 kmem_cache_free(skbuff_fclone_cache, fclones); 705 } 706 707 void skb_release_head_state(struct sk_buff *skb) 708 { 709 skb_dst_drop(skb); 710 if (skb->destructor) { 711 WARN_ON(in_irq()); 712 skb->destructor(skb); 713 } 714 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 715 nf_conntrack_put(skb_nfct(skb)); 716 #endif 717 skb_ext_put(skb); 718 } 719 720 /* Free everything but the sk_buff shell. */ 721 static void skb_release_all(struct sk_buff *skb) 722 { 723 skb_release_head_state(skb); 724 if (likely(skb->head)) 725 skb_release_data(skb); 726 } 727 728 /** 729 * __kfree_skb - private function 730 * @skb: buffer 731 * 732 * Free an sk_buff. Release anything attached to the buffer. 733 * Clean the state. This is an internal helper function. Users should 734 * always call kfree_skb 735 */ 736 737 void __kfree_skb(struct sk_buff *skb) 738 { 739 skb_release_all(skb); 740 kfree_skbmem(skb); 741 } 742 EXPORT_SYMBOL(__kfree_skb); 743 744 /** 745 * kfree_skb - free an sk_buff 746 * @skb: buffer to free 747 * 748 * Drop a reference to the buffer and free it if the usage count has 749 * hit zero. 750 */ 751 void kfree_skb(struct sk_buff *skb) 752 { 753 if (!skb_unref(skb)) 754 return; 755 756 trace_kfree_skb(skb, __builtin_return_address(0)); 757 __kfree_skb(skb); 758 } 759 EXPORT_SYMBOL(kfree_skb); 760 761 void kfree_skb_list(struct sk_buff *segs) 762 { 763 while (segs) { 764 struct sk_buff *next = segs->next; 765 766 kfree_skb(segs); 767 segs = next; 768 } 769 } 770 EXPORT_SYMBOL(kfree_skb_list); 771 772 /* Dump skb information and contents. 773 * 774 * Must only be called from net_ratelimit()-ed paths. 775 * 776 * Dumps whole packets if full_pkt, only headers otherwise. 777 */ 778 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 779 { 780 struct skb_shared_info *sh = skb_shinfo(skb); 781 struct net_device *dev = skb->dev; 782 struct sock *sk = skb->sk; 783 struct sk_buff *list_skb; 784 bool has_mac, has_trans; 785 int headroom, tailroom; 786 int i, len, seg_len; 787 788 if (full_pkt) 789 len = skb->len; 790 else 791 len = min_t(int, skb->len, MAX_HEADER + 128); 792 793 headroom = skb_headroom(skb); 794 tailroom = skb_tailroom(skb); 795 796 has_mac = skb_mac_header_was_set(skb); 797 has_trans = skb_transport_header_was_set(skb); 798 799 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 800 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 801 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 802 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 803 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 804 level, skb->len, headroom, skb_headlen(skb), tailroom, 805 has_mac ? skb->mac_header : -1, 806 has_mac ? skb_mac_header_len(skb) : -1, 807 skb->network_header, 808 has_trans ? skb_network_header_len(skb) : -1, 809 has_trans ? skb->transport_header : -1, 810 sh->tx_flags, sh->nr_frags, 811 sh->gso_size, sh->gso_type, sh->gso_segs, 812 skb->csum, skb->ip_summed, skb->csum_complete_sw, 813 skb->csum_valid, skb->csum_level, 814 skb->hash, skb->sw_hash, skb->l4_hash, 815 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 816 817 if (dev) 818 printk("%sdev name=%s feat=0x%pNF\n", 819 level, dev->name, &dev->features); 820 if (sk) 821 printk("%ssk family=%hu type=%u proto=%u\n", 822 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 823 824 if (full_pkt && headroom) 825 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 826 16, 1, skb->head, headroom, false); 827 828 seg_len = min_t(int, skb_headlen(skb), len); 829 if (seg_len) 830 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 831 16, 1, skb->data, seg_len, false); 832 len -= seg_len; 833 834 if (full_pkt && tailroom) 835 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 836 16, 1, skb_tail_pointer(skb), tailroom, false); 837 838 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 839 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 840 u32 p_off, p_len, copied; 841 struct page *p; 842 u8 *vaddr; 843 844 skb_frag_foreach_page(frag, skb_frag_off(frag), 845 skb_frag_size(frag), p, p_off, p_len, 846 copied) { 847 seg_len = min_t(int, p_len, len); 848 vaddr = kmap_atomic(p); 849 print_hex_dump(level, "skb frag: ", 850 DUMP_PREFIX_OFFSET, 851 16, 1, vaddr + p_off, seg_len, false); 852 kunmap_atomic(vaddr); 853 len -= seg_len; 854 if (!len) 855 break; 856 } 857 } 858 859 if (full_pkt && skb_has_frag_list(skb)) { 860 printk("skb fraglist:\n"); 861 skb_walk_frags(skb, list_skb) 862 skb_dump(level, list_skb, true); 863 } 864 } 865 EXPORT_SYMBOL(skb_dump); 866 867 /** 868 * skb_tx_error - report an sk_buff xmit error 869 * @skb: buffer that triggered an error 870 * 871 * Report xmit error if a device callback is tracking this skb. 872 * skb must be freed afterwards. 873 */ 874 void skb_tx_error(struct sk_buff *skb) 875 { 876 skb_zcopy_clear(skb, true); 877 } 878 EXPORT_SYMBOL(skb_tx_error); 879 880 #ifdef CONFIG_TRACEPOINTS 881 /** 882 * consume_skb - free an skbuff 883 * @skb: buffer to free 884 * 885 * Drop a ref to the buffer and free it if the usage count has hit zero 886 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 887 * is being dropped after a failure and notes that 888 */ 889 void consume_skb(struct sk_buff *skb) 890 { 891 if (!skb_unref(skb)) 892 return; 893 894 trace_consume_skb(skb); 895 __kfree_skb(skb); 896 } 897 EXPORT_SYMBOL(consume_skb); 898 #endif 899 900 /** 901 * __consume_stateless_skb - free an skbuff, assuming it is stateless 902 * @skb: buffer to free 903 * 904 * Alike consume_skb(), but this variant assumes that this is the last 905 * skb reference and all the head states have been already dropped 906 */ 907 void __consume_stateless_skb(struct sk_buff *skb) 908 { 909 trace_consume_skb(skb); 910 skb_release_data(skb); 911 kfree_skbmem(skb); 912 } 913 914 static void napi_skb_cache_put(struct sk_buff *skb) 915 { 916 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 917 u32 i; 918 919 kasan_poison_object_data(skbuff_head_cache, skb); 920 nc->skb_cache[nc->skb_count++] = skb; 921 922 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 923 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 924 kasan_unpoison_object_data(skbuff_head_cache, 925 nc->skb_cache[i]); 926 927 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 928 nc->skb_cache + NAPI_SKB_CACHE_HALF); 929 nc->skb_count = NAPI_SKB_CACHE_HALF; 930 } 931 } 932 933 void __kfree_skb_defer(struct sk_buff *skb) 934 { 935 skb_release_all(skb); 936 napi_skb_cache_put(skb); 937 } 938 939 void napi_skb_free_stolen_head(struct sk_buff *skb) 940 { 941 skb_dst_drop(skb); 942 skb_ext_put(skb); 943 napi_skb_cache_put(skb); 944 } 945 946 void napi_consume_skb(struct sk_buff *skb, int budget) 947 { 948 /* Zero budget indicate non-NAPI context called us, like netpoll */ 949 if (unlikely(!budget)) { 950 dev_consume_skb_any(skb); 951 return; 952 } 953 954 lockdep_assert_in_softirq(); 955 956 if (!skb_unref(skb)) 957 return; 958 959 /* if reaching here SKB is ready to free */ 960 trace_consume_skb(skb); 961 962 /* if SKB is a clone, don't handle this case */ 963 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 964 __kfree_skb(skb); 965 return; 966 } 967 968 skb_release_all(skb); 969 napi_skb_cache_put(skb); 970 } 971 EXPORT_SYMBOL(napi_consume_skb); 972 973 /* Make sure a field is enclosed inside headers_start/headers_end section */ 974 #define CHECK_SKB_FIELD(field) \ 975 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 976 offsetof(struct sk_buff, headers_start)); \ 977 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 978 offsetof(struct sk_buff, headers_end)); \ 979 980 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 981 { 982 new->tstamp = old->tstamp; 983 /* We do not copy old->sk */ 984 new->dev = old->dev; 985 memcpy(new->cb, old->cb, sizeof(old->cb)); 986 skb_dst_copy(new, old); 987 __skb_ext_copy(new, old); 988 __nf_copy(new, old, false); 989 990 /* Note : this field could be in headers_start/headers_end section 991 * It is not yet because we do not want to have a 16 bit hole 992 */ 993 new->queue_mapping = old->queue_mapping; 994 995 memcpy(&new->headers_start, &old->headers_start, 996 offsetof(struct sk_buff, headers_end) - 997 offsetof(struct sk_buff, headers_start)); 998 CHECK_SKB_FIELD(protocol); 999 CHECK_SKB_FIELD(csum); 1000 CHECK_SKB_FIELD(hash); 1001 CHECK_SKB_FIELD(priority); 1002 CHECK_SKB_FIELD(skb_iif); 1003 CHECK_SKB_FIELD(vlan_proto); 1004 CHECK_SKB_FIELD(vlan_tci); 1005 CHECK_SKB_FIELD(transport_header); 1006 CHECK_SKB_FIELD(network_header); 1007 CHECK_SKB_FIELD(mac_header); 1008 CHECK_SKB_FIELD(inner_protocol); 1009 CHECK_SKB_FIELD(inner_transport_header); 1010 CHECK_SKB_FIELD(inner_network_header); 1011 CHECK_SKB_FIELD(inner_mac_header); 1012 CHECK_SKB_FIELD(mark); 1013 #ifdef CONFIG_NETWORK_SECMARK 1014 CHECK_SKB_FIELD(secmark); 1015 #endif 1016 #ifdef CONFIG_NET_RX_BUSY_POLL 1017 CHECK_SKB_FIELD(napi_id); 1018 #endif 1019 #ifdef CONFIG_XPS 1020 CHECK_SKB_FIELD(sender_cpu); 1021 #endif 1022 #ifdef CONFIG_NET_SCHED 1023 CHECK_SKB_FIELD(tc_index); 1024 #endif 1025 1026 } 1027 1028 /* 1029 * You should not add any new code to this function. Add it to 1030 * __copy_skb_header above instead. 1031 */ 1032 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1033 { 1034 #define C(x) n->x = skb->x 1035 1036 n->next = n->prev = NULL; 1037 n->sk = NULL; 1038 __copy_skb_header(n, skb); 1039 1040 C(len); 1041 C(data_len); 1042 C(mac_len); 1043 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1044 n->cloned = 1; 1045 n->nohdr = 0; 1046 n->peeked = 0; 1047 C(pfmemalloc); 1048 n->destructor = NULL; 1049 C(tail); 1050 C(end); 1051 C(head); 1052 C(head_frag); 1053 C(data); 1054 C(truesize); 1055 refcount_set(&n->users, 1); 1056 1057 atomic_inc(&(skb_shinfo(skb)->dataref)); 1058 skb->cloned = 1; 1059 1060 return n; 1061 #undef C 1062 } 1063 1064 /** 1065 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1066 * @first: first sk_buff of the msg 1067 */ 1068 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1069 { 1070 struct sk_buff *n; 1071 1072 n = alloc_skb(0, GFP_ATOMIC); 1073 if (!n) 1074 return NULL; 1075 1076 n->len = first->len; 1077 n->data_len = first->len; 1078 n->truesize = first->truesize; 1079 1080 skb_shinfo(n)->frag_list = first; 1081 1082 __copy_skb_header(n, first); 1083 n->destructor = NULL; 1084 1085 return n; 1086 } 1087 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1088 1089 /** 1090 * skb_morph - morph one skb into another 1091 * @dst: the skb to receive the contents 1092 * @src: the skb to supply the contents 1093 * 1094 * This is identical to skb_clone except that the target skb is 1095 * supplied by the user. 1096 * 1097 * The target skb is returned upon exit. 1098 */ 1099 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1100 { 1101 skb_release_all(dst); 1102 return __skb_clone(dst, src); 1103 } 1104 EXPORT_SYMBOL_GPL(skb_morph); 1105 1106 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1107 { 1108 unsigned long max_pg, num_pg, new_pg, old_pg; 1109 struct user_struct *user; 1110 1111 if (capable(CAP_IPC_LOCK) || !size) 1112 return 0; 1113 1114 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1115 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1116 user = mmp->user ? : current_user(); 1117 1118 do { 1119 old_pg = atomic_long_read(&user->locked_vm); 1120 new_pg = old_pg + num_pg; 1121 if (new_pg > max_pg) 1122 return -ENOBUFS; 1123 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1124 old_pg); 1125 1126 if (!mmp->user) { 1127 mmp->user = get_uid(user); 1128 mmp->num_pg = num_pg; 1129 } else { 1130 mmp->num_pg += num_pg; 1131 } 1132 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1136 1137 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1138 { 1139 if (mmp->user) { 1140 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1141 free_uid(mmp->user); 1142 } 1143 } 1144 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1145 1146 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1147 { 1148 struct ubuf_info *uarg; 1149 struct sk_buff *skb; 1150 1151 WARN_ON_ONCE(!in_task()); 1152 1153 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1154 if (!skb) 1155 return NULL; 1156 1157 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1158 uarg = (void *)skb->cb; 1159 uarg->mmp.user = NULL; 1160 1161 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1162 kfree_skb(skb); 1163 return NULL; 1164 } 1165 1166 uarg->callback = msg_zerocopy_callback; 1167 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1168 uarg->len = 1; 1169 uarg->bytelen = size; 1170 uarg->zerocopy = 1; 1171 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1172 refcount_set(&uarg->refcnt, 1); 1173 sock_hold(sk); 1174 1175 return uarg; 1176 } 1177 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1178 1179 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1180 { 1181 return container_of((void *)uarg, struct sk_buff, cb); 1182 } 1183 1184 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1185 struct ubuf_info *uarg) 1186 { 1187 if (uarg) { 1188 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1189 u32 bytelen, next; 1190 1191 /* realloc only when socket is locked (TCP, UDP cork), 1192 * so uarg->len and sk_zckey access is serialized 1193 */ 1194 if (!sock_owned_by_user(sk)) { 1195 WARN_ON_ONCE(1); 1196 return NULL; 1197 } 1198 1199 bytelen = uarg->bytelen + size; 1200 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1201 /* TCP can create new skb to attach new uarg */ 1202 if (sk->sk_type == SOCK_STREAM) 1203 goto new_alloc; 1204 return NULL; 1205 } 1206 1207 next = (u32)atomic_read(&sk->sk_zckey); 1208 if ((u32)(uarg->id + uarg->len) == next) { 1209 if (mm_account_pinned_pages(&uarg->mmp, size)) 1210 return NULL; 1211 uarg->len++; 1212 uarg->bytelen = bytelen; 1213 atomic_set(&sk->sk_zckey, ++next); 1214 1215 /* no extra ref when appending to datagram (MSG_MORE) */ 1216 if (sk->sk_type == SOCK_STREAM) 1217 net_zcopy_get(uarg); 1218 1219 return uarg; 1220 } 1221 } 1222 1223 new_alloc: 1224 return msg_zerocopy_alloc(sk, size); 1225 } 1226 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1227 1228 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1229 { 1230 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1231 u32 old_lo, old_hi; 1232 u64 sum_len; 1233 1234 old_lo = serr->ee.ee_info; 1235 old_hi = serr->ee.ee_data; 1236 sum_len = old_hi - old_lo + 1ULL + len; 1237 1238 if (sum_len >= (1ULL << 32)) 1239 return false; 1240 1241 if (lo != old_hi + 1) 1242 return false; 1243 1244 serr->ee.ee_data += len; 1245 return true; 1246 } 1247 1248 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1249 { 1250 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1251 struct sock_exterr_skb *serr; 1252 struct sock *sk = skb->sk; 1253 struct sk_buff_head *q; 1254 unsigned long flags; 1255 u32 lo, hi; 1256 u16 len; 1257 1258 mm_unaccount_pinned_pages(&uarg->mmp); 1259 1260 /* if !len, there was only 1 call, and it was aborted 1261 * so do not queue a completion notification 1262 */ 1263 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1264 goto release; 1265 1266 len = uarg->len; 1267 lo = uarg->id; 1268 hi = uarg->id + len - 1; 1269 1270 serr = SKB_EXT_ERR(skb); 1271 memset(serr, 0, sizeof(*serr)); 1272 serr->ee.ee_errno = 0; 1273 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1274 serr->ee.ee_data = hi; 1275 serr->ee.ee_info = lo; 1276 if (!uarg->zerocopy) 1277 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1278 1279 q = &sk->sk_error_queue; 1280 spin_lock_irqsave(&q->lock, flags); 1281 tail = skb_peek_tail(q); 1282 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1283 !skb_zerocopy_notify_extend(tail, lo, len)) { 1284 __skb_queue_tail(q, skb); 1285 skb = NULL; 1286 } 1287 spin_unlock_irqrestore(&q->lock, flags); 1288 1289 sk->sk_error_report(sk); 1290 1291 release: 1292 consume_skb(skb); 1293 sock_put(sk); 1294 } 1295 1296 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1297 bool success) 1298 { 1299 uarg->zerocopy = uarg->zerocopy & success; 1300 1301 if (refcount_dec_and_test(&uarg->refcnt)) 1302 __msg_zerocopy_callback(uarg); 1303 } 1304 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1305 1306 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1307 { 1308 struct sock *sk = skb_from_uarg(uarg)->sk; 1309 1310 atomic_dec(&sk->sk_zckey); 1311 uarg->len--; 1312 1313 if (have_uref) 1314 msg_zerocopy_callback(NULL, uarg, true); 1315 } 1316 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1317 1318 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1319 { 1320 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1321 } 1322 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1323 1324 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1325 struct msghdr *msg, int len, 1326 struct ubuf_info *uarg) 1327 { 1328 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1329 struct iov_iter orig_iter = msg->msg_iter; 1330 int err, orig_len = skb->len; 1331 1332 /* An skb can only point to one uarg. This edge case happens when 1333 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1334 */ 1335 if (orig_uarg && uarg != orig_uarg) 1336 return -EEXIST; 1337 1338 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1339 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1340 struct sock *save_sk = skb->sk; 1341 1342 /* Streams do not free skb on error. Reset to prev state. */ 1343 msg->msg_iter = orig_iter; 1344 skb->sk = sk; 1345 ___pskb_trim(skb, orig_len); 1346 skb->sk = save_sk; 1347 return err; 1348 } 1349 1350 skb_zcopy_set(skb, uarg, NULL); 1351 return skb->len - orig_len; 1352 } 1353 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1354 1355 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1356 gfp_t gfp_mask) 1357 { 1358 if (skb_zcopy(orig)) { 1359 if (skb_zcopy(nskb)) { 1360 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1361 if (!gfp_mask) { 1362 WARN_ON_ONCE(1); 1363 return -ENOMEM; 1364 } 1365 if (skb_uarg(nskb) == skb_uarg(orig)) 1366 return 0; 1367 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1368 return -EIO; 1369 } 1370 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1371 } 1372 return 0; 1373 } 1374 1375 /** 1376 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1377 * @skb: the skb to modify 1378 * @gfp_mask: allocation priority 1379 * 1380 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1381 * It will copy all frags into kernel and drop the reference 1382 * to userspace pages. 1383 * 1384 * If this function is called from an interrupt gfp_mask() must be 1385 * %GFP_ATOMIC. 1386 * 1387 * Returns 0 on success or a negative error code on failure 1388 * to allocate kernel memory to copy to. 1389 */ 1390 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1391 { 1392 int num_frags = skb_shinfo(skb)->nr_frags; 1393 struct page *page, *head = NULL; 1394 int i, new_frags; 1395 u32 d_off; 1396 1397 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1398 return -EINVAL; 1399 1400 if (!num_frags) 1401 goto release; 1402 1403 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1404 for (i = 0; i < new_frags; i++) { 1405 page = alloc_page(gfp_mask); 1406 if (!page) { 1407 while (head) { 1408 struct page *next = (struct page *)page_private(head); 1409 put_page(head); 1410 head = next; 1411 } 1412 return -ENOMEM; 1413 } 1414 set_page_private(page, (unsigned long)head); 1415 head = page; 1416 } 1417 1418 page = head; 1419 d_off = 0; 1420 for (i = 0; i < num_frags; i++) { 1421 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1422 u32 p_off, p_len, copied; 1423 struct page *p; 1424 u8 *vaddr; 1425 1426 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1427 p, p_off, p_len, copied) { 1428 u32 copy, done = 0; 1429 vaddr = kmap_atomic(p); 1430 1431 while (done < p_len) { 1432 if (d_off == PAGE_SIZE) { 1433 d_off = 0; 1434 page = (struct page *)page_private(page); 1435 } 1436 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1437 memcpy(page_address(page) + d_off, 1438 vaddr + p_off + done, copy); 1439 done += copy; 1440 d_off += copy; 1441 } 1442 kunmap_atomic(vaddr); 1443 } 1444 } 1445 1446 /* skb frags release userspace buffers */ 1447 for (i = 0; i < num_frags; i++) 1448 skb_frag_unref(skb, i); 1449 1450 /* skb frags point to kernel buffers */ 1451 for (i = 0; i < new_frags - 1; i++) { 1452 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1453 head = (struct page *)page_private(head); 1454 } 1455 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1456 skb_shinfo(skb)->nr_frags = new_frags; 1457 1458 release: 1459 skb_zcopy_clear(skb, false); 1460 return 0; 1461 } 1462 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1463 1464 /** 1465 * skb_clone - duplicate an sk_buff 1466 * @skb: buffer to clone 1467 * @gfp_mask: allocation priority 1468 * 1469 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1470 * copies share the same packet data but not structure. The new 1471 * buffer has a reference count of 1. If the allocation fails the 1472 * function returns %NULL otherwise the new buffer is returned. 1473 * 1474 * If this function is called from an interrupt gfp_mask() must be 1475 * %GFP_ATOMIC. 1476 */ 1477 1478 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1479 { 1480 struct sk_buff_fclones *fclones = container_of(skb, 1481 struct sk_buff_fclones, 1482 skb1); 1483 struct sk_buff *n; 1484 1485 if (skb_orphan_frags(skb, gfp_mask)) 1486 return NULL; 1487 1488 if (skb->fclone == SKB_FCLONE_ORIG && 1489 refcount_read(&fclones->fclone_ref) == 1) { 1490 n = &fclones->skb2; 1491 refcount_set(&fclones->fclone_ref, 2); 1492 } else { 1493 if (skb_pfmemalloc(skb)) 1494 gfp_mask |= __GFP_MEMALLOC; 1495 1496 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1497 if (!n) 1498 return NULL; 1499 1500 n->fclone = SKB_FCLONE_UNAVAILABLE; 1501 } 1502 1503 return __skb_clone(n, skb); 1504 } 1505 EXPORT_SYMBOL(skb_clone); 1506 1507 void skb_headers_offset_update(struct sk_buff *skb, int off) 1508 { 1509 /* Only adjust this if it actually is csum_start rather than csum */ 1510 if (skb->ip_summed == CHECKSUM_PARTIAL) 1511 skb->csum_start += off; 1512 /* {transport,network,mac}_header and tail are relative to skb->head */ 1513 skb->transport_header += off; 1514 skb->network_header += off; 1515 if (skb_mac_header_was_set(skb)) 1516 skb->mac_header += off; 1517 skb->inner_transport_header += off; 1518 skb->inner_network_header += off; 1519 skb->inner_mac_header += off; 1520 } 1521 EXPORT_SYMBOL(skb_headers_offset_update); 1522 1523 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1524 { 1525 __copy_skb_header(new, old); 1526 1527 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1528 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1529 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1530 } 1531 EXPORT_SYMBOL(skb_copy_header); 1532 1533 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1534 { 1535 if (skb_pfmemalloc(skb)) 1536 return SKB_ALLOC_RX; 1537 return 0; 1538 } 1539 1540 /** 1541 * skb_copy - create private copy of an sk_buff 1542 * @skb: buffer to copy 1543 * @gfp_mask: allocation priority 1544 * 1545 * Make a copy of both an &sk_buff and its data. This is used when the 1546 * caller wishes to modify the data and needs a private copy of the 1547 * data to alter. Returns %NULL on failure or the pointer to the buffer 1548 * on success. The returned buffer has a reference count of 1. 1549 * 1550 * As by-product this function converts non-linear &sk_buff to linear 1551 * one, so that &sk_buff becomes completely private and caller is allowed 1552 * to modify all the data of returned buffer. This means that this 1553 * function is not recommended for use in circumstances when only 1554 * header is going to be modified. Use pskb_copy() instead. 1555 */ 1556 1557 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1558 { 1559 int headerlen = skb_headroom(skb); 1560 unsigned int size = skb_end_offset(skb) + skb->data_len; 1561 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1562 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1563 1564 if (!n) 1565 return NULL; 1566 1567 /* Set the data pointer */ 1568 skb_reserve(n, headerlen); 1569 /* Set the tail pointer and length */ 1570 skb_put(n, skb->len); 1571 1572 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1573 1574 skb_copy_header(n, skb); 1575 return n; 1576 } 1577 EXPORT_SYMBOL(skb_copy); 1578 1579 /** 1580 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1581 * @skb: buffer to copy 1582 * @headroom: headroom of new skb 1583 * @gfp_mask: allocation priority 1584 * @fclone: if true allocate the copy of the skb from the fclone 1585 * cache instead of the head cache; it is recommended to set this 1586 * to true for the cases where the copy will likely be cloned 1587 * 1588 * Make a copy of both an &sk_buff and part of its data, located 1589 * in header. Fragmented data remain shared. This is used when 1590 * the caller wishes to modify only header of &sk_buff and needs 1591 * private copy of the header to alter. Returns %NULL on failure 1592 * or the pointer to the buffer on success. 1593 * The returned buffer has a reference count of 1. 1594 */ 1595 1596 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1597 gfp_t gfp_mask, bool fclone) 1598 { 1599 unsigned int size = skb_headlen(skb) + headroom; 1600 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1601 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1602 1603 if (!n) 1604 goto out; 1605 1606 /* Set the data pointer */ 1607 skb_reserve(n, headroom); 1608 /* Set the tail pointer and length */ 1609 skb_put(n, skb_headlen(skb)); 1610 /* Copy the bytes */ 1611 skb_copy_from_linear_data(skb, n->data, n->len); 1612 1613 n->truesize += skb->data_len; 1614 n->data_len = skb->data_len; 1615 n->len = skb->len; 1616 1617 if (skb_shinfo(skb)->nr_frags) { 1618 int i; 1619 1620 if (skb_orphan_frags(skb, gfp_mask) || 1621 skb_zerocopy_clone(n, skb, gfp_mask)) { 1622 kfree_skb(n); 1623 n = NULL; 1624 goto out; 1625 } 1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1627 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1628 skb_frag_ref(skb, i); 1629 } 1630 skb_shinfo(n)->nr_frags = i; 1631 } 1632 1633 if (skb_has_frag_list(skb)) { 1634 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1635 skb_clone_fraglist(n); 1636 } 1637 1638 skb_copy_header(n, skb); 1639 out: 1640 return n; 1641 } 1642 EXPORT_SYMBOL(__pskb_copy_fclone); 1643 1644 /** 1645 * pskb_expand_head - reallocate header of &sk_buff 1646 * @skb: buffer to reallocate 1647 * @nhead: room to add at head 1648 * @ntail: room to add at tail 1649 * @gfp_mask: allocation priority 1650 * 1651 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1652 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1653 * reference count of 1. Returns zero in the case of success or error, 1654 * if expansion failed. In the last case, &sk_buff is not changed. 1655 * 1656 * All the pointers pointing into skb header may change and must be 1657 * reloaded after call to this function. 1658 */ 1659 1660 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1661 gfp_t gfp_mask) 1662 { 1663 int i, osize = skb_end_offset(skb); 1664 int size = osize + nhead + ntail; 1665 long off; 1666 u8 *data; 1667 1668 BUG_ON(nhead < 0); 1669 1670 BUG_ON(skb_shared(skb)); 1671 1672 size = SKB_DATA_ALIGN(size); 1673 1674 if (skb_pfmemalloc(skb)) 1675 gfp_mask |= __GFP_MEMALLOC; 1676 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1677 gfp_mask, NUMA_NO_NODE, NULL); 1678 if (!data) 1679 goto nodata; 1680 size = SKB_WITH_OVERHEAD(ksize(data)); 1681 1682 /* Copy only real data... and, alas, header. This should be 1683 * optimized for the cases when header is void. 1684 */ 1685 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1686 1687 memcpy((struct skb_shared_info *)(data + size), 1688 skb_shinfo(skb), 1689 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1690 1691 /* 1692 * if shinfo is shared we must drop the old head gracefully, but if it 1693 * is not we can just drop the old head and let the existing refcount 1694 * be since all we did is relocate the values 1695 */ 1696 if (skb_cloned(skb)) { 1697 if (skb_orphan_frags(skb, gfp_mask)) 1698 goto nofrags; 1699 if (skb_zcopy(skb)) 1700 refcount_inc(&skb_uarg(skb)->refcnt); 1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1702 skb_frag_ref(skb, i); 1703 1704 if (skb_has_frag_list(skb)) 1705 skb_clone_fraglist(skb); 1706 1707 skb_release_data(skb); 1708 } else { 1709 skb_free_head(skb); 1710 } 1711 off = (data + nhead) - skb->head; 1712 1713 skb->head = data; 1714 skb->head_frag = 0; 1715 skb->data += off; 1716 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1717 skb->end = size; 1718 off = nhead; 1719 #else 1720 skb->end = skb->head + size; 1721 #endif 1722 skb->tail += off; 1723 skb_headers_offset_update(skb, nhead); 1724 skb->cloned = 0; 1725 skb->hdr_len = 0; 1726 skb->nohdr = 0; 1727 atomic_set(&skb_shinfo(skb)->dataref, 1); 1728 1729 skb_metadata_clear(skb); 1730 1731 /* It is not generally safe to change skb->truesize. 1732 * For the moment, we really care of rx path, or 1733 * when skb is orphaned (not attached to a socket). 1734 */ 1735 if (!skb->sk || skb->destructor == sock_edemux) 1736 skb->truesize += size - osize; 1737 1738 return 0; 1739 1740 nofrags: 1741 kfree(data); 1742 nodata: 1743 return -ENOMEM; 1744 } 1745 EXPORT_SYMBOL(pskb_expand_head); 1746 1747 /* Make private copy of skb with writable head and some headroom */ 1748 1749 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1750 { 1751 struct sk_buff *skb2; 1752 int delta = headroom - skb_headroom(skb); 1753 1754 if (delta <= 0) 1755 skb2 = pskb_copy(skb, GFP_ATOMIC); 1756 else { 1757 skb2 = skb_clone(skb, GFP_ATOMIC); 1758 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1759 GFP_ATOMIC)) { 1760 kfree_skb(skb2); 1761 skb2 = NULL; 1762 } 1763 } 1764 return skb2; 1765 } 1766 EXPORT_SYMBOL(skb_realloc_headroom); 1767 1768 /** 1769 * skb_copy_expand - copy and expand sk_buff 1770 * @skb: buffer to copy 1771 * @newheadroom: new free bytes at head 1772 * @newtailroom: new free bytes at tail 1773 * @gfp_mask: allocation priority 1774 * 1775 * Make a copy of both an &sk_buff and its data and while doing so 1776 * allocate additional space. 1777 * 1778 * This is used when the caller wishes to modify the data and needs a 1779 * private copy of the data to alter as well as more space for new fields. 1780 * Returns %NULL on failure or the pointer to the buffer 1781 * on success. The returned buffer has a reference count of 1. 1782 * 1783 * You must pass %GFP_ATOMIC as the allocation priority if this function 1784 * is called from an interrupt. 1785 */ 1786 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1787 int newheadroom, int newtailroom, 1788 gfp_t gfp_mask) 1789 { 1790 /* 1791 * Allocate the copy buffer 1792 */ 1793 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1794 gfp_mask, skb_alloc_rx_flag(skb), 1795 NUMA_NO_NODE); 1796 int oldheadroom = skb_headroom(skb); 1797 int head_copy_len, head_copy_off; 1798 1799 if (!n) 1800 return NULL; 1801 1802 skb_reserve(n, newheadroom); 1803 1804 /* Set the tail pointer and length */ 1805 skb_put(n, skb->len); 1806 1807 head_copy_len = oldheadroom; 1808 head_copy_off = 0; 1809 if (newheadroom <= head_copy_len) 1810 head_copy_len = newheadroom; 1811 else 1812 head_copy_off = newheadroom - head_copy_len; 1813 1814 /* Copy the linear header and data. */ 1815 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1816 skb->len + head_copy_len)); 1817 1818 skb_copy_header(n, skb); 1819 1820 skb_headers_offset_update(n, newheadroom - oldheadroom); 1821 1822 return n; 1823 } 1824 EXPORT_SYMBOL(skb_copy_expand); 1825 1826 /** 1827 * __skb_pad - zero pad the tail of an skb 1828 * @skb: buffer to pad 1829 * @pad: space to pad 1830 * @free_on_error: free buffer on error 1831 * 1832 * Ensure that a buffer is followed by a padding area that is zero 1833 * filled. Used by network drivers which may DMA or transfer data 1834 * beyond the buffer end onto the wire. 1835 * 1836 * May return error in out of memory cases. The skb is freed on error 1837 * if @free_on_error is true. 1838 */ 1839 1840 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1841 { 1842 int err; 1843 int ntail; 1844 1845 /* If the skbuff is non linear tailroom is always zero.. */ 1846 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1847 memset(skb->data+skb->len, 0, pad); 1848 return 0; 1849 } 1850 1851 ntail = skb->data_len + pad - (skb->end - skb->tail); 1852 if (likely(skb_cloned(skb) || ntail > 0)) { 1853 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1854 if (unlikely(err)) 1855 goto free_skb; 1856 } 1857 1858 /* FIXME: The use of this function with non-linear skb's really needs 1859 * to be audited. 1860 */ 1861 err = skb_linearize(skb); 1862 if (unlikely(err)) 1863 goto free_skb; 1864 1865 memset(skb->data + skb->len, 0, pad); 1866 return 0; 1867 1868 free_skb: 1869 if (free_on_error) 1870 kfree_skb(skb); 1871 return err; 1872 } 1873 EXPORT_SYMBOL(__skb_pad); 1874 1875 /** 1876 * pskb_put - add data to the tail of a potentially fragmented buffer 1877 * @skb: start of the buffer to use 1878 * @tail: tail fragment of the buffer to use 1879 * @len: amount of data to add 1880 * 1881 * This function extends the used data area of the potentially 1882 * fragmented buffer. @tail must be the last fragment of @skb -- or 1883 * @skb itself. If this would exceed the total buffer size the kernel 1884 * will panic. A pointer to the first byte of the extra data is 1885 * returned. 1886 */ 1887 1888 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1889 { 1890 if (tail != skb) { 1891 skb->data_len += len; 1892 skb->len += len; 1893 } 1894 return skb_put(tail, len); 1895 } 1896 EXPORT_SYMBOL_GPL(pskb_put); 1897 1898 /** 1899 * skb_put - add data to a buffer 1900 * @skb: buffer to use 1901 * @len: amount of data to add 1902 * 1903 * This function extends the used data area of the buffer. If this would 1904 * exceed the total buffer size the kernel will panic. A pointer to the 1905 * first byte of the extra data is returned. 1906 */ 1907 void *skb_put(struct sk_buff *skb, unsigned int len) 1908 { 1909 void *tmp = skb_tail_pointer(skb); 1910 SKB_LINEAR_ASSERT(skb); 1911 skb->tail += len; 1912 skb->len += len; 1913 if (unlikely(skb->tail > skb->end)) 1914 skb_over_panic(skb, len, __builtin_return_address(0)); 1915 return tmp; 1916 } 1917 EXPORT_SYMBOL(skb_put); 1918 1919 /** 1920 * skb_push - add data to the start of a buffer 1921 * @skb: buffer to use 1922 * @len: amount of data to add 1923 * 1924 * This function extends the used data area of the buffer at the buffer 1925 * start. If this would exceed the total buffer headroom the kernel will 1926 * panic. A pointer to the first byte of the extra data is returned. 1927 */ 1928 void *skb_push(struct sk_buff *skb, unsigned int len) 1929 { 1930 skb->data -= len; 1931 skb->len += len; 1932 if (unlikely(skb->data < skb->head)) 1933 skb_under_panic(skb, len, __builtin_return_address(0)); 1934 return skb->data; 1935 } 1936 EXPORT_SYMBOL(skb_push); 1937 1938 /** 1939 * skb_pull - remove data from the start of a buffer 1940 * @skb: buffer to use 1941 * @len: amount of data to remove 1942 * 1943 * This function removes data from the start of a buffer, returning 1944 * the memory to the headroom. A pointer to the next data in the buffer 1945 * is returned. Once the data has been pulled future pushes will overwrite 1946 * the old data. 1947 */ 1948 void *skb_pull(struct sk_buff *skb, unsigned int len) 1949 { 1950 return skb_pull_inline(skb, len); 1951 } 1952 EXPORT_SYMBOL(skb_pull); 1953 1954 /** 1955 * skb_trim - remove end from a buffer 1956 * @skb: buffer to alter 1957 * @len: new length 1958 * 1959 * Cut the length of a buffer down by removing data from the tail. If 1960 * the buffer is already under the length specified it is not modified. 1961 * The skb must be linear. 1962 */ 1963 void skb_trim(struct sk_buff *skb, unsigned int len) 1964 { 1965 if (skb->len > len) 1966 __skb_trim(skb, len); 1967 } 1968 EXPORT_SYMBOL(skb_trim); 1969 1970 /* Trims skb to length len. It can change skb pointers. 1971 */ 1972 1973 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1974 { 1975 struct sk_buff **fragp; 1976 struct sk_buff *frag; 1977 int offset = skb_headlen(skb); 1978 int nfrags = skb_shinfo(skb)->nr_frags; 1979 int i; 1980 int err; 1981 1982 if (skb_cloned(skb) && 1983 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1984 return err; 1985 1986 i = 0; 1987 if (offset >= len) 1988 goto drop_pages; 1989 1990 for (; i < nfrags; i++) { 1991 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1992 1993 if (end < len) { 1994 offset = end; 1995 continue; 1996 } 1997 1998 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1999 2000 drop_pages: 2001 skb_shinfo(skb)->nr_frags = i; 2002 2003 for (; i < nfrags; i++) 2004 skb_frag_unref(skb, i); 2005 2006 if (skb_has_frag_list(skb)) 2007 skb_drop_fraglist(skb); 2008 goto done; 2009 } 2010 2011 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2012 fragp = &frag->next) { 2013 int end = offset + frag->len; 2014 2015 if (skb_shared(frag)) { 2016 struct sk_buff *nfrag; 2017 2018 nfrag = skb_clone(frag, GFP_ATOMIC); 2019 if (unlikely(!nfrag)) 2020 return -ENOMEM; 2021 2022 nfrag->next = frag->next; 2023 consume_skb(frag); 2024 frag = nfrag; 2025 *fragp = frag; 2026 } 2027 2028 if (end < len) { 2029 offset = end; 2030 continue; 2031 } 2032 2033 if (end > len && 2034 unlikely((err = pskb_trim(frag, len - offset)))) 2035 return err; 2036 2037 if (frag->next) 2038 skb_drop_list(&frag->next); 2039 break; 2040 } 2041 2042 done: 2043 if (len > skb_headlen(skb)) { 2044 skb->data_len -= skb->len - len; 2045 skb->len = len; 2046 } else { 2047 skb->len = len; 2048 skb->data_len = 0; 2049 skb_set_tail_pointer(skb, len); 2050 } 2051 2052 if (!skb->sk || skb->destructor == sock_edemux) 2053 skb_condense(skb); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL(___pskb_trim); 2057 2058 /* Note : use pskb_trim_rcsum() instead of calling this directly 2059 */ 2060 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2061 { 2062 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2063 int delta = skb->len - len; 2064 2065 skb->csum = csum_block_sub(skb->csum, 2066 skb_checksum(skb, len, delta, 0), 2067 len); 2068 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2069 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2070 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2071 2072 if (offset + sizeof(__sum16) > hdlen) 2073 return -EINVAL; 2074 } 2075 return __pskb_trim(skb, len); 2076 } 2077 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2078 2079 /** 2080 * __pskb_pull_tail - advance tail of skb header 2081 * @skb: buffer to reallocate 2082 * @delta: number of bytes to advance tail 2083 * 2084 * The function makes a sense only on a fragmented &sk_buff, 2085 * it expands header moving its tail forward and copying necessary 2086 * data from fragmented part. 2087 * 2088 * &sk_buff MUST have reference count of 1. 2089 * 2090 * Returns %NULL (and &sk_buff does not change) if pull failed 2091 * or value of new tail of skb in the case of success. 2092 * 2093 * All the pointers pointing into skb header may change and must be 2094 * reloaded after call to this function. 2095 */ 2096 2097 /* Moves tail of skb head forward, copying data from fragmented part, 2098 * when it is necessary. 2099 * 1. It may fail due to malloc failure. 2100 * 2. It may change skb pointers. 2101 * 2102 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2103 */ 2104 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2105 { 2106 /* If skb has not enough free space at tail, get new one 2107 * plus 128 bytes for future expansions. If we have enough 2108 * room at tail, reallocate without expansion only if skb is cloned. 2109 */ 2110 int i, k, eat = (skb->tail + delta) - skb->end; 2111 2112 if (eat > 0 || skb_cloned(skb)) { 2113 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2114 GFP_ATOMIC)) 2115 return NULL; 2116 } 2117 2118 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2119 skb_tail_pointer(skb), delta)); 2120 2121 /* Optimization: no fragments, no reasons to preestimate 2122 * size of pulled pages. Superb. 2123 */ 2124 if (!skb_has_frag_list(skb)) 2125 goto pull_pages; 2126 2127 /* Estimate size of pulled pages. */ 2128 eat = delta; 2129 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2130 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2131 2132 if (size >= eat) 2133 goto pull_pages; 2134 eat -= size; 2135 } 2136 2137 /* If we need update frag list, we are in troubles. 2138 * Certainly, it is possible to add an offset to skb data, 2139 * but taking into account that pulling is expected to 2140 * be very rare operation, it is worth to fight against 2141 * further bloating skb head and crucify ourselves here instead. 2142 * Pure masohism, indeed. 8)8) 2143 */ 2144 if (eat) { 2145 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2146 struct sk_buff *clone = NULL; 2147 struct sk_buff *insp = NULL; 2148 2149 do { 2150 if (list->len <= eat) { 2151 /* Eaten as whole. */ 2152 eat -= list->len; 2153 list = list->next; 2154 insp = list; 2155 } else { 2156 /* Eaten partially. */ 2157 2158 if (skb_shared(list)) { 2159 /* Sucks! We need to fork list. :-( */ 2160 clone = skb_clone(list, GFP_ATOMIC); 2161 if (!clone) 2162 return NULL; 2163 insp = list->next; 2164 list = clone; 2165 } else { 2166 /* This may be pulled without 2167 * problems. */ 2168 insp = list; 2169 } 2170 if (!pskb_pull(list, eat)) { 2171 kfree_skb(clone); 2172 return NULL; 2173 } 2174 break; 2175 } 2176 } while (eat); 2177 2178 /* Free pulled out fragments. */ 2179 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2180 skb_shinfo(skb)->frag_list = list->next; 2181 kfree_skb(list); 2182 } 2183 /* And insert new clone at head. */ 2184 if (clone) { 2185 clone->next = list; 2186 skb_shinfo(skb)->frag_list = clone; 2187 } 2188 } 2189 /* Success! Now we may commit changes to skb data. */ 2190 2191 pull_pages: 2192 eat = delta; 2193 k = 0; 2194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2195 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2196 2197 if (size <= eat) { 2198 skb_frag_unref(skb, i); 2199 eat -= size; 2200 } else { 2201 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2202 2203 *frag = skb_shinfo(skb)->frags[i]; 2204 if (eat) { 2205 skb_frag_off_add(frag, eat); 2206 skb_frag_size_sub(frag, eat); 2207 if (!i) 2208 goto end; 2209 eat = 0; 2210 } 2211 k++; 2212 } 2213 } 2214 skb_shinfo(skb)->nr_frags = k; 2215 2216 end: 2217 skb->tail += delta; 2218 skb->data_len -= delta; 2219 2220 if (!skb->data_len) 2221 skb_zcopy_clear(skb, false); 2222 2223 return skb_tail_pointer(skb); 2224 } 2225 EXPORT_SYMBOL(__pskb_pull_tail); 2226 2227 /** 2228 * skb_copy_bits - copy bits from skb to kernel buffer 2229 * @skb: source skb 2230 * @offset: offset in source 2231 * @to: destination buffer 2232 * @len: number of bytes to copy 2233 * 2234 * Copy the specified number of bytes from the source skb to the 2235 * destination buffer. 2236 * 2237 * CAUTION ! : 2238 * If its prototype is ever changed, 2239 * check arch/{*}/net/{*}.S files, 2240 * since it is called from BPF assembly code. 2241 */ 2242 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2243 { 2244 int start = skb_headlen(skb); 2245 struct sk_buff *frag_iter; 2246 int i, copy; 2247 2248 if (offset > (int)skb->len - len) 2249 goto fault; 2250 2251 /* Copy header. */ 2252 if ((copy = start - offset) > 0) { 2253 if (copy > len) 2254 copy = len; 2255 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2256 if ((len -= copy) == 0) 2257 return 0; 2258 offset += copy; 2259 to += copy; 2260 } 2261 2262 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2263 int end; 2264 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2265 2266 WARN_ON(start > offset + len); 2267 2268 end = start + skb_frag_size(f); 2269 if ((copy = end - offset) > 0) { 2270 u32 p_off, p_len, copied; 2271 struct page *p; 2272 u8 *vaddr; 2273 2274 if (copy > len) 2275 copy = len; 2276 2277 skb_frag_foreach_page(f, 2278 skb_frag_off(f) + offset - start, 2279 copy, p, p_off, p_len, copied) { 2280 vaddr = kmap_atomic(p); 2281 memcpy(to + copied, vaddr + p_off, p_len); 2282 kunmap_atomic(vaddr); 2283 } 2284 2285 if ((len -= copy) == 0) 2286 return 0; 2287 offset += copy; 2288 to += copy; 2289 } 2290 start = end; 2291 } 2292 2293 skb_walk_frags(skb, frag_iter) { 2294 int end; 2295 2296 WARN_ON(start > offset + len); 2297 2298 end = start + frag_iter->len; 2299 if ((copy = end - offset) > 0) { 2300 if (copy > len) 2301 copy = len; 2302 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2303 goto fault; 2304 if ((len -= copy) == 0) 2305 return 0; 2306 offset += copy; 2307 to += copy; 2308 } 2309 start = end; 2310 } 2311 2312 if (!len) 2313 return 0; 2314 2315 fault: 2316 return -EFAULT; 2317 } 2318 EXPORT_SYMBOL(skb_copy_bits); 2319 2320 /* 2321 * Callback from splice_to_pipe(), if we need to release some pages 2322 * at the end of the spd in case we error'ed out in filling the pipe. 2323 */ 2324 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2325 { 2326 put_page(spd->pages[i]); 2327 } 2328 2329 static struct page *linear_to_page(struct page *page, unsigned int *len, 2330 unsigned int *offset, 2331 struct sock *sk) 2332 { 2333 struct page_frag *pfrag = sk_page_frag(sk); 2334 2335 if (!sk_page_frag_refill(sk, pfrag)) 2336 return NULL; 2337 2338 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2339 2340 memcpy(page_address(pfrag->page) + pfrag->offset, 2341 page_address(page) + *offset, *len); 2342 *offset = pfrag->offset; 2343 pfrag->offset += *len; 2344 2345 return pfrag->page; 2346 } 2347 2348 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2349 struct page *page, 2350 unsigned int offset) 2351 { 2352 return spd->nr_pages && 2353 spd->pages[spd->nr_pages - 1] == page && 2354 (spd->partial[spd->nr_pages - 1].offset + 2355 spd->partial[spd->nr_pages - 1].len == offset); 2356 } 2357 2358 /* 2359 * Fill page/offset/length into spd, if it can hold more pages. 2360 */ 2361 static bool spd_fill_page(struct splice_pipe_desc *spd, 2362 struct pipe_inode_info *pipe, struct page *page, 2363 unsigned int *len, unsigned int offset, 2364 bool linear, 2365 struct sock *sk) 2366 { 2367 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2368 return true; 2369 2370 if (linear) { 2371 page = linear_to_page(page, len, &offset, sk); 2372 if (!page) 2373 return true; 2374 } 2375 if (spd_can_coalesce(spd, page, offset)) { 2376 spd->partial[spd->nr_pages - 1].len += *len; 2377 return false; 2378 } 2379 get_page(page); 2380 spd->pages[spd->nr_pages] = page; 2381 spd->partial[spd->nr_pages].len = *len; 2382 spd->partial[spd->nr_pages].offset = offset; 2383 spd->nr_pages++; 2384 2385 return false; 2386 } 2387 2388 static bool __splice_segment(struct page *page, unsigned int poff, 2389 unsigned int plen, unsigned int *off, 2390 unsigned int *len, 2391 struct splice_pipe_desc *spd, bool linear, 2392 struct sock *sk, 2393 struct pipe_inode_info *pipe) 2394 { 2395 if (!*len) 2396 return true; 2397 2398 /* skip this segment if already processed */ 2399 if (*off >= plen) { 2400 *off -= plen; 2401 return false; 2402 } 2403 2404 /* ignore any bits we already processed */ 2405 poff += *off; 2406 plen -= *off; 2407 *off = 0; 2408 2409 do { 2410 unsigned int flen = min(*len, plen); 2411 2412 if (spd_fill_page(spd, pipe, page, &flen, poff, 2413 linear, sk)) 2414 return true; 2415 poff += flen; 2416 plen -= flen; 2417 *len -= flen; 2418 } while (*len && plen); 2419 2420 return false; 2421 } 2422 2423 /* 2424 * Map linear and fragment data from the skb to spd. It reports true if the 2425 * pipe is full or if we already spliced the requested length. 2426 */ 2427 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2428 unsigned int *offset, unsigned int *len, 2429 struct splice_pipe_desc *spd, struct sock *sk) 2430 { 2431 int seg; 2432 struct sk_buff *iter; 2433 2434 /* map the linear part : 2435 * If skb->head_frag is set, this 'linear' part is backed by a 2436 * fragment, and if the head is not shared with any clones then 2437 * we can avoid a copy since we own the head portion of this page. 2438 */ 2439 if (__splice_segment(virt_to_page(skb->data), 2440 (unsigned long) skb->data & (PAGE_SIZE - 1), 2441 skb_headlen(skb), 2442 offset, len, spd, 2443 skb_head_is_locked(skb), 2444 sk, pipe)) 2445 return true; 2446 2447 /* 2448 * then map the fragments 2449 */ 2450 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2451 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2452 2453 if (__splice_segment(skb_frag_page(f), 2454 skb_frag_off(f), skb_frag_size(f), 2455 offset, len, spd, false, sk, pipe)) 2456 return true; 2457 } 2458 2459 skb_walk_frags(skb, iter) { 2460 if (*offset >= iter->len) { 2461 *offset -= iter->len; 2462 continue; 2463 } 2464 /* __skb_splice_bits() only fails if the output has no room 2465 * left, so no point in going over the frag_list for the error 2466 * case. 2467 */ 2468 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2469 return true; 2470 } 2471 2472 return false; 2473 } 2474 2475 /* 2476 * Map data from the skb to a pipe. Should handle both the linear part, 2477 * the fragments, and the frag list. 2478 */ 2479 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2480 struct pipe_inode_info *pipe, unsigned int tlen, 2481 unsigned int flags) 2482 { 2483 struct partial_page partial[MAX_SKB_FRAGS]; 2484 struct page *pages[MAX_SKB_FRAGS]; 2485 struct splice_pipe_desc spd = { 2486 .pages = pages, 2487 .partial = partial, 2488 .nr_pages_max = MAX_SKB_FRAGS, 2489 .ops = &nosteal_pipe_buf_ops, 2490 .spd_release = sock_spd_release, 2491 }; 2492 int ret = 0; 2493 2494 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2495 2496 if (spd.nr_pages) 2497 ret = splice_to_pipe(pipe, &spd); 2498 2499 return ret; 2500 } 2501 EXPORT_SYMBOL_GPL(skb_splice_bits); 2502 2503 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2504 struct kvec *vec, size_t num, size_t size) 2505 { 2506 struct socket *sock = sk->sk_socket; 2507 2508 if (!sock) 2509 return -EINVAL; 2510 return kernel_sendmsg(sock, msg, vec, num, size); 2511 } 2512 2513 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2514 size_t size, int flags) 2515 { 2516 struct socket *sock = sk->sk_socket; 2517 2518 if (!sock) 2519 return -EINVAL; 2520 return kernel_sendpage(sock, page, offset, size, flags); 2521 } 2522 2523 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2524 struct kvec *vec, size_t num, size_t size); 2525 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2526 size_t size, int flags); 2527 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2528 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2529 { 2530 unsigned int orig_len = len; 2531 struct sk_buff *head = skb; 2532 unsigned short fragidx; 2533 int slen, ret; 2534 2535 do_frag_list: 2536 2537 /* Deal with head data */ 2538 while (offset < skb_headlen(skb) && len) { 2539 struct kvec kv; 2540 struct msghdr msg; 2541 2542 slen = min_t(int, len, skb_headlen(skb) - offset); 2543 kv.iov_base = skb->data + offset; 2544 kv.iov_len = slen; 2545 memset(&msg, 0, sizeof(msg)); 2546 msg.msg_flags = MSG_DONTWAIT; 2547 2548 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2549 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2550 if (ret <= 0) 2551 goto error; 2552 2553 offset += ret; 2554 len -= ret; 2555 } 2556 2557 /* All the data was skb head? */ 2558 if (!len) 2559 goto out; 2560 2561 /* Make offset relative to start of frags */ 2562 offset -= skb_headlen(skb); 2563 2564 /* Find where we are in frag list */ 2565 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2566 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2567 2568 if (offset < skb_frag_size(frag)) 2569 break; 2570 2571 offset -= skb_frag_size(frag); 2572 } 2573 2574 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2576 2577 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2578 2579 while (slen) { 2580 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2581 sendpage_unlocked, sk, 2582 skb_frag_page(frag), 2583 skb_frag_off(frag) + offset, 2584 slen, MSG_DONTWAIT); 2585 if (ret <= 0) 2586 goto error; 2587 2588 len -= ret; 2589 offset += ret; 2590 slen -= ret; 2591 } 2592 2593 offset = 0; 2594 } 2595 2596 if (len) { 2597 /* Process any frag lists */ 2598 2599 if (skb == head) { 2600 if (skb_has_frag_list(skb)) { 2601 skb = skb_shinfo(skb)->frag_list; 2602 goto do_frag_list; 2603 } 2604 } else if (skb->next) { 2605 skb = skb->next; 2606 goto do_frag_list; 2607 } 2608 } 2609 2610 out: 2611 return orig_len - len; 2612 2613 error: 2614 return orig_len == len ? ret : orig_len - len; 2615 } 2616 2617 /* Send skb data on a socket. Socket must be locked. */ 2618 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2619 int len) 2620 { 2621 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2622 kernel_sendpage_locked); 2623 } 2624 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2625 2626 /* Send skb data on a socket. Socket must be unlocked. */ 2627 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2628 { 2629 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2630 sendpage_unlocked); 2631 } 2632 2633 /** 2634 * skb_store_bits - store bits from kernel buffer to skb 2635 * @skb: destination buffer 2636 * @offset: offset in destination 2637 * @from: source buffer 2638 * @len: number of bytes to copy 2639 * 2640 * Copy the specified number of bytes from the source buffer to the 2641 * destination skb. This function handles all the messy bits of 2642 * traversing fragment lists and such. 2643 */ 2644 2645 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2646 { 2647 int start = skb_headlen(skb); 2648 struct sk_buff *frag_iter; 2649 int i, copy; 2650 2651 if (offset > (int)skb->len - len) 2652 goto fault; 2653 2654 if ((copy = start - offset) > 0) { 2655 if (copy > len) 2656 copy = len; 2657 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2658 if ((len -= copy) == 0) 2659 return 0; 2660 offset += copy; 2661 from += copy; 2662 } 2663 2664 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2665 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2666 int end; 2667 2668 WARN_ON(start > offset + len); 2669 2670 end = start + skb_frag_size(frag); 2671 if ((copy = end - offset) > 0) { 2672 u32 p_off, p_len, copied; 2673 struct page *p; 2674 u8 *vaddr; 2675 2676 if (copy > len) 2677 copy = len; 2678 2679 skb_frag_foreach_page(frag, 2680 skb_frag_off(frag) + offset - start, 2681 copy, p, p_off, p_len, copied) { 2682 vaddr = kmap_atomic(p); 2683 memcpy(vaddr + p_off, from + copied, p_len); 2684 kunmap_atomic(vaddr); 2685 } 2686 2687 if ((len -= copy) == 0) 2688 return 0; 2689 offset += copy; 2690 from += copy; 2691 } 2692 start = end; 2693 } 2694 2695 skb_walk_frags(skb, frag_iter) { 2696 int end; 2697 2698 WARN_ON(start > offset + len); 2699 2700 end = start + frag_iter->len; 2701 if ((copy = end - offset) > 0) { 2702 if (copy > len) 2703 copy = len; 2704 if (skb_store_bits(frag_iter, offset - start, 2705 from, copy)) 2706 goto fault; 2707 if ((len -= copy) == 0) 2708 return 0; 2709 offset += copy; 2710 from += copy; 2711 } 2712 start = end; 2713 } 2714 if (!len) 2715 return 0; 2716 2717 fault: 2718 return -EFAULT; 2719 } 2720 EXPORT_SYMBOL(skb_store_bits); 2721 2722 /* Checksum skb data. */ 2723 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2724 __wsum csum, const struct skb_checksum_ops *ops) 2725 { 2726 int start = skb_headlen(skb); 2727 int i, copy = start - offset; 2728 struct sk_buff *frag_iter; 2729 int pos = 0; 2730 2731 /* Checksum header. */ 2732 if (copy > 0) { 2733 if (copy > len) 2734 copy = len; 2735 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2736 skb->data + offset, copy, csum); 2737 if ((len -= copy) == 0) 2738 return csum; 2739 offset += copy; 2740 pos = copy; 2741 } 2742 2743 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2744 int end; 2745 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2746 2747 WARN_ON(start > offset + len); 2748 2749 end = start + skb_frag_size(frag); 2750 if ((copy = end - offset) > 0) { 2751 u32 p_off, p_len, copied; 2752 struct page *p; 2753 __wsum csum2; 2754 u8 *vaddr; 2755 2756 if (copy > len) 2757 copy = len; 2758 2759 skb_frag_foreach_page(frag, 2760 skb_frag_off(frag) + offset - start, 2761 copy, p, p_off, p_len, copied) { 2762 vaddr = kmap_atomic(p); 2763 csum2 = INDIRECT_CALL_1(ops->update, 2764 csum_partial_ext, 2765 vaddr + p_off, p_len, 0); 2766 kunmap_atomic(vaddr); 2767 csum = INDIRECT_CALL_1(ops->combine, 2768 csum_block_add_ext, csum, 2769 csum2, pos, p_len); 2770 pos += p_len; 2771 } 2772 2773 if (!(len -= copy)) 2774 return csum; 2775 offset += copy; 2776 } 2777 start = end; 2778 } 2779 2780 skb_walk_frags(skb, frag_iter) { 2781 int end; 2782 2783 WARN_ON(start > offset + len); 2784 2785 end = start + frag_iter->len; 2786 if ((copy = end - offset) > 0) { 2787 __wsum csum2; 2788 if (copy > len) 2789 copy = len; 2790 csum2 = __skb_checksum(frag_iter, offset - start, 2791 copy, 0, ops); 2792 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2793 csum, csum2, pos, copy); 2794 if ((len -= copy) == 0) 2795 return csum; 2796 offset += copy; 2797 pos += copy; 2798 } 2799 start = end; 2800 } 2801 BUG_ON(len); 2802 2803 return csum; 2804 } 2805 EXPORT_SYMBOL(__skb_checksum); 2806 2807 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2808 int len, __wsum csum) 2809 { 2810 const struct skb_checksum_ops ops = { 2811 .update = csum_partial_ext, 2812 .combine = csum_block_add_ext, 2813 }; 2814 2815 return __skb_checksum(skb, offset, len, csum, &ops); 2816 } 2817 EXPORT_SYMBOL(skb_checksum); 2818 2819 /* Both of above in one bottle. */ 2820 2821 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2822 u8 *to, int len) 2823 { 2824 int start = skb_headlen(skb); 2825 int i, copy = start - offset; 2826 struct sk_buff *frag_iter; 2827 int pos = 0; 2828 __wsum csum = 0; 2829 2830 /* Copy header. */ 2831 if (copy > 0) { 2832 if (copy > len) 2833 copy = len; 2834 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2835 copy); 2836 if ((len -= copy) == 0) 2837 return csum; 2838 offset += copy; 2839 to += copy; 2840 pos = copy; 2841 } 2842 2843 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2844 int end; 2845 2846 WARN_ON(start > offset + len); 2847 2848 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2849 if ((copy = end - offset) > 0) { 2850 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2851 u32 p_off, p_len, copied; 2852 struct page *p; 2853 __wsum csum2; 2854 u8 *vaddr; 2855 2856 if (copy > len) 2857 copy = len; 2858 2859 skb_frag_foreach_page(frag, 2860 skb_frag_off(frag) + offset - start, 2861 copy, p, p_off, p_len, copied) { 2862 vaddr = kmap_atomic(p); 2863 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2864 to + copied, 2865 p_len); 2866 kunmap_atomic(vaddr); 2867 csum = csum_block_add(csum, csum2, pos); 2868 pos += p_len; 2869 } 2870 2871 if (!(len -= copy)) 2872 return csum; 2873 offset += copy; 2874 to += copy; 2875 } 2876 start = end; 2877 } 2878 2879 skb_walk_frags(skb, frag_iter) { 2880 __wsum csum2; 2881 int end; 2882 2883 WARN_ON(start > offset + len); 2884 2885 end = start + frag_iter->len; 2886 if ((copy = end - offset) > 0) { 2887 if (copy > len) 2888 copy = len; 2889 csum2 = skb_copy_and_csum_bits(frag_iter, 2890 offset - start, 2891 to, copy); 2892 csum = csum_block_add(csum, csum2, pos); 2893 if ((len -= copy) == 0) 2894 return csum; 2895 offset += copy; 2896 to += copy; 2897 pos += copy; 2898 } 2899 start = end; 2900 } 2901 BUG_ON(len); 2902 return csum; 2903 } 2904 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2905 2906 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2907 { 2908 __sum16 sum; 2909 2910 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2911 /* See comments in __skb_checksum_complete(). */ 2912 if (likely(!sum)) { 2913 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2914 !skb->csum_complete_sw) 2915 netdev_rx_csum_fault(skb->dev, skb); 2916 } 2917 if (!skb_shared(skb)) 2918 skb->csum_valid = !sum; 2919 return sum; 2920 } 2921 EXPORT_SYMBOL(__skb_checksum_complete_head); 2922 2923 /* This function assumes skb->csum already holds pseudo header's checksum, 2924 * which has been changed from the hardware checksum, for example, by 2925 * __skb_checksum_validate_complete(). And, the original skb->csum must 2926 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2927 * 2928 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2929 * zero. The new checksum is stored back into skb->csum unless the skb is 2930 * shared. 2931 */ 2932 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2933 { 2934 __wsum csum; 2935 __sum16 sum; 2936 2937 csum = skb_checksum(skb, 0, skb->len, 0); 2938 2939 sum = csum_fold(csum_add(skb->csum, csum)); 2940 /* This check is inverted, because we already knew the hardware 2941 * checksum is invalid before calling this function. So, if the 2942 * re-computed checksum is valid instead, then we have a mismatch 2943 * between the original skb->csum and skb_checksum(). This means either 2944 * the original hardware checksum is incorrect or we screw up skb->csum 2945 * when moving skb->data around. 2946 */ 2947 if (likely(!sum)) { 2948 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2949 !skb->csum_complete_sw) 2950 netdev_rx_csum_fault(skb->dev, skb); 2951 } 2952 2953 if (!skb_shared(skb)) { 2954 /* Save full packet checksum */ 2955 skb->csum = csum; 2956 skb->ip_summed = CHECKSUM_COMPLETE; 2957 skb->csum_complete_sw = 1; 2958 skb->csum_valid = !sum; 2959 } 2960 2961 return sum; 2962 } 2963 EXPORT_SYMBOL(__skb_checksum_complete); 2964 2965 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2966 { 2967 net_warn_ratelimited( 2968 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2969 __func__); 2970 return 0; 2971 } 2972 2973 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2974 int offset, int len) 2975 { 2976 net_warn_ratelimited( 2977 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2978 __func__); 2979 return 0; 2980 } 2981 2982 static const struct skb_checksum_ops default_crc32c_ops = { 2983 .update = warn_crc32c_csum_update, 2984 .combine = warn_crc32c_csum_combine, 2985 }; 2986 2987 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2988 &default_crc32c_ops; 2989 EXPORT_SYMBOL(crc32c_csum_stub); 2990 2991 /** 2992 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2993 * @from: source buffer 2994 * 2995 * Calculates the amount of linear headroom needed in the 'to' skb passed 2996 * into skb_zerocopy(). 2997 */ 2998 unsigned int 2999 skb_zerocopy_headlen(const struct sk_buff *from) 3000 { 3001 unsigned int hlen = 0; 3002 3003 if (!from->head_frag || 3004 skb_headlen(from) < L1_CACHE_BYTES || 3005 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3006 hlen = skb_headlen(from); 3007 3008 if (skb_has_frag_list(from)) 3009 hlen = from->len; 3010 3011 return hlen; 3012 } 3013 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3014 3015 /** 3016 * skb_zerocopy - Zero copy skb to skb 3017 * @to: destination buffer 3018 * @from: source buffer 3019 * @len: number of bytes to copy from source buffer 3020 * @hlen: size of linear headroom in destination buffer 3021 * 3022 * Copies up to `len` bytes from `from` to `to` by creating references 3023 * to the frags in the source buffer. 3024 * 3025 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3026 * headroom in the `to` buffer. 3027 * 3028 * Return value: 3029 * 0: everything is OK 3030 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3031 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3032 */ 3033 int 3034 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3035 { 3036 int i, j = 0; 3037 int plen = 0; /* length of skb->head fragment */ 3038 int ret; 3039 struct page *page; 3040 unsigned int offset; 3041 3042 BUG_ON(!from->head_frag && !hlen); 3043 3044 /* dont bother with small payloads */ 3045 if (len <= skb_tailroom(to)) 3046 return skb_copy_bits(from, 0, skb_put(to, len), len); 3047 3048 if (hlen) { 3049 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3050 if (unlikely(ret)) 3051 return ret; 3052 len -= hlen; 3053 } else { 3054 plen = min_t(int, skb_headlen(from), len); 3055 if (plen) { 3056 page = virt_to_head_page(from->head); 3057 offset = from->data - (unsigned char *)page_address(page); 3058 __skb_fill_page_desc(to, 0, page, offset, plen); 3059 get_page(page); 3060 j = 1; 3061 len -= plen; 3062 } 3063 } 3064 3065 to->truesize += len + plen; 3066 to->len += len + plen; 3067 to->data_len += len + plen; 3068 3069 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3070 skb_tx_error(from); 3071 return -ENOMEM; 3072 } 3073 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3074 3075 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3076 int size; 3077 3078 if (!len) 3079 break; 3080 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3081 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3082 len); 3083 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3084 len -= size; 3085 skb_frag_ref(to, j); 3086 j++; 3087 } 3088 skb_shinfo(to)->nr_frags = j; 3089 3090 return 0; 3091 } 3092 EXPORT_SYMBOL_GPL(skb_zerocopy); 3093 3094 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3095 { 3096 __wsum csum; 3097 long csstart; 3098 3099 if (skb->ip_summed == CHECKSUM_PARTIAL) 3100 csstart = skb_checksum_start_offset(skb); 3101 else 3102 csstart = skb_headlen(skb); 3103 3104 BUG_ON(csstart > skb_headlen(skb)); 3105 3106 skb_copy_from_linear_data(skb, to, csstart); 3107 3108 csum = 0; 3109 if (csstart != skb->len) 3110 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3111 skb->len - csstart); 3112 3113 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3114 long csstuff = csstart + skb->csum_offset; 3115 3116 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3117 } 3118 } 3119 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3120 3121 /** 3122 * skb_dequeue - remove from the head of the queue 3123 * @list: list to dequeue from 3124 * 3125 * Remove the head of the list. The list lock is taken so the function 3126 * may be used safely with other locking list functions. The head item is 3127 * returned or %NULL if the list is empty. 3128 */ 3129 3130 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3131 { 3132 unsigned long flags; 3133 struct sk_buff *result; 3134 3135 spin_lock_irqsave(&list->lock, flags); 3136 result = __skb_dequeue(list); 3137 spin_unlock_irqrestore(&list->lock, flags); 3138 return result; 3139 } 3140 EXPORT_SYMBOL(skb_dequeue); 3141 3142 /** 3143 * skb_dequeue_tail - remove from the tail of the queue 3144 * @list: list to dequeue from 3145 * 3146 * Remove the tail of the list. The list lock is taken so the function 3147 * may be used safely with other locking list functions. The tail item is 3148 * returned or %NULL if the list is empty. 3149 */ 3150 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3151 { 3152 unsigned long flags; 3153 struct sk_buff *result; 3154 3155 spin_lock_irqsave(&list->lock, flags); 3156 result = __skb_dequeue_tail(list); 3157 spin_unlock_irqrestore(&list->lock, flags); 3158 return result; 3159 } 3160 EXPORT_SYMBOL(skb_dequeue_tail); 3161 3162 /** 3163 * skb_queue_purge - empty a list 3164 * @list: list to empty 3165 * 3166 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3167 * the list and one reference dropped. This function takes the list 3168 * lock and is atomic with respect to other list locking functions. 3169 */ 3170 void skb_queue_purge(struct sk_buff_head *list) 3171 { 3172 struct sk_buff *skb; 3173 while ((skb = skb_dequeue(list)) != NULL) 3174 kfree_skb(skb); 3175 } 3176 EXPORT_SYMBOL(skb_queue_purge); 3177 3178 /** 3179 * skb_rbtree_purge - empty a skb rbtree 3180 * @root: root of the rbtree to empty 3181 * Return value: the sum of truesizes of all purged skbs. 3182 * 3183 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3184 * the list and one reference dropped. This function does not take 3185 * any lock. Synchronization should be handled by the caller (e.g., TCP 3186 * out-of-order queue is protected by the socket lock). 3187 */ 3188 unsigned int skb_rbtree_purge(struct rb_root *root) 3189 { 3190 struct rb_node *p = rb_first(root); 3191 unsigned int sum = 0; 3192 3193 while (p) { 3194 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3195 3196 p = rb_next(p); 3197 rb_erase(&skb->rbnode, root); 3198 sum += skb->truesize; 3199 kfree_skb(skb); 3200 } 3201 return sum; 3202 } 3203 3204 /** 3205 * skb_queue_head - queue a buffer at the list head 3206 * @list: list to use 3207 * @newsk: buffer to queue 3208 * 3209 * Queue a buffer at the start of the list. This function takes the 3210 * list lock and can be used safely with other locking &sk_buff functions 3211 * safely. 3212 * 3213 * A buffer cannot be placed on two lists at the same time. 3214 */ 3215 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3216 { 3217 unsigned long flags; 3218 3219 spin_lock_irqsave(&list->lock, flags); 3220 __skb_queue_head(list, newsk); 3221 spin_unlock_irqrestore(&list->lock, flags); 3222 } 3223 EXPORT_SYMBOL(skb_queue_head); 3224 3225 /** 3226 * skb_queue_tail - queue a buffer at the list tail 3227 * @list: list to use 3228 * @newsk: buffer to queue 3229 * 3230 * Queue a buffer at the tail of the list. This function takes the 3231 * list lock and can be used safely with other locking &sk_buff functions 3232 * safely. 3233 * 3234 * A buffer cannot be placed on two lists at the same time. 3235 */ 3236 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3237 { 3238 unsigned long flags; 3239 3240 spin_lock_irqsave(&list->lock, flags); 3241 __skb_queue_tail(list, newsk); 3242 spin_unlock_irqrestore(&list->lock, flags); 3243 } 3244 EXPORT_SYMBOL(skb_queue_tail); 3245 3246 /** 3247 * skb_unlink - remove a buffer from a list 3248 * @skb: buffer to remove 3249 * @list: list to use 3250 * 3251 * Remove a packet from a list. The list locks are taken and this 3252 * function is atomic with respect to other list locked calls 3253 * 3254 * You must know what list the SKB is on. 3255 */ 3256 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3257 { 3258 unsigned long flags; 3259 3260 spin_lock_irqsave(&list->lock, flags); 3261 __skb_unlink(skb, list); 3262 spin_unlock_irqrestore(&list->lock, flags); 3263 } 3264 EXPORT_SYMBOL(skb_unlink); 3265 3266 /** 3267 * skb_append - append a buffer 3268 * @old: buffer to insert after 3269 * @newsk: buffer to insert 3270 * @list: list to use 3271 * 3272 * Place a packet after a given packet in a list. The list locks are taken 3273 * and this function is atomic with respect to other list locked calls. 3274 * A buffer cannot be placed on two lists at the same time. 3275 */ 3276 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3277 { 3278 unsigned long flags; 3279 3280 spin_lock_irqsave(&list->lock, flags); 3281 __skb_queue_after(list, old, newsk); 3282 spin_unlock_irqrestore(&list->lock, flags); 3283 } 3284 EXPORT_SYMBOL(skb_append); 3285 3286 static inline void skb_split_inside_header(struct sk_buff *skb, 3287 struct sk_buff* skb1, 3288 const u32 len, const int pos) 3289 { 3290 int i; 3291 3292 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3293 pos - len); 3294 /* And move data appendix as is. */ 3295 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3296 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3297 3298 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3299 skb_shinfo(skb)->nr_frags = 0; 3300 skb1->data_len = skb->data_len; 3301 skb1->len += skb1->data_len; 3302 skb->data_len = 0; 3303 skb->len = len; 3304 skb_set_tail_pointer(skb, len); 3305 } 3306 3307 static inline void skb_split_no_header(struct sk_buff *skb, 3308 struct sk_buff* skb1, 3309 const u32 len, int pos) 3310 { 3311 int i, k = 0; 3312 const int nfrags = skb_shinfo(skb)->nr_frags; 3313 3314 skb_shinfo(skb)->nr_frags = 0; 3315 skb1->len = skb1->data_len = skb->len - len; 3316 skb->len = len; 3317 skb->data_len = len - pos; 3318 3319 for (i = 0; i < nfrags; i++) { 3320 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3321 3322 if (pos + size > len) { 3323 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3324 3325 if (pos < len) { 3326 /* Split frag. 3327 * We have two variants in this case: 3328 * 1. Move all the frag to the second 3329 * part, if it is possible. F.e. 3330 * this approach is mandatory for TUX, 3331 * where splitting is expensive. 3332 * 2. Split is accurately. We make this. 3333 */ 3334 skb_frag_ref(skb, i); 3335 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3336 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3337 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3338 skb_shinfo(skb)->nr_frags++; 3339 } 3340 k++; 3341 } else 3342 skb_shinfo(skb)->nr_frags++; 3343 pos += size; 3344 } 3345 skb_shinfo(skb1)->nr_frags = k; 3346 } 3347 3348 /** 3349 * skb_split - Split fragmented skb to two parts at length len. 3350 * @skb: the buffer to split 3351 * @skb1: the buffer to receive the second part 3352 * @len: new length for skb 3353 */ 3354 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3355 { 3356 int pos = skb_headlen(skb); 3357 3358 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3359 skb_zerocopy_clone(skb1, skb, 0); 3360 if (len < pos) /* Split line is inside header. */ 3361 skb_split_inside_header(skb, skb1, len, pos); 3362 else /* Second chunk has no header, nothing to copy. */ 3363 skb_split_no_header(skb, skb1, len, pos); 3364 } 3365 EXPORT_SYMBOL(skb_split); 3366 3367 /* Shifting from/to a cloned skb is a no-go. 3368 * 3369 * Caller cannot keep skb_shinfo related pointers past calling here! 3370 */ 3371 static int skb_prepare_for_shift(struct sk_buff *skb) 3372 { 3373 int ret = 0; 3374 3375 if (skb_cloned(skb)) { 3376 /* Save and restore truesize: pskb_expand_head() may reallocate 3377 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3378 * cannot change truesize at this point. 3379 */ 3380 unsigned int save_truesize = skb->truesize; 3381 3382 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3383 skb->truesize = save_truesize; 3384 } 3385 return ret; 3386 } 3387 3388 /** 3389 * skb_shift - Shifts paged data partially from skb to another 3390 * @tgt: buffer into which tail data gets added 3391 * @skb: buffer from which the paged data comes from 3392 * @shiftlen: shift up to this many bytes 3393 * 3394 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3395 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3396 * It's up to caller to free skb if everything was shifted. 3397 * 3398 * If @tgt runs out of frags, the whole operation is aborted. 3399 * 3400 * Skb cannot include anything else but paged data while tgt is allowed 3401 * to have non-paged data as well. 3402 * 3403 * TODO: full sized shift could be optimized but that would need 3404 * specialized skb free'er to handle frags without up-to-date nr_frags. 3405 */ 3406 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3407 { 3408 int from, to, merge, todo; 3409 skb_frag_t *fragfrom, *fragto; 3410 3411 BUG_ON(shiftlen > skb->len); 3412 3413 if (skb_headlen(skb)) 3414 return 0; 3415 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3416 return 0; 3417 3418 todo = shiftlen; 3419 from = 0; 3420 to = skb_shinfo(tgt)->nr_frags; 3421 fragfrom = &skb_shinfo(skb)->frags[from]; 3422 3423 /* Actual merge is delayed until the point when we know we can 3424 * commit all, so that we don't have to undo partial changes 3425 */ 3426 if (!to || 3427 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3428 skb_frag_off(fragfrom))) { 3429 merge = -1; 3430 } else { 3431 merge = to - 1; 3432 3433 todo -= skb_frag_size(fragfrom); 3434 if (todo < 0) { 3435 if (skb_prepare_for_shift(skb) || 3436 skb_prepare_for_shift(tgt)) 3437 return 0; 3438 3439 /* All previous frag pointers might be stale! */ 3440 fragfrom = &skb_shinfo(skb)->frags[from]; 3441 fragto = &skb_shinfo(tgt)->frags[merge]; 3442 3443 skb_frag_size_add(fragto, shiftlen); 3444 skb_frag_size_sub(fragfrom, shiftlen); 3445 skb_frag_off_add(fragfrom, shiftlen); 3446 3447 goto onlymerged; 3448 } 3449 3450 from++; 3451 } 3452 3453 /* Skip full, not-fitting skb to avoid expensive operations */ 3454 if ((shiftlen == skb->len) && 3455 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3456 return 0; 3457 3458 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3459 return 0; 3460 3461 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3462 if (to == MAX_SKB_FRAGS) 3463 return 0; 3464 3465 fragfrom = &skb_shinfo(skb)->frags[from]; 3466 fragto = &skb_shinfo(tgt)->frags[to]; 3467 3468 if (todo >= skb_frag_size(fragfrom)) { 3469 *fragto = *fragfrom; 3470 todo -= skb_frag_size(fragfrom); 3471 from++; 3472 to++; 3473 3474 } else { 3475 __skb_frag_ref(fragfrom); 3476 skb_frag_page_copy(fragto, fragfrom); 3477 skb_frag_off_copy(fragto, fragfrom); 3478 skb_frag_size_set(fragto, todo); 3479 3480 skb_frag_off_add(fragfrom, todo); 3481 skb_frag_size_sub(fragfrom, todo); 3482 todo = 0; 3483 3484 to++; 3485 break; 3486 } 3487 } 3488 3489 /* Ready to "commit" this state change to tgt */ 3490 skb_shinfo(tgt)->nr_frags = to; 3491 3492 if (merge >= 0) { 3493 fragfrom = &skb_shinfo(skb)->frags[0]; 3494 fragto = &skb_shinfo(tgt)->frags[merge]; 3495 3496 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3497 __skb_frag_unref(fragfrom); 3498 } 3499 3500 /* Reposition in the original skb */ 3501 to = 0; 3502 while (from < skb_shinfo(skb)->nr_frags) 3503 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3504 skb_shinfo(skb)->nr_frags = to; 3505 3506 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3507 3508 onlymerged: 3509 /* Most likely the tgt won't ever need its checksum anymore, skb on 3510 * the other hand might need it if it needs to be resent 3511 */ 3512 tgt->ip_summed = CHECKSUM_PARTIAL; 3513 skb->ip_summed = CHECKSUM_PARTIAL; 3514 3515 /* Yak, is it really working this way? Some helper please? */ 3516 skb->len -= shiftlen; 3517 skb->data_len -= shiftlen; 3518 skb->truesize -= shiftlen; 3519 tgt->len += shiftlen; 3520 tgt->data_len += shiftlen; 3521 tgt->truesize += shiftlen; 3522 3523 return shiftlen; 3524 } 3525 3526 /** 3527 * skb_prepare_seq_read - Prepare a sequential read of skb data 3528 * @skb: the buffer to read 3529 * @from: lower offset of data to be read 3530 * @to: upper offset of data to be read 3531 * @st: state variable 3532 * 3533 * Initializes the specified state variable. Must be called before 3534 * invoking skb_seq_read() for the first time. 3535 */ 3536 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3537 unsigned int to, struct skb_seq_state *st) 3538 { 3539 st->lower_offset = from; 3540 st->upper_offset = to; 3541 st->root_skb = st->cur_skb = skb; 3542 st->frag_idx = st->stepped_offset = 0; 3543 st->frag_data = NULL; 3544 st->frag_off = 0; 3545 } 3546 EXPORT_SYMBOL(skb_prepare_seq_read); 3547 3548 /** 3549 * skb_seq_read - Sequentially read skb data 3550 * @consumed: number of bytes consumed by the caller so far 3551 * @data: destination pointer for data to be returned 3552 * @st: state variable 3553 * 3554 * Reads a block of skb data at @consumed relative to the 3555 * lower offset specified to skb_prepare_seq_read(). Assigns 3556 * the head of the data block to @data and returns the length 3557 * of the block or 0 if the end of the skb data or the upper 3558 * offset has been reached. 3559 * 3560 * The caller is not required to consume all of the data 3561 * returned, i.e. @consumed is typically set to the number 3562 * of bytes already consumed and the next call to 3563 * skb_seq_read() will return the remaining part of the block. 3564 * 3565 * Note 1: The size of each block of data returned can be arbitrary, 3566 * this limitation is the cost for zerocopy sequential 3567 * reads of potentially non linear data. 3568 * 3569 * Note 2: Fragment lists within fragments are not implemented 3570 * at the moment, state->root_skb could be replaced with 3571 * a stack for this purpose. 3572 */ 3573 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3574 struct skb_seq_state *st) 3575 { 3576 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3577 skb_frag_t *frag; 3578 3579 if (unlikely(abs_offset >= st->upper_offset)) { 3580 if (st->frag_data) { 3581 kunmap_atomic(st->frag_data); 3582 st->frag_data = NULL; 3583 } 3584 return 0; 3585 } 3586 3587 next_skb: 3588 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3589 3590 if (abs_offset < block_limit && !st->frag_data) { 3591 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3592 return block_limit - abs_offset; 3593 } 3594 3595 if (st->frag_idx == 0 && !st->frag_data) 3596 st->stepped_offset += skb_headlen(st->cur_skb); 3597 3598 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3599 unsigned int pg_idx, pg_off, pg_sz; 3600 3601 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3602 3603 pg_idx = 0; 3604 pg_off = skb_frag_off(frag); 3605 pg_sz = skb_frag_size(frag); 3606 3607 if (skb_frag_must_loop(skb_frag_page(frag))) { 3608 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3609 pg_off = offset_in_page(pg_off + st->frag_off); 3610 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3611 PAGE_SIZE - pg_off); 3612 } 3613 3614 block_limit = pg_sz + st->stepped_offset; 3615 if (abs_offset < block_limit) { 3616 if (!st->frag_data) 3617 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3618 3619 *data = (u8 *)st->frag_data + pg_off + 3620 (abs_offset - st->stepped_offset); 3621 3622 return block_limit - abs_offset; 3623 } 3624 3625 if (st->frag_data) { 3626 kunmap_atomic(st->frag_data); 3627 st->frag_data = NULL; 3628 } 3629 3630 st->stepped_offset += pg_sz; 3631 st->frag_off += pg_sz; 3632 if (st->frag_off == skb_frag_size(frag)) { 3633 st->frag_off = 0; 3634 st->frag_idx++; 3635 } 3636 } 3637 3638 if (st->frag_data) { 3639 kunmap_atomic(st->frag_data); 3640 st->frag_data = NULL; 3641 } 3642 3643 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3644 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3645 st->frag_idx = 0; 3646 goto next_skb; 3647 } else if (st->cur_skb->next) { 3648 st->cur_skb = st->cur_skb->next; 3649 st->frag_idx = 0; 3650 goto next_skb; 3651 } 3652 3653 return 0; 3654 } 3655 EXPORT_SYMBOL(skb_seq_read); 3656 3657 /** 3658 * skb_abort_seq_read - Abort a sequential read of skb data 3659 * @st: state variable 3660 * 3661 * Must be called if skb_seq_read() was not called until it 3662 * returned 0. 3663 */ 3664 void skb_abort_seq_read(struct skb_seq_state *st) 3665 { 3666 if (st->frag_data) 3667 kunmap_atomic(st->frag_data); 3668 } 3669 EXPORT_SYMBOL(skb_abort_seq_read); 3670 3671 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3672 3673 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3674 struct ts_config *conf, 3675 struct ts_state *state) 3676 { 3677 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3678 } 3679 3680 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3681 { 3682 skb_abort_seq_read(TS_SKB_CB(state)); 3683 } 3684 3685 /** 3686 * skb_find_text - Find a text pattern in skb data 3687 * @skb: the buffer to look in 3688 * @from: search offset 3689 * @to: search limit 3690 * @config: textsearch configuration 3691 * 3692 * Finds a pattern in the skb data according to the specified 3693 * textsearch configuration. Use textsearch_next() to retrieve 3694 * subsequent occurrences of the pattern. Returns the offset 3695 * to the first occurrence or UINT_MAX if no match was found. 3696 */ 3697 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3698 unsigned int to, struct ts_config *config) 3699 { 3700 struct ts_state state; 3701 unsigned int ret; 3702 3703 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3704 3705 config->get_next_block = skb_ts_get_next_block; 3706 config->finish = skb_ts_finish; 3707 3708 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3709 3710 ret = textsearch_find(config, &state); 3711 return (ret <= to - from ? ret : UINT_MAX); 3712 } 3713 EXPORT_SYMBOL(skb_find_text); 3714 3715 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3716 int offset, size_t size) 3717 { 3718 int i = skb_shinfo(skb)->nr_frags; 3719 3720 if (skb_can_coalesce(skb, i, page, offset)) { 3721 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3722 } else if (i < MAX_SKB_FRAGS) { 3723 get_page(page); 3724 skb_fill_page_desc(skb, i, page, offset, size); 3725 } else { 3726 return -EMSGSIZE; 3727 } 3728 3729 return 0; 3730 } 3731 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3732 3733 /** 3734 * skb_pull_rcsum - pull skb and update receive checksum 3735 * @skb: buffer to update 3736 * @len: length of data pulled 3737 * 3738 * This function performs an skb_pull on the packet and updates 3739 * the CHECKSUM_COMPLETE checksum. It should be used on 3740 * receive path processing instead of skb_pull unless you know 3741 * that the checksum difference is zero (e.g., a valid IP header) 3742 * or you are setting ip_summed to CHECKSUM_NONE. 3743 */ 3744 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3745 { 3746 unsigned char *data = skb->data; 3747 3748 BUG_ON(len > skb->len); 3749 __skb_pull(skb, len); 3750 skb_postpull_rcsum(skb, data, len); 3751 return skb->data; 3752 } 3753 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3754 3755 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3756 { 3757 skb_frag_t head_frag; 3758 struct page *page; 3759 3760 page = virt_to_head_page(frag_skb->head); 3761 __skb_frag_set_page(&head_frag, page); 3762 skb_frag_off_set(&head_frag, frag_skb->data - 3763 (unsigned char *)page_address(page)); 3764 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3765 return head_frag; 3766 } 3767 3768 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3769 netdev_features_t features, 3770 unsigned int offset) 3771 { 3772 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3773 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3774 unsigned int delta_truesize = 0; 3775 unsigned int delta_len = 0; 3776 struct sk_buff *tail = NULL; 3777 struct sk_buff *nskb, *tmp; 3778 int err; 3779 3780 skb_push(skb, -skb_network_offset(skb) + offset); 3781 3782 skb_shinfo(skb)->frag_list = NULL; 3783 3784 do { 3785 nskb = list_skb; 3786 list_skb = list_skb->next; 3787 3788 err = 0; 3789 if (skb_shared(nskb)) { 3790 tmp = skb_clone(nskb, GFP_ATOMIC); 3791 if (tmp) { 3792 consume_skb(nskb); 3793 nskb = tmp; 3794 err = skb_unclone(nskb, GFP_ATOMIC); 3795 } else { 3796 err = -ENOMEM; 3797 } 3798 } 3799 3800 if (!tail) 3801 skb->next = nskb; 3802 else 3803 tail->next = nskb; 3804 3805 if (unlikely(err)) { 3806 nskb->next = list_skb; 3807 goto err_linearize; 3808 } 3809 3810 tail = nskb; 3811 3812 delta_len += nskb->len; 3813 delta_truesize += nskb->truesize; 3814 3815 skb_push(nskb, -skb_network_offset(nskb) + offset); 3816 3817 skb_release_head_state(nskb); 3818 __copy_skb_header(nskb, skb); 3819 3820 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3821 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3822 nskb->data - tnl_hlen, 3823 offset + tnl_hlen); 3824 3825 if (skb_needs_linearize(nskb, features) && 3826 __skb_linearize(nskb)) 3827 goto err_linearize; 3828 3829 } while (list_skb); 3830 3831 skb->truesize = skb->truesize - delta_truesize; 3832 skb->data_len = skb->data_len - delta_len; 3833 skb->len = skb->len - delta_len; 3834 3835 skb_gso_reset(skb); 3836 3837 skb->prev = tail; 3838 3839 if (skb_needs_linearize(skb, features) && 3840 __skb_linearize(skb)) 3841 goto err_linearize; 3842 3843 skb_get(skb); 3844 3845 return skb; 3846 3847 err_linearize: 3848 kfree_skb_list(skb->next); 3849 skb->next = NULL; 3850 return ERR_PTR(-ENOMEM); 3851 } 3852 EXPORT_SYMBOL_GPL(skb_segment_list); 3853 3854 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3855 { 3856 if (unlikely(p->len + skb->len >= 65536)) 3857 return -E2BIG; 3858 3859 if (NAPI_GRO_CB(p)->last == p) 3860 skb_shinfo(p)->frag_list = skb; 3861 else 3862 NAPI_GRO_CB(p)->last->next = skb; 3863 3864 skb_pull(skb, skb_gro_offset(skb)); 3865 3866 NAPI_GRO_CB(p)->last = skb; 3867 NAPI_GRO_CB(p)->count++; 3868 p->data_len += skb->len; 3869 p->truesize += skb->truesize; 3870 p->len += skb->len; 3871 3872 NAPI_GRO_CB(skb)->same_flow = 1; 3873 3874 return 0; 3875 } 3876 3877 /** 3878 * skb_segment - Perform protocol segmentation on skb. 3879 * @head_skb: buffer to segment 3880 * @features: features for the output path (see dev->features) 3881 * 3882 * This function performs segmentation on the given skb. It returns 3883 * a pointer to the first in a list of new skbs for the segments. 3884 * In case of error it returns ERR_PTR(err). 3885 */ 3886 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3887 netdev_features_t features) 3888 { 3889 struct sk_buff *segs = NULL; 3890 struct sk_buff *tail = NULL; 3891 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3892 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3893 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3894 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3895 struct sk_buff *frag_skb = head_skb; 3896 unsigned int offset = doffset; 3897 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3898 unsigned int partial_segs = 0; 3899 unsigned int headroom; 3900 unsigned int len = head_skb->len; 3901 __be16 proto; 3902 bool csum, sg; 3903 int nfrags = skb_shinfo(head_skb)->nr_frags; 3904 int err = -ENOMEM; 3905 int i = 0; 3906 int pos; 3907 3908 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3909 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3910 /* gso_size is untrusted, and we have a frag_list with a linear 3911 * non head_frag head. 3912 * 3913 * (we assume checking the first list_skb member suffices; 3914 * i.e if either of the list_skb members have non head_frag 3915 * head, then the first one has too). 3916 * 3917 * If head_skb's headlen does not fit requested gso_size, it 3918 * means that the frag_list members do NOT terminate on exact 3919 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3920 * sharing. Therefore we must fallback to copying the frag_list 3921 * skbs; we do so by disabling SG. 3922 */ 3923 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3924 features &= ~NETIF_F_SG; 3925 } 3926 3927 __skb_push(head_skb, doffset); 3928 proto = skb_network_protocol(head_skb, NULL); 3929 if (unlikely(!proto)) 3930 return ERR_PTR(-EINVAL); 3931 3932 sg = !!(features & NETIF_F_SG); 3933 csum = !!can_checksum_protocol(features, proto); 3934 3935 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3936 if (!(features & NETIF_F_GSO_PARTIAL)) { 3937 struct sk_buff *iter; 3938 unsigned int frag_len; 3939 3940 if (!list_skb || 3941 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3942 goto normal; 3943 3944 /* If we get here then all the required 3945 * GSO features except frag_list are supported. 3946 * Try to split the SKB to multiple GSO SKBs 3947 * with no frag_list. 3948 * Currently we can do that only when the buffers don't 3949 * have a linear part and all the buffers except 3950 * the last are of the same length. 3951 */ 3952 frag_len = list_skb->len; 3953 skb_walk_frags(head_skb, iter) { 3954 if (frag_len != iter->len && iter->next) 3955 goto normal; 3956 if (skb_headlen(iter) && !iter->head_frag) 3957 goto normal; 3958 3959 len -= iter->len; 3960 } 3961 3962 if (len != frag_len) 3963 goto normal; 3964 } 3965 3966 /* GSO partial only requires that we trim off any excess that 3967 * doesn't fit into an MSS sized block, so take care of that 3968 * now. 3969 */ 3970 partial_segs = len / mss; 3971 if (partial_segs > 1) 3972 mss *= partial_segs; 3973 else 3974 partial_segs = 0; 3975 } 3976 3977 normal: 3978 headroom = skb_headroom(head_skb); 3979 pos = skb_headlen(head_skb); 3980 3981 do { 3982 struct sk_buff *nskb; 3983 skb_frag_t *nskb_frag; 3984 int hsize; 3985 int size; 3986 3987 if (unlikely(mss == GSO_BY_FRAGS)) { 3988 len = list_skb->len; 3989 } else { 3990 len = head_skb->len - offset; 3991 if (len > mss) 3992 len = mss; 3993 } 3994 3995 hsize = skb_headlen(head_skb) - offset; 3996 3997 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 3998 (skb_headlen(list_skb) == len || sg)) { 3999 BUG_ON(skb_headlen(list_skb) > len); 4000 4001 i = 0; 4002 nfrags = skb_shinfo(list_skb)->nr_frags; 4003 frag = skb_shinfo(list_skb)->frags; 4004 frag_skb = list_skb; 4005 pos += skb_headlen(list_skb); 4006 4007 while (pos < offset + len) { 4008 BUG_ON(i >= nfrags); 4009 4010 size = skb_frag_size(frag); 4011 if (pos + size > offset + len) 4012 break; 4013 4014 i++; 4015 pos += size; 4016 frag++; 4017 } 4018 4019 nskb = skb_clone(list_skb, GFP_ATOMIC); 4020 list_skb = list_skb->next; 4021 4022 if (unlikely(!nskb)) 4023 goto err; 4024 4025 if (unlikely(pskb_trim(nskb, len))) { 4026 kfree_skb(nskb); 4027 goto err; 4028 } 4029 4030 hsize = skb_end_offset(nskb); 4031 if (skb_cow_head(nskb, doffset + headroom)) { 4032 kfree_skb(nskb); 4033 goto err; 4034 } 4035 4036 nskb->truesize += skb_end_offset(nskb) - hsize; 4037 skb_release_head_state(nskb); 4038 __skb_push(nskb, doffset); 4039 } else { 4040 if (hsize < 0) 4041 hsize = 0; 4042 if (hsize > len || !sg) 4043 hsize = len; 4044 4045 nskb = __alloc_skb(hsize + doffset + headroom, 4046 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4047 NUMA_NO_NODE); 4048 4049 if (unlikely(!nskb)) 4050 goto err; 4051 4052 skb_reserve(nskb, headroom); 4053 __skb_put(nskb, doffset); 4054 } 4055 4056 if (segs) 4057 tail->next = nskb; 4058 else 4059 segs = nskb; 4060 tail = nskb; 4061 4062 __copy_skb_header(nskb, head_skb); 4063 4064 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4065 skb_reset_mac_len(nskb); 4066 4067 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4068 nskb->data - tnl_hlen, 4069 doffset + tnl_hlen); 4070 4071 if (nskb->len == len + doffset) 4072 goto perform_csum_check; 4073 4074 if (!sg) { 4075 if (!csum) { 4076 if (!nskb->remcsum_offload) 4077 nskb->ip_summed = CHECKSUM_NONE; 4078 SKB_GSO_CB(nskb)->csum = 4079 skb_copy_and_csum_bits(head_skb, offset, 4080 skb_put(nskb, 4081 len), 4082 len); 4083 SKB_GSO_CB(nskb)->csum_start = 4084 skb_headroom(nskb) + doffset; 4085 } else { 4086 skb_copy_bits(head_skb, offset, 4087 skb_put(nskb, len), 4088 len); 4089 } 4090 continue; 4091 } 4092 4093 nskb_frag = skb_shinfo(nskb)->frags; 4094 4095 skb_copy_from_linear_data_offset(head_skb, offset, 4096 skb_put(nskb, hsize), hsize); 4097 4098 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4099 SKBFL_SHARED_FRAG; 4100 4101 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4102 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4103 goto err; 4104 4105 while (pos < offset + len) { 4106 if (i >= nfrags) { 4107 i = 0; 4108 nfrags = skb_shinfo(list_skb)->nr_frags; 4109 frag = skb_shinfo(list_skb)->frags; 4110 frag_skb = list_skb; 4111 if (!skb_headlen(list_skb)) { 4112 BUG_ON(!nfrags); 4113 } else { 4114 BUG_ON(!list_skb->head_frag); 4115 4116 /* to make room for head_frag. */ 4117 i--; 4118 frag--; 4119 } 4120 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4121 skb_zerocopy_clone(nskb, frag_skb, 4122 GFP_ATOMIC)) 4123 goto err; 4124 4125 list_skb = list_skb->next; 4126 } 4127 4128 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4129 MAX_SKB_FRAGS)) { 4130 net_warn_ratelimited( 4131 "skb_segment: too many frags: %u %u\n", 4132 pos, mss); 4133 err = -EINVAL; 4134 goto err; 4135 } 4136 4137 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4138 __skb_frag_ref(nskb_frag); 4139 size = skb_frag_size(nskb_frag); 4140 4141 if (pos < offset) { 4142 skb_frag_off_add(nskb_frag, offset - pos); 4143 skb_frag_size_sub(nskb_frag, offset - pos); 4144 } 4145 4146 skb_shinfo(nskb)->nr_frags++; 4147 4148 if (pos + size <= offset + len) { 4149 i++; 4150 frag++; 4151 pos += size; 4152 } else { 4153 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4154 goto skip_fraglist; 4155 } 4156 4157 nskb_frag++; 4158 } 4159 4160 skip_fraglist: 4161 nskb->data_len = len - hsize; 4162 nskb->len += nskb->data_len; 4163 nskb->truesize += nskb->data_len; 4164 4165 perform_csum_check: 4166 if (!csum) { 4167 if (skb_has_shared_frag(nskb) && 4168 __skb_linearize(nskb)) 4169 goto err; 4170 4171 if (!nskb->remcsum_offload) 4172 nskb->ip_summed = CHECKSUM_NONE; 4173 SKB_GSO_CB(nskb)->csum = 4174 skb_checksum(nskb, doffset, 4175 nskb->len - doffset, 0); 4176 SKB_GSO_CB(nskb)->csum_start = 4177 skb_headroom(nskb) + doffset; 4178 } 4179 } while ((offset += len) < head_skb->len); 4180 4181 /* Some callers want to get the end of the list. 4182 * Put it in segs->prev to avoid walking the list. 4183 * (see validate_xmit_skb_list() for example) 4184 */ 4185 segs->prev = tail; 4186 4187 if (partial_segs) { 4188 struct sk_buff *iter; 4189 int type = skb_shinfo(head_skb)->gso_type; 4190 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4191 4192 /* Update type to add partial and then remove dodgy if set */ 4193 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4194 type &= ~SKB_GSO_DODGY; 4195 4196 /* Update GSO info and prepare to start updating headers on 4197 * our way back down the stack of protocols. 4198 */ 4199 for (iter = segs; iter; iter = iter->next) { 4200 skb_shinfo(iter)->gso_size = gso_size; 4201 skb_shinfo(iter)->gso_segs = partial_segs; 4202 skb_shinfo(iter)->gso_type = type; 4203 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4204 } 4205 4206 if (tail->len - doffset <= gso_size) 4207 skb_shinfo(tail)->gso_size = 0; 4208 else if (tail != segs) 4209 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4210 } 4211 4212 /* Following permits correct backpressure, for protocols 4213 * using skb_set_owner_w(). 4214 * Idea is to tranfert ownership from head_skb to last segment. 4215 */ 4216 if (head_skb->destructor == sock_wfree) { 4217 swap(tail->truesize, head_skb->truesize); 4218 swap(tail->destructor, head_skb->destructor); 4219 swap(tail->sk, head_skb->sk); 4220 } 4221 return segs; 4222 4223 err: 4224 kfree_skb_list(segs); 4225 return ERR_PTR(err); 4226 } 4227 EXPORT_SYMBOL_GPL(skb_segment); 4228 4229 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4230 { 4231 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4232 unsigned int offset = skb_gro_offset(skb); 4233 unsigned int headlen = skb_headlen(skb); 4234 unsigned int len = skb_gro_len(skb); 4235 unsigned int delta_truesize; 4236 struct sk_buff *lp; 4237 4238 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4239 return -E2BIG; 4240 4241 lp = NAPI_GRO_CB(p)->last; 4242 pinfo = skb_shinfo(lp); 4243 4244 if (headlen <= offset) { 4245 skb_frag_t *frag; 4246 skb_frag_t *frag2; 4247 int i = skbinfo->nr_frags; 4248 int nr_frags = pinfo->nr_frags + i; 4249 4250 if (nr_frags > MAX_SKB_FRAGS) 4251 goto merge; 4252 4253 offset -= headlen; 4254 pinfo->nr_frags = nr_frags; 4255 skbinfo->nr_frags = 0; 4256 4257 frag = pinfo->frags + nr_frags; 4258 frag2 = skbinfo->frags + i; 4259 do { 4260 *--frag = *--frag2; 4261 } while (--i); 4262 4263 skb_frag_off_add(frag, offset); 4264 skb_frag_size_sub(frag, offset); 4265 4266 /* all fragments truesize : remove (head size + sk_buff) */ 4267 delta_truesize = skb->truesize - 4268 SKB_TRUESIZE(skb_end_offset(skb)); 4269 4270 skb->truesize -= skb->data_len; 4271 skb->len -= skb->data_len; 4272 skb->data_len = 0; 4273 4274 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4275 goto done; 4276 } else if (skb->head_frag) { 4277 int nr_frags = pinfo->nr_frags; 4278 skb_frag_t *frag = pinfo->frags + nr_frags; 4279 struct page *page = virt_to_head_page(skb->head); 4280 unsigned int first_size = headlen - offset; 4281 unsigned int first_offset; 4282 4283 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4284 goto merge; 4285 4286 first_offset = skb->data - 4287 (unsigned char *)page_address(page) + 4288 offset; 4289 4290 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4291 4292 __skb_frag_set_page(frag, page); 4293 skb_frag_off_set(frag, first_offset); 4294 skb_frag_size_set(frag, first_size); 4295 4296 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4297 /* We dont need to clear skbinfo->nr_frags here */ 4298 4299 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4300 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4301 goto done; 4302 } 4303 4304 merge: 4305 delta_truesize = skb->truesize; 4306 if (offset > headlen) { 4307 unsigned int eat = offset - headlen; 4308 4309 skb_frag_off_add(&skbinfo->frags[0], eat); 4310 skb_frag_size_sub(&skbinfo->frags[0], eat); 4311 skb->data_len -= eat; 4312 skb->len -= eat; 4313 offset = headlen; 4314 } 4315 4316 __skb_pull(skb, offset); 4317 4318 if (NAPI_GRO_CB(p)->last == p) 4319 skb_shinfo(p)->frag_list = skb; 4320 else 4321 NAPI_GRO_CB(p)->last->next = skb; 4322 NAPI_GRO_CB(p)->last = skb; 4323 __skb_header_release(skb); 4324 lp = p; 4325 4326 done: 4327 NAPI_GRO_CB(p)->count++; 4328 p->data_len += len; 4329 p->truesize += delta_truesize; 4330 p->len += len; 4331 if (lp != p) { 4332 lp->data_len += len; 4333 lp->truesize += delta_truesize; 4334 lp->len += len; 4335 } 4336 NAPI_GRO_CB(skb)->same_flow = 1; 4337 return 0; 4338 } 4339 4340 #ifdef CONFIG_SKB_EXTENSIONS 4341 #define SKB_EXT_ALIGN_VALUE 8 4342 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4343 4344 static const u8 skb_ext_type_len[] = { 4345 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4346 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4347 #endif 4348 #ifdef CONFIG_XFRM 4349 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4350 #endif 4351 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4352 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4353 #endif 4354 #if IS_ENABLED(CONFIG_MPTCP) 4355 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4356 #endif 4357 }; 4358 4359 static __always_inline unsigned int skb_ext_total_length(void) 4360 { 4361 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4362 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4363 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4364 #endif 4365 #ifdef CONFIG_XFRM 4366 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4367 #endif 4368 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4369 skb_ext_type_len[TC_SKB_EXT] + 4370 #endif 4371 #if IS_ENABLED(CONFIG_MPTCP) 4372 skb_ext_type_len[SKB_EXT_MPTCP] + 4373 #endif 4374 0; 4375 } 4376 4377 static void skb_extensions_init(void) 4378 { 4379 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4380 BUILD_BUG_ON(skb_ext_total_length() > 255); 4381 4382 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4383 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4384 0, 4385 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4386 NULL); 4387 } 4388 #else 4389 static void skb_extensions_init(void) {} 4390 #endif 4391 4392 void __init skb_init(void) 4393 { 4394 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4395 sizeof(struct sk_buff), 4396 0, 4397 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4398 offsetof(struct sk_buff, cb), 4399 sizeof_field(struct sk_buff, cb), 4400 NULL); 4401 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4402 sizeof(struct sk_buff_fclones), 4403 0, 4404 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4405 NULL); 4406 skb_extensions_init(); 4407 } 4408 4409 static int 4410 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4411 unsigned int recursion_level) 4412 { 4413 int start = skb_headlen(skb); 4414 int i, copy = start - offset; 4415 struct sk_buff *frag_iter; 4416 int elt = 0; 4417 4418 if (unlikely(recursion_level >= 24)) 4419 return -EMSGSIZE; 4420 4421 if (copy > 0) { 4422 if (copy > len) 4423 copy = len; 4424 sg_set_buf(sg, skb->data + offset, copy); 4425 elt++; 4426 if ((len -= copy) == 0) 4427 return elt; 4428 offset += copy; 4429 } 4430 4431 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4432 int end; 4433 4434 WARN_ON(start > offset + len); 4435 4436 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4437 if ((copy = end - offset) > 0) { 4438 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4439 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4440 return -EMSGSIZE; 4441 4442 if (copy > len) 4443 copy = len; 4444 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4445 skb_frag_off(frag) + offset - start); 4446 elt++; 4447 if (!(len -= copy)) 4448 return elt; 4449 offset += copy; 4450 } 4451 start = end; 4452 } 4453 4454 skb_walk_frags(skb, frag_iter) { 4455 int end, ret; 4456 4457 WARN_ON(start > offset + len); 4458 4459 end = start + frag_iter->len; 4460 if ((copy = end - offset) > 0) { 4461 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4462 return -EMSGSIZE; 4463 4464 if (copy > len) 4465 copy = len; 4466 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4467 copy, recursion_level + 1); 4468 if (unlikely(ret < 0)) 4469 return ret; 4470 elt += ret; 4471 if ((len -= copy) == 0) 4472 return elt; 4473 offset += copy; 4474 } 4475 start = end; 4476 } 4477 BUG_ON(len); 4478 return elt; 4479 } 4480 4481 /** 4482 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4483 * @skb: Socket buffer containing the buffers to be mapped 4484 * @sg: The scatter-gather list to map into 4485 * @offset: The offset into the buffer's contents to start mapping 4486 * @len: Length of buffer space to be mapped 4487 * 4488 * Fill the specified scatter-gather list with mappings/pointers into a 4489 * region of the buffer space attached to a socket buffer. Returns either 4490 * the number of scatterlist items used, or -EMSGSIZE if the contents 4491 * could not fit. 4492 */ 4493 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4494 { 4495 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4496 4497 if (nsg <= 0) 4498 return nsg; 4499 4500 sg_mark_end(&sg[nsg - 1]); 4501 4502 return nsg; 4503 } 4504 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4505 4506 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4507 * sglist without mark the sg which contain last skb data as the end. 4508 * So the caller can mannipulate sg list as will when padding new data after 4509 * the first call without calling sg_unmark_end to expend sg list. 4510 * 4511 * Scenario to use skb_to_sgvec_nomark: 4512 * 1. sg_init_table 4513 * 2. skb_to_sgvec_nomark(payload1) 4514 * 3. skb_to_sgvec_nomark(payload2) 4515 * 4516 * This is equivalent to: 4517 * 1. sg_init_table 4518 * 2. skb_to_sgvec(payload1) 4519 * 3. sg_unmark_end 4520 * 4. skb_to_sgvec(payload2) 4521 * 4522 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4523 * is more preferable. 4524 */ 4525 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4526 int offset, int len) 4527 { 4528 return __skb_to_sgvec(skb, sg, offset, len, 0); 4529 } 4530 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4531 4532 4533 4534 /** 4535 * skb_cow_data - Check that a socket buffer's data buffers are writable 4536 * @skb: The socket buffer to check. 4537 * @tailbits: Amount of trailing space to be added 4538 * @trailer: Returned pointer to the skb where the @tailbits space begins 4539 * 4540 * Make sure that the data buffers attached to a socket buffer are 4541 * writable. If they are not, private copies are made of the data buffers 4542 * and the socket buffer is set to use these instead. 4543 * 4544 * If @tailbits is given, make sure that there is space to write @tailbits 4545 * bytes of data beyond current end of socket buffer. @trailer will be 4546 * set to point to the skb in which this space begins. 4547 * 4548 * The number of scatterlist elements required to completely map the 4549 * COW'd and extended socket buffer will be returned. 4550 */ 4551 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4552 { 4553 int copyflag; 4554 int elt; 4555 struct sk_buff *skb1, **skb_p; 4556 4557 /* If skb is cloned or its head is paged, reallocate 4558 * head pulling out all the pages (pages are considered not writable 4559 * at the moment even if they are anonymous). 4560 */ 4561 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4562 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4563 return -ENOMEM; 4564 4565 /* Easy case. Most of packets will go this way. */ 4566 if (!skb_has_frag_list(skb)) { 4567 /* A little of trouble, not enough of space for trailer. 4568 * This should not happen, when stack is tuned to generate 4569 * good frames. OK, on miss we reallocate and reserve even more 4570 * space, 128 bytes is fair. */ 4571 4572 if (skb_tailroom(skb) < tailbits && 4573 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4574 return -ENOMEM; 4575 4576 /* Voila! */ 4577 *trailer = skb; 4578 return 1; 4579 } 4580 4581 /* Misery. We are in troubles, going to mincer fragments... */ 4582 4583 elt = 1; 4584 skb_p = &skb_shinfo(skb)->frag_list; 4585 copyflag = 0; 4586 4587 while ((skb1 = *skb_p) != NULL) { 4588 int ntail = 0; 4589 4590 /* The fragment is partially pulled by someone, 4591 * this can happen on input. Copy it and everything 4592 * after it. */ 4593 4594 if (skb_shared(skb1)) 4595 copyflag = 1; 4596 4597 /* If the skb is the last, worry about trailer. */ 4598 4599 if (skb1->next == NULL && tailbits) { 4600 if (skb_shinfo(skb1)->nr_frags || 4601 skb_has_frag_list(skb1) || 4602 skb_tailroom(skb1) < tailbits) 4603 ntail = tailbits + 128; 4604 } 4605 4606 if (copyflag || 4607 skb_cloned(skb1) || 4608 ntail || 4609 skb_shinfo(skb1)->nr_frags || 4610 skb_has_frag_list(skb1)) { 4611 struct sk_buff *skb2; 4612 4613 /* Fuck, we are miserable poor guys... */ 4614 if (ntail == 0) 4615 skb2 = skb_copy(skb1, GFP_ATOMIC); 4616 else 4617 skb2 = skb_copy_expand(skb1, 4618 skb_headroom(skb1), 4619 ntail, 4620 GFP_ATOMIC); 4621 if (unlikely(skb2 == NULL)) 4622 return -ENOMEM; 4623 4624 if (skb1->sk) 4625 skb_set_owner_w(skb2, skb1->sk); 4626 4627 /* Looking around. Are we still alive? 4628 * OK, link new skb, drop old one */ 4629 4630 skb2->next = skb1->next; 4631 *skb_p = skb2; 4632 kfree_skb(skb1); 4633 skb1 = skb2; 4634 } 4635 elt++; 4636 *trailer = skb1; 4637 skb_p = &skb1->next; 4638 } 4639 4640 return elt; 4641 } 4642 EXPORT_SYMBOL_GPL(skb_cow_data); 4643 4644 static void sock_rmem_free(struct sk_buff *skb) 4645 { 4646 struct sock *sk = skb->sk; 4647 4648 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4649 } 4650 4651 static void skb_set_err_queue(struct sk_buff *skb) 4652 { 4653 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4654 * So, it is safe to (mis)use it to mark skbs on the error queue. 4655 */ 4656 skb->pkt_type = PACKET_OUTGOING; 4657 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4658 } 4659 4660 /* 4661 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4662 */ 4663 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4664 { 4665 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4666 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4667 return -ENOMEM; 4668 4669 skb_orphan(skb); 4670 skb->sk = sk; 4671 skb->destructor = sock_rmem_free; 4672 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4673 skb_set_err_queue(skb); 4674 4675 /* before exiting rcu section, make sure dst is refcounted */ 4676 skb_dst_force(skb); 4677 4678 skb_queue_tail(&sk->sk_error_queue, skb); 4679 if (!sock_flag(sk, SOCK_DEAD)) 4680 sk->sk_error_report(sk); 4681 return 0; 4682 } 4683 EXPORT_SYMBOL(sock_queue_err_skb); 4684 4685 static bool is_icmp_err_skb(const struct sk_buff *skb) 4686 { 4687 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4688 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4689 } 4690 4691 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4692 { 4693 struct sk_buff_head *q = &sk->sk_error_queue; 4694 struct sk_buff *skb, *skb_next = NULL; 4695 bool icmp_next = false; 4696 unsigned long flags; 4697 4698 spin_lock_irqsave(&q->lock, flags); 4699 skb = __skb_dequeue(q); 4700 if (skb && (skb_next = skb_peek(q))) { 4701 icmp_next = is_icmp_err_skb(skb_next); 4702 if (icmp_next) 4703 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4704 } 4705 spin_unlock_irqrestore(&q->lock, flags); 4706 4707 if (is_icmp_err_skb(skb) && !icmp_next) 4708 sk->sk_err = 0; 4709 4710 if (skb_next) 4711 sk->sk_error_report(sk); 4712 4713 return skb; 4714 } 4715 EXPORT_SYMBOL(sock_dequeue_err_skb); 4716 4717 /** 4718 * skb_clone_sk - create clone of skb, and take reference to socket 4719 * @skb: the skb to clone 4720 * 4721 * This function creates a clone of a buffer that holds a reference on 4722 * sk_refcnt. Buffers created via this function are meant to be 4723 * returned using sock_queue_err_skb, or free via kfree_skb. 4724 * 4725 * When passing buffers allocated with this function to sock_queue_err_skb 4726 * it is necessary to wrap the call with sock_hold/sock_put in order to 4727 * prevent the socket from being released prior to being enqueued on 4728 * the sk_error_queue. 4729 */ 4730 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4731 { 4732 struct sock *sk = skb->sk; 4733 struct sk_buff *clone; 4734 4735 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4736 return NULL; 4737 4738 clone = skb_clone(skb, GFP_ATOMIC); 4739 if (!clone) { 4740 sock_put(sk); 4741 return NULL; 4742 } 4743 4744 clone->sk = sk; 4745 clone->destructor = sock_efree; 4746 4747 return clone; 4748 } 4749 EXPORT_SYMBOL(skb_clone_sk); 4750 4751 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4752 struct sock *sk, 4753 int tstype, 4754 bool opt_stats) 4755 { 4756 struct sock_exterr_skb *serr; 4757 int err; 4758 4759 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4760 4761 serr = SKB_EXT_ERR(skb); 4762 memset(serr, 0, sizeof(*serr)); 4763 serr->ee.ee_errno = ENOMSG; 4764 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4765 serr->ee.ee_info = tstype; 4766 serr->opt_stats = opt_stats; 4767 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4768 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4769 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4770 if (sk->sk_protocol == IPPROTO_TCP && 4771 sk->sk_type == SOCK_STREAM) 4772 serr->ee.ee_data -= sk->sk_tskey; 4773 } 4774 4775 err = sock_queue_err_skb(sk, skb); 4776 4777 if (err) 4778 kfree_skb(skb); 4779 } 4780 4781 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4782 { 4783 bool ret; 4784 4785 if (likely(sysctl_tstamp_allow_data || tsonly)) 4786 return true; 4787 4788 read_lock_bh(&sk->sk_callback_lock); 4789 ret = sk->sk_socket && sk->sk_socket->file && 4790 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4791 read_unlock_bh(&sk->sk_callback_lock); 4792 return ret; 4793 } 4794 4795 void skb_complete_tx_timestamp(struct sk_buff *skb, 4796 struct skb_shared_hwtstamps *hwtstamps) 4797 { 4798 struct sock *sk = skb->sk; 4799 4800 if (!skb_may_tx_timestamp(sk, false)) 4801 goto err; 4802 4803 /* Take a reference to prevent skb_orphan() from freeing the socket, 4804 * but only if the socket refcount is not zero. 4805 */ 4806 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4807 *skb_hwtstamps(skb) = *hwtstamps; 4808 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4809 sock_put(sk); 4810 return; 4811 } 4812 4813 err: 4814 kfree_skb(skb); 4815 } 4816 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4817 4818 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4819 const struct sk_buff *ack_skb, 4820 struct skb_shared_hwtstamps *hwtstamps, 4821 struct sock *sk, int tstype) 4822 { 4823 struct sk_buff *skb; 4824 bool tsonly, opt_stats = false; 4825 4826 if (!sk) 4827 return; 4828 4829 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4830 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4831 return; 4832 4833 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4834 if (!skb_may_tx_timestamp(sk, tsonly)) 4835 return; 4836 4837 if (tsonly) { 4838 #ifdef CONFIG_INET 4839 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4840 sk->sk_protocol == IPPROTO_TCP && 4841 sk->sk_type == SOCK_STREAM) { 4842 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4843 ack_skb); 4844 opt_stats = true; 4845 } else 4846 #endif 4847 skb = alloc_skb(0, GFP_ATOMIC); 4848 } else { 4849 skb = skb_clone(orig_skb, GFP_ATOMIC); 4850 } 4851 if (!skb) 4852 return; 4853 4854 if (tsonly) { 4855 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4856 SKBTX_ANY_TSTAMP; 4857 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4858 } 4859 4860 if (hwtstamps) 4861 *skb_hwtstamps(skb) = *hwtstamps; 4862 else 4863 skb->tstamp = ktime_get_real(); 4864 4865 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4866 } 4867 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4868 4869 void skb_tstamp_tx(struct sk_buff *orig_skb, 4870 struct skb_shared_hwtstamps *hwtstamps) 4871 { 4872 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4873 SCM_TSTAMP_SND); 4874 } 4875 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4876 4877 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4878 { 4879 struct sock *sk = skb->sk; 4880 struct sock_exterr_skb *serr; 4881 int err = 1; 4882 4883 skb->wifi_acked_valid = 1; 4884 skb->wifi_acked = acked; 4885 4886 serr = SKB_EXT_ERR(skb); 4887 memset(serr, 0, sizeof(*serr)); 4888 serr->ee.ee_errno = ENOMSG; 4889 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4890 4891 /* Take a reference to prevent skb_orphan() from freeing the socket, 4892 * but only if the socket refcount is not zero. 4893 */ 4894 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4895 err = sock_queue_err_skb(sk, skb); 4896 sock_put(sk); 4897 } 4898 if (err) 4899 kfree_skb(skb); 4900 } 4901 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4902 4903 /** 4904 * skb_partial_csum_set - set up and verify partial csum values for packet 4905 * @skb: the skb to set 4906 * @start: the number of bytes after skb->data to start checksumming. 4907 * @off: the offset from start to place the checksum. 4908 * 4909 * For untrusted partially-checksummed packets, we need to make sure the values 4910 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4911 * 4912 * This function checks and sets those values and skb->ip_summed: if this 4913 * returns false you should drop the packet. 4914 */ 4915 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4916 { 4917 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4918 u32 csum_start = skb_headroom(skb) + (u32)start; 4919 4920 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4921 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4922 start, off, skb_headroom(skb), skb_headlen(skb)); 4923 return false; 4924 } 4925 skb->ip_summed = CHECKSUM_PARTIAL; 4926 skb->csum_start = csum_start; 4927 skb->csum_offset = off; 4928 skb_set_transport_header(skb, start); 4929 return true; 4930 } 4931 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4932 4933 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4934 unsigned int max) 4935 { 4936 if (skb_headlen(skb) >= len) 4937 return 0; 4938 4939 /* If we need to pullup then pullup to the max, so we 4940 * won't need to do it again. 4941 */ 4942 if (max > skb->len) 4943 max = skb->len; 4944 4945 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4946 return -ENOMEM; 4947 4948 if (skb_headlen(skb) < len) 4949 return -EPROTO; 4950 4951 return 0; 4952 } 4953 4954 #define MAX_TCP_HDR_LEN (15 * 4) 4955 4956 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4957 typeof(IPPROTO_IP) proto, 4958 unsigned int off) 4959 { 4960 int err; 4961 4962 switch (proto) { 4963 case IPPROTO_TCP: 4964 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4965 off + MAX_TCP_HDR_LEN); 4966 if (!err && !skb_partial_csum_set(skb, off, 4967 offsetof(struct tcphdr, 4968 check))) 4969 err = -EPROTO; 4970 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4971 4972 case IPPROTO_UDP: 4973 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4974 off + sizeof(struct udphdr)); 4975 if (!err && !skb_partial_csum_set(skb, off, 4976 offsetof(struct udphdr, 4977 check))) 4978 err = -EPROTO; 4979 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4980 } 4981 4982 return ERR_PTR(-EPROTO); 4983 } 4984 4985 /* This value should be large enough to cover a tagged ethernet header plus 4986 * maximally sized IP and TCP or UDP headers. 4987 */ 4988 #define MAX_IP_HDR_LEN 128 4989 4990 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4991 { 4992 unsigned int off; 4993 bool fragment; 4994 __sum16 *csum; 4995 int err; 4996 4997 fragment = false; 4998 4999 err = skb_maybe_pull_tail(skb, 5000 sizeof(struct iphdr), 5001 MAX_IP_HDR_LEN); 5002 if (err < 0) 5003 goto out; 5004 5005 if (ip_is_fragment(ip_hdr(skb))) 5006 fragment = true; 5007 5008 off = ip_hdrlen(skb); 5009 5010 err = -EPROTO; 5011 5012 if (fragment) 5013 goto out; 5014 5015 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5016 if (IS_ERR(csum)) 5017 return PTR_ERR(csum); 5018 5019 if (recalculate) 5020 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5021 ip_hdr(skb)->daddr, 5022 skb->len - off, 5023 ip_hdr(skb)->protocol, 0); 5024 err = 0; 5025 5026 out: 5027 return err; 5028 } 5029 5030 /* This value should be large enough to cover a tagged ethernet header plus 5031 * an IPv6 header, all options, and a maximal TCP or UDP header. 5032 */ 5033 #define MAX_IPV6_HDR_LEN 256 5034 5035 #define OPT_HDR(type, skb, off) \ 5036 (type *)(skb_network_header(skb) + (off)) 5037 5038 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5039 { 5040 int err; 5041 u8 nexthdr; 5042 unsigned int off; 5043 unsigned int len; 5044 bool fragment; 5045 bool done; 5046 __sum16 *csum; 5047 5048 fragment = false; 5049 done = false; 5050 5051 off = sizeof(struct ipv6hdr); 5052 5053 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5054 if (err < 0) 5055 goto out; 5056 5057 nexthdr = ipv6_hdr(skb)->nexthdr; 5058 5059 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5060 while (off <= len && !done) { 5061 switch (nexthdr) { 5062 case IPPROTO_DSTOPTS: 5063 case IPPROTO_HOPOPTS: 5064 case IPPROTO_ROUTING: { 5065 struct ipv6_opt_hdr *hp; 5066 5067 err = skb_maybe_pull_tail(skb, 5068 off + 5069 sizeof(struct ipv6_opt_hdr), 5070 MAX_IPV6_HDR_LEN); 5071 if (err < 0) 5072 goto out; 5073 5074 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5075 nexthdr = hp->nexthdr; 5076 off += ipv6_optlen(hp); 5077 break; 5078 } 5079 case IPPROTO_AH: { 5080 struct ip_auth_hdr *hp; 5081 5082 err = skb_maybe_pull_tail(skb, 5083 off + 5084 sizeof(struct ip_auth_hdr), 5085 MAX_IPV6_HDR_LEN); 5086 if (err < 0) 5087 goto out; 5088 5089 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5090 nexthdr = hp->nexthdr; 5091 off += ipv6_authlen(hp); 5092 break; 5093 } 5094 case IPPROTO_FRAGMENT: { 5095 struct frag_hdr *hp; 5096 5097 err = skb_maybe_pull_tail(skb, 5098 off + 5099 sizeof(struct frag_hdr), 5100 MAX_IPV6_HDR_LEN); 5101 if (err < 0) 5102 goto out; 5103 5104 hp = OPT_HDR(struct frag_hdr, skb, off); 5105 5106 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5107 fragment = true; 5108 5109 nexthdr = hp->nexthdr; 5110 off += sizeof(struct frag_hdr); 5111 break; 5112 } 5113 default: 5114 done = true; 5115 break; 5116 } 5117 } 5118 5119 err = -EPROTO; 5120 5121 if (!done || fragment) 5122 goto out; 5123 5124 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5125 if (IS_ERR(csum)) 5126 return PTR_ERR(csum); 5127 5128 if (recalculate) 5129 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5130 &ipv6_hdr(skb)->daddr, 5131 skb->len - off, nexthdr, 0); 5132 err = 0; 5133 5134 out: 5135 return err; 5136 } 5137 5138 /** 5139 * skb_checksum_setup - set up partial checksum offset 5140 * @skb: the skb to set up 5141 * @recalculate: if true the pseudo-header checksum will be recalculated 5142 */ 5143 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5144 { 5145 int err; 5146 5147 switch (skb->protocol) { 5148 case htons(ETH_P_IP): 5149 err = skb_checksum_setup_ipv4(skb, recalculate); 5150 break; 5151 5152 case htons(ETH_P_IPV6): 5153 err = skb_checksum_setup_ipv6(skb, recalculate); 5154 break; 5155 5156 default: 5157 err = -EPROTO; 5158 break; 5159 } 5160 5161 return err; 5162 } 5163 EXPORT_SYMBOL(skb_checksum_setup); 5164 5165 /** 5166 * skb_checksum_maybe_trim - maybe trims the given skb 5167 * @skb: the skb to check 5168 * @transport_len: the data length beyond the network header 5169 * 5170 * Checks whether the given skb has data beyond the given transport length. 5171 * If so, returns a cloned skb trimmed to this transport length. 5172 * Otherwise returns the provided skb. Returns NULL in error cases 5173 * (e.g. transport_len exceeds skb length or out-of-memory). 5174 * 5175 * Caller needs to set the skb transport header and free any returned skb if it 5176 * differs from the provided skb. 5177 */ 5178 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5179 unsigned int transport_len) 5180 { 5181 struct sk_buff *skb_chk; 5182 unsigned int len = skb_transport_offset(skb) + transport_len; 5183 int ret; 5184 5185 if (skb->len < len) 5186 return NULL; 5187 else if (skb->len == len) 5188 return skb; 5189 5190 skb_chk = skb_clone(skb, GFP_ATOMIC); 5191 if (!skb_chk) 5192 return NULL; 5193 5194 ret = pskb_trim_rcsum(skb_chk, len); 5195 if (ret) { 5196 kfree_skb(skb_chk); 5197 return NULL; 5198 } 5199 5200 return skb_chk; 5201 } 5202 5203 /** 5204 * skb_checksum_trimmed - validate checksum of an skb 5205 * @skb: the skb to check 5206 * @transport_len: the data length beyond the network header 5207 * @skb_chkf: checksum function to use 5208 * 5209 * Applies the given checksum function skb_chkf to the provided skb. 5210 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5211 * 5212 * If the skb has data beyond the given transport length, then a 5213 * trimmed & cloned skb is checked and returned. 5214 * 5215 * Caller needs to set the skb transport header and free any returned skb if it 5216 * differs from the provided skb. 5217 */ 5218 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5219 unsigned int transport_len, 5220 __sum16(*skb_chkf)(struct sk_buff *skb)) 5221 { 5222 struct sk_buff *skb_chk; 5223 unsigned int offset = skb_transport_offset(skb); 5224 __sum16 ret; 5225 5226 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5227 if (!skb_chk) 5228 goto err; 5229 5230 if (!pskb_may_pull(skb_chk, offset)) 5231 goto err; 5232 5233 skb_pull_rcsum(skb_chk, offset); 5234 ret = skb_chkf(skb_chk); 5235 skb_push_rcsum(skb_chk, offset); 5236 5237 if (ret) 5238 goto err; 5239 5240 return skb_chk; 5241 5242 err: 5243 if (skb_chk && skb_chk != skb) 5244 kfree_skb(skb_chk); 5245 5246 return NULL; 5247 5248 } 5249 EXPORT_SYMBOL(skb_checksum_trimmed); 5250 5251 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5252 { 5253 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5254 skb->dev->name); 5255 } 5256 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5257 5258 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5259 { 5260 if (head_stolen) { 5261 skb_release_head_state(skb); 5262 kmem_cache_free(skbuff_head_cache, skb); 5263 } else { 5264 __kfree_skb(skb); 5265 } 5266 } 5267 EXPORT_SYMBOL(kfree_skb_partial); 5268 5269 /** 5270 * skb_try_coalesce - try to merge skb to prior one 5271 * @to: prior buffer 5272 * @from: buffer to add 5273 * @fragstolen: pointer to boolean 5274 * @delta_truesize: how much more was allocated than was requested 5275 */ 5276 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5277 bool *fragstolen, int *delta_truesize) 5278 { 5279 struct skb_shared_info *to_shinfo, *from_shinfo; 5280 int i, delta, len = from->len; 5281 5282 *fragstolen = false; 5283 5284 if (skb_cloned(to)) 5285 return false; 5286 5287 if (len <= skb_tailroom(to)) { 5288 if (len) 5289 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5290 *delta_truesize = 0; 5291 return true; 5292 } 5293 5294 to_shinfo = skb_shinfo(to); 5295 from_shinfo = skb_shinfo(from); 5296 if (to_shinfo->frag_list || from_shinfo->frag_list) 5297 return false; 5298 if (skb_zcopy(to) || skb_zcopy(from)) 5299 return false; 5300 5301 if (skb_headlen(from) != 0) { 5302 struct page *page; 5303 unsigned int offset; 5304 5305 if (to_shinfo->nr_frags + 5306 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5307 return false; 5308 5309 if (skb_head_is_locked(from)) 5310 return false; 5311 5312 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5313 5314 page = virt_to_head_page(from->head); 5315 offset = from->data - (unsigned char *)page_address(page); 5316 5317 skb_fill_page_desc(to, to_shinfo->nr_frags, 5318 page, offset, skb_headlen(from)); 5319 *fragstolen = true; 5320 } else { 5321 if (to_shinfo->nr_frags + 5322 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5323 return false; 5324 5325 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5326 } 5327 5328 WARN_ON_ONCE(delta < len); 5329 5330 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5331 from_shinfo->frags, 5332 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5333 to_shinfo->nr_frags += from_shinfo->nr_frags; 5334 5335 if (!skb_cloned(from)) 5336 from_shinfo->nr_frags = 0; 5337 5338 /* if the skb is not cloned this does nothing 5339 * since we set nr_frags to 0. 5340 */ 5341 for (i = 0; i < from_shinfo->nr_frags; i++) 5342 __skb_frag_ref(&from_shinfo->frags[i]); 5343 5344 to->truesize += delta; 5345 to->len += len; 5346 to->data_len += len; 5347 5348 *delta_truesize = delta; 5349 return true; 5350 } 5351 EXPORT_SYMBOL(skb_try_coalesce); 5352 5353 /** 5354 * skb_scrub_packet - scrub an skb 5355 * 5356 * @skb: buffer to clean 5357 * @xnet: packet is crossing netns 5358 * 5359 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5360 * into/from a tunnel. Some information have to be cleared during these 5361 * operations. 5362 * skb_scrub_packet can also be used to clean a skb before injecting it in 5363 * another namespace (@xnet == true). We have to clear all information in the 5364 * skb that could impact namespace isolation. 5365 */ 5366 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5367 { 5368 skb->pkt_type = PACKET_HOST; 5369 skb->skb_iif = 0; 5370 skb->ignore_df = 0; 5371 skb_dst_drop(skb); 5372 skb_ext_reset(skb); 5373 nf_reset_ct(skb); 5374 nf_reset_trace(skb); 5375 5376 #ifdef CONFIG_NET_SWITCHDEV 5377 skb->offload_fwd_mark = 0; 5378 skb->offload_l3_fwd_mark = 0; 5379 #endif 5380 5381 if (!xnet) 5382 return; 5383 5384 ipvs_reset(skb); 5385 skb->mark = 0; 5386 skb->tstamp = 0; 5387 } 5388 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5389 5390 /** 5391 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5392 * 5393 * @skb: GSO skb 5394 * 5395 * skb_gso_transport_seglen is used to determine the real size of the 5396 * individual segments, including Layer4 headers (TCP/UDP). 5397 * 5398 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5399 */ 5400 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5401 { 5402 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5403 unsigned int thlen = 0; 5404 5405 if (skb->encapsulation) { 5406 thlen = skb_inner_transport_header(skb) - 5407 skb_transport_header(skb); 5408 5409 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5410 thlen += inner_tcp_hdrlen(skb); 5411 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5412 thlen = tcp_hdrlen(skb); 5413 } else if (unlikely(skb_is_gso_sctp(skb))) { 5414 thlen = sizeof(struct sctphdr); 5415 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5416 thlen = sizeof(struct udphdr); 5417 } 5418 /* UFO sets gso_size to the size of the fragmentation 5419 * payload, i.e. the size of the L4 (UDP) header is already 5420 * accounted for. 5421 */ 5422 return thlen + shinfo->gso_size; 5423 } 5424 5425 /** 5426 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5427 * 5428 * @skb: GSO skb 5429 * 5430 * skb_gso_network_seglen is used to determine the real size of the 5431 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5432 * 5433 * The MAC/L2 header is not accounted for. 5434 */ 5435 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5436 { 5437 unsigned int hdr_len = skb_transport_header(skb) - 5438 skb_network_header(skb); 5439 5440 return hdr_len + skb_gso_transport_seglen(skb); 5441 } 5442 5443 /** 5444 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5445 * 5446 * @skb: GSO skb 5447 * 5448 * skb_gso_mac_seglen is used to determine the real size of the 5449 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5450 * headers (TCP/UDP). 5451 */ 5452 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5453 { 5454 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5455 5456 return hdr_len + skb_gso_transport_seglen(skb); 5457 } 5458 5459 /** 5460 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5461 * 5462 * There are a couple of instances where we have a GSO skb, and we 5463 * want to determine what size it would be after it is segmented. 5464 * 5465 * We might want to check: 5466 * - L3+L4+payload size (e.g. IP forwarding) 5467 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5468 * 5469 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5470 * 5471 * @skb: GSO skb 5472 * 5473 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5474 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5475 * 5476 * @max_len: The maximum permissible length. 5477 * 5478 * Returns true if the segmented length <= max length. 5479 */ 5480 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5481 unsigned int seg_len, 5482 unsigned int max_len) { 5483 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5484 const struct sk_buff *iter; 5485 5486 if (shinfo->gso_size != GSO_BY_FRAGS) 5487 return seg_len <= max_len; 5488 5489 /* Undo this so we can re-use header sizes */ 5490 seg_len -= GSO_BY_FRAGS; 5491 5492 skb_walk_frags(skb, iter) { 5493 if (seg_len + skb_headlen(iter) > max_len) 5494 return false; 5495 } 5496 5497 return true; 5498 } 5499 5500 /** 5501 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5502 * 5503 * @skb: GSO skb 5504 * @mtu: MTU to validate against 5505 * 5506 * skb_gso_validate_network_len validates if a given skb will fit a 5507 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5508 * payload. 5509 */ 5510 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5511 { 5512 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5513 } 5514 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5515 5516 /** 5517 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5518 * 5519 * @skb: GSO skb 5520 * @len: length to validate against 5521 * 5522 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5523 * length once split, including L2, L3 and L4 headers and the payload. 5524 */ 5525 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5526 { 5527 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5528 } 5529 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5530 5531 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5532 { 5533 int mac_len, meta_len; 5534 void *meta; 5535 5536 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5537 kfree_skb(skb); 5538 return NULL; 5539 } 5540 5541 mac_len = skb->data - skb_mac_header(skb); 5542 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5543 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5544 mac_len - VLAN_HLEN - ETH_TLEN); 5545 } 5546 5547 meta_len = skb_metadata_len(skb); 5548 if (meta_len) { 5549 meta = skb_metadata_end(skb) - meta_len; 5550 memmove(meta + VLAN_HLEN, meta, meta_len); 5551 } 5552 5553 skb->mac_header += VLAN_HLEN; 5554 return skb; 5555 } 5556 5557 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5558 { 5559 struct vlan_hdr *vhdr; 5560 u16 vlan_tci; 5561 5562 if (unlikely(skb_vlan_tag_present(skb))) { 5563 /* vlan_tci is already set-up so leave this for another time */ 5564 return skb; 5565 } 5566 5567 skb = skb_share_check(skb, GFP_ATOMIC); 5568 if (unlikely(!skb)) 5569 goto err_free; 5570 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5571 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5572 goto err_free; 5573 5574 vhdr = (struct vlan_hdr *)skb->data; 5575 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5576 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5577 5578 skb_pull_rcsum(skb, VLAN_HLEN); 5579 vlan_set_encap_proto(skb, vhdr); 5580 5581 skb = skb_reorder_vlan_header(skb); 5582 if (unlikely(!skb)) 5583 goto err_free; 5584 5585 skb_reset_network_header(skb); 5586 if (!skb_transport_header_was_set(skb)) 5587 skb_reset_transport_header(skb); 5588 skb_reset_mac_len(skb); 5589 5590 return skb; 5591 5592 err_free: 5593 kfree_skb(skb); 5594 return NULL; 5595 } 5596 EXPORT_SYMBOL(skb_vlan_untag); 5597 5598 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5599 { 5600 if (!pskb_may_pull(skb, write_len)) 5601 return -ENOMEM; 5602 5603 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5604 return 0; 5605 5606 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5607 } 5608 EXPORT_SYMBOL(skb_ensure_writable); 5609 5610 /* remove VLAN header from packet and update csum accordingly. 5611 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5612 */ 5613 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5614 { 5615 struct vlan_hdr *vhdr; 5616 int offset = skb->data - skb_mac_header(skb); 5617 int err; 5618 5619 if (WARN_ONCE(offset, 5620 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5621 offset)) { 5622 return -EINVAL; 5623 } 5624 5625 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5626 if (unlikely(err)) 5627 return err; 5628 5629 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5630 5631 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5632 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5633 5634 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5635 __skb_pull(skb, VLAN_HLEN); 5636 5637 vlan_set_encap_proto(skb, vhdr); 5638 skb->mac_header += VLAN_HLEN; 5639 5640 if (skb_network_offset(skb) < ETH_HLEN) 5641 skb_set_network_header(skb, ETH_HLEN); 5642 5643 skb_reset_mac_len(skb); 5644 5645 return err; 5646 } 5647 EXPORT_SYMBOL(__skb_vlan_pop); 5648 5649 /* Pop a vlan tag either from hwaccel or from payload. 5650 * Expects skb->data at mac header. 5651 */ 5652 int skb_vlan_pop(struct sk_buff *skb) 5653 { 5654 u16 vlan_tci; 5655 __be16 vlan_proto; 5656 int err; 5657 5658 if (likely(skb_vlan_tag_present(skb))) { 5659 __vlan_hwaccel_clear_tag(skb); 5660 } else { 5661 if (unlikely(!eth_type_vlan(skb->protocol))) 5662 return 0; 5663 5664 err = __skb_vlan_pop(skb, &vlan_tci); 5665 if (err) 5666 return err; 5667 } 5668 /* move next vlan tag to hw accel tag */ 5669 if (likely(!eth_type_vlan(skb->protocol))) 5670 return 0; 5671 5672 vlan_proto = skb->protocol; 5673 err = __skb_vlan_pop(skb, &vlan_tci); 5674 if (unlikely(err)) 5675 return err; 5676 5677 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5678 return 0; 5679 } 5680 EXPORT_SYMBOL(skb_vlan_pop); 5681 5682 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5683 * Expects skb->data at mac header. 5684 */ 5685 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5686 { 5687 if (skb_vlan_tag_present(skb)) { 5688 int offset = skb->data - skb_mac_header(skb); 5689 int err; 5690 5691 if (WARN_ONCE(offset, 5692 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5693 offset)) { 5694 return -EINVAL; 5695 } 5696 5697 err = __vlan_insert_tag(skb, skb->vlan_proto, 5698 skb_vlan_tag_get(skb)); 5699 if (err) 5700 return err; 5701 5702 skb->protocol = skb->vlan_proto; 5703 skb->mac_len += VLAN_HLEN; 5704 5705 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5706 } 5707 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5708 return 0; 5709 } 5710 EXPORT_SYMBOL(skb_vlan_push); 5711 5712 /** 5713 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5714 * 5715 * @skb: Socket buffer to modify 5716 * 5717 * Drop the Ethernet header of @skb. 5718 * 5719 * Expects that skb->data points to the mac header and that no VLAN tags are 5720 * present. 5721 * 5722 * Returns 0 on success, -errno otherwise. 5723 */ 5724 int skb_eth_pop(struct sk_buff *skb) 5725 { 5726 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5727 skb_network_offset(skb) < ETH_HLEN) 5728 return -EPROTO; 5729 5730 skb_pull_rcsum(skb, ETH_HLEN); 5731 skb_reset_mac_header(skb); 5732 skb_reset_mac_len(skb); 5733 5734 return 0; 5735 } 5736 EXPORT_SYMBOL(skb_eth_pop); 5737 5738 /** 5739 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5740 * 5741 * @skb: Socket buffer to modify 5742 * @dst: Destination MAC address of the new header 5743 * @src: Source MAC address of the new header 5744 * 5745 * Prepend @skb with a new Ethernet header. 5746 * 5747 * Expects that skb->data points to the mac header, which must be empty. 5748 * 5749 * Returns 0 on success, -errno otherwise. 5750 */ 5751 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5752 const unsigned char *src) 5753 { 5754 struct ethhdr *eth; 5755 int err; 5756 5757 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5758 return -EPROTO; 5759 5760 err = skb_cow_head(skb, sizeof(*eth)); 5761 if (err < 0) 5762 return err; 5763 5764 skb_push(skb, sizeof(*eth)); 5765 skb_reset_mac_header(skb); 5766 skb_reset_mac_len(skb); 5767 5768 eth = eth_hdr(skb); 5769 ether_addr_copy(eth->h_dest, dst); 5770 ether_addr_copy(eth->h_source, src); 5771 eth->h_proto = skb->protocol; 5772 5773 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5774 5775 return 0; 5776 } 5777 EXPORT_SYMBOL(skb_eth_push); 5778 5779 /* Update the ethertype of hdr and the skb csum value if required. */ 5780 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5781 __be16 ethertype) 5782 { 5783 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5784 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5785 5786 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5787 } 5788 5789 hdr->h_proto = ethertype; 5790 } 5791 5792 /** 5793 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5794 * the packet 5795 * 5796 * @skb: buffer 5797 * @mpls_lse: MPLS label stack entry to push 5798 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5799 * @mac_len: length of the MAC header 5800 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5801 * ethernet 5802 * 5803 * Expects skb->data at mac header. 5804 * 5805 * Returns 0 on success, -errno otherwise. 5806 */ 5807 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5808 int mac_len, bool ethernet) 5809 { 5810 struct mpls_shim_hdr *lse; 5811 int err; 5812 5813 if (unlikely(!eth_p_mpls(mpls_proto))) 5814 return -EINVAL; 5815 5816 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5817 if (skb->encapsulation) 5818 return -EINVAL; 5819 5820 err = skb_cow_head(skb, MPLS_HLEN); 5821 if (unlikely(err)) 5822 return err; 5823 5824 if (!skb->inner_protocol) { 5825 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5826 skb_set_inner_protocol(skb, skb->protocol); 5827 } 5828 5829 skb_push(skb, MPLS_HLEN); 5830 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5831 mac_len); 5832 skb_reset_mac_header(skb); 5833 skb_set_network_header(skb, mac_len); 5834 skb_reset_mac_len(skb); 5835 5836 lse = mpls_hdr(skb); 5837 lse->label_stack_entry = mpls_lse; 5838 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5839 5840 if (ethernet && mac_len >= ETH_HLEN) 5841 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5842 skb->protocol = mpls_proto; 5843 5844 return 0; 5845 } 5846 EXPORT_SYMBOL_GPL(skb_mpls_push); 5847 5848 /** 5849 * skb_mpls_pop() - pop the outermost MPLS header 5850 * 5851 * @skb: buffer 5852 * @next_proto: ethertype of header after popped MPLS header 5853 * @mac_len: length of the MAC header 5854 * @ethernet: flag to indicate if the packet is ethernet 5855 * 5856 * Expects skb->data at mac header. 5857 * 5858 * Returns 0 on success, -errno otherwise. 5859 */ 5860 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5861 bool ethernet) 5862 { 5863 int err; 5864 5865 if (unlikely(!eth_p_mpls(skb->protocol))) 5866 return 0; 5867 5868 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5869 if (unlikely(err)) 5870 return err; 5871 5872 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5873 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5874 mac_len); 5875 5876 __skb_pull(skb, MPLS_HLEN); 5877 skb_reset_mac_header(skb); 5878 skb_set_network_header(skb, mac_len); 5879 5880 if (ethernet && mac_len >= ETH_HLEN) { 5881 struct ethhdr *hdr; 5882 5883 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5884 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5885 skb_mod_eth_type(skb, hdr, next_proto); 5886 } 5887 skb->protocol = next_proto; 5888 5889 return 0; 5890 } 5891 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5892 5893 /** 5894 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5895 * 5896 * @skb: buffer 5897 * @mpls_lse: new MPLS label stack entry to update to 5898 * 5899 * Expects skb->data at mac header. 5900 * 5901 * Returns 0 on success, -errno otherwise. 5902 */ 5903 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5904 { 5905 int err; 5906 5907 if (unlikely(!eth_p_mpls(skb->protocol))) 5908 return -EINVAL; 5909 5910 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5911 if (unlikely(err)) 5912 return err; 5913 5914 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5915 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5916 5917 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5918 } 5919 5920 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5921 5922 return 0; 5923 } 5924 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5925 5926 /** 5927 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5928 * 5929 * @skb: buffer 5930 * 5931 * Expects skb->data at mac header. 5932 * 5933 * Returns 0 on success, -errno otherwise. 5934 */ 5935 int skb_mpls_dec_ttl(struct sk_buff *skb) 5936 { 5937 u32 lse; 5938 u8 ttl; 5939 5940 if (unlikely(!eth_p_mpls(skb->protocol))) 5941 return -EINVAL; 5942 5943 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5944 return -ENOMEM; 5945 5946 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5947 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5948 if (!--ttl) 5949 return -EINVAL; 5950 5951 lse &= ~MPLS_LS_TTL_MASK; 5952 lse |= ttl << MPLS_LS_TTL_SHIFT; 5953 5954 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5955 } 5956 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5957 5958 /** 5959 * alloc_skb_with_frags - allocate skb with page frags 5960 * 5961 * @header_len: size of linear part 5962 * @data_len: needed length in frags 5963 * @max_page_order: max page order desired. 5964 * @errcode: pointer to error code if any 5965 * @gfp_mask: allocation mask 5966 * 5967 * This can be used to allocate a paged skb, given a maximal order for frags. 5968 */ 5969 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5970 unsigned long data_len, 5971 int max_page_order, 5972 int *errcode, 5973 gfp_t gfp_mask) 5974 { 5975 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5976 unsigned long chunk; 5977 struct sk_buff *skb; 5978 struct page *page; 5979 int i; 5980 5981 *errcode = -EMSGSIZE; 5982 /* Note this test could be relaxed, if we succeed to allocate 5983 * high order pages... 5984 */ 5985 if (npages > MAX_SKB_FRAGS) 5986 return NULL; 5987 5988 *errcode = -ENOBUFS; 5989 skb = alloc_skb(header_len, gfp_mask); 5990 if (!skb) 5991 return NULL; 5992 5993 skb->truesize += npages << PAGE_SHIFT; 5994 5995 for (i = 0; npages > 0; i++) { 5996 int order = max_page_order; 5997 5998 while (order) { 5999 if (npages >= 1 << order) { 6000 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6001 __GFP_COMP | 6002 __GFP_NOWARN, 6003 order); 6004 if (page) 6005 goto fill_page; 6006 /* Do not retry other high order allocations */ 6007 order = 1; 6008 max_page_order = 0; 6009 } 6010 order--; 6011 } 6012 page = alloc_page(gfp_mask); 6013 if (!page) 6014 goto failure; 6015 fill_page: 6016 chunk = min_t(unsigned long, data_len, 6017 PAGE_SIZE << order); 6018 skb_fill_page_desc(skb, i, page, 0, chunk); 6019 data_len -= chunk; 6020 npages -= 1 << order; 6021 } 6022 return skb; 6023 6024 failure: 6025 kfree_skb(skb); 6026 return NULL; 6027 } 6028 EXPORT_SYMBOL(alloc_skb_with_frags); 6029 6030 /* carve out the first off bytes from skb when off < headlen */ 6031 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6032 const int headlen, gfp_t gfp_mask) 6033 { 6034 int i; 6035 int size = skb_end_offset(skb); 6036 int new_hlen = headlen - off; 6037 u8 *data; 6038 6039 size = SKB_DATA_ALIGN(size); 6040 6041 if (skb_pfmemalloc(skb)) 6042 gfp_mask |= __GFP_MEMALLOC; 6043 data = kmalloc_reserve(size + 6044 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6045 gfp_mask, NUMA_NO_NODE, NULL); 6046 if (!data) 6047 return -ENOMEM; 6048 6049 size = SKB_WITH_OVERHEAD(ksize(data)); 6050 6051 /* Copy real data, and all frags */ 6052 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6053 skb->len -= off; 6054 6055 memcpy((struct skb_shared_info *)(data + size), 6056 skb_shinfo(skb), 6057 offsetof(struct skb_shared_info, 6058 frags[skb_shinfo(skb)->nr_frags])); 6059 if (skb_cloned(skb)) { 6060 /* drop the old head gracefully */ 6061 if (skb_orphan_frags(skb, gfp_mask)) { 6062 kfree(data); 6063 return -ENOMEM; 6064 } 6065 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6066 skb_frag_ref(skb, i); 6067 if (skb_has_frag_list(skb)) 6068 skb_clone_fraglist(skb); 6069 skb_release_data(skb); 6070 } else { 6071 /* we can reuse existing recount- all we did was 6072 * relocate values 6073 */ 6074 skb_free_head(skb); 6075 } 6076 6077 skb->head = data; 6078 skb->data = data; 6079 skb->head_frag = 0; 6080 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6081 skb->end = size; 6082 #else 6083 skb->end = skb->head + size; 6084 #endif 6085 skb_set_tail_pointer(skb, skb_headlen(skb)); 6086 skb_headers_offset_update(skb, 0); 6087 skb->cloned = 0; 6088 skb->hdr_len = 0; 6089 skb->nohdr = 0; 6090 atomic_set(&skb_shinfo(skb)->dataref, 1); 6091 6092 return 0; 6093 } 6094 6095 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6096 6097 /* carve out the first eat bytes from skb's frag_list. May recurse into 6098 * pskb_carve() 6099 */ 6100 static int pskb_carve_frag_list(struct sk_buff *skb, 6101 struct skb_shared_info *shinfo, int eat, 6102 gfp_t gfp_mask) 6103 { 6104 struct sk_buff *list = shinfo->frag_list; 6105 struct sk_buff *clone = NULL; 6106 struct sk_buff *insp = NULL; 6107 6108 do { 6109 if (!list) { 6110 pr_err("Not enough bytes to eat. Want %d\n", eat); 6111 return -EFAULT; 6112 } 6113 if (list->len <= eat) { 6114 /* Eaten as whole. */ 6115 eat -= list->len; 6116 list = list->next; 6117 insp = list; 6118 } else { 6119 /* Eaten partially. */ 6120 if (skb_shared(list)) { 6121 clone = skb_clone(list, gfp_mask); 6122 if (!clone) 6123 return -ENOMEM; 6124 insp = list->next; 6125 list = clone; 6126 } else { 6127 /* This may be pulled without problems. */ 6128 insp = list; 6129 } 6130 if (pskb_carve(list, eat, gfp_mask) < 0) { 6131 kfree_skb(clone); 6132 return -ENOMEM; 6133 } 6134 break; 6135 } 6136 } while (eat); 6137 6138 /* Free pulled out fragments. */ 6139 while ((list = shinfo->frag_list) != insp) { 6140 shinfo->frag_list = list->next; 6141 kfree_skb(list); 6142 } 6143 /* And insert new clone at head. */ 6144 if (clone) { 6145 clone->next = list; 6146 shinfo->frag_list = clone; 6147 } 6148 return 0; 6149 } 6150 6151 /* carve off first len bytes from skb. Split line (off) is in the 6152 * non-linear part of skb 6153 */ 6154 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6155 int pos, gfp_t gfp_mask) 6156 { 6157 int i, k = 0; 6158 int size = skb_end_offset(skb); 6159 u8 *data; 6160 const int nfrags = skb_shinfo(skb)->nr_frags; 6161 struct skb_shared_info *shinfo; 6162 6163 size = SKB_DATA_ALIGN(size); 6164 6165 if (skb_pfmemalloc(skb)) 6166 gfp_mask |= __GFP_MEMALLOC; 6167 data = kmalloc_reserve(size + 6168 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6169 gfp_mask, NUMA_NO_NODE, NULL); 6170 if (!data) 6171 return -ENOMEM; 6172 6173 size = SKB_WITH_OVERHEAD(ksize(data)); 6174 6175 memcpy((struct skb_shared_info *)(data + size), 6176 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6177 if (skb_orphan_frags(skb, gfp_mask)) { 6178 kfree(data); 6179 return -ENOMEM; 6180 } 6181 shinfo = (struct skb_shared_info *)(data + size); 6182 for (i = 0; i < nfrags; i++) { 6183 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6184 6185 if (pos + fsize > off) { 6186 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6187 6188 if (pos < off) { 6189 /* Split frag. 6190 * We have two variants in this case: 6191 * 1. Move all the frag to the second 6192 * part, if it is possible. F.e. 6193 * this approach is mandatory for TUX, 6194 * where splitting is expensive. 6195 * 2. Split is accurately. We make this. 6196 */ 6197 skb_frag_off_add(&shinfo->frags[0], off - pos); 6198 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6199 } 6200 skb_frag_ref(skb, i); 6201 k++; 6202 } 6203 pos += fsize; 6204 } 6205 shinfo->nr_frags = k; 6206 if (skb_has_frag_list(skb)) 6207 skb_clone_fraglist(skb); 6208 6209 /* split line is in frag list */ 6210 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6211 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6212 if (skb_has_frag_list(skb)) 6213 kfree_skb_list(skb_shinfo(skb)->frag_list); 6214 kfree(data); 6215 return -ENOMEM; 6216 } 6217 skb_release_data(skb); 6218 6219 skb->head = data; 6220 skb->head_frag = 0; 6221 skb->data = data; 6222 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6223 skb->end = size; 6224 #else 6225 skb->end = skb->head + size; 6226 #endif 6227 skb_reset_tail_pointer(skb); 6228 skb_headers_offset_update(skb, 0); 6229 skb->cloned = 0; 6230 skb->hdr_len = 0; 6231 skb->nohdr = 0; 6232 skb->len -= off; 6233 skb->data_len = skb->len; 6234 atomic_set(&skb_shinfo(skb)->dataref, 1); 6235 return 0; 6236 } 6237 6238 /* remove len bytes from the beginning of the skb */ 6239 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6240 { 6241 int headlen = skb_headlen(skb); 6242 6243 if (len < headlen) 6244 return pskb_carve_inside_header(skb, len, headlen, gfp); 6245 else 6246 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6247 } 6248 6249 /* Extract to_copy bytes starting at off from skb, and return this in 6250 * a new skb 6251 */ 6252 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6253 int to_copy, gfp_t gfp) 6254 { 6255 struct sk_buff *clone = skb_clone(skb, gfp); 6256 6257 if (!clone) 6258 return NULL; 6259 6260 if (pskb_carve(clone, off, gfp) < 0 || 6261 pskb_trim(clone, to_copy)) { 6262 kfree_skb(clone); 6263 return NULL; 6264 } 6265 return clone; 6266 } 6267 EXPORT_SYMBOL(pskb_extract); 6268 6269 /** 6270 * skb_condense - try to get rid of fragments/frag_list if possible 6271 * @skb: buffer 6272 * 6273 * Can be used to save memory before skb is added to a busy queue. 6274 * If packet has bytes in frags and enough tail room in skb->head, 6275 * pull all of them, so that we can free the frags right now and adjust 6276 * truesize. 6277 * Notes: 6278 * We do not reallocate skb->head thus can not fail. 6279 * Caller must re-evaluate skb->truesize if needed. 6280 */ 6281 void skb_condense(struct sk_buff *skb) 6282 { 6283 if (skb->data_len) { 6284 if (skb->data_len > skb->end - skb->tail || 6285 skb_cloned(skb)) 6286 return; 6287 6288 /* Nice, we can free page frag(s) right now */ 6289 __pskb_pull_tail(skb, skb->data_len); 6290 } 6291 /* At this point, skb->truesize might be over estimated, 6292 * because skb had a fragment, and fragments do not tell 6293 * their truesize. 6294 * When we pulled its content into skb->head, fragment 6295 * was freed, but __pskb_pull_tail() could not possibly 6296 * adjust skb->truesize, not knowing the frag truesize. 6297 */ 6298 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6299 } 6300 6301 #ifdef CONFIG_SKB_EXTENSIONS 6302 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6303 { 6304 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6305 } 6306 6307 /** 6308 * __skb_ext_alloc - allocate a new skb extensions storage 6309 * 6310 * @flags: See kmalloc(). 6311 * 6312 * Returns the newly allocated pointer. The pointer can later attached to a 6313 * skb via __skb_ext_set(). 6314 * Note: caller must handle the skb_ext as an opaque data. 6315 */ 6316 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6317 { 6318 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6319 6320 if (new) { 6321 memset(new->offset, 0, sizeof(new->offset)); 6322 refcount_set(&new->refcnt, 1); 6323 } 6324 6325 return new; 6326 } 6327 6328 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6329 unsigned int old_active) 6330 { 6331 struct skb_ext *new; 6332 6333 if (refcount_read(&old->refcnt) == 1) 6334 return old; 6335 6336 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6337 if (!new) 6338 return NULL; 6339 6340 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6341 refcount_set(&new->refcnt, 1); 6342 6343 #ifdef CONFIG_XFRM 6344 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6345 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6346 unsigned int i; 6347 6348 for (i = 0; i < sp->len; i++) 6349 xfrm_state_hold(sp->xvec[i]); 6350 } 6351 #endif 6352 __skb_ext_put(old); 6353 return new; 6354 } 6355 6356 /** 6357 * __skb_ext_set - attach the specified extension storage to this skb 6358 * @skb: buffer 6359 * @id: extension id 6360 * @ext: extension storage previously allocated via __skb_ext_alloc() 6361 * 6362 * Existing extensions, if any, are cleared. 6363 * 6364 * Returns the pointer to the extension. 6365 */ 6366 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6367 struct skb_ext *ext) 6368 { 6369 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6370 6371 skb_ext_put(skb); 6372 newlen = newoff + skb_ext_type_len[id]; 6373 ext->chunks = newlen; 6374 ext->offset[id] = newoff; 6375 skb->extensions = ext; 6376 skb->active_extensions = 1 << id; 6377 return skb_ext_get_ptr(ext, id); 6378 } 6379 6380 /** 6381 * skb_ext_add - allocate space for given extension, COW if needed 6382 * @skb: buffer 6383 * @id: extension to allocate space for 6384 * 6385 * Allocates enough space for the given extension. 6386 * If the extension is already present, a pointer to that extension 6387 * is returned. 6388 * 6389 * If the skb was cloned, COW applies and the returned memory can be 6390 * modified without changing the extension space of clones buffers. 6391 * 6392 * Returns pointer to the extension or NULL on allocation failure. 6393 */ 6394 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6395 { 6396 struct skb_ext *new, *old = NULL; 6397 unsigned int newlen, newoff; 6398 6399 if (skb->active_extensions) { 6400 old = skb->extensions; 6401 6402 new = skb_ext_maybe_cow(old, skb->active_extensions); 6403 if (!new) 6404 return NULL; 6405 6406 if (__skb_ext_exist(new, id)) 6407 goto set_active; 6408 6409 newoff = new->chunks; 6410 } else { 6411 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6412 6413 new = __skb_ext_alloc(GFP_ATOMIC); 6414 if (!new) 6415 return NULL; 6416 } 6417 6418 newlen = newoff + skb_ext_type_len[id]; 6419 new->chunks = newlen; 6420 new->offset[id] = newoff; 6421 set_active: 6422 skb->extensions = new; 6423 skb->active_extensions |= 1 << id; 6424 return skb_ext_get_ptr(new, id); 6425 } 6426 EXPORT_SYMBOL(skb_ext_add); 6427 6428 #ifdef CONFIG_XFRM 6429 static void skb_ext_put_sp(struct sec_path *sp) 6430 { 6431 unsigned int i; 6432 6433 for (i = 0; i < sp->len; i++) 6434 xfrm_state_put(sp->xvec[i]); 6435 } 6436 #endif 6437 6438 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6439 { 6440 struct skb_ext *ext = skb->extensions; 6441 6442 skb->active_extensions &= ~(1 << id); 6443 if (skb->active_extensions == 0) { 6444 skb->extensions = NULL; 6445 __skb_ext_put(ext); 6446 #ifdef CONFIG_XFRM 6447 } else if (id == SKB_EXT_SEC_PATH && 6448 refcount_read(&ext->refcnt) == 1) { 6449 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6450 6451 skb_ext_put_sp(sp); 6452 sp->len = 0; 6453 #endif 6454 } 6455 } 6456 EXPORT_SYMBOL(__skb_ext_del); 6457 6458 void __skb_ext_put(struct skb_ext *ext) 6459 { 6460 /* If this is last clone, nothing can increment 6461 * it after check passes. Avoids one atomic op. 6462 */ 6463 if (refcount_read(&ext->refcnt) == 1) 6464 goto free_now; 6465 6466 if (!refcount_dec_and_test(&ext->refcnt)) 6467 return; 6468 free_now: 6469 #ifdef CONFIG_XFRM 6470 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6471 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6472 #endif 6473 6474 kmem_cache_free(skbuff_ext_cache, ext); 6475 } 6476 EXPORT_SYMBOL(__skb_ext_put); 6477 #endif /* CONFIG_SKB_EXTENSIONS */ 6478