xref: /openbmc/linux/net/core/skbuff.c (revision dde2daa0a279623a6f769b258339df744cc0fdd6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 
143 	fragsz = SKB_DATA_ALIGN(fragsz);
144 
145 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148 
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 	void *data;
152 
153 	fragsz = SKB_DATA_ALIGN(fragsz);
154 	if (in_hardirq() || irqs_disabled()) {
155 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156 
157 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 	} else {
159 		struct napi_alloc_cache *nc;
160 
161 		local_bh_disable();
162 		nc = this_cpu_ptr(&napi_alloc_cache);
163 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb_set_end_offset(skb, size);
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 	skb->alloc_cpu = raw_smp_processor_id();
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	unsigned int osize;
400 	bool pfmemalloc;
401 	u8 *data;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	osize = ksize(data);
434 	size = SKB_WITH_OVERHEAD(osize);
435 	prefetchw(data + size);
436 
437 	/*
438 	 * Only clear those fields we need to clear, not those that we will
439 	 * actually initialise below. Hence, don't put any more fields after
440 	 * the tail pointer in struct sk_buff!
441 	 */
442 	memset(skb, 0, offsetof(struct sk_buff, tail));
443 	__build_skb_around(skb, data, osize);
444 	skb->pfmemalloc = pfmemalloc;
445 
446 	if (flags & SKB_ALLOC_FCLONE) {
447 		struct sk_buff_fclones *fclones;
448 
449 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 
451 		skb->fclone = SKB_FCLONE_ORIG;
452 		refcount_set(&fclones->fclone_ref, 1);
453 
454 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 	}
456 
457 	return skb;
458 
459 nodata:
460 	kmem_cache_free(cache, skb);
461 	return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464 
465 /**
466  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
467  *	@dev: network device to receive on
468  *	@len: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *
471  *	Allocate a new &sk_buff and assign it a usage count of one. The
472  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
473  *	the headroom they think they need without accounting for the
474  *	built in space. The built in space is used for optimisations.
475  *
476  *	%NULL is returned if there is no free memory.
477  */
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 				   gfp_t gfp_mask)
480 {
481 	struct page_frag_cache *nc;
482 	struct sk_buff *skb;
483 	bool pfmemalloc;
484 	void *data;
485 
486 	len += NET_SKB_PAD;
487 
488 	/* If requested length is either too small or too big,
489 	 * we use kmalloc() for skb->head allocation.
490 	 */
491 	if (len <= SKB_WITH_OVERHEAD(1024) ||
492 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 		if (!skb)
496 			goto skb_fail;
497 		goto skb_success;
498 	}
499 
500 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 	len = SKB_DATA_ALIGN(len);
502 
503 	if (sk_memalloc_socks())
504 		gfp_mask |= __GFP_MEMALLOC;
505 
506 	if (in_hardirq() || irqs_disabled()) {
507 		nc = this_cpu_ptr(&netdev_alloc_cache);
508 		data = page_frag_alloc(nc, len, gfp_mask);
509 		pfmemalloc = nc->pfmemalloc;
510 	} else {
511 		local_bh_disable();
512 		nc = this_cpu_ptr(&napi_alloc_cache.page);
513 		data = page_frag_alloc(nc, len, gfp_mask);
514 		pfmemalloc = nc->pfmemalloc;
515 		local_bh_enable();
516 	}
517 
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	if (pfmemalloc)
528 		skb->pfmemalloc = 1;
529 	skb->head_frag = 1;
530 
531 skb_success:
532 	skb_reserve(skb, NET_SKB_PAD);
533 	skb->dev = dev;
534 
535 skb_fail:
536 	return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539 
540 /**
541  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542  *	@napi: napi instance this buffer was allocated for
543  *	@len: length to allocate
544  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545  *
546  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
547  *	attempt to allocate the head from a special reserved region used
548  *	only for NAPI Rx allocation.  By doing this we can save several
549  *	CPU cycles by avoiding having to disable and re-enable IRQs.
550  *
551  *	%NULL is returned if there is no free memory.
552  */
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 				 gfp_t gfp_mask)
555 {
556 	struct napi_alloc_cache *nc;
557 	struct sk_buff *skb;
558 	void *data;
559 
560 	len += NET_SKB_PAD + NET_IP_ALIGN;
561 
562 	/* If requested length is either too small or too big,
563 	 * we use kmalloc() for skb->head allocation.
564 	 */
565 	if (len <= SKB_WITH_OVERHEAD(1024) ||
566 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 				  NUMA_NO_NODE);
570 		if (!skb)
571 			goto skb_fail;
572 		goto skb_success;
573 	}
574 
575 	nc = this_cpu_ptr(&napi_alloc_cache);
576 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 	len = SKB_DATA_ALIGN(len);
578 
579 	if (sk_memalloc_socks())
580 		gfp_mask |= __GFP_MEMALLOC;
581 
582 	data = page_frag_alloc(&nc->page, len, gfp_mask);
583 	if (unlikely(!data))
584 		return NULL;
585 
586 	skb = __napi_build_skb(data, len);
587 	if (unlikely(!skb)) {
588 		skb_free_frag(data);
589 		return NULL;
590 	}
591 
592 	if (nc->page.pfmemalloc)
593 		skb->pfmemalloc = 1;
594 	skb->head_frag = 1;
595 
596 skb_success:
597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 	skb->dev = napi->dev;
599 
600 skb_fail:
601 	return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604 
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 		     int size, unsigned int truesize)
607 {
608 	skb_fill_page_desc(skb, i, page, off, size);
609 	skb->len += size;
610 	skb->data_len += size;
611 	skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614 
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 			  unsigned int truesize)
617 {
618 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 	skb_frag_size_add(frag, size);
621 	skb->len += size;
622 	skb->data_len += size;
623 	skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 
627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 	kfree_skb_list(*listp);
630 	*listp = NULL;
631 }
632 
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 	skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637 
638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 	struct sk_buff *list;
641 
642 	skb_walk_frags(skb, list)
643 		skb_get(list);
644 }
645 
646 static void skb_free_head(struct sk_buff *skb)
647 {
648 	unsigned char *head = skb->head;
649 
650 	if (skb->head_frag) {
651 		if (skb_pp_recycle(skb, head))
652 			return;
653 		skb_free_frag(head);
654 	} else {
655 		kfree(head);
656 	}
657 }
658 
659 static void skb_release_data(struct sk_buff *skb)
660 {
661 	struct skb_shared_info *shinfo = skb_shinfo(skb);
662 	int i;
663 
664 	if (skb->cloned &&
665 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 			      &shinfo->dataref))
667 		goto exit;
668 
669 	skb_zcopy_clear(skb, true);
670 
671 	for (i = 0; i < shinfo->nr_frags; i++)
672 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 
674 	if (shinfo->frag_list)
675 		kfree_skb_list(shinfo->frag_list);
676 
677 	skb_free_head(skb);
678 exit:
679 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
680 	 * bit is only set on the head though, so in order to avoid races
681 	 * while trying to recycle fragments on __skb_frag_unref() we need
682 	 * to make one SKB responsible for triggering the recycle path.
683 	 * So disable the recycling bit if an SKB is cloned and we have
684 	 * additional references to the fragmented part of the SKB.
685 	 * Eventually the last SKB will have the recycling bit set and it's
686 	 * dataref set to 0, which will trigger the recycling
687 	 */
688 	skb->pp_recycle = 0;
689 }
690 
691 /*
692  *	Free an skbuff by memory without cleaning the state.
693  */
694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 	struct sk_buff_fclones *fclones;
697 
698 	switch (skb->fclone) {
699 	case SKB_FCLONE_UNAVAILABLE:
700 		kmem_cache_free(skbuff_head_cache, skb);
701 		return;
702 
703 	case SKB_FCLONE_ORIG:
704 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
705 
706 		/* We usually free the clone (TX completion) before original skb
707 		 * This test would have no chance to be true for the clone,
708 		 * while here, branch prediction will be good.
709 		 */
710 		if (refcount_read(&fclones->fclone_ref) == 1)
711 			goto fastpath;
712 		break;
713 
714 	default: /* SKB_FCLONE_CLONE */
715 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 		break;
717 	}
718 	if (!refcount_dec_and_test(&fclones->fclone_ref))
719 		return;
720 fastpath:
721 	kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723 
724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 	skb_dst_drop(skb);
727 	if (skb->destructor) {
728 		WARN_ON(in_hardirq());
729 		skb->destructor(skb);
730 	}
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 	nf_conntrack_put(skb_nfct(skb));
733 #endif
734 	skb_ext_put(skb);
735 }
736 
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
739 {
740 	skb_release_head_state(skb);
741 	if (likely(skb->head))
742 		skb_release_data(skb);
743 }
744 
745 /**
746  *	__kfree_skb - private function
747  *	@skb: buffer
748  *
749  *	Free an sk_buff. Release anything attached to the buffer.
750  *	Clean the state. This is an internal helper function. Users should
751  *	always call kfree_skb
752  */
753 
754 void __kfree_skb(struct sk_buff *skb)
755 {
756 	skb_release_all(skb);
757 	kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760 
761 /**
762  *	kfree_skb_reason - free an sk_buff with special reason
763  *	@skb: buffer to free
764  *	@reason: reason why this skb is dropped
765  *
766  *	Drop a reference to the buffer and free it if the usage count has
767  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
768  *	tracepoint.
769  */
770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
771 {
772 	if (!skb_unref(skb))
773 		return;
774 
775 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
776 	__kfree_skb(skb);
777 }
778 EXPORT_SYMBOL(kfree_skb_reason);
779 
780 void kfree_skb_list_reason(struct sk_buff *segs,
781 			   enum skb_drop_reason reason)
782 {
783 	while (segs) {
784 		struct sk_buff *next = segs->next;
785 
786 		kfree_skb_reason(segs, reason);
787 		segs = next;
788 	}
789 }
790 EXPORT_SYMBOL(kfree_skb_list_reason);
791 
792 /* Dump skb information and contents.
793  *
794  * Must only be called from net_ratelimit()-ed paths.
795  *
796  * Dumps whole packets if full_pkt, only headers otherwise.
797  */
798 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
799 {
800 	struct skb_shared_info *sh = skb_shinfo(skb);
801 	struct net_device *dev = skb->dev;
802 	struct sock *sk = skb->sk;
803 	struct sk_buff *list_skb;
804 	bool has_mac, has_trans;
805 	int headroom, tailroom;
806 	int i, len, seg_len;
807 
808 	if (full_pkt)
809 		len = skb->len;
810 	else
811 		len = min_t(int, skb->len, MAX_HEADER + 128);
812 
813 	headroom = skb_headroom(skb);
814 	tailroom = skb_tailroom(skb);
815 
816 	has_mac = skb_mac_header_was_set(skb);
817 	has_trans = skb_transport_header_was_set(skb);
818 
819 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
820 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
821 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
822 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
823 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
824 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
825 	       has_mac ? skb->mac_header : -1,
826 	       has_mac ? skb_mac_header_len(skb) : -1,
827 	       skb->network_header,
828 	       has_trans ? skb_network_header_len(skb) : -1,
829 	       has_trans ? skb->transport_header : -1,
830 	       sh->tx_flags, sh->nr_frags,
831 	       sh->gso_size, sh->gso_type, sh->gso_segs,
832 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
833 	       skb->csum_valid, skb->csum_level,
834 	       skb->hash, skb->sw_hash, skb->l4_hash,
835 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
836 
837 	if (dev)
838 		printk("%sdev name=%s feat=%pNF\n",
839 		       level, dev->name, &dev->features);
840 	if (sk)
841 		printk("%ssk family=%hu type=%u proto=%u\n",
842 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
843 
844 	if (full_pkt && headroom)
845 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
846 			       16, 1, skb->head, headroom, false);
847 
848 	seg_len = min_t(int, skb_headlen(skb), len);
849 	if (seg_len)
850 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
851 			       16, 1, skb->data, seg_len, false);
852 	len -= seg_len;
853 
854 	if (full_pkt && tailroom)
855 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
856 			       16, 1, skb_tail_pointer(skb), tailroom, false);
857 
858 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
859 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
860 		u32 p_off, p_len, copied;
861 		struct page *p;
862 		u8 *vaddr;
863 
864 		skb_frag_foreach_page(frag, skb_frag_off(frag),
865 				      skb_frag_size(frag), p, p_off, p_len,
866 				      copied) {
867 			seg_len = min_t(int, p_len, len);
868 			vaddr = kmap_atomic(p);
869 			print_hex_dump(level, "skb frag:     ",
870 				       DUMP_PREFIX_OFFSET,
871 				       16, 1, vaddr + p_off, seg_len, false);
872 			kunmap_atomic(vaddr);
873 			len -= seg_len;
874 			if (!len)
875 				break;
876 		}
877 	}
878 
879 	if (full_pkt && skb_has_frag_list(skb)) {
880 		printk("skb fraglist:\n");
881 		skb_walk_frags(skb, list_skb)
882 			skb_dump(level, list_skb, true);
883 	}
884 }
885 EXPORT_SYMBOL(skb_dump);
886 
887 /**
888  *	skb_tx_error - report an sk_buff xmit error
889  *	@skb: buffer that triggered an error
890  *
891  *	Report xmit error if a device callback is tracking this skb.
892  *	skb must be freed afterwards.
893  */
894 void skb_tx_error(struct sk_buff *skb)
895 {
896 	skb_zcopy_clear(skb, true);
897 }
898 EXPORT_SYMBOL(skb_tx_error);
899 
900 #ifdef CONFIG_TRACEPOINTS
901 /**
902  *	consume_skb - free an skbuff
903  *	@skb: buffer to free
904  *
905  *	Drop a ref to the buffer and free it if the usage count has hit zero
906  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
907  *	is being dropped after a failure and notes that
908  */
909 void consume_skb(struct sk_buff *skb)
910 {
911 	if (!skb_unref(skb))
912 		return;
913 
914 	trace_consume_skb(skb);
915 	__kfree_skb(skb);
916 }
917 EXPORT_SYMBOL(consume_skb);
918 #endif
919 
920 /**
921  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
922  *	@skb: buffer to free
923  *
924  *	Alike consume_skb(), but this variant assumes that this is the last
925  *	skb reference and all the head states have been already dropped
926  */
927 void __consume_stateless_skb(struct sk_buff *skb)
928 {
929 	trace_consume_skb(skb);
930 	skb_release_data(skb);
931 	kfree_skbmem(skb);
932 }
933 
934 static void napi_skb_cache_put(struct sk_buff *skb)
935 {
936 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
937 	u32 i;
938 
939 	kasan_poison_object_data(skbuff_head_cache, skb);
940 	nc->skb_cache[nc->skb_count++] = skb;
941 
942 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
943 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
944 			kasan_unpoison_object_data(skbuff_head_cache,
945 						   nc->skb_cache[i]);
946 
947 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
948 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
949 		nc->skb_count = NAPI_SKB_CACHE_HALF;
950 	}
951 }
952 
953 void __kfree_skb_defer(struct sk_buff *skb)
954 {
955 	skb_release_all(skb);
956 	napi_skb_cache_put(skb);
957 }
958 
959 void napi_skb_free_stolen_head(struct sk_buff *skb)
960 {
961 	if (unlikely(skb->slow_gro)) {
962 		nf_reset_ct(skb);
963 		skb_dst_drop(skb);
964 		skb_ext_put(skb);
965 		skb_orphan(skb);
966 		skb->slow_gro = 0;
967 	}
968 	napi_skb_cache_put(skb);
969 }
970 
971 void napi_consume_skb(struct sk_buff *skb, int budget)
972 {
973 	/* Zero budget indicate non-NAPI context called us, like netpoll */
974 	if (unlikely(!budget)) {
975 		dev_consume_skb_any(skb);
976 		return;
977 	}
978 
979 	lockdep_assert_in_softirq();
980 
981 	if (!skb_unref(skb))
982 		return;
983 
984 	/* if reaching here SKB is ready to free */
985 	trace_consume_skb(skb);
986 
987 	/* if SKB is a clone, don't handle this case */
988 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
989 		__kfree_skb(skb);
990 		return;
991 	}
992 
993 	skb_release_all(skb);
994 	napi_skb_cache_put(skb);
995 }
996 EXPORT_SYMBOL(napi_consume_skb);
997 
998 /* Make sure a field is contained by headers group */
999 #define CHECK_SKB_FIELD(field) \
1000 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1001 		     offsetof(struct sk_buff, headers.field));	\
1002 
1003 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1004 {
1005 	new->tstamp		= old->tstamp;
1006 	/* We do not copy old->sk */
1007 	new->dev		= old->dev;
1008 	memcpy(new->cb, old->cb, sizeof(old->cb));
1009 	skb_dst_copy(new, old);
1010 	__skb_ext_copy(new, old);
1011 	__nf_copy(new, old, false);
1012 
1013 	/* Note : this field could be in the headers group.
1014 	 * It is not yet because we do not want to have a 16 bit hole
1015 	 */
1016 	new->queue_mapping = old->queue_mapping;
1017 
1018 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1019 	CHECK_SKB_FIELD(protocol);
1020 	CHECK_SKB_FIELD(csum);
1021 	CHECK_SKB_FIELD(hash);
1022 	CHECK_SKB_FIELD(priority);
1023 	CHECK_SKB_FIELD(skb_iif);
1024 	CHECK_SKB_FIELD(vlan_proto);
1025 	CHECK_SKB_FIELD(vlan_tci);
1026 	CHECK_SKB_FIELD(transport_header);
1027 	CHECK_SKB_FIELD(network_header);
1028 	CHECK_SKB_FIELD(mac_header);
1029 	CHECK_SKB_FIELD(inner_protocol);
1030 	CHECK_SKB_FIELD(inner_transport_header);
1031 	CHECK_SKB_FIELD(inner_network_header);
1032 	CHECK_SKB_FIELD(inner_mac_header);
1033 	CHECK_SKB_FIELD(mark);
1034 #ifdef CONFIG_NETWORK_SECMARK
1035 	CHECK_SKB_FIELD(secmark);
1036 #endif
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 	CHECK_SKB_FIELD(napi_id);
1039 #endif
1040 	CHECK_SKB_FIELD(alloc_cpu);
1041 #ifdef CONFIG_XPS
1042 	CHECK_SKB_FIELD(sender_cpu);
1043 #endif
1044 #ifdef CONFIG_NET_SCHED
1045 	CHECK_SKB_FIELD(tc_index);
1046 #endif
1047 
1048 }
1049 
1050 /*
1051  * You should not add any new code to this function.  Add it to
1052  * __copy_skb_header above instead.
1053  */
1054 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1055 {
1056 #define C(x) n->x = skb->x
1057 
1058 	n->next = n->prev = NULL;
1059 	n->sk = NULL;
1060 	__copy_skb_header(n, skb);
1061 
1062 	C(len);
1063 	C(data_len);
1064 	C(mac_len);
1065 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1066 	n->cloned = 1;
1067 	n->nohdr = 0;
1068 	n->peeked = 0;
1069 	C(pfmemalloc);
1070 	C(pp_recycle);
1071 	n->destructor = NULL;
1072 	C(tail);
1073 	C(end);
1074 	C(head);
1075 	C(head_frag);
1076 	C(data);
1077 	C(truesize);
1078 	refcount_set(&n->users, 1);
1079 
1080 	atomic_inc(&(skb_shinfo(skb)->dataref));
1081 	skb->cloned = 1;
1082 
1083 	return n;
1084 #undef C
1085 }
1086 
1087 /**
1088  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1089  * @first: first sk_buff of the msg
1090  */
1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1092 {
1093 	struct sk_buff *n;
1094 
1095 	n = alloc_skb(0, GFP_ATOMIC);
1096 	if (!n)
1097 		return NULL;
1098 
1099 	n->len = first->len;
1100 	n->data_len = first->len;
1101 	n->truesize = first->truesize;
1102 
1103 	skb_shinfo(n)->frag_list = first;
1104 
1105 	__copy_skb_header(n, first);
1106 	n->destructor = NULL;
1107 
1108 	return n;
1109 }
1110 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1111 
1112 /**
1113  *	skb_morph	-	morph one skb into another
1114  *	@dst: the skb to receive the contents
1115  *	@src: the skb to supply the contents
1116  *
1117  *	This is identical to skb_clone except that the target skb is
1118  *	supplied by the user.
1119  *
1120  *	The target skb is returned upon exit.
1121  */
1122 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1123 {
1124 	skb_release_all(dst);
1125 	return __skb_clone(dst, src);
1126 }
1127 EXPORT_SYMBOL_GPL(skb_morph);
1128 
1129 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1130 {
1131 	unsigned long max_pg, num_pg, new_pg, old_pg;
1132 	struct user_struct *user;
1133 
1134 	if (capable(CAP_IPC_LOCK) || !size)
1135 		return 0;
1136 
1137 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1138 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1139 	user = mmp->user ? : current_user();
1140 
1141 	do {
1142 		old_pg = atomic_long_read(&user->locked_vm);
1143 		new_pg = old_pg + num_pg;
1144 		if (new_pg > max_pg)
1145 			return -ENOBUFS;
1146 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1147 		 old_pg);
1148 
1149 	if (!mmp->user) {
1150 		mmp->user = get_uid(user);
1151 		mmp->num_pg = num_pg;
1152 	} else {
1153 		mmp->num_pg += num_pg;
1154 	}
1155 
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1159 
1160 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1161 {
1162 	if (mmp->user) {
1163 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1164 		free_uid(mmp->user);
1165 	}
1166 }
1167 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1168 
1169 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1170 {
1171 	struct ubuf_info *uarg;
1172 	struct sk_buff *skb;
1173 
1174 	WARN_ON_ONCE(!in_task());
1175 
1176 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1177 	if (!skb)
1178 		return NULL;
1179 
1180 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1181 	uarg = (void *)skb->cb;
1182 	uarg->mmp.user = NULL;
1183 
1184 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1185 		kfree_skb(skb);
1186 		return NULL;
1187 	}
1188 
1189 	uarg->callback = msg_zerocopy_callback;
1190 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1191 	uarg->len = 1;
1192 	uarg->bytelen = size;
1193 	uarg->zerocopy = 1;
1194 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1195 	refcount_set(&uarg->refcnt, 1);
1196 	sock_hold(sk);
1197 
1198 	return uarg;
1199 }
1200 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1201 
1202 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1203 {
1204 	return container_of((void *)uarg, struct sk_buff, cb);
1205 }
1206 
1207 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1208 				       struct ubuf_info *uarg)
1209 {
1210 	if (uarg) {
1211 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1212 		u32 bytelen, next;
1213 
1214 		/* realloc only when socket is locked (TCP, UDP cork),
1215 		 * so uarg->len and sk_zckey access is serialized
1216 		 */
1217 		if (!sock_owned_by_user(sk)) {
1218 			WARN_ON_ONCE(1);
1219 			return NULL;
1220 		}
1221 
1222 		bytelen = uarg->bytelen + size;
1223 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1224 			/* TCP can create new skb to attach new uarg */
1225 			if (sk->sk_type == SOCK_STREAM)
1226 				goto new_alloc;
1227 			return NULL;
1228 		}
1229 
1230 		next = (u32)atomic_read(&sk->sk_zckey);
1231 		if ((u32)(uarg->id + uarg->len) == next) {
1232 			if (mm_account_pinned_pages(&uarg->mmp, size))
1233 				return NULL;
1234 			uarg->len++;
1235 			uarg->bytelen = bytelen;
1236 			atomic_set(&sk->sk_zckey, ++next);
1237 
1238 			/* no extra ref when appending to datagram (MSG_MORE) */
1239 			if (sk->sk_type == SOCK_STREAM)
1240 				net_zcopy_get(uarg);
1241 
1242 			return uarg;
1243 		}
1244 	}
1245 
1246 new_alloc:
1247 	return msg_zerocopy_alloc(sk, size);
1248 }
1249 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1250 
1251 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1252 {
1253 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1254 	u32 old_lo, old_hi;
1255 	u64 sum_len;
1256 
1257 	old_lo = serr->ee.ee_info;
1258 	old_hi = serr->ee.ee_data;
1259 	sum_len = old_hi - old_lo + 1ULL + len;
1260 
1261 	if (sum_len >= (1ULL << 32))
1262 		return false;
1263 
1264 	if (lo != old_hi + 1)
1265 		return false;
1266 
1267 	serr->ee.ee_data += len;
1268 	return true;
1269 }
1270 
1271 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1272 {
1273 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1274 	struct sock_exterr_skb *serr;
1275 	struct sock *sk = skb->sk;
1276 	struct sk_buff_head *q;
1277 	unsigned long flags;
1278 	bool is_zerocopy;
1279 	u32 lo, hi;
1280 	u16 len;
1281 
1282 	mm_unaccount_pinned_pages(&uarg->mmp);
1283 
1284 	/* if !len, there was only 1 call, and it was aborted
1285 	 * so do not queue a completion notification
1286 	 */
1287 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1288 		goto release;
1289 
1290 	len = uarg->len;
1291 	lo = uarg->id;
1292 	hi = uarg->id + len - 1;
1293 	is_zerocopy = uarg->zerocopy;
1294 
1295 	serr = SKB_EXT_ERR(skb);
1296 	memset(serr, 0, sizeof(*serr));
1297 	serr->ee.ee_errno = 0;
1298 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1299 	serr->ee.ee_data = hi;
1300 	serr->ee.ee_info = lo;
1301 	if (!is_zerocopy)
1302 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1303 
1304 	q = &sk->sk_error_queue;
1305 	spin_lock_irqsave(&q->lock, flags);
1306 	tail = skb_peek_tail(q);
1307 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1308 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1309 		__skb_queue_tail(q, skb);
1310 		skb = NULL;
1311 	}
1312 	spin_unlock_irqrestore(&q->lock, flags);
1313 
1314 	sk_error_report(sk);
1315 
1316 release:
1317 	consume_skb(skb);
1318 	sock_put(sk);
1319 }
1320 
1321 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1322 			   bool success)
1323 {
1324 	uarg->zerocopy = uarg->zerocopy & success;
1325 
1326 	if (refcount_dec_and_test(&uarg->refcnt))
1327 		__msg_zerocopy_callback(uarg);
1328 }
1329 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1330 
1331 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1332 {
1333 	struct sock *sk = skb_from_uarg(uarg)->sk;
1334 
1335 	atomic_dec(&sk->sk_zckey);
1336 	uarg->len--;
1337 
1338 	if (have_uref)
1339 		msg_zerocopy_callback(NULL, uarg, true);
1340 }
1341 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1342 
1343 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1344 {
1345 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1346 }
1347 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1348 
1349 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1350 			     struct msghdr *msg, int len,
1351 			     struct ubuf_info *uarg)
1352 {
1353 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1354 	struct iov_iter orig_iter = msg->msg_iter;
1355 	int err, orig_len = skb->len;
1356 
1357 	/* An skb can only point to one uarg. This edge case happens when
1358 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1359 	 */
1360 	if (orig_uarg && uarg != orig_uarg)
1361 		return -EEXIST;
1362 
1363 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1364 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1365 		struct sock *save_sk = skb->sk;
1366 
1367 		/* Streams do not free skb on error. Reset to prev state. */
1368 		msg->msg_iter = orig_iter;
1369 		skb->sk = sk;
1370 		___pskb_trim(skb, orig_len);
1371 		skb->sk = save_sk;
1372 		return err;
1373 	}
1374 
1375 	skb_zcopy_set(skb, uarg, NULL);
1376 	return skb->len - orig_len;
1377 }
1378 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1379 
1380 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1381 			      gfp_t gfp_mask)
1382 {
1383 	if (skb_zcopy(orig)) {
1384 		if (skb_zcopy(nskb)) {
1385 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1386 			if (!gfp_mask) {
1387 				WARN_ON_ONCE(1);
1388 				return -ENOMEM;
1389 			}
1390 			if (skb_uarg(nskb) == skb_uarg(orig))
1391 				return 0;
1392 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1393 				return -EIO;
1394 		}
1395 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1396 	}
1397 	return 0;
1398 }
1399 
1400 /**
1401  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1402  *	@skb: the skb to modify
1403  *	@gfp_mask: allocation priority
1404  *
1405  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1406  *	It will copy all frags into kernel and drop the reference
1407  *	to userspace pages.
1408  *
1409  *	If this function is called from an interrupt gfp_mask() must be
1410  *	%GFP_ATOMIC.
1411  *
1412  *	Returns 0 on success or a negative error code on failure
1413  *	to allocate kernel memory to copy to.
1414  */
1415 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1416 {
1417 	int num_frags = skb_shinfo(skb)->nr_frags;
1418 	struct page *page, *head = NULL;
1419 	int i, new_frags;
1420 	u32 d_off;
1421 
1422 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1423 		return -EINVAL;
1424 
1425 	if (!num_frags)
1426 		goto release;
1427 
1428 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429 	for (i = 0; i < new_frags; i++) {
1430 		page = alloc_page(gfp_mask);
1431 		if (!page) {
1432 			while (head) {
1433 				struct page *next = (struct page *)page_private(head);
1434 				put_page(head);
1435 				head = next;
1436 			}
1437 			return -ENOMEM;
1438 		}
1439 		set_page_private(page, (unsigned long)head);
1440 		head = page;
1441 	}
1442 
1443 	page = head;
1444 	d_off = 0;
1445 	for (i = 0; i < num_frags; i++) {
1446 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1447 		u32 p_off, p_len, copied;
1448 		struct page *p;
1449 		u8 *vaddr;
1450 
1451 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1452 				      p, p_off, p_len, copied) {
1453 			u32 copy, done = 0;
1454 			vaddr = kmap_atomic(p);
1455 
1456 			while (done < p_len) {
1457 				if (d_off == PAGE_SIZE) {
1458 					d_off = 0;
1459 					page = (struct page *)page_private(page);
1460 				}
1461 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1462 				memcpy(page_address(page) + d_off,
1463 				       vaddr + p_off + done, copy);
1464 				done += copy;
1465 				d_off += copy;
1466 			}
1467 			kunmap_atomic(vaddr);
1468 		}
1469 	}
1470 
1471 	/* skb frags release userspace buffers */
1472 	for (i = 0; i < num_frags; i++)
1473 		skb_frag_unref(skb, i);
1474 
1475 	/* skb frags point to kernel buffers */
1476 	for (i = 0; i < new_frags - 1; i++) {
1477 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1478 		head = (struct page *)page_private(head);
1479 	}
1480 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1481 	skb_shinfo(skb)->nr_frags = new_frags;
1482 
1483 release:
1484 	skb_zcopy_clear(skb, false);
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1488 
1489 /**
1490  *	skb_clone	-	duplicate an sk_buff
1491  *	@skb: buffer to clone
1492  *	@gfp_mask: allocation priority
1493  *
1494  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1495  *	copies share the same packet data but not structure. The new
1496  *	buffer has a reference count of 1. If the allocation fails the
1497  *	function returns %NULL otherwise the new buffer is returned.
1498  *
1499  *	If this function is called from an interrupt gfp_mask() must be
1500  *	%GFP_ATOMIC.
1501  */
1502 
1503 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1504 {
1505 	struct sk_buff_fclones *fclones = container_of(skb,
1506 						       struct sk_buff_fclones,
1507 						       skb1);
1508 	struct sk_buff *n;
1509 
1510 	if (skb_orphan_frags(skb, gfp_mask))
1511 		return NULL;
1512 
1513 	if (skb->fclone == SKB_FCLONE_ORIG &&
1514 	    refcount_read(&fclones->fclone_ref) == 1) {
1515 		n = &fclones->skb2;
1516 		refcount_set(&fclones->fclone_ref, 2);
1517 	} else {
1518 		if (skb_pfmemalloc(skb))
1519 			gfp_mask |= __GFP_MEMALLOC;
1520 
1521 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1522 		if (!n)
1523 			return NULL;
1524 
1525 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1526 	}
1527 
1528 	return __skb_clone(n, skb);
1529 }
1530 EXPORT_SYMBOL(skb_clone);
1531 
1532 void skb_headers_offset_update(struct sk_buff *skb, int off)
1533 {
1534 	/* Only adjust this if it actually is csum_start rather than csum */
1535 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1536 		skb->csum_start += off;
1537 	/* {transport,network,mac}_header and tail are relative to skb->head */
1538 	skb->transport_header += off;
1539 	skb->network_header   += off;
1540 	if (skb_mac_header_was_set(skb))
1541 		skb->mac_header += off;
1542 	skb->inner_transport_header += off;
1543 	skb->inner_network_header += off;
1544 	skb->inner_mac_header += off;
1545 }
1546 EXPORT_SYMBOL(skb_headers_offset_update);
1547 
1548 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1549 {
1550 	__copy_skb_header(new, old);
1551 
1552 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1553 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1554 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1555 }
1556 EXPORT_SYMBOL(skb_copy_header);
1557 
1558 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1559 {
1560 	if (skb_pfmemalloc(skb))
1561 		return SKB_ALLOC_RX;
1562 	return 0;
1563 }
1564 
1565 /**
1566  *	skb_copy	-	create private copy of an sk_buff
1567  *	@skb: buffer to copy
1568  *	@gfp_mask: allocation priority
1569  *
1570  *	Make a copy of both an &sk_buff and its data. This is used when the
1571  *	caller wishes to modify the data and needs a private copy of the
1572  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1573  *	on success. The returned buffer has a reference count of 1.
1574  *
1575  *	As by-product this function converts non-linear &sk_buff to linear
1576  *	one, so that &sk_buff becomes completely private and caller is allowed
1577  *	to modify all the data of returned buffer. This means that this
1578  *	function is not recommended for use in circumstances when only
1579  *	header is going to be modified. Use pskb_copy() instead.
1580  */
1581 
1582 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1583 {
1584 	int headerlen = skb_headroom(skb);
1585 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1586 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1587 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1588 
1589 	if (!n)
1590 		return NULL;
1591 
1592 	/* Set the data pointer */
1593 	skb_reserve(n, headerlen);
1594 	/* Set the tail pointer and length */
1595 	skb_put(n, skb->len);
1596 
1597 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1598 
1599 	skb_copy_header(n, skb);
1600 	return n;
1601 }
1602 EXPORT_SYMBOL(skb_copy);
1603 
1604 /**
1605  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1606  *	@skb: buffer to copy
1607  *	@headroom: headroom of new skb
1608  *	@gfp_mask: allocation priority
1609  *	@fclone: if true allocate the copy of the skb from the fclone
1610  *	cache instead of the head cache; it is recommended to set this
1611  *	to true for the cases where the copy will likely be cloned
1612  *
1613  *	Make a copy of both an &sk_buff and part of its data, located
1614  *	in header. Fragmented data remain shared. This is used when
1615  *	the caller wishes to modify only header of &sk_buff and needs
1616  *	private copy of the header to alter. Returns %NULL on failure
1617  *	or the pointer to the buffer on success.
1618  *	The returned buffer has a reference count of 1.
1619  */
1620 
1621 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1622 				   gfp_t gfp_mask, bool fclone)
1623 {
1624 	unsigned int size = skb_headlen(skb) + headroom;
1625 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1626 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1627 
1628 	if (!n)
1629 		goto out;
1630 
1631 	/* Set the data pointer */
1632 	skb_reserve(n, headroom);
1633 	/* Set the tail pointer and length */
1634 	skb_put(n, skb_headlen(skb));
1635 	/* Copy the bytes */
1636 	skb_copy_from_linear_data(skb, n->data, n->len);
1637 
1638 	n->truesize += skb->data_len;
1639 	n->data_len  = skb->data_len;
1640 	n->len	     = skb->len;
1641 
1642 	if (skb_shinfo(skb)->nr_frags) {
1643 		int i;
1644 
1645 		if (skb_orphan_frags(skb, gfp_mask) ||
1646 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1647 			kfree_skb(n);
1648 			n = NULL;
1649 			goto out;
1650 		}
1651 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1652 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1653 			skb_frag_ref(skb, i);
1654 		}
1655 		skb_shinfo(n)->nr_frags = i;
1656 	}
1657 
1658 	if (skb_has_frag_list(skb)) {
1659 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1660 		skb_clone_fraglist(n);
1661 	}
1662 
1663 	skb_copy_header(n, skb);
1664 out:
1665 	return n;
1666 }
1667 EXPORT_SYMBOL(__pskb_copy_fclone);
1668 
1669 /**
1670  *	pskb_expand_head - reallocate header of &sk_buff
1671  *	@skb: buffer to reallocate
1672  *	@nhead: room to add at head
1673  *	@ntail: room to add at tail
1674  *	@gfp_mask: allocation priority
1675  *
1676  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1677  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1678  *	reference count of 1. Returns zero in the case of success or error,
1679  *	if expansion failed. In the last case, &sk_buff is not changed.
1680  *
1681  *	All the pointers pointing into skb header may change and must be
1682  *	reloaded after call to this function.
1683  */
1684 
1685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1686 		     gfp_t gfp_mask)
1687 {
1688 	int i, osize = skb_end_offset(skb);
1689 	int size = osize + nhead + ntail;
1690 	long off;
1691 	u8 *data;
1692 
1693 	BUG_ON(nhead < 0);
1694 
1695 	BUG_ON(skb_shared(skb));
1696 
1697 	size = SKB_DATA_ALIGN(size);
1698 
1699 	if (skb_pfmemalloc(skb))
1700 		gfp_mask |= __GFP_MEMALLOC;
1701 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1702 			       gfp_mask, NUMA_NO_NODE, NULL);
1703 	if (!data)
1704 		goto nodata;
1705 	size = SKB_WITH_OVERHEAD(ksize(data));
1706 
1707 	/* Copy only real data... and, alas, header. This should be
1708 	 * optimized for the cases when header is void.
1709 	 */
1710 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1711 
1712 	memcpy((struct skb_shared_info *)(data + size),
1713 	       skb_shinfo(skb),
1714 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1715 
1716 	/*
1717 	 * if shinfo is shared we must drop the old head gracefully, but if it
1718 	 * is not we can just drop the old head and let the existing refcount
1719 	 * be since all we did is relocate the values
1720 	 */
1721 	if (skb_cloned(skb)) {
1722 		if (skb_orphan_frags(skb, gfp_mask))
1723 			goto nofrags;
1724 		if (skb_zcopy(skb))
1725 			refcount_inc(&skb_uarg(skb)->refcnt);
1726 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1727 			skb_frag_ref(skb, i);
1728 
1729 		if (skb_has_frag_list(skb))
1730 			skb_clone_fraglist(skb);
1731 
1732 		skb_release_data(skb);
1733 	} else {
1734 		skb_free_head(skb);
1735 	}
1736 	off = (data + nhead) - skb->head;
1737 
1738 	skb->head     = data;
1739 	skb->head_frag = 0;
1740 	skb->data    += off;
1741 
1742 	skb_set_end_offset(skb, size);
1743 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1744 	off           = nhead;
1745 #endif
1746 	skb->tail	      += off;
1747 	skb_headers_offset_update(skb, nhead);
1748 	skb->cloned   = 0;
1749 	skb->hdr_len  = 0;
1750 	skb->nohdr    = 0;
1751 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1752 
1753 	skb_metadata_clear(skb);
1754 
1755 	/* It is not generally safe to change skb->truesize.
1756 	 * For the moment, we really care of rx path, or
1757 	 * when skb is orphaned (not attached to a socket).
1758 	 */
1759 	if (!skb->sk || skb->destructor == sock_edemux)
1760 		skb->truesize += size - osize;
1761 
1762 	return 0;
1763 
1764 nofrags:
1765 	kfree(data);
1766 nodata:
1767 	return -ENOMEM;
1768 }
1769 EXPORT_SYMBOL(pskb_expand_head);
1770 
1771 /* Make private copy of skb with writable head and some headroom */
1772 
1773 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1774 {
1775 	struct sk_buff *skb2;
1776 	int delta = headroom - skb_headroom(skb);
1777 
1778 	if (delta <= 0)
1779 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1780 	else {
1781 		skb2 = skb_clone(skb, GFP_ATOMIC);
1782 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1783 					     GFP_ATOMIC)) {
1784 			kfree_skb(skb2);
1785 			skb2 = NULL;
1786 		}
1787 	}
1788 	return skb2;
1789 }
1790 EXPORT_SYMBOL(skb_realloc_headroom);
1791 
1792 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1793 {
1794 	unsigned int saved_end_offset, saved_truesize;
1795 	struct skb_shared_info *shinfo;
1796 	int res;
1797 
1798 	saved_end_offset = skb_end_offset(skb);
1799 	saved_truesize = skb->truesize;
1800 
1801 	res = pskb_expand_head(skb, 0, 0, pri);
1802 	if (res)
1803 		return res;
1804 
1805 	skb->truesize = saved_truesize;
1806 
1807 	if (likely(skb_end_offset(skb) == saved_end_offset))
1808 		return 0;
1809 
1810 	shinfo = skb_shinfo(skb);
1811 
1812 	/* We are about to change back skb->end,
1813 	 * we need to move skb_shinfo() to its new location.
1814 	 */
1815 	memmove(skb->head + saved_end_offset,
1816 		shinfo,
1817 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1818 
1819 	skb_set_end_offset(skb, saved_end_offset);
1820 
1821 	return 0;
1822 }
1823 
1824 /**
1825  *	skb_expand_head - reallocate header of &sk_buff
1826  *	@skb: buffer to reallocate
1827  *	@headroom: needed headroom
1828  *
1829  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1830  *	if possible; copies skb->sk to new skb as needed
1831  *	and frees original skb in case of failures.
1832  *
1833  *	It expect increased headroom and generates warning otherwise.
1834  */
1835 
1836 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1837 {
1838 	int delta = headroom - skb_headroom(skb);
1839 	int osize = skb_end_offset(skb);
1840 	struct sock *sk = skb->sk;
1841 
1842 	if (WARN_ONCE(delta <= 0,
1843 		      "%s is expecting an increase in the headroom", __func__))
1844 		return skb;
1845 
1846 	delta = SKB_DATA_ALIGN(delta);
1847 	/* pskb_expand_head() might crash, if skb is shared. */
1848 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1849 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1850 
1851 		if (unlikely(!nskb))
1852 			goto fail;
1853 
1854 		if (sk)
1855 			skb_set_owner_w(nskb, sk);
1856 		consume_skb(skb);
1857 		skb = nskb;
1858 	}
1859 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1860 		goto fail;
1861 
1862 	if (sk && is_skb_wmem(skb)) {
1863 		delta = skb_end_offset(skb) - osize;
1864 		refcount_add(delta, &sk->sk_wmem_alloc);
1865 		skb->truesize += delta;
1866 	}
1867 	return skb;
1868 
1869 fail:
1870 	kfree_skb(skb);
1871 	return NULL;
1872 }
1873 EXPORT_SYMBOL(skb_expand_head);
1874 
1875 /**
1876  *	skb_copy_expand	-	copy and expand sk_buff
1877  *	@skb: buffer to copy
1878  *	@newheadroom: new free bytes at head
1879  *	@newtailroom: new free bytes at tail
1880  *	@gfp_mask: allocation priority
1881  *
1882  *	Make a copy of both an &sk_buff and its data and while doing so
1883  *	allocate additional space.
1884  *
1885  *	This is used when the caller wishes to modify the data and needs a
1886  *	private copy of the data to alter as well as more space for new fields.
1887  *	Returns %NULL on failure or the pointer to the buffer
1888  *	on success. The returned buffer has a reference count of 1.
1889  *
1890  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1891  *	is called from an interrupt.
1892  */
1893 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1894 				int newheadroom, int newtailroom,
1895 				gfp_t gfp_mask)
1896 {
1897 	/*
1898 	 *	Allocate the copy buffer
1899 	 */
1900 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1901 					gfp_mask, skb_alloc_rx_flag(skb),
1902 					NUMA_NO_NODE);
1903 	int oldheadroom = skb_headroom(skb);
1904 	int head_copy_len, head_copy_off;
1905 
1906 	if (!n)
1907 		return NULL;
1908 
1909 	skb_reserve(n, newheadroom);
1910 
1911 	/* Set the tail pointer and length */
1912 	skb_put(n, skb->len);
1913 
1914 	head_copy_len = oldheadroom;
1915 	head_copy_off = 0;
1916 	if (newheadroom <= head_copy_len)
1917 		head_copy_len = newheadroom;
1918 	else
1919 		head_copy_off = newheadroom - head_copy_len;
1920 
1921 	/* Copy the linear header and data. */
1922 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1923 			     skb->len + head_copy_len));
1924 
1925 	skb_copy_header(n, skb);
1926 
1927 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1928 
1929 	return n;
1930 }
1931 EXPORT_SYMBOL(skb_copy_expand);
1932 
1933 /**
1934  *	__skb_pad		-	zero pad the tail of an skb
1935  *	@skb: buffer to pad
1936  *	@pad: space to pad
1937  *	@free_on_error: free buffer on error
1938  *
1939  *	Ensure that a buffer is followed by a padding area that is zero
1940  *	filled. Used by network drivers which may DMA or transfer data
1941  *	beyond the buffer end onto the wire.
1942  *
1943  *	May return error in out of memory cases. The skb is freed on error
1944  *	if @free_on_error is true.
1945  */
1946 
1947 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1948 {
1949 	int err;
1950 	int ntail;
1951 
1952 	/* If the skbuff is non linear tailroom is always zero.. */
1953 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1954 		memset(skb->data+skb->len, 0, pad);
1955 		return 0;
1956 	}
1957 
1958 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1959 	if (likely(skb_cloned(skb) || ntail > 0)) {
1960 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1961 		if (unlikely(err))
1962 			goto free_skb;
1963 	}
1964 
1965 	/* FIXME: The use of this function with non-linear skb's really needs
1966 	 * to be audited.
1967 	 */
1968 	err = skb_linearize(skb);
1969 	if (unlikely(err))
1970 		goto free_skb;
1971 
1972 	memset(skb->data + skb->len, 0, pad);
1973 	return 0;
1974 
1975 free_skb:
1976 	if (free_on_error)
1977 		kfree_skb(skb);
1978 	return err;
1979 }
1980 EXPORT_SYMBOL(__skb_pad);
1981 
1982 /**
1983  *	pskb_put - add data to the tail of a potentially fragmented buffer
1984  *	@skb: start of the buffer to use
1985  *	@tail: tail fragment of the buffer to use
1986  *	@len: amount of data to add
1987  *
1988  *	This function extends the used data area of the potentially
1989  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1990  *	@skb itself. If this would exceed the total buffer size the kernel
1991  *	will panic. A pointer to the first byte of the extra data is
1992  *	returned.
1993  */
1994 
1995 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1996 {
1997 	if (tail != skb) {
1998 		skb->data_len += len;
1999 		skb->len += len;
2000 	}
2001 	return skb_put(tail, len);
2002 }
2003 EXPORT_SYMBOL_GPL(pskb_put);
2004 
2005 /**
2006  *	skb_put - add data to a buffer
2007  *	@skb: buffer to use
2008  *	@len: amount of data to add
2009  *
2010  *	This function extends the used data area of the buffer. If this would
2011  *	exceed the total buffer size the kernel will panic. A pointer to the
2012  *	first byte of the extra data is returned.
2013  */
2014 void *skb_put(struct sk_buff *skb, unsigned int len)
2015 {
2016 	void *tmp = skb_tail_pointer(skb);
2017 	SKB_LINEAR_ASSERT(skb);
2018 	skb->tail += len;
2019 	skb->len  += len;
2020 	if (unlikely(skb->tail > skb->end))
2021 		skb_over_panic(skb, len, __builtin_return_address(0));
2022 	return tmp;
2023 }
2024 EXPORT_SYMBOL(skb_put);
2025 
2026 /**
2027  *	skb_push - add data to the start of a buffer
2028  *	@skb: buffer to use
2029  *	@len: amount of data to add
2030  *
2031  *	This function extends the used data area of the buffer at the buffer
2032  *	start. If this would exceed the total buffer headroom the kernel will
2033  *	panic. A pointer to the first byte of the extra data is returned.
2034  */
2035 void *skb_push(struct sk_buff *skb, unsigned int len)
2036 {
2037 	skb->data -= len;
2038 	skb->len  += len;
2039 	if (unlikely(skb->data < skb->head))
2040 		skb_under_panic(skb, len, __builtin_return_address(0));
2041 	return skb->data;
2042 }
2043 EXPORT_SYMBOL(skb_push);
2044 
2045 /**
2046  *	skb_pull - remove data from the start of a buffer
2047  *	@skb: buffer to use
2048  *	@len: amount of data to remove
2049  *
2050  *	This function removes data from the start of a buffer, returning
2051  *	the memory to the headroom. A pointer to the next data in the buffer
2052  *	is returned. Once the data has been pulled future pushes will overwrite
2053  *	the old data.
2054  */
2055 void *skb_pull(struct sk_buff *skb, unsigned int len)
2056 {
2057 	return skb_pull_inline(skb, len);
2058 }
2059 EXPORT_SYMBOL(skb_pull);
2060 
2061 /**
2062  *	skb_pull_data - remove data from the start of a buffer returning its
2063  *	original position.
2064  *	@skb: buffer to use
2065  *	@len: amount of data to remove
2066  *
2067  *	This function removes data from the start of a buffer, returning
2068  *	the memory to the headroom. A pointer to the original data in the buffer
2069  *	is returned after checking if there is enough data to pull. Once the
2070  *	data has been pulled future pushes will overwrite the old data.
2071  */
2072 void *skb_pull_data(struct sk_buff *skb, size_t len)
2073 {
2074 	void *data = skb->data;
2075 
2076 	if (skb->len < len)
2077 		return NULL;
2078 
2079 	skb_pull(skb, len);
2080 
2081 	return data;
2082 }
2083 EXPORT_SYMBOL(skb_pull_data);
2084 
2085 /**
2086  *	skb_trim - remove end from a buffer
2087  *	@skb: buffer to alter
2088  *	@len: new length
2089  *
2090  *	Cut the length of a buffer down by removing data from the tail. If
2091  *	the buffer is already under the length specified it is not modified.
2092  *	The skb must be linear.
2093  */
2094 void skb_trim(struct sk_buff *skb, unsigned int len)
2095 {
2096 	if (skb->len > len)
2097 		__skb_trim(skb, len);
2098 }
2099 EXPORT_SYMBOL(skb_trim);
2100 
2101 /* Trims skb to length len. It can change skb pointers.
2102  */
2103 
2104 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2105 {
2106 	struct sk_buff **fragp;
2107 	struct sk_buff *frag;
2108 	int offset = skb_headlen(skb);
2109 	int nfrags = skb_shinfo(skb)->nr_frags;
2110 	int i;
2111 	int err;
2112 
2113 	if (skb_cloned(skb) &&
2114 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2115 		return err;
2116 
2117 	i = 0;
2118 	if (offset >= len)
2119 		goto drop_pages;
2120 
2121 	for (; i < nfrags; i++) {
2122 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2123 
2124 		if (end < len) {
2125 			offset = end;
2126 			continue;
2127 		}
2128 
2129 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2130 
2131 drop_pages:
2132 		skb_shinfo(skb)->nr_frags = i;
2133 
2134 		for (; i < nfrags; i++)
2135 			skb_frag_unref(skb, i);
2136 
2137 		if (skb_has_frag_list(skb))
2138 			skb_drop_fraglist(skb);
2139 		goto done;
2140 	}
2141 
2142 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2143 	     fragp = &frag->next) {
2144 		int end = offset + frag->len;
2145 
2146 		if (skb_shared(frag)) {
2147 			struct sk_buff *nfrag;
2148 
2149 			nfrag = skb_clone(frag, GFP_ATOMIC);
2150 			if (unlikely(!nfrag))
2151 				return -ENOMEM;
2152 
2153 			nfrag->next = frag->next;
2154 			consume_skb(frag);
2155 			frag = nfrag;
2156 			*fragp = frag;
2157 		}
2158 
2159 		if (end < len) {
2160 			offset = end;
2161 			continue;
2162 		}
2163 
2164 		if (end > len &&
2165 		    unlikely((err = pskb_trim(frag, len - offset))))
2166 			return err;
2167 
2168 		if (frag->next)
2169 			skb_drop_list(&frag->next);
2170 		break;
2171 	}
2172 
2173 done:
2174 	if (len > skb_headlen(skb)) {
2175 		skb->data_len -= skb->len - len;
2176 		skb->len       = len;
2177 	} else {
2178 		skb->len       = len;
2179 		skb->data_len  = 0;
2180 		skb_set_tail_pointer(skb, len);
2181 	}
2182 
2183 	if (!skb->sk || skb->destructor == sock_edemux)
2184 		skb_condense(skb);
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL(___pskb_trim);
2188 
2189 /* Note : use pskb_trim_rcsum() instead of calling this directly
2190  */
2191 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2192 {
2193 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2194 		int delta = skb->len - len;
2195 
2196 		skb->csum = csum_block_sub(skb->csum,
2197 					   skb_checksum(skb, len, delta, 0),
2198 					   len);
2199 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2200 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2201 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2202 
2203 		if (offset + sizeof(__sum16) > hdlen)
2204 			return -EINVAL;
2205 	}
2206 	return __pskb_trim(skb, len);
2207 }
2208 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2209 
2210 /**
2211  *	__pskb_pull_tail - advance tail of skb header
2212  *	@skb: buffer to reallocate
2213  *	@delta: number of bytes to advance tail
2214  *
2215  *	The function makes a sense only on a fragmented &sk_buff,
2216  *	it expands header moving its tail forward and copying necessary
2217  *	data from fragmented part.
2218  *
2219  *	&sk_buff MUST have reference count of 1.
2220  *
2221  *	Returns %NULL (and &sk_buff does not change) if pull failed
2222  *	or value of new tail of skb in the case of success.
2223  *
2224  *	All the pointers pointing into skb header may change and must be
2225  *	reloaded after call to this function.
2226  */
2227 
2228 /* Moves tail of skb head forward, copying data from fragmented part,
2229  * when it is necessary.
2230  * 1. It may fail due to malloc failure.
2231  * 2. It may change skb pointers.
2232  *
2233  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2234  */
2235 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2236 {
2237 	/* If skb has not enough free space at tail, get new one
2238 	 * plus 128 bytes for future expansions. If we have enough
2239 	 * room at tail, reallocate without expansion only if skb is cloned.
2240 	 */
2241 	int i, k, eat = (skb->tail + delta) - skb->end;
2242 
2243 	if (eat > 0 || skb_cloned(skb)) {
2244 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2245 				     GFP_ATOMIC))
2246 			return NULL;
2247 	}
2248 
2249 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2250 			     skb_tail_pointer(skb), delta));
2251 
2252 	/* Optimization: no fragments, no reasons to preestimate
2253 	 * size of pulled pages. Superb.
2254 	 */
2255 	if (!skb_has_frag_list(skb))
2256 		goto pull_pages;
2257 
2258 	/* Estimate size of pulled pages. */
2259 	eat = delta;
2260 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2261 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2262 
2263 		if (size >= eat)
2264 			goto pull_pages;
2265 		eat -= size;
2266 	}
2267 
2268 	/* If we need update frag list, we are in troubles.
2269 	 * Certainly, it is possible to add an offset to skb data,
2270 	 * but taking into account that pulling is expected to
2271 	 * be very rare operation, it is worth to fight against
2272 	 * further bloating skb head and crucify ourselves here instead.
2273 	 * Pure masohism, indeed. 8)8)
2274 	 */
2275 	if (eat) {
2276 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2277 		struct sk_buff *clone = NULL;
2278 		struct sk_buff *insp = NULL;
2279 
2280 		do {
2281 			if (list->len <= eat) {
2282 				/* Eaten as whole. */
2283 				eat -= list->len;
2284 				list = list->next;
2285 				insp = list;
2286 			} else {
2287 				/* Eaten partially. */
2288 
2289 				if (skb_shared(list)) {
2290 					/* Sucks! We need to fork list. :-( */
2291 					clone = skb_clone(list, GFP_ATOMIC);
2292 					if (!clone)
2293 						return NULL;
2294 					insp = list->next;
2295 					list = clone;
2296 				} else {
2297 					/* This may be pulled without
2298 					 * problems. */
2299 					insp = list;
2300 				}
2301 				if (!pskb_pull(list, eat)) {
2302 					kfree_skb(clone);
2303 					return NULL;
2304 				}
2305 				break;
2306 			}
2307 		} while (eat);
2308 
2309 		/* Free pulled out fragments. */
2310 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2311 			skb_shinfo(skb)->frag_list = list->next;
2312 			consume_skb(list);
2313 		}
2314 		/* And insert new clone at head. */
2315 		if (clone) {
2316 			clone->next = list;
2317 			skb_shinfo(skb)->frag_list = clone;
2318 		}
2319 	}
2320 	/* Success! Now we may commit changes to skb data. */
2321 
2322 pull_pages:
2323 	eat = delta;
2324 	k = 0;
2325 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2326 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2327 
2328 		if (size <= eat) {
2329 			skb_frag_unref(skb, i);
2330 			eat -= size;
2331 		} else {
2332 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2333 
2334 			*frag = skb_shinfo(skb)->frags[i];
2335 			if (eat) {
2336 				skb_frag_off_add(frag, eat);
2337 				skb_frag_size_sub(frag, eat);
2338 				if (!i)
2339 					goto end;
2340 				eat = 0;
2341 			}
2342 			k++;
2343 		}
2344 	}
2345 	skb_shinfo(skb)->nr_frags = k;
2346 
2347 end:
2348 	skb->tail     += delta;
2349 	skb->data_len -= delta;
2350 
2351 	if (!skb->data_len)
2352 		skb_zcopy_clear(skb, false);
2353 
2354 	return skb_tail_pointer(skb);
2355 }
2356 EXPORT_SYMBOL(__pskb_pull_tail);
2357 
2358 /**
2359  *	skb_copy_bits - copy bits from skb to kernel buffer
2360  *	@skb: source skb
2361  *	@offset: offset in source
2362  *	@to: destination buffer
2363  *	@len: number of bytes to copy
2364  *
2365  *	Copy the specified number of bytes from the source skb to the
2366  *	destination buffer.
2367  *
2368  *	CAUTION ! :
2369  *		If its prototype is ever changed,
2370  *		check arch/{*}/net/{*}.S files,
2371  *		since it is called from BPF assembly code.
2372  */
2373 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2374 {
2375 	int start = skb_headlen(skb);
2376 	struct sk_buff *frag_iter;
2377 	int i, copy;
2378 
2379 	if (offset > (int)skb->len - len)
2380 		goto fault;
2381 
2382 	/* Copy header. */
2383 	if ((copy = start - offset) > 0) {
2384 		if (copy > len)
2385 			copy = len;
2386 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2387 		if ((len -= copy) == 0)
2388 			return 0;
2389 		offset += copy;
2390 		to     += copy;
2391 	}
2392 
2393 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2394 		int end;
2395 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2396 
2397 		WARN_ON(start > offset + len);
2398 
2399 		end = start + skb_frag_size(f);
2400 		if ((copy = end - offset) > 0) {
2401 			u32 p_off, p_len, copied;
2402 			struct page *p;
2403 			u8 *vaddr;
2404 
2405 			if (copy > len)
2406 				copy = len;
2407 
2408 			skb_frag_foreach_page(f,
2409 					      skb_frag_off(f) + offset - start,
2410 					      copy, p, p_off, p_len, copied) {
2411 				vaddr = kmap_atomic(p);
2412 				memcpy(to + copied, vaddr + p_off, p_len);
2413 				kunmap_atomic(vaddr);
2414 			}
2415 
2416 			if ((len -= copy) == 0)
2417 				return 0;
2418 			offset += copy;
2419 			to     += copy;
2420 		}
2421 		start = end;
2422 	}
2423 
2424 	skb_walk_frags(skb, frag_iter) {
2425 		int end;
2426 
2427 		WARN_ON(start > offset + len);
2428 
2429 		end = start + frag_iter->len;
2430 		if ((copy = end - offset) > 0) {
2431 			if (copy > len)
2432 				copy = len;
2433 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2434 				goto fault;
2435 			if ((len -= copy) == 0)
2436 				return 0;
2437 			offset += copy;
2438 			to     += copy;
2439 		}
2440 		start = end;
2441 	}
2442 
2443 	if (!len)
2444 		return 0;
2445 
2446 fault:
2447 	return -EFAULT;
2448 }
2449 EXPORT_SYMBOL(skb_copy_bits);
2450 
2451 /*
2452  * Callback from splice_to_pipe(), if we need to release some pages
2453  * at the end of the spd in case we error'ed out in filling the pipe.
2454  */
2455 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2456 {
2457 	put_page(spd->pages[i]);
2458 }
2459 
2460 static struct page *linear_to_page(struct page *page, unsigned int *len,
2461 				   unsigned int *offset,
2462 				   struct sock *sk)
2463 {
2464 	struct page_frag *pfrag = sk_page_frag(sk);
2465 
2466 	if (!sk_page_frag_refill(sk, pfrag))
2467 		return NULL;
2468 
2469 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2470 
2471 	memcpy(page_address(pfrag->page) + pfrag->offset,
2472 	       page_address(page) + *offset, *len);
2473 	*offset = pfrag->offset;
2474 	pfrag->offset += *len;
2475 
2476 	return pfrag->page;
2477 }
2478 
2479 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2480 			     struct page *page,
2481 			     unsigned int offset)
2482 {
2483 	return	spd->nr_pages &&
2484 		spd->pages[spd->nr_pages - 1] == page &&
2485 		(spd->partial[spd->nr_pages - 1].offset +
2486 		 spd->partial[spd->nr_pages - 1].len == offset);
2487 }
2488 
2489 /*
2490  * Fill page/offset/length into spd, if it can hold more pages.
2491  */
2492 static bool spd_fill_page(struct splice_pipe_desc *spd,
2493 			  struct pipe_inode_info *pipe, struct page *page,
2494 			  unsigned int *len, unsigned int offset,
2495 			  bool linear,
2496 			  struct sock *sk)
2497 {
2498 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2499 		return true;
2500 
2501 	if (linear) {
2502 		page = linear_to_page(page, len, &offset, sk);
2503 		if (!page)
2504 			return true;
2505 	}
2506 	if (spd_can_coalesce(spd, page, offset)) {
2507 		spd->partial[spd->nr_pages - 1].len += *len;
2508 		return false;
2509 	}
2510 	get_page(page);
2511 	spd->pages[spd->nr_pages] = page;
2512 	spd->partial[spd->nr_pages].len = *len;
2513 	spd->partial[spd->nr_pages].offset = offset;
2514 	spd->nr_pages++;
2515 
2516 	return false;
2517 }
2518 
2519 static bool __splice_segment(struct page *page, unsigned int poff,
2520 			     unsigned int plen, unsigned int *off,
2521 			     unsigned int *len,
2522 			     struct splice_pipe_desc *spd, bool linear,
2523 			     struct sock *sk,
2524 			     struct pipe_inode_info *pipe)
2525 {
2526 	if (!*len)
2527 		return true;
2528 
2529 	/* skip this segment if already processed */
2530 	if (*off >= plen) {
2531 		*off -= plen;
2532 		return false;
2533 	}
2534 
2535 	/* ignore any bits we already processed */
2536 	poff += *off;
2537 	plen -= *off;
2538 	*off = 0;
2539 
2540 	do {
2541 		unsigned int flen = min(*len, plen);
2542 
2543 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2544 				  linear, sk))
2545 			return true;
2546 		poff += flen;
2547 		plen -= flen;
2548 		*len -= flen;
2549 	} while (*len && plen);
2550 
2551 	return false;
2552 }
2553 
2554 /*
2555  * Map linear and fragment data from the skb to spd. It reports true if the
2556  * pipe is full or if we already spliced the requested length.
2557  */
2558 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2559 			      unsigned int *offset, unsigned int *len,
2560 			      struct splice_pipe_desc *spd, struct sock *sk)
2561 {
2562 	int seg;
2563 	struct sk_buff *iter;
2564 
2565 	/* map the linear part :
2566 	 * If skb->head_frag is set, this 'linear' part is backed by a
2567 	 * fragment, and if the head is not shared with any clones then
2568 	 * we can avoid a copy since we own the head portion of this page.
2569 	 */
2570 	if (__splice_segment(virt_to_page(skb->data),
2571 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2572 			     skb_headlen(skb),
2573 			     offset, len, spd,
2574 			     skb_head_is_locked(skb),
2575 			     sk, pipe))
2576 		return true;
2577 
2578 	/*
2579 	 * then map the fragments
2580 	 */
2581 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2582 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2583 
2584 		if (__splice_segment(skb_frag_page(f),
2585 				     skb_frag_off(f), skb_frag_size(f),
2586 				     offset, len, spd, false, sk, pipe))
2587 			return true;
2588 	}
2589 
2590 	skb_walk_frags(skb, iter) {
2591 		if (*offset >= iter->len) {
2592 			*offset -= iter->len;
2593 			continue;
2594 		}
2595 		/* __skb_splice_bits() only fails if the output has no room
2596 		 * left, so no point in going over the frag_list for the error
2597 		 * case.
2598 		 */
2599 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2600 			return true;
2601 	}
2602 
2603 	return false;
2604 }
2605 
2606 /*
2607  * Map data from the skb to a pipe. Should handle both the linear part,
2608  * the fragments, and the frag list.
2609  */
2610 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2611 		    struct pipe_inode_info *pipe, unsigned int tlen,
2612 		    unsigned int flags)
2613 {
2614 	struct partial_page partial[MAX_SKB_FRAGS];
2615 	struct page *pages[MAX_SKB_FRAGS];
2616 	struct splice_pipe_desc spd = {
2617 		.pages = pages,
2618 		.partial = partial,
2619 		.nr_pages_max = MAX_SKB_FRAGS,
2620 		.ops = &nosteal_pipe_buf_ops,
2621 		.spd_release = sock_spd_release,
2622 	};
2623 	int ret = 0;
2624 
2625 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2626 
2627 	if (spd.nr_pages)
2628 		ret = splice_to_pipe(pipe, &spd);
2629 
2630 	return ret;
2631 }
2632 EXPORT_SYMBOL_GPL(skb_splice_bits);
2633 
2634 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2635 			    struct kvec *vec, size_t num, size_t size)
2636 {
2637 	struct socket *sock = sk->sk_socket;
2638 
2639 	if (!sock)
2640 		return -EINVAL;
2641 	return kernel_sendmsg(sock, msg, vec, num, size);
2642 }
2643 
2644 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2645 			     size_t size, int flags)
2646 {
2647 	struct socket *sock = sk->sk_socket;
2648 
2649 	if (!sock)
2650 		return -EINVAL;
2651 	return kernel_sendpage(sock, page, offset, size, flags);
2652 }
2653 
2654 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2655 			    struct kvec *vec, size_t num, size_t size);
2656 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2657 			     size_t size, int flags);
2658 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2659 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2660 {
2661 	unsigned int orig_len = len;
2662 	struct sk_buff *head = skb;
2663 	unsigned short fragidx;
2664 	int slen, ret;
2665 
2666 do_frag_list:
2667 
2668 	/* Deal with head data */
2669 	while (offset < skb_headlen(skb) && len) {
2670 		struct kvec kv;
2671 		struct msghdr msg;
2672 
2673 		slen = min_t(int, len, skb_headlen(skb) - offset);
2674 		kv.iov_base = skb->data + offset;
2675 		kv.iov_len = slen;
2676 		memset(&msg, 0, sizeof(msg));
2677 		msg.msg_flags = MSG_DONTWAIT;
2678 
2679 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2680 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2681 		if (ret <= 0)
2682 			goto error;
2683 
2684 		offset += ret;
2685 		len -= ret;
2686 	}
2687 
2688 	/* All the data was skb head? */
2689 	if (!len)
2690 		goto out;
2691 
2692 	/* Make offset relative to start of frags */
2693 	offset -= skb_headlen(skb);
2694 
2695 	/* Find where we are in frag list */
2696 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2697 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2698 
2699 		if (offset < skb_frag_size(frag))
2700 			break;
2701 
2702 		offset -= skb_frag_size(frag);
2703 	}
2704 
2705 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2706 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2707 
2708 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2709 
2710 		while (slen) {
2711 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2712 					      sendpage_unlocked, sk,
2713 					      skb_frag_page(frag),
2714 					      skb_frag_off(frag) + offset,
2715 					      slen, MSG_DONTWAIT);
2716 			if (ret <= 0)
2717 				goto error;
2718 
2719 			len -= ret;
2720 			offset += ret;
2721 			slen -= ret;
2722 		}
2723 
2724 		offset = 0;
2725 	}
2726 
2727 	if (len) {
2728 		/* Process any frag lists */
2729 
2730 		if (skb == head) {
2731 			if (skb_has_frag_list(skb)) {
2732 				skb = skb_shinfo(skb)->frag_list;
2733 				goto do_frag_list;
2734 			}
2735 		} else if (skb->next) {
2736 			skb = skb->next;
2737 			goto do_frag_list;
2738 		}
2739 	}
2740 
2741 out:
2742 	return orig_len - len;
2743 
2744 error:
2745 	return orig_len == len ? ret : orig_len - len;
2746 }
2747 
2748 /* Send skb data on a socket. Socket must be locked. */
2749 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2750 			 int len)
2751 {
2752 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2753 			       kernel_sendpage_locked);
2754 }
2755 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2756 
2757 /* Send skb data on a socket. Socket must be unlocked. */
2758 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2759 {
2760 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2761 			       sendpage_unlocked);
2762 }
2763 
2764 /**
2765  *	skb_store_bits - store bits from kernel buffer to skb
2766  *	@skb: destination buffer
2767  *	@offset: offset in destination
2768  *	@from: source buffer
2769  *	@len: number of bytes to copy
2770  *
2771  *	Copy the specified number of bytes from the source buffer to the
2772  *	destination skb.  This function handles all the messy bits of
2773  *	traversing fragment lists and such.
2774  */
2775 
2776 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2777 {
2778 	int start = skb_headlen(skb);
2779 	struct sk_buff *frag_iter;
2780 	int i, copy;
2781 
2782 	if (offset > (int)skb->len - len)
2783 		goto fault;
2784 
2785 	if ((copy = start - offset) > 0) {
2786 		if (copy > len)
2787 			copy = len;
2788 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2789 		if ((len -= copy) == 0)
2790 			return 0;
2791 		offset += copy;
2792 		from += copy;
2793 	}
2794 
2795 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2796 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2797 		int end;
2798 
2799 		WARN_ON(start > offset + len);
2800 
2801 		end = start + skb_frag_size(frag);
2802 		if ((copy = end - offset) > 0) {
2803 			u32 p_off, p_len, copied;
2804 			struct page *p;
2805 			u8 *vaddr;
2806 
2807 			if (copy > len)
2808 				copy = len;
2809 
2810 			skb_frag_foreach_page(frag,
2811 					      skb_frag_off(frag) + offset - start,
2812 					      copy, p, p_off, p_len, copied) {
2813 				vaddr = kmap_atomic(p);
2814 				memcpy(vaddr + p_off, from + copied, p_len);
2815 				kunmap_atomic(vaddr);
2816 			}
2817 
2818 			if ((len -= copy) == 0)
2819 				return 0;
2820 			offset += copy;
2821 			from += copy;
2822 		}
2823 		start = end;
2824 	}
2825 
2826 	skb_walk_frags(skb, frag_iter) {
2827 		int end;
2828 
2829 		WARN_ON(start > offset + len);
2830 
2831 		end = start + frag_iter->len;
2832 		if ((copy = end - offset) > 0) {
2833 			if (copy > len)
2834 				copy = len;
2835 			if (skb_store_bits(frag_iter, offset - start,
2836 					   from, copy))
2837 				goto fault;
2838 			if ((len -= copy) == 0)
2839 				return 0;
2840 			offset += copy;
2841 			from += copy;
2842 		}
2843 		start = end;
2844 	}
2845 	if (!len)
2846 		return 0;
2847 
2848 fault:
2849 	return -EFAULT;
2850 }
2851 EXPORT_SYMBOL(skb_store_bits);
2852 
2853 /* Checksum skb data. */
2854 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2855 		      __wsum csum, const struct skb_checksum_ops *ops)
2856 {
2857 	int start = skb_headlen(skb);
2858 	int i, copy = start - offset;
2859 	struct sk_buff *frag_iter;
2860 	int pos = 0;
2861 
2862 	/* Checksum header. */
2863 	if (copy > 0) {
2864 		if (copy > len)
2865 			copy = len;
2866 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2867 				       skb->data + offset, copy, csum);
2868 		if ((len -= copy) == 0)
2869 			return csum;
2870 		offset += copy;
2871 		pos	= copy;
2872 	}
2873 
2874 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2875 		int end;
2876 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2877 
2878 		WARN_ON(start > offset + len);
2879 
2880 		end = start + skb_frag_size(frag);
2881 		if ((copy = end - offset) > 0) {
2882 			u32 p_off, p_len, copied;
2883 			struct page *p;
2884 			__wsum csum2;
2885 			u8 *vaddr;
2886 
2887 			if (copy > len)
2888 				copy = len;
2889 
2890 			skb_frag_foreach_page(frag,
2891 					      skb_frag_off(frag) + offset - start,
2892 					      copy, p, p_off, p_len, copied) {
2893 				vaddr = kmap_atomic(p);
2894 				csum2 = INDIRECT_CALL_1(ops->update,
2895 							csum_partial_ext,
2896 							vaddr + p_off, p_len, 0);
2897 				kunmap_atomic(vaddr);
2898 				csum = INDIRECT_CALL_1(ops->combine,
2899 						       csum_block_add_ext, csum,
2900 						       csum2, pos, p_len);
2901 				pos += p_len;
2902 			}
2903 
2904 			if (!(len -= copy))
2905 				return csum;
2906 			offset += copy;
2907 		}
2908 		start = end;
2909 	}
2910 
2911 	skb_walk_frags(skb, frag_iter) {
2912 		int end;
2913 
2914 		WARN_ON(start > offset + len);
2915 
2916 		end = start + frag_iter->len;
2917 		if ((copy = end - offset) > 0) {
2918 			__wsum csum2;
2919 			if (copy > len)
2920 				copy = len;
2921 			csum2 = __skb_checksum(frag_iter, offset - start,
2922 					       copy, 0, ops);
2923 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2924 					       csum, csum2, pos, copy);
2925 			if ((len -= copy) == 0)
2926 				return csum;
2927 			offset += copy;
2928 			pos    += copy;
2929 		}
2930 		start = end;
2931 	}
2932 	BUG_ON(len);
2933 
2934 	return csum;
2935 }
2936 EXPORT_SYMBOL(__skb_checksum);
2937 
2938 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2939 		    int len, __wsum csum)
2940 {
2941 	const struct skb_checksum_ops ops = {
2942 		.update  = csum_partial_ext,
2943 		.combine = csum_block_add_ext,
2944 	};
2945 
2946 	return __skb_checksum(skb, offset, len, csum, &ops);
2947 }
2948 EXPORT_SYMBOL(skb_checksum);
2949 
2950 /* Both of above in one bottle. */
2951 
2952 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2953 				    u8 *to, int len)
2954 {
2955 	int start = skb_headlen(skb);
2956 	int i, copy = start - offset;
2957 	struct sk_buff *frag_iter;
2958 	int pos = 0;
2959 	__wsum csum = 0;
2960 
2961 	/* Copy header. */
2962 	if (copy > 0) {
2963 		if (copy > len)
2964 			copy = len;
2965 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2966 						 copy);
2967 		if ((len -= copy) == 0)
2968 			return csum;
2969 		offset += copy;
2970 		to     += copy;
2971 		pos	= copy;
2972 	}
2973 
2974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2975 		int end;
2976 
2977 		WARN_ON(start > offset + len);
2978 
2979 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2980 		if ((copy = end - offset) > 0) {
2981 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2982 			u32 p_off, p_len, copied;
2983 			struct page *p;
2984 			__wsum csum2;
2985 			u8 *vaddr;
2986 
2987 			if (copy > len)
2988 				copy = len;
2989 
2990 			skb_frag_foreach_page(frag,
2991 					      skb_frag_off(frag) + offset - start,
2992 					      copy, p, p_off, p_len, copied) {
2993 				vaddr = kmap_atomic(p);
2994 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2995 								  to + copied,
2996 								  p_len);
2997 				kunmap_atomic(vaddr);
2998 				csum = csum_block_add(csum, csum2, pos);
2999 				pos += p_len;
3000 			}
3001 
3002 			if (!(len -= copy))
3003 				return csum;
3004 			offset += copy;
3005 			to     += copy;
3006 		}
3007 		start = end;
3008 	}
3009 
3010 	skb_walk_frags(skb, frag_iter) {
3011 		__wsum csum2;
3012 		int end;
3013 
3014 		WARN_ON(start > offset + len);
3015 
3016 		end = start + frag_iter->len;
3017 		if ((copy = end - offset) > 0) {
3018 			if (copy > len)
3019 				copy = len;
3020 			csum2 = skb_copy_and_csum_bits(frag_iter,
3021 						       offset - start,
3022 						       to, copy);
3023 			csum = csum_block_add(csum, csum2, pos);
3024 			if ((len -= copy) == 0)
3025 				return csum;
3026 			offset += copy;
3027 			to     += copy;
3028 			pos    += copy;
3029 		}
3030 		start = end;
3031 	}
3032 	BUG_ON(len);
3033 	return csum;
3034 }
3035 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3036 
3037 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3038 {
3039 	__sum16 sum;
3040 
3041 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3042 	/* See comments in __skb_checksum_complete(). */
3043 	if (likely(!sum)) {
3044 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3045 		    !skb->csum_complete_sw)
3046 			netdev_rx_csum_fault(skb->dev, skb);
3047 	}
3048 	if (!skb_shared(skb))
3049 		skb->csum_valid = !sum;
3050 	return sum;
3051 }
3052 EXPORT_SYMBOL(__skb_checksum_complete_head);
3053 
3054 /* This function assumes skb->csum already holds pseudo header's checksum,
3055  * which has been changed from the hardware checksum, for example, by
3056  * __skb_checksum_validate_complete(). And, the original skb->csum must
3057  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3058  *
3059  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3060  * zero. The new checksum is stored back into skb->csum unless the skb is
3061  * shared.
3062  */
3063 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3064 {
3065 	__wsum csum;
3066 	__sum16 sum;
3067 
3068 	csum = skb_checksum(skb, 0, skb->len, 0);
3069 
3070 	sum = csum_fold(csum_add(skb->csum, csum));
3071 	/* This check is inverted, because we already knew the hardware
3072 	 * checksum is invalid before calling this function. So, if the
3073 	 * re-computed checksum is valid instead, then we have a mismatch
3074 	 * between the original skb->csum and skb_checksum(). This means either
3075 	 * the original hardware checksum is incorrect or we screw up skb->csum
3076 	 * when moving skb->data around.
3077 	 */
3078 	if (likely(!sum)) {
3079 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3080 		    !skb->csum_complete_sw)
3081 			netdev_rx_csum_fault(skb->dev, skb);
3082 	}
3083 
3084 	if (!skb_shared(skb)) {
3085 		/* Save full packet checksum */
3086 		skb->csum = csum;
3087 		skb->ip_summed = CHECKSUM_COMPLETE;
3088 		skb->csum_complete_sw = 1;
3089 		skb->csum_valid = !sum;
3090 	}
3091 
3092 	return sum;
3093 }
3094 EXPORT_SYMBOL(__skb_checksum_complete);
3095 
3096 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3097 {
3098 	net_warn_ratelimited(
3099 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3100 		__func__);
3101 	return 0;
3102 }
3103 
3104 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3105 				       int offset, int len)
3106 {
3107 	net_warn_ratelimited(
3108 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3109 		__func__);
3110 	return 0;
3111 }
3112 
3113 static const struct skb_checksum_ops default_crc32c_ops = {
3114 	.update  = warn_crc32c_csum_update,
3115 	.combine = warn_crc32c_csum_combine,
3116 };
3117 
3118 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3119 	&default_crc32c_ops;
3120 EXPORT_SYMBOL(crc32c_csum_stub);
3121 
3122  /**
3123  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3124  *	@from: source buffer
3125  *
3126  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3127  *	into skb_zerocopy().
3128  */
3129 unsigned int
3130 skb_zerocopy_headlen(const struct sk_buff *from)
3131 {
3132 	unsigned int hlen = 0;
3133 
3134 	if (!from->head_frag ||
3135 	    skb_headlen(from) < L1_CACHE_BYTES ||
3136 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3137 		hlen = skb_headlen(from);
3138 		if (!hlen)
3139 			hlen = from->len;
3140 	}
3141 
3142 	if (skb_has_frag_list(from))
3143 		hlen = from->len;
3144 
3145 	return hlen;
3146 }
3147 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3148 
3149 /**
3150  *	skb_zerocopy - Zero copy skb to skb
3151  *	@to: destination buffer
3152  *	@from: source buffer
3153  *	@len: number of bytes to copy from source buffer
3154  *	@hlen: size of linear headroom in destination buffer
3155  *
3156  *	Copies up to `len` bytes from `from` to `to` by creating references
3157  *	to the frags in the source buffer.
3158  *
3159  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3160  *	headroom in the `to` buffer.
3161  *
3162  *	Return value:
3163  *	0: everything is OK
3164  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3165  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3166  */
3167 int
3168 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3169 {
3170 	int i, j = 0;
3171 	int plen = 0; /* length of skb->head fragment */
3172 	int ret;
3173 	struct page *page;
3174 	unsigned int offset;
3175 
3176 	BUG_ON(!from->head_frag && !hlen);
3177 
3178 	/* dont bother with small payloads */
3179 	if (len <= skb_tailroom(to))
3180 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3181 
3182 	if (hlen) {
3183 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3184 		if (unlikely(ret))
3185 			return ret;
3186 		len -= hlen;
3187 	} else {
3188 		plen = min_t(int, skb_headlen(from), len);
3189 		if (plen) {
3190 			page = virt_to_head_page(from->head);
3191 			offset = from->data - (unsigned char *)page_address(page);
3192 			__skb_fill_page_desc(to, 0, page, offset, plen);
3193 			get_page(page);
3194 			j = 1;
3195 			len -= plen;
3196 		}
3197 	}
3198 
3199 	to->truesize += len + plen;
3200 	to->len += len + plen;
3201 	to->data_len += len + plen;
3202 
3203 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3204 		skb_tx_error(from);
3205 		return -ENOMEM;
3206 	}
3207 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3208 
3209 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3210 		int size;
3211 
3212 		if (!len)
3213 			break;
3214 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3215 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3216 					len);
3217 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3218 		len -= size;
3219 		skb_frag_ref(to, j);
3220 		j++;
3221 	}
3222 	skb_shinfo(to)->nr_frags = j;
3223 
3224 	return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(skb_zerocopy);
3227 
3228 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3229 {
3230 	__wsum csum;
3231 	long csstart;
3232 
3233 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3234 		csstart = skb_checksum_start_offset(skb);
3235 	else
3236 		csstart = skb_headlen(skb);
3237 
3238 	BUG_ON(csstart > skb_headlen(skb));
3239 
3240 	skb_copy_from_linear_data(skb, to, csstart);
3241 
3242 	csum = 0;
3243 	if (csstart != skb->len)
3244 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3245 					      skb->len - csstart);
3246 
3247 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3248 		long csstuff = csstart + skb->csum_offset;
3249 
3250 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3251 	}
3252 }
3253 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3254 
3255 /**
3256  *	skb_dequeue - remove from the head of the queue
3257  *	@list: list to dequeue from
3258  *
3259  *	Remove the head of the list. The list lock is taken so the function
3260  *	may be used safely with other locking list functions. The head item is
3261  *	returned or %NULL if the list is empty.
3262  */
3263 
3264 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3265 {
3266 	unsigned long flags;
3267 	struct sk_buff *result;
3268 
3269 	spin_lock_irqsave(&list->lock, flags);
3270 	result = __skb_dequeue(list);
3271 	spin_unlock_irqrestore(&list->lock, flags);
3272 	return result;
3273 }
3274 EXPORT_SYMBOL(skb_dequeue);
3275 
3276 /**
3277  *	skb_dequeue_tail - remove from the tail of the queue
3278  *	@list: list to dequeue from
3279  *
3280  *	Remove the tail of the list. The list lock is taken so the function
3281  *	may be used safely with other locking list functions. The tail item is
3282  *	returned or %NULL if the list is empty.
3283  */
3284 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3285 {
3286 	unsigned long flags;
3287 	struct sk_buff *result;
3288 
3289 	spin_lock_irqsave(&list->lock, flags);
3290 	result = __skb_dequeue_tail(list);
3291 	spin_unlock_irqrestore(&list->lock, flags);
3292 	return result;
3293 }
3294 EXPORT_SYMBOL(skb_dequeue_tail);
3295 
3296 /**
3297  *	skb_queue_purge - empty a list
3298  *	@list: list to empty
3299  *
3300  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3301  *	the list and one reference dropped. This function takes the list
3302  *	lock and is atomic with respect to other list locking functions.
3303  */
3304 void skb_queue_purge(struct sk_buff_head *list)
3305 {
3306 	struct sk_buff *skb;
3307 	while ((skb = skb_dequeue(list)) != NULL)
3308 		kfree_skb(skb);
3309 }
3310 EXPORT_SYMBOL(skb_queue_purge);
3311 
3312 /**
3313  *	skb_rbtree_purge - empty a skb rbtree
3314  *	@root: root of the rbtree to empty
3315  *	Return value: the sum of truesizes of all purged skbs.
3316  *
3317  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3318  *	the list and one reference dropped. This function does not take
3319  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3320  *	out-of-order queue is protected by the socket lock).
3321  */
3322 unsigned int skb_rbtree_purge(struct rb_root *root)
3323 {
3324 	struct rb_node *p = rb_first(root);
3325 	unsigned int sum = 0;
3326 
3327 	while (p) {
3328 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3329 
3330 		p = rb_next(p);
3331 		rb_erase(&skb->rbnode, root);
3332 		sum += skb->truesize;
3333 		kfree_skb(skb);
3334 	}
3335 	return sum;
3336 }
3337 
3338 /**
3339  *	skb_queue_head - queue a buffer at the list head
3340  *	@list: list to use
3341  *	@newsk: buffer to queue
3342  *
3343  *	Queue a buffer at the start of the list. This function takes the
3344  *	list lock and can be used safely with other locking &sk_buff functions
3345  *	safely.
3346  *
3347  *	A buffer cannot be placed on two lists at the same time.
3348  */
3349 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3350 {
3351 	unsigned long flags;
3352 
3353 	spin_lock_irqsave(&list->lock, flags);
3354 	__skb_queue_head(list, newsk);
3355 	spin_unlock_irqrestore(&list->lock, flags);
3356 }
3357 EXPORT_SYMBOL(skb_queue_head);
3358 
3359 /**
3360  *	skb_queue_tail - queue a buffer at the list tail
3361  *	@list: list to use
3362  *	@newsk: buffer to queue
3363  *
3364  *	Queue a buffer at the tail of the list. This function takes the
3365  *	list lock and can be used safely with other locking &sk_buff functions
3366  *	safely.
3367  *
3368  *	A buffer cannot be placed on two lists at the same time.
3369  */
3370 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3371 {
3372 	unsigned long flags;
3373 
3374 	spin_lock_irqsave(&list->lock, flags);
3375 	__skb_queue_tail(list, newsk);
3376 	spin_unlock_irqrestore(&list->lock, flags);
3377 }
3378 EXPORT_SYMBOL(skb_queue_tail);
3379 
3380 /**
3381  *	skb_unlink	-	remove a buffer from a list
3382  *	@skb: buffer to remove
3383  *	@list: list to use
3384  *
3385  *	Remove a packet from a list. The list locks are taken and this
3386  *	function is atomic with respect to other list locked calls
3387  *
3388  *	You must know what list the SKB is on.
3389  */
3390 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3391 {
3392 	unsigned long flags;
3393 
3394 	spin_lock_irqsave(&list->lock, flags);
3395 	__skb_unlink(skb, list);
3396 	spin_unlock_irqrestore(&list->lock, flags);
3397 }
3398 EXPORT_SYMBOL(skb_unlink);
3399 
3400 /**
3401  *	skb_append	-	append a buffer
3402  *	@old: buffer to insert after
3403  *	@newsk: buffer to insert
3404  *	@list: list to use
3405  *
3406  *	Place a packet after a given packet in a list. The list locks are taken
3407  *	and this function is atomic with respect to other list locked calls.
3408  *	A buffer cannot be placed on two lists at the same time.
3409  */
3410 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3411 {
3412 	unsigned long flags;
3413 
3414 	spin_lock_irqsave(&list->lock, flags);
3415 	__skb_queue_after(list, old, newsk);
3416 	spin_unlock_irqrestore(&list->lock, flags);
3417 }
3418 EXPORT_SYMBOL(skb_append);
3419 
3420 static inline void skb_split_inside_header(struct sk_buff *skb,
3421 					   struct sk_buff* skb1,
3422 					   const u32 len, const int pos)
3423 {
3424 	int i;
3425 
3426 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3427 					 pos - len);
3428 	/* And move data appendix as is. */
3429 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3430 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3431 
3432 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3433 	skb_shinfo(skb)->nr_frags  = 0;
3434 	skb1->data_len		   = skb->data_len;
3435 	skb1->len		   += skb1->data_len;
3436 	skb->data_len		   = 0;
3437 	skb->len		   = len;
3438 	skb_set_tail_pointer(skb, len);
3439 }
3440 
3441 static inline void skb_split_no_header(struct sk_buff *skb,
3442 				       struct sk_buff* skb1,
3443 				       const u32 len, int pos)
3444 {
3445 	int i, k = 0;
3446 	const int nfrags = skb_shinfo(skb)->nr_frags;
3447 
3448 	skb_shinfo(skb)->nr_frags = 0;
3449 	skb1->len		  = skb1->data_len = skb->len - len;
3450 	skb->len		  = len;
3451 	skb->data_len		  = len - pos;
3452 
3453 	for (i = 0; i < nfrags; i++) {
3454 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3455 
3456 		if (pos + size > len) {
3457 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3458 
3459 			if (pos < len) {
3460 				/* Split frag.
3461 				 * We have two variants in this case:
3462 				 * 1. Move all the frag to the second
3463 				 *    part, if it is possible. F.e.
3464 				 *    this approach is mandatory for TUX,
3465 				 *    where splitting is expensive.
3466 				 * 2. Split is accurately. We make this.
3467 				 */
3468 				skb_frag_ref(skb, i);
3469 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3470 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3471 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3472 				skb_shinfo(skb)->nr_frags++;
3473 			}
3474 			k++;
3475 		} else
3476 			skb_shinfo(skb)->nr_frags++;
3477 		pos += size;
3478 	}
3479 	skb_shinfo(skb1)->nr_frags = k;
3480 }
3481 
3482 /**
3483  * skb_split - Split fragmented skb to two parts at length len.
3484  * @skb: the buffer to split
3485  * @skb1: the buffer to receive the second part
3486  * @len: new length for skb
3487  */
3488 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3489 {
3490 	int pos = skb_headlen(skb);
3491 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3492 
3493 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3494 	skb_zerocopy_clone(skb1, skb, 0);
3495 	if (len < pos)	/* Split line is inside header. */
3496 		skb_split_inside_header(skb, skb1, len, pos);
3497 	else		/* Second chunk has no header, nothing to copy. */
3498 		skb_split_no_header(skb, skb1, len, pos);
3499 }
3500 EXPORT_SYMBOL(skb_split);
3501 
3502 /* Shifting from/to a cloned skb is a no-go.
3503  *
3504  * Caller cannot keep skb_shinfo related pointers past calling here!
3505  */
3506 static int skb_prepare_for_shift(struct sk_buff *skb)
3507 {
3508 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3509 }
3510 
3511 /**
3512  * skb_shift - Shifts paged data partially from skb to another
3513  * @tgt: buffer into which tail data gets added
3514  * @skb: buffer from which the paged data comes from
3515  * @shiftlen: shift up to this many bytes
3516  *
3517  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3518  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3519  * It's up to caller to free skb if everything was shifted.
3520  *
3521  * If @tgt runs out of frags, the whole operation is aborted.
3522  *
3523  * Skb cannot include anything else but paged data while tgt is allowed
3524  * to have non-paged data as well.
3525  *
3526  * TODO: full sized shift could be optimized but that would need
3527  * specialized skb free'er to handle frags without up-to-date nr_frags.
3528  */
3529 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3530 {
3531 	int from, to, merge, todo;
3532 	skb_frag_t *fragfrom, *fragto;
3533 
3534 	BUG_ON(shiftlen > skb->len);
3535 
3536 	if (skb_headlen(skb))
3537 		return 0;
3538 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3539 		return 0;
3540 
3541 	todo = shiftlen;
3542 	from = 0;
3543 	to = skb_shinfo(tgt)->nr_frags;
3544 	fragfrom = &skb_shinfo(skb)->frags[from];
3545 
3546 	/* Actual merge is delayed until the point when we know we can
3547 	 * commit all, so that we don't have to undo partial changes
3548 	 */
3549 	if (!to ||
3550 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3551 			      skb_frag_off(fragfrom))) {
3552 		merge = -1;
3553 	} else {
3554 		merge = to - 1;
3555 
3556 		todo -= skb_frag_size(fragfrom);
3557 		if (todo < 0) {
3558 			if (skb_prepare_for_shift(skb) ||
3559 			    skb_prepare_for_shift(tgt))
3560 				return 0;
3561 
3562 			/* All previous frag pointers might be stale! */
3563 			fragfrom = &skb_shinfo(skb)->frags[from];
3564 			fragto = &skb_shinfo(tgt)->frags[merge];
3565 
3566 			skb_frag_size_add(fragto, shiftlen);
3567 			skb_frag_size_sub(fragfrom, shiftlen);
3568 			skb_frag_off_add(fragfrom, shiftlen);
3569 
3570 			goto onlymerged;
3571 		}
3572 
3573 		from++;
3574 	}
3575 
3576 	/* Skip full, not-fitting skb to avoid expensive operations */
3577 	if ((shiftlen == skb->len) &&
3578 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3579 		return 0;
3580 
3581 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3582 		return 0;
3583 
3584 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3585 		if (to == MAX_SKB_FRAGS)
3586 			return 0;
3587 
3588 		fragfrom = &skb_shinfo(skb)->frags[from];
3589 		fragto = &skb_shinfo(tgt)->frags[to];
3590 
3591 		if (todo >= skb_frag_size(fragfrom)) {
3592 			*fragto = *fragfrom;
3593 			todo -= skb_frag_size(fragfrom);
3594 			from++;
3595 			to++;
3596 
3597 		} else {
3598 			__skb_frag_ref(fragfrom);
3599 			skb_frag_page_copy(fragto, fragfrom);
3600 			skb_frag_off_copy(fragto, fragfrom);
3601 			skb_frag_size_set(fragto, todo);
3602 
3603 			skb_frag_off_add(fragfrom, todo);
3604 			skb_frag_size_sub(fragfrom, todo);
3605 			todo = 0;
3606 
3607 			to++;
3608 			break;
3609 		}
3610 	}
3611 
3612 	/* Ready to "commit" this state change to tgt */
3613 	skb_shinfo(tgt)->nr_frags = to;
3614 
3615 	if (merge >= 0) {
3616 		fragfrom = &skb_shinfo(skb)->frags[0];
3617 		fragto = &skb_shinfo(tgt)->frags[merge];
3618 
3619 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3620 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3621 	}
3622 
3623 	/* Reposition in the original skb */
3624 	to = 0;
3625 	while (from < skb_shinfo(skb)->nr_frags)
3626 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3627 	skb_shinfo(skb)->nr_frags = to;
3628 
3629 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3630 
3631 onlymerged:
3632 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3633 	 * the other hand might need it if it needs to be resent
3634 	 */
3635 	tgt->ip_summed = CHECKSUM_PARTIAL;
3636 	skb->ip_summed = CHECKSUM_PARTIAL;
3637 
3638 	/* Yak, is it really working this way? Some helper please? */
3639 	skb->len -= shiftlen;
3640 	skb->data_len -= shiftlen;
3641 	skb->truesize -= shiftlen;
3642 	tgt->len += shiftlen;
3643 	tgt->data_len += shiftlen;
3644 	tgt->truesize += shiftlen;
3645 
3646 	return shiftlen;
3647 }
3648 
3649 /**
3650  * skb_prepare_seq_read - Prepare a sequential read of skb data
3651  * @skb: the buffer to read
3652  * @from: lower offset of data to be read
3653  * @to: upper offset of data to be read
3654  * @st: state variable
3655  *
3656  * Initializes the specified state variable. Must be called before
3657  * invoking skb_seq_read() for the first time.
3658  */
3659 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3660 			  unsigned int to, struct skb_seq_state *st)
3661 {
3662 	st->lower_offset = from;
3663 	st->upper_offset = to;
3664 	st->root_skb = st->cur_skb = skb;
3665 	st->frag_idx = st->stepped_offset = 0;
3666 	st->frag_data = NULL;
3667 	st->frag_off = 0;
3668 }
3669 EXPORT_SYMBOL(skb_prepare_seq_read);
3670 
3671 /**
3672  * skb_seq_read - Sequentially read skb data
3673  * @consumed: number of bytes consumed by the caller so far
3674  * @data: destination pointer for data to be returned
3675  * @st: state variable
3676  *
3677  * Reads a block of skb data at @consumed relative to the
3678  * lower offset specified to skb_prepare_seq_read(). Assigns
3679  * the head of the data block to @data and returns the length
3680  * of the block or 0 if the end of the skb data or the upper
3681  * offset has been reached.
3682  *
3683  * The caller is not required to consume all of the data
3684  * returned, i.e. @consumed is typically set to the number
3685  * of bytes already consumed and the next call to
3686  * skb_seq_read() will return the remaining part of the block.
3687  *
3688  * Note 1: The size of each block of data returned can be arbitrary,
3689  *       this limitation is the cost for zerocopy sequential
3690  *       reads of potentially non linear data.
3691  *
3692  * Note 2: Fragment lists within fragments are not implemented
3693  *       at the moment, state->root_skb could be replaced with
3694  *       a stack for this purpose.
3695  */
3696 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3697 			  struct skb_seq_state *st)
3698 {
3699 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3700 	skb_frag_t *frag;
3701 
3702 	if (unlikely(abs_offset >= st->upper_offset)) {
3703 		if (st->frag_data) {
3704 			kunmap_atomic(st->frag_data);
3705 			st->frag_data = NULL;
3706 		}
3707 		return 0;
3708 	}
3709 
3710 next_skb:
3711 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3712 
3713 	if (abs_offset < block_limit && !st->frag_data) {
3714 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3715 		return block_limit - abs_offset;
3716 	}
3717 
3718 	if (st->frag_idx == 0 && !st->frag_data)
3719 		st->stepped_offset += skb_headlen(st->cur_skb);
3720 
3721 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3722 		unsigned int pg_idx, pg_off, pg_sz;
3723 
3724 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3725 
3726 		pg_idx = 0;
3727 		pg_off = skb_frag_off(frag);
3728 		pg_sz = skb_frag_size(frag);
3729 
3730 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3731 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3732 			pg_off = offset_in_page(pg_off + st->frag_off);
3733 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3734 						    PAGE_SIZE - pg_off);
3735 		}
3736 
3737 		block_limit = pg_sz + st->stepped_offset;
3738 		if (abs_offset < block_limit) {
3739 			if (!st->frag_data)
3740 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3741 
3742 			*data = (u8 *)st->frag_data + pg_off +
3743 				(abs_offset - st->stepped_offset);
3744 
3745 			return block_limit - abs_offset;
3746 		}
3747 
3748 		if (st->frag_data) {
3749 			kunmap_atomic(st->frag_data);
3750 			st->frag_data = NULL;
3751 		}
3752 
3753 		st->stepped_offset += pg_sz;
3754 		st->frag_off += pg_sz;
3755 		if (st->frag_off == skb_frag_size(frag)) {
3756 			st->frag_off = 0;
3757 			st->frag_idx++;
3758 		}
3759 	}
3760 
3761 	if (st->frag_data) {
3762 		kunmap_atomic(st->frag_data);
3763 		st->frag_data = NULL;
3764 	}
3765 
3766 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3767 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3768 		st->frag_idx = 0;
3769 		goto next_skb;
3770 	} else if (st->cur_skb->next) {
3771 		st->cur_skb = st->cur_skb->next;
3772 		st->frag_idx = 0;
3773 		goto next_skb;
3774 	}
3775 
3776 	return 0;
3777 }
3778 EXPORT_SYMBOL(skb_seq_read);
3779 
3780 /**
3781  * skb_abort_seq_read - Abort a sequential read of skb data
3782  * @st: state variable
3783  *
3784  * Must be called if skb_seq_read() was not called until it
3785  * returned 0.
3786  */
3787 void skb_abort_seq_read(struct skb_seq_state *st)
3788 {
3789 	if (st->frag_data)
3790 		kunmap_atomic(st->frag_data);
3791 }
3792 EXPORT_SYMBOL(skb_abort_seq_read);
3793 
3794 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3795 
3796 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3797 					  struct ts_config *conf,
3798 					  struct ts_state *state)
3799 {
3800 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3801 }
3802 
3803 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3804 {
3805 	skb_abort_seq_read(TS_SKB_CB(state));
3806 }
3807 
3808 /**
3809  * skb_find_text - Find a text pattern in skb data
3810  * @skb: the buffer to look in
3811  * @from: search offset
3812  * @to: search limit
3813  * @config: textsearch configuration
3814  *
3815  * Finds a pattern in the skb data according to the specified
3816  * textsearch configuration. Use textsearch_next() to retrieve
3817  * subsequent occurrences of the pattern. Returns the offset
3818  * to the first occurrence or UINT_MAX if no match was found.
3819  */
3820 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3821 			   unsigned int to, struct ts_config *config)
3822 {
3823 	struct ts_state state;
3824 	unsigned int ret;
3825 
3826 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3827 
3828 	config->get_next_block = skb_ts_get_next_block;
3829 	config->finish = skb_ts_finish;
3830 
3831 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3832 
3833 	ret = textsearch_find(config, &state);
3834 	return (ret <= to - from ? ret : UINT_MAX);
3835 }
3836 EXPORT_SYMBOL(skb_find_text);
3837 
3838 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3839 			 int offset, size_t size)
3840 {
3841 	int i = skb_shinfo(skb)->nr_frags;
3842 
3843 	if (skb_can_coalesce(skb, i, page, offset)) {
3844 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3845 	} else if (i < MAX_SKB_FRAGS) {
3846 		get_page(page);
3847 		skb_fill_page_desc(skb, i, page, offset, size);
3848 	} else {
3849 		return -EMSGSIZE;
3850 	}
3851 
3852 	return 0;
3853 }
3854 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3855 
3856 /**
3857  *	skb_pull_rcsum - pull skb and update receive checksum
3858  *	@skb: buffer to update
3859  *	@len: length of data pulled
3860  *
3861  *	This function performs an skb_pull on the packet and updates
3862  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3863  *	receive path processing instead of skb_pull unless you know
3864  *	that the checksum difference is zero (e.g., a valid IP header)
3865  *	or you are setting ip_summed to CHECKSUM_NONE.
3866  */
3867 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3868 {
3869 	unsigned char *data = skb->data;
3870 
3871 	BUG_ON(len > skb->len);
3872 	__skb_pull(skb, len);
3873 	skb_postpull_rcsum(skb, data, len);
3874 	return skb->data;
3875 }
3876 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3877 
3878 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3879 {
3880 	skb_frag_t head_frag;
3881 	struct page *page;
3882 
3883 	page = virt_to_head_page(frag_skb->head);
3884 	__skb_frag_set_page(&head_frag, page);
3885 	skb_frag_off_set(&head_frag, frag_skb->data -
3886 			 (unsigned char *)page_address(page));
3887 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3888 	return head_frag;
3889 }
3890 
3891 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3892 				 netdev_features_t features,
3893 				 unsigned int offset)
3894 {
3895 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3896 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3897 	unsigned int delta_truesize = 0;
3898 	unsigned int delta_len = 0;
3899 	struct sk_buff *tail = NULL;
3900 	struct sk_buff *nskb, *tmp;
3901 	int err;
3902 
3903 	skb_push(skb, -skb_network_offset(skb) + offset);
3904 
3905 	skb_shinfo(skb)->frag_list = NULL;
3906 
3907 	do {
3908 		nskb = list_skb;
3909 		list_skb = list_skb->next;
3910 
3911 		err = 0;
3912 		delta_truesize += nskb->truesize;
3913 		if (skb_shared(nskb)) {
3914 			tmp = skb_clone(nskb, GFP_ATOMIC);
3915 			if (tmp) {
3916 				consume_skb(nskb);
3917 				nskb = tmp;
3918 				err = skb_unclone(nskb, GFP_ATOMIC);
3919 			} else {
3920 				err = -ENOMEM;
3921 			}
3922 		}
3923 
3924 		if (!tail)
3925 			skb->next = nskb;
3926 		else
3927 			tail->next = nskb;
3928 
3929 		if (unlikely(err)) {
3930 			nskb->next = list_skb;
3931 			goto err_linearize;
3932 		}
3933 
3934 		tail = nskb;
3935 
3936 		delta_len += nskb->len;
3937 
3938 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3939 
3940 		skb_release_head_state(nskb);
3941 		__copy_skb_header(nskb, skb);
3942 
3943 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3944 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3945 						 nskb->data - tnl_hlen,
3946 						 offset + tnl_hlen);
3947 
3948 		if (skb_needs_linearize(nskb, features) &&
3949 		    __skb_linearize(nskb))
3950 			goto err_linearize;
3951 
3952 	} while (list_skb);
3953 
3954 	skb->truesize = skb->truesize - delta_truesize;
3955 	skb->data_len = skb->data_len - delta_len;
3956 	skb->len = skb->len - delta_len;
3957 
3958 	skb_gso_reset(skb);
3959 
3960 	skb->prev = tail;
3961 
3962 	if (skb_needs_linearize(skb, features) &&
3963 	    __skb_linearize(skb))
3964 		goto err_linearize;
3965 
3966 	skb_get(skb);
3967 
3968 	return skb;
3969 
3970 err_linearize:
3971 	kfree_skb_list(skb->next);
3972 	skb->next = NULL;
3973 	return ERR_PTR(-ENOMEM);
3974 }
3975 EXPORT_SYMBOL_GPL(skb_segment_list);
3976 
3977 /**
3978  *	skb_segment - Perform protocol segmentation on skb.
3979  *	@head_skb: buffer to segment
3980  *	@features: features for the output path (see dev->features)
3981  *
3982  *	This function performs segmentation on the given skb.  It returns
3983  *	a pointer to the first in a list of new skbs for the segments.
3984  *	In case of error it returns ERR_PTR(err).
3985  */
3986 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3987 			    netdev_features_t features)
3988 {
3989 	struct sk_buff *segs = NULL;
3990 	struct sk_buff *tail = NULL;
3991 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3992 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3993 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3994 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3995 	struct sk_buff *frag_skb = head_skb;
3996 	unsigned int offset = doffset;
3997 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3998 	unsigned int partial_segs = 0;
3999 	unsigned int headroom;
4000 	unsigned int len = head_skb->len;
4001 	__be16 proto;
4002 	bool csum, sg;
4003 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4004 	int err = -ENOMEM;
4005 	int i = 0;
4006 	int pos;
4007 
4008 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4009 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4010 		/* gso_size is untrusted, and we have a frag_list with a linear
4011 		 * non head_frag head.
4012 		 *
4013 		 * (we assume checking the first list_skb member suffices;
4014 		 * i.e if either of the list_skb members have non head_frag
4015 		 * head, then the first one has too).
4016 		 *
4017 		 * If head_skb's headlen does not fit requested gso_size, it
4018 		 * means that the frag_list members do NOT terminate on exact
4019 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4020 		 * sharing. Therefore we must fallback to copying the frag_list
4021 		 * skbs; we do so by disabling SG.
4022 		 */
4023 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4024 			features &= ~NETIF_F_SG;
4025 	}
4026 
4027 	__skb_push(head_skb, doffset);
4028 	proto = skb_network_protocol(head_skb, NULL);
4029 	if (unlikely(!proto))
4030 		return ERR_PTR(-EINVAL);
4031 
4032 	sg = !!(features & NETIF_F_SG);
4033 	csum = !!can_checksum_protocol(features, proto);
4034 
4035 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4036 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4037 			struct sk_buff *iter;
4038 			unsigned int frag_len;
4039 
4040 			if (!list_skb ||
4041 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4042 				goto normal;
4043 
4044 			/* If we get here then all the required
4045 			 * GSO features except frag_list are supported.
4046 			 * Try to split the SKB to multiple GSO SKBs
4047 			 * with no frag_list.
4048 			 * Currently we can do that only when the buffers don't
4049 			 * have a linear part and all the buffers except
4050 			 * the last are of the same length.
4051 			 */
4052 			frag_len = list_skb->len;
4053 			skb_walk_frags(head_skb, iter) {
4054 				if (frag_len != iter->len && iter->next)
4055 					goto normal;
4056 				if (skb_headlen(iter) && !iter->head_frag)
4057 					goto normal;
4058 
4059 				len -= iter->len;
4060 			}
4061 
4062 			if (len != frag_len)
4063 				goto normal;
4064 		}
4065 
4066 		/* GSO partial only requires that we trim off any excess that
4067 		 * doesn't fit into an MSS sized block, so take care of that
4068 		 * now.
4069 		 */
4070 		partial_segs = len / mss;
4071 		if (partial_segs > 1)
4072 			mss *= partial_segs;
4073 		else
4074 			partial_segs = 0;
4075 	}
4076 
4077 normal:
4078 	headroom = skb_headroom(head_skb);
4079 	pos = skb_headlen(head_skb);
4080 
4081 	do {
4082 		struct sk_buff *nskb;
4083 		skb_frag_t *nskb_frag;
4084 		int hsize;
4085 		int size;
4086 
4087 		if (unlikely(mss == GSO_BY_FRAGS)) {
4088 			len = list_skb->len;
4089 		} else {
4090 			len = head_skb->len - offset;
4091 			if (len > mss)
4092 				len = mss;
4093 		}
4094 
4095 		hsize = skb_headlen(head_skb) - offset;
4096 
4097 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4098 		    (skb_headlen(list_skb) == len || sg)) {
4099 			BUG_ON(skb_headlen(list_skb) > len);
4100 
4101 			i = 0;
4102 			nfrags = skb_shinfo(list_skb)->nr_frags;
4103 			frag = skb_shinfo(list_skb)->frags;
4104 			frag_skb = list_skb;
4105 			pos += skb_headlen(list_skb);
4106 
4107 			while (pos < offset + len) {
4108 				BUG_ON(i >= nfrags);
4109 
4110 				size = skb_frag_size(frag);
4111 				if (pos + size > offset + len)
4112 					break;
4113 
4114 				i++;
4115 				pos += size;
4116 				frag++;
4117 			}
4118 
4119 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4120 			list_skb = list_skb->next;
4121 
4122 			if (unlikely(!nskb))
4123 				goto err;
4124 
4125 			if (unlikely(pskb_trim(nskb, len))) {
4126 				kfree_skb(nskb);
4127 				goto err;
4128 			}
4129 
4130 			hsize = skb_end_offset(nskb);
4131 			if (skb_cow_head(nskb, doffset + headroom)) {
4132 				kfree_skb(nskb);
4133 				goto err;
4134 			}
4135 
4136 			nskb->truesize += skb_end_offset(nskb) - hsize;
4137 			skb_release_head_state(nskb);
4138 			__skb_push(nskb, doffset);
4139 		} else {
4140 			if (hsize < 0)
4141 				hsize = 0;
4142 			if (hsize > len || !sg)
4143 				hsize = len;
4144 
4145 			nskb = __alloc_skb(hsize + doffset + headroom,
4146 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4147 					   NUMA_NO_NODE);
4148 
4149 			if (unlikely(!nskb))
4150 				goto err;
4151 
4152 			skb_reserve(nskb, headroom);
4153 			__skb_put(nskb, doffset);
4154 		}
4155 
4156 		if (segs)
4157 			tail->next = nskb;
4158 		else
4159 			segs = nskb;
4160 		tail = nskb;
4161 
4162 		__copy_skb_header(nskb, head_skb);
4163 
4164 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4165 		skb_reset_mac_len(nskb);
4166 
4167 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4168 						 nskb->data - tnl_hlen,
4169 						 doffset + tnl_hlen);
4170 
4171 		if (nskb->len == len + doffset)
4172 			goto perform_csum_check;
4173 
4174 		if (!sg) {
4175 			if (!csum) {
4176 				if (!nskb->remcsum_offload)
4177 					nskb->ip_summed = CHECKSUM_NONE;
4178 				SKB_GSO_CB(nskb)->csum =
4179 					skb_copy_and_csum_bits(head_skb, offset,
4180 							       skb_put(nskb,
4181 								       len),
4182 							       len);
4183 				SKB_GSO_CB(nskb)->csum_start =
4184 					skb_headroom(nskb) + doffset;
4185 			} else {
4186 				skb_copy_bits(head_skb, offset,
4187 					      skb_put(nskb, len),
4188 					      len);
4189 			}
4190 			continue;
4191 		}
4192 
4193 		nskb_frag = skb_shinfo(nskb)->frags;
4194 
4195 		skb_copy_from_linear_data_offset(head_skb, offset,
4196 						 skb_put(nskb, hsize), hsize);
4197 
4198 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4199 					   SKBFL_SHARED_FRAG;
4200 
4201 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4202 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4203 			goto err;
4204 
4205 		while (pos < offset + len) {
4206 			if (i >= nfrags) {
4207 				i = 0;
4208 				nfrags = skb_shinfo(list_skb)->nr_frags;
4209 				frag = skb_shinfo(list_skb)->frags;
4210 				frag_skb = list_skb;
4211 				if (!skb_headlen(list_skb)) {
4212 					BUG_ON(!nfrags);
4213 				} else {
4214 					BUG_ON(!list_skb->head_frag);
4215 
4216 					/* to make room for head_frag. */
4217 					i--;
4218 					frag--;
4219 				}
4220 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4221 				    skb_zerocopy_clone(nskb, frag_skb,
4222 						       GFP_ATOMIC))
4223 					goto err;
4224 
4225 				list_skb = list_skb->next;
4226 			}
4227 
4228 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4229 				     MAX_SKB_FRAGS)) {
4230 				net_warn_ratelimited(
4231 					"skb_segment: too many frags: %u %u\n",
4232 					pos, mss);
4233 				err = -EINVAL;
4234 				goto err;
4235 			}
4236 
4237 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4238 			__skb_frag_ref(nskb_frag);
4239 			size = skb_frag_size(nskb_frag);
4240 
4241 			if (pos < offset) {
4242 				skb_frag_off_add(nskb_frag, offset - pos);
4243 				skb_frag_size_sub(nskb_frag, offset - pos);
4244 			}
4245 
4246 			skb_shinfo(nskb)->nr_frags++;
4247 
4248 			if (pos + size <= offset + len) {
4249 				i++;
4250 				frag++;
4251 				pos += size;
4252 			} else {
4253 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4254 				goto skip_fraglist;
4255 			}
4256 
4257 			nskb_frag++;
4258 		}
4259 
4260 skip_fraglist:
4261 		nskb->data_len = len - hsize;
4262 		nskb->len += nskb->data_len;
4263 		nskb->truesize += nskb->data_len;
4264 
4265 perform_csum_check:
4266 		if (!csum) {
4267 			if (skb_has_shared_frag(nskb) &&
4268 			    __skb_linearize(nskb))
4269 				goto err;
4270 
4271 			if (!nskb->remcsum_offload)
4272 				nskb->ip_summed = CHECKSUM_NONE;
4273 			SKB_GSO_CB(nskb)->csum =
4274 				skb_checksum(nskb, doffset,
4275 					     nskb->len - doffset, 0);
4276 			SKB_GSO_CB(nskb)->csum_start =
4277 				skb_headroom(nskb) + doffset;
4278 		}
4279 	} while ((offset += len) < head_skb->len);
4280 
4281 	/* Some callers want to get the end of the list.
4282 	 * Put it in segs->prev to avoid walking the list.
4283 	 * (see validate_xmit_skb_list() for example)
4284 	 */
4285 	segs->prev = tail;
4286 
4287 	if (partial_segs) {
4288 		struct sk_buff *iter;
4289 		int type = skb_shinfo(head_skb)->gso_type;
4290 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4291 
4292 		/* Update type to add partial and then remove dodgy if set */
4293 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4294 		type &= ~SKB_GSO_DODGY;
4295 
4296 		/* Update GSO info and prepare to start updating headers on
4297 		 * our way back down the stack of protocols.
4298 		 */
4299 		for (iter = segs; iter; iter = iter->next) {
4300 			skb_shinfo(iter)->gso_size = gso_size;
4301 			skb_shinfo(iter)->gso_segs = partial_segs;
4302 			skb_shinfo(iter)->gso_type = type;
4303 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4304 		}
4305 
4306 		if (tail->len - doffset <= gso_size)
4307 			skb_shinfo(tail)->gso_size = 0;
4308 		else if (tail != segs)
4309 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4310 	}
4311 
4312 	/* Following permits correct backpressure, for protocols
4313 	 * using skb_set_owner_w().
4314 	 * Idea is to tranfert ownership from head_skb to last segment.
4315 	 */
4316 	if (head_skb->destructor == sock_wfree) {
4317 		swap(tail->truesize, head_skb->truesize);
4318 		swap(tail->destructor, head_skb->destructor);
4319 		swap(tail->sk, head_skb->sk);
4320 	}
4321 	return segs;
4322 
4323 err:
4324 	kfree_skb_list(segs);
4325 	return ERR_PTR(err);
4326 }
4327 EXPORT_SYMBOL_GPL(skb_segment);
4328 
4329 #ifdef CONFIG_SKB_EXTENSIONS
4330 #define SKB_EXT_ALIGN_VALUE	8
4331 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4332 
4333 static const u8 skb_ext_type_len[] = {
4334 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4335 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4336 #endif
4337 #ifdef CONFIG_XFRM
4338 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4339 #endif
4340 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4341 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4342 #endif
4343 #if IS_ENABLED(CONFIG_MPTCP)
4344 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4345 #endif
4346 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4347 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4348 #endif
4349 };
4350 
4351 static __always_inline unsigned int skb_ext_total_length(void)
4352 {
4353 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4354 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4355 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4356 #endif
4357 #ifdef CONFIG_XFRM
4358 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4359 #endif
4360 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4361 		skb_ext_type_len[TC_SKB_EXT] +
4362 #endif
4363 #if IS_ENABLED(CONFIG_MPTCP)
4364 		skb_ext_type_len[SKB_EXT_MPTCP] +
4365 #endif
4366 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4367 		skb_ext_type_len[SKB_EXT_MCTP] +
4368 #endif
4369 		0;
4370 }
4371 
4372 static void skb_extensions_init(void)
4373 {
4374 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4375 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4376 
4377 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4378 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4379 					     0,
4380 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4381 					     NULL);
4382 }
4383 #else
4384 static void skb_extensions_init(void) {}
4385 #endif
4386 
4387 void __init skb_init(void)
4388 {
4389 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4390 					      sizeof(struct sk_buff),
4391 					      0,
4392 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4393 					      offsetof(struct sk_buff, cb),
4394 					      sizeof_field(struct sk_buff, cb),
4395 					      NULL);
4396 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4397 						sizeof(struct sk_buff_fclones),
4398 						0,
4399 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4400 						NULL);
4401 	skb_extensions_init();
4402 }
4403 
4404 static int
4405 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4406 	       unsigned int recursion_level)
4407 {
4408 	int start = skb_headlen(skb);
4409 	int i, copy = start - offset;
4410 	struct sk_buff *frag_iter;
4411 	int elt = 0;
4412 
4413 	if (unlikely(recursion_level >= 24))
4414 		return -EMSGSIZE;
4415 
4416 	if (copy > 0) {
4417 		if (copy > len)
4418 			copy = len;
4419 		sg_set_buf(sg, skb->data + offset, copy);
4420 		elt++;
4421 		if ((len -= copy) == 0)
4422 			return elt;
4423 		offset += copy;
4424 	}
4425 
4426 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4427 		int end;
4428 
4429 		WARN_ON(start > offset + len);
4430 
4431 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4432 		if ((copy = end - offset) > 0) {
4433 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4434 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4435 				return -EMSGSIZE;
4436 
4437 			if (copy > len)
4438 				copy = len;
4439 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4440 				    skb_frag_off(frag) + offset - start);
4441 			elt++;
4442 			if (!(len -= copy))
4443 				return elt;
4444 			offset += copy;
4445 		}
4446 		start = end;
4447 	}
4448 
4449 	skb_walk_frags(skb, frag_iter) {
4450 		int end, ret;
4451 
4452 		WARN_ON(start > offset + len);
4453 
4454 		end = start + frag_iter->len;
4455 		if ((copy = end - offset) > 0) {
4456 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4457 				return -EMSGSIZE;
4458 
4459 			if (copy > len)
4460 				copy = len;
4461 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4462 					      copy, recursion_level + 1);
4463 			if (unlikely(ret < 0))
4464 				return ret;
4465 			elt += ret;
4466 			if ((len -= copy) == 0)
4467 				return elt;
4468 			offset += copy;
4469 		}
4470 		start = end;
4471 	}
4472 	BUG_ON(len);
4473 	return elt;
4474 }
4475 
4476 /**
4477  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4478  *	@skb: Socket buffer containing the buffers to be mapped
4479  *	@sg: The scatter-gather list to map into
4480  *	@offset: The offset into the buffer's contents to start mapping
4481  *	@len: Length of buffer space to be mapped
4482  *
4483  *	Fill the specified scatter-gather list with mappings/pointers into a
4484  *	region of the buffer space attached to a socket buffer. Returns either
4485  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4486  *	could not fit.
4487  */
4488 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4489 {
4490 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4491 
4492 	if (nsg <= 0)
4493 		return nsg;
4494 
4495 	sg_mark_end(&sg[nsg - 1]);
4496 
4497 	return nsg;
4498 }
4499 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4500 
4501 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4502  * sglist without mark the sg which contain last skb data as the end.
4503  * So the caller can mannipulate sg list as will when padding new data after
4504  * the first call without calling sg_unmark_end to expend sg list.
4505  *
4506  * Scenario to use skb_to_sgvec_nomark:
4507  * 1. sg_init_table
4508  * 2. skb_to_sgvec_nomark(payload1)
4509  * 3. skb_to_sgvec_nomark(payload2)
4510  *
4511  * This is equivalent to:
4512  * 1. sg_init_table
4513  * 2. skb_to_sgvec(payload1)
4514  * 3. sg_unmark_end
4515  * 4. skb_to_sgvec(payload2)
4516  *
4517  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4518  * is more preferable.
4519  */
4520 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4521 			int offset, int len)
4522 {
4523 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4524 }
4525 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4526 
4527 
4528 
4529 /**
4530  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4531  *	@skb: The socket buffer to check.
4532  *	@tailbits: Amount of trailing space to be added
4533  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4534  *
4535  *	Make sure that the data buffers attached to a socket buffer are
4536  *	writable. If they are not, private copies are made of the data buffers
4537  *	and the socket buffer is set to use these instead.
4538  *
4539  *	If @tailbits is given, make sure that there is space to write @tailbits
4540  *	bytes of data beyond current end of socket buffer.  @trailer will be
4541  *	set to point to the skb in which this space begins.
4542  *
4543  *	The number of scatterlist elements required to completely map the
4544  *	COW'd and extended socket buffer will be returned.
4545  */
4546 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4547 {
4548 	int copyflag;
4549 	int elt;
4550 	struct sk_buff *skb1, **skb_p;
4551 
4552 	/* If skb is cloned or its head is paged, reallocate
4553 	 * head pulling out all the pages (pages are considered not writable
4554 	 * at the moment even if they are anonymous).
4555 	 */
4556 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4557 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4558 		return -ENOMEM;
4559 
4560 	/* Easy case. Most of packets will go this way. */
4561 	if (!skb_has_frag_list(skb)) {
4562 		/* A little of trouble, not enough of space for trailer.
4563 		 * This should not happen, when stack is tuned to generate
4564 		 * good frames. OK, on miss we reallocate and reserve even more
4565 		 * space, 128 bytes is fair. */
4566 
4567 		if (skb_tailroom(skb) < tailbits &&
4568 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4569 			return -ENOMEM;
4570 
4571 		/* Voila! */
4572 		*trailer = skb;
4573 		return 1;
4574 	}
4575 
4576 	/* Misery. We are in troubles, going to mincer fragments... */
4577 
4578 	elt = 1;
4579 	skb_p = &skb_shinfo(skb)->frag_list;
4580 	copyflag = 0;
4581 
4582 	while ((skb1 = *skb_p) != NULL) {
4583 		int ntail = 0;
4584 
4585 		/* The fragment is partially pulled by someone,
4586 		 * this can happen on input. Copy it and everything
4587 		 * after it. */
4588 
4589 		if (skb_shared(skb1))
4590 			copyflag = 1;
4591 
4592 		/* If the skb is the last, worry about trailer. */
4593 
4594 		if (skb1->next == NULL && tailbits) {
4595 			if (skb_shinfo(skb1)->nr_frags ||
4596 			    skb_has_frag_list(skb1) ||
4597 			    skb_tailroom(skb1) < tailbits)
4598 				ntail = tailbits + 128;
4599 		}
4600 
4601 		if (copyflag ||
4602 		    skb_cloned(skb1) ||
4603 		    ntail ||
4604 		    skb_shinfo(skb1)->nr_frags ||
4605 		    skb_has_frag_list(skb1)) {
4606 			struct sk_buff *skb2;
4607 
4608 			/* Fuck, we are miserable poor guys... */
4609 			if (ntail == 0)
4610 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4611 			else
4612 				skb2 = skb_copy_expand(skb1,
4613 						       skb_headroom(skb1),
4614 						       ntail,
4615 						       GFP_ATOMIC);
4616 			if (unlikely(skb2 == NULL))
4617 				return -ENOMEM;
4618 
4619 			if (skb1->sk)
4620 				skb_set_owner_w(skb2, skb1->sk);
4621 
4622 			/* Looking around. Are we still alive?
4623 			 * OK, link new skb, drop old one */
4624 
4625 			skb2->next = skb1->next;
4626 			*skb_p = skb2;
4627 			kfree_skb(skb1);
4628 			skb1 = skb2;
4629 		}
4630 		elt++;
4631 		*trailer = skb1;
4632 		skb_p = &skb1->next;
4633 	}
4634 
4635 	return elt;
4636 }
4637 EXPORT_SYMBOL_GPL(skb_cow_data);
4638 
4639 static void sock_rmem_free(struct sk_buff *skb)
4640 {
4641 	struct sock *sk = skb->sk;
4642 
4643 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4644 }
4645 
4646 static void skb_set_err_queue(struct sk_buff *skb)
4647 {
4648 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4649 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4650 	 */
4651 	skb->pkt_type = PACKET_OUTGOING;
4652 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4653 }
4654 
4655 /*
4656  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4657  */
4658 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4659 {
4660 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4661 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4662 		return -ENOMEM;
4663 
4664 	skb_orphan(skb);
4665 	skb->sk = sk;
4666 	skb->destructor = sock_rmem_free;
4667 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4668 	skb_set_err_queue(skb);
4669 
4670 	/* before exiting rcu section, make sure dst is refcounted */
4671 	skb_dst_force(skb);
4672 
4673 	skb_queue_tail(&sk->sk_error_queue, skb);
4674 	if (!sock_flag(sk, SOCK_DEAD))
4675 		sk_error_report(sk);
4676 	return 0;
4677 }
4678 EXPORT_SYMBOL(sock_queue_err_skb);
4679 
4680 static bool is_icmp_err_skb(const struct sk_buff *skb)
4681 {
4682 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4683 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4684 }
4685 
4686 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4687 {
4688 	struct sk_buff_head *q = &sk->sk_error_queue;
4689 	struct sk_buff *skb, *skb_next = NULL;
4690 	bool icmp_next = false;
4691 	unsigned long flags;
4692 
4693 	spin_lock_irqsave(&q->lock, flags);
4694 	skb = __skb_dequeue(q);
4695 	if (skb && (skb_next = skb_peek(q))) {
4696 		icmp_next = is_icmp_err_skb(skb_next);
4697 		if (icmp_next)
4698 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4699 	}
4700 	spin_unlock_irqrestore(&q->lock, flags);
4701 
4702 	if (is_icmp_err_skb(skb) && !icmp_next)
4703 		sk->sk_err = 0;
4704 
4705 	if (skb_next)
4706 		sk_error_report(sk);
4707 
4708 	return skb;
4709 }
4710 EXPORT_SYMBOL(sock_dequeue_err_skb);
4711 
4712 /**
4713  * skb_clone_sk - create clone of skb, and take reference to socket
4714  * @skb: the skb to clone
4715  *
4716  * This function creates a clone of a buffer that holds a reference on
4717  * sk_refcnt.  Buffers created via this function are meant to be
4718  * returned using sock_queue_err_skb, or free via kfree_skb.
4719  *
4720  * When passing buffers allocated with this function to sock_queue_err_skb
4721  * it is necessary to wrap the call with sock_hold/sock_put in order to
4722  * prevent the socket from being released prior to being enqueued on
4723  * the sk_error_queue.
4724  */
4725 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4726 {
4727 	struct sock *sk = skb->sk;
4728 	struct sk_buff *clone;
4729 
4730 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4731 		return NULL;
4732 
4733 	clone = skb_clone(skb, GFP_ATOMIC);
4734 	if (!clone) {
4735 		sock_put(sk);
4736 		return NULL;
4737 	}
4738 
4739 	clone->sk = sk;
4740 	clone->destructor = sock_efree;
4741 
4742 	return clone;
4743 }
4744 EXPORT_SYMBOL(skb_clone_sk);
4745 
4746 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4747 					struct sock *sk,
4748 					int tstype,
4749 					bool opt_stats)
4750 {
4751 	struct sock_exterr_skb *serr;
4752 	int err;
4753 
4754 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4755 
4756 	serr = SKB_EXT_ERR(skb);
4757 	memset(serr, 0, sizeof(*serr));
4758 	serr->ee.ee_errno = ENOMSG;
4759 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4760 	serr->ee.ee_info = tstype;
4761 	serr->opt_stats = opt_stats;
4762 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4763 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4764 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4765 		if (sk_is_tcp(sk))
4766 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4767 	}
4768 
4769 	err = sock_queue_err_skb(sk, skb);
4770 
4771 	if (err)
4772 		kfree_skb(skb);
4773 }
4774 
4775 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4776 {
4777 	bool ret;
4778 
4779 	if (likely(sysctl_tstamp_allow_data || tsonly))
4780 		return true;
4781 
4782 	read_lock_bh(&sk->sk_callback_lock);
4783 	ret = sk->sk_socket && sk->sk_socket->file &&
4784 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4785 	read_unlock_bh(&sk->sk_callback_lock);
4786 	return ret;
4787 }
4788 
4789 void skb_complete_tx_timestamp(struct sk_buff *skb,
4790 			       struct skb_shared_hwtstamps *hwtstamps)
4791 {
4792 	struct sock *sk = skb->sk;
4793 
4794 	if (!skb_may_tx_timestamp(sk, false))
4795 		goto err;
4796 
4797 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4798 	 * but only if the socket refcount is not zero.
4799 	 */
4800 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4801 		*skb_hwtstamps(skb) = *hwtstamps;
4802 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4803 		sock_put(sk);
4804 		return;
4805 	}
4806 
4807 err:
4808 	kfree_skb(skb);
4809 }
4810 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4811 
4812 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4813 		     const struct sk_buff *ack_skb,
4814 		     struct skb_shared_hwtstamps *hwtstamps,
4815 		     struct sock *sk, int tstype)
4816 {
4817 	struct sk_buff *skb;
4818 	bool tsonly, opt_stats = false;
4819 
4820 	if (!sk)
4821 		return;
4822 
4823 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4824 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4825 		return;
4826 
4827 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4828 	if (!skb_may_tx_timestamp(sk, tsonly))
4829 		return;
4830 
4831 	if (tsonly) {
4832 #ifdef CONFIG_INET
4833 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4834 		    sk_is_tcp(sk)) {
4835 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4836 							     ack_skb);
4837 			opt_stats = true;
4838 		} else
4839 #endif
4840 			skb = alloc_skb(0, GFP_ATOMIC);
4841 	} else {
4842 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4843 	}
4844 	if (!skb)
4845 		return;
4846 
4847 	if (tsonly) {
4848 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4849 					     SKBTX_ANY_TSTAMP;
4850 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4851 	}
4852 
4853 	if (hwtstamps)
4854 		*skb_hwtstamps(skb) = *hwtstamps;
4855 	else
4856 		__net_timestamp(skb);
4857 
4858 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4859 }
4860 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4861 
4862 void skb_tstamp_tx(struct sk_buff *orig_skb,
4863 		   struct skb_shared_hwtstamps *hwtstamps)
4864 {
4865 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4866 			       SCM_TSTAMP_SND);
4867 }
4868 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4869 
4870 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4871 {
4872 	struct sock *sk = skb->sk;
4873 	struct sock_exterr_skb *serr;
4874 	int err = 1;
4875 
4876 	skb->wifi_acked_valid = 1;
4877 	skb->wifi_acked = acked;
4878 
4879 	serr = SKB_EXT_ERR(skb);
4880 	memset(serr, 0, sizeof(*serr));
4881 	serr->ee.ee_errno = ENOMSG;
4882 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4883 
4884 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4885 	 * but only if the socket refcount is not zero.
4886 	 */
4887 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4888 		err = sock_queue_err_skb(sk, skb);
4889 		sock_put(sk);
4890 	}
4891 	if (err)
4892 		kfree_skb(skb);
4893 }
4894 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4895 
4896 /**
4897  * skb_partial_csum_set - set up and verify partial csum values for packet
4898  * @skb: the skb to set
4899  * @start: the number of bytes after skb->data to start checksumming.
4900  * @off: the offset from start to place the checksum.
4901  *
4902  * For untrusted partially-checksummed packets, we need to make sure the values
4903  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4904  *
4905  * This function checks and sets those values and skb->ip_summed: if this
4906  * returns false you should drop the packet.
4907  */
4908 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4909 {
4910 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4911 	u32 csum_start = skb_headroom(skb) + (u32)start;
4912 
4913 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4914 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4915 				     start, off, skb_headroom(skb), skb_headlen(skb));
4916 		return false;
4917 	}
4918 	skb->ip_summed = CHECKSUM_PARTIAL;
4919 	skb->csum_start = csum_start;
4920 	skb->csum_offset = off;
4921 	skb_set_transport_header(skb, start);
4922 	return true;
4923 }
4924 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4925 
4926 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4927 			       unsigned int max)
4928 {
4929 	if (skb_headlen(skb) >= len)
4930 		return 0;
4931 
4932 	/* If we need to pullup then pullup to the max, so we
4933 	 * won't need to do it again.
4934 	 */
4935 	if (max > skb->len)
4936 		max = skb->len;
4937 
4938 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4939 		return -ENOMEM;
4940 
4941 	if (skb_headlen(skb) < len)
4942 		return -EPROTO;
4943 
4944 	return 0;
4945 }
4946 
4947 #define MAX_TCP_HDR_LEN (15 * 4)
4948 
4949 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4950 				      typeof(IPPROTO_IP) proto,
4951 				      unsigned int off)
4952 {
4953 	int err;
4954 
4955 	switch (proto) {
4956 	case IPPROTO_TCP:
4957 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4958 					  off + MAX_TCP_HDR_LEN);
4959 		if (!err && !skb_partial_csum_set(skb, off,
4960 						  offsetof(struct tcphdr,
4961 							   check)))
4962 			err = -EPROTO;
4963 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4964 
4965 	case IPPROTO_UDP:
4966 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4967 					  off + sizeof(struct udphdr));
4968 		if (!err && !skb_partial_csum_set(skb, off,
4969 						  offsetof(struct udphdr,
4970 							   check)))
4971 			err = -EPROTO;
4972 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4973 	}
4974 
4975 	return ERR_PTR(-EPROTO);
4976 }
4977 
4978 /* This value should be large enough to cover a tagged ethernet header plus
4979  * maximally sized IP and TCP or UDP headers.
4980  */
4981 #define MAX_IP_HDR_LEN 128
4982 
4983 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4984 {
4985 	unsigned int off;
4986 	bool fragment;
4987 	__sum16 *csum;
4988 	int err;
4989 
4990 	fragment = false;
4991 
4992 	err = skb_maybe_pull_tail(skb,
4993 				  sizeof(struct iphdr),
4994 				  MAX_IP_HDR_LEN);
4995 	if (err < 0)
4996 		goto out;
4997 
4998 	if (ip_is_fragment(ip_hdr(skb)))
4999 		fragment = true;
5000 
5001 	off = ip_hdrlen(skb);
5002 
5003 	err = -EPROTO;
5004 
5005 	if (fragment)
5006 		goto out;
5007 
5008 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5009 	if (IS_ERR(csum))
5010 		return PTR_ERR(csum);
5011 
5012 	if (recalculate)
5013 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5014 					   ip_hdr(skb)->daddr,
5015 					   skb->len - off,
5016 					   ip_hdr(skb)->protocol, 0);
5017 	err = 0;
5018 
5019 out:
5020 	return err;
5021 }
5022 
5023 /* This value should be large enough to cover a tagged ethernet header plus
5024  * an IPv6 header, all options, and a maximal TCP or UDP header.
5025  */
5026 #define MAX_IPV6_HDR_LEN 256
5027 
5028 #define OPT_HDR(type, skb, off) \
5029 	(type *)(skb_network_header(skb) + (off))
5030 
5031 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5032 {
5033 	int err;
5034 	u8 nexthdr;
5035 	unsigned int off;
5036 	unsigned int len;
5037 	bool fragment;
5038 	bool done;
5039 	__sum16 *csum;
5040 
5041 	fragment = false;
5042 	done = false;
5043 
5044 	off = sizeof(struct ipv6hdr);
5045 
5046 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5047 	if (err < 0)
5048 		goto out;
5049 
5050 	nexthdr = ipv6_hdr(skb)->nexthdr;
5051 
5052 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5053 	while (off <= len && !done) {
5054 		switch (nexthdr) {
5055 		case IPPROTO_DSTOPTS:
5056 		case IPPROTO_HOPOPTS:
5057 		case IPPROTO_ROUTING: {
5058 			struct ipv6_opt_hdr *hp;
5059 
5060 			err = skb_maybe_pull_tail(skb,
5061 						  off +
5062 						  sizeof(struct ipv6_opt_hdr),
5063 						  MAX_IPV6_HDR_LEN);
5064 			if (err < 0)
5065 				goto out;
5066 
5067 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5068 			nexthdr = hp->nexthdr;
5069 			off += ipv6_optlen(hp);
5070 			break;
5071 		}
5072 		case IPPROTO_AH: {
5073 			struct ip_auth_hdr *hp;
5074 
5075 			err = skb_maybe_pull_tail(skb,
5076 						  off +
5077 						  sizeof(struct ip_auth_hdr),
5078 						  MAX_IPV6_HDR_LEN);
5079 			if (err < 0)
5080 				goto out;
5081 
5082 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5083 			nexthdr = hp->nexthdr;
5084 			off += ipv6_authlen(hp);
5085 			break;
5086 		}
5087 		case IPPROTO_FRAGMENT: {
5088 			struct frag_hdr *hp;
5089 
5090 			err = skb_maybe_pull_tail(skb,
5091 						  off +
5092 						  sizeof(struct frag_hdr),
5093 						  MAX_IPV6_HDR_LEN);
5094 			if (err < 0)
5095 				goto out;
5096 
5097 			hp = OPT_HDR(struct frag_hdr, skb, off);
5098 
5099 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5100 				fragment = true;
5101 
5102 			nexthdr = hp->nexthdr;
5103 			off += sizeof(struct frag_hdr);
5104 			break;
5105 		}
5106 		default:
5107 			done = true;
5108 			break;
5109 		}
5110 	}
5111 
5112 	err = -EPROTO;
5113 
5114 	if (!done || fragment)
5115 		goto out;
5116 
5117 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5118 	if (IS_ERR(csum))
5119 		return PTR_ERR(csum);
5120 
5121 	if (recalculate)
5122 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5123 					 &ipv6_hdr(skb)->daddr,
5124 					 skb->len - off, nexthdr, 0);
5125 	err = 0;
5126 
5127 out:
5128 	return err;
5129 }
5130 
5131 /**
5132  * skb_checksum_setup - set up partial checksum offset
5133  * @skb: the skb to set up
5134  * @recalculate: if true the pseudo-header checksum will be recalculated
5135  */
5136 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5137 {
5138 	int err;
5139 
5140 	switch (skb->protocol) {
5141 	case htons(ETH_P_IP):
5142 		err = skb_checksum_setup_ipv4(skb, recalculate);
5143 		break;
5144 
5145 	case htons(ETH_P_IPV6):
5146 		err = skb_checksum_setup_ipv6(skb, recalculate);
5147 		break;
5148 
5149 	default:
5150 		err = -EPROTO;
5151 		break;
5152 	}
5153 
5154 	return err;
5155 }
5156 EXPORT_SYMBOL(skb_checksum_setup);
5157 
5158 /**
5159  * skb_checksum_maybe_trim - maybe trims the given skb
5160  * @skb: the skb to check
5161  * @transport_len: the data length beyond the network header
5162  *
5163  * Checks whether the given skb has data beyond the given transport length.
5164  * If so, returns a cloned skb trimmed to this transport length.
5165  * Otherwise returns the provided skb. Returns NULL in error cases
5166  * (e.g. transport_len exceeds skb length or out-of-memory).
5167  *
5168  * Caller needs to set the skb transport header and free any returned skb if it
5169  * differs from the provided skb.
5170  */
5171 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5172 					       unsigned int transport_len)
5173 {
5174 	struct sk_buff *skb_chk;
5175 	unsigned int len = skb_transport_offset(skb) + transport_len;
5176 	int ret;
5177 
5178 	if (skb->len < len)
5179 		return NULL;
5180 	else if (skb->len == len)
5181 		return skb;
5182 
5183 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5184 	if (!skb_chk)
5185 		return NULL;
5186 
5187 	ret = pskb_trim_rcsum(skb_chk, len);
5188 	if (ret) {
5189 		kfree_skb(skb_chk);
5190 		return NULL;
5191 	}
5192 
5193 	return skb_chk;
5194 }
5195 
5196 /**
5197  * skb_checksum_trimmed - validate checksum of an skb
5198  * @skb: the skb to check
5199  * @transport_len: the data length beyond the network header
5200  * @skb_chkf: checksum function to use
5201  *
5202  * Applies the given checksum function skb_chkf to the provided skb.
5203  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5204  *
5205  * If the skb has data beyond the given transport length, then a
5206  * trimmed & cloned skb is checked and returned.
5207  *
5208  * Caller needs to set the skb transport header and free any returned skb if it
5209  * differs from the provided skb.
5210  */
5211 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5212 				     unsigned int transport_len,
5213 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5214 {
5215 	struct sk_buff *skb_chk;
5216 	unsigned int offset = skb_transport_offset(skb);
5217 	__sum16 ret;
5218 
5219 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5220 	if (!skb_chk)
5221 		goto err;
5222 
5223 	if (!pskb_may_pull(skb_chk, offset))
5224 		goto err;
5225 
5226 	skb_pull_rcsum(skb_chk, offset);
5227 	ret = skb_chkf(skb_chk);
5228 	skb_push_rcsum(skb_chk, offset);
5229 
5230 	if (ret)
5231 		goto err;
5232 
5233 	return skb_chk;
5234 
5235 err:
5236 	if (skb_chk && skb_chk != skb)
5237 		kfree_skb(skb_chk);
5238 
5239 	return NULL;
5240 
5241 }
5242 EXPORT_SYMBOL(skb_checksum_trimmed);
5243 
5244 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5245 {
5246 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5247 			     skb->dev->name);
5248 }
5249 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5250 
5251 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5252 {
5253 	if (head_stolen) {
5254 		skb_release_head_state(skb);
5255 		kmem_cache_free(skbuff_head_cache, skb);
5256 	} else {
5257 		__kfree_skb(skb);
5258 	}
5259 }
5260 EXPORT_SYMBOL(kfree_skb_partial);
5261 
5262 /**
5263  * skb_try_coalesce - try to merge skb to prior one
5264  * @to: prior buffer
5265  * @from: buffer to add
5266  * @fragstolen: pointer to boolean
5267  * @delta_truesize: how much more was allocated than was requested
5268  */
5269 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5270 		      bool *fragstolen, int *delta_truesize)
5271 {
5272 	struct skb_shared_info *to_shinfo, *from_shinfo;
5273 	int i, delta, len = from->len;
5274 
5275 	*fragstolen = false;
5276 
5277 	if (skb_cloned(to))
5278 		return false;
5279 
5280 	/* In general, avoid mixing slab allocated and page_pool allocated
5281 	 * pages within the same SKB. However when @to is not pp_recycle and
5282 	 * @from is cloned, we can transition frag pages from page_pool to
5283 	 * reference counted.
5284 	 *
5285 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5286 	 * @from is cloned, in case the SKB is using page_pool fragment
5287 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5288 	 * references for cloned SKBs at the moment that would result in
5289 	 * inconsistent reference counts.
5290 	 */
5291 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5292 		return false;
5293 
5294 	if (len <= skb_tailroom(to)) {
5295 		if (len)
5296 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5297 		*delta_truesize = 0;
5298 		return true;
5299 	}
5300 
5301 	to_shinfo = skb_shinfo(to);
5302 	from_shinfo = skb_shinfo(from);
5303 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5304 		return false;
5305 	if (skb_zcopy(to) || skb_zcopy(from))
5306 		return false;
5307 
5308 	if (skb_headlen(from) != 0) {
5309 		struct page *page;
5310 		unsigned int offset;
5311 
5312 		if (to_shinfo->nr_frags +
5313 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5314 			return false;
5315 
5316 		if (skb_head_is_locked(from))
5317 			return false;
5318 
5319 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5320 
5321 		page = virt_to_head_page(from->head);
5322 		offset = from->data - (unsigned char *)page_address(page);
5323 
5324 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5325 				   page, offset, skb_headlen(from));
5326 		*fragstolen = true;
5327 	} else {
5328 		if (to_shinfo->nr_frags +
5329 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5330 			return false;
5331 
5332 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5333 	}
5334 
5335 	WARN_ON_ONCE(delta < len);
5336 
5337 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5338 	       from_shinfo->frags,
5339 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5340 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5341 
5342 	if (!skb_cloned(from))
5343 		from_shinfo->nr_frags = 0;
5344 
5345 	/* if the skb is not cloned this does nothing
5346 	 * since we set nr_frags to 0.
5347 	 */
5348 	for (i = 0; i < from_shinfo->nr_frags; i++)
5349 		__skb_frag_ref(&from_shinfo->frags[i]);
5350 
5351 	to->truesize += delta;
5352 	to->len += len;
5353 	to->data_len += len;
5354 
5355 	*delta_truesize = delta;
5356 	return true;
5357 }
5358 EXPORT_SYMBOL(skb_try_coalesce);
5359 
5360 /**
5361  * skb_scrub_packet - scrub an skb
5362  *
5363  * @skb: buffer to clean
5364  * @xnet: packet is crossing netns
5365  *
5366  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5367  * into/from a tunnel. Some information have to be cleared during these
5368  * operations.
5369  * skb_scrub_packet can also be used to clean a skb before injecting it in
5370  * another namespace (@xnet == true). We have to clear all information in the
5371  * skb that could impact namespace isolation.
5372  */
5373 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5374 {
5375 	skb->pkt_type = PACKET_HOST;
5376 	skb->skb_iif = 0;
5377 	skb->ignore_df = 0;
5378 	skb_dst_drop(skb);
5379 	skb_ext_reset(skb);
5380 	nf_reset_ct(skb);
5381 	nf_reset_trace(skb);
5382 
5383 #ifdef CONFIG_NET_SWITCHDEV
5384 	skb->offload_fwd_mark = 0;
5385 	skb->offload_l3_fwd_mark = 0;
5386 #endif
5387 
5388 	if (!xnet)
5389 		return;
5390 
5391 	ipvs_reset(skb);
5392 	skb->mark = 0;
5393 	skb_clear_tstamp(skb);
5394 }
5395 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5396 
5397 /**
5398  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5399  *
5400  * @skb: GSO skb
5401  *
5402  * skb_gso_transport_seglen is used to determine the real size of the
5403  * individual segments, including Layer4 headers (TCP/UDP).
5404  *
5405  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5406  */
5407 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5408 {
5409 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5410 	unsigned int thlen = 0;
5411 
5412 	if (skb->encapsulation) {
5413 		thlen = skb_inner_transport_header(skb) -
5414 			skb_transport_header(skb);
5415 
5416 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5417 			thlen += inner_tcp_hdrlen(skb);
5418 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5419 		thlen = tcp_hdrlen(skb);
5420 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5421 		thlen = sizeof(struct sctphdr);
5422 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5423 		thlen = sizeof(struct udphdr);
5424 	}
5425 	/* UFO sets gso_size to the size of the fragmentation
5426 	 * payload, i.e. the size of the L4 (UDP) header is already
5427 	 * accounted for.
5428 	 */
5429 	return thlen + shinfo->gso_size;
5430 }
5431 
5432 /**
5433  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5434  *
5435  * @skb: GSO skb
5436  *
5437  * skb_gso_network_seglen is used to determine the real size of the
5438  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5439  *
5440  * The MAC/L2 header is not accounted for.
5441  */
5442 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5443 {
5444 	unsigned int hdr_len = skb_transport_header(skb) -
5445 			       skb_network_header(skb);
5446 
5447 	return hdr_len + skb_gso_transport_seglen(skb);
5448 }
5449 
5450 /**
5451  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5452  *
5453  * @skb: GSO skb
5454  *
5455  * skb_gso_mac_seglen is used to determine the real size of the
5456  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5457  * headers (TCP/UDP).
5458  */
5459 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5460 {
5461 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5462 
5463 	return hdr_len + skb_gso_transport_seglen(skb);
5464 }
5465 
5466 /**
5467  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5468  *
5469  * There are a couple of instances where we have a GSO skb, and we
5470  * want to determine what size it would be after it is segmented.
5471  *
5472  * We might want to check:
5473  * -    L3+L4+payload size (e.g. IP forwarding)
5474  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5475  *
5476  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5477  *
5478  * @skb: GSO skb
5479  *
5480  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5481  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5482  *
5483  * @max_len: The maximum permissible length.
5484  *
5485  * Returns true if the segmented length <= max length.
5486  */
5487 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5488 				      unsigned int seg_len,
5489 				      unsigned int max_len) {
5490 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5491 	const struct sk_buff *iter;
5492 
5493 	if (shinfo->gso_size != GSO_BY_FRAGS)
5494 		return seg_len <= max_len;
5495 
5496 	/* Undo this so we can re-use header sizes */
5497 	seg_len -= GSO_BY_FRAGS;
5498 
5499 	skb_walk_frags(skb, iter) {
5500 		if (seg_len + skb_headlen(iter) > max_len)
5501 			return false;
5502 	}
5503 
5504 	return true;
5505 }
5506 
5507 /**
5508  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5509  *
5510  * @skb: GSO skb
5511  * @mtu: MTU to validate against
5512  *
5513  * skb_gso_validate_network_len validates if a given skb will fit a
5514  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5515  * payload.
5516  */
5517 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5518 {
5519 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5520 }
5521 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5522 
5523 /**
5524  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5525  *
5526  * @skb: GSO skb
5527  * @len: length to validate against
5528  *
5529  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5530  * length once split, including L2, L3 and L4 headers and the payload.
5531  */
5532 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5533 {
5534 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5535 }
5536 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5537 
5538 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5539 {
5540 	int mac_len, meta_len;
5541 	void *meta;
5542 
5543 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5544 		kfree_skb(skb);
5545 		return NULL;
5546 	}
5547 
5548 	mac_len = skb->data - skb_mac_header(skb);
5549 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5550 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5551 			mac_len - VLAN_HLEN - ETH_TLEN);
5552 	}
5553 
5554 	meta_len = skb_metadata_len(skb);
5555 	if (meta_len) {
5556 		meta = skb_metadata_end(skb) - meta_len;
5557 		memmove(meta + VLAN_HLEN, meta, meta_len);
5558 	}
5559 
5560 	skb->mac_header += VLAN_HLEN;
5561 	return skb;
5562 }
5563 
5564 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5565 {
5566 	struct vlan_hdr *vhdr;
5567 	u16 vlan_tci;
5568 
5569 	if (unlikely(skb_vlan_tag_present(skb))) {
5570 		/* vlan_tci is already set-up so leave this for another time */
5571 		return skb;
5572 	}
5573 
5574 	skb = skb_share_check(skb, GFP_ATOMIC);
5575 	if (unlikely(!skb))
5576 		goto err_free;
5577 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5578 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5579 		goto err_free;
5580 
5581 	vhdr = (struct vlan_hdr *)skb->data;
5582 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5583 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5584 
5585 	skb_pull_rcsum(skb, VLAN_HLEN);
5586 	vlan_set_encap_proto(skb, vhdr);
5587 
5588 	skb = skb_reorder_vlan_header(skb);
5589 	if (unlikely(!skb))
5590 		goto err_free;
5591 
5592 	skb_reset_network_header(skb);
5593 	if (!skb_transport_header_was_set(skb))
5594 		skb_reset_transport_header(skb);
5595 	skb_reset_mac_len(skb);
5596 
5597 	return skb;
5598 
5599 err_free:
5600 	kfree_skb(skb);
5601 	return NULL;
5602 }
5603 EXPORT_SYMBOL(skb_vlan_untag);
5604 
5605 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5606 {
5607 	if (!pskb_may_pull(skb, write_len))
5608 		return -ENOMEM;
5609 
5610 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5611 		return 0;
5612 
5613 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5614 }
5615 EXPORT_SYMBOL(skb_ensure_writable);
5616 
5617 /* remove VLAN header from packet and update csum accordingly.
5618  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5619  */
5620 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5621 {
5622 	struct vlan_hdr *vhdr;
5623 	int offset = skb->data - skb_mac_header(skb);
5624 	int err;
5625 
5626 	if (WARN_ONCE(offset,
5627 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5628 		      offset)) {
5629 		return -EINVAL;
5630 	}
5631 
5632 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5633 	if (unlikely(err))
5634 		return err;
5635 
5636 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5637 
5638 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5639 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5640 
5641 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5642 	__skb_pull(skb, VLAN_HLEN);
5643 
5644 	vlan_set_encap_proto(skb, vhdr);
5645 	skb->mac_header += VLAN_HLEN;
5646 
5647 	if (skb_network_offset(skb) < ETH_HLEN)
5648 		skb_set_network_header(skb, ETH_HLEN);
5649 
5650 	skb_reset_mac_len(skb);
5651 
5652 	return err;
5653 }
5654 EXPORT_SYMBOL(__skb_vlan_pop);
5655 
5656 /* Pop a vlan tag either from hwaccel or from payload.
5657  * Expects skb->data at mac header.
5658  */
5659 int skb_vlan_pop(struct sk_buff *skb)
5660 {
5661 	u16 vlan_tci;
5662 	__be16 vlan_proto;
5663 	int err;
5664 
5665 	if (likely(skb_vlan_tag_present(skb))) {
5666 		__vlan_hwaccel_clear_tag(skb);
5667 	} else {
5668 		if (unlikely(!eth_type_vlan(skb->protocol)))
5669 			return 0;
5670 
5671 		err = __skb_vlan_pop(skb, &vlan_tci);
5672 		if (err)
5673 			return err;
5674 	}
5675 	/* move next vlan tag to hw accel tag */
5676 	if (likely(!eth_type_vlan(skb->protocol)))
5677 		return 0;
5678 
5679 	vlan_proto = skb->protocol;
5680 	err = __skb_vlan_pop(skb, &vlan_tci);
5681 	if (unlikely(err))
5682 		return err;
5683 
5684 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5685 	return 0;
5686 }
5687 EXPORT_SYMBOL(skb_vlan_pop);
5688 
5689 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5690  * Expects skb->data at mac header.
5691  */
5692 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5693 {
5694 	if (skb_vlan_tag_present(skb)) {
5695 		int offset = skb->data - skb_mac_header(skb);
5696 		int err;
5697 
5698 		if (WARN_ONCE(offset,
5699 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5700 			      offset)) {
5701 			return -EINVAL;
5702 		}
5703 
5704 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5705 					skb_vlan_tag_get(skb));
5706 		if (err)
5707 			return err;
5708 
5709 		skb->protocol = skb->vlan_proto;
5710 		skb->mac_len += VLAN_HLEN;
5711 
5712 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5713 	}
5714 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5715 	return 0;
5716 }
5717 EXPORT_SYMBOL(skb_vlan_push);
5718 
5719 /**
5720  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5721  *
5722  * @skb: Socket buffer to modify
5723  *
5724  * Drop the Ethernet header of @skb.
5725  *
5726  * Expects that skb->data points to the mac header and that no VLAN tags are
5727  * present.
5728  *
5729  * Returns 0 on success, -errno otherwise.
5730  */
5731 int skb_eth_pop(struct sk_buff *skb)
5732 {
5733 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5734 	    skb_network_offset(skb) < ETH_HLEN)
5735 		return -EPROTO;
5736 
5737 	skb_pull_rcsum(skb, ETH_HLEN);
5738 	skb_reset_mac_header(skb);
5739 	skb_reset_mac_len(skb);
5740 
5741 	return 0;
5742 }
5743 EXPORT_SYMBOL(skb_eth_pop);
5744 
5745 /**
5746  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5747  *
5748  * @skb: Socket buffer to modify
5749  * @dst: Destination MAC address of the new header
5750  * @src: Source MAC address of the new header
5751  *
5752  * Prepend @skb with a new Ethernet header.
5753  *
5754  * Expects that skb->data points to the mac header, which must be empty.
5755  *
5756  * Returns 0 on success, -errno otherwise.
5757  */
5758 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5759 		 const unsigned char *src)
5760 {
5761 	struct ethhdr *eth;
5762 	int err;
5763 
5764 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5765 		return -EPROTO;
5766 
5767 	err = skb_cow_head(skb, sizeof(*eth));
5768 	if (err < 0)
5769 		return err;
5770 
5771 	skb_push(skb, sizeof(*eth));
5772 	skb_reset_mac_header(skb);
5773 	skb_reset_mac_len(skb);
5774 
5775 	eth = eth_hdr(skb);
5776 	ether_addr_copy(eth->h_dest, dst);
5777 	ether_addr_copy(eth->h_source, src);
5778 	eth->h_proto = skb->protocol;
5779 
5780 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5781 
5782 	return 0;
5783 }
5784 EXPORT_SYMBOL(skb_eth_push);
5785 
5786 /* Update the ethertype of hdr and the skb csum value if required. */
5787 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5788 			     __be16 ethertype)
5789 {
5790 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5791 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5792 
5793 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5794 	}
5795 
5796 	hdr->h_proto = ethertype;
5797 }
5798 
5799 /**
5800  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5801  *                   the packet
5802  *
5803  * @skb: buffer
5804  * @mpls_lse: MPLS label stack entry to push
5805  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5806  * @mac_len: length of the MAC header
5807  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5808  *            ethernet
5809  *
5810  * Expects skb->data at mac header.
5811  *
5812  * Returns 0 on success, -errno otherwise.
5813  */
5814 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5815 		  int mac_len, bool ethernet)
5816 {
5817 	struct mpls_shim_hdr *lse;
5818 	int err;
5819 
5820 	if (unlikely(!eth_p_mpls(mpls_proto)))
5821 		return -EINVAL;
5822 
5823 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5824 	if (skb->encapsulation)
5825 		return -EINVAL;
5826 
5827 	err = skb_cow_head(skb, MPLS_HLEN);
5828 	if (unlikely(err))
5829 		return err;
5830 
5831 	if (!skb->inner_protocol) {
5832 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5833 		skb_set_inner_protocol(skb, skb->protocol);
5834 	}
5835 
5836 	skb_push(skb, MPLS_HLEN);
5837 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5838 		mac_len);
5839 	skb_reset_mac_header(skb);
5840 	skb_set_network_header(skb, mac_len);
5841 	skb_reset_mac_len(skb);
5842 
5843 	lse = mpls_hdr(skb);
5844 	lse->label_stack_entry = mpls_lse;
5845 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5846 
5847 	if (ethernet && mac_len >= ETH_HLEN)
5848 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5849 	skb->protocol = mpls_proto;
5850 
5851 	return 0;
5852 }
5853 EXPORT_SYMBOL_GPL(skb_mpls_push);
5854 
5855 /**
5856  * skb_mpls_pop() - pop the outermost MPLS header
5857  *
5858  * @skb: buffer
5859  * @next_proto: ethertype of header after popped MPLS header
5860  * @mac_len: length of the MAC header
5861  * @ethernet: flag to indicate if the packet is ethernet
5862  *
5863  * Expects skb->data at mac header.
5864  *
5865  * Returns 0 on success, -errno otherwise.
5866  */
5867 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5868 		 bool ethernet)
5869 {
5870 	int err;
5871 
5872 	if (unlikely(!eth_p_mpls(skb->protocol)))
5873 		return 0;
5874 
5875 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5876 	if (unlikely(err))
5877 		return err;
5878 
5879 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5880 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5881 		mac_len);
5882 
5883 	__skb_pull(skb, MPLS_HLEN);
5884 	skb_reset_mac_header(skb);
5885 	skb_set_network_header(skb, mac_len);
5886 
5887 	if (ethernet && mac_len >= ETH_HLEN) {
5888 		struct ethhdr *hdr;
5889 
5890 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5891 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5892 		skb_mod_eth_type(skb, hdr, next_proto);
5893 	}
5894 	skb->protocol = next_proto;
5895 
5896 	return 0;
5897 }
5898 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5899 
5900 /**
5901  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5902  *
5903  * @skb: buffer
5904  * @mpls_lse: new MPLS label stack entry to update to
5905  *
5906  * Expects skb->data at mac header.
5907  *
5908  * Returns 0 on success, -errno otherwise.
5909  */
5910 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5911 {
5912 	int err;
5913 
5914 	if (unlikely(!eth_p_mpls(skb->protocol)))
5915 		return -EINVAL;
5916 
5917 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5918 	if (unlikely(err))
5919 		return err;
5920 
5921 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5922 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5923 
5924 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5925 	}
5926 
5927 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5928 
5929 	return 0;
5930 }
5931 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5932 
5933 /**
5934  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5935  *
5936  * @skb: buffer
5937  *
5938  * Expects skb->data at mac header.
5939  *
5940  * Returns 0 on success, -errno otherwise.
5941  */
5942 int skb_mpls_dec_ttl(struct sk_buff *skb)
5943 {
5944 	u32 lse;
5945 	u8 ttl;
5946 
5947 	if (unlikely(!eth_p_mpls(skb->protocol)))
5948 		return -EINVAL;
5949 
5950 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5951 		return -ENOMEM;
5952 
5953 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5954 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5955 	if (!--ttl)
5956 		return -EINVAL;
5957 
5958 	lse &= ~MPLS_LS_TTL_MASK;
5959 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5960 
5961 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5962 }
5963 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5964 
5965 /**
5966  * alloc_skb_with_frags - allocate skb with page frags
5967  *
5968  * @header_len: size of linear part
5969  * @data_len: needed length in frags
5970  * @max_page_order: max page order desired.
5971  * @errcode: pointer to error code if any
5972  * @gfp_mask: allocation mask
5973  *
5974  * This can be used to allocate a paged skb, given a maximal order for frags.
5975  */
5976 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5977 				     unsigned long data_len,
5978 				     int max_page_order,
5979 				     int *errcode,
5980 				     gfp_t gfp_mask)
5981 {
5982 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5983 	unsigned long chunk;
5984 	struct sk_buff *skb;
5985 	struct page *page;
5986 	int i;
5987 
5988 	*errcode = -EMSGSIZE;
5989 	/* Note this test could be relaxed, if we succeed to allocate
5990 	 * high order pages...
5991 	 */
5992 	if (npages > MAX_SKB_FRAGS)
5993 		return NULL;
5994 
5995 	*errcode = -ENOBUFS;
5996 	skb = alloc_skb(header_len, gfp_mask);
5997 	if (!skb)
5998 		return NULL;
5999 
6000 	skb->truesize += npages << PAGE_SHIFT;
6001 
6002 	for (i = 0; npages > 0; i++) {
6003 		int order = max_page_order;
6004 
6005 		while (order) {
6006 			if (npages >= 1 << order) {
6007 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6008 						   __GFP_COMP |
6009 						   __GFP_NOWARN,
6010 						   order);
6011 				if (page)
6012 					goto fill_page;
6013 				/* Do not retry other high order allocations */
6014 				order = 1;
6015 				max_page_order = 0;
6016 			}
6017 			order--;
6018 		}
6019 		page = alloc_page(gfp_mask);
6020 		if (!page)
6021 			goto failure;
6022 fill_page:
6023 		chunk = min_t(unsigned long, data_len,
6024 			      PAGE_SIZE << order);
6025 		skb_fill_page_desc(skb, i, page, 0, chunk);
6026 		data_len -= chunk;
6027 		npages -= 1 << order;
6028 	}
6029 	return skb;
6030 
6031 failure:
6032 	kfree_skb(skb);
6033 	return NULL;
6034 }
6035 EXPORT_SYMBOL(alloc_skb_with_frags);
6036 
6037 /* carve out the first off bytes from skb when off < headlen */
6038 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6039 				    const int headlen, gfp_t gfp_mask)
6040 {
6041 	int i;
6042 	int size = skb_end_offset(skb);
6043 	int new_hlen = headlen - off;
6044 	u8 *data;
6045 
6046 	size = SKB_DATA_ALIGN(size);
6047 
6048 	if (skb_pfmemalloc(skb))
6049 		gfp_mask |= __GFP_MEMALLOC;
6050 	data = kmalloc_reserve(size +
6051 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6052 			       gfp_mask, NUMA_NO_NODE, NULL);
6053 	if (!data)
6054 		return -ENOMEM;
6055 
6056 	size = SKB_WITH_OVERHEAD(ksize(data));
6057 
6058 	/* Copy real data, and all frags */
6059 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6060 	skb->len -= off;
6061 
6062 	memcpy((struct skb_shared_info *)(data + size),
6063 	       skb_shinfo(skb),
6064 	       offsetof(struct skb_shared_info,
6065 			frags[skb_shinfo(skb)->nr_frags]));
6066 	if (skb_cloned(skb)) {
6067 		/* drop the old head gracefully */
6068 		if (skb_orphan_frags(skb, gfp_mask)) {
6069 			kfree(data);
6070 			return -ENOMEM;
6071 		}
6072 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6073 			skb_frag_ref(skb, i);
6074 		if (skb_has_frag_list(skb))
6075 			skb_clone_fraglist(skb);
6076 		skb_release_data(skb);
6077 	} else {
6078 		/* we can reuse existing recount- all we did was
6079 		 * relocate values
6080 		 */
6081 		skb_free_head(skb);
6082 	}
6083 
6084 	skb->head = data;
6085 	skb->data = data;
6086 	skb->head_frag = 0;
6087 	skb_set_end_offset(skb, size);
6088 	skb_set_tail_pointer(skb, skb_headlen(skb));
6089 	skb_headers_offset_update(skb, 0);
6090 	skb->cloned = 0;
6091 	skb->hdr_len = 0;
6092 	skb->nohdr = 0;
6093 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6094 
6095 	return 0;
6096 }
6097 
6098 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6099 
6100 /* carve out the first eat bytes from skb's frag_list. May recurse into
6101  * pskb_carve()
6102  */
6103 static int pskb_carve_frag_list(struct sk_buff *skb,
6104 				struct skb_shared_info *shinfo, int eat,
6105 				gfp_t gfp_mask)
6106 {
6107 	struct sk_buff *list = shinfo->frag_list;
6108 	struct sk_buff *clone = NULL;
6109 	struct sk_buff *insp = NULL;
6110 
6111 	do {
6112 		if (!list) {
6113 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6114 			return -EFAULT;
6115 		}
6116 		if (list->len <= eat) {
6117 			/* Eaten as whole. */
6118 			eat -= list->len;
6119 			list = list->next;
6120 			insp = list;
6121 		} else {
6122 			/* Eaten partially. */
6123 			if (skb_shared(list)) {
6124 				clone = skb_clone(list, gfp_mask);
6125 				if (!clone)
6126 					return -ENOMEM;
6127 				insp = list->next;
6128 				list = clone;
6129 			} else {
6130 				/* This may be pulled without problems. */
6131 				insp = list;
6132 			}
6133 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6134 				kfree_skb(clone);
6135 				return -ENOMEM;
6136 			}
6137 			break;
6138 		}
6139 	} while (eat);
6140 
6141 	/* Free pulled out fragments. */
6142 	while ((list = shinfo->frag_list) != insp) {
6143 		shinfo->frag_list = list->next;
6144 		consume_skb(list);
6145 	}
6146 	/* And insert new clone at head. */
6147 	if (clone) {
6148 		clone->next = list;
6149 		shinfo->frag_list = clone;
6150 	}
6151 	return 0;
6152 }
6153 
6154 /* carve off first len bytes from skb. Split line (off) is in the
6155  * non-linear part of skb
6156  */
6157 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6158 				       int pos, gfp_t gfp_mask)
6159 {
6160 	int i, k = 0;
6161 	int size = skb_end_offset(skb);
6162 	u8 *data;
6163 	const int nfrags = skb_shinfo(skb)->nr_frags;
6164 	struct skb_shared_info *shinfo;
6165 
6166 	size = SKB_DATA_ALIGN(size);
6167 
6168 	if (skb_pfmemalloc(skb))
6169 		gfp_mask |= __GFP_MEMALLOC;
6170 	data = kmalloc_reserve(size +
6171 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6172 			       gfp_mask, NUMA_NO_NODE, NULL);
6173 	if (!data)
6174 		return -ENOMEM;
6175 
6176 	size = SKB_WITH_OVERHEAD(ksize(data));
6177 
6178 	memcpy((struct skb_shared_info *)(data + size),
6179 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6180 	if (skb_orphan_frags(skb, gfp_mask)) {
6181 		kfree(data);
6182 		return -ENOMEM;
6183 	}
6184 	shinfo = (struct skb_shared_info *)(data + size);
6185 	for (i = 0; i < nfrags; i++) {
6186 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6187 
6188 		if (pos + fsize > off) {
6189 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6190 
6191 			if (pos < off) {
6192 				/* Split frag.
6193 				 * We have two variants in this case:
6194 				 * 1. Move all the frag to the second
6195 				 *    part, if it is possible. F.e.
6196 				 *    this approach is mandatory for TUX,
6197 				 *    where splitting is expensive.
6198 				 * 2. Split is accurately. We make this.
6199 				 */
6200 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6201 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6202 			}
6203 			skb_frag_ref(skb, i);
6204 			k++;
6205 		}
6206 		pos += fsize;
6207 	}
6208 	shinfo->nr_frags = k;
6209 	if (skb_has_frag_list(skb))
6210 		skb_clone_fraglist(skb);
6211 
6212 	/* split line is in frag list */
6213 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6214 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6215 		if (skb_has_frag_list(skb))
6216 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6217 		kfree(data);
6218 		return -ENOMEM;
6219 	}
6220 	skb_release_data(skb);
6221 
6222 	skb->head = data;
6223 	skb->head_frag = 0;
6224 	skb->data = data;
6225 	skb_set_end_offset(skb, size);
6226 	skb_reset_tail_pointer(skb);
6227 	skb_headers_offset_update(skb, 0);
6228 	skb->cloned   = 0;
6229 	skb->hdr_len  = 0;
6230 	skb->nohdr    = 0;
6231 	skb->len -= off;
6232 	skb->data_len = skb->len;
6233 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6234 	return 0;
6235 }
6236 
6237 /* remove len bytes from the beginning of the skb */
6238 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6239 {
6240 	int headlen = skb_headlen(skb);
6241 
6242 	if (len < headlen)
6243 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6244 	else
6245 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6246 }
6247 
6248 /* Extract to_copy bytes starting at off from skb, and return this in
6249  * a new skb
6250  */
6251 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6252 			     int to_copy, gfp_t gfp)
6253 {
6254 	struct sk_buff  *clone = skb_clone(skb, gfp);
6255 
6256 	if (!clone)
6257 		return NULL;
6258 
6259 	if (pskb_carve(clone, off, gfp) < 0 ||
6260 	    pskb_trim(clone, to_copy)) {
6261 		kfree_skb(clone);
6262 		return NULL;
6263 	}
6264 	return clone;
6265 }
6266 EXPORT_SYMBOL(pskb_extract);
6267 
6268 /**
6269  * skb_condense - try to get rid of fragments/frag_list if possible
6270  * @skb: buffer
6271  *
6272  * Can be used to save memory before skb is added to a busy queue.
6273  * If packet has bytes in frags and enough tail room in skb->head,
6274  * pull all of them, so that we can free the frags right now and adjust
6275  * truesize.
6276  * Notes:
6277  *	We do not reallocate skb->head thus can not fail.
6278  *	Caller must re-evaluate skb->truesize if needed.
6279  */
6280 void skb_condense(struct sk_buff *skb)
6281 {
6282 	if (skb->data_len) {
6283 		if (skb->data_len > skb->end - skb->tail ||
6284 		    skb_cloned(skb))
6285 			return;
6286 
6287 		/* Nice, we can free page frag(s) right now */
6288 		__pskb_pull_tail(skb, skb->data_len);
6289 	}
6290 	/* At this point, skb->truesize might be over estimated,
6291 	 * because skb had a fragment, and fragments do not tell
6292 	 * their truesize.
6293 	 * When we pulled its content into skb->head, fragment
6294 	 * was freed, but __pskb_pull_tail() could not possibly
6295 	 * adjust skb->truesize, not knowing the frag truesize.
6296 	 */
6297 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6298 }
6299 
6300 #ifdef CONFIG_SKB_EXTENSIONS
6301 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6302 {
6303 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6304 }
6305 
6306 /**
6307  * __skb_ext_alloc - allocate a new skb extensions storage
6308  *
6309  * @flags: See kmalloc().
6310  *
6311  * Returns the newly allocated pointer. The pointer can later attached to a
6312  * skb via __skb_ext_set().
6313  * Note: caller must handle the skb_ext as an opaque data.
6314  */
6315 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6316 {
6317 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6318 
6319 	if (new) {
6320 		memset(new->offset, 0, sizeof(new->offset));
6321 		refcount_set(&new->refcnt, 1);
6322 	}
6323 
6324 	return new;
6325 }
6326 
6327 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6328 					 unsigned int old_active)
6329 {
6330 	struct skb_ext *new;
6331 
6332 	if (refcount_read(&old->refcnt) == 1)
6333 		return old;
6334 
6335 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6336 	if (!new)
6337 		return NULL;
6338 
6339 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6340 	refcount_set(&new->refcnt, 1);
6341 
6342 #ifdef CONFIG_XFRM
6343 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6344 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6345 		unsigned int i;
6346 
6347 		for (i = 0; i < sp->len; i++)
6348 			xfrm_state_hold(sp->xvec[i]);
6349 	}
6350 #endif
6351 	__skb_ext_put(old);
6352 	return new;
6353 }
6354 
6355 /**
6356  * __skb_ext_set - attach the specified extension storage to this skb
6357  * @skb: buffer
6358  * @id: extension id
6359  * @ext: extension storage previously allocated via __skb_ext_alloc()
6360  *
6361  * Existing extensions, if any, are cleared.
6362  *
6363  * Returns the pointer to the extension.
6364  */
6365 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6366 		    struct skb_ext *ext)
6367 {
6368 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6369 
6370 	skb_ext_put(skb);
6371 	newlen = newoff + skb_ext_type_len[id];
6372 	ext->chunks = newlen;
6373 	ext->offset[id] = newoff;
6374 	skb->extensions = ext;
6375 	skb->active_extensions = 1 << id;
6376 	return skb_ext_get_ptr(ext, id);
6377 }
6378 
6379 /**
6380  * skb_ext_add - allocate space for given extension, COW if needed
6381  * @skb: buffer
6382  * @id: extension to allocate space for
6383  *
6384  * Allocates enough space for the given extension.
6385  * If the extension is already present, a pointer to that extension
6386  * is returned.
6387  *
6388  * If the skb was cloned, COW applies and the returned memory can be
6389  * modified without changing the extension space of clones buffers.
6390  *
6391  * Returns pointer to the extension or NULL on allocation failure.
6392  */
6393 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6394 {
6395 	struct skb_ext *new, *old = NULL;
6396 	unsigned int newlen, newoff;
6397 
6398 	if (skb->active_extensions) {
6399 		old = skb->extensions;
6400 
6401 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6402 		if (!new)
6403 			return NULL;
6404 
6405 		if (__skb_ext_exist(new, id))
6406 			goto set_active;
6407 
6408 		newoff = new->chunks;
6409 	} else {
6410 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6411 
6412 		new = __skb_ext_alloc(GFP_ATOMIC);
6413 		if (!new)
6414 			return NULL;
6415 	}
6416 
6417 	newlen = newoff + skb_ext_type_len[id];
6418 	new->chunks = newlen;
6419 	new->offset[id] = newoff;
6420 set_active:
6421 	skb->slow_gro = 1;
6422 	skb->extensions = new;
6423 	skb->active_extensions |= 1 << id;
6424 	return skb_ext_get_ptr(new, id);
6425 }
6426 EXPORT_SYMBOL(skb_ext_add);
6427 
6428 #ifdef CONFIG_XFRM
6429 static void skb_ext_put_sp(struct sec_path *sp)
6430 {
6431 	unsigned int i;
6432 
6433 	for (i = 0; i < sp->len; i++)
6434 		xfrm_state_put(sp->xvec[i]);
6435 }
6436 #endif
6437 
6438 #ifdef CONFIG_MCTP_FLOWS
6439 static void skb_ext_put_mctp(struct mctp_flow *flow)
6440 {
6441 	if (flow->key)
6442 		mctp_key_unref(flow->key);
6443 }
6444 #endif
6445 
6446 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6447 {
6448 	struct skb_ext *ext = skb->extensions;
6449 
6450 	skb->active_extensions &= ~(1 << id);
6451 	if (skb->active_extensions == 0) {
6452 		skb->extensions = NULL;
6453 		__skb_ext_put(ext);
6454 #ifdef CONFIG_XFRM
6455 	} else if (id == SKB_EXT_SEC_PATH &&
6456 		   refcount_read(&ext->refcnt) == 1) {
6457 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6458 
6459 		skb_ext_put_sp(sp);
6460 		sp->len = 0;
6461 #endif
6462 	}
6463 }
6464 EXPORT_SYMBOL(__skb_ext_del);
6465 
6466 void __skb_ext_put(struct skb_ext *ext)
6467 {
6468 	/* If this is last clone, nothing can increment
6469 	 * it after check passes.  Avoids one atomic op.
6470 	 */
6471 	if (refcount_read(&ext->refcnt) == 1)
6472 		goto free_now;
6473 
6474 	if (!refcount_dec_and_test(&ext->refcnt))
6475 		return;
6476 free_now:
6477 #ifdef CONFIG_XFRM
6478 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6479 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6480 #endif
6481 #ifdef CONFIG_MCTP_FLOWS
6482 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6483 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6484 #endif
6485 
6486 	kmem_cache_free(skbuff_ext_cache, ext);
6487 }
6488 EXPORT_SYMBOL(__skb_ext_put);
6489 #endif /* CONFIG_SKB_EXTENSIONS */
6490 
6491 /**
6492  * skb_attempt_defer_free - queue skb for remote freeing
6493  * @skb: buffer
6494  *
6495  * Put @skb in a per-cpu list, using the cpu which
6496  * allocated the skb/pages to reduce false sharing
6497  * and memory zone spinlock contention.
6498  */
6499 void skb_attempt_defer_free(struct sk_buff *skb)
6500 {
6501 	int cpu = skb->alloc_cpu;
6502 	struct softnet_data *sd;
6503 	unsigned long flags;
6504 	bool kick;
6505 
6506 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6507 	    !cpu_online(cpu) ||
6508 	    cpu == raw_smp_processor_id()) {
6509 		__kfree_skb(skb);
6510 		return;
6511 	}
6512 
6513 	sd = &per_cpu(softnet_data, cpu);
6514 	/* We do not send an IPI or any signal.
6515 	 * Remote cpu will eventually call skb_defer_free_flush()
6516 	 */
6517 	spin_lock_irqsave(&sd->defer_lock, flags);
6518 	skb->next = sd->defer_list;
6519 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6520 	WRITE_ONCE(sd->defer_list, skb);
6521 	sd->defer_count++;
6522 
6523 	/* kick every time queue length reaches 128.
6524 	 * This should avoid blocking in smp_call_function_single_async().
6525 	 * This condition should hardly be bit under normal conditions,
6526 	 * unless cpu suddenly stopped to receive NIC interrupts.
6527 	 */
6528 	kick = sd->defer_count == 128;
6529 
6530 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6531 
6532 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6533 	 * if we are unlucky enough (this seems very unlikely).
6534 	 */
6535 	if (unlikely(kick))
6536 		smp_call_function_single_async(cpu, &sd->defer_csd);
6537 }
6538