1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 C(pfmemalloc); 862 n->destructor = NULL; 863 C(tail); 864 C(end); 865 C(head); 866 C(head_frag); 867 C(data); 868 C(truesize); 869 refcount_set(&n->users, 1); 870 871 atomic_inc(&(skb_shinfo(skb)->dataref)); 872 skb->cloned = 1; 873 874 return n; 875 #undef C 876 } 877 878 /** 879 * skb_morph - morph one skb into another 880 * @dst: the skb to receive the contents 881 * @src: the skb to supply the contents 882 * 883 * This is identical to skb_clone except that the target skb is 884 * supplied by the user. 885 * 886 * The target skb is returned upon exit. 887 */ 888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 889 { 890 skb_release_all(dst); 891 return __skb_clone(dst, src); 892 } 893 EXPORT_SYMBOL_GPL(skb_morph); 894 895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 896 { 897 unsigned long max_pg, num_pg, new_pg, old_pg; 898 struct user_struct *user; 899 900 if (capable(CAP_IPC_LOCK) || !size) 901 return 0; 902 903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 905 user = mmp->user ? : current_user(); 906 907 do { 908 old_pg = atomic_long_read(&user->locked_vm); 909 new_pg = old_pg + num_pg; 910 if (new_pg > max_pg) 911 return -ENOBUFS; 912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 913 old_pg); 914 915 if (!mmp->user) { 916 mmp->user = get_uid(user); 917 mmp->num_pg = num_pg; 918 } else { 919 mmp->num_pg += num_pg; 920 } 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 925 926 void mm_unaccount_pinned_pages(struct mmpin *mmp) 927 { 928 if (mmp->user) { 929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 930 free_uid(mmp->user); 931 } 932 } 933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 skb = sock_omalloc(sk, 0, GFP_KERNEL); 943 if (!skb) 944 return NULL; 945 946 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 947 uarg = (void *)skb->cb; 948 uarg->mmp.user = NULL; 949 950 if (mm_account_pinned_pages(&uarg->mmp, size)) { 951 kfree_skb(skb); 952 return NULL; 953 } 954 955 uarg->callback = sock_zerocopy_callback; 956 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 957 uarg->len = 1; 958 uarg->bytelen = size; 959 uarg->zerocopy = 1; 960 refcount_set(&uarg->refcnt, 1); 961 sock_hold(sk); 962 963 return uarg; 964 } 965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 966 967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 968 { 969 return container_of((void *)uarg, struct sk_buff, cb); 970 } 971 972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 973 struct ubuf_info *uarg) 974 { 975 if (uarg) { 976 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 977 u32 bytelen, next; 978 979 /* realloc only when socket is locked (TCP, UDP cork), 980 * so uarg->len and sk_zckey access is serialized 981 */ 982 if (!sock_owned_by_user(sk)) { 983 WARN_ON_ONCE(1); 984 return NULL; 985 } 986 987 bytelen = uarg->bytelen + size; 988 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 989 /* TCP can create new skb to attach new uarg */ 990 if (sk->sk_type == SOCK_STREAM) 991 goto new_alloc; 992 return NULL; 993 } 994 995 next = (u32)atomic_read(&sk->sk_zckey); 996 if ((u32)(uarg->id + uarg->len) == next) { 997 if (mm_account_pinned_pages(&uarg->mmp, size)) 998 return NULL; 999 uarg->len++; 1000 uarg->bytelen = bytelen; 1001 atomic_set(&sk->sk_zckey, ++next); 1002 sock_zerocopy_get(uarg); 1003 return uarg; 1004 } 1005 } 1006 1007 new_alloc: 1008 return sock_zerocopy_alloc(sk, size); 1009 } 1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1011 1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1013 { 1014 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1015 u32 old_lo, old_hi; 1016 u64 sum_len; 1017 1018 old_lo = serr->ee.ee_info; 1019 old_hi = serr->ee.ee_data; 1020 sum_len = old_hi - old_lo + 1ULL + len; 1021 1022 if (sum_len >= (1ULL << 32)) 1023 return false; 1024 1025 if (lo != old_hi + 1) 1026 return false; 1027 1028 serr->ee.ee_data += len; 1029 return true; 1030 } 1031 1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1033 { 1034 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1035 struct sock_exterr_skb *serr; 1036 struct sock *sk = skb->sk; 1037 struct sk_buff_head *q; 1038 unsigned long flags; 1039 u32 lo, hi; 1040 u16 len; 1041 1042 mm_unaccount_pinned_pages(&uarg->mmp); 1043 1044 /* if !len, there was only 1 call, and it was aborted 1045 * so do not queue a completion notification 1046 */ 1047 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1048 goto release; 1049 1050 len = uarg->len; 1051 lo = uarg->id; 1052 hi = uarg->id + len - 1; 1053 1054 serr = SKB_EXT_ERR(skb); 1055 memset(serr, 0, sizeof(*serr)); 1056 serr->ee.ee_errno = 0; 1057 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1058 serr->ee.ee_data = hi; 1059 serr->ee.ee_info = lo; 1060 if (!success) 1061 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1062 1063 q = &sk->sk_error_queue; 1064 spin_lock_irqsave(&q->lock, flags); 1065 tail = skb_peek_tail(q); 1066 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1067 !skb_zerocopy_notify_extend(tail, lo, len)) { 1068 __skb_queue_tail(q, skb); 1069 skb = NULL; 1070 } 1071 spin_unlock_irqrestore(&q->lock, flags); 1072 1073 sk->sk_error_report(sk); 1074 1075 release: 1076 consume_skb(skb); 1077 sock_put(sk); 1078 } 1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1080 1081 void sock_zerocopy_put(struct ubuf_info *uarg) 1082 { 1083 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1084 if (uarg->callback) 1085 uarg->callback(uarg, uarg->zerocopy); 1086 else 1087 consume_skb(skb_from_uarg(uarg)); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1091 1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1093 { 1094 if (uarg) { 1095 struct sock *sk = skb_from_uarg(uarg)->sk; 1096 1097 atomic_dec(&sk->sk_zckey); 1098 uarg->len--; 1099 1100 sock_zerocopy_put(uarg); 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1104 1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1106 struct iov_iter *from, size_t length); 1107 1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1109 struct msghdr *msg, int len, 1110 struct ubuf_info *uarg) 1111 { 1112 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1113 struct iov_iter orig_iter = msg->msg_iter; 1114 int err, orig_len = skb->len; 1115 1116 /* An skb can only point to one uarg. This edge case happens when 1117 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1118 */ 1119 if (orig_uarg && uarg != orig_uarg) 1120 return -EEXIST; 1121 1122 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1123 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1124 struct sock *save_sk = skb->sk; 1125 1126 /* Streams do not free skb on error. Reset to prev state. */ 1127 msg->msg_iter = orig_iter; 1128 skb->sk = sk; 1129 ___pskb_trim(skb, orig_len); 1130 skb->sk = save_sk; 1131 return err; 1132 } 1133 1134 skb_zcopy_set(skb, uarg); 1135 return skb->len - orig_len; 1136 } 1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1138 1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1140 gfp_t gfp_mask) 1141 { 1142 if (skb_zcopy(orig)) { 1143 if (skb_zcopy(nskb)) { 1144 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1145 if (!gfp_mask) { 1146 WARN_ON_ONCE(1); 1147 return -ENOMEM; 1148 } 1149 if (skb_uarg(nskb) == skb_uarg(orig)) 1150 return 0; 1151 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1152 return -EIO; 1153 } 1154 skb_zcopy_set(nskb, skb_uarg(orig)); 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1161 * @skb: the skb to modify 1162 * @gfp_mask: allocation priority 1163 * 1164 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1165 * It will copy all frags into kernel and drop the reference 1166 * to userspace pages. 1167 * 1168 * If this function is called from an interrupt gfp_mask() must be 1169 * %GFP_ATOMIC. 1170 * 1171 * Returns 0 on success or a negative error code on failure 1172 * to allocate kernel memory to copy to. 1173 */ 1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1175 { 1176 int num_frags = skb_shinfo(skb)->nr_frags; 1177 struct page *page, *head = NULL; 1178 int i, new_frags; 1179 u32 d_off; 1180 1181 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1182 return -EINVAL; 1183 1184 if (!num_frags) 1185 goto release; 1186 1187 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1188 for (i = 0; i < new_frags; i++) { 1189 page = alloc_page(gfp_mask); 1190 if (!page) { 1191 while (head) { 1192 struct page *next = (struct page *)page_private(head); 1193 put_page(head); 1194 head = next; 1195 } 1196 return -ENOMEM; 1197 } 1198 set_page_private(page, (unsigned long)head); 1199 head = page; 1200 } 1201 1202 page = head; 1203 d_off = 0; 1204 for (i = 0; i < num_frags; i++) { 1205 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1206 u32 p_off, p_len, copied; 1207 struct page *p; 1208 u8 *vaddr; 1209 1210 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1211 p, p_off, p_len, copied) { 1212 u32 copy, done = 0; 1213 vaddr = kmap_atomic(p); 1214 1215 while (done < p_len) { 1216 if (d_off == PAGE_SIZE) { 1217 d_off = 0; 1218 page = (struct page *)page_private(page); 1219 } 1220 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1221 memcpy(page_address(page) + d_off, 1222 vaddr + p_off + done, copy); 1223 done += copy; 1224 d_off += copy; 1225 } 1226 kunmap_atomic(vaddr); 1227 } 1228 } 1229 1230 /* skb frags release userspace buffers */ 1231 for (i = 0; i < num_frags; i++) 1232 skb_frag_unref(skb, i); 1233 1234 /* skb frags point to kernel buffers */ 1235 for (i = 0; i < new_frags - 1; i++) { 1236 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1237 head = (struct page *)page_private(head); 1238 } 1239 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1240 skb_shinfo(skb)->nr_frags = new_frags; 1241 1242 release: 1243 skb_zcopy_clear(skb, false); 1244 return 0; 1245 } 1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1247 1248 /** 1249 * skb_clone - duplicate an sk_buff 1250 * @skb: buffer to clone 1251 * @gfp_mask: allocation priority 1252 * 1253 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1254 * copies share the same packet data but not structure. The new 1255 * buffer has a reference count of 1. If the allocation fails the 1256 * function returns %NULL otherwise the new buffer is returned. 1257 * 1258 * If this function is called from an interrupt gfp_mask() must be 1259 * %GFP_ATOMIC. 1260 */ 1261 1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1263 { 1264 struct sk_buff_fclones *fclones = container_of(skb, 1265 struct sk_buff_fclones, 1266 skb1); 1267 struct sk_buff *n; 1268 1269 if (skb_orphan_frags(skb, gfp_mask)) 1270 return NULL; 1271 1272 if (skb->fclone == SKB_FCLONE_ORIG && 1273 refcount_read(&fclones->fclone_ref) == 1) { 1274 n = &fclones->skb2; 1275 refcount_set(&fclones->fclone_ref, 2); 1276 } else { 1277 if (skb_pfmemalloc(skb)) 1278 gfp_mask |= __GFP_MEMALLOC; 1279 1280 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1281 if (!n) 1282 return NULL; 1283 1284 n->fclone = SKB_FCLONE_UNAVAILABLE; 1285 } 1286 1287 return __skb_clone(n, skb); 1288 } 1289 EXPORT_SYMBOL(skb_clone); 1290 1291 void skb_headers_offset_update(struct sk_buff *skb, int off) 1292 { 1293 /* Only adjust this if it actually is csum_start rather than csum */ 1294 if (skb->ip_summed == CHECKSUM_PARTIAL) 1295 skb->csum_start += off; 1296 /* {transport,network,mac}_header and tail are relative to skb->head */ 1297 skb->transport_header += off; 1298 skb->network_header += off; 1299 if (skb_mac_header_was_set(skb)) 1300 skb->mac_header += off; 1301 skb->inner_transport_header += off; 1302 skb->inner_network_header += off; 1303 skb->inner_mac_header += off; 1304 } 1305 EXPORT_SYMBOL(skb_headers_offset_update); 1306 1307 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1308 { 1309 __copy_skb_header(new, old); 1310 1311 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1312 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1313 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1314 } 1315 EXPORT_SYMBOL(skb_copy_header); 1316 1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1318 { 1319 if (skb_pfmemalloc(skb)) 1320 return SKB_ALLOC_RX; 1321 return 0; 1322 } 1323 1324 /** 1325 * skb_copy - create private copy of an sk_buff 1326 * @skb: buffer to copy 1327 * @gfp_mask: allocation priority 1328 * 1329 * Make a copy of both an &sk_buff and its data. This is used when the 1330 * caller wishes to modify the data and needs a private copy of the 1331 * data to alter. Returns %NULL on failure or the pointer to the buffer 1332 * on success. The returned buffer has a reference count of 1. 1333 * 1334 * As by-product this function converts non-linear &sk_buff to linear 1335 * one, so that &sk_buff becomes completely private and caller is allowed 1336 * to modify all the data of returned buffer. This means that this 1337 * function is not recommended for use in circumstances when only 1338 * header is going to be modified. Use pskb_copy() instead. 1339 */ 1340 1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int headerlen = skb_headroom(skb); 1344 unsigned int size = skb_end_offset(skb) + skb->data_len; 1345 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1346 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1347 1348 if (!n) 1349 return NULL; 1350 1351 /* Set the data pointer */ 1352 skb_reserve(n, headerlen); 1353 /* Set the tail pointer and length */ 1354 skb_put(n, skb->len); 1355 1356 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1357 1358 skb_copy_header(n, skb); 1359 return n; 1360 } 1361 EXPORT_SYMBOL(skb_copy); 1362 1363 /** 1364 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1365 * @skb: buffer to copy 1366 * @headroom: headroom of new skb 1367 * @gfp_mask: allocation priority 1368 * @fclone: if true allocate the copy of the skb from the fclone 1369 * cache instead of the head cache; it is recommended to set this 1370 * to true for the cases where the copy will likely be cloned 1371 * 1372 * Make a copy of both an &sk_buff and part of its data, located 1373 * in header. Fragmented data remain shared. This is used when 1374 * the caller wishes to modify only header of &sk_buff and needs 1375 * private copy of the header to alter. Returns %NULL on failure 1376 * or the pointer to the buffer on success. 1377 * The returned buffer has a reference count of 1. 1378 */ 1379 1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1381 gfp_t gfp_mask, bool fclone) 1382 { 1383 unsigned int size = skb_headlen(skb) + headroom; 1384 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1385 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1386 1387 if (!n) 1388 goto out; 1389 1390 /* Set the data pointer */ 1391 skb_reserve(n, headroom); 1392 /* Set the tail pointer and length */ 1393 skb_put(n, skb_headlen(skb)); 1394 /* Copy the bytes */ 1395 skb_copy_from_linear_data(skb, n->data, n->len); 1396 1397 n->truesize += skb->data_len; 1398 n->data_len = skb->data_len; 1399 n->len = skb->len; 1400 1401 if (skb_shinfo(skb)->nr_frags) { 1402 int i; 1403 1404 if (skb_orphan_frags(skb, gfp_mask) || 1405 skb_zerocopy_clone(n, skb, gfp_mask)) { 1406 kfree_skb(n); 1407 n = NULL; 1408 goto out; 1409 } 1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1411 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1412 skb_frag_ref(skb, i); 1413 } 1414 skb_shinfo(n)->nr_frags = i; 1415 } 1416 1417 if (skb_has_frag_list(skb)) { 1418 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1419 skb_clone_fraglist(n); 1420 } 1421 1422 skb_copy_header(n, skb); 1423 out: 1424 return n; 1425 } 1426 EXPORT_SYMBOL(__pskb_copy_fclone); 1427 1428 /** 1429 * pskb_expand_head - reallocate header of &sk_buff 1430 * @skb: buffer to reallocate 1431 * @nhead: room to add at head 1432 * @ntail: room to add at tail 1433 * @gfp_mask: allocation priority 1434 * 1435 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1436 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1437 * reference count of 1. Returns zero in the case of success or error, 1438 * if expansion failed. In the last case, &sk_buff is not changed. 1439 * 1440 * All the pointers pointing into skb header may change and must be 1441 * reloaded after call to this function. 1442 */ 1443 1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1445 gfp_t gfp_mask) 1446 { 1447 int i, osize = skb_end_offset(skb); 1448 int size = osize + nhead + ntail; 1449 long off; 1450 u8 *data; 1451 1452 BUG_ON(nhead < 0); 1453 1454 BUG_ON(skb_shared(skb)); 1455 1456 size = SKB_DATA_ALIGN(size); 1457 1458 if (skb_pfmemalloc(skb)) 1459 gfp_mask |= __GFP_MEMALLOC; 1460 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1461 gfp_mask, NUMA_NO_NODE, NULL); 1462 if (!data) 1463 goto nodata; 1464 size = SKB_WITH_OVERHEAD(ksize(data)); 1465 1466 /* Copy only real data... and, alas, header. This should be 1467 * optimized for the cases when header is void. 1468 */ 1469 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1470 1471 memcpy((struct skb_shared_info *)(data + size), 1472 skb_shinfo(skb), 1473 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1474 1475 /* 1476 * if shinfo is shared we must drop the old head gracefully, but if it 1477 * is not we can just drop the old head and let the existing refcount 1478 * be since all we did is relocate the values 1479 */ 1480 if (skb_cloned(skb)) { 1481 if (skb_orphan_frags(skb, gfp_mask)) 1482 goto nofrags; 1483 if (skb_zcopy(skb)) 1484 refcount_inc(&skb_uarg(skb)->refcnt); 1485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1486 skb_frag_ref(skb, i); 1487 1488 if (skb_has_frag_list(skb)) 1489 skb_clone_fraglist(skb); 1490 1491 skb_release_data(skb); 1492 } else { 1493 skb_free_head(skb); 1494 } 1495 off = (data + nhead) - skb->head; 1496 1497 skb->head = data; 1498 skb->head_frag = 0; 1499 skb->data += off; 1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1501 skb->end = size; 1502 off = nhead; 1503 #else 1504 skb->end = skb->head + size; 1505 #endif 1506 skb->tail += off; 1507 skb_headers_offset_update(skb, nhead); 1508 skb->cloned = 0; 1509 skb->hdr_len = 0; 1510 skb->nohdr = 0; 1511 atomic_set(&skb_shinfo(skb)->dataref, 1); 1512 1513 skb_metadata_clear(skb); 1514 1515 /* It is not generally safe to change skb->truesize. 1516 * For the moment, we really care of rx path, or 1517 * when skb is orphaned (not attached to a socket). 1518 */ 1519 if (!skb->sk || skb->destructor == sock_edemux) 1520 skb->truesize += size - osize; 1521 1522 return 0; 1523 1524 nofrags: 1525 kfree(data); 1526 nodata: 1527 return -ENOMEM; 1528 } 1529 EXPORT_SYMBOL(pskb_expand_head); 1530 1531 /* Make private copy of skb with writable head and some headroom */ 1532 1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1534 { 1535 struct sk_buff *skb2; 1536 int delta = headroom - skb_headroom(skb); 1537 1538 if (delta <= 0) 1539 skb2 = pskb_copy(skb, GFP_ATOMIC); 1540 else { 1541 skb2 = skb_clone(skb, GFP_ATOMIC); 1542 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1543 GFP_ATOMIC)) { 1544 kfree_skb(skb2); 1545 skb2 = NULL; 1546 } 1547 } 1548 return skb2; 1549 } 1550 EXPORT_SYMBOL(skb_realloc_headroom); 1551 1552 /** 1553 * skb_copy_expand - copy and expand sk_buff 1554 * @skb: buffer to copy 1555 * @newheadroom: new free bytes at head 1556 * @newtailroom: new free bytes at tail 1557 * @gfp_mask: allocation priority 1558 * 1559 * Make a copy of both an &sk_buff and its data and while doing so 1560 * allocate additional space. 1561 * 1562 * This is used when the caller wishes to modify the data and needs a 1563 * private copy of the data to alter as well as more space for new fields. 1564 * Returns %NULL on failure or the pointer to the buffer 1565 * on success. The returned buffer has a reference count of 1. 1566 * 1567 * You must pass %GFP_ATOMIC as the allocation priority if this function 1568 * is called from an interrupt. 1569 */ 1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1571 int newheadroom, int newtailroom, 1572 gfp_t gfp_mask) 1573 { 1574 /* 1575 * Allocate the copy buffer 1576 */ 1577 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1578 gfp_mask, skb_alloc_rx_flag(skb), 1579 NUMA_NO_NODE); 1580 int oldheadroom = skb_headroom(skb); 1581 int head_copy_len, head_copy_off; 1582 1583 if (!n) 1584 return NULL; 1585 1586 skb_reserve(n, newheadroom); 1587 1588 /* Set the tail pointer and length */ 1589 skb_put(n, skb->len); 1590 1591 head_copy_len = oldheadroom; 1592 head_copy_off = 0; 1593 if (newheadroom <= head_copy_len) 1594 head_copy_len = newheadroom; 1595 else 1596 head_copy_off = newheadroom - head_copy_len; 1597 1598 /* Copy the linear header and data. */ 1599 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1600 skb->len + head_copy_len)); 1601 1602 skb_copy_header(n, skb); 1603 1604 skb_headers_offset_update(n, newheadroom - oldheadroom); 1605 1606 return n; 1607 } 1608 EXPORT_SYMBOL(skb_copy_expand); 1609 1610 /** 1611 * __skb_pad - zero pad the tail of an skb 1612 * @skb: buffer to pad 1613 * @pad: space to pad 1614 * @free_on_error: free buffer on error 1615 * 1616 * Ensure that a buffer is followed by a padding area that is zero 1617 * filled. Used by network drivers which may DMA or transfer data 1618 * beyond the buffer end onto the wire. 1619 * 1620 * May return error in out of memory cases. The skb is freed on error 1621 * if @free_on_error is true. 1622 */ 1623 1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1625 { 1626 int err; 1627 int ntail; 1628 1629 /* If the skbuff is non linear tailroom is always zero.. */ 1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1631 memset(skb->data+skb->len, 0, pad); 1632 return 0; 1633 } 1634 1635 ntail = skb->data_len + pad - (skb->end - skb->tail); 1636 if (likely(skb_cloned(skb) || ntail > 0)) { 1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1638 if (unlikely(err)) 1639 goto free_skb; 1640 } 1641 1642 /* FIXME: The use of this function with non-linear skb's really needs 1643 * to be audited. 1644 */ 1645 err = skb_linearize(skb); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 1649 memset(skb->data + skb->len, 0, pad); 1650 return 0; 1651 1652 free_skb: 1653 if (free_on_error) 1654 kfree_skb(skb); 1655 return err; 1656 } 1657 EXPORT_SYMBOL(__skb_pad); 1658 1659 /** 1660 * pskb_put - add data to the tail of a potentially fragmented buffer 1661 * @skb: start of the buffer to use 1662 * @tail: tail fragment of the buffer to use 1663 * @len: amount of data to add 1664 * 1665 * This function extends the used data area of the potentially 1666 * fragmented buffer. @tail must be the last fragment of @skb -- or 1667 * @skb itself. If this would exceed the total buffer size the kernel 1668 * will panic. A pointer to the first byte of the extra data is 1669 * returned. 1670 */ 1671 1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1673 { 1674 if (tail != skb) { 1675 skb->data_len += len; 1676 skb->len += len; 1677 } 1678 return skb_put(tail, len); 1679 } 1680 EXPORT_SYMBOL_GPL(pskb_put); 1681 1682 /** 1683 * skb_put - add data to a buffer 1684 * @skb: buffer to use 1685 * @len: amount of data to add 1686 * 1687 * This function extends the used data area of the buffer. If this would 1688 * exceed the total buffer size the kernel will panic. A pointer to the 1689 * first byte of the extra data is returned. 1690 */ 1691 void *skb_put(struct sk_buff *skb, unsigned int len) 1692 { 1693 void *tmp = skb_tail_pointer(skb); 1694 SKB_LINEAR_ASSERT(skb); 1695 skb->tail += len; 1696 skb->len += len; 1697 if (unlikely(skb->tail > skb->end)) 1698 skb_over_panic(skb, len, __builtin_return_address(0)); 1699 return tmp; 1700 } 1701 EXPORT_SYMBOL(skb_put); 1702 1703 /** 1704 * skb_push - add data to the start of a buffer 1705 * @skb: buffer to use 1706 * @len: amount of data to add 1707 * 1708 * This function extends the used data area of the buffer at the buffer 1709 * start. If this would exceed the total buffer headroom the kernel will 1710 * panic. A pointer to the first byte of the extra data is returned. 1711 */ 1712 void *skb_push(struct sk_buff *skb, unsigned int len) 1713 { 1714 skb->data -= len; 1715 skb->len += len; 1716 if (unlikely(skb->data < skb->head)) 1717 skb_under_panic(skb, len, __builtin_return_address(0)); 1718 return skb->data; 1719 } 1720 EXPORT_SYMBOL(skb_push); 1721 1722 /** 1723 * skb_pull - remove data from the start of a buffer 1724 * @skb: buffer to use 1725 * @len: amount of data to remove 1726 * 1727 * This function removes data from the start of a buffer, returning 1728 * the memory to the headroom. A pointer to the next data in the buffer 1729 * is returned. Once the data has been pulled future pushes will overwrite 1730 * the old data. 1731 */ 1732 void *skb_pull(struct sk_buff *skb, unsigned int len) 1733 { 1734 return skb_pull_inline(skb, len); 1735 } 1736 EXPORT_SYMBOL(skb_pull); 1737 1738 /** 1739 * skb_trim - remove end from a buffer 1740 * @skb: buffer to alter 1741 * @len: new length 1742 * 1743 * Cut the length of a buffer down by removing data from the tail. If 1744 * the buffer is already under the length specified it is not modified. 1745 * The skb must be linear. 1746 */ 1747 void skb_trim(struct sk_buff *skb, unsigned int len) 1748 { 1749 if (skb->len > len) 1750 __skb_trim(skb, len); 1751 } 1752 EXPORT_SYMBOL(skb_trim); 1753 1754 /* Trims skb to length len. It can change skb pointers. 1755 */ 1756 1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1758 { 1759 struct sk_buff **fragp; 1760 struct sk_buff *frag; 1761 int offset = skb_headlen(skb); 1762 int nfrags = skb_shinfo(skb)->nr_frags; 1763 int i; 1764 int err; 1765 1766 if (skb_cloned(skb) && 1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1768 return err; 1769 1770 i = 0; 1771 if (offset >= len) 1772 goto drop_pages; 1773 1774 for (; i < nfrags; i++) { 1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1776 1777 if (end < len) { 1778 offset = end; 1779 continue; 1780 } 1781 1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1783 1784 drop_pages: 1785 skb_shinfo(skb)->nr_frags = i; 1786 1787 for (; i < nfrags; i++) 1788 skb_frag_unref(skb, i); 1789 1790 if (skb_has_frag_list(skb)) 1791 skb_drop_fraglist(skb); 1792 goto done; 1793 } 1794 1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1796 fragp = &frag->next) { 1797 int end = offset + frag->len; 1798 1799 if (skb_shared(frag)) { 1800 struct sk_buff *nfrag; 1801 1802 nfrag = skb_clone(frag, GFP_ATOMIC); 1803 if (unlikely(!nfrag)) 1804 return -ENOMEM; 1805 1806 nfrag->next = frag->next; 1807 consume_skb(frag); 1808 frag = nfrag; 1809 *fragp = frag; 1810 } 1811 1812 if (end < len) { 1813 offset = end; 1814 continue; 1815 } 1816 1817 if (end > len && 1818 unlikely((err = pskb_trim(frag, len - offset)))) 1819 return err; 1820 1821 if (frag->next) 1822 skb_drop_list(&frag->next); 1823 break; 1824 } 1825 1826 done: 1827 if (len > skb_headlen(skb)) { 1828 skb->data_len -= skb->len - len; 1829 skb->len = len; 1830 } else { 1831 skb->len = len; 1832 skb->data_len = 0; 1833 skb_set_tail_pointer(skb, len); 1834 } 1835 1836 if (!skb->sk || skb->destructor == sock_edemux) 1837 skb_condense(skb); 1838 return 0; 1839 } 1840 EXPORT_SYMBOL(___pskb_trim); 1841 1842 /* Note : use pskb_trim_rcsum() instead of calling this directly 1843 */ 1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1845 { 1846 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1847 int delta = skb->len - len; 1848 1849 skb->csum = csum_sub(skb->csum, 1850 skb_checksum(skb, len, delta, 0)); 1851 } 1852 return __pskb_trim(skb, len); 1853 } 1854 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1855 1856 /** 1857 * __pskb_pull_tail - advance tail of skb header 1858 * @skb: buffer to reallocate 1859 * @delta: number of bytes to advance tail 1860 * 1861 * The function makes a sense only on a fragmented &sk_buff, 1862 * it expands header moving its tail forward and copying necessary 1863 * data from fragmented part. 1864 * 1865 * &sk_buff MUST have reference count of 1. 1866 * 1867 * Returns %NULL (and &sk_buff does not change) if pull failed 1868 * or value of new tail of skb in the case of success. 1869 * 1870 * All the pointers pointing into skb header may change and must be 1871 * reloaded after call to this function. 1872 */ 1873 1874 /* Moves tail of skb head forward, copying data from fragmented part, 1875 * when it is necessary. 1876 * 1. It may fail due to malloc failure. 1877 * 2. It may change skb pointers. 1878 * 1879 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1880 */ 1881 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1882 { 1883 /* If skb has not enough free space at tail, get new one 1884 * plus 128 bytes for future expansions. If we have enough 1885 * room at tail, reallocate without expansion only if skb is cloned. 1886 */ 1887 int i, k, eat = (skb->tail + delta) - skb->end; 1888 1889 if (eat > 0 || skb_cloned(skb)) { 1890 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1891 GFP_ATOMIC)) 1892 return NULL; 1893 } 1894 1895 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1896 skb_tail_pointer(skb), delta)); 1897 1898 /* Optimization: no fragments, no reasons to preestimate 1899 * size of pulled pages. Superb. 1900 */ 1901 if (!skb_has_frag_list(skb)) 1902 goto pull_pages; 1903 1904 /* Estimate size of pulled pages. */ 1905 eat = delta; 1906 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1907 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1908 1909 if (size >= eat) 1910 goto pull_pages; 1911 eat -= size; 1912 } 1913 1914 /* If we need update frag list, we are in troubles. 1915 * Certainly, it is possible to add an offset to skb data, 1916 * but taking into account that pulling is expected to 1917 * be very rare operation, it is worth to fight against 1918 * further bloating skb head and crucify ourselves here instead. 1919 * Pure masohism, indeed. 8)8) 1920 */ 1921 if (eat) { 1922 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1923 struct sk_buff *clone = NULL; 1924 struct sk_buff *insp = NULL; 1925 1926 do { 1927 BUG_ON(!list); 1928 1929 if (list->len <= eat) { 1930 /* Eaten as whole. */ 1931 eat -= list->len; 1932 list = list->next; 1933 insp = list; 1934 } else { 1935 /* Eaten partially. */ 1936 1937 if (skb_shared(list)) { 1938 /* Sucks! We need to fork list. :-( */ 1939 clone = skb_clone(list, GFP_ATOMIC); 1940 if (!clone) 1941 return NULL; 1942 insp = list->next; 1943 list = clone; 1944 } else { 1945 /* This may be pulled without 1946 * problems. */ 1947 insp = list; 1948 } 1949 if (!pskb_pull(list, eat)) { 1950 kfree_skb(clone); 1951 return NULL; 1952 } 1953 break; 1954 } 1955 } while (eat); 1956 1957 /* Free pulled out fragments. */ 1958 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1959 skb_shinfo(skb)->frag_list = list->next; 1960 kfree_skb(list); 1961 } 1962 /* And insert new clone at head. */ 1963 if (clone) { 1964 clone->next = list; 1965 skb_shinfo(skb)->frag_list = clone; 1966 } 1967 } 1968 /* Success! Now we may commit changes to skb data. */ 1969 1970 pull_pages: 1971 eat = delta; 1972 k = 0; 1973 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1974 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1975 1976 if (size <= eat) { 1977 skb_frag_unref(skb, i); 1978 eat -= size; 1979 } else { 1980 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1981 if (eat) { 1982 skb_shinfo(skb)->frags[k].page_offset += eat; 1983 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1984 if (!i) 1985 goto end; 1986 eat = 0; 1987 } 1988 k++; 1989 } 1990 } 1991 skb_shinfo(skb)->nr_frags = k; 1992 1993 end: 1994 skb->tail += delta; 1995 skb->data_len -= delta; 1996 1997 if (!skb->data_len) 1998 skb_zcopy_clear(skb, false); 1999 2000 return skb_tail_pointer(skb); 2001 } 2002 EXPORT_SYMBOL(__pskb_pull_tail); 2003 2004 /** 2005 * skb_copy_bits - copy bits from skb to kernel buffer 2006 * @skb: source skb 2007 * @offset: offset in source 2008 * @to: destination buffer 2009 * @len: number of bytes to copy 2010 * 2011 * Copy the specified number of bytes from the source skb to the 2012 * destination buffer. 2013 * 2014 * CAUTION ! : 2015 * If its prototype is ever changed, 2016 * check arch/{*}/net/{*}.S files, 2017 * since it is called from BPF assembly code. 2018 */ 2019 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2020 { 2021 int start = skb_headlen(skb); 2022 struct sk_buff *frag_iter; 2023 int i, copy; 2024 2025 if (offset > (int)skb->len - len) 2026 goto fault; 2027 2028 /* Copy header. */ 2029 if ((copy = start - offset) > 0) { 2030 if (copy > len) 2031 copy = len; 2032 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2033 if ((len -= copy) == 0) 2034 return 0; 2035 offset += copy; 2036 to += copy; 2037 } 2038 2039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2040 int end; 2041 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2042 2043 WARN_ON(start > offset + len); 2044 2045 end = start + skb_frag_size(f); 2046 if ((copy = end - offset) > 0) { 2047 u32 p_off, p_len, copied; 2048 struct page *p; 2049 u8 *vaddr; 2050 2051 if (copy > len) 2052 copy = len; 2053 2054 skb_frag_foreach_page(f, 2055 f->page_offset + offset - start, 2056 copy, p, p_off, p_len, copied) { 2057 vaddr = kmap_atomic(p); 2058 memcpy(to + copied, vaddr + p_off, p_len); 2059 kunmap_atomic(vaddr); 2060 } 2061 2062 if ((len -= copy) == 0) 2063 return 0; 2064 offset += copy; 2065 to += copy; 2066 } 2067 start = end; 2068 } 2069 2070 skb_walk_frags(skb, frag_iter) { 2071 int end; 2072 2073 WARN_ON(start > offset + len); 2074 2075 end = start + frag_iter->len; 2076 if ((copy = end - offset) > 0) { 2077 if (copy > len) 2078 copy = len; 2079 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2080 goto fault; 2081 if ((len -= copy) == 0) 2082 return 0; 2083 offset += copy; 2084 to += copy; 2085 } 2086 start = end; 2087 } 2088 2089 if (!len) 2090 return 0; 2091 2092 fault: 2093 return -EFAULT; 2094 } 2095 EXPORT_SYMBOL(skb_copy_bits); 2096 2097 /* 2098 * Callback from splice_to_pipe(), if we need to release some pages 2099 * at the end of the spd in case we error'ed out in filling the pipe. 2100 */ 2101 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2102 { 2103 put_page(spd->pages[i]); 2104 } 2105 2106 static struct page *linear_to_page(struct page *page, unsigned int *len, 2107 unsigned int *offset, 2108 struct sock *sk) 2109 { 2110 struct page_frag *pfrag = sk_page_frag(sk); 2111 2112 if (!sk_page_frag_refill(sk, pfrag)) 2113 return NULL; 2114 2115 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2116 2117 memcpy(page_address(pfrag->page) + pfrag->offset, 2118 page_address(page) + *offset, *len); 2119 *offset = pfrag->offset; 2120 pfrag->offset += *len; 2121 2122 return pfrag->page; 2123 } 2124 2125 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2126 struct page *page, 2127 unsigned int offset) 2128 { 2129 return spd->nr_pages && 2130 spd->pages[spd->nr_pages - 1] == page && 2131 (spd->partial[spd->nr_pages - 1].offset + 2132 spd->partial[spd->nr_pages - 1].len == offset); 2133 } 2134 2135 /* 2136 * Fill page/offset/length into spd, if it can hold more pages. 2137 */ 2138 static bool spd_fill_page(struct splice_pipe_desc *spd, 2139 struct pipe_inode_info *pipe, struct page *page, 2140 unsigned int *len, unsigned int offset, 2141 bool linear, 2142 struct sock *sk) 2143 { 2144 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2145 return true; 2146 2147 if (linear) { 2148 page = linear_to_page(page, len, &offset, sk); 2149 if (!page) 2150 return true; 2151 } 2152 if (spd_can_coalesce(spd, page, offset)) { 2153 spd->partial[spd->nr_pages - 1].len += *len; 2154 return false; 2155 } 2156 get_page(page); 2157 spd->pages[spd->nr_pages] = page; 2158 spd->partial[spd->nr_pages].len = *len; 2159 spd->partial[spd->nr_pages].offset = offset; 2160 spd->nr_pages++; 2161 2162 return false; 2163 } 2164 2165 static bool __splice_segment(struct page *page, unsigned int poff, 2166 unsigned int plen, unsigned int *off, 2167 unsigned int *len, 2168 struct splice_pipe_desc *spd, bool linear, 2169 struct sock *sk, 2170 struct pipe_inode_info *pipe) 2171 { 2172 if (!*len) 2173 return true; 2174 2175 /* skip this segment if already processed */ 2176 if (*off >= plen) { 2177 *off -= plen; 2178 return false; 2179 } 2180 2181 /* ignore any bits we already processed */ 2182 poff += *off; 2183 plen -= *off; 2184 *off = 0; 2185 2186 do { 2187 unsigned int flen = min(*len, plen); 2188 2189 if (spd_fill_page(spd, pipe, page, &flen, poff, 2190 linear, sk)) 2191 return true; 2192 poff += flen; 2193 plen -= flen; 2194 *len -= flen; 2195 } while (*len && plen); 2196 2197 return false; 2198 } 2199 2200 /* 2201 * Map linear and fragment data from the skb to spd. It reports true if the 2202 * pipe is full or if we already spliced the requested length. 2203 */ 2204 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2205 unsigned int *offset, unsigned int *len, 2206 struct splice_pipe_desc *spd, struct sock *sk) 2207 { 2208 int seg; 2209 struct sk_buff *iter; 2210 2211 /* map the linear part : 2212 * If skb->head_frag is set, this 'linear' part is backed by a 2213 * fragment, and if the head is not shared with any clones then 2214 * we can avoid a copy since we own the head portion of this page. 2215 */ 2216 if (__splice_segment(virt_to_page(skb->data), 2217 (unsigned long) skb->data & (PAGE_SIZE - 1), 2218 skb_headlen(skb), 2219 offset, len, spd, 2220 skb_head_is_locked(skb), 2221 sk, pipe)) 2222 return true; 2223 2224 /* 2225 * then map the fragments 2226 */ 2227 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2228 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2229 2230 if (__splice_segment(skb_frag_page(f), 2231 f->page_offset, skb_frag_size(f), 2232 offset, len, spd, false, sk, pipe)) 2233 return true; 2234 } 2235 2236 skb_walk_frags(skb, iter) { 2237 if (*offset >= iter->len) { 2238 *offset -= iter->len; 2239 continue; 2240 } 2241 /* __skb_splice_bits() only fails if the output has no room 2242 * left, so no point in going over the frag_list for the error 2243 * case. 2244 */ 2245 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2246 return true; 2247 } 2248 2249 return false; 2250 } 2251 2252 /* 2253 * Map data from the skb to a pipe. Should handle both the linear part, 2254 * the fragments, and the frag list. 2255 */ 2256 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2257 struct pipe_inode_info *pipe, unsigned int tlen, 2258 unsigned int flags) 2259 { 2260 struct partial_page partial[MAX_SKB_FRAGS]; 2261 struct page *pages[MAX_SKB_FRAGS]; 2262 struct splice_pipe_desc spd = { 2263 .pages = pages, 2264 .partial = partial, 2265 .nr_pages_max = MAX_SKB_FRAGS, 2266 .ops = &nosteal_pipe_buf_ops, 2267 .spd_release = sock_spd_release, 2268 }; 2269 int ret = 0; 2270 2271 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2272 2273 if (spd.nr_pages) 2274 ret = splice_to_pipe(pipe, &spd); 2275 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(skb_splice_bits); 2279 2280 /* Send skb data on a socket. Socket must be locked. */ 2281 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2282 int len) 2283 { 2284 unsigned int orig_len = len; 2285 struct sk_buff *head = skb; 2286 unsigned short fragidx; 2287 int slen, ret; 2288 2289 do_frag_list: 2290 2291 /* Deal with head data */ 2292 while (offset < skb_headlen(skb) && len) { 2293 struct kvec kv; 2294 struct msghdr msg; 2295 2296 slen = min_t(int, len, skb_headlen(skb) - offset); 2297 kv.iov_base = skb->data + offset; 2298 kv.iov_len = slen; 2299 memset(&msg, 0, sizeof(msg)); 2300 2301 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2302 if (ret <= 0) 2303 goto error; 2304 2305 offset += ret; 2306 len -= ret; 2307 } 2308 2309 /* All the data was skb head? */ 2310 if (!len) 2311 goto out; 2312 2313 /* Make offset relative to start of frags */ 2314 offset -= skb_headlen(skb); 2315 2316 /* Find where we are in frag list */ 2317 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2318 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2319 2320 if (offset < frag->size) 2321 break; 2322 2323 offset -= frag->size; 2324 } 2325 2326 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2327 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2328 2329 slen = min_t(size_t, len, frag->size - offset); 2330 2331 while (slen) { 2332 ret = kernel_sendpage_locked(sk, frag->page.p, 2333 frag->page_offset + offset, 2334 slen, MSG_DONTWAIT); 2335 if (ret <= 0) 2336 goto error; 2337 2338 len -= ret; 2339 offset += ret; 2340 slen -= ret; 2341 } 2342 2343 offset = 0; 2344 } 2345 2346 if (len) { 2347 /* Process any frag lists */ 2348 2349 if (skb == head) { 2350 if (skb_has_frag_list(skb)) { 2351 skb = skb_shinfo(skb)->frag_list; 2352 goto do_frag_list; 2353 } 2354 } else if (skb->next) { 2355 skb = skb->next; 2356 goto do_frag_list; 2357 } 2358 } 2359 2360 out: 2361 return orig_len - len; 2362 2363 error: 2364 return orig_len == len ? ret : orig_len - len; 2365 } 2366 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2367 2368 /* Send skb data on a socket. */ 2369 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2370 { 2371 int ret = 0; 2372 2373 lock_sock(sk); 2374 ret = skb_send_sock_locked(sk, skb, offset, len); 2375 release_sock(sk); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL_GPL(skb_send_sock); 2380 2381 /** 2382 * skb_store_bits - store bits from kernel buffer to skb 2383 * @skb: destination buffer 2384 * @offset: offset in destination 2385 * @from: source buffer 2386 * @len: number of bytes to copy 2387 * 2388 * Copy the specified number of bytes from the source buffer to the 2389 * destination skb. This function handles all the messy bits of 2390 * traversing fragment lists and such. 2391 */ 2392 2393 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2394 { 2395 int start = skb_headlen(skb); 2396 struct sk_buff *frag_iter; 2397 int i, copy; 2398 2399 if (offset > (int)skb->len - len) 2400 goto fault; 2401 2402 if ((copy = start - offset) > 0) { 2403 if (copy > len) 2404 copy = len; 2405 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2406 if ((len -= copy) == 0) 2407 return 0; 2408 offset += copy; 2409 from += copy; 2410 } 2411 2412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2413 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2414 int end; 2415 2416 WARN_ON(start > offset + len); 2417 2418 end = start + skb_frag_size(frag); 2419 if ((copy = end - offset) > 0) { 2420 u32 p_off, p_len, copied; 2421 struct page *p; 2422 u8 *vaddr; 2423 2424 if (copy > len) 2425 copy = len; 2426 2427 skb_frag_foreach_page(frag, 2428 frag->page_offset + offset - start, 2429 copy, p, p_off, p_len, copied) { 2430 vaddr = kmap_atomic(p); 2431 memcpy(vaddr + p_off, from + copied, p_len); 2432 kunmap_atomic(vaddr); 2433 } 2434 2435 if ((len -= copy) == 0) 2436 return 0; 2437 offset += copy; 2438 from += copy; 2439 } 2440 start = end; 2441 } 2442 2443 skb_walk_frags(skb, frag_iter) { 2444 int end; 2445 2446 WARN_ON(start > offset + len); 2447 2448 end = start + frag_iter->len; 2449 if ((copy = end - offset) > 0) { 2450 if (copy > len) 2451 copy = len; 2452 if (skb_store_bits(frag_iter, offset - start, 2453 from, copy)) 2454 goto fault; 2455 if ((len -= copy) == 0) 2456 return 0; 2457 offset += copy; 2458 from += copy; 2459 } 2460 start = end; 2461 } 2462 if (!len) 2463 return 0; 2464 2465 fault: 2466 return -EFAULT; 2467 } 2468 EXPORT_SYMBOL(skb_store_bits); 2469 2470 /* Checksum skb data. */ 2471 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2472 __wsum csum, const struct skb_checksum_ops *ops) 2473 { 2474 int start = skb_headlen(skb); 2475 int i, copy = start - offset; 2476 struct sk_buff *frag_iter; 2477 int pos = 0; 2478 2479 /* Checksum header. */ 2480 if (copy > 0) { 2481 if (copy > len) 2482 copy = len; 2483 csum = ops->update(skb->data + offset, copy, csum); 2484 if ((len -= copy) == 0) 2485 return csum; 2486 offset += copy; 2487 pos = copy; 2488 } 2489 2490 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2491 int end; 2492 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2493 2494 WARN_ON(start > offset + len); 2495 2496 end = start + skb_frag_size(frag); 2497 if ((copy = end - offset) > 0) { 2498 u32 p_off, p_len, copied; 2499 struct page *p; 2500 __wsum csum2; 2501 u8 *vaddr; 2502 2503 if (copy > len) 2504 copy = len; 2505 2506 skb_frag_foreach_page(frag, 2507 frag->page_offset + offset - start, 2508 copy, p, p_off, p_len, copied) { 2509 vaddr = kmap_atomic(p); 2510 csum2 = ops->update(vaddr + p_off, p_len, 0); 2511 kunmap_atomic(vaddr); 2512 csum = ops->combine(csum, csum2, pos, p_len); 2513 pos += p_len; 2514 } 2515 2516 if (!(len -= copy)) 2517 return csum; 2518 offset += copy; 2519 } 2520 start = end; 2521 } 2522 2523 skb_walk_frags(skb, frag_iter) { 2524 int end; 2525 2526 WARN_ON(start > offset + len); 2527 2528 end = start + frag_iter->len; 2529 if ((copy = end - offset) > 0) { 2530 __wsum csum2; 2531 if (copy > len) 2532 copy = len; 2533 csum2 = __skb_checksum(frag_iter, offset - start, 2534 copy, 0, ops); 2535 csum = ops->combine(csum, csum2, pos, copy); 2536 if ((len -= copy) == 0) 2537 return csum; 2538 offset += copy; 2539 pos += copy; 2540 } 2541 start = end; 2542 } 2543 BUG_ON(len); 2544 2545 return csum; 2546 } 2547 EXPORT_SYMBOL(__skb_checksum); 2548 2549 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2550 int len, __wsum csum) 2551 { 2552 const struct skb_checksum_ops ops = { 2553 .update = csum_partial_ext, 2554 .combine = csum_block_add_ext, 2555 }; 2556 2557 return __skb_checksum(skb, offset, len, csum, &ops); 2558 } 2559 EXPORT_SYMBOL(skb_checksum); 2560 2561 /* Both of above in one bottle. */ 2562 2563 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2564 u8 *to, int len, __wsum csum) 2565 { 2566 int start = skb_headlen(skb); 2567 int i, copy = start - offset; 2568 struct sk_buff *frag_iter; 2569 int pos = 0; 2570 2571 /* Copy header. */ 2572 if (copy > 0) { 2573 if (copy > len) 2574 copy = len; 2575 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2576 copy, csum); 2577 if ((len -= copy) == 0) 2578 return csum; 2579 offset += copy; 2580 to += copy; 2581 pos = copy; 2582 } 2583 2584 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2585 int end; 2586 2587 WARN_ON(start > offset + len); 2588 2589 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2590 if ((copy = end - offset) > 0) { 2591 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2592 u32 p_off, p_len, copied; 2593 struct page *p; 2594 __wsum csum2; 2595 u8 *vaddr; 2596 2597 if (copy > len) 2598 copy = len; 2599 2600 skb_frag_foreach_page(frag, 2601 frag->page_offset + offset - start, 2602 copy, p, p_off, p_len, copied) { 2603 vaddr = kmap_atomic(p); 2604 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2605 to + copied, 2606 p_len, 0); 2607 kunmap_atomic(vaddr); 2608 csum = csum_block_add(csum, csum2, pos); 2609 pos += p_len; 2610 } 2611 2612 if (!(len -= copy)) 2613 return csum; 2614 offset += copy; 2615 to += copy; 2616 } 2617 start = end; 2618 } 2619 2620 skb_walk_frags(skb, frag_iter) { 2621 __wsum csum2; 2622 int end; 2623 2624 WARN_ON(start > offset + len); 2625 2626 end = start + frag_iter->len; 2627 if ((copy = end - offset) > 0) { 2628 if (copy > len) 2629 copy = len; 2630 csum2 = skb_copy_and_csum_bits(frag_iter, 2631 offset - start, 2632 to, copy, 0); 2633 csum = csum_block_add(csum, csum2, pos); 2634 if ((len -= copy) == 0) 2635 return csum; 2636 offset += copy; 2637 to += copy; 2638 pos += copy; 2639 } 2640 start = end; 2641 } 2642 BUG_ON(len); 2643 return csum; 2644 } 2645 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2646 2647 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2648 { 2649 net_warn_ratelimited( 2650 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2651 __func__); 2652 return 0; 2653 } 2654 2655 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2656 int offset, int len) 2657 { 2658 net_warn_ratelimited( 2659 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2660 __func__); 2661 return 0; 2662 } 2663 2664 static const struct skb_checksum_ops default_crc32c_ops = { 2665 .update = warn_crc32c_csum_update, 2666 .combine = warn_crc32c_csum_combine, 2667 }; 2668 2669 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2670 &default_crc32c_ops; 2671 EXPORT_SYMBOL(crc32c_csum_stub); 2672 2673 /** 2674 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2675 * @from: source buffer 2676 * 2677 * Calculates the amount of linear headroom needed in the 'to' skb passed 2678 * into skb_zerocopy(). 2679 */ 2680 unsigned int 2681 skb_zerocopy_headlen(const struct sk_buff *from) 2682 { 2683 unsigned int hlen = 0; 2684 2685 if (!from->head_frag || 2686 skb_headlen(from) < L1_CACHE_BYTES || 2687 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2688 hlen = skb_headlen(from); 2689 2690 if (skb_has_frag_list(from)) 2691 hlen = from->len; 2692 2693 return hlen; 2694 } 2695 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2696 2697 /** 2698 * skb_zerocopy - Zero copy skb to skb 2699 * @to: destination buffer 2700 * @from: source buffer 2701 * @len: number of bytes to copy from source buffer 2702 * @hlen: size of linear headroom in destination buffer 2703 * 2704 * Copies up to `len` bytes from `from` to `to` by creating references 2705 * to the frags in the source buffer. 2706 * 2707 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2708 * headroom in the `to` buffer. 2709 * 2710 * Return value: 2711 * 0: everything is OK 2712 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2713 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2714 */ 2715 int 2716 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2717 { 2718 int i, j = 0; 2719 int plen = 0; /* length of skb->head fragment */ 2720 int ret; 2721 struct page *page; 2722 unsigned int offset; 2723 2724 BUG_ON(!from->head_frag && !hlen); 2725 2726 /* dont bother with small payloads */ 2727 if (len <= skb_tailroom(to)) 2728 return skb_copy_bits(from, 0, skb_put(to, len), len); 2729 2730 if (hlen) { 2731 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2732 if (unlikely(ret)) 2733 return ret; 2734 len -= hlen; 2735 } else { 2736 plen = min_t(int, skb_headlen(from), len); 2737 if (plen) { 2738 page = virt_to_head_page(from->head); 2739 offset = from->data - (unsigned char *)page_address(page); 2740 __skb_fill_page_desc(to, 0, page, offset, plen); 2741 get_page(page); 2742 j = 1; 2743 len -= plen; 2744 } 2745 } 2746 2747 to->truesize += len + plen; 2748 to->len += len + plen; 2749 to->data_len += len + plen; 2750 2751 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2752 skb_tx_error(from); 2753 return -ENOMEM; 2754 } 2755 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2756 2757 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2758 if (!len) 2759 break; 2760 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2761 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2762 len -= skb_shinfo(to)->frags[j].size; 2763 skb_frag_ref(to, j); 2764 j++; 2765 } 2766 skb_shinfo(to)->nr_frags = j; 2767 2768 return 0; 2769 } 2770 EXPORT_SYMBOL_GPL(skb_zerocopy); 2771 2772 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2773 { 2774 __wsum csum; 2775 long csstart; 2776 2777 if (skb->ip_summed == CHECKSUM_PARTIAL) 2778 csstart = skb_checksum_start_offset(skb); 2779 else 2780 csstart = skb_headlen(skb); 2781 2782 BUG_ON(csstart > skb_headlen(skb)); 2783 2784 skb_copy_from_linear_data(skb, to, csstart); 2785 2786 csum = 0; 2787 if (csstart != skb->len) 2788 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2789 skb->len - csstart, 0); 2790 2791 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2792 long csstuff = csstart + skb->csum_offset; 2793 2794 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2795 } 2796 } 2797 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2798 2799 /** 2800 * skb_dequeue - remove from the head of the queue 2801 * @list: list to dequeue from 2802 * 2803 * Remove the head of the list. The list lock is taken so the function 2804 * may be used safely with other locking list functions. The head item is 2805 * returned or %NULL if the list is empty. 2806 */ 2807 2808 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2809 { 2810 unsigned long flags; 2811 struct sk_buff *result; 2812 2813 spin_lock_irqsave(&list->lock, flags); 2814 result = __skb_dequeue(list); 2815 spin_unlock_irqrestore(&list->lock, flags); 2816 return result; 2817 } 2818 EXPORT_SYMBOL(skb_dequeue); 2819 2820 /** 2821 * skb_dequeue_tail - remove from the tail of the queue 2822 * @list: list to dequeue from 2823 * 2824 * Remove the tail of the list. The list lock is taken so the function 2825 * may be used safely with other locking list functions. The tail item is 2826 * returned or %NULL if the list is empty. 2827 */ 2828 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2829 { 2830 unsigned long flags; 2831 struct sk_buff *result; 2832 2833 spin_lock_irqsave(&list->lock, flags); 2834 result = __skb_dequeue_tail(list); 2835 spin_unlock_irqrestore(&list->lock, flags); 2836 return result; 2837 } 2838 EXPORT_SYMBOL(skb_dequeue_tail); 2839 2840 /** 2841 * skb_queue_purge - empty a list 2842 * @list: list to empty 2843 * 2844 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2845 * the list and one reference dropped. This function takes the list 2846 * lock and is atomic with respect to other list locking functions. 2847 */ 2848 void skb_queue_purge(struct sk_buff_head *list) 2849 { 2850 struct sk_buff *skb; 2851 while ((skb = skb_dequeue(list)) != NULL) 2852 kfree_skb(skb); 2853 } 2854 EXPORT_SYMBOL(skb_queue_purge); 2855 2856 /** 2857 * skb_rbtree_purge - empty a skb rbtree 2858 * @root: root of the rbtree to empty 2859 * Return value: the sum of truesizes of all purged skbs. 2860 * 2861 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2862 * the list and one reference dropped. This function does not take 2863 * any lock. Synchronization should be handled by the caller (e.g., TCP 2864 * out-of-order queue is protected by the socket lock). 2865 */ 2866 unsigned int skb_rbtree_purge(struct rb_root *root) 2867 { 2868 struct rb_node *p = rb_first(root); 2869 unsigned int sum = 0; 2870 2871 while (p) { 2872 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2873 2874 p = rb_next(p); 2875 rb_erase(&skb->rbnode, root); 2876 sum += skb->truesize; 2877 kfree_skb(skb); 2878 } 2879 return sum; 2880 } 2881 2882 /** 2883 * skb_queue_head - queue a buffer at the list head 2884 * @list: list to use 2885 * @newsk: buffer to queue 2886 * 2887 * Queue a buffer at the start of the list. This function takes the 2888 * list lock and can be used safely with other locking &sk_buff functions 2889 * safely. 2890 * 2891 * A buffer cannot be placed on two lists at the same time. 2892 */ 2893 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2894 { 2895 unsigned long flags; 2896 2897 spin_lock_irqsave(&list->lock, flags); 2898 __skb_queue_head(list, newsk); 2899 spin_unlock_irqrestore(&list->lock, flags); 2900 } 2901 EXPORT_SYMBOL(skb_queue_head); 2902 2903 /** 2904 * skb_queue_tail - queue a buffer at the list tail 2905 * @list: list to use 2906 * @newsk: buffer to queue 2907 * 2908 * Queue a buffer at the tail of the list. This function takes the 2909 * list lock and can be used safely with other locking &sk_buff functions 2910 * safely. 2911 * 2912 * A buffer cannot be placed on two lists at the same time. 2913 */ 2914 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2915 { 2916 unsigned long flags; 2917 2918 spin_lock_irqsave(&list->lock, flags); 2919 __skb_queue_tail(list, newsk); 2920 spin_unlock_irqrestore(&list->lock, flags); 2921 } 2922 EXPORT_SYMBOL(skb_queue_tail); 2923 2924 /** 2925 * skb_unlink - remove a buffer from a list 2926 * @skb: buffer to remove 2927 * @list: list to use 2928 * 2929 * Remove a packet from a list. The list locks are taken and this 2930 * function is atomic with respect to other list locked calls 2931 * 2932 * You must know what list the SKB is on. 2933 */ 2934 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2935 { 2936 unsigned long flags; 2937 2938 spin_lock_irqsave(&list->lock, flags); 2939 __skb_unlink(skb, list); 2940 spin_unlock_irqrestore(&list->lock, flags); 2941 } 2942 EXPORT_SYMBOL(skb_unlink); 2943 2944 /** 2945 * skb_append - append a buffer 2946 * @old: buffer to insert after 2947 * @newsk: buffer to insert 2948 * @list: list to use 2949 * 2950 * Place a packet after a given packet in a list. The list locks are taken 2951 * and this function is atomic with respect to other list locked calls. 2952 * A buffer cannot be placed on two lists at the same time. 2953 */ 2954 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2955 { 2956 unsigned long flags; 2957 2958 spin_lock_irqsave(&list->lock, flags); 2959 __skb_queue_after(list, old, newsk); 2960 spin_unlock_irqrestore(&list->lock, flags); 2961 } 2962 EXPORT_SYMBOL(skb_append); 2963 2964 /** 2965 * skb_insert - insert a buffer 2966 * @old: buffer to insert before 2967 * @newsk: buffer to insert 2968 * @list: list to use 2969 * 2970 * Place a packet before a given packet in a list. The list locks are 2971 * taken and this function is atomic with respect to other list locked 2972 * calls. 2973 * 2974 * A buffer cannot be placed on two lists at the same time. 2975 */ 2976 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2977 { 2978 unsigned long flags; 2979 2980 spin_lock_irqsave(&list->lock, flags); 2981 __skb_insert(newsk, old->prev, old, list); 2982 spin_unlock_irqrestore(&list->lock, flags); 2983 } 2984 EXPORT_SYMBOL(skb_insert); 2985 2986 static inline void skb_split_inside_header(struct sk_buff *skb, 2987 struct sk_buff* skb1, 2988 const u32 len, const int pos) 2989 { 2990 int i; 2991 2992 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2993 pos - len); 2994 /* And move data appendix as is. */ 2995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2996 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2997 2998 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2999 skb_shinfo(skb)->nr_frags = 0; 3000 skb1->data_len = skb->data_len; 3001 skb1->len += skb1->data_len; 3002 skb->data_len = 0; 3003 skb->len = len; 3004 skb_set_tail_pointer(skb, len); 3005 } 3006 3007 static inline void skb_split_no_header(struct sk_buff *skb, 3008 struct sk_buff* skb1, 3009 const u32 len, int pos) 3010 { 3011 int i, k = 0; 3012 const int nfrags = skb_shinfo(skb)->nr_frags; 3013 3014 skb_shinfo(skb)->nr_frags = 0; 3015 skb1->len = skb1->data_len = skb->len - len; 3016 skb->len = len; 3017 skb->data_len = len - pos; 3018 3019 for (i = 0; i < nfrags; i++) { 3020 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3021 3022 if (pos + size > len) { 3023 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3024 3025 if (pos < len) { 3026 /* Split frag. 3027 * We have two variants in this case: 3028 * 1. Move all the frag to the second 3029 * part, if it is possible. F.e. 3030 * this approach is mandatory for TUX, 3031 * where splitting is expensive. 3032 * 2. Split is accurately. We make this. 3033 */ 3034 skb_frag_ref(skb, i); 3035 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3036 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3037 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3038 skb_shinfo(skb)->nr_frags++; 3039 } 3040 k++; 3041 } else 3042 skb_shinfo(skb)->nr_frags++; 3043 pos += size; 3044 } 3045 skb_shinfo(skb1)->nr_frags = k; 3046 } 3047 3048 /** 3049 * skb_split - Split fragmented skb to two parts at length len. 3050 * @skb: the buffer to split 3051 * @skb1: the buffer to receive the second part 3052 * @len: new length for skb 3053 */ 3054 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3055 { 3056 int pos = skb_headlen(skb); 3057 3058 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3059 SKBTX_SHARED_FRAG; 3060 skb_zerocopy_clone(skb1, skb, 0); 3061 if (len < pos) /* Split line is inside header. */ 3062 skb_split_inside_header(skb, skb1, len, pos); 3063 else /* Second chunk has no header, nothing to copy. */ 3064 skb_split_no_header(skb, skb1, len, pos); 3065 } 3066 EXPORT_SYMBOL(skb_split); 3067 3068 /* Shifting from/to a cloned skb is a no-go. 3069 * 3070 * Caller cannot keep skb_shinfo related pointers past calling here! 3071 */ 3072 static int skb_prepare_for_shift(struct sk_buff *skb) 3073 { 3074 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3075 } 3076 3077 /** 3078 * skb_shift - Shifts paged data partially from skb to another 3079 * @tgt: buffer into which tail data gets added 3080 * @skb: buffer from which the paged data comes from 3081 * @shiftlen: shift up to this many bytes 3082 * 3083 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3084 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3085 * It's up to caller to free skb if everything was shifted. 3086 * 3087 * If @tgt runs out of frags, the whole operation is aborted. 3088 * 3089 * Skb cannot include anything else but paged data while tgt is allowed 3090 * to have non-paged data as well. 3091 * 3092 * TODO: full sized shift could be optimized but that would need 3093 * specialized skb free'er to handle frags without up-to-date nr_frags. 3094 */ 3095 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3096 { 3097 int from, to, merge, todo; 3098 struct skb_frag_struct *fragfrom, *fragto; 3099 3100 BUG_ON(shiftlen > skb->len); 3101 3102 if (skb_headlen(skb)) 3103 return 0; 3104 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3105 return 0; 3106 3107 todo = shiftlen; 3108 from = 0; 3109 to = skb_shinfo(tgt)->nr_frags; 3110 fragfrom = &skb_shinfo(skb)->frags[from]; 3111 3112 /* Actual merge is delayed until the point when we know we can 3113 * commit all, so that we don't have to undo partial changes 3114 */ 3115 if (!to || 3116 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3117 fragfrom->page_offset)) { 3118 merge = -1; 3119 } else { 3120 merge = to - 1; 3121 3122 todo -= skb_frag_size(fragfrom); 3123 if (todo < 0) { 3124 if (skb_prepare_for_shift(skb) || 3125 skb_prepare_for_shift(tgt)) 3126 return 0; 3127 3128 /* All previous frag pointers might be stale! */ 3129 fragfrom = &skb_shinfo(skb)->frags[from]; 3130 fragto = &skb_shinfo(tgt)->frags[merge]; 3131 3132 skb_frag_size_add(fragto, shiftlen); 3133 skb_frag_size_sub(fragfrom, shiftlen); 3134 fragfrom->page_offset += shiftlen; 3135 3136 goto onlymerged; 3137 } 3138 3139 from++; 3140 } 3141 3142 /* Skip full, not-fitting skb to avoid expensive operations */ 3143 if ((shiftlen == skb->len) && 3144 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3145 return 0; 3146 3147 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3148 return 0; 3149 3150 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3151 if (to == MAX_SKB_FRAGS) 3152 return 0; 3153 3154 fragfrom = &skb_shinfo(skb)->frags[from]; 3155 fragto = &skb_shinfo(tgt)->frags[to]; 3156 3157 if (todo >= skb_frag_size(fragfrom)) { 3158 *fragto = *fragfrom; 3159 todo -= skb_frag_size(fragfrom); 3160 from++; 3161 to++; 3162 3163 } else { 3164 __skb_frag_ref(fragfrom); 3165 fragto->page = fragfrom->page; 3166 fragto->page_offset = fragfrom->page_offset; 3167 skb_frag_size_set(fragto, todo); 3168 3169 fragfrom->page_offset += todo; 3170 skb_frag_size_sub(fragfrom, todo); 3171 todo = 0; 3172 3173 to++; 3174 break; 3175 } 3176 } 3177 3178 /* Ready to "commit" this state change to tgt */ 3179 skb_shinfo(tgt)->nr_frags = to; 3180 3181 if (merge >= 0) { 3182 fragfrom = &skb_shinfo(skb)->frags[0]; 3183 fragto = &skb_shinfo(tgt)->frags[merge]; 3184 3185 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3186 __skb_frag_unref(fragfrom); 3187 } 3188 3189 /* Reposition in the original skb */ 3190 to = 0; 3191 while (from < skb_shinfo(skb)->nr_frags) 3192 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3193 skb_shinfo(skb)->nr_frags = to; 3194 3195 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3196 3197 onlymerged: 3198 /* Most likely the tgt won't ever need its checksum anymore, skb on 3199 * the other hand might need it if it needs to be resent 3200 */ 3201 tgt->ip_summed = CHECKSUM_PARTIAL; 3202 skb->ip_summed = CHECKSUM_PARTIAL; 3203 3204 /* Yak, is it really working this way? Some helper please? */ 3205 skb->len -= shiftlen; 3206 skb->data_len -= shiftlen; 3207 skb->truesize -= shiftlen; 3208 tgt->len += shiftlen; 3209 tgt->data_len += shiftlen; 3210 tgt->truesize += shiftlen; 3211 3212 return shiftlen; 3213 } 3214 3215 /** 3216 * skb_prepare_seq_read - Prepare a sequential read of skb data 3217 * @skb: the buffer to read 3218 * @from: lower offset of data to be read 3219 * @to: upper offset of data to be read 3220 * @st: state variable 3221 * 3222 * Initializes the specified state variable. Must be called before 3223 * invoking skb_seq_read() for the first time. 3224 */ 3225 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3226 unsigned int to, struct skb_seq_state *st) 3227 { 3228 st->lower_offset = from; 3229 st->upper_offset = to; 3230 st->root_skb = st->cur_skb = skb; 3231 st->frag_idx = st->stepped_offset = 0; 3232 st->frag_data = NULL; 3233 } 3234 EXPORT_SYMBOL(skb_prepare_seq_read); 3235 3236 /** 3237 * skb_seq_read - Sequentially read skb data 3238 * @consumed: number of bytes consumed by the caller so far 3239 * @data: destination pointer for data to be returned 3240 * @st: state variable 3241 * 3242 * Reads a block of skb data at @consumed relative to the 3243 * lower offset specified to skb_prepare_seq_read(). Assigns 3244 * the head of the data block to @data and returns the length 3245 * of the block or 0 if the end of the skb data or the upper 3246 * offset has been reached. 3247 * 3248 * The caller is not required to consume all of the data 3249 * returned, i.e. @consumed is typically set to the number 3250 * of bytes already consumed and the next call to 3251 * skb_seq_read() will return the remaining part of the block. 3252 * 3253 * Note 1: The size of each block of data returned can be arbitrary, 3254 * this limitation is the cost for zerocopy sequential 3255 * reads of potentially non linear data. 3256 * 3257 * Note 2: Fragment lists within fragments are not implemented 3258 * at the moment, state->root_skb could be replaced with 3259 * a stack for this purpose. 3260 */ 3261 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3262 struct skb_seq_state *st) 3263 { 3264 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3265 skb_frag_t *frag; 3266 3267 if (unlikely(abs_offset >= st->upper_offset)) { 3268 if (st->frag_data) { 3269 kunmap_atomic(st->frag_data); 3270 st->frag_data = NULL; 3271 } 3272 return 0; 3273 } 3274 3275 next_skb: 3276 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3277 3278 if (abs_offset < block_limit && !st->frag_data) { 3279 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3280 return block_limit - abs_offset; 3281 } 3282 3283 if (st->frag_idx == 0 && !st->frag_data) 3284 st->stepped_offset += skb_headlen(st->cur_skb); 3285 3286 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3287 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3288 block_limit = skb_frag_size(frag) + st->stepped_offset; 3289 3290 if (abs_offset < block_limit) { 3291 if (!st->frag_data) 3292 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3293 3294 *data = (u8 *) st->frag_data + frag->page_offset + 3295 (abs_offset - st->stepped_offset); 3296 3297 return block_limit - abs_offset; 3298 } 3299 3300 if (st->frag_data) { 3301 kunmap_atomic(st->frag_data); 3302 st->frag_data = NULL; 3303 } 3304 3305 st->frag_idx++; 3306 st->stepped_offset += skb_frag_size(frag); 3307 } 3308 3309 if (st->frag_data) { 3310 kunmap_atomic(st->frag_data); 3311 st->frag_data = NULL; 3312 } 3313 3314 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3315 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3316 st->frag_idx = 0; 3317 goto next_skb; 3318 } else if (st->cur_skb->next) { 3319 st->cur_skb = st->cur_skb->next; 3320 st->frag_idx = 0; 3321 goto next_skb; 3322 } 3323 3324 return 0; 3325 } 3326 EXPORT_SYMBOL(skb_seq_read); 3327 3328 /** 3329 * skb_abort_seq_read - Abort a sequential read of skb data 3330 * @st: state variable 3331 * 3332 * Must be called if skb_seq_read() was not called until it 3333 * returned 0. 3334 */ 3335 void skb_abort_seq_read(struct skb_seq_state *st) 3336 { 3337 if (st->frag_data) 3338 kunmap_atomic(st->frag_data); 3339 } 3340 EXPORT_SYMBOL(skb_abort_seq_read); 3341 3342 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3343 3344 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3345 struct ts_config *conf, 3346 struct ts_state *state) 3347 { 3348 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3349 } 3350 3351 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3352 { 3353 skb_abort_seq_read(TS_SKB_CB(state)); 3354 } 3355 3356 /** 3357 * skb_find_text - Find a text pattern in skb data 3358 * @skb: the buffer to look in 3359 * @from: search offset 3360 * @to: search limit 3361 * @config: textsearch configuration 3362 * 3363 * Finds a pattern in the skb data according to the specified 3364 * textsearch configuration. Use textsearch_next() to retrieve 3365 * subsequent occurrences of the pattern. Returns the offset 3366 * to the first occurrence or UINT_MAX if no match was found. 3367 */ 3368 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3369 unsigned int to, struct ts_config *config) 3370 { 3371 struct ts_state state; 3372 unsigned int ret; 3373 3374 config->get_next_block = skb_ts_get_next_block; 3375 config->finish = skb_ts_finish; 3376 3377 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3378 3379 ret = textsearch_find(config, &state); 3380 return (ret <= to - from ? ret : UINT_MAX); 3381 } 3382 EXPORT_SYMBOL(skb_find_text); 3383 3384 /** 3385 * skb_append_datato_frags - append the user data to a skb 3386 * @sk: sock structure 3387 * @skb: skb structure to be appended with user data. 3388 * @getfrag: call back function to be used for getting the user data 3389 * @from: pointer to user message iov 3390 * @length: length of the iov message 3391 * 3392 * Description: This procedure append the user data in the fragment part 3393 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3394 */ 3395 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3396 int (*getfrag)(void *from, char *to, int offset, 3397 int len, int odd, struct sk_buff *skb), 3398 void *from, int length) 3399 { 3400 int frg_cnt = skb_shinfo(skb)->nr_frags; 3401 int copy; 3402 int offset = 0; 3403 int ret; 3404 struct page_frag *pfrag = ¤t->task_frag; 3405 3406 do { 3407 /* Return error if we don't have space for new frag */ 3408 if (frg_cnt >= MAX_SKB_FRAGS) 3409 return -EMSGSIZE; 3410 3411 if (!sk_page_frag_refill(sk, pfrag)) 3412 return -ENOMEM; 3413 3414 /* copy the user data to page */ 3415 copy = min_t(int, length, pfrag->size - pfrag->offset); 3416 3417 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3418 offset, copy, 0, skb); 3419 if (ret < 0) 3420 return -EFAULT; 3421 3422 /* copy was successful so update the size parameters */ 3423 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3424 copy); 3425 frg_cnt++; 3426 pfrag->offset += copy; 3427 get_page(pfrag->page); 3428 3429 skb->truesize += copy; 3430 refcount_add(copy, &sk->sk_wmem_alloc); 3431 skb->len += copy; 3432 skb->data_len += copy; 3433 offset += copy; 3434 length -= copy; 3435 3436 } while (length > 0); 3437 3438 return 0; 3439 } 3440 EXPORT_SYMBOL(skb_append_datato_frags); 3441 3442 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3443 int offset, size_t size) 3444 { 3445 int i = skb_shinfo(skb)->nr_frags; 3446 3447 if (skb_can_coalesce(skb, i, page, offset)) { 3448 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3449 } else if (i < MAX_SKB_FRAGS) { 3450 get_page(page); 3451 skb_fill_page_desc(skb, i, page, offset, size); 3452 } else { 3453 return -EMSGSIZE; 3454 } 3455 3456 return 0; 3457 } 3458 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3459 3460 /** 3461 * skb_pull_rcsum - pull skb and update receive checksum 3462 * @skb: buffer to update 3463 * @len: length of data pulled 3464 * 3465 * This function performs an skb_pull on the packet and updates 3466 * the CHECKSUM_COMPLETE checksum. It should be used on 3467 * receive path processing instead of skb_pull unless you know 3468 * that the checksum difference is zero (e.g., a valid IP header) 3469 * or you are setting ip_summed to CHECKSUM_NONE. 3470 */ 3471 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3472 { 3473 unsigned char *data = skb->data; 3474 3475 BUG_ON(len > skb->len); 3476 __skb_pull(skb, len); 3477 skb_postpull_rcsum(skb, data, len); 3478 return skb->data; 3479 } 3480 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3481 3482 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3483 { 3484 skb_frag_t head_frag; 3485 struct page *page; 3486 3487 page = virt_to_head_page(frag_skb->head); 3488 head_frag.page.p = page; 3489 head_frag.page_offset = frag_skb->data - 3490 (unsigned char *)page_address(page); 3491 head_frag.size = skb_headlen(frag_skb); 3492 return head_frag; 3493 } 3494 3495 /** 3496 * skb_segment - Perform protocol segmentation on skb. 3497 * @head_skb: buffer to segment 3498 * @features: features for the output path (see dev->features) 3499 * 3500 * This function performs segmentation on the given skb. It returns 3501 * a pointer to the first in a list of new skbs for the segments. 3502 * In case of error it returns ERR_PTR(err). 3503 */ 3504 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3505 netdev_features_t features) 3506 { 3507 struct sk_buff *segs = NULL; 3508 struct sk_buff *tail = NULL; 3509 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3510 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3511 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3512 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3513 struct sk_buff *frag_skb = head_skb; 3514 unsigned int offset = doffset; 3515 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3516 unsigned int partial_segs = 0; 3517 unsigned int headroom; 3518 unsigned int len = head_skb->len; 3519 __be16 proto; 3520 bool csum, sg; 3521 int nfrags = skb_shinfo(head_skb)->nr_frags; 3522 int err = -ENOMEM; 3523 int i = 0; 3524 int pos; 3525 int dummy; 3526 3527 __skb_push(head_skb, doffset); 3528 proto = skb_network_protocol(head_skb, &dummy); 3529 if (unlikely(!proto)) 3530 return ERR_PTR(-EINVAL); 3531 3532 sg = !!(features & NETIF_F_SG); 3533 csum = !!can_checksum_protocol(features, proto); 3534 3535 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3536 if (!(features & NETIF_F_GSO_PARTIAL)) { 3537 struct sk_buff *iter; 3538 unsigned int frag_len; 3539 3540 if (!list_skb || 3541 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3542 goto normal; 3543 3544 /* If we get here then all the required 3545 * GSO features except frag_list are supported. 3546 * Try to split the SKB to multiple GSO SKBs 3547 * with no frag_list. 3548 * Currently we can do that only when the buffers don't 3549 * have a linear part and all the buffers except 3550 * the last are of the same length. 3551 */ 3552 frag_len = list_skb->len; 3553 skb_walk_frags(head_skb, iter) { 3554 if (frag_len != iter->len && iter->next) 3555 goto normal; 3556 if (skb_headlen(iter) && !iter->head_frag) 3557 goto normal; 3558 3559 len -= iter->len; 3560 } 3561 3562 if (len != frag_len) 3563 goto normal; 3564 } 3565 3566 /* GSO partial only requires that we trim off any excess that 3567 * doesn't fit into an MSS sized block, so take care of that 3568 * now. 3569 */ 3570 partial_segs = len / mss; 3571 if (partial_segs > 1) 3572 mss *= partial_segs; 3573 else 3574 partial_segs = 0; 3575 } 3576 3577 normal: 3578 headroom = skb_headroom(head_skb); 3579 pos = skb_headlen(head_skb); 3580 3581 do { 3582 struct sk_buff *nskb; 3583 skb_frag_t *nskb_frag; 3584 int hsize; 3585 int size; 3586 3587 if (unlikely(mss == GSO_BY_FRAGS)) { 3588 len = list_skb->len; 3589 } else { 3590 len = head_skb->len - offset; 3591 if (len > mss) 3592 len = mss; 3593 } 3594 3595 hsize = skb_headlen(head_skb) - offset; 3596 if (hsize < 0) 3597 hsize = 0; 3598 if (hsize > len || !sg) 3599 hsize = len; 3600 3601 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3602 (skb_headlen(list_skb) == len || sg)) { 3603 BUG_ON(skb_headlen(list_skb) > len); 3604 3605 i = 0; 3606 nfrags = skb_shinfo(list_skb)->nr_frags; 3607 frag = skb_shinfo(list_skb)->frags; 3608 frag_skb = list_skb; 3609 pos += skb_headlen(list_skb); 3610 3611 while (pos < offset + len) { 3612 BUG_ON(i >= nfrags); 3613 3614 size = skb_frag_size(frag); 3615 if (pos + size > offset + len) 3616 break; 3617 3618 i++; 3619 pos += size; 3620 frag++; 3621 } 3622 3623 nskb = skb_clone(list_skb, GFP_ATOMIC); 3624 list_skb = list_skb->next; 3625 3626 if (unlikely(!nskb)) 3627 goto err; 3628 3629 if (unlikely(pskb_trim(nskb, len))) { 3630 kfree_skb(nskb); 3631 goto err; 3632 } 3633 3634 hsize = skb_end_offset(nskb); 3635 if (skb_cow_head(nskb, doffset + headroom)) { 3636 kfree_skb(nskb); 3637 goto err; 3638 } 3639 3640 nskb->truesize += skb_end_offset(nskb) - hsize; 3641 skb_release_head_state(nskb); 3642 __skb_push(nskb, doffset); 3643 } else { 3644 nskb = __alloc_skb(hsize + doffset + headroom, 3645 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3646 NUMA_NO_NODE); 3647 3648 if (unlikely(!nskb)) 3649 goto err; 3650 3651 skb_reserve(nskb, headroom); 3652 __skb_put(nskb, doffset); 3653 } 3654 3655 if (segs) 3656 tail->next = nskb; 3657 else 3658 segs = nskb; 3659 tail = nskb; 3660 3661 __copy_skb_header(nskb, head_skb); 3662 3663 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3664 skb_reset_mac_len(nskb); 3665 3666 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3667 nskb->data - tnl_hlen, 3668 doffset + tnl_hlen); 3669 3670 if (nskb->len == len + doffset) 3671 goto perform_csum_check; 3672 3673 if (!sg) { 3674 if (!nskb->remcsum_offload) 3675 nskb->ip_summed = CHECKSUM_NONE; 3676 SKB_GSO_CB(nskb)->csum = 3677 skb_copy_and_csum_bits(head_skb, offset, 3678 skb_put(nskb, len), 3679 len, 0); 3680 SKB_GSO_CB(nskb)->csum_start = 3681 skb_headroom(nskb) + doffset; 3682 continue; 3683 } 3684 3685 nskb_frag = skb_shinfo(nskb)->frags; 3686 3687 skb_copy_from_linear_data_offset(head_skb, offset, 3688 skb_put(nskb, hsize), hsize); 3689 3690 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3691 SKBTX_SHARED_FRAG; 3692 3693 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3694 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3695 goto err; 3696 3697 while (pos < offset + len) { 3698 if (i >= nfrags) { 3699 i = 0; 3700 nfrags = skb_shinfo(list_skb)->nr_frags; 3701 frag = skb_shinfo(list_skb)->frags; 3702 frag_skb = list_skb; 3703 if (!skb_headlen(list_skb)) { 3704 BUG_ON(!nfrags); 3705 } else { 3706 BUG_ON(!list_skb->head_frag); 3707 3708 /* to make room for head_frag. */ 3709 i--; 3710 frag--; 3711 } 3712 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3713 skb_zerocopy_clone(nskb, frag_skb, 3714 GFP_ATOMIC)) 3715 goto err; 3716 3717 list_skb = list_skb->next; 3718 } 3719 3720 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3721 MAX_SKB_FRAGS)) { 3722 net_warn_ratelimited( 3723 "skb_segment: too many frags: %u %u\n", 3724 pos, mss); 3725 err = -EINVAL; 3726 goto err; 3727 } 3728 3729 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3730 __skb_frag_ref(nskb_frag); 3731 size = skb_frag_size(nskb_frag); 3732 3733 if (pos < offset) { 3734 nskb_frag->page_offset += offset - pos; 3735 skb_frag_size_sub(nskb_frag, offset - pos); 3736 } 3737 3738 skb_shinfo(nskb)->nr_frags++; 3739 3740 if (pos + size <= offset + len) { 3741 i++; 3742 frag++; 3743 pos += size; 3744 } else { 3745 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3746 goto skip_fraglist; 3747 } 3748 3749 nskb_frag++; 3750 } 3751 3752 skip_fraglist: 3753 nskb->data_len = len - hsize; 3754 nskb->len += nskb->data_len; 3755 nskb->truesize += nskb->data_len; 3756 3757 perform_csum_check: 3758 if (!csum) { 3759 if (skb_has_shared_frag(nskb) && 3760 __skb_linearize(nskb)) 3761 goto err; 3762 3763 if (!nskb->remcsum_offload) 3764 nskb->ip_summed = CHECKSUM_NONE; 3765 SKB_GSO_CB(nskb)->csum = 3766 skb_checksum(nskb, doffset, 3767 nskb->len - doffset, 0); 3768 SKB_GSO_CB(nskb)->csum_start = 3769 skb_headroom(nskb) + doffset; 3770 } 3771 } while ((offset += len) < head_skb->len); 3772 3773 /* Some callers want to get the end of the list. 3774 * Put it in segs->prev to avoid walking the list. 3775 * (see validate_xmit_skb_list() for example) 3776 */ 3777 segs->prev = tail; 3778 3779 if (partial_segs) { 3780 struct sk_buff *iter; 3781 int type = skb_shinfo(head_skb)->gso_type; 3782 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3783 3784 /* Update type to add partial and then remove dodgy if set */ 3785 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3786 type &= ~SKB_GSO_DODGY; 3787 3788 /* Update GSO info and prepare to start updating headers on 3789 * our way back down the stack of protocols. 3790 */ 3791 for (iter = segs; iter; iter = iter->next) { 3792 skb_shinfo(iter)->gso_size = gso_size; 3793 skb_shinfo(iter)->gso_segs = partial_segs; 3794 skb_shinfo(iter)->gso_type = type; 3795 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3796 } 3797 3798 if (tail->len - doffset <= gso_size) 3799 skb_shinfo(tail)->gso_size = 0; 3800 else if (tail != segs) 3801 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3802 } 3803 3804 /* Following permits correct backpressure, for protocols 3805 * using skb_set_owner_w(). 3806 * Idea is to tranfert ownership from head_skb to last segment. 3807 */ 3808 if (head_skb->destructor == sock_wfree) { 3809 swap(tail->truesize, head_skb->truesize); 3810 swap(tail->destructor, head_skb->destructor); 3811 swap(tail->sk, head_skb->sk); 3812 } 3813 return segs; 3814 3815 err: 3816 kfree_skb_list(segs); 3817 return ERR_PTR(err); 3818 } 3819 EXPORT_SYMBOL_GPL(skb_segment); 3820 3821 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3822 { 3823 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3824 unsigned int offset = skb_gro_offset(skb); 3825 unsigned int headlen = skb_headlen(skb); 3826 unsigned int len = skb_gro_len(skb); 3827 unsigned int delta_truesize; 3828 struct sk_buff *lp; 3829 3830 if (unlikely(p->len + len >= 65536)) 3831 return -E2BIG; 3832 3833 lp = NAPI_GRO_CB(p)->last; 3834 pinfo = skb_shinfo(lp); 3835 3836 if (headlen <= offset) { 3837 skb_frag_t *frag; 3838 skb_frag_t *frag2; 3839 int i = skbinfo->nr_frags; 3840 int nr_frags = pinfo->nr_frags + i; 3841 3842 if (nr_frags > MAX_SKB_FRAGS) 3843 goto merge; 3844 3845 offset -= headlen; 3846 pinfo->nr_frags = nr_frags; 3847 skbinfo->nr_frags = 0; 3848 3849 frag = pinfo->frags + nr_frags; 3850 frag2 = skbinfo->frags + i; 3851 do { 3852 *--frag = *--frag2; 3853 } while (--i); 3854 3855 frag->page_offset += offset; 3856 skb_frag_size_sub(frag, offset); 3857 3858 /* all fragments truesize : remove (head size + sk_buff) */ 3859 delta_truesize = skb->truesize - 3860 SKB_TRUESIZE(skb_end_offset(skb)); 3861 3862 skb->truesize -= skb->data_len; 3863 skb->len -= skb->data_len; 3864 skb->data_len = 0; 3865 3866 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3867 goto done; 3868 } else if (skb->head_frag) { 3869 int nr_frags = pinfo->nr_frags; 3870 skb_frag_t *frag = pinfo->frags + nr_frags; 3871 struct page *page = virt_to_head_page(skb->head); 3872 unsigned int first_size = headlen - offset; 3873 unsigned int first_offset; 3874 3875 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3876 goto merge; 3877 3878 first_offset = skb->data - 3879 (unsigned char *)page_address(page) + 3880 offset; 3881 3882 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3883 3884 frag->page.p = page; 3885 frag->page_offset = first_offset; 3886 skb_frag_size_set(frag, first_size); 3887 3888 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3889 /* We dont need to clear skbinfo->nr_frags here */ 3890 3891 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3892 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3893 goto done; 3894 } 3895 3896 merge: 3897 delta_truesize = skb->truesize; 3898 if (offset > headlen) { 3899 unsigned int eat = offset - headlen; 3900 3901 skbinfo->frags[0].page_offset += eat; 3902 skb_frag_size_sub(&skbinfo->frags[0], eat); 3903 skb->data_len -= eat; 3904 skb->len -= eat; 3905 offset = headlen; 3906 } 3907 3908 __skb_pull(skb, offset); 3909 3910 if (NAPI_GRO_CB(p)->last == p) 3911 skb_shinfo(p)->frag_list = skb; 3912 else 3913 NAPI_GRO_CB(p)->last->next = skb; 3914 NAPI_GRO_CB(p)->last = skb; 3915 __skb_header_release(skb); 3916 lp = p; 3917 3918 done: 3919 NAPI_GRO_CB(p)->count++; 3920 p->data_len += len; 3921 p->truesize += delta_truesize; 3922 p->len += len; 3923 if (lp != p) { 3924 lp->data_len += len; 3925 lp->truesize += delta_truesize; 3926 lp->len += len; 3927 } 3928 NAPI_GRO_CB(skb)->same_flow = 1; 3929 return 0; 3930 } 3931 EXPORT_SYMBOL_GPL(skb_gro_receive); 3932 3933 void __init skb_init(void) 3934 { 3935 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3936 sizeof(struct sk_buff), 3937 0, 3938 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3939 offsetof(struct sk_buff, cb), 3940 sizeof_field(struct sk_buff, cb), 3941 NULL); 3942 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3943 sizeof(struct sk_buff_fclones), 3944 0, 3945 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3946 NULL); 3947 } 3948 3949 static int 3950 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3951 unsigned int recursion_level) 3952 { 3953 int start = skb_headlen(skb); 3954 int i, copy = start - offset; 3955 struct sk_buff *frag_iter; 3956 int elt = 0; 3957 3958 if (unlikely(recursion_level >= 24)) 3959 return -EMSGSIZE; 3960 3961 if (copy > 0) { 3962 if (copy > len) 3963 copy = len; 3964 sg_set_buf(sg, skb->data + offset, copy); 3965 elt++; 3966 if ((len -= copy) == 0) 3967 return elt; 3968 offset += copy; 3969 } 3970 3971 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3972 int end; 3973 3974 WARN_ON(start > offset + len); 3975 3976 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3977 if ((copy = end - offset) > 0) { 3978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3979 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3980 return -EMSGSIZE; 3981 3982 if (copy > len) 3983 copy = len; 3984 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3985 frag->page_offset+offset-start); 3986 elt++; 3987 if (!(len -= copy)) 3988 return elt; 3989 offset += copy; 3990 } 3991 start = end; 3992 } 3993 3994 skb_walk_frags(skb, frag_iter) { 3995 int end, ret; 3996 3997 WARN_ON(start > offset + len); 3998 3999 end = start + frag_iter->len; 4000 if ((copy = end - offset) > 0) { 4001 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4002 return -EMSGSIZE; 4003 4004 if (copy > len) 4005 copy = len; 4006 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4007 copy, recursion_level + 1); 4008 if (unlikely(ret < 0)) 4009 return ret; 4010 elt += ret; 4011 if ((len -= copy) == 0) 4012 return elt; 4013 offset += copy; 4014 } 4015 start = end; 4016 } 4017 BUG_ON(len); 4018 return elt; 4019 } 4020 4021 /** 4022 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4023 * @skb: Socket buffer containing the buffers to be mapped 4024 * @sg: The scatter-gather list to map into 4025 * @offset: The offset into the buffer's contents to start mapping 4026 * @len: Length of buffer space to be mapped 4027 * 4028 * Fill the specified scatter-gather list with mappings/pointers into a 4029 * region of the buffer space attached to a socket buffer. Returns either 4030 * the number of scatterlist items used, or -EMSGSIZE if the contents 4031 * could not fit. 4032 */ 4033 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4034 { 4035 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4036 4037 if (nsg <= 0) 4038 return nsg; 4039 4040 sg_mark_end(&sg[nsg - 1]); 4041 4042 return nsg; 4043 } 4044 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4045 4046 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4047 * sglist without mark the sg which contain last skb data as the end. 4048 * So the caller can mannipulate sg list as will when padding new data after 4049 * the first call without calling sg_unmark_end to expend sg list. 4050 * 4051 * Scenario to use skb_to_sgvec_nomark: 4052 * 1. sg_init_table 4053 * 2. skb_to_sgvec_nomark(payload1) 4054 * 3. skb_to_sgvec_nomark(payload2) 4055 * 4056 * This is equivalent to: 4057 * 1. sg_init_table 4058 * 2. skb_to_sgvec(payload1) 4059 * 3. sg_unmark_end 4060 * 4. skb_to_sgvec(payload2) 4061 * 4062 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4063 * is more preferable. 4064 */ 4065 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4066 int offset, int len) 4067 { 4068 return __skb_to_sgvec(skb, sg, offset, len, 0); 4069 } 4070 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4071 4072 4073 4074 /** 4075 * skb_cow_data - Check that a socket buffer's data buffers are writable 4076 * @skb: The socket buffer to check. 4077 * @tailbits: Amount of trailing space to be added 4078 * @trailer: Returned pointer to the skb where the @tailbits space begins 4079 * 4080 * Make sure that the data buffers attached to a socket buffer are 4081 * writable. If they are not, private copies are made of the data buffers 4082 * and the socket buffer is set to use these instead. 4083 * 4084 * If @tailbits is given, make sure that there is space to write @tailbits 4085 * bytes of data beyond current end of socket buffer. @trailer will be 4086 * set to point to the skb in which this space begins. 4087 * 4088 * The number of scatterlist elements required to completely map the 4089 * COW'd and extended socket buffer will be returned. 4090 */ 4091 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4092 { 4093 int copyflag; 4094 int elt; 4095 struct sk_buff *skb1, **skb_p; 4096 4097 /* If skb is cloned or its head is paged, reallocate 4098 * head pulling out all the pages (pages are considered not writable 4099 * at the moment even if they are anonymous). 4100 */ 4101 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4102 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4103 return -ENOMEM; 4104 4105 /* Easy case. Most of packets will go this way. */ 4106 if (!skb_has_frag_list(skb)) { 4107 /* A little of trouble, not enough of space for trailer. 4108 * This should not happen, when stack is tuned to generate 4109 * good frames. OK, on miss we reallocate and reserve even more 4110 * space, 128 bytes is fair. */ 4111 4112 if (skb_tailroom(skb) < tailbits && 4113 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4114 return -ENOMEM; 4115 4116 /* Voila! */ 4117 *trailer = skb; 4118 return 1; 4119 } 4120 4121 /* Misery. We are in troubles, going to mincer fragments... */ 4122 4123 elt = 1; 4124 skb_p = &skb_shinfo(skb)->frag_list; 4125 copyflag = 0; 4126 4127 while ((skb1 = *skb_p) != NULL) { 4128 int ntail = 0; 4129 4130 /* The fragment is partially pulled by someone, 4131 * this can happen on input. Copy it and everything 4132 * after it. */ 4133 4134 if (skb_shared(skb1)) 4135 copyflag = 1; 4136 4137 /* If the skb is the last, worry about trailer. */ 4138 4139 if (skb1->next == NULL && tailbits) { 4140 if (skb_shinfo(skb1)->nr_frags || 4141 skb_has_frag_list(skb1) || 4142 skb_tailroom(skb1) < tailbits) 4143 ntail = tailbits + 128; 4144 } 4145 4146 if (copyflag || 4147 skb_cloned(skb1) || 4148 ntail || 4149 skb_shinfo(skb1)->nr_frags || 4150 skb_has_frag_list(skb1)) { 4151 struct sk_buff *skb2; 4152 4153 /* Fuck, we are miserable poor guys... */ 4154 if (ntail == 0) 4155 skb2 = skb_copy(skb1, GFP_ATOMIC); 4156 else 4157 skb2 = skb_copy_expand(skb1, 4158 skb_headroom(skb1), 4159 ntail, 4160 GFP_ATOMIC); 4161 if (unlikely(skb2 == NULL)) 4162 return -ENOMEM; 4163 4164 if (skb1->sk) 4165 skb_set_owner_w(skb2, skb1->sk); 4166 4167 /* Looking around. Are we still alive? 4168 * OK, link new skb, drop old one */ 4169 4170 skb2->next = skb1->next; 4171 *skb_p = skb2; 4172 kfree_skb(skb1); 4173 skb1 = skb2; 4174 } 4175 elt++; 4176 *trailer = skb1; 4177 skb_p = &skb1->next; 4178 } 4179 4180 return elt; 4181 } 4182 EXPORT_SYMBOL_GPL(skb_cow_data); 4183 4184 static void sock_rmem_free(struct sk_buff *skb) 4185 { 4186 struct sock *sk = skb->sk; 4187 4188 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4189 } 4190 4191 static void skb_set_err_queue(struct sk_buff *skb) 4192 { 4193 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4194 * So, it is safe to (mis)use it to mark skbs on the error queue. 4195 */ 4196 skb->pkt_type = PACKET_OUTGOING; 4197 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4198 } 4199 4200 /* 4201 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4202 */ 4203 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4204 { 4205 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4206 (unsigned int)sk->sk_rcvbuf) 4207 return -ENOMEM; 4208 4209 skb_orphan(skb); 4210 skb->sk = sk; 4211 skb->destructor = sock_rmem_free; 4212 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4213 skb_set_err_queue(skb); 4214 4215 /* before exiting rcu section, make sure dst is refcounted */ 4216 skb_dst_force(skb); 4217 4218 skb_queue_tail(&sk->sk_error_queue, skb); 4219 if (!sock_flag(sk, SOCK_DEAD)) 4220 sk->sk_error_report(sk); 4221 return 0; 4222 } 4223 EXPORT_SYMBOL(sock_queue_err_skb); 4224 4225 static bool is_icmp_err_skb(const struct sk_buff *skb) 4226 { 4227 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4228 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4229 } 4230 4231 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4232 { 4233 struct sk_buff_head *q = &sk->sk_error_queue; 4234 struct sk_buff *skb, *skb_next = NULL; 4235 bool icmp_next = false; 4236 unsigned long flags; 4237 4238 spin_lock_irqsave(&q->lock, flags); 4239 skb = __skb_dequeue(q); 4240 if (skb && (skb_next = skb_peek(q))) { 4241 icmp_next = is_icmp_err_skb(skb_next); 4242 if (icmp_next) 4243 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4244 } 4245 spin_unlock_irqrestore(&q->lock, flags); 4246 4247 if (is_icmp_err_skb(skb) && !icmp_next) 4248 sk->sk_err = 0; 4249 4250 if (skb_next) 4251 sk->sk_error_report(sk); 4252 4253 return skb; 4254 } 4255 EXPORT_SYMBOL(sock_dequeue_err_skb); 4256 4257 /** 4258 * skb_clone_sk - create clone of skb, and take reference to socket 4259 * @skb: the skb to clone 4260 * 4261 * This function creates a clone of a buffer that holds a reference on 4262 * sk_refcnt. Buffers created via this function are meant to be 4263 * returned using sock_queue_err_skb, or free via kfree_skb. 4264 * 4265 * When passing buffers allocated with this function to sock_queue_err_skb 4266 * it is necessary to wrap the call with sock_hold/sock_put in order to 4267 * prevent the socket from being released prior to being enqueued on 4268 * the sk_error_queue. 4269 */ 4270 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4271 { 4272 struct sock *sk = skb->sk; 4273 struct sk_buff *clone; 4274 4275 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4276 return NULL; 4277 4278 clone = skb_clone(skb, GFP_ATOMIC); 4279 if (!clone) { 4280 sock_put(sk); 4281 return NULL; 4282 } 4283 4284 clone->sk = sk; 4285 clone->destructor = sock_efree; 4286 4287 return clone; 4288 } 4289 EXPORT_SYMBOL(skb_clone_sk); 4290 4291 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4292 struct sock *sk, 4293 int tstype, 4294 bool opt_stats) 4295 { 4296 struct sock_exterr_skb *serr; 4297 int err; 4298 4299 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4300 4301 serr = SKB_EXT_ERR(skb); 4302 memset(serr, 0, sizeof(*serr)); 4303 serr->ee.ee_errno = ENOMSG; 4304 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4305 serr->ee.ee_info = tstype; 4306 serr->opt_stats = opt_stats; 4307 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4308 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4309 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4310 if (sk->sk_protocol == IPPROTO_TCP && 4311 sk->sk_type == SOCK_STREAM) 4312 serr->ee.ee_data -= sk->sk_tskey; 4313 } 4314 4315 err = sock_queue_err_skb(sk, skb); 4316 4317 if (err) 4318 kfree_skb(skb); 4319 } 4320 4321 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4322 { 4323 bool ret; 4324 4325 if (likely(sysctl_tstamp_allow_data || tsonly)) 4326 return true; 4327 4328 read_lock_bh(&sk->sk_callback_lock); 4329 ret = sk->sk_socket && sk->sk_socket->file && 4330 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4331 read_unlock_bh(&sk->sk_callback_lock); 4332 return ret; 4333 } 4334 4335 void skb_complete_tx_timestamp(struct sk_buff *skb, 4336 struct skb_shared_hwtstamps *hwtstamps) 4337 { 4338 struct sock *sk = skb->sk; 4339 4340 if (!skb_may_tx_timestamp(sk, false)) 4341 goto err; 4342 4343 /* Take a reference to prevent skb_orphan() from freeing the socket, 4344 * but only if the socket refcount is not zero. 4345 */ 4346 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4347 *skb_hwtstamps(skb) = *hwtstamps; 4348 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4349 sock_put(sk); 4350 return; 4351 } 4352 4353 err: 4354 kfree_skb(skb); 4355 } 4356 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4357 4358 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4359 struct skb_shared_hwtstamps *hwtstamps, 4360 struct sock *sk, int tstype) 4361 { 4362 struct sk_buff *skb; 4363 bool tsonly, opt_stats = false; 4364 4365 if (!sk) 4366 return; 4367 4368 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4369 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4370 return; 4371 4372 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4373 if (!skb_may_tx_timestamp(sk, tsonly)) 4374 return; 4375 4376 if (tsonly) { 4377 #ifdef CONFIG_INET 4378 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4379 sk->sk_protocol == IPPROTO_TCP && 4380 sk->sk_type == SOCK_STREAM) { 4381 skb = tcp_get_timestamping_opt_stats(sk); 4382 opt_stats = true; 4383 } else 4384 #endif 4385 skb = alloc_skb(0, GFP_ATOMIC); 4386 } else { 4387 skb = skb_clone(orig_skb, GFP_ATOMIC); 4388 } 4389 if (!skb) 4390 return; 4391 4392 if (tsonly) { 4393 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4394 SKBTX_ANY_TSTAMP; 4395 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4396 } 4397 4398 if (hwtstamps) 4399 *skb_hwtstamps(skb) = *hwtstamps; 4400 else 4401 skb->tstamp = ktime_get_real(); 4402 4403 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4404 } 4405 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4406 4407 void skb_tstamp_tx(struct sk_buff *orig_skb, 4408 struct skb_shared_hwtstamps *hwtstamps) 4409 { 4410 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4411 SCM_TSTAMP_SND); 4412 } 4413 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4414 4415 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4416 { 4417 struct sock *sk = skb->sk; 4418 struct sock_exterr_skb *serr; 4419 int err = 1; 4420 4421 skb->wifi_acked_valid = 1; 4422 skb->wifi_acked = acked; 4423 4424 serr = SKB_EXT_ERR(skb); 4425 memset(serr, 0, sizeof(*serr)); 4426 serr->ee.ee_errno = ENOMSG; 4427 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4428 4429 /* Take a reference to prevent skb_orphan() from freeing the socket, 4430 * but only if the socket refcount is not zero. 4431 */ 4432 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4433 err = sock_queue_err_skb(sk, skb); 4434 sock_put(sk); 4435 } 4436 if (err) 4437 kfree_skb(skb); 4438 } 4439 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4440 4441 /** 4442 * skb_partial_csum_set - set up and verify partial csum values for packet 4443 * @skb: the skb to set 4444 * @start: the number of bytes after skb->data to start checksumming. 4445 * @off: the offset from start to place the checksum. 4446 * 4447 * For untrusted partially-checksummed packets, we need to make sure the values 4448 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4449 * 4450 * This function checks and sets those values and skb->ip_summed: if this 4451 * returns false you should drop the packet. 4452 */ 4453 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4454 { 4455 if (unlikely(start > skb_headlen(skb)) || 4456 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4457 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4458 start, off, skb_headlen(skb)); 4459 return false; 4460 } 4461 skb->ip_summed = CHECKSUM_PARTIAL; 4462 skb->csum_start = skb_headroom(skb) + start; 4463 skb->csum_offset = off; 4464 skb_set_transport_header(skb, start); 4465 return true; 4466 } 4467 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4468 4469 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4470 unsigned int max) 4471 { 4472 if (skb_headlen(skb) >= len) 4473 return 0; 4474 4475 /* If we need to pullup then pullup to the max, so we 4476 * won't need to do it again. 4477 */ 4478 if (max > skb->len) 4479 max = skb->len; 4480 4481 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4482 return -ENOMEM; 4483 4484 if (skb_headlen(skb) < len) 4485 return -EPROTO; 4486 4487 return 0; 4488 } 4489 4490 #define MAX_TCP_HDR_LEN (15 * 4) 4491 4492 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4493 typeof(IPPROTO_IP) proto, 4494 unsigned int off) 4495 { 4496 switch (proto) { 4497 int err; 4498 4499 case IPPROTO_TCP: 4500 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4501 off + MAX_TCP_HDR_LEN); 4502 if (!err && !skb_partial_csum_set(skb, off, 4503 offsetof(struct tcphdr, 4504 check))) 4505 err = -EPROTO; 4506 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4507 4508 case IPPROTO_UDP: 4509 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4510 off + sizeof(struct udphdr)); 4511 if (!err && !skb_partial_csum_set(skb, off, 4512 offsetof(struct udphdr, 4513 check))) 4514 err = -EPROTO; 4515 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4516 } 4517 4518 return ERR_PTR(-EPROTO); 4519 } 4520 4521 /* This value should be large enough to cover a tagged ethernet header plus 4522 * maximally sized IP and TCP or UDP headers. 4523 */ 4524 #define MAX_IP_HDR_LEN 128 4525 4526 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4527 { 4528 unsigned int off; 4529 bool fragment; 4530 __sum16 *csum; 4531 int err; 4532 4533 fragment = false; 4534 4535 err = skb_maybe_pull_tail(skb, 4536 sizeof(struct iphdr), 4537 MAX_IP_HDR_LEN); 4538 if (err < 0) 4539 goto out; 4540 4541 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4542 fragment = true; 4543 4544 off = ip_hdrlen(skb); 4545 4546 err = -EPROTO; 4547 4548 if (fragment) 4549 goto out; 4550 4551 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4552 if (IS_ERR(csum)) 4553 return PTR_ERR(csum); 4554 4555 if (recalculate) 4556 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4557 ip_hdr(skb)->daddr, 4558 skb->len - off, 4559 ip_hdr(skb)->protocol, 0); 4560 err = 0; 4561 4562 out: 4563 return err; 4564 } 4565 4566 /* This value should be large enough to cover a tagged ethernet header plus 4567 * an IPv6 header, all options, and a maximal TCP or UDP header. 4568 */ 4569 #define MAX_IPV6_HDR_LEN 256 4570 4571 #define OPT_HDR(type, skb, off) \ 4572 (type *)(skb_network_header(skb) + (off)) 4573 4574 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4575 { 4576 int err; 4577 u8 nexthdr; 4578 unsigned int off; 4579 unsigned int len; 4580 bool fragment; 4581 bool done; 4582 __sum16 *csum; 4583 4584 fragment = false; 4585 done = false; 4586 4587 off = sizeof(struct ipv6hdr); 4588 4589 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4590 if (err < 0) 4591 goto out; 4592 4593 nexthdr = ipv6_hdr(skb)->nexthdr; 4594 4595 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4596 while (off <= len && !done) { 4597 switch (nexthdr) { 4598 case IPPROTO_DSTOPTS: 4599 case IPPROTO_HOPOPTS: 4600 case IPPROTO_ROUTING: { 4601 struct ipv6_opt_hdr *hp; 4602 4603 err = skb_maybe_pull_tail(skb, 4604 off + 4605 sizeof(struct ipv6_opt_hdr), 4606 MAX_IPV6_HDR_LEN); 4607 if (err < 0) 4608 goto out; 4609 4610 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4611 nexthdr = hp->nexthdr; 4612 off += ipv6_optlen(hp); 4613 break; 4614 } 4615 case IPPROTO_AH: { 4616 struct ip_auth_hdr *hp; 4617 4618 err = skb_maybe_pull_tail(skb, 4619 off + 4620 sizeof(struct ip_auth_hdr), 4621 MAX_IPV6_HDR_LEN); 4622 if (err < 0) 4623 goto out; 4624 4625 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4626 nexthdr = hp->nexthdr; 4627 off += ipv6_authlen(hp); 4628 break; 4629 } 4630 case IPPROTO_FRAGMENT: { 4631 struct frag_hdr *hp; 4632 4633 err = skb_maybe_pull_tail(skb, 4634 off + 4635 sizeof(struct frag_hdr), 4636 MAX_IPV6_HDR_LEN); 4637 if (err < 0) 4638 goto out; 4639 4640 hp = OPT_HDR(struct frag_hdr, skb, off); 4641 4642 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4643 fragment = true; 4644 4645 nexthdr = hp->nexthdr; 4646 off += sizeof(struct frag_hdr); 4647 break; 4648 } 4649 default: 4650 done = true; 4651 break; 4652 } 4653 } 4654 4655 err = -EPROTO; 4656 4657 if (!done || fragment) 4658 goto out; 4659 4660 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4661 if (IS_ERR(csum)) 4662 return PTR_ERR(csum); 4663 4664 if (recalculate) 4665 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4666 &ipv6_hdr(skb)->daddr, 4667 skb->len - off, nexthdr, 0); 4668 err = 0; 4669 4670 out: 4671 return err; 4672 } 4673 4674 /** 4675 * skb_checksum_setup - set up partial checksum offset 4676 * @skb: the skb to set up 4677 * @recalculate: if true the pseudo-header checksum will be recalculated 4678 */ 4679 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4680 { 4681 int err; 4682 4683 switch (skb->protocol) { 4684 case htons(ETH_P_IP): 4685 err = skb_checksum_setup_ipv4(skb, recalculate); 4686 break; 4687 4688 case htons(ETH_P_IPV6): 4689 err = skb_checksum_setup_ipv6(skb, recalculate); 4690 break; 4691 4692 default: 4693 err = -EPROTO; 4694 break; 4695 } 4696 4697 return err; 4698 } 4699 EXPORT_SYMBOL(skb_checksum_setup); 4700 4701 /** 4702 * skb_checksum_maybe_trim - maybe trims the given skb 4703 * @skb: the skb to check 4704 * @transport_len: the data length beyond the network header 4705 * 4706 * Checks whether the given skb has data beyond the given transport length. 4707 * If so, returns a cloned skb trimmed to this transport length. 4708 * Otherwise returns the provided skb. Returns NULL in error cases 4709 * (e.g. transport_len exceeds skb length or out-of-memory). 4710 * 4711 * Caller needs to set the skb transport header and free any returned skb if it 4712 * differs from the provided skb. 4713 */ 4714 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4715 unsigned int transport_len) 4716 { 4717 struct sk_buff *skb_chk; 4718 unsigned int len = skb_transport_offset(skb) + transport_len; 4719 int ret; 4720 4721 if (skb->len < len) 4722 return NULL; 4723 else if (skb->len == len) 4724 return skb; 4725 4726 skb_chk = skb_clone(skb, GFP_ATOMIC); 4727 if (!skb_chk) 4728 return NULL; 4729 4730 ret = pskb_trim_rcsum(skb_chk, len); 4731 if (ret) { 4732 kfree_skb(skb_chk); 4733 return NULL; 4734 } 4735 4736 return skb_chk; 4737 } 4738 4739 /** 4740 * skb_checksum_trimmed - validate checksum of an skb 4741 * @skb: the skb to check 4742 * @transport_len: the data length beyond the network header 4743 * @skb_chkf: checksum function to use 4744 * 4745 * Applies the given checksum function skb_chkf to the provided skb. 4746 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4747 * 4748 * If the skb has data beyond the given transport length, then a 4749 * trimmed & cloned skb is checked and returned. 4750 * 4751 * Caller needs to set the skb transport header and free any returned skb if it 4752 * differs from the provided skb. 4753 */ 4754 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4755 unsigned int transport_len, 4756 __sum16(*skb_chkf)(struct sk_buff *skb)) 4757 { 4758 struct sk_buff *skb_chk; 4759 unsigned int offset = skb_transport_offset(skb); 4760 __sum16 ret; 4761 4762 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4763 if (!skb_chk) 4764 goto err; 4765 4766 if (!pskb_may_pull(skb_chk, offset)) 4767 goto err; 4768 4769 skb_pull_rcsum(skb_chk, offset); 4770 ret = skb_chkf(skb_chk); 4771 skb_push_rcsum(skb_chk, offset); 4772 4773 if (ret) 4774 goto err; 4775 4776 return skb_chk; 4777 4778 err: 4779 if (skb_chk && skb_chk != skb) 4780 kfree_skb(skb_chk); 4781 4782 return NULL; 4783 4784 } 4785 EXPORT_SYMBOL(skb_checksum_trimmed); 4786 4787 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4788 { 4789 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4790 skb->dev->name); 4791 } 4792 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4793 4794 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4795 { 4796 if (head_stolen) { 4797 skb_release_head_state(skb); 4798 kmem_cache_free(skbuff_head_cache, skb); 4799 } else { 4800 __kfree_skb(skb); 4801 } 4802 } 4803 EXPORT_SYMBOL(kfree_skb_partial); 4804 4805 /** 4806 * skb_try_coalesce - try to merge skb to prior one 4807 * @to: prior buffer 4808 * @from: buffer to add 4809 * @fragstolen: pointer to boolean 4810 * @delta_truesize: how much more was allocated than was requested 4811 */ 4812 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4813 bool *fragstolen, int *delta_truesize) 4814 { 4815 struct skb_shared_info *to_shinfo, *from_shinfo; 4816 int i, delta, len = from->len; 4817 4818 *fragstolen = false; 4819 4820 if (skb_cloned(to)) 4821 return false; 4822 4823 if (len <= skb_tailroom(to)) { 4824 if (len) 4825 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4826 *delta_truesize = 0; 4827 return true; 4828 } 4829 4830 to_shinfo = skb_shinfo(to); 4831 from_shinfo = skb_shinfo(from); 4832 if (to_shinfo->frag_list || from_shinfo->frag_list) 4833 return false; 4834 if (skb_zcopy(to) || skb_zcopy(from)) 4835 return false; 4836 4837 if (skb_headlen(from) != 0) { 4838 struct page *page; 4839 unsigned int offset; 4840 4841 if (to_shinfo->nr_frags + 4842 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4843 return false; 4844 4845 if (skb_head_is_locked(from)) 4846 return false; 4847 4848 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4849 4850 page = virt_to_head_page(from->head); 4851 offset = from->data - (unsigned char *)page_address(page); 4852 4853 skb_fill_page_desc(to, to_shinfo->nr_frags, 4854 page, offset, skb_headlen(from)); 4855 *fragstolen = true; 4856 } else { 4857 if (to_shinfo->nr_frags + 4858 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4859 return false; 4860 4861 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4862 } 4863 4864 WARN_ON_ONCE(delta < len); 4865 4866 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4867 from_shinfo->frags, 4868 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4869 to_shinfo->nr_frags += from_shinfo->nr_frags; 4870 4871 if (!skb_cloned(from)) 4872 from_shinfo->nr_frags = 0; 4873 4874 /* if the skb is not cloned this does nothing 4875 * since we set nr_frags to 0. 4876 */ 4877 for (i = 0; i < from_shinfo->nr_frags; i++) 4878 __skb_frag_ref(&from_shinfo->frags[i]); 4879 4880 to->truesize += delta; 4881 to->len += len; 4882 to->data_len += len; 4883 4884 *delta_truesize = delta; 4885 return true; 4886 } 4887 EXPORT_SYMBOL(skb_try_coalesce); 4888 4889 /** 4890 * skb_scrub_packet - scrub an skb 4891 * 4892 * @skb: buffer to clean 4893 * @xnet: packet is crossing netns 4894 * 4895 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4896 * into/from a tunnel. Some information have to be cleared during these 4897 * operations. 4898 * skb_scrub_packet can also be used to clean a skb before injecting it in 4899 * another namespace (@xnet == true). We have to clear all information in the 4900 * skb that could impact namespace isolation. 4901 */ 4902 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4903 { 4904 skb->pkt_type = PACKET_HOST; 4905 skb->skb_iif = 0; 4906 skb->ignore_df = 0; 4907 skb_dst_drop(skb); 4908 secpath_reset(skb); 4909 nf_reset(skb); 4910 nf_reset_trace(skb); 4911 4912 if (!xnet) 4913 return; 4914 4915 ipvs_reset(skb); 4916 skb->mark = 0; 4917 skb->tstamp = 0; 4918 } 4919 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4920 4921 /** 4922 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4923 * 4924 * @skb: GSO skb 4925 * 4926 * skb_gso_transport_seglen is used to determine the real size of the 4927 * individual segments, including Layer4 headers (TCP/UDP). 4928 * 4929 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4930 */ 4931 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4932 { 4933 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4934 unsigned int thlen = 0; 4935 4936 if (skb->encapsulation) { 4937 thlen = skb_inner_transport_header(skb) - 4938 skb_transport_header(skb); 4939 4940 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4941 thlen += inner_tcp_hdrlen(skb); 4942 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4943 thlen = tcp_hdrlen(skb); 4944 } else if (unlikely(skb_is_gso_sctp(skb))) { 4945 thlen = sizeof(struct sctphdr); 4946 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4947 thlen = sizeof(struct udphdr); 4948 } 4949 /* UFO sets gso_size to the size of the fragmentation 4950 * payload, i.e. the size of the L4 (UDP) header is already 4951 * accounted for. 4952 */ 4953 return thlen + shinfo->gso_size; 4954 } 4955 4956 /** 4957 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4958 * 4959 * @skb: GSO skb 4960 * 4961 * skb_gso_network_seglen is used to determine the real size of the 4962 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4963 * 4964 * The MAC/L2 header is not accounted for. 4965 */ 4966 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4967 { 4968 unsigned int hdr_len = skb_transport_header(skb) - 4969 skb_network_header(skb); 4970 4971 return hdr_len + skb_gso_transport_seglen(skb); 4972 } 4973 4974 /** 4975 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4976 * 4977 * @skb: GSO skb 4978 * 4979 * skb_gso_mac_seglen is used to determine the real size of the 4980 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4981 * headers (TCP/UDP). 4982 */ 4983 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4984 { 4985 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4986 4987 return hdr_len + skb_gso_transport_seglen(skb); 4988 } 4989 4990 /** 4991 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4992 * 4993 * There are a couple of instances where we have a GSO skb, and we 4994 * want to determine what size it would be after it is segmented. 4995 * 4996 * We might want to check: 4997 * - L3+L4+payload size (e.g. IP forwarding) 4998 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4999 * 5000 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5001 * 5002 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5003 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5004 * 5005 * @max_len: The maximum permissible length. 5006 * 5007 * Returns true if the segmented length <= max length. 5008 */ 5009 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5010 unsigned int seg_len, 5011 unsigned int max_len) { 5012 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5013 const struct sk_buff *iter; 5014 5015 if (shinfo->gso_size != GSO_BY_FRAGS) 5016 return seg_len <= max_len; 5017 5018 /* Undo this so we can re-use header sizes */ 5019 seg_len -= GSO_BY_FRAGS; 5020 5021 skb_walk_frags(skb, iter) { 5022 if (seg_len + skb_headlen(iter) > max_len) 5023 return false; 5024 } 5025 5026 return true; 5027 } 5028 5029 /** 5030 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5031 * 5032 * @skb: GSO skb 5033 * @mtu: MTU to validate against 5034 * 5035 * skb_gso_validate_network_len validates if a given skb will fit a 5036 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5037 * payload. 5038 */ 5039 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5040 { 5041 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5042 } 5043 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5044 5045 /** 5046 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5047 * 5048 * @skb: GSO skb 5049 * @len: length to validate against 5050 * 5051 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5052 * length once split, including L2, L3 and L4 headers and the payload. 5053 */ 5054 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5055 { 5056 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5057 } 5058 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5059 5060 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5061 { 5062 int mac_len; 5063 5064 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5065 kfree_skb(skb); 5066 return NULL; 5067 } 5068 5069 mac_len = skb->data - skb_mac_header(skb); 5070 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5071 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5072 mac_len - VLAN_HLEN - ETH_TLEN); 5073 } 5074 skb->mac_header += VLAN_HLEN; 5075 return skb; 5076 } 5077 5078 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5079 { 5080 struct vlan_hdr *vhdr; 5081 u16 vlan_tci; 5082 5083 if (unlikely(skb_vlan_tag_present(skb))) { 5084 /* vlan_tci is already set-up so leave this for another time */ 5085 return skb; 5086 } 5087 5088 skb = skb_share_check(skb, GFP_ATOMIC); 5089 if (unlikely(!skb)) 5090 goto err_free; 5091 5092 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5093 goto err_free; 5094 5095 vhdr = (struct vlan_hdr *)skb->data; 5096 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5097 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5098 5099 skb_pull_rcsum(skb, VLAN_HLEN); 5100 vlan_set_encap_proto(skb, vhdr); 5101 5102 skb = skb_reorder_vlan_header(skb); 5103 if (unlikely(!skb)) 5104 goto err_free; 5105 5106 skb_reset_network_header(skb); 5107 skb_reset_transport_header(skb); 5108 skb_reset_mac_len(skb); 5109 5110 return skb; 5111 5112 err_free: 5113 kfree_skb(skb); 5114 return NULL; 5115 } 5116 EXPORT_SYMBOL(skb_vlan_untag); 5117 5118 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5119 { 5120 if (!pskb_may_pull(skb, write_len)) 5121 return -ENOMEM; 5122 5123 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5124 return 0; 5125 5126 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5127 } 5128 EXPORT_SYMBOL(skb_ensure_writable); 5129 5130 /* remove VLAN header from packet and update csum accordingly. 5131 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5132 */ 5133 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5134 { 5135 struct vlan_hdr *vhdr; 5136 int offset = skb->data - skb_mac_header(skb); 5137 int err; 5138 5139 if (WARN_ONCE(offset, 5140 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5141 offset)) { 5142 return -EINVAL; 5143 } 5144 5145 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5146 if (unlikely(err)) 5147 return err; 5148 5149 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5150 5151 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5152 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5153 5154 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5155 __skb_pull(skb, VLAN_HLEN); 5156 5157 vlan_set_encap_proto(skb, vhdr); 5158 skb->mac_header += VLAN_HLEN; 5159 5160 if (skb_network_offset(skb) < ETH_HLEN) 5161 skb_set_network_header(skb, ETH_HLEN); 5162 5163 skb_reset_mac_len(skb); 5164 5165 return err; 5166 } 5167 EXPORT_SYMBOL(__skb_vlan_pop); 5168 5169 /* Pop a vlan tag either from hwaccel or from payload. 5170 * Expects skb->data at mac header. 5171 */ 5172 int skb_vlan_pop(struct sk_buff *skb) 5173 { 5174 u16 vlan_tci; 5175 __be16 vlan_proto; 5176 int err; 5177 5178 if (likely(skb_vlan_tag_present(skb))) { 5179 skb->vlan_tci = 0; 5180 } else { 5181 if (unlikely(!eth_type_vlan(skb->protocol))) 5182 return 0; 5183 5184 err = __skb_vlan_pop(skb, &vlan_tci); 5185 if (err) 5186 return err; 5187 } 5188 /* move next vlan tag to hw accel tag */ 5189 if (likely(!eth_type_vlan(skb->protocol))) 5190 return 0; 5191 5192 vlan_proto = skb->protocol; 5193 err = __skb_vlan_pop(skb, &vlan_tci); 5194 if (unlikely(err)) 5195 return err; 5196 5197 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5198 return 0; 5199 } 5200 EXPORT_SYMBOL(skb_vlan_pop); 5201 5202 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5203 * Expects skb->data at mac header. 5204 */ 5205 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5206 { 5207 if (skb_vlan_tag_present(skb)) { 5208 int offset = skb->data - skb_mac_header(skb); 5209 int err; 5210 5211 if (WARN_ONCE(offset, 5212 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5213 offset)) { 5214 return -EINVAL; 5215 } 5216 5217 err = __vlan_insert_tag(skb, skb->vlan_proto, 5218 skb_vlan_tag_get(skb)); 5219 if (err) 5220 return err; 5221 5222 skb->protocol = skb->vlan_proto; 5223 skb->mac_len += VLAN_HLEN; 5224 5225 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5226 } 5227 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5228 return 0; 5229 } 5230 EXPORT_SYMBOL(skb_vlan_push); 5231 5232 /** 5233 * alloc_skb_with_frags - allocate skb with page frags 5234 * 5235 * @header_len: size of linear part 5236 * @data_len: needed length in frags 5237 * @max_page_order: max page order desired. 5238 * @errcode: pointer to error code if any 5239 * @gfp_mask: allocation mask 5240 * 5241 * This can be used to allocate a paged skb, given a maximal order for frags. 5242 */ 5243 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5244 unsigned long data_len, 5245 int max_page_order, 5246 int *errcode, 5247 gfp_t gfp_mask) 5248 { 5249 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5250 unsigned long chunk; 5251 struct sk_buff *skb; 5252 struct page *page; 5253 gfp_t gfp_head; 5254 int i; 5255 5256 *errcode = -EMSGSIZE; 5257 /* Note this test could be relaxed, if we succeed to allocate 5258 * high order pages... 5259 */ 5260 if (npages > MAX_SKB_FRAGS) 5261 return NULL; 5262 5263 gfp_head = gfp_mask; 5264 if (gfp_head & __GFP_DIRECT_RECLAIM) 5265 gfp_head |= __GFP_RETRY_MAYFAIL; 5266 5267 *errcode = -ENOBUFS; 5268 skb = alloc_skb(header_len, gfp_head); 5269 if (!skb) 5270 return NULL; 5271 5272 skb->truesize += npages << PAGE_SHIFT; 5273 5274 for (i = 0; npages > 0; i++) { 5275 int order = max_page_order; 5276 5277 while (order) { 5278 if (npages >= 1 << order) { 5279 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5280 __GFP_COMP | 5281 __GFP_NOWARN, 5282 order); 5283 if (page) 5284 goto fill_page; 5285 /* Do not retry other high order allocations */ 5286 order = 1; 5287 max_page_order = 0; 5288 } 5289 order--; 5290 } 5291 page = alloc_page(gfp_mask); 5292 if (!page) 5293 goto failure; 5294 fill_page: 5295 chunk = min_t(unsigned long, data_len, 5296 PAGE_SIZE << order); 5297 skb_fill_page_desc(skb, i, page, 0, chunk); 5298 data_len -= chunk; 5299 npages -= 1 << order; 5300 } 5301 return skb; 5302 5303 failure: 5304 kfree_skb(skb); 5305 return NULL; 5306 } 5307 EXPORT_SYMBOL(alloc_skb_with_frags); 5308 5309 /* carve out the first off bytes from skb when off < headlen */ 5310 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5311 const int headlen, gfp_t gfp_mask) 5312 { 5313 int i; 5314 int size = skb_end_offset(skb); 5315 int new_hlen = headlen - off; 5316 u8 *data; 5317 5318 size = SKB_DATA_ALIGN(size); 5319 5320 if (skb_pfmemalloc(skb)) 5321 gfp_mask |= __GFP_MEMALLOC; 5322 data = kmalloc_reserve(size + 5323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5324 gfp_mask, NUMA_NO_NODE, NULL); 5325 if (!data) 5326 return -ENOMEM; 5327 5328 size = SKB_WITH_OVERHEAD(ksize(data)); 5329 5330 /* Copy real data, and all frags */ 5331 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5332 skb->len -= off; 5333 5334 memcpy((struct skb_shared_info *)(data + size), 5335 skb_shinfo(skb), 5336 offsetof(struct skb_shared_info, 5337 frags[skb_shinfo(skb)->nr_frags])); 5338 if (skb_cloned(skb)) { 5339 /* drop the old head gracefully */ 5340 if (skb_orphan_frags(skb, gfp_mask)) { 5341 kfree(data); 5342 return -ENOMEM; 5343 } 5344 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5345 skb_frag_ref(skb, i); 5346 if (skb_has_frag_list(skb)) 5347 skb_clone_fraglist(skb); 5348 skb_release_data(skb); 5349 } else { 5350 /* we can reuse existing recount- all we did was 5351 * relocate values 5352 */ 5353 skb_free_head(skb); 5354 } 5355 5356 skb->head = data; 5357 skb->data = data; 5358 skb->head_frag = 0; 5359 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5360 skb->end = size; 5361 #else 5362 skb->end = skb->head + size; 5363 #endif 5364 skb_set_tail_pointer(skb, skb_headlen(skb)); 5365 skb_headers_offset_update(skb, 0); 5366 skb->cloned = 0; 5367 skb->hdr_len = 0; 5368 skb->nohdr = 0; 5369 atomic_set(&skb_shinfo(skb)->dataref, 1); 5370 5371 return 0; 5372 } 5373 5374 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5375 5376 /* carve out the first eat bytes from skb's frag_list. May recurse into 5377 * pskb_carve() 5378 */ 5379 static int pskb_carve_frag_list(struct sk_buff *skb, 5380 struct skb_shared_info *shinfo, int eat, 5381 gfp_t gfp_mask) 5382 { 5383 struct sk_buff *list = shinfo->frag_list; 5384 struct sk_buff *clone = NULL; 5385 struct sk_buff *insp = NULL; 5386 5387 do { 5388 if (!list) { 5389 pr_err("Not enough bytes to eat. Want %d\n", eat); 5390 return -EFAULT; 5391 } 5392 if (list->len <= eat) { 5393 /* Eaten as whole. */ 5394 eat -= list->len; 5395 list = list->next; 5396 insp = list; 5397 } else { 5398 /* Eaten partially. */ 5399 if (skb_shared(list)) { 5400 clone = skb_clone(list, gfp_mask); 5401 if (!clone) 5402 return -ENOMEM; 5403 insp = list->next; 5404 list = clone; 5405 } else { 5406 /* This may be pulled without problems. */ 5407 insp = list; 5408 } 5409 if (pskb_carve(list, eat, gfp_mask) < 0) { 5410 kfree_skb(clone); 5411 return -ENOMEM; 5412 } 5413 break; 5414 } 5415 } while (eat); 5416 5417 /* Free pulled out fragments. */ 5418 while ((list = shinfo->frag_list) != insp) { 5419 shinfo->frag_list = list->next; 5420 kfree_skb(list); 5421 } 5422 /* And insert new clone at head. */ 5423 if (clone) { 5424 clone->next = list; 5425 shinfo->frag_list = clone; 5426 } 5427 return 0; 5428 } 5429 5430 /* carve off first len bytes from skb. Split line (off) is in the 5431 * non-linear part of skb 5432 */ 5433 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5434 int pos, gfp_t gfp_mask) 5435 { 5436 int i, k = 0; 5437 int size = skb_end_offset(skb); 5438 u8 *data; 5439 const int nfrags = skb_shinfo(skb)->nr_frags; 5440 struct skb_shared_info *shinfo; 5441 5442 size = SKB_DATA_ALIGN(size); 5443 5444 if (skb_pfmemalloc(skb)) 5445 gfp_mask |= __GFP_MEMALLOC; 5446 data = kmalloc_reserve(size + 5447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5448 gfp_mask, NUMA_NO_NODE, NULL); 5449 if (!data) 5450 return -ENOMEM; 5451 5452 size = SKB_WITH_OVERHEAD(ksize(data)); 5453 5454 memcpy((struct skb_shared_info *)(data + size), 5455 skb_shinfo(skb), offsetof(struct skb_shared_info, 5456 frags[skb_shinfo(skb)->nr_frags])); 5457 if (skb_orphan_frags(skb, gfp_mask)) { 5458 kfree(data); 5459 return -ENOMEM; 5460 } 5461 shinfo = (struct skb_shared_info *)(data + size); 5462 for (i = 0; i < nfrags; i++) { 5463 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5464 5465 if (pos + fsize > off) { 5466 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5467 5468 if (pos < off) { 5469 /* Split frag. 5470 * We have two variants in this case: 5471 * 1. Move all the frag to the second 5472 * part, if it is possible. F.e. 5473 * this approach is mandatory for TUX, 5474 * where splitting is expensive. 5475 * 2. Split is accurately. We make this. 5476 */ 5477 shinfo->frags[0].page_offset += off - pos; 5478 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5479 } 5480 skb_frag_ref(skb, i); 5481 k++; 5482 } 5483 pos += fsize; 5484 } 5485 shinfo->nr_frags = k; 5486 if (skb_has_frag_list(skb)) 5487 skb_clone_fraglist(skb); 5488 5489 if (k == 0) { 5490 /* split line is in frag list */ 5491 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5492 } 5493 skb_release_data(skb); 5494 5495 skb->head = data; 5496 skb->head_frag = 0; 5497 skb->data = data; 5498 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5499 skb->end = size; 5500 #else 5501 skb->end = skb->head + size; 5502 #endif 5503 skb_reset_tail_pointer(skb); 5504 skb_headers_offset_update(skb, 0); 5505 skb->cloned = 0; 5506 skb->hdr_len = 0; 5507 skb->nohdr = 0; 5508 skb->len -= off; 5509 skb->data_len = skb->len; 5510 atomic_set(&skb_shinfo(skb)->dataref, 1); 5511 return 0; 5512 } 5513 5514 /* remove len bytes from the beginning of the skb */ 5515 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5516 { 5517 int headlen = skb_headlen(skb); 5518 5519 if (len < headlen) 5520 return pskb_carve_inside_header(skb, len, headlen, gfp); 5521 else 5522 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5523 } 5524 5525 /* Extract to_copy bytes starting at off from skb, and return this in 5526 * a new skb 5527 */ 5528 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5529 int to_copy, gfp_t gfp) 5530 { 5531 struct sk_buff *clone = skb_clone(skb, gfp); 5532 5533 if (!clone) 5534 return NULL; 5535 5536 if (pskb_carve(clone, off, gfp) < 0 || 5537 pskb_trim(clone, to_copy)) { 5538 kfree_skb(clone); 5539 return NULL; 5540 } 5541 return clone; 5542 } 5543 EXPORT_SYMBOL(pskb_extract); 5544 5545 /** 5546 * skb_condense - try to get rid of fragments/frag_list if possible 5547 * @skb: buffer 5548 * 5549 * Can be used to save memory before skb is added to a busy queue. 5550 * If packet has bytes in frags and enough tail room in skb->head, 5551 * pull all of them, so that we can free the frags right now and adjust 5552 * truesize. 5553 * Notes: 5554 * We do not reallocate skb->head thus can not fail. 5555 * Caller must re-evaluate skb->truesize if needed. 5556 */ 5557 void skb_condense(struct sk_buff *skb) 5558 { 5559 if (skb->data_len) { 5560 if (skb->data_len > skb->end - skb->tail || 5561 skb_cloned(skb)) 5562 return; 5563 5564 /* Nice, we can free page frag(s) right now */ 5565 __pskb_pull_tail(skb, skb->data_len); 5566 } 5567 /* At this point, skb->truesize might be over estimated, 5568 * because skb had a fragment, and fragments do not tell 5569 * their truesize. 5570 * When we pulled its content into skb->head, fragment 5571 * was freed, but __pskb_pull_tail() could not possibly 5572 * adjust skb->truesize, not knowing the frag truesize. 5573 */ 5574 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5575 } 5576